License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
748446bb
MG
25#include "internal.h"
26
010fc29a
MK
27#ifdef CONFIG_COMPACTION
28static inline void count_compact_event(enum vm_event_item item)
29{
30 count_vm_event(item);
31}
32
33static inline void count_compact_events(enum vm_event_item item, long delta)
34{
35 count_vm_events(item, delta);
36}
37#else
38#define count_compact_event(item) do { } while (0)
39#define count_compact_events(item, delta) do { } while (0)
40#endif
41
ff9543fd
MN
42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
b7aba698
MG
44#define CREATE_TRACE_POINTS
45#include <trace/events/compaction.h>
46
06b6640a
VB
47#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51
748446bb
MG
52static unsigned long release_freepages(struct list_head *freelist)
53{
54 struct page *page, *next;
6bace090 55 unsigned long high_pfn = 0;
748446bb
MG
56
57 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 58 unsigned long pfn = page_to_pfn(page);
748446bb
MG
59 list_del(&page->lru);
60 __free_page(page);
6bace090
VB
61 if (pfn > high_pfn)
62 high_pfn = pfn;
748446bb
MG
63 }
64
6bace090 65 return high_pfn;
748446bb
MG
66}
67
ff9543fd
MN
68static void map_pages(struct list_head *list)
69{
66c64223
JK
70 unsigned int i, order, nr_pages;
71 struct page *page, *next;
72 LIST_HEAD(tmp_list);
73
74 list_for_each_entry_safe(page, next, list, lru) {
75 list_del(&page->lru);
76
77 order = page_private(page);
78 nr_pages = 1 << order;
66c64223 79
46f24fd8 80 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
81 if (order)
82 split_page(page, order);
ff9543fd 83
66c64223
JK
84 for (i = 0; i < nr_pages; i++) {
85 list_add(&page->lru, &tmp_list);
86 page++;
87 }
ff9543fd 88 }
66c64223
JK
89
90 list_splice(&tmp_list, list);
ff9543fd
MN
91}
92
bb13ffeb 93#ifdef CONFIG_COMPACTION
24e2716f 94
bda807d4
MK
95int PageMovable(struct page *page)
96{
97 struct address_space *mapping;
98
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 if (!__PageMovable(page))
101 return 0;
102
103 mapping = page_mapping(page);
104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105 return 1;
106
107 return 0;
108}
109EXPORT_SYMBOL(PageMovable);
110
111void __SetPageMovable(struct page *page, struct address_space *mapping)
112{
113 VM_BUG_ON_PAGE(!PageLocked(page), page);
114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116}
117EXPORT_SYMBOL(__SetPageMovable);
118
119void __ClearPageMovable(struct page *page)
120{
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(!PageMovable(page), page);
123 /*
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
127 */
128 page->mapping = (void *)((unsigned long)page->mapping &
129 PAGE_MAPPING_MOVABLE);
130}
131EXPORT_SYMBOL(__ClearPageMovable);
132
24e2716f
JK
133/* Do not skip compaction more than 64 times */
134#define COMPACT_MAX_DEFER_SHIFT 6
135
136/*
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140 */
141void defer_compaction(struct zone *zone, int order)
142{
143 zone->compact_considered = 0;
144 zone->compact_defer_shift++;
145
146 if (order < zone->compact_order_failed)
147 zone->compact_order_failed = order;
148
149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152 trace_mm_compaction_defer_compaction(zone, order);
153}
154
155/* Returns true if compaction should be skipped this time */
156bool compaction_deferred(struct zone *zone, int order)
157{
158 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160 if (order < zone->compact_order_failed)
161 return false;
162
163 /* Avoid possible overflow */
164 if (++zone->compact_considered > defer_limit)
165 zone->compact_considered = defer_limit;
166
167 if (zone->compact_considered >= defer_limit)
168 return false;
169
170 trace_mm_compaction_deferred(zone, order);
171
172 return true;
173}
174
175/*
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
179 */
180void compaction_defer_reset(struct zone *zone, int order,
181 bool alloc_success)
182{
183 if (alloc_success) {
184 zone->compact_considered = 0;
185 zone->compact_defer_shift = 0;
186 }
187 if (order >= zone->compact_order_failed)
188 zone->compact_order_failed = order + 1;
189
190 trace_mm_compaction_defer_reset(zone, order);
191}
192
193/* Returns true if restarting compaction after many failures */
194bool compaction_restarting(struct zone *zone, int order)
195{
196 if (order < zone->compact_order_failed)
197 return false;
198
199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201}
202
bb13ffeb
MG
203/* Returns true if the pageblock should be scanned for pages to isolate. */
204static inline bool isolation_suitable(struct compact_control *cc,
205 struct page *page)
206{
207 if (cc->ignore_skip_hint)
208 return true;
209
210 return !get_pageblock_skip(page);
211}
212
02333641
VB
213static void reset_cached_positions(struct zone *zone)
214{
215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 217 zone->compact_cached_free_pfn =
06b6640a 218 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
219}
220
bb13ffeb
MG
221/*
222 * This function is called to clear all cached information on pageblocks that
223 * should be skipped for page isolation when the migrate and free page scanner
224 * meet.
225 */
62997027 226static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
227{
228 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 229 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
230 unsigned long pfn;
231
62997027 232 zone->compact_blockskip_flush = false;
bb13ffeb
MG
233
234 /* Walk the zone and mark every pageblock as suitable for isolation */
235 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
236 struct page *page;
237
238 cond_resched();
239
ccbe1e4d
MH
240 page = pfn_to_online_page(pfn);
241 if (!page)
bb13ffeb 242 continue;
bb13ffeb
MG
243 if (zone != page_zone(page))
244 continue;
245
246 clear_pageblock_skip(page);
247 }
02333641
VB
248
249 reset_cached_positions(zone);
bb13ffeb
MG
250}
251
62997027
MG
252void reset_isolation_suitable(pg_data_t *pgdat)
253{
254 int zoneid;
255
256 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
257 struct zone *zone = &pgdat->node_zones[zoneid];
258 if (!populated_zone(zone))
259 continue;
260
261 /* Only flush if a full compaction finished recently */
262 if (zone->compact_blockskip_flush)
263 __reset_isolation_suitable(zone);
264 }
265}
266
bb13ffeb
MG
267/*
268 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 269 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 270 */
c89511ab
MG
271static void update_pageblock_skip(struct compact_control *cc,
272 struct page *page, unsigned long nr_isolated,
edc2ca61 273 bool migrate_scanner)
bb13ffeb 274{
c89511ab 275 struct zone *zone = cc->zone;
35979ef3 276 unsigned long pfn;
6815bf3f
JK
277
278 if (cc->ignore_skip_hint)
279 return;
280
bb13ffeb
MG
281 if (!page)
282 return;
283
35979ef3
DR
284 if (nr_isolated)
285 return;
286
edc2ca61 287 set_pageblock_skip(page);
c89511ab 288
35979ef3
DR
289 pfn = page_to_pfn(page);
290
291 /* Update where async and sync compaction should restart */
292 if (migrate_scanner) {
35979ef3
DR
293 if (pfn > zone->compact_cached_migrate_pfn[0])
294 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
295 if (cc->mode != MIGRATE_ASYNC &&
296 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
297 zone->compact_cached_migrate_pfn[1] = pfn;
298 } else {
35979ef3
DR
299 if (pfn < zone->compact_cached_free_pfn)
300 zone->compact_cached_free_pfn = pfn;
c89511ab 301 }
bb13ffeb
MG
302}
303#else
304static inline bool isolation_suitable(struct compact_control *cc,
305 struct page *page)
306{
307 return true;
308}
309
c89511ab
MG
310static void update_pageblock_skip(struct compact_control *cc,
311 struct page *page, unsigned long nr_isolated,
edc2ca61 312 bool migrate_scanner)
bb13ffeb
MG
313{
314}
315#endif /* CONFIG_COMPACTION */
316
8b44d279
VB
317/*
318 * Compaction requires the taking of some coarse locks that are potentially
319 * very heavily contended. For async compaction, back out if the lock cannot
320 * be taken immediately. For sync compaction, spin on the lock if needed.
