mm/memcontrol: Replace the PREEMPT_RT conditionals
[linux-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
facdaa91
NG
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
68f2736a 113bool PageMovable(struct page *page)
bda807d4 114{
68f2736a 115 const struct movable_operations *mops;
bda807d4
MK
116
117 VM_BUG_ON_PAGE(!PageLocked(page), page);
118 if (!__PageMovable(page))
68f2736a 119 return false;
bda807d4 120
68f2736a
MWO
121 mops = page_movable_ops(page);
122 if (mops)
123 return true;
bda807d4 124
68f2736a 125 return false;
bda807d4
MK
126}
127EXPORT_SYMBOL(PageMovable);
128
68f2736a 129void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
130{
131 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
132 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
134}
135EXPORT_SYMBOL(__SetPageMovable);
136
137void __ClearPageMovable(struct page *page)
138{
bda807d4
MK
139 VM_BUG_ON_PAGE(!PageMovable(page), page);
140 /*
68f2736a
MWO
141 * This page still has the type of a movable page, but it's
142 * actually not movable any more.
bda807d4 143 */
68f2736a 144 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
145}
146EXPORT_SYMBOL(__ClearPageMovable);
147
24e2716f
JK
148/* Do not skip compaction more than 64 times */
149#define COMPACT_MAX_DEFER_SHIFT 6
150
151/*
152 * Compaction is deferred when compaction fails to result in a page
860b3272 153 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
154 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155 */
2271b016 156static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
157{
158 zone->compact_considered = 0;
159 zone->compact_defer_shift++;
160
161 if (order < zone->compact_order_failed)
162 zone->compact_order_failed = order;
163
164 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167 trace_mm_compaction_defer_compaction(zone, order);
168}
169
170/* Returns true if compaction should be skipped this time */
2271b016 171static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
172{
173 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175 if (order < zone->compact_order_failed)
176 return false;
177
178 /* Avoid possible overflow */
62b35fe0 179 if (++zone->compact_considered >= defer_limit) {
24e2716f 180 zone->compact_considered = defer_limit;
24e2716f 181 return false;
62b35fe0 182 }
24e2716f
JK
183
184 trace_mm_compaction_deferred(zone, order);
185
186 return true;
187}
188
189/*
190 * Update defer tracking counters after successful compaction of given order,
191 * which means an allocation either succeeded (alloc_success == true) or is
192 * expected to succeed.
193 */
194void compaction_defer_reset(struct zone *zone, int order,
195 bool alloc_success)
196{
197 if (alloc_success) {
198 zone->compact_considered = 0;
199 zone->compact_defer_shift = 0;
200 }
201 if (order >= zone->compact_order_failed)
202 zone->compact_order_failed = order + 1;
203
204 trace_mm_compaction_defer_reset(zone, order);
205}
206
207/* Returns true if restarting compaction after many failures */
2271b016 208static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
209{
210 if (order < zone->compact_order_failed)
211 return false;
212
213 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215}
216
bb13ffeb
MG
217/* Returns true if the pageblock should be scanned for pages to isolate. */
218static inline bool isolation_suitable(struct compact_control *cc,
219 struct page *page)
220{
221 if (cc->ignore_skip_hint)
222 return true;
223
224 return !get_pageblock_skip(page);
225}
226
02333641
VB
227static void reset_cached_positions(struct zone *zone)
228{
229 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 231 zone->compact_cached_free_pfn =
06b6640a 232 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
233}
234
21dc7e02 235/*
2271b016 236 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
237 * released. It is always pointless to compact pages of such order (if they are
238 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 239 */
b527cfe5 240static bool pageblock_skip_persistent(struct page *page)
21dc7e02 241{
b527cfe5 242 if (!PageCompound(page))
21dc7e02 243 return false;
b527cfe5
VB
244
245 page = compound_head(page);
246
247 if (compound_order(page) >= pageblock_order)
248 return true;
249
250 return false;
21dc7e02
DR
251}
252
e332f741
MG
253static bool
254__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255 bool check_target)
256{
257 struct page *page = pfn_to_online_page(pfn);
6b0868c8 258 struct page *block_page;
e332f741
MG
259 struct page *end_page;
260 unsigned long block_pfn;
261
262 if (!page)
263 return false;
264 if (zone != page_zone(page))
265 return false;
266 if (pageblock_skip_persistent(page))
267 return false;
268
269 /*
270 * If skip is already cleared do no further checking once the
271 * restart points have been set.
272 */
273 if (check_source && check_target && !get_pageblock_skip(page))
274 return true;
275
276 /*
277 * If clearing skip for the target scanner, do not select a
278 * non-movable pageblock as the starting point.
279 */
280 if (!check_source && check_target &&
281 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282 return false;
283
6b0868c8
MG
284 /* Ensure the start of the pageblock or zone is online and valid */
285 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
286 block_pfn = max(block_pfn, zone->zone_start_pfn);
287 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
288 if (block_page) {
289 page = block_page;
290 pfn = block_pfn;
291 }
292
293 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 294 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
295 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296 end_page = pfn_to_online_page(block_pfn);
297 if (!end_page)
298 return false;
299
e332f741
MG
300 /*
301 * Only clear the hint if a sample indicates there is either a
302 * free page or an LRU page in the block. One or other condition
303 * is necessary for the block to be a migration source/target.
304 */
e332f741 305 do {
859a85dd
MR
306 if (check_source && PageLRU(page)) {
307 clear_pageblock_skip(page);
308 return true;
309 }
e332f741 310
859a85dd
MR
311 if (check_target && PageBuddy(page)) {
312 clear_pageblock_skip(page);
313 return true;
e332f741
MG
314 }
315
316 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 317 } while (page <= end_page);
e332f741
MG
318
319 return false;
320}
321
bb13ffeb
MG
322/*
323 * This function is called to clear all cached information on pageblocks that
324 * should be skipped for page isolation when the migrate and free page scanner
325 * meet.
326 */
62997027 327static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 328{
e332f741 329 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 330 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
331 unsigned long reset_migrate = free_pfn;
332 unsigned long reset_free = migrate_pfn;
333 bool source_set = false;
334 bool free_set = false;
335
336 if (!zone->compact_blockskip_flush)
337 return;
bb13ffeb 338
62997027 339 zone->compact_blockskip_flush = false;
bb13ffeb 340
e332f741
MG
341 /*
342 * Walk the zone and update pageblock skip information. Source looks
343 * for PageLRU while target looks for PageBuddy. When the scanner
344 * is found, both PageBuddy and PageLRU are checked as the pageblock
345 * is suitable as both source and target.
346 */
347 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
349 cond_resched();
350
e332f741
MG
351 /* Update the migrate PFN */
352 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353 migrate_pfn < reset_migrate) {
354 source_set = true;
355 reset_migrate = migrate_pfn;
356 zone->compact_init_migrate_pfn = reset_migrate;
357 zone->compact_cached_migrate_pfn[0] = reset_migrate;
358 zone->compact_cached_migrate_pfn[1] = reset_migrate;
359 }
bb13ffeb 360
e332f741
MG
361 /* Update the free PFN */
362 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363 free_pfn > reset_free) {
364 free_set = true;
365 reset_free = free_pfn;
366 zone->compact_init_free_pfn = reset_free;
367 zone->compact_cached_free_pfn = reset_free;
368 }
bb13ffeb 369 }
02333641 370
e332f741
MG
371 /* Leave no distance if no suitable block was reset */
372 if (reset_migrate >= reset_free) {
373 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375 zone->compact_cached_free_pfn = free_pfn;
376 }
bb13ffeb
MG
377}
378
62997027
MG
379void reset_isolation_suitable(pg_data_t *pgdat)
380{
381 int zoneid;
382
383 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384 struct zone *zone = &pgdat->node_zones[zoneid];
385 if (!populated_zone(zone))
386 continue;
387
388 /* Only flush if a full compaction finished recently */
389 if (zone->compact_blockskip_flush)
390 __reset_isolation_suitable(zone);
391 }
392}
393
e380bebe
MG
394/*
395 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396 * locks are not required for read/writers. Returns true if it was already set.
397 */
398static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399 unsigned long pfn)
400{
401 bool skip;
402
403 /* Do no update if skip hint is being ignored */
404 if (cc->ignore_skip_hint)
405 return false;
406
407 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408 return false;
409
410 skip = get_pageblock_skip(page);
411 if (!skip && !cc->no_set_skip_hint)
412 set_pageblock_skip(page);
413
414 return skip;
415}
416
417static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418{
419 struct zone *zone = cc->zone;
420
421 pfn = pageblock_end_pfn(pfn);
422
423 /* Set for isolation rather than compaction */
424 if (cc->no_set_skip_hint)
425 return;
426
427 if (pfn > zone->compact_cached_migrate_pfn[0])
428 zone->compact_cached_migrate_pfn[0] = pfn;
429 if (cc->mode != MIGRATE_ASYNC &&
430 pfn > zone->compact_cached_migrate_pfn[1])
431 zone->compact_cached_migrate_pfn[1] = pfn;
432}
433
bb13ffeb
MG
434/*
435 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 436 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 437 */
c89511ab 438static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 439 struct page *page, unsigned long pfn)
bb13ffeb 440{
c89511ab 441 struct zone *zone = cc->zone;
6815bf3f 442
2583d671 443 if (cc->no_set_skip_hint)
6815bf3f
JK
444 return;
445
bb13ffeb
MG
446 if (!page)
447 return;
448
edc2ca61 449 set_pageblock_skip(page);
c89511ab 450
35979ef3 451 /* Update where async and sync compaction should restart */
e380bebe
MG
452 if (pfn < zone->compact_cached_free_pfn)
453 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
454}
455#else
456static inline bool isolation_suitable(struct compact_control *cc,
457 struct page *page)
458{
459 return true;
460}
461
b527cfe5 462static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
463{
464 return false;
465}
466
467static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 468 struct page *page, unsigned long pfn)
bb13ffeb
MG
469{
470}
e380bebe
MG
471
472static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473{
474}
475
476static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477 unsigned long pfn)
478{
479 return false;
480}
bb13ffeb
MG
481#endif /* CONFIG_COMPACTION */
482
8b44d279
VB
483/*
484 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
485 * very heavily contended. For async compaction, trylock and record if the
486 * lock is contended. The lock will still be acquired but compaction will
487 * abort when the current block is finished regardless of success rate.
488 * Sync compaction acquires the lock.
8b44d279 489 *
cb2dcaf0 490 * Always returns true which makes it easier to track lock state in callers.
8b44d279 491 */
cb2dcaf0 492static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 493 struct compact_control *cc)
77337ede 494 __acquires(lock)
2a1402aa 495{
cb2dcaf0
MG
496 /* Track if the lock is contended in async mode */
497 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498 if (spin_trylock_irqsave(lock, *flags))
499 return true;
500
501 cc->contended = true;
8b44d279 502 }
1f9efdef 503
cb2dcaf0 504 spin_lock_irqsave(lock, *flags);
8b44d279 505 return true;
2a1402aa
MG
506}
507
c67fe375
MG
508/*
509 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
510 * very heavily contended. The lock should be periodically unlocked to avoid
511 * having disabled IRQs for a long time, even when there is nobody waiting on
512 * the lock. It might also be that allowing the IRQs will result in
d56c1584 513 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
514 * Either compaction type will also abort if a fatal signal is pending.
515 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 516 *
d56c1584
ML
517 * Returns true if compaction should abort due to fatal signal pending.
518 * Returns false when compaction can continue.
c67fe375 519 */
8b44d279
VB
520static bool compact_unlock_should_abort(spinlock_t *lock,
521 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 522{
8b44d279
VB
523 if (*locked) {
524 spin_unlock_irqrestore(lock, flags);
525 *locked = false;
526 }
1f9efdef 527
8b44d279 528 if (fatal_signal_pending(current)) {
c3486f53 529 cc->contended = true;
8b44d279
VB
530 return true;
531 }
c67fe375 532
cf66f070 533 cond_resched();
be976572
VB
534
535 return false;
536}
537
85aa125f 538/*
9e4be470
JM
539 * Isolate free pages onto a private freelist. If @strict is true, will abort
540 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541 * (even though it may still end up isolating some pages).