321 *
322 * Returns true if the lock is held
323 * Returns false if the lock is not held and compaction should abort
324 */
325static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
326 struct compact_control *cc)
2a1402aa 327{
8b44d279
VB
328 if (cc->mode == MIGRATE_ASYNC) {
329 if (!spin_trylock_irqsave(lock, *flags)) {
c3486f53 330 cc->contended = true;
8b44d279
VB
331 return false;
332 }
333 } else {
334 spin_lock_irqsave(lock, *flags);
335 }
1f9efdef 336
8b44d279 337 return true;
2a1402aa
MG
338}
339
c67fe375
MG
340/*
341 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
342 * very heavily contended. The lock should be periodically unlocked to avoid
343 * having disabled IRQs for a long time, even when there is nobody waiting on
344 * the lock. It might also be that allowing the IRQs will result in
345 * need_resched() becoming true. If scheduling is needed, async compaction
346 * aborts. Sync compaction schedules.
347 * Either compaction type will also abort if a fatal signal is pending.
348 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 349 *
8b44d279
VB
350 * Returns true if compaction should abort due to fatal signal pending, or
351 * async compaction due to need_resched()
352 * Returns false when compaction can continue (sync compaction might have
353 * scheduled)
c67fe375 354 */
8b44d279
VB
355static bool compact_unlock_should_abort(spinlock_t *lock,
356 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 357{
8b44d279
VB
358 if (*locked) {
359 spin_unlock_irqrestore(lock, flags);
360 *locked = false;
361 }
1f9efdef 362
8b44d279 363 if (fatal_signal_pending(current)) {
c3486f53 364 cc->contended = true;
8b44d279
VB
365 return true;
366 }
c67fe375 367
8b44d279 368 if (need_resched()) {
e0b9daeb 369 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 370 cc->contended = true;
8b44d279 371 return true;
c67fe375 372 }
c67fe375 373 cond_resched();
c67fe375
MG
374 }
375
8b44d279 376 return false;
c67fe375
MG
377}
378
be976572
VB
379/*
380 * Aside from avoiding lock contention, compaction also periodically checks
381 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 382 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
383 * is used where no lock is concerned.
384 *
385 * Returns false when no scheduling was needed, or sync compaction scheduled.
386 * Returns true when async compaction should abort.
387 */
388static inline bool compact_should_abort(struct compact_control *cc)
389{
390 /* async compaction aborts if contended */
391 if (need_resched()) {
392 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 393 cc->contended = true;
be976572
VB
394 return true;
395 }
396
397 cond_resched();
398 }
399
400 return false;
401}
402
85aa125f 403/*
9e4be470
JM
404 * Isolate free pages onto a private freelist. If @strict is true, will abort
405 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
406 * (even though it may still end up isolating some pages).
85aa125f 407 */
f40d1e42 408static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 409 unsigned long *start_pfn,
85aa125f
MN
410 unsigned long end_pfn,
411 struct list_head *freelist,
412 bool strict)
748446bb 413{
b7aba698 414 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 415 struct page *cursor, *valid_page = NULL;
b8b2d825 416 unsigned long flags = 0;
f40d1e42 417 bool locked = false;
e14c720e 418 unsigned long blockpfn = *start_pfn;
66c64223 419 unsigned int order;
748446bb 420
748446bb
MG
421 cursor = pfn_to_page(blockpfn);
422
f40d1e42 423 /* Isolate free pages. */
748446bb 424 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 425 int isolated;
748446bb
MG
426 struct page *page = cursor;
427
8b44d279
VB
428 /*
429 * Periodically drop the lock (if held) regardless of its
430 * contention, to give chance to IRQs. Abort if fatal signal
431 * pending or async compaction detects need_resched()
432 */
433 if (!(blockpfn % SWAP_CLUSTER_MAX)
434 && compact_unlock_should_abort(&cc->zone->lock, flags,
435 &locked, cc))
436 break;
437
b7aba698 438 nr_scanned++;
f40d1e42 439 if (!pfn_valid_within(blockpfn))
2af120bc
LA
440 goto isolate_fail;
441
bb13ffeb
MG
442 if (!valid_page)
443 valid_page = page;
9fcd6d2e
VB
444
445 /*
446 * For compound pages such as THP and hugetlbfs, we can save
447 * potentially a lot of iterations if we skip them at once.
448 * The check is racy, but we can consider only valid values
449 * and the only danger is skipping too much.
450 */
451 if (PageCompound(page)) {
452 unsigned int comp_order = compound_order(page);
453
454 if (likely(comp_order < MAX_ORDER)) {
455 blockpfn += (1UL << comp_order) - 1;
456 cursor += (1UL << comp_order) - 1;
457 }
458
459 goto isolate_fail;
460 }
461
f40d1e42 462 if (!PageBuddy(page))
2af120bc 463 goto isolate_fail;
f40d1e42
MG
464
465 /*
69b7189f
VB
466 * If we already hold the lock, we can skip some rechecking.
467 * Note that if we hold the lock now, checked_pageblock was
468 * already set in some previous iteration (or strict is true),
469 * so it is correct to skip the suitable migration target
470 * recheck as well.
f40d1e42 471 */
69b7189f
VB
472 if (!locked) {
473 /*
474 * The zone lock must be held to isolate freepages.
475 * Unfortunately this is a very coarse lock and can be
476 * heavily contended if there are parallel allocations
477 * or parallel compactions. For async compaction do not
478 * spin on the lock and we acquire the lock as late as
479 * possible.
480 */
8b44d279
VB
481 locked = compact_trylock_irqsave(&cc->zone->lock,
482 &flags, cc);
69b7189f
VB
483 if (!locked)
484 break;
f40d1e42 485
69b7189f
VB
486 /* Recheck this is a buddy page under lock */
487 if (!PageBuddy(page))
488 goto isolate_fail;
489 }
748446bb 490
66c64223
JK
491 /* Found a free page, will break it into order-0 pages */
492 order = page_order(page);
493 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
494 if (!isolated)
495 break;
66c64223 496 set_page_private(page, order);
a4f04f2c 497
748446bb 498 total_isolated += isolated;
a4f04f2c 499 cc->nr_freepages += isolated;
66c64223
JK
500 list_add_tail(&page->lru, freelist);
501
a4f04f2c
DR
502 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
503 blockpfn += isolated;
504 break;
748446bb 505 }
a4f04f2c
DR
506 /* Advance to the end of split page */
507 blockpfn += isolated - 1;
508 cursor += isolated - 1;
509 continue;
2af120bc
LA
510
511isolate_fail:
512 if (strict)
513 break;
514 else
515 continue;
516
748446bb
MG
517 }
518
a4f04f2c
DR
519 if (locked)
520 spin_unlock_irqrestore(&cc->zone->lock, flags);
521
9fcd6d2e
VB
522 /*
523 * There is a tiny chance that we have read bogus compound_order(),
524 * so be careful to not go outside of the pageblock.