85aa125f 542 */
f40d1e42 543static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 544 unsigned long *start_pfn,
85aa125f
MN
545 unsigned long end_pfn,
546 struct list_head *freelist,
4fca9730 547 unsigned int stride,
85aa125f 548 bool strict)
748446bb 549{
b7aba698 550 int nr_scanned = 0, total_isolated = 0;
d097a6f6 551 struct page *cursor;
b8b2d825 552 unsigned long flags = 0;
f40d1e42 553 bool locked = false;
e14c720e 554 unsigned long blockpfn = *start_pfn;
66c64223 555 unsigned int order;
748446bb 556
4fca9730
MG
557 /* Strict mode is for isolation, speed is secondary */
558 if (strict)
559 stride = 1;
560
748446bb
MG
561 cursor = pfn_to_page(blockpfn);
562
f40d1e42 563 /* Isolate free pages. */
4fca9730 564 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 565 int isolated;
748446bb
MG
566 struct page *page = cursor;
567
8b44d279
VB
568 /*
569 * Periodically drop the lock (if held) regardless of its
570 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 571 * pending.
8b44d279 572 */
c036ddff 573 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
574 && compact_unlock_should_abort(&cc->zone->lock, flags,
575 &locked, cc))
576 break;
577
b7aba698 578 nr_scanned++;
2af120bc 579
9fcd6d2e
VB
580 /*
581 * For compound pages such as THP and hugetlbfs, we can save
582 * potentially a lot of iterations if we skip them at once.
583 * The check is racy, but we can consider only valid values
584 * and the only danger is skipping too much.
585 */
586 if (PageCompound(page)) {
21dc7e02
DR
587 const unsigned int order = compound_order(page);
588
d3c85bad 589 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
590 blockpfn += (1UL << order) - 1;
591 cursor += (1UL << order) - 1;
9fcd6d2e 592 }
9fcd6d2e
VB
593 goto isolate_fail;
594 }
595
f40d1e42 596 if (!PageBuddy(page))
2af120bc 597 goto isolate_fail;
f40d1e42 598
85f73e6d 599 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 600 if (!locked) {
cb2dcaf0 601 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 602 &flags, cc);
f40d1e42 603
69b7189f
VB
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
606 goto isolate_fail;
607 }
748446bb 608
66c64223 609 /* Found a free page, will break it into order-0 pages */
ab130f91 610 order = buddy_order(page);
66c64223 611 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
612 if (!isolated)
613 break;
66c64223 614 set_page_private(page, order);
a4f04f2c 615
b717d6b9 616 nr_scanned += isolated - 1;
748446bb 617 total_isolated += isolated;
a4f04f2c 618 cc->nr_freepages += isolated;
66c64223
JK
619 list_add_tail(&page->lru, freelist);
620
a4f04f2c
DR
621 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 blockpfn += isolated;
623 break;
748446bb 624 }
a4f04f2c
DR
625 /* Advance to the end of split page */
626 blockpfn += isolated - 1;
627 cursor += isolated - 1;
628 continue;
2af120bc
LA
629
630isolate_fail:
631 if (strict)
632 break;
633 else
634 continue;
635
748446bb
MG
636 }
637
a4f04f2c
DR
638 if (locked)
639 spin_unlock_irqrestore(&cc->zone->lock, flags);
640
9fcd6d2e
VB
641 /*
642 * There is a tiny chance that we have read bogus compound_order(),
643 * so be careful to not go outside of the pageblock.
644 */
645 if (unlikely(blockpfn > end_pfn))
646 blockpfn = end_pfn;
647
e34d85f0
JK
648 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 nr_scanned, total_isolated);
650
e14c720e
VB
651 /* Record how far we have got within the block */
652 *start_pfn = blockpfn;
653
f40d1e42
MG
654 /*
655 * If strict isolation is requested by CMA then check that all the
656 * pages requested were isolated. If there were any failures, 0 is
657 * returned and CMA will fail.
658 */
2af120bc 659 if (strict && blockpfn < end_pfn)
f40d1e42
MG
660 total_isolated = 0;
661
7f354a54 662 cc->total_free_scanned += nr_scanned;
397487db 663 if (total_isolated)
010fc29a 664 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
665 return total_isolated;
666}
667
85aa125f
MN
668/**
669 * isolate_freepages_range() - isolate free pages.
e8b098fc 670 * @cc: Compaction control structure.
85aa125f
MN
671 * @start_pfn: The first PFN to start isolating.
672 * @end_pfn: The one-past-last PFN.
673 *
674 * Non-free pages, invalid PFNs, or zone boundaries within the
675 * [start_pfn, end_pfn) range are considered errors, cause function to
676 * undo its actions and return zero.
677 *
678 * Otherwise, function returns one-past-the-last PFN of isolated page
679 * (which may be greater then end_pfn if end fell in a middle of
680 * a free page).
681 */
ff9543fd 682unsigned long
bb13ffeb
MG
683isolate_freepages_range(struct compact_control *cc,
684 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 685{
e1409c32 686 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
687 LIST_HEAD(freelist);
688
7d49d886 689 pfn = start_pfn;
06b6640a 690 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
691 if (block_start_pfn < cc->zone->zone_start_pfn)
692 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 693 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
694
695 for (; pfn < end_pfn; pfn += isolated,
e1409c32 696 block_start_pfn = block_end_pfn,
7d49d886 697 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
698 /* Protect pfn from changing by isolate_freepages_block */
699 unsigned long isolate_start_pfn = pfn;
85aa125f 700
85aa125f
MN
701 block_end_pfn = min(block_end_pfn, end_pfn);
702
58420016
JK
703 /*
704 * pfn could pass the block_end_pfn if isolated freepage
705 * is more than pageblock order. In this case, we adjust
706 * scanning range to right one.
707 */
708 if (pfn >= block_end_pfn) {
06b6640a
VB
709 block_start_pfn = pageblock_start_pfn(pfn);
710 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
711 block_end_pfn = min(block_end_pfn, end_pfn);
712 }
713
e1409c32
JK
714 if (!pageblock_pfn_to_page(block_start_pfn,
715 block_end_pfn, cc->zone))
7d49d886
VB
716 break;
717
e14c720e 718 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 719 block_end_pfn, &freelist, 0, true);
85aa125f
MN
720
721 /*
722 * In strict mode, isolate_freepages_block() returns 0 if
723 * there are any holes in the block (ie. invalid PFNs or
724 * non-free pages).
725 */
726 if (!isolated)
727 break;
728
729 /*
730 * If we managed to isolate pages, it is always (1 << n) *
731 * pageblock_nr_pages for some non-negative n. (Max order
732 * page may span two pageblocks).
733 */
734 }
735
66c64223 736 /* __isolate_free_page() does not map the pages */
4469ab98 737 split_map_pages(&freelist);
85aa125f
MN
738
739 if (pfn < end_pfn) {
740 /* Loop terminated early, cleanup. */
741 release_freepages(&freelist);
742 return 0;
743 }
744
745 /* We don't use freelists for anything. */
746 return pfn;
747}
748
748446bb 749/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 750static bool too_many_isolated(pg_data_t *pgdat)
748446bb 751{
d818fca1
MG
752 bool too_many;
753
bc693045 754 unsigned long active, inactive, isolated;
748446bb 755
5f438eee
AR
756 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
757 node_page_state(pgdat, NR_INACTIVE_ANON);
758 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
759 node_page_state(pgdat, NR_ACTIVE_ANON);
760 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
761 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 762
d818fca1
MG
763 too_many = isolated > (inactive + active) / 2;
764 if (!too_many)
765 wake_throttle_isolated(pgdat);
766
767 return too_many;
748446bb
MG
768}
769
2fe86e00 770/**
edc2ca61
VB
771 * isolate_migratepages_block() - isolate all migrate-able pages within
772 * a single pageblock
2fe86e00 773 * @cc: Compaction control structure.
edc2ca61
VB
774 * @low_pfn: The first PFN to isolate
775 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 776 * @mode: Isolation mode to be used.
2fe86e00
MN
777 *
778 * Isolate all pages that can be migrated from the range specified by
edc2ca61 779 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 780 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 781 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 782 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 783 *
edc2ca61 784 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 785 * and cc->nr_migratepages is updated accordingly.
748446bb 786 */
c2ad7a1f 787static int
edc2ca61 788isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 789 unsigned long end_pfn, isolate_mode_t mode)
748446bb 790{
5f438eee 791 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 792 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 793 struct lruvec *lruvec;
b8b2d825 794 unsigned long flags = 0;
6168d0da 795 struct lruvec *locked = NULL;
bb13ffeb 796 struct page *page = NULL, *valid_page = NULL;
89f6c88a 797 struct address_space *mapping;
e34d85f0 798 unsigned long start_pfn = low_pfn;
fdd048e1
VB
799 bool skip_on_failure = false;
800 unsigned long next_skip_pfn = 0;
e380bebe 801 bool skip_updated = false;
c2ad7a1f
OS
802 int ret = 0;
803
804 cc->migrate_pfn = low_pfn;
748446bb 805
748446bb
MG
806 /*
807 * Ensure that there are not too many pages isolated from the LRU
808 * list by either parallel reclaimers or compaction. If there are,
809 * delay for some time until fewer pages are isolated
810 */
5f438eee 811 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
812 /* stop isolation if there are still pages not migrated */
813 if (cc->nr_migratepages)
c2ad7a1f 814 return -EAGAIN;
d20bdd57 815
f9e35b3b 816 /* async migration should just abort */
e0b9daeb 817 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 818 return -EAGAIN;
f9e35b3b 819
c3f4a9a2 820 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
821
822 if (fatal_signal_pending(current))
c2ad7a1f 823 return -EINTR;
748446bb
MG
824 }
825
cf66f070 826 cond_resched();
aeef4b83 827
fdd048e1
VB
828 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
829 skip_on_failure = true;
830 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
831 }
832
748446bb 833 /* Time to isolate some pages for migration */
748446bb 834 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 835
fdd048e1
VB
836 if (skip_on_failure && low_pfn >= next_skip_pfn) {
837 /*
838 * We have isolated all migration candidates in the
839 * previous order-aligned block, and did not skip it due
840 * to failure. We should migrate the pages now and
841 * hopefully succeed compaction.
842 */
843 if (nr_isolated)
844 break;
845
846 /*
847 * We failed to isolate in the previous order-aligned
848 * block. Set the new boundary to the end of the
849 * current block. Note we can't simply increase
850 * next_skip_pfn by 1 << order, as low_pfn might have
851 * been incremented by a higher number due to skipping
852 * a compound or a high-order buddy page in the
853 * previous loop iteration.
854 */
855 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
856 }
857
8b44d279
VB
858 /*
859 * Periodically drop the lock (if held) regardless of its
670105a2
MG
860 * contention, to give chance to IRQs. Abort completely if
861 * a fatal signal is pending.
8b44d279 862 */
c036ddff 863 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
864 if (locked) {
865 unlock_page_lruvec_irqrestore(locked, flags);
866 locked = NULL;
867 }
868
869 if (fatal_signal_pending(current)) {
870 cc->contended = true;
c2ad7a1f 871 ret = -EINTR;
6168d0da 872
6168d0da
AS
873 goto fatal_pending;
874 }
875
876 cond_resched();
670105a2 877 }
c67fe375 878
b7aba698 879 nr_scanned++;
748446bb 880
748446bb 881 page = pfn_to_page(low_pfn);
dc908600 882
e380bebe
MG
883 /*
884 * Check if the pageblock has already been marked skipped.
885 * Only the aligned PFN is checked as the caller isolates
886 * COMPACT_CLUSTER_MAX at a time so the second call must
887 * not falsely conclude that the block should be skipped.