525 */
526 if (unlikely(blockpfn > end_pfn))
527 blockpfn = end_pfn;
528
e34d85f0
JK
529 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
530 nr_scanned, total_isolated);
531
e14c720e
VB
532 /* Record how far we have got within the block */
533 *start_pfn = blockpfn;
534
f40d1e42
MG
535 /*
536 * If strict isolation is requested by CMA then check that all the
537 * pages requested were isolated. If there were any failures, 0 is
538 * returned and CMA will fail.
539 */
2af120bc 540 if (strict && blockpfn < end_pfn)
f40d1e42
MG
541 total_isolated = 0;
542
bb13ffeb
MG
543 /* Update the pageblock-skip if the whole pageblock was scanned */
544 if (blockpfn == end_pfn)
edc2ca61 545 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 546
7f354a54 547 cc->total_free_scanned += nr_scanned;
397487db 548 if (total_isolated)
010fc29a 549 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
550 return total_isolated;
551}
552
85aa125f
MN
553/**
554 * isolate_freepages_range() - isolate free pages.
555 * @start_pfn: The first PFN to start isolating.
556 * @end_pfn: The one-past-last PFN.
557 *
558 * Non-free pages, invalid PFNs, or zone boundaries within the
559 * [start_pfn, end_pfn) range are considered errors, cause function to
560 * undo its actions and return zero.
561 *
562 * Otherwise, function returns one-past-the-last PFN of isolated page
563 * (which may be greater then end_pfn if end fell in a middle of
564 * a free page).
565 */
ff9543fd 566unsigned long
bb13ffeb
MG
567isolate_freepages_range(struct compact_control *cc,
568 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 569{
e1409c32 570 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
571 LIST_HEAD(freelist);
572
7d49d886 573 pfn = start_pfn;
06b6640a 574 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
575 if (block_start_pfn < cc->zone->zone_start_pfn)
576 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 577 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
578
579 for (; pfn < end_pfn; pfn += isolated,
e1409c32 580 block_start_pfn = block_end_pfn,
7d49d886 581 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
582 /* Protect pfn from changing by isolate_freepages_block */
583 unsigned long isolate_start_pfn = pfn;
85aa125f 584
85aa125f
MN
585 block_end_pfn = min(block_end_pfn, end_pfn);
586
58420016
JK
587 /*
588 * pfn could pass the block_end_pfn if isolated freepage
589 * is more than pageblock order. In this case, we adjust
590 * scanning range to right one.
591 */
592 if (pfn >= block_end_pfn) {
06b6640a
VB
593 block_start_pfn = pageblock_start_pfn(pfn);
594 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
595 block_end_pfn = min(block_end_pfn, end_pfn);
596 }
597
e1409c32
JK
598 if (!pageblock_pfn_to_page(block_start_pfn,
599 block_end_pfn, cc->zone))
7d49d886
VB
600 break;
601
e14c720e
VB
602 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
603 block_end_pfn, &freelist, true);
85aa125f
MN
604
605 /*
606 * In strict mode, isolate_freepages_block() returns 0 if
607 * there are any holes in the block (ie. invalid PFNs or
608 * non-free pages).
609 */
610 if (!isolated)
611 break;
612
613 /*
614 * If we managed to isolate pages, it is always (1 << n) *
615 * pageblock_nr_pages for some non-negative n. (Max order
616 * page may span two pageblocks).
617 */
618 }
619
66c64223 620 /* __isolate_free_page() does not map the pages */
85aa125f
MN
621 map_pages(&freelist);
622
623 if (pfn < end_pfn) {
624 /* Loop terminated early, cleanup. */
625 release_freepages(&freelist);
626 return 0;
627 }
628
629 /* We don't use freelists for anything. */
630 return pfn;
631}
632
748446bb
MG
633/* Similar to reclaim, but different enough that they don't share logic */
634static bool too_many_isolated(struct zone *zone)
635{
bc693045 636 unsigned long active, inactive, isolated;
748446bb 637
599d0c95
MG
638 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
639 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
640 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
641 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
642 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
643 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
748446bb 644
bc693045 645 return isolated > (inactive + active) / 2;
748446bb
MG
646}
647
2fe86e00 648/**
edc2ca61
VB
649 * isolate_migratepages_block() - isolate all migrate-able pages within
650 * a single pageblock
2fe86e00 651 * @cc: Compaction control structure.
edc2ca61
VB
652 * @low_pfn: The first PFN to isolate
653 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
654 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
655 *
656 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
657 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658 * Returns zero if there is a fatal signal pending, otherwise PFN of the
659 * first page that was not scanned (which may be both less, equal to or more
660 * than end_pfn).
2fe86e00 661 *
edc2ca61
VB
662 * The pages are isolated on cc->migratepages list (not required to be empty),
663 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664 * is neither read nor updated.
748446bb 665 */
edc2ca61
VB
666static unsigned long
667isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
668 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 669{
edc2ca61 670 struct zone *zone = cc->zone;
b7aba698 671 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 672 struct lruvec *lruvec;
b8b2d825 673 unsigned long flags = 0;
2a1402aa 674 bool locked = false;
bb13ffeb 675 struct page *page = NULL, *valid_page = NULL;
e34d85f0 676 unsigned long start_pfn = low_pfn;
fdd048e1
VB
677 bool skip_on_failure = false;
678 unsigned long next_skip_pfn = 0;
748446bb 679
748446bb
MG
680 /*
681 * Ensure that there are not too many pages isolated from the LRU
682 * list by either parallel reclaimers or compaction. If there are,
683 * delay for some time until fewer pages are isolated
684 */
685 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 686 /* async migration should just abort */
e0b9daeb 687 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 688 return 0;
f9e35b3b 689
748446bb
MG
690 congestion_wait(BLK_RW_ASYNC, HZ/10);
691
692 if (fatal_signal_pending(current))
2fe86e00 693 return 0;
748446bb
MG
694 }
695
be976572
VB
696 if (compact_should_abort(cc))
697 return 0;
aeef4b83 698
fdd048e1
VB
699 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
700 skip_on_failure = true;
701 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
702 }
703
748446bb 704 /* Time to isolate some pages for migration */
748446bb 705 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 706
fdd048e1
VB
707 if (skip_on_failure && low_pfn >= next_skip_pfn) {
708 /*
709 * We have isolated all migration candidates in the
710 * previous order-aligned block, and did not skip it due
711 * to failure. We should migrate the pages now and
712 * hopefully succeed compaction.
713 */
714 if (nr_isolated)
715 break;
716
717 /*
718 * We failed to isolate in the previous order-aligned
719 * block. Set the new boundary to the end of the
720 * current block. Note we can't simply increase
721 * next_skip_pfn by 1 << order, as low_pfn might have
722 * been incremented by a higher number due to skipping
723 * a compound or a high-order buddy page in the
724 * previous loop iteration.