888 */
889 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
4af12d04 890 if (!isolation_suitable(cc, page)) {
e380bebe 891 low_pfn = end_pfn;
9df41314 892 page = NULL;
e380bebe
MG
893 goto isolate_abort;
894 }
bb13ffeb 895 valid_page = page;
e380bebe 896 }
bb13ffeb 897
369fa227 898 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 899 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
900
901 /*
902 * Fail isolation in case isolate_or_dissolve_huge_page()
903 * reports an error. In case of -ENOMEM, abort right away.
904 */
905 if (ret < 0) {
906 /* Do not report -EBUSY down the chain */
907 if (ret == -EBUSY)
908 ret = 0;
66fe1cf7 909 low_pfn += compound_nr(page) - 1;
369fa227
OS
910 goto isolate_fail;
911 }
912
ae37c7ff
OS
913 if (PageHuge(page)) {
914 /*
915 * Hugepage was successfully isolated and placed
916 * on the cc->migratepages list.
917 */
918 low_pfn += compound_nr(page) - 1;
919 goto isolate_success_no_list;
920 }
921
369fa227
OS
922 /*
923 * Ok, the hugepage was dissolved. Now these pages are
924 * Buddy and cannot be re-allocated because they are
925 * isolated. Fall-through as the check below handles
926 * Buddy pages.
927 */
928 }
929
6c14466c 930 /*
99c0fd5e
VB
931 * Skip if free. We read page order here without zone lock
932 * which is generally unsafe, but the race window is small and
933 * the worst thing that can happen is that we skip some
934 * potential isolation targets.
6c14466c 935 */
99c0fd5e 936 if (PageBuddy(page)) {
ab130f91 937 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
938
939 /*
940 * Without lock, we cannot be sure that what we got is
941 * a valid page order. Consider only values in the
942 * valid order range to prevent low_pfn overflow.
943 */
944 if (freepage_order > 0 && freepage_order < MAX_ORDER)
945 low_pfn += (1UL << freepage_order) - 1;
748446bb 946 continue;
99c0fd5e 947 }
748446bb 948
bc835011 949 /*
29c0dde8 950 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
951 * hugetlbfs are not to be compacted unless we are attempting
952 * an allocation much larger than the huge page size (eg CMA).
953 * We can potentially save a lot of iterations if we skip them
954 * at once. The check is racy, but we can consider only valid
955 * values and the only danger is skipping too much.
bc835011 956 */
1da2f328 957 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 958 const unsigned int order = compound_order(page);
edc2ca61 959
d3c85bad 960 if (likely(order < MAX_ORDER))
21dc7e02 961 low_pfn += (1UL << order) - 1;
fdd048e1 962 goto isolate_fail;
2a1402aa
MG
963 }
964
bda807d4
MK
965 /*
966 * Check may be lockless but that's ok as we recheck later.
967 * It's possible to migrate LRU and non-lru movable pages.
968 * Skip any other type of page
969 */
970 if (!PageLRU(page)) {
bda807d4
MK
971 /*
972 * __PageMovable can return false positive so we need
973 * to verify it under page_lock.
974 */
975 if (unlikely(__PageMovable(page)) &&
976 !PageIsolated(page)) {
977 if (locked) {
6168d0da
AS
978 unlock_page_lruvec_irqrestore(locked, flags);
979 locked = NULL;
bda807d4
MK
980 }
981
89f6c88a 982 if (!isolate_movable_page(page, mode))
bda807d4
MK
983 goto isolate_success;
984 }
985
fdd048e1 986 goto isolate_fail;
bda807d4 987 }
29c0dde8 988
119d6d59
DR
989 /*
990 * Migration will fail if an anonymous page is pinned in memory,
991 * so avoid taking lru_lock and isolating it unnecessarily in an
992 * admittedly racy check.
993 */
89f6c88a
HD
994 mapping = page_mapping(page);
995 if (!mapping && page_count(page) > page_mapcount(page))
fdd048e1 996 goto isolate_fail;
119d6d59 997
73e64c51
MH
998 /*
999 * Only allow to migrate anonymous pages in GFP_NOFS context
1000 * because those do not depend on fs locks.
1001 */
89f6c88a 1002 if (!(cc->gfp_mask & __GFP_FS) && mapping)
73e64c51
MH
1003 goto isolate_fail;
1004
9df41314
AS
1005 /*
1006 * Be careful not to clear PageLRU until after we're
1007 * sure the page is not being freed elsewhere -- the
1008 * page release code relies on it.
1009 */
1010 if (unlikely(!get_page_unless_zero(page)))
1011 goto isolate_fail;
1012
89f6c88a
HD
1013 /* Only take pages on LRU: a check now makes later tests safe */
1014 if (!PageLRU(page))
1015 goto isolate_fail_put;
1016
1017 /* Compaction might skip unevictable pages but CMA takes them */
1018 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019 goto isolate_fail_put;
1020
1021 /*
1022 * To minimise LRU disruption, the caller can indicate with
1023 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024 * it will be able to migrate without blocking - clean pages
1025 * for the most part. PageWriteback would require blocking.
1026 */
1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1028 goto isolate_fail_put;
1029
89f6c88a
HD
1030 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031 bool migrate_dirty;
1032
1033 /*
1034 * Only pages without mappings or that have a
9d0ddc0c 1035 * ->migrate_folio callback are possible to migrate
89f6c88a
HD
1036 * without blocking. However, we can be racing with
1037 * truncation so it's necessary to lock the page
1038 * to stabilise the mapping as truncation holds
1039 * the page lock until after the page is removed
1040 * from the page cache.
1041 */
1042 if (!trylock_page(page))
1043 goto isolate_fail_put;
1044
1045 mapping = page_mapping(page);
5490da4f 1046 migrate_dirty = !mapping ||
9d0ddc0c 1047 mapping->a_ops->migrate_folio;
89f6c88a
HD
1048 unlock_page(page);
1049 if (!migrate_dirty)
1050 goto isolate_fail_put;
1051 }
1052
9df41314
AS
1053 /* Try isolate the page */
1054 if (!TestClearPageLRU(page))
1055 goto isolate_fail_put;
1056
b1baabd9 1057 lruvec = folio_lruvec(page_folio(page));
6168d0da 1058
69b7189f 1059 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1060 if (lruvec != locked) {
1061 if (locked)
1062 unlock_page_lruvec_irqrestore(locked, flags);
1063
1064 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065 locked = lruvec;
6168d0da 1066
e809c3fe 1067 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1068
e380bebe
MG
1069 /* Try get exclusive access under lock */
1070 if (!skip_updated) {
1071 skip_updated = true;
1072 if (test_and_set_skip(cc, page, low_pfn))
1073 goto isolate_abort;
1074 }
2a1402aa 1075
29c0dde8
VB
1076 /*
1077 * Page become compound since the non-locked check,
1078 * and it's on LRU. It can only be a THP so the order
1079 * is safe to read and it's 0 for tail pages.
1080 */
1da2f328 1081 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1082 low_pfn += compound_nr(page) - 1;
9df41314
AS
1083 SetPageLRU(page);
1084 goto isolate_fail_put;
69b7189f 1085 }
d99fd5fe 1086 }
fa9add64 1087
1da2f328
RR
1088 /* The whole page is taken off the LRU; skip the tail pages. */
1089 if (PageCompound(page))
1090 low_pfn += compound_nr(page) - 1;
bc835011 1091
748446bb 1092 /* Successfully isolated */
46ae6b2c 1093 del_page_from_lru_list(page, lruvec);
1da2f328 1094 mod_node_page_state(page_pgdat(page),
9de4f22a 1095 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1096 thp_nr_pages(page));
b6c75016
JK
1097
1098isolate_success:
fdd048e1 1099 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1100isolate_success_no_list:
38935861
ZY
1101 cc->nr_migratepages += compound_nr(page);
1102 nr_isolated += compound_nr(page);
b717d6b9 1103 nr_scanned += compound_nr(page) - 1;
748446bb 1104
804d3121
MG
1105 /*
1106 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1107 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108 * or a lock is contended. For contention, isolate quickly to
1109 * potentially remove one source of contention.
804d3121 1110 */
38935861 1111 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1112 !cc->rescan && !cc->contended) {
31b8384a 1113 ++low_pfn;
748446bb 1114 break;
31b8384a 1115 }
fdd048e1
VB
1116
1117 continue;
9df41314
AS
1118
1119isolate_fail_put:
1120 /* Avoid potential deadlock in freeing page under lru_lock */
1121 if (locked) {
6168d0da
AS
1122 unlock_page_lruvec_irqrestore(locked, flags);
1123 locked = NULL;
9df41314
AS
1124 }
1125 put_page(page);
1126
fdd048e1 1127isolate_fail:
369fa227 1128 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1129 continue;
1130
1131 /*
1132 * We have isolated some pages, but then failed. Release them
1133 * instead of migrating, as we cannot form the cc->order buddy
1134 * page anyway.
1135 */
1136 if (nr_isolated) {
1137 if (locked) {
6168d0da
AS
1138 unlock_page_lruvec_irqrestore(locked, flags);
1139 locked = NULL;
fdd048e1 1140 }
fdd048e1
VB
1141 putback_movable_pages(&cc->migratepages);
1142 cc->nr_migratepages = 0;
fdd048e1
VB
1143 nr_isolated = 0;
1144 }
1145
1146 if (low_pfn < next_skip_pfn) {
1147 low_pfn = next_skip_pfn - 1;
1148 /*
1149 * The check near the loop beginning would have updated
1150 * next_skip_pfn too, but this is a bit simpler.
1151 */
1152 next_skip_pfn += 1UL << cc->order;
1153 }
369fa227
OS
1154
1155 if (ret == -ENOMEM)
1156 break;
748446bb
MG
1157 }
1158
99c0fd5e
VB
1159 /*
1160 * The PageBuddy() check could have potentially brought us outside
1161 * the range to be scanned.
1162 */
1163 if (unlikely(low_pfn > end_pfn))
1164 low_pfn = end_pfn;
1165
9df41314
AS
1166 page = NULL;
1167
e380bebe 1168isolate_abort:
c67fe375 1169 if (locked)
6168d0da 1170 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1171 if (page) {
1172 SetPageLRU(page);
1173 put_page(page);
1174 }
748446bb 1175
50b5b094 1176 /*
804d3121
MG
1177 * Updated the cached scanner pfn once the pageblock has been scanned
1178 * Pages will either be migrated in which case there is no point
1179 * scanning in the near future or migration failed in which case the
1180 * failure reason may persist. The block is marked for skipping if
1181 * there were no pages isolated in the block or if the block is
1182 * rescanned twice in a row.
50b5b094 1183 */
804d3121 1184 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1185 if (valid_page && !skip_updated)
1186 set_pageblock_skip(valid_page);
1187 update_cached_migrate(cc, low_pfn);
1188 }
bb13ffeb 1189
e34d85f0
JK
1190 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191 nr_scanned, nr_isolated);
b7aba698 1192
670105a2 1193fatal_pending:
7f354a54 1194 cc->total_migrate_scanned += nr_scanned;
397487db 1195 if (nr_isolated)
010fc29a 1196 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1197
c2ad7a1f
OS
1198 cc->migrate_pfn = low_pfn;
1199
1200 return ret;
2fe86e00
MN
1201}
1202
edc2ca61
VB
1203/**
1204 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205 * @cc: Compaction control structure.
1206 * @start_pfn: The first PFN to start isolating.
1207 * @end_pfn: The one-past-last PFN.