725 */
726 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
727 }
728
8b44d279
VB
729 /*
730 * Periodically drop the lock (if held) regardless of its
731 * contention, to give chance to IRQs. Abort async compaction
732 * if contended.
733 */
734 if (!(low_pfn % SWAP_CLUSTER_MAX)
a52633d8 735 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
8b44d279
VB
736 &locked, cc))
737 break;
c67fe375 738
748446bb 739 if (!pfn_valid_within(low_pfn))
fdd048e1 740 goto isolate_fail;
b7aba698 741 nr_scanned++;
748446bb 742
748446bb 743 page = pfn_to_page(low_pfn);
dc908600 744
bb13ffeb
MG
745 if (!valid_page)
746 valid_page = page;
747
6c14466c 748 /*
99c0fd5e
VB
749 * Skip if free. We read page order here without zone lock
750 * which is generally unsafe, but the race window is small and
751 * the worst thing that can happen is that we skip some
752 * potential isolation targets.
6c14466c 753 */
99c0fd5e
VB
754 if (PageBuddy(page)) {
755 unsigned long freepage_order = page_order_unsafe(page);
756
757 /*
758 * Without lock, we cannot be sure that what we got is
759 * a valid page order. Consider only values in the
760 * valid order range to prevent low_pfn overflow.
761 */
762 if (freepage_order > 0 && freepage_order < MAX_ORDER)
763 low_pfn += (1UL << freepage_order) - 1;
748446bb 764 continue;
99c0fd5e 765 }
748446bb 766
bc835011 767 /*
29c0dde8
VB
768 * Regardless of being on LRU, compound pages such as THP and
769 * hugetlbfs are not to be compacted. We can potentially save
770 * a lot of iterations if we skip them at once. The check is
771 * racy, but we can consider only valid values and the only
772 * danger is skipping too much.
bc835011 773 */
29c0dde8
VB
774 if (PageCompound(page)) {
775 unsigned int comp_order = compound_order(page);
776
777 if (likely(comp_order < MAX_ORDER))
778 low_pfn += (1UL << comp_order) - 1;
edc2ca61 779
fdd048e1 780 goto isolate_fail;
2a1402aa
MG
781 }
782
bda807d4
MK
783 /*
784 * Check may be lockless but that's ok as we recheck later.
785 * It's possible to migrate LRU and non-lru movable pages.
786 * Skip any other type of page
787 */
788 if (!PageLRU(page)) {
bda807d4
MK
789 /*
790 * __PageMovable can return false positive so we need
791 * to verify it under page_lock.
792 */
793 if (unlikely(__PageMovable(page)) &&
794 !PageIsolated(page)) {
795 if (locked) {
a52633d8 796 spin_unlock_irqrestore(zone_lru_lock(zone),
bda807d4
MK
797 flags);
798 locked = false;
799 }
800
9e5bcd61 801 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
802 goto isolate_success;
803 }
804
fdd048e1 805 goto isolate_fail;
bda807d4 806 }
29c0dde8 807
119d6d59
DR
808 /*
809 * Migration will fail if an anonymous page is pinned in memory,
810 * so avoid taking lru_lock and isolating it unnecessarily in an
811 * admittedly racy check.
812 */
813 if (!page_mapping(page) &&
814 page_count(page) > page_mapcount(page))
fdd048e1 815 goto isolate_fail;
119d6d59 816
73e64c51
MH
817 /*
818 * Only allow to migrate anonymous pages in GFP_NOFS context
819 * because those do not depend on fs locks.
820 */
821 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
822 goto isolate_fail;
823
69b7189f
VB
824 /* If we already hold the lock, we can skip some rechecking */
825 if (!locked) {
a52633d8 826 locked = compact_trylock_irqsave(zone_lru_lock(zone),
8b44d279 827 &flags, cc);
69b7189f
VB
828 if (!locked)
829 break;
2a1402aa 830
29c0dde8 831 /* Recheck PageLRU and PageCompound under lock */
69b7189f 832 if (!PageLRU(page))
fdd048e1 833 goto isolate_fail;
29c0dde8
VB
834
835 /*
836 * Page become compound since the non-locked check,
837 * and it's on LRU. It can only be a THP so the order
838 * is safe to read and it's 0 for tail pages.
839 */
840 if (unlikely(PageCompound(page))) {
841 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 842 goto isolate_fail;
69b7189f 843 }
bc835011
AA
844 }
845
599d0c95 846 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
fa9add64 847
748446bb 848 /* Try isolate the page */
edc2ca61 849 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 850 goto isolate_fail;
748446bb 851
29c0dde8 852 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 853
748446bb 854 /* Successfully isolated */
fa9add64 855 del_page_from_lru_list(page, lruvec, page_lru(page));
6afcf8ef
ML
856 inc_node_page_state(page,
857 NR_ISOLATED_ANON + page_is_file_cache(page));
b6c75016
JK
858
859isolate_success:
fdd048e1 860 list_add(&page->lru, &cc->migratepages);
748446bb 861 cc->nr_migratepages++;
b7aba698 862 nr_isolated++;
748446bb 863
a34753d2
VB
864 /*
865 * Record where we could have freed pages by migration and not
866 * yet flushed them to buddy allocator.
867 * - this is the lowest page that was isolated and likely be
868 * then freed by migration.
869 */
870 if (!cc->last_migrated_pfn)
871 cc->last_migrated_pfn = low_pfn;
872
748446bb 873 /* Avoid isolating too much */
31b8384a
HD
874 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
875 ++low_pfn;
748446bb 876 break;
31b8384a 877 }
fdd048e1
VB
878
879 continue;
880isolate_fail:
881 if (!skip_on_failure)
882 continue;
883
884 /*
885 * We have isolated some pages, but then failed. Release them
886 * instead of migrating, as we cannot form the cc->order buddy
887 * page anyway.
888 */
889 if (nr_isolated) {
890 if (locked) {
a52633d8 891 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
fdd048e1
VB
892 locked = false;
893 }
fdd048e1
VB
894 putback_movable_pages(&cc->migratepages);
895 cc->nr_migratepages = 0;
896 cc->last_migrated_pfn = 0;
897 nr_isolated = 0;
898 }
899
900 if (low_pfn < next_skip_pfn) {
901 low_pfn = next_skip_pfn - 1;
902 /*
903 * The check near the loop beginning would have updated
904 * next_skip_pfn too, but this is a bit simpler.
905 */
906 next_skip_pfn += 1UL << cc->order;
907 }
748446bb
MG
908 }
909
99c0fd5e
VB
910 /*
911 * The PageBuddy() check could have potentially brought us outside
912 * the range to be scanned.
913 */
914 if (unlikely(low_pfn > end_pfn))
915 low_pfn = end_pfn;
916
c67fe375 917 if (locked)
a52633d8 918 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
748446bb 919
50b5b094
VB
920 /*
921 * Update the pageblock-skip information and cached scanner pfn,
922 * if the whole pageblock was scanned without isolating any page.
50b5b094 923 */
35979ef3 924 if (low_pfn == end_pfn)
edc2ca61 925 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 926
e34d85f0
JK
927 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
928 nr_scanned, nr_isolated);
b7aba698 929
7f354a54 930 cc->total_migrate_scanned += nr_scanned;
397487db 931 if (nr_isolated)
010fc29a 932 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 933
2fe86e00
MN
934 return low_pfn;
935}
936
edc2ca61
VB
937/**
938 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
939 * @cc: Compaction control structure.
940 * @start_pfn: The first PFN to start isolating.
941 * @end_pfn: The one-past-last PFN.
942 *
943 * Returns zero if isolation fails fatally due to e.g. pending signal.
944 * Otherwise, function returns one-past-the-last PFN of isolated page
945 * (which may be greater than end_pfn if end fell in a middle of a THP page).
946 */
947unsigned long
948isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
949 unsigned long end_pfn)
950{
e1409c32 951 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
952
953 /* Scan block by block. First and last block may be incomplete */
954 pfn = start_pfn;
06b6640a 955 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
956 if (block_start_pfn < cc->zone->zone_start_pfn)
957 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 958 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
959
960 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 961 block_start_pfn = block_end_pfn,
edc2ca61
VB
962 block_end_pfn += pageblock_nr_pages) {
963
964 block_end_pfn = min(block_end_pfn, end_pfn);
965
e1409c32
JK
966 if (!pageblock_pfn_to_page(block_start_pfn,
967 block_end_pfn, cc->zone))
edc2ca61
VB
968 continue;
969
970 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
971 ISOLATE_UNEVICTABLE);
972
14af4a5e 973 if (!pfn)
edc2ca61 974 break;
6ea41c0c
JK
975
976 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
977 break;
edc2ca61 978 }
edc2ca61
VB
979
980 return pfn;
981}
982
ff9543fd
MN
983#endif /* CONFIG_COMPACTION || CONFIG_CMA */
984#ifdef CONFIG_COMPACTION
018e9a49 985
b682debd
VB
986static bool suitable_migration_source(struct compact_control *cc,
987 struct page *page)
988{
282722b0
VB
989 int block_mt;
990
991 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
992 return true;
993
282722b0
VB
994 block_mt = get_pageblock_migratetype(page);
995
996 if (cc->migratetype == MIGRATE_MOVABLE)
997 return is_migrate_movable(block_mt);
998 else
999 return block_mt == cc->migratetype;
b682debd
VB
1000}
1001
018e9a49 1002/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1003static bool suitable_migration_target(struct compact_control *cc,
1004 struct page *page)
018e9a49
AM
1005{
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page)) {
1008 /*
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1012 */
1013 if (page_order_unsafe(page) >= pageblock_order)
1014 return false;
1015 }
1016
1ef36db2
YX
1017 if (cc->ignore_block_suitable)
1018 return true;
1019
018e9a49 1020 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1021 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1022 return true;
1023
1024 /* Otherwise skip the block */
1025 return false;
1026}
1027
f2849aa0
VB
1028/*
1029 * Test whether the free scanner has reached the same or lower pageblock than
1030 * the migration scanner, and compaction should thus terminate.
1031 */
1032static inline bool compact_scanners_met(struct compact_control *cc)
1033{
1034 return (cc->free_pfn >> pageblock_order)
1035 <= (cc->migrate_pfn >> pageblock_order);
1036}
1037
2fe86e00 1038/*
ff9543fd
MN
1039 * Based on information in the current compact_control, find blocks
1040 * suitable for isolating free pages from and then isolate them.
2fe86e00 1041 */
edc2ca61 1042static void isolate_freepages(struct compact_control *cc)
2fe86e00 1043{
edc2ca61 1044 struct zone *zone = cc->zone;
ff9543fd 1045 struct page *page;
c96b9e50 1046 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1047 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1048 unsigned long block_end_pfn; /* end of current pageblock */
1049 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1050 struct list_head *freelist = &cc->freepages;
2fe86e00 1051
ff9543fd
MN
1052 /*
1053 * Initialise the free scanner. The starting point is where we last
49e068f0 1054 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1055 * zone when isolating for the first time. For looping we also need
1056 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1057 * block_start_pfn -= pageblock_nr_pages in the for loop.
1058 * For ending point, take care when isolating in last pageblock of a
1059 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1060 * The low boundary is the end of the pageblock the migration scanner
1061 * is using.
ff9543fd 1062 */
e14c720e 1063 isolate_start_pfn = cc->free_pfn;
06b6640a 1064 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
1065 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1066 zone_end_pfn(zone));
06b6640a 1067 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1068
ff9543fd
MN
1069 /*
1070 * Isolate free pages until enough are available to migrate the
1071 * pages on cc->migratepages. We stop searching if the migrate
1072 * and free page scanners meet or enough free pages are isolated.
1073 */
f5f61a32 1074 for (; block_start_pfn >= low_pfn;
c96b9e50 1075 block_end_pfn = block_start_pfn,
e14c720e
VB
1076 block_start_pfn -= pageblock_nr_pages,
1077 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1078 /*
1079 * This can iterate a massively long zone without finding any
1080 * suitable migration targets, so periodically check if we need
be976572 1081 * to schedule, or even abort async compaction.
f6ea3adb 1082 */
be976572
VB
1083 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 && compact_should_abort(cc))
1085 break;
f6ea3adb 1086
7d49d886
VB
1087 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1088 zone);
1089 if (!page)
ff9543fd
MN
1090 continue;
1091
1092 /* Check the block is suitable for migration */
9f7e3387 1093 if (!suitable_migration_target(cc, page))
ff9543fd 1094 continue;
68e3e926 1095
bb13ffeb
MG
1096 /* If isolation recently failed, do not retry */
1097 if (!isolation_suitable(cc, page))
1098 continue;
1099
e14c720e 1100 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1101 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1102 freelist, false);
ff9543fd 1103
e14c720e 1104 /*
a46cbf3b
DR
1105 * If we isolated enough freepages, or aborted due to lock
1106 * contention, terminate.
e14c720e 1107 */
f5f61a32
VB
1108 if ((cc->nr_freepages >= cc->nr_migratepages)
1109 || cc->contended) {
a46cbf3b
DR
1110 if (isolate_start_pfn >= block_end_pfn) {
1111 /*
1112 * Restart at previous pageblock if more
1113 * freepages can be isolated next time.
1114 */
f5f61a32
VB
1115 isolate_start_pfn =
1116 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1117 }
be976572 1118 break;
a46cbf3b 1119 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1120 /*
a46cbf3b
DR
1121 * If isolation failed early, do not continue
1122 * needlessly.
f5f61a32 1123 */
a46cbf3b 1124 break;
f5f61a32 1125 }
ff9543fd
MN
1126 }
1127
66c64223 1128 /* __isolate_free_page() does not map the pages */
ff9543fd
MN
1129 map_pages(freelist);
1130
7ed695e0 1131 /*
f5f61a32
VB
1132 * Record where the free scanner will restart next time. Either we
1133 * broke from the loop and set isolate_start_pfn based on the last
1134 * call to isolate_freepages_block(), or we met the migration scanner
1135 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1136 */
f5f61a32 1137 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1138}
1139
1140/*
1141 * This is a migrate-callback that "allocates" freepages by taking pages
1142 * from the isolated freelists in the block we are migrating to.
1143 */
1144static struct page *compaction_alloc(struct page *migratepage,
1145 unsigned long data,
1146 int **result)
1147{
1148 struct compact_control *cc = (struct compact_control *)data;
1149 struct page *freepage;
1150
be976572
VB
1151 /*
1152 * Isolate free pages if necessary, and if we are not aborting due to
1153 * contention.