1208 *
369fa227
OS
1209 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210 * in case we could not allocate a page, or 0.
edc2ca61 1211 */
c2ad7a1f 1212int
edc2ca61
VB
1213isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214 unsigned long end_pfn)
1215{
e1409c32 1216 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1217 int ret = 0;
edc2ca61
VB
1218
1219 /* Scan block by block. First and last block may be incomplete */
1220 pfn = start_pfn;
06b6640a 1221 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1222 if (block_start_pfn < cc->zone->zone_start_pfn)
1223 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1224 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1225
1226 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1227 block_start_pfn = block_end_pfn,
edc2ca61
VB
1228 block_end_pfn += pageblock_nr_pages) {
1229
1230 block_end_pfn = min(block_end_pfn, end_pfn);
1231
e1409c32
JK
1232 if (!pageblock_pfn_to_page(block_start_pfn,
1233 block_end_pfn, cc->zone))
edc2ca61
VB
1234 continue;
1235
c2ad7a1f
OS
1236 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237 ISOLATE_UNEVICTABLE);
edc2ca61 1238
c2ad7a1f 1239 if (ret)
edc2ca61 1240 break;
6ea41c0c 1241
38935861 1242 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1243 break;
edc2ca61 1244 }
edc2ca61 1245
c2ad7a1f 1246 return ret;
edc2ca61
VB
1247}
1248
ff9543fd
MN
1249#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250#ifdef CONFIG_COMPACTION
018e9a49 1251
b682debd
VB
1252static bool suitable_migration_source(struct compact_control *cc,
1253 struct page *page)
1254{
282722b0
VB
1255 int block_mt;
1256
9bebefd5
MG
1257 if (pageblock_skip_persistent(page))
1258 return false;
1259
282722b0 1260 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1261 return true;
1262
282722b0
VB
1263 block_mt = get_pageblock_migratetype(page);
1264
1265 if (cc->migratetype == MIGRATE_MOVABLE)
1266 return is_migrate_movable(block_mt);
1267 else
1268 return block_mt == cc->migratetype;
b682debd
VB
1269}
1270
018e9a49 1271/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1272static bool suitable_migration_target(struct compact_control *cc,
1273 struct page *page)
018e9a49
AM
1274{
1275 /* If the page is a large free page, then disallow migration */
1276 if (PageBuddy(page)) {
1277 /*
1278 * We are checking page_order without zone->lock taken. But
1279 * the only small danger is that we skip a potentially suitable
1280 * pageblock, so it's not worth to check order for valid range.
1281 */
ab130f91 1282 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1283 return false;
1284 }
1285
1ef36db2
YX
1286 if (cc->ignore_block_suitable)
1287 return true;
1288
018e9a49 1289 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1290 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1291 return true;
1292
1293 /* Otherwise skip the block */
1294 return false;
1295}
1296
70b44595
MG
1297static inline unsigned int
1298freelist_scan_limit(struct compact_control *cc)
1299{
dd7ef7bd
QC
1300 unsigned short shift = BITS_PER_LONG - 1;
1301
1302 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1303}
1304
f2849aa0
VB
1305/*
1306 * Test whether the free scanner has reached the same or lower pageblock than
1307 * the migration scanner, and compaction should thus terminate.
1308 */
1309static inline bool compact_scanners_met(struct compact_control *cc)
1310{
1311 return (cc->free_pfn >> pageblock_order)
1312 <= (cc->migrate_pfn >> pageblock_order);
1313}
1314
5a811889
MG
1315/*
1316 * Used when scanning for a suitable migration target which scans freelists
1317 * in reverse. Reorders the list such as the unscanned pages are scanned
1318 * first on the next iteration of the free scanner
1319 */
1320static void
1321move_freelist_head(struct list_head *freelist, struct page *freepage)
1322{
1323 LIST_HEAD(sublist);
1324
1325 if (!list_is_last(freelist, &freepage->lru)) {
1326 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1327 list_splice_tail(&sublist, freelist);
5a811889
MG
1328 }
1329}
1330
1331/*
1332 * Similar to move_freelist_head except used by the migration scanner
1333 * when scanning forward. It's possible for these list operations to
1334 * move against each other if they search the free list exactly in
1335 * lockstep.
1336 */
70b44595
MG
1337static void
1338move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339{
1340 LIST_HEAD(sublist);
1341
1342 if (!list_is_first(freelist, &freepage->lru)) {
1343 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1344 list_splice_tail(&sublist, freelist);
70b44595
MG
1345 }
1346}
1347
5a811889
MG
1348static void
1349fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350{
1351 unsigned long start_pfn, end_pfn;
6e2b7044 1352 struct page *page;
5a811889
MG
1353
1354 /* Do not search around if there are enough pages already */
1355 if (cc->nr_freepages >= cc->nr_migratepages)
1356 return;
1357
1358 /* Minimise scanning during async compaction */
1359 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360 return;
1361
1362 /* Pageblock boundaries */
6e2b7044
VB
1363 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367 if (!page)
1368 return;
5a811889
MG
1369
1370 /* Scan before */
1371 if (start_pfn != pfn) {
4fca9730 1372 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1373 if (cc->nr_freepages >= cc->nr_migratepages)
1374 return;
1375 }
1376
1377 /* Scan after */
1378 start_pfn = pfn + nr_isolated;
60fce36a 1379 if (start_pfn < end_pfn)
4fca9730 1380 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1381
1382 /* Skip this pageblock in the future as it's full or nearly full */
1383 if (cc->nr_freepages < cc->nr_migratepages)
1384 set_pageblock_skip(page);
1385}
1386
dbe2d4e4
MG
1387/* Search orders in round-robin fashion */
1388static int next_search_order(struct compact_control *cc, int order)
1389{
1390 order--;
1391 if (order < 0)
1392 order = cc->order - 1;
1393
1394 /* Search wrapped around? */
1395 if (order == cc->search_order) {
1396 cc->search_order--;
1397 if (cc->search_order < 0)
1398 cc->search_order = cc->order - 1;
1399 return -1;
1400 }
1401
1402 return order;
1403}
1404
5a811889
MG
1405static unsigned long
1406fast_isolate_freepages(struct compact_control *cc)
1407{
b55ca526 1408 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1409 unsigned int nr_scanned = 0;
74e21484 1410 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1411 unsigned long nr_isolated = 0;
1412 unsigned long distance;
1413 struct page *page = NULL;
1414 bool scan_start = false;
1415 int order;
1416
1417 /* Full compaction passes in a negative order */
1418 if (cc->order <= 0)
1419 return cc->free_pfn;
1420
1421 /*
1422 * If starting the scan, use a deeper search and use the highest
1423 * PFN found if a suitable one is not found.
1424 */
e332f741 1425 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1426 limit = pageblock_nr_pages >> 1;
1427 scan_start = true;
1428 }
1429
1430 /*
1431 * Preferred point is in the top quarter of the scan space but take
1432 * a pfn from the top half if the search is problematic.
1433 */
1434 distance = (cc->free_pfn - cc->migrate_pfn);
1435 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438 if (WARN_ON_ONCE(min_pfn > low_pfn))
1439 low_pfn = min_pfn;
1440
dbe2d4e4
MG
1441 /*
1442 * Search starts from the last successful isolation order or the next
1443 * order to search after a previous failure
1444 */
1445 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447 for (order = cc->search_order;
1448 !page && order >= 0;
1449 order = next_search_order(cc, order)) {
5a811889
MG
1450 struct free_area *area = &cc->zone->free_area[order];
1451 struct list_head *freelist;
1452 struct page *freepage;
1453 unsigned long flags;
1454 unsigned int order_scanned = 0;
74e21484 1455 unsigned long high_pfn = 0;
5a811889
MG
1456
1457 if (!area->nr_free)
1458 continue;
1459
1460 spin_lock_irqsave(&cc->zone->lock, flags);
1461 freelist = &area->free_list[MIGRATE_MOVABLE];
1462 list_for_each_entry_reverse(freepage, freelist, lru) {
1463 unsigned long pfn;
1464
1465 order_scanned++;
1466 nr_scanned++;
1467 pfn = page_to_pfn(freepage);
1468
1469 if (pfn >= highest)
6e2b7044
VB
1470 highest = max(pageblock_start_pfn(pfn),
1471 cc->zone->zone_start_pfn);
5a811889
MG
1472
1473 if (pfn >= low_pfn) {
1474 cc->fast_search_fail = 0;
dbe2d4e4 1475 cc->search_order = order;
5a811889
MG
1476 page = freepage;
1477 break;
1478 }
1479
1480 if (pfn >= min_pfn && pfn > high_pfn) {
1481 high_pfn = pfn;
1482
1483 /* Shorten the scan if a candidate is found */
1484 limit >>= 1;
1485 }
1486
1487 if (order_scanned >= limit)
1488 break;
1489 }
1490
1491 /* Use a minimum pfn if a preferred one was not found */
1492 if (!page && high_pfn) {
1493 page = pfn_to_page(high_pfn);
1494
1495 /* Update freepage for the list reorder below */
1496 freepage = page;
1497 }
1498
1499 /* Reorder to so a future search skips recent pages */
1500 move_freelist_head(freelist, freepage);
1501
1502 /* Isolate the page if available */
1503 if (page) {
1504 if (__isolate_free_page(page, order)) {
1505 set_page_private(page, order);
1506 nr_isolated = 1 << order;
b717d6b9 1507 nr_scanned += nr_isolated - 1;
5a811889
MG
1508 cc->nr_freepages += nr_isolated;
1509 list_add_tail(&page->lru, &cc->freepages);
1510 count_compact_events(COMPACTISOLATED, nr_isolated);
1511 } else {
1512 /* If isolation fails, abort the search */
5b56d996 1513 order = cc->search_order + 1;
5a811889
MG
1514 page = NULL;
1515 }
1516 }
1517
1518 spin_unlock_irqrestore(&cc->zone->lock, flags);
1519
1520 /*
b55ca526 1521 * Smaller scan on next order so the total scan is related
5a811889
MG
1522 * to freelist_scan_limit.
1523 */
1524 if (order_scanned >= limit)
b55ca526 1525 limit = max(1U, limit >> 1);
5a811889
MG
1526 }
1527
1528 if (!page) {
1529 cc->fast_search_fail++;
1530 if (scan_start) {
1531 /*
1532 * Use the highest PFN found above min. If one was
f3867755 1533 * not found, be pessimistic for direct compaction
5a811889
MG
1534 * and use the min mark.
1535 */
ca2864e5 1536 if (highest >= min_pfn) {
5a811889
MG
1537 page = pfn_to_page(highest);
1538 cc->free_pfn = highest;
1539 } else {
e577c8b6 1540 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1541 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1542 min(pageblock_end_pfn(min_pfn),
1543 zone_end_pfn(cc->zone)),
73a6e474 1544 cc->zone);
5a811889
MG
1545 cc->free_pfn = min_pfn;
1546 }
1547 }
1548 }
1549 }
1550
d097a6f6
MG
1551 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552 highest -= pageblock_nr_pages;
5a811889 1553 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1554 }
5a811889
MG
1555
1556 cc->total_free_scanned += nr_scanned;
1557 if (!page)
1558 return cc->free_pfn;
1559
1560 low_pfn = page_to_pfn(page);
1561 fast_isolate_around(cc, low_pfn, nr_isolated);
1562 return low_pfn;
1563}
1564
2fe86e00 1565/*
ff9543fd
MN
1566 * Based on information in the current compact_control, find blocks
1567 * suitable for isolating free pages from and then isolate them.
2fe86e00 1568 */
edc2ca61 1569static void isolate_freepages(struct compact_control *cc)
2fe86e00 1570{
edc2ca61 1571 struct zone *zone = cc->zone;
ff9543fd 1572 struct page *page;
c96b9e50 1573 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1574 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1575 unsigned long block_end_pfn; /* end of current pageblock */
1576 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1577 struct list_head *freelist = &cc->freepages;
4fca9730 1578 unsigned int stride;
2fe86e00 1579
5a811889 1580 /* Try a small search of the free lists for a candidate */
00bc102f 1581 fast_isolate_freepages(cc);
5a811889
MG
1582 if (cc->nr_freepages)
1583 goto splitmap;
1584
ff9543fd
MN
1585 /*
1586 * Initialise the free scanner. The starting point is where we last
49e068f0 1587 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1588 * zone when isolating for the first time. For looping we also need
1589 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1590 * block_start_pfn -= pageblock_nr_pages in the for loop.
1591 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1592 * zone which ends in the middle of a pageblock.