1154 */
748446bb 1155 if (list_empty(&cc->freepages)) {
be976572 1156 if (!cc->contended)
edc2ca61 1157 isolate_freepages(cc);
748446bb
MG
1158
1159 if (list_empty(&cc->freepages))
1160 return NULL;
1161 }
1162
1163 freepage = list_entry(cc->freepages.next, struct page, lru);
1164 list_del(&freepage->lru);
1165 cc->nr_freepages--;
1166
1167 return freepage;
1168}
1169
1170/*
d53aea3d
DR
1171 * This is a migrate-callback that "frees" freepages back to the isolated
1172 * freelist. All pages on the freelist are from the same zone, so there is no
1173 * special handling needed for NUMA.
1174 */
1175static void compaction_free(struct page *page, unsigned long data)
1176{
1177 struct compact_control *cc = (struct compact_control *)data;
1178
1179 list_add(&page->lru, &cc->freepages);
1180 cc->nr_freepages++;
1181}
1182
ff9543fd
MN
1183/* possible outcome of isolate_migratepages */
1184typedef enum {
1185 ISOLATE_ABORT, /* Abort compaction now */
1186 ISOLATE_NONE, /* No pages isolated, continue scanning */
1187 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1188} isolate_migrate_t;
1189
5bbe3547
EM
1190/*
1191 * Allow userspace to control policy on scanning the unevictable LRU for
1192 * compactable pages.
1193 */
1194int sysctl_compact_unevictable_allowed __read_mostly = 1;
1195
ff9543fd 1196/*
edc2ca61
VB
1197 * Isolate all pages that can be migrated from the first suitable block,
1198 * starting at the block pointed to by the migrate scanner pfn within
1199 * compact_control.
ff9543fd
MN
1200 */
1201static isolate_migrate_t isolate_migratepages(struct zone *zone,
1202 struct compact_control *cc)
1203{
e1409c32
JK
1204 unsigned long block_start_pfn;
1205 unsigned long block_end_pfn;
1206 unsigned long low_pfn;
edc2ca61
VB
1207 struct page *page;
1208 const isolate_mode_t isolate_mode =
5bbe3547 1209 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1210 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1211
edc2ca61
VB
1212 /*
1213 * Start at where we last stopped, or beginning of the zone as
1214 * initialized by compact_zone()
1215 */
1216 low_pfn = cc->migrate_pfn;
06b6640a 1217 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1218 if (block_start_pfn < zone->zone_start_pfn)
1219 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1220
1221 /* Only scan within a pageblock boundary */
06b6640a 1222 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1223
edc2ca61
VB
1224 /*
1225 * Iterate over whole pageblocks until we find the first suitable.
1226 * Do not cross the free scanner.
1227 */
e1409c32
JK
1228 for (; block_end_pfn <= cc->free_pfn;
1229 low_pfn = block_end_pfn,
1230 block_start_pfn = block_end_pfn,
1231 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1232
edc2ca61
VB
1233 /*
1234 * This can potentially iterate a massively long zone with
1235 * many pageblocks unsuitable, so periodically check if we
1236 * need to schedule, or even abort async compaction.
1237 */
1238 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1239 && compact_should_abort(cc))
1240 break;
ff9543fd 1241
e1409c32
JK
1242 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1243 zone);
7d49d886 1244 if (!page)
edc2ca61
VB
1245 continue;
1246
edc2ca61
VB
1247 /* If isolation recently failed, do not retry */
1248 if (!isolation_suitable(cc, page))
1249 continue;
1250
1251 /*
1252 * For async compaction, also only scan in MOVABLE blocks.
1253 * Async compaction is optimistic to see if the minimum amount
1254 * of work satisfies the allocation.
1255 */
b682debd 1256 if (!suitable_migration_source(cc, page))
edc2ca61
VB
1257 continue;
1258
1259 /* Perform the isolation */
e1409c32
JK
1260 low_pfn = isolate_migratepages_block(cc, low_pfn,
1261 block_end_pfn, isolate_mode);
edc2ca61 1262
6afcf8ef 1263 if (!low_pfn || cc->contended)
edc2ca61
VB
1264 return ISOLATE_ABORT;
1265
1266 /*
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1269 * continue or not.
1270 */
1271 break;
1272 }
1273
f2849aa0
VB
1274 /* Record where migration scanner will be restarted. */
1275 cc->migrate_pfn = low_pfn;
ff9543fd 1276
edc2ca61 1277 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1278}
1279
21c527a3
YB
1280/*
1281 * order == -1 is expected when compacting via
1282 * /proc/sys/vm/compact_memory
1283 */
1284static inline bool is_via_compact_memory(int order)
1285{
1286 return order == -1;
1287}
1288
d39773a0
VB
1289static enum compact_result __compact_finished(struct zone *zone,
1290 struct compact_control *cc)
748446bb 1291{
8fb74b9f 1292 unsigned int order;
d39773a0 1293 const int migratetype = cc->migratetype;
56de7263 1294
be976572 1295 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1296 return COMPACT_CONTENDED;
748446bb 1297
753341a4 1298 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1299 if (compact_scanners_met(cc)) {
55b7c4c9 1300 /* Let the next compaction start anew. */
02333641 1301 reset_cached_positions(zone);
55b7c4c9 1302
62997027
MG
1303 /*
1304 * Mark that the PG_migrate_skip information should be cleared
accf6242 1305 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1306 * flag itself as the decision to be clear should be directly
1307 * based on an allocation request.
1308 */
accf6242 1309 if (cc->direct_compaction)
62997027
MG
1310 zone->compact_blockskip_flush = true;
1311
c8f7de0b
MH
1312 if (cc->whole_zone)
1313 return COMPACT_COMPLETE;
1314 else
1315 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1316 }
748446bb 1317
21c527a3 1318 if (is_via_compact_memory(cc->order))
56de7263
MG
1319 return COMPACT_CONTINUE;
1320
baf6a9a1
VB
1321 if (cc->finishing_block) {
1322 /*
1323 * We have finished the pageblock, but better check again that
1324 * we really succeeded.
1325 */
1326 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1327 cc->finishing_block = false;
1328 else
1329 return COMPACT_CONTINUE;
1330 }
1331
56de7263 1332 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1333 for (order = cc->order; order < MAX_ORDER; order++) {
1334 struct free_area *area = &zone->free_area[order];
2149cdae 1335 bool can_steal;
8fb74b9f
MG
1336
1337 /* Job done if page is free of the right migratetype */
6d7ce559 1338 if (!list_empty(&area->free_list[migratetype]))
cf378319 1339 return COMPACT_SUCCESS;
8fb74b9f 1340
2149cdae
JK
1341#ifdef CONFIG_CMA
1342 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1343 if (migratetype == MIGRATE_MOVABLE &&
1344 !list_empty(&area->free_list[MIGRATE_CMA]))
cf378319 1345 return COMPACT_SUCCESS;
2149cdae
JK
1346#endif
1347 /*
1348 * Job done if allocation would steal freepages from
1349 * other migratetype buddy lists.
1350 */
1351 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
1352 true, &can_steal) != -1) {
1353
1354 /* movable pages are OK in any pageblock */
1355 if (migratetype == MIGRATE_MOVABLE)
1356 return COMPACT_SUCCESS;
1357
1358 /*
1359 * We are stealing for a non-movable allocation. Make
1360 * sure we finish compacting the current pageblock
1361 * first so it is as free as possible and we won't
1362 * have to steal another one soon. This only applies
1363 * to sync compaction, as async compaction operates
1364 * on pageblocks of the same migratetype.
1365 */
1366 if (cc->mode == MIGRATE_ASYNC ||
1367 IS_ALIGNED(cc->migrate_pfn,
1368 pageblock_nr_pages)) {
1369 return COMPACT_SUCCESS;
1370 }
1371
1372 cc->finishing_block = true;
1373 return COMPACT_CONTINUE;
1374 }
56de7263
MG
1375 }
1376
837d026d
JK
1377 return COMPACT_NO_SUITABLE_PAGE;
1378}
1379
ea7ab982 1380static enum compact_result compact_finished(struct zone *zone,
d39773a0 1381 struct compact_control *cc)
837d026d
JK
1382{
1383 int ret;
1384
d39773a0 1385 ret = __compact_finished(zone, cc);
837d026d
JK
1386 trace_mm_compaction_finished(zone, cc->order, ret);
1387 if (ret == COMPACT_NO_SUITABLE_PAGE)
1388 ret = COMPACT_CONTINUE;
1389
1390 return ret;
748446bb
MG
1391}
1392
3e7d3449
MG
1393/*
1394 * compaction_suitable: Is this suitable to run compaction on this zone now?
1395 * Returns
1396 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1397 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1398 * COMPACT_CONTINUE - If compaction should run now
1399 */
ea7ab982 1400static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1401 unsigned int alloc_flags,
86a294a8
MH
1402 int classzone_idx,
1403 unsigned long wmark_target)
3e7d3449 1404{
3e7d3449
MG
1405 unsigned long watermark;
1406
21c527a3 1407 if (is_via_compact_memory(order))
3957c776
MH
1408 return COMPACT_CONTINUE;
1409
f2b8228c 1410 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
ebff3980
VB
1411 /*
1412 * If watermarks for high-order allocation are already met, there
1413 * should be no need for compaction at all.
1414 */
1415 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1416 alloc_flags))
cf378319 1417 return COMPACT_SUCCESS;
ebff3980 1418
3e7d3449 1419 /*
9861a62c 1420 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1421 * isolate free pages for migration targets. This means that the
1422 * watermark and alloc_flags have to match, or be more pessimistic than
1423 * the check in __isolate_free_page(). We don't use the direct
1424 * compactor's alloc_flags, as they are not relevant for freepage
1425 * isolation. We however do use the direct compactor's classzone_idx to
1426 * skip over zones where lowmem reserves would prevent allocation even
1427 * if compaction succeeds.
8348faf9
VB
1428 * For costly orders, we require low watermark instead of min for
1429 * compaction to proceed to increase its chances.
984fdba6
VB
1430 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1431 * suitable migration targets
3e7d3449 1432 */
8348faf9
VB
1433 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1434 low_wmark_pages(zone) : min_wmark_pages(zone);
1435 watermark += compact_gap(order);
86a294a8 1436 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
984fdba6 1437 ALLOC_CMA, wmark_target))
3e7d3449
MG
1438 return COMPACT_SKIPPED;
1439
cc5c9f09
VB
1440 return COMPACT_CONTINUE;
1441}
1442
1443enum compact_result compaction_suitable(struct zone *zone, int order,
1444 unsigned int alloc_flags,
1445 int classzone_idx)
1446{
1447 enum compact_result ret;
1448 int fragindex;
1449
1450 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1451 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
1452 /*
1453 * fragmentation index determines if allocation failures are due to
1454 * low memory or external fragmentation
1455 *
ebff3980
VB
1456 * index of -1000 would imply allocations might succeed depending on
1457 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1458 * index towards 0 implies failure is due to lack of memory
1459 * index towards 1000 implies failure is due to fragmentation
1460 *
20311420
VB
1461 * Only compact if a failure would be due to fragmentation. Also
1462 * ignore fragindex for non-costly orders where the alternative to
1463 * a successful reclaim/compaction is OOM. Fragindex and the
1464 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1465 * excessive compaction for costly orders, but it should not be at the
1466 * expense of system stability.
3e7d3449 1467 */
20311420 1468 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
1469 fragindex = fragmentation_index(zone, order);
1470 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1471 ret = COMPACT_NOT_SUITABLE_ZONE;
1472 }
837d026d 1473
837d026d
JK
1474 trace_mm_compaction_suitable(zone, order, ret);
1475 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1476 ret = COMPACT_SKIPPED;
1477
1478 return ret;
1479}
1480
86a294a8
MH
1481bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1482 int alloc_flags)
1483{
1484 struct zone *zone;
1485 struct zoneref *z;
1486
1487 /*
1488 * Make sure at least one zone would pass __compaction_suitable if we continue
1489 * retrying the reclaim.
1490 */
1491 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1492 ac->nodemask) {
1493 unsigned long available;
1494 enum compact_result compact_result;
1495
1496 /*
1497 * Do not consider all the reclaimable memory because we do not
1498 * want to trash just for a single high order allocation which
1499 * is even not guaranteed to appear even if __compaction_suitable
1500 * is happy about the watermark check.
1501 */
5a1c84b4 1502 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
1503 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1504 compact_result = __compaction_suitable(zone, order, alloc_flags,
1505 ac_classzone_idx(ac), available);
cc5c9f09 1506 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
1507 return true;
1508 }
1509
1510 return false;
1511}
1512
ea7ab982 1513static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1514{
ea7ab982 1515 enum compact_result ret;
c89511ab 1516 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1517 unsigned long end_pfn = zone_end_pfn(zone);
e0b9daeb 1518 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1519
d39773a0 1520 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
ebff3980
VB
1521 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1522 cc->classzone_idx);
c46649de 1523 /* Compaction is likely to fail */
cf378319 1524 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 1525 return ret;
c46649de
MH
1526
1527 /* huh, compaction_suitable is returning something unexpected */
1528 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1529
d3132e4b
VB
1530 /*
1531 * Clear pageblock skip if there were failures recently and compaction
accf6242 1532 * is about to be retried after being deferred.
d3132e4b 1533 */
accf6242 1534 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1535 __reset_isolation_suitable(zone);
1536
c89511ab
MG
1537 /*
1538 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
1539 * information on where the scanners should start (unless we explicitly
1540 * want to compact the whole zone), but check that it is initialised
1541 * by ensuring the values are within zone boundaries.
c89511ab 1542 */
06ed2998 1543 if (cc->whole_zone) {
c89511ab 1544 cc->migrate_pfn = start_pfn;
06ed2998
VB
1545 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1546 } else {
1547 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1548 cc->free_pfn = zone->compact_cached_free_pfn;
1549 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1550 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1551 zone->compact_cached_free_pfn = cc->free_pfn;
1552 }
1553 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1554 cc->migrate_pfn = start_pfn;
1555 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1556 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1557 }
c8f7de0b 1558
06ed2998
VB
1559 if (cc->migrate_pfn == start_pfn)
1560 cc->whole_zone = true;
1561 }
c8f7de0b 1562
1a16718c 1563 cc->last_migrated_pfn = 0;
748446bb 1564
16c4a097
JK
1565 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1566 cc->free_pfn, end_pfn, sync);
0eb927c0 1567
748446bb
MG
1568 migrate_prep_local();
1569
d39773a0 1570 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
9d502c1c 1571 int err;
748446bb 1572
f9e35b3b
MG
1573 switch (isolate_migratepages(zone, cc)) {
1574 case ISOLATE_ABORT:
2d1e1041 1575 ret = COMPACT_CONTENDED;
5733c7d1 1576 putback_movable_pages(&cc->migratepages);
e64c5237 1577 cc->nr_migratepages = 0;
f9e35b3b
MG
1578 goto out;
1579 case ISOLATE_NONE:
fdaf7f5c
VB
1580 /*
1581 * We haven't isolated and migrated anything, but
1582 * there might still be unflushed migrations from
1583 * previous cc->order aligned block.