49e068f0
VB
1593 * The low boundary is the end of the pageblock the migration scanner
1594 * is using.
ff9543fd 1595 */
e14c720e 1596 isolate_start_pfn = cc->free_pfn;
5a811889 1597 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1598 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599 zone_end_pfn(zone));
06b6640a 1600 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1601 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1602
ff9543fd
MN
1603 /*
1604 * Isolate free pages until enough are available to migrate the
1605 * pages on cc->migratepages. We stop searching if the migrate
1606 * and free page scanners meet or enough free pages are isolated.
1607 */
f5f61a32 1608 for (; block_start_pfn >= low_pfn;
c96b9e50 1609 block_end_pfn = block_start_pfn,
e14c720e
VB
1610 block_start_pfn -= pageblock_nr_pages,
1611 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1612 unsigned long nr_isolated;
1613
f6ea3adb
DR
1614 /*
1615 * This can iterate a massively long zone without finding any
cb810ad2 1616 * suitable migration targets, so periodically check resched.
f6ea3adb 1617 */
c036ddff 1618 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1619 cond_resched();
f6ea3adb 1620
7d49d886
VB
1621 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622 zone);
1623 if (!page)
ff9543fd
MN
1624 continue;
1625
1626 /* Check the block is suitable for migration */
9f7e3387 1627 if (!suitable_migration_target(cc, page))
ff9543fd 1628 continue;
68e3e926 1629
bb13ffeb
MG
1630 /* If isolation recently failed, do not retry */
1631 if (!isolation_suitable(cc, page))
1632 continue;
1633
e14c720e 1634 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1635 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636 block_end_pfn, freelist, stride, false);
ff9543fd 1637
d097a6f6
MG
1638 /* Update the skip hint if the full pageblock was scanned */
1639 if (isolate_start_pfn == block_end_pfn)
1640 update_pageblock_skip(cc, page, block_start_pfn);
1641
cb2dcaf0
MG
1642 /* Are enough freepages isolated? */
1643 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1644 if (isolate_start_pfn >= block_end_pfn) {
1645 /*
1646 * Restart at previous pageblock if more
1647 * freepages can be isolated next time.
1648 */
f5f61a32
VB
1649 isolate_start_pfn =
1650 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1651 }
be976572 1652 break;
a46cbf3b 1653 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1654 /*
a46cbf3b
DR
1655 * If isolation failed early, do not continue
1656 * needlessly.
f5f61a32 1657 */
a46cbf3b 1658 break;
f5f61a32 1659 }
4fca9730
MG
1660
1661 /* Adjust stride depending on isolation */
1662 if (nr_isolated) {
1663 stride = 1;
1664 continue;
1665 }
1666 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1667 }
1668
7ed695e0 1669 /*
f5f61a32
VB
1670 * Record where the free scanner will restart next time. Either we
1671 * broke from the loop and set isolate_start_pfn based on the last
1672 * call to isolate_freepages_block(), or we met the migration scanner
1673 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1674 */
f5f61a32 1675 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1676
1677splitmap:
1678 /* __isolate_free_page() does not map the pages */
1679 split_map_pages(freelist);
748446bb
MG
1680}
1681
1682/*
1683 * This is a migrate-callback that "allocates" freepages by taking pages
1684 * from the isolated freelists in the block we are migrating to.
1685 */
1686static struct page *compaction_alloc(struct page *migratepage,
666feb21 1687 unsigned long data)
748446bb
MG
1688{
1689 struct compact_control *cc = (struct compact_control *)data;
1690 struct page *freepage;
1691
748446bb 1692 if (list_empty(&cc->freepages)) {
cb2dcaf0 1693 isolate_freepages(cc);
748446bb
MG
1694
1695 if (list_empty(&cc->freepages))
1696 return NULL;
1697 }
1698
1699 freepage = list_entry(cc->freepages.next, struct page, lru);
1700 list_del(&freepage->lru);
1701 cc->nr_freepages--;
1702
1703 return freepage;
1704}
1705
1706/*
d53aea3d
DR
1707 * This is a migrate-callback that "frees" freepages back to the isolated
1708 * freelist. All pages on the freelist are from the same zone, so there is no
1709 * special handling needed for NUMA.
1710 */
1711static void compaction_free(struct page *page, unsigned long data)
1712{
1713 struct compact_control *cc = (struct compact_control *)data;
1714
1715 list_add(&page->lru, &cc->freepages);
1716 cc->nr_freepages++;
1717}
1718
ff9543fd
MN
1719/* possible outcome of isolate_migratepages */
1720typedef enum {
1721 ISOLATE_ABORT, /* Abort compaction now */
1722 ISOLATE_NONE, /* No pages isolated, continue scanning */
1723 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1724} isolate_migrate_t;
1725
5bbe3547
EM
1726/*
1727 * Allow userspace to control policy on scanning the unevictable LRU for
1728 * compactable pages.
1729 */
6923aa0d
SAS
1730#ifdef CONFIG_PREEMPT_RT
1731int sysctl_compact_unevictable_allowed __read_mostly = 0;
1732#else
5bbe3547 1733int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1734#endif
5bbe3547 1735
70b44595
MG
1736static inline void
1737update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1738{
1739 if (cc->fast_start_pfn == ULONG_MAX)
1740 return;
1741
1742 if (!cc->fast_start_pfn)
1743 cc->fast_start_pfn = pfn;
1744
1745 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1746}
1747
1748static inline unsigned long
1749reinit_migrate_pfn(struct compact_control *cc)
1750{
1751 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1752 return cc->migrate_pfn;
1753
1754 cc->migrate_pfn = cc->fast_start_pfn;
1755 cc->fast_start_pfn = ULONG_MAX;
1756
1757 return cc->migrate_pfn;
1758}
1759
1760/*
1761 * Briefly search the free lists for a migration source that already has
1762 * some free pages to reduce the number of pages that need migration
1763 * before a pageblock is free.
1764 */
1765static unsigned long fast_find_migrateblock(struct compact_control *cc)
1766{
1767 unsigned int limit = freelist_scan_limit(cc);
1768 unsigned int nr_scanned = 0;
1769 unsigned long distance;
1770 unsigned long pfn = cc->migrate_pfn;
1771 unsigned long high_pfn;
1772 int order;
15d28d0d 1773 bool found_block = false;
70b44595
MG
1774
1775 /* Skip hints are relied on to avoid repeats on the fast search */
1776 if (cc->ignore_skip_hint)
1777 return pfn;
1778
1779 /*
1780 * If the migrate_pfn is not at the start of a zone or the start
1781 * of a pageblock then assume this is a continuation of a previous
1782 * scan restarted due to COMPACT_CLUSTER_MAX.
1783 */
1784 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1785 return pfn;
1786
1787 /*
1788 * For smaller orders, just linearly scan as the number of pages
1789 * to migrate should be relatively small and does not necessarily
1790 * justify freeing up a large block for a small allocation.
1791 */
1792 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1793 return pfn;
1794
1795 /*
1796 * Only allow kcompactd and direct requests for movable pages to
1797 * quickly clear out a MOVABLE pageblock for allocation. This
1798 * reduces the risk that a large movable pageblock is freed for
1799 * an unmovable/reclaimable small allocation.
1800 */
1801 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1802 return pfn;
1803
1804 /*
1805 * When starting the migration scanner, pick any pageblock within the
1806 * first half of the search space. Otherwise try and pick a pageblock
1807 * within the first eighth to reduce the chances that a migration
1808 * target later becomes a source.
1809 */
1810 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1811 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1812 distance >>= 2;
1813 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1814
1815 for (order = cc->order - 1;
15d28d0d 1816 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1817 order--) {
1818 struct free_area *area = &cc->zone->free_area[order];
1819 struct list_head *freelist;
1820 unsigned long flags;
1821 struct page *freepage;
1822
1823 if (!area->nr_free)
1824 continue;
1825
1826 spin_lock_irqsave(&cc->zone->lock, flags);
1827 freelist = &area->free_list[MIGRATE_MOVABLE];
1828 list_for_each_entry(freepage, freelist, lru) {
1829 unsigned long free_pfn;
1830
15d28d0d
WY
1831 if (nr_scanned++ >= limit) {
1832 move_freelist_tail(freelist, freepage);
1833 break;
1834 }
1835
70b44595
MG
1836 free_pfn = page_to_pfn(freepage);
1837 if (free_pfn < high_pfn) {
70b44595
MG
1838 /*
1839 * Avoid if skipped recently. Ideally it would
1840 * move to the tail but even safe iteration of
1841 * the list assumes an entry is deleted, not
1842 * reordered.
1843 */
15d28d0d 1844 if (get_pageblock_skip(freepage))
70b44595 1845 continue;
70b44595
MG
1846
1847 /* Reorder to so a future search skips recent pages */
1848 move_freelist_tail(freelist, freepage);
1849
e380bebe 1850 update_fast_start_pfn(cc, free_pfn);
70b44595 1851 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1852 if (pfn < cc->zone->zone_start_pfn)
1853 pfn = cc->zone->zone_start_pfn;
70b44595 1854 cc->fast_search_fail = 0;
15d28d0d 1855 found_block = true;
70b44595
MG
1856 set_pageblock_skip(freepage);
1857 break;
1858 }
70b44595
MG
1859 }
1860 spin_unlock_irqrestore(&cc->zone->lock, flags);
1861 }
1862
1863 cc->total_migrate_scanned += nr_scanned;
1864
1865 /*
1866 * If fast scanning failed then use a cached entry for a page block
1867 * that had free pages as the basis for starting a linear scan.
1868 */
15d28d0d
WY
1869 if (!found_block) {
1870 cc->fast_search_fail++;
70b44595 1871 pfn = reinit_migrate_pfn(cc);
15d28d0d 1872 }
70b44595
MG
1873 return pfn;
1874}
1875
ff9543fd 1876/*
edc2ca61
VB
1877 * Isolate all pages that can be migrated from the first suitable block,
1878 * starting at the block pointed to by the migrate scanner pfn within
1879 * compact_control.
ff9543fd 1880 */
32aaf055 1881static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1882{
e1409c32
JK
1883 unsigned long block_start_pfn;
1884 unsigned long block_end_pfn;
1885 unsigned long low_pfn;
edc2ca61
VB
1886 struct page *page;
1887 const isolate_mode_t isolate_mode =
5bbe3547 1888 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1889 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1890 bool fast_find_block;
ff9543fd 1891
edc2ca61
VB
1892 /*
1893 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1894 * initialized by compact_zone(). The first failure will use
1895 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1896 */
70b44595 1897 low_pfn = fast_find_migrateblock(cc);
06b6640a 1898 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1899 if (block_start_pfn < cc->zone->zone_start_pfn)
1900 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1901
70b44595
MG
1902 /*
1903 * fast_find_migrateblock marks a pageblock skipped so to avoid
1904 * the isolation_suitable check below, check whether the fast
1905 * search was successful.
1906 */
1907 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1908
ff9543fd 1909 /* Only scan within a pageblock boundary */
06b6640a 1910 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1911
edc2ca61
VB
1912 /*
1913 * Iterate over whole pageblocks until we find the first suitable.
1914 * Do not cross the free scanner.
1915 */
e1409c32 1916 for (; block_end_pfn <= cc->free_pfn;
70b44595 1917 fast_find_block = false,
c2ad7a1f 1918 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1919 block_start_pfn = block_end_pfn,
1920 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1921
edc2ca61
VB
1922 /*
1923 * This can potentially iterate a massively long zone with
1924 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1925 * need to schedule.
edc2ca61 1926 */
c036ddff 1927 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1928 cond_resched();
ff9543fd 1929
32aaf055
PL
1930 page = pageblock_pfn_to_page(block_start_pfn,
1931 block_end_pfn, cc->zone);
7d49d886 1932 if (!page)
edc2ca61
VB
1933 continue;
1934
e380bebe
MG
1935 /*
1936 * If isolation recently failed, do not retry. Only check the
1937 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1938 * to be visited multiple times. Assume skip was checked
1939 * before making it "skip" so other compaction instances do
1940 * not scan the same block.
1941 */
1942 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1943 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1944 continue;
1945
1946 /*
556162bf
ML
1947 * For async direct compaction, only scan the pageblocks of the
1948 * same migratetype without huge pages. Async direct compaction
1949 * is optimistic to see if the minimum amount of work satisfies
1950 * the allocation. The cached PFN is updated as it's possible
1951 * that all remaining blocks between source and target are
1952 * unsuitable and the compaction scanners fail to meet.
edc2ca61 1953 */
9bebefd5
MG
1954 if (!suitable_migration_source(cc, page)) {
1955 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1956 continue;
9bebefd5 1957 }
edc2ca61
VB
1958
1959 /* Perform the isolation */
c2ad7a1f
OS
1960 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1961 isolate_mode))
edc2ca61
VB
1962 return ISOLATE_ABORT;
1963
1964 /*
1965 * Either we isolated something and proceed with migration. Or
1966 * we failed and compact_zone should decide if we should
1967 * continue or not.
1968 */
1969 break;
1970 }
1971
edc2ca61 1972 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1973}
1974
21c527a3
YB
1975/*
1976 * order == -1 is expected when compacting via
1977 * /proc/sys/vm/compact_memory
1978 */
1979static inline bool is_via_compact_memory(int order)
1980{
1981 return order == -1;
1982}
1983
facdaa91
NG
1984static bool kswapd_is_running(pg_data_t *pgdat)
1985{
b03fbd4f 1986 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1987}
1988
1989/*
1990 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1991 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1992 */
1993static unsigned int fragmentation_score_zone(struct zone *zone)
1994{
1995 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1996}
1997
1998/*
1999 * A weighted zone's fragmentation score is the external fragmentation
2000 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2001 * returns a value in the range [0, 100].
facdaa91
NG
2002 *
2003 * The scaling factor ensures that proactive compaction focuses on larger
2004 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2005 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2006 * and thus never exceeds the high threshold for proactive compaction.
2007 */
40d7e203 2008static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2009{
2010 unsigned long score;
2011
40d7e203 2012 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2013 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2014}
2015
2016/*
2017 * The per-node proactive (background) compaction process is started by its
2018 * corresponding kcompactd thread when the node's fragmentation score
2019 * exceeds the high threshold. The compaction process remains active till
2020 * the node's score falls below the low threshold, or one of the back-off
2021 * conditions is met.
2022 */
d34c0a75 2023static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2024{
d34c0a75 2025 unsigned int score = 0;
facdaa91
NG
2026 int zoneid;
2027
2028 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2029 struct zone *zone;
2030
2031 zone = &pgdat->node_zones[zoneid];
40d7e203 2032 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2033 }
2034
2035 return score;
2036}
2037
d34c0a75 2038static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2039{
d34c0a75 2040 unsigned int wmark_low;
facdaa91
NG
2041
2042 /*
f0953a1b
IM
2043 * Cap the low watermark to avoid excessive compaction
2044 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2045 * close to 100 (maximum).
2046 */
d34c0a75
NG
2047 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2048 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2049}
2050
2051static bool should_proactive_compact_node(pg_data_t *pgdat)
2052{
2053 int wmark_high;
2054
2055 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2056 return false;
2057
2058 wmark_high = fragmentation_score_wmark(pgdat, false);
2059 return fragmentation_score_node(pgdat) > wmark_high;
2060}
2061
40cacbcb 2062static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2063{
8fb74b9f 2064 unsigned int order;
d39773a0 2065 const int migratetype = cc->migratetype;
cb2dcaf0 2066 int ret;
748446bb 2067
753341a4 2068 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2069 if (compact_scanners_met(cc)) {
55b7c4c9 2070 /* Let the next compaction start anew. */
40cacbcb 2071 reset_cached_positions(cc->zone);
55b7c4c9 2072
62997027
MG
2073 /*
2074 * Mark that the PG_migrate_skip information should be cleared
accf6242 2075 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2076 * flag itself as the decision to be clear should be directly
2077 * based on an allocation request.
2078 */
accf6242 2079 if (cc->direct_compaction)
40cacbcb 2080 cc->zone->compact_blockskip_flush = true;
62997027 2081
c8f7de0b
MH
2082 if (cc->whole_zone)
2083 return COMPACT_COMPLETE;
2084 else
2085 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2086 }
748446bb 2087
facdaa91
NG
2088 if (cc->proactive_compaction) {
2089 int score, wmark_low;
2090 pg_data_t *pgdat;
2091
2092 pgdat = cc->zone->zone_pgdat;
2093 if (kswapd_is_running(pgdat))
2094 return COMPACT_PARTIAL_SKIPPED;
2095
2096 score = fragmentation_score_zone(cc->zone);
2097 wmark_low = fragmentation_score_wmark(pgdat, true);
2098
2099 if (score > wmark_low)
2100 ret = COMPACT_CONTINUE;
2101 else
2102 ret = COMPACT_SUCCESS;
2103
2104 goto out;
2105 }
2106
21c527a3 2107 if (is_via_compact_memory(cc->order))
56de7263
MG
2108 return COMPACT_CONTINUE;
2109
efe771c7
MG
2110 /*
2111 * Always finish scanning a pageblock to reduce the possibility of
2112 * fallbacks in the future. This is particularly important when
2113 * migration source is unmovable/reclaimable but it's not worth
2114 * special casing.
2115 */
2116 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2117 return COMPACT_CONTINUE;
baf6a9a1 2118
56de7263 2119 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2120 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2121 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2122 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2123 bool can_steal;
8fb74b9f
MG
2124
2125 /* Job done if page is free of the right migratetype */
b03641af 2126 if (!free_area_empty(area, migratetype))
cf378319 2127 return COMPACT_SUCCESS;
8fb74b9f 2128
2149cdae
JK
2129#ifdef CONFIG_CMA
2130 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2131 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2132 !free_area_empty(area, MIGRATE_CMA))
cf378319 2133 return COMPACT_SUCCESS;
2149cdae
JK
2134#endif
2135 /*
2136 * Job done if allocation would steal freepages from
2137 * other migratetype buddy lists.
2138 */
2139 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2140 true, &can_steal) != -1)
baf6a9a1 2141 /*
fa599c44
ML
2142 * Movable pages are OK in any pageblock. If we are
2143 * stealing for a non-movable allocation, make sure
2144 * we finish compacting the current pageblock first
2145 * (which is assured by the above migrate_pfn align
2146 * check) so it is as free as possible and we won't
2147 * have to steal another one soon.
baf6a9a1 2148 */
fa599c44 2149 return COMPACT_SUCCESS;
56de7263
MG
2150 }
2151
facdaa91 2152out:
cb2dcaf0
MG
2153 if (cc->contended || fatal_signal_pending(current))
2154 ret = COMPACT_CONTENDED;
2155
2156 return ret;
837d026d
JK
2157}
2158
40cacbcb 2159static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2160{
2161 int ret;
2162
40cacbcb
MG
2163 ret = __compact_finished(cc);
2164 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2165 if (ret == COMPACT_NO_SUITABLE_PAGE)
2166 ret = COMPACT_CONTINUE;
2167
2168 return ret;
748446bb
MG
2169}
2170
ea7ab982 2171static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2172 unsigned int alloc_flags,
97a225e6 2173 int highest_zoneidx,
86a294a8 2174 unsigned long wmark_target)
3e7d3449 2175{
3e7d3449
MG
2176 unsigned long watermark;
2177
21c527a3 2178 if (is_via_compact_memory(order))
3957c776
MH
2179 return COMPACT_CONTINUE;
2180
a9214443 2181 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2182 /*
2183 * If watermarks for high-order allocation are already met, there
2184 * should be no need for compaction at all.
2185 */
97a225e6 2186 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2187 alloc_flags))
cf378319 2188 return COMPACT_SUCCESS;
ebff3980 2189
3e7d3449 2190 /*
9861a62c 2191 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2192 * isolate free pages for migration targets. This means that the
2193 * watermark and alloc_flags have to match, or be more pessimistic than
2194 * the check in __isolate_free_page(). We don't use the direct
2195 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2196 * isolation. We however do use the direct compactor's highest_zoneidx
2197 * to skip over zones where lowmem reserves would prevent allocation
2198 * even if compaction succeeds.
8348faf9
VB
2199 * For costly orders, we require low watermark instead of min for
2200 * compaction to proceed to increase its chances.
d883c6cf
JK
2201 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2202 * suitable migration targets
3e7d3449 2203 */
8348faf9
VB
2204 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2205 low_wmark_pages(zone) : min_wmark_pages(zone);
2206 watermark += compact_gap(order);
97a225e6 2207 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2208 ALLOC_CMA, wmark_target))
3e7d3449
MG
2209 return COMPACT_SKIPPED;
2210
cc5c9f09
VB
2211 return COMPACT_CONTINUE;
2212}
2213
2b1a20c3
HS
2214/*
2215 * compaction_suitable: Is this suitable to run compaction on this zone now?
2216 * Returns
2217 * COMPACT_SKIPPED - If there are too few free pages for compaction
2218 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2219 * COMPACT_CONTINUE - If compaction should run now
2220 */
cc5c9f09
VB
2221enum compact_result compaction_suitable(struct zone *zone, int order,
2222 unsigned int alloc_flags,
97a225e6 2223 int highest_zoneidx)
cc5c9f09
VB
2224{
2225 enum compact_result ret;
2226 int fragindex;
2227
97a225e6 2228 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2229 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2230 /*
2231 * fragmentation index determines if allocation failures are due to
2232 * low memory or external fragmentation
2233 *
ebff3980
VB
2234 * index of -1000 would imply allocations might succeed depending on
2235 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2236 * index towards 0 implies failure is due to lack of memory
2237 * index towards 1000 implies failure is due to fragmentation
2238 *
20311420
VB
2239 * Only compact if a failure would be due to fragmentation. Also
2240 * ignore fragindex for non-costly orders where the alternative to
2241 * a successful reclaim/compaction is OOM. Fragindex and the
2242 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2243 * excessive compaction for costly orders, but it should not be at the
2244 * expense of system stability.
3e7d3449 2245 */
20311420 2246 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2247 fragindex = fragmentation_index(zone, order);
2248 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2249 ret = COMPACT_NOT_SUITABLE_ZONE;
2250 }
837d026d 2251
837d026d
JK
2252 trace_mm_compaction_suitable(zone, order, ret);
2253 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2254 ret = COMPACT_SKIPPED;
2255
2256 return ret;
2257}
2258
86a294a8
MH
2259bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2260 int alloc_flags)
2261{
2262 struct zone *zone;
2263 struct zoneref *z;
2264
2265 /*
2266 * Make sure at least one zone would pass __compaction_suitable if we continue
2267 * retrying the reclaim.
2268 */
97a225e6
JK
2269 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2270 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2271 unsigned long available;
2272 enum compact_result compact_result;
2273
2274 /*
2275 * Do not consider all the reclaimable memory because we do not
2276 * want to trash just for a single high order allocation which
2277 * is even not guaranteed to appear even if __compaction_suitable
2278 * is happy about the watermark check.
2279 */
5a1c84b4 2280 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2281 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2282 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2283 ac->highest_zoneidx, available);
cff387d6 2284 if (compact_result == COMPACT_CONTINUE)
86a294a8
MH
2285 return true;
2286 }
2287
2288 return false;
2289}
2290
5e1f0f09
MG
2291static enum compact_result
2292compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2293{
ea7ab982 2294 enum compact_result ret;
40cacbcb
MG
2295 unsigned long start_pfn = cc->zone->zone_start_pfn;
2296 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2297 unsigned long last_migrated_pfn;
e0b9daeb 2298 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2299 bool update_cached;
84b328aa 2300 unsigned int nr_succeeded = 0;
748446bb 2301
a94b5252
YS
2302 /*
2303 * These counters track activities during zone compaction. Initialize
2304 * them before compacting a new zone.
2305 */
2306 cc->total_migrate_scanned = 0;
2307 cc->total_free_scanned = 0;
2308 cc->nr_migratepages = 0;
2309 cc->nr_freepages = 0;
2310 INIT_LIST_HEAD(&cc->freepages);
2311 INIT_LIST_HEAD(&cc->migratepages);
2312
01c0bfe0 2313 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2314 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2315 cc->highest_zoneidx);
c46649de 2316 /* Compaction is likely to fail */
cf378319 2317 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2318 return ret;
c46649de
MH
2319
2320 /* huh, compaction_suitable is returning something unexpected */
2321 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2322
d3132e4b
VB
2323 /*
2324 * Clear pageblock skip if there were failures recently and compaction
accf6242 2325 * is about to be retried after being deferred.
d3132e4b 2326 */
40cacbcb
MG
2327 if (compaction_restarting(cc->zone, cc->order))
2328 __reset_isolation_suitable(cc->zone);
d3132e4b 2329
c89511ab
MG
2330 /*
2331 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2332 * information on where the scanners should start (unless we explicitly
2333 * want to compact the whole zone), but check that it is initialised
2334 * by ensuring the values are within zone boundaries.
c89511ab 2335 */
70b44595 2336 cc->fast_start_pfn = 0;
06ed2998 2337 if (cc->whole_zone) {
c89511ab 2338 cc->migrate_pfn = start_pfn;
06ed2998
VB
2339 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2340 } else {
40cacbcb
MG
2341 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2342 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2343 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2344 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2345 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2346 }
2347 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2348 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2349 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2350 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2351 }
c8f7de0b 2352
e332f741 2353 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2354 cc->whole_zone = true;
2355 }
c8f7de0b 2356
566e54e1 2357 last_migrated_pfn = 0;
748446bb 2358
8854c55f
MG
2359 /*
2360 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2361 * the basis that some migrations will fail in ASYNC mode. However,
2362 * if the cached PFNs match and pageblocks are skipped due to having
2363 * no isolation candidates, then the sync state does not matter.
2364 * Until a pageblock with isolation candidates is found, keep the
2365 * cached PFNs in sync to avoid revisiting the same blocks.
2366 */
2367 update_cached = !sync &&
2368 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2369
abd4349f 2370 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2371
361a2a22
MK
2372 /* lru_add_drain_all could be expensive with involving other CPUs */
2373 lru_add_drain();
748446bb 2374
40cacbcb 2375 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2376 int err;
19d3cf9d 2377 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2378
804d3121
MG
2379 /*
2380 * Avoid multiple rescans which can happen if a page cannot be
2381 * isolated (dirty/writeback in async mode) or if the migrated
2382 * pages are being allocated before the pageblock is cleared.
2383 * The first rescan will capture the entire pageblock for
2384 * migration. If it fails, it'll be marked skip and scanning
2385 * will proceed as normal.
2386 */
2387 cc->rescan = false;
2388 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2389 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2390 cc->rescan = true;
2391 }
2392
32aaf055 2393 switch (isolate_migratepages(cc)) {
f9e35b3b 2394 case ISOLATE_ABORT:
2d1e1041 2395 ret = COMPACT_CONTENDED;
5733c7d1 2396 putback_movable_pages(&cc->migratepages);
e64c5237 2397 cc->nr_migratepages = 0;
f9e35b3b
MG
2398 goto out;
2399 case ISOLATE_NONE:
8854c55f
MG
2400 if (update_cached) {
2401 cc->zone->compact_cached_migrate_pfn[1] =
2402 cc->zone->compact_cached_migrate_pfn[0];
2403 }
2404
fdaf7f5c
VB
2405 /*
2406 * We haven't isolated and migrated anything, but
2407 * there might still be unflushed migrations from
2408 * previous cc->order aligned block.
2409 */
2410 goto check_drain;
f9e35b3b 2411 case ISOLATE_SUCCESS:
8854c55f 2412 update_cached = false;
19d3cf9d 2413 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2414 }
748446bb 2415
d53aea3d 2416 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2417 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2418 MR_COMPACTION, &nr_succeeded);
748446bb 2419
abd4349f 2420 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2421
f8c9301f
VB
2422 /* All pages were either migrated or will be released */
2423 cc->nr_migratepages = 0;
9d502c1c 2424 if (err) {
5733c7d1 2425 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2426 /*
2427 * migrate_pages() may return -ENOMEM when scanners meet
2428 * and we want compact_finished() to detect it
2429 */
f2849aa0 2430 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2431 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2432 goto out;
2433 }
fdd048e1
VB
2434 /*
2435 * We failed to migrate at least one page in the current
2436 * order-aligned block, so skip the rest of it.
2437 */
2438 if (cc->direct_compaction &&
2439 (cc->mode == MIGRATE_ASYNC)) {
2440 cc->migrate_pfn = block_end_pfn(
2441 cc->migrate_pfn - 1, cc->order);
2442 /* Draining pcplists is useless in this case */
566e54e1 2443 last_migrated_pfn = 0;
fdd048e1 2444 }
748446bb 2445 }
fdaf7f5c 2446
fdaf7f5c
VB
2447check_drain:
2448 /*
2449 * Has the migration scanner moved away from the previous
2450 * cc->order aligned block where we migrated from? If yes,
2451 * flush the pages that were freed, so that they can merge and
2452 * compact_finished() can detect immediately if allocation
2453 * would succeed.
2454 */
566e54e1 2455 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2456 unsigned long current_block_start =
06b6640a 2457 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2458
566e54e1 2459 if (last_migrated_pfn < current_block_start) {
b01b2141 2460 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2461 /* No more flushing until we migrate again */
566e54e1 2462 last_migrated_pfn = 0;
fdaf7f5c
VB
2463 }
2464 }
2465
5e1f0f09
MG
2466 /* Stop if a page has been captured */
2467 if (capc && capc->page) {
2468 ret = COMPACT_SUCCESS;
2469 break;
2470 }
748446bb
MG
2471 }
2472
f9e35b3b 2473out:
6bace090
VB
2474 /*
2475 * Release free pages and update where the free scanner should restart,
2476 * so we don't leave any returned pages behind in the next attempt.
2477 */
2478 if (cc->nr_freepages > 0) {
2479 unsigned long free_pfn = release_freepages(&cc->freepages);
2480
2481 cc->nr_freepages = 0;
2482 VM_BUG_ON(free_pfn == 0);
2483 /* The cached pfn is always the first in a pageblock */
06b6640a 2484 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2485 /*
2486 * Only go back, not forward. The cached pfn might have been
2487 * already reset to zone end in compact_finished()
2488 */
40cacbcb
MG
2489 if (free_pfn > cc->zone->compact_cached_free_pfn)
2490 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2491 }
748446bb 2492
7f354a54
DR
2493 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2494 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2495
abd4349f 2496 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2497
748446bb
MG
2498 return ret;
2499}
76ab0f53 2500
ea7ab982 2501static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2502 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2503 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2504 struct page **capture)
56de7263 2505{
ea7ab982 2506 enum compact_result ret;
56de7263 2507 struct compact_control cc = {
56de7263 2508 .order = order,
dbe2d4e4 2509 .search_order = order,
6d7ce559 2510 .gfp_mask = gfp_mask,
56de7263 2511 .zone = zone,
a5508cd8
VB
2512 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2513 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2514 .alloc_flags = alloc_flags,
97a225e6 2515 .highest_zoneidx = highest_zoneidx,
accf6242 2516 .direct_compaction = true,
a8e025e5 2517 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2518 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2519 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2520 };
5e1f0f09
MG
2521 struct capture_control capc = {
2522 .cc = &cc,
2523 .page = NULL,
2524 };
2525
b9e20f0d
VB
2526 /*
2527 * Make sure the structs are really initialized before we expose the
2528 * capture control, in case we are interrupted and the interrupt handler
2529 * frees a page.
2530 */
2531 barrier();
2532 WRITE_ONCE(current->capture_control, &capc);
56de7263 2533
5e1f0f09 2534 ret = compact_zone(&cc, &capc);
e64c5237
SL
2535
2536 VM_BUG_ON(!list_empty(&cc.freepages));
2537 VM_BUG_ON(!list_empty(&cc.migratepages));
2538
b9e20f0d
VB
2539 /*
2540 * Make sure we hide capture control first before we read the captured
2541 * page pointer, otherwise an interrupt could free and capture a page
2542 * and we would leak it.
2543 */
2544 WRITE_ONCE(current->capture_control, NULL);
2545 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2546 /*
2547 * Technically, it is also possible that compaction is skipped but
2548 * the page is still captured out of luck(IRQ came and freed the page).
2549 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2550 * the COMPACT[STALL|FAIL] when compaction is skipped.
2551 */
2552 if (*capture)
2553 ret = COMPACT_SUCCESS;
5e1f0f09 2554
e64c5237 2555 return ret;
56de7263
MG
2556}
2557
5e771905
MG
2558int sysctl_extfrag_threshold = 500;
2559
56de7263
MG
2560/**
2561 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2562 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2563 * @order: The order of the current allocation
2564 * @alloc_flags: The allocation flags of the current allocation
2565 * @ac: The context of current allocation
112d2d29 2566 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2567 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2568 *
2569 * This is the main entry point for direct page compaction.
2570 */
ea7ab982 2571enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2572 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2573 enum compact_priority prio, struct page **capture)
56de7263 2574{
fe573327 2575 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2576 struct zoneref *z;
2577 struct zone *zone;
1d4746d3 2578 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2579
73e64c51
MH
2580 /*
2581 * Check if the GFP flags allow compaction - GFP_NOIO is really
2582 * tricky context because the migration might require IO
2583 */
2584 if (!may_perform_io)
53853e2d 2585 return COMPACT_SKIPPED;
56de7263 2586
a5508cd8 2587 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2588
56de7263 2589 /* Compact each zone in the list */
97a225e6
JK
2590 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2591 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2592 enum compact_result status;
56de7263 2593
a8e025e5
VB
2594 if (prio > MIN_COMPACT_PRIORITY
2595 && compaction_deferred(zone, order)) {
1d4746d3 2596 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2597 continue;
1d4746d3 2598 }
53853e2d 2599
a5508cd8 2600 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2601 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2602 rc = max(status, rc);
2603
7ceb009a
VB
2604 /* The allocation should succeed, stop compacting */
2605 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2606 /*
2607 * We think the allocation will succeed in this zone,
2608 * but it is not certain, hence the false. The caller
2609 * will repeat this with true if allocation indeed
2610 * succeeds in this zone.
2611 */
2612 compaction_defer_reset(zone, order, false);
1f9efdef 2613
c3486f53 2614 break;
1f9efdef
VB
2615 }
2616
a5508cd8 2617 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2618 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2619 /*
2620 * We think that allocation won't succeed in this zone
2621 * so we defer compaction there. If it ends up
2622 * succeeding after all, it will be reset.
2623 */
2624 defer_compaction(zone, order);
1f9efdef
VB
2625
2626 /*
2627 * We might have stopped compacting due to need_resched() in
2628 * async compaction, or due to a fatal signal detected. In that
c3486f53 2629 * case do not try further zones
1f9efdef 2630 */
c3486f53
VB
2631 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2632 || fatal_signal_pending(current))
2633 break;
56de7263
MG
2634 }
2635
2636 return rc;
2637}
2638
facdaa91
NG
2639/*
2640 * Compact all zones within a node till each zone's fragmentation score
2641 * reaches within proactive compaction thresholds (as determined by the
2642 * proactiveness tunable).
2643 *
2644 * It is possible that the function returns before reaching score targets
2645 * due to various back-off conditions, such as, contention on per-node or
2646 * per-zone locks.
2647 */
2648static void proactive_compact_node(pg_data_t *pgdat)
2649{
2650 int zoneid;
2651 struct zone *zone;
2652 struct compact_control cc = {
2653 .order = -1,
2654 .mode = MIGRATE_SYNC_LIGHT,
2655 .ignore_skip_hint = true,
2656 .whole_zone = true,
2657 .gfp_mask = GFP_KERNEL,
2658 .proactive_compaction = true,
2659 };
2660
2661 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2662 zone = &pgdat->node_zones[zoneid];
2663 if (!populated_zone(zone))
2664 continue;
2665
2666 cc.zone = zone;
2667
2668 compact_zone(&cc, NULL);
2669
2670 VM_BUG_ON(!list_empty(&cc.freepages));
2671 VM_BUG_ON(!list_empty(&cc.migratepages));
2672 }
2673}
56de7263 2674
76ab0f53 2675/* Compact all zones within a node */
791cae96 2676static void compact_node(int nid)
76ab0f53 2677{
791cae96 2678 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2679 int zoneid;
76ab0f53 2680 struct zone *zone;
791cae96
VB
2681 struct compact_control cc = {
2682 .order = -1,
2683 .mode = MIGRATE_SYNC,
2684 .ignore_skip_hint = true,
2685 .whole_zone = true,
73e64c51 2686 .gfp_mask = GFP_KERNEL,
791cae96
VB
2687 };
2688
76ab0f53 2689
76ab0f53 2690 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2691
2692 zone = &pgdat->node_zones[zoneid];
2693 if (!populated_zone(zone))
2694 continue;
2695
791cae96 2696 cc.zone = zone;
76ab0f53 2697
5e1f0f09 2698 compact_zone(&cc, NULL);
75469345 2699
791cae96
VB
2700 VM_BUG_ON(!list_empty(&cc.freepages));
2701 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2702 }
76ab0f53
MG
2703}
2704
2705/* Compact all nodes in the system */
7964c06d 2706static void compact_nodes(void)
76ab0f53
MG
2707{
2708 int nid;
2709
8575ec29
HD
2710 /* Flush pending updates to the LRU lists */
2711 lru_add_drain_all();
2712
76ab0f53
MG
2713 for_each_online_node(nid)
2714 compact_node(nid);
76ab0f53
MG
2715}
2716
facdaa91
NG
2717/*
2718 * Tunable for proactive compaction. It determines how
2719 * aggressively the kernel should compact memory in the
2720 * background. It takes values in the range [0, 100].
2721 */
d34c0a75 2722unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2723
65d759c8
CTR
2724int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2725 void *buffer, size_t *length, loff_t *ppos)
2726{
2727 int rc, nid;
2728
2729 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2730 if (rc)
2731 return rc;
2732
2733 if (write && sysctl_compaction_proactiveness) {
2734 for_each_online_node(nid) {
2735 pg_data_t *pgdat = NODE_DATA(nid);
2736
2737 if (pgdat->proactive_compact_trigger)
2738 continue;
2739
2740 pgdat->proactive_compact_trigger = true;
2741 wake_up_interruptible(&pgdat->kcompactd_wait);
2742 }
2743 }
2744
2745 return 0;
2746}
2747
fec4eb2c
YB
2748/*
2749 * This is the entry point for compacting all nodes via
2750 * /proc/sys/vm/compact_memory
2751 */
76ab0f53 2752int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2753 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2754{
2755 if (write)
7964c06d 2756 compact_nodes();
76ab0f53
MG
2757
2758 return 0;
2759}
ed4a6d7f
MG
2760
2761#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2762static ssize_t compact_store(struct device *dev,
2763 struct device_attribute *attr,
2764 const char *buf, size_t count)
ed4a6d7f 2765{
8575ec29
HD
2766 int nid = dev->id;
2767
2768 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2769 /* Flush pending updates to the LRU lists */
2770 lru_add_drain_all();
2771
2772 compact_node(nid);
2773 }
ed4a6d7f
MG
2774
2775 return count;
2776}
17adb230 2777static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2778
2779int compaction_register_node(struct node *node)
2780{
10fbcf4c 2781 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2782}
2783
2784void compaction_unregister_node(struct node *node)
2785{
10fbcf4c 2786 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2787}
2788#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2789
698b1b30
VB
2790static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2791{
65d759c8
CTR
2792 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2793 pgdat->proactive_compact_trigger;
698b1b30
VB
2794}
2795
2796static bool kcompactd_node_suitable(pg_data_t *pgdat)
2797{
2798 int zoneid;
2799 struct zone *zone;
97a225e6 2800 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2801
97a225e6 2802 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2803 zone = &pgdat->node_zones[zoneid];
2804
2805 if (!populated_zone(zone))
2806 continue;
2807
2808 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2809 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2810 return true;
2811 }
2812
2813 return false;
2814}
2815
2816static void kcompactd_do_work(pg_data_t *pgdat)
2817{
2818 /*
2819 * With no special task, compact all zones so that a page of requested
2820 * order is allocatable.
2821 */
2822 int zoneid;
2823 struct zone *zone;
2824 struct compact_control cc = {
2825 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2826 .search_order = pgdat->kcompactd_max_order,
97a225e6 2827 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2828 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2829 .ignore_skip_hint = false,
73e64c51 2830 .gfp_mask = GFP_KERNEL,
698b1b30 2831 };
698b1b30 2832 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2833 cc.highest_zoneidx);
7f354a54 2834 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2835
97a225e6 2836 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2837 int status;
2838
2839 zone = &pgdat->node_zones[zoneid];
2840 if (!populated_zone(zone))
2841 continue;
2842
2843 if (compaction_deferred(zone, cc.order))
2844 continue;
2845
2846 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2847 COMPACT_CONTINUE)
2848 continue;
2849
172400c6
VB
2850 if (kthread_should_stop())
2851 return;
a94b5252
YS
2852
2853 cc.zone = zone;
5e1f0f09 2854 status = compact_zone(&cc, NULL);
698b1b30 2855
7ceb009a 2856 if (status == COMPACT_SUCCESS) {
698b1b30 2857 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2858 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2859 /*
2860 * Buddy pages may become stranded on pcps that could
2861 * otherwise coalesce on the zone's free area for
2862 * order >= cc.order. This is ratelimited by the
2863 * upcoming deferral.
2864 */
2865 drain_all_pages(zone);
2866
698b1b30
VB
2867 /*
2868 * We use sync migration mode here, so we defer like
2869 * sync direct compaction does.
2870 */
2871 defer_compaction(zone, cc.order);
2872 }
2873
7f354a54
DR
2874 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2875 cc.total_migrate_scanned);
2876 count_compact_events(KCOMPACTD_FREE_SCANNED,
2877 cc.total_free_scanned);
2878
698b1b30
VB
2879 VM_BUG_ON(!list_empty(&cc.freepages));
2880 VM_BUG_ON(!list_empty(&cc.migratepages));
2881 }
2882
2883 /*
2884 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2885 * the requested order/highest_zoneidx in case it was higher/tighter
2886 * than our current ones
698b1b30
VB
2887 */
2888 if (pgdat->kcompactd_max_order <= cc.order)
2889 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2890 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2891 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2892}
2893
97a225e6 2894void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2895{
2896 if (!order)
2897 return;
2898
2899 if (pgdat->kcompactd_max_order < order)
2900 pgdat->kcompactd_max_order = order;
2901
97a225e6
JK
2902 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2903 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2904
6818600f
DB
2905 /*
2906 * Pairs with implicit barrier in wait_event_freezable()
2907 * such that wakeups are not missed.
2908 */
2909 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2910 return;
2911
2912 if (!kcompactd_node_suitable(pgdat))
2913 return;
2914
2915 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2916 highest_zoneidx);
698b1b30
VB
2917 wake_up_interruptible(&pgdat->kcompactd_wait);
2918}
2919
2920/*
2921 * The background compaction daemon, started as a kernel thread
2922 * from the init process.
2923 */
2924static int kcompactd(void *p)
2925{
68d68ff6 2926 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2927 struct task_struct *tsk = current;
e1e92bfa
CTR
2928 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2929 long timeout = default_timeout;
698b1b30
VB
2930
2931 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2932
2933 if (!cpumask_empty(cpumask))
2934 set_cpus_allowed_ptr(tsk, cpumask);
2935
2936 set_freezable();
2937
2938 pgdat->kcompactd_max_order = 0;
97a225e6 2939 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2940
2941 while (!kthread_should_stop()) {
eb414681
JW
2942 unsigned long pflags;
2943
65d759c8
CTR
2944 /*
2945 * Avoid the unnecessary wakeup for proactive compaction
2946 * when it is disabled.
2947 */
2948 if (!sysctl_compaction_proactiveness)
2949 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2950 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2951 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2952 kcompactd_work_requested(pgdat), timeout) &&
2953 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2954
2955 psi_memstall_enter(&pflags);
2956 kcompactd_do_work(pgdat);
2957 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2958 /*
2959 * Reset the timeout value. The defer timeout from
2960 * proactive compaction is lost here but that is fine
2961 * as the condition of the zone changing substantionally
2962 * then carrying on with the previous defer interval is
2963 * not useful.
2964 */
2965 timeout = default_timeout;
facdaa91
NG
2966 continue;
2967 }
698b1b30 2968
e1e92bfa
CTR
2969 /*
2970 * Start the proactive work with default timeout. Based
2971 * on the fragmentation score, this timeout is updated.
2972 */
2973 timeout = default_timeout;
facdaa91
NG
2974 if (should_proactive_compact_node(pgdat)) {
2975 unsigned int prev_score, score;
2976
facdaa91
NG
2977 prev_score = fragmentation_score_node(pgdat);
2978 proactive_compact_node(pgdat);
2979 score = fragmentation_score_node(pgdat);
2980 /*
2981 * Defer proactive compaction if the fragmentation
2982 * score did not go down i.e. no progress made.
2983 */
e1e92bfa
CTR
2984 if (unlikely(score >= prev_score))
2985 timeout =
2986 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 2987 }
65d759c8
CTR
2988 if (unlikely(pgdat->proactive_compact_trigger))
2989 pgdat->proactive_compact_trigger = false;
698b1b30
VB
2990 }
2991
2992 return 0;
2993}
2994
2995/*
2996 * This kcompactd start function will be called by init and node-hot-add.
2997 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2998 */
024c61ea 2999void kcompactd_run(int nid)
698b1b30
VB
3000{
3001 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3002
3003 if (pgdat->kcompactd)
024c61ea 3004 return;
698b1b30
VB
3005
3006 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3007 if (IS_ERR(pgdat->kcompactd)) {
3008 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3009 pgdat->kcompactd = NULL;
3010 }
698b1b30
VB
3011}
3012
3013/*
3014 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3015 * be holding mem_hotplug_begin/done().
698b1b30
VB
3016 */
3017void kcompactd_stop(int nid)
3018{
3019 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3020
3021 if (kcompactd) {
3022 kthread_stop(kcompactd);
3023 NODE_DATA(nid)->kcompactd = NULL;
3024 }
3025}
3026
3027/*
3028 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3029 * not required for correctness. So if the last cpu in a node goes
3030 * away, we get changed to run anywhere: as the first one comes back,
3031 * restore their cpu bindings.
3032 */
e46b1db2 3033static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3034{
3035 int nid;
3036
e46b1db2
AMG
3037 for_each_node_state(nid, N_MEMORY) {
3038 pg_data_t *pgdat = NODE_DATA(nid);
3039 const struct cpumask *mask;
698b1b30 3040
e46b1db2 3041 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3042
e46b1db2
AMG
3043 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044 /* One of our CPUs online: restore mask */
3109de30
ML
3045 if (pgdat->kcompactd)
3046 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3047 }
e46b1db2 3048 return 0;
698b1b30
VB
3049}
3050
3051static int __init kcompactd_init(void)
3052{
3053 int nid;
e46b1db2
AMG
3054 int ret;
3055
3056 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3057 "mm/compaction:online",
3058 kcompactd_cpu_online, NULL);
3059 if (ret < 0) {
3060 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3061 return ret;
3062 }
698b1b30
VB
3063
3064 for_each_node_state(nid, N_MEMORY)
3065 kcompactd_run(nid);
698b1b30
VB
3066 return 0;
3067}
3068subsys_initcall(kcompactd_init)
3069
ff9543fd 3070#endif /* CONFIG_COMPACTION */