1584 */
1585 goto check_drain;
f9e35b3b
MG
1586 case ISOLATE_SUCCESS:
1587 ;
1588 }
748446bb 1589
d53aea3d 1590 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1591 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1592 MR_COMPACTION);
748446bb 1593
f8c9301f
VB
1594 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1595 &cc->migratepages);
748446bb 1596
f8c9301f
VB
1597 /* All pages were either migrated or will be released */
1598 cc->nr_migratepages = 0;
9d502c1c 1599 if (err) {
5733c7d1 1600 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1601 /*
1602 * migrate_pages() may return -ENOMEM when scanners meet
1603 * and we want compact_finished() to detect it
1604 */
f2849aa0 1605 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1606 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1607 goto out;
1608 }
fdd048e1
VB
1609 /*
1610 * We failed to migrate at least one page in the current
1611 * order-aligned block, so skip the rest of it.
1612 */
1613 if (cc->direct_compaction &&
1614 (cc->mode == MIGRATE_ASYNC)) {
1615 cc->migrate_pfn = block_end_pfn(
1616 cc->migrate_pfn - 1, cc->order);
1617 /* Draining pcplists is useless in this case */
1618 cc->last_migrated_pfn = 0;
1619
1620 }
748446bb 1621 }
fdaf7f5c 1622
fdaf7f5c
VB
1623check_drain:
1624 /*
1625 * Has the migration scanner moved away from the previous
1626 * cc->order aligned block where we migrated from? If yes,
1627 * flush the pages that were freed, so that they can merge and
1628 * compact_finished() can detect immediately if allocation
1629 * would succeed.
1630 */
1a16718c 1631 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1632 int cpu;
1633 unsigned long current_block_start =
06b6640a 1634 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1635
1a16718c 1636 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1637 cpu = get_cpu();
1638 lru_add_drain_cpu(cpu);
1639 drain_local_pages(zone);
1640 put_cpu();
1641 /* No more flushing until we migrate again */
1a16718c 1642 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1643 }
1644 }
1645
748446bb
MG
1646 }
1647
f9e35b3b 1648out:
6bace090
VB
1649 /*
1650 * Release free pages and update where the free scanner should restart,
1651 * so we don't leave any returned pages behind in the next attempt.
1652 */
1653 if (cc->nr_freepages > 0) {
1654 unsigned long free_pfn = release_freepages(&cc->freepages);
1655
1656 cc->nr_freepages = 0;
1657 VM_BUG_ON(free_pfn == 0);
1658 /* The cached pfn is always the first in a pageblock */
06b6640a 1659 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1660 /*
1661 * Only go back, not forward. The cached pfn might have been
1662 * already reset to zone end in compact_finished()
1663 */
1664 if (free_pfn > zone->compact_cached_free_pfn)
1665 zone->compact_cached_free_pfn = free_pfn;
1666 }
748446bb 1667
7f354a54
DR
1668 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1669 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1670
16c4a097
JK
1671 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1672 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1673
748446bb
MG
1674 return ret;
1675}
76ab0f53 1676
ea7ab982 1677static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 1678 gfp_t gfp_mask, enum compact_priority prio,
c603844b 1679 unsigned int alloc_flags, int classzone_idx)
56de7263 1680{
ea7ab982 1681 enum compact_result ret;
56de7263
MG
1682 struct compact_control cc = {
1683 .nr_freepages = 0,
1684 .nr_migratepages = 0,
7f354a54
DR
1685 .total_migrate_scanned = 0,
1686 .total_free_scanned = 0,
56de7263 1687 .order = order,
6d7ce559 1688 .gfp_mask = gfp_mask,
56de7263 1689 .zone = zone,
a5508cd8
VB
1690 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1691 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
1692 .alloc_flags = alloc_flags,
1693 .classzone_idx = classzone_idx,
accf6242 1694 .direct_compaction = true,
a8e025e5 1695 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
1696 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1697 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263
MG
1698 };
1699 INIT_LIST_HEAD(&cc.freepages);
1700 INIT_LIST_HEAD(&cc.migratepages);
1701
e64c5237
SL
1702 ret = compact_zone(zone, &cc);
1703
1704 VM_BUG_ON(!list_empty(&cc.freepages));
1705 VM_BUG_ON(!list_empty(&cc.migratepages));
1706
e64c5237 1707 return ret;
56de7263
MG
1708}
1709
5e771905
MG
1710int sysctl_extfrag_threshold = 500;
1711
56de7263
MG
1712/**
1713 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1714 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1715 * @order: The order of the current allocation
1716 * @alloc_flags: The allocation flags of the current allocation
1717 * @ac: The context of current allocation
e0b9daeb 1718 * @mode: The migration mode for async, sync light, or sync migration
56de7263
MG
1719 *
1720 * This is the main entry point for direct page compaction.
1721 */
ea7ab982 1722enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 1723 unsigned int alloc_flags, const struct alloc_context *ac,
c3486f53 1724 enum compact_priority prio)
56de7263 1725{
56de7263 1726 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1727 struct zoneref *z;
1728 struct zone *zone;
1d4746d3 1729 enum compact_result rc = COMPACT_SKIPPED;
56de7263 1730
73e64c51
MH
1731 /*
1732 * Check if the GFP flags allow compaction - GFP_NOIO is really
1733 * tricky context because the migration might require IO
1734 */
1735 if (!may_perform_io)
53853e2d 1736 return COMPACT_SKIPPED;
56de7263 1737
a5508cd8 1738 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 1739
56de7263 1740 /* Compact each zone in the list */
1a6d53a1
VB
1741 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1742 ac->nodemask) {
ea7ab982 1743 enum compact_result status;
56de7263 1744
a8e025e5
VB
1745 if (prio > MIN_COMPACT_PRIORITY
1746 && compaction_deferred(zone, order)) {
1d4746d3 1747 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1748 continue;
1d4746d3 1749 }
53853e2d 1750
a5508cd8 1751 status = compact_zone_order(zone, order, gfp_mask, prio,
c3486f53 1752 alloc_flags, ac_classzone_idx(ac));
56de7263
MG
1753 rc = max(status, rc);
1754
7ceb009a
VB
1755 /* The allocation should succeed, stop compacting */
1756 if (status == COMPACT_SUCCESS) {
53853e2d
VB
1757 /*
1758 * We think the allocation will succeed in this zone,
1759 * but it is not certain, hence the false. The caller
1760 * will repeat this with true if allocation indeed
1761 * succeeds in this zone.
1762 */
1763 compaction_defer_reset(zone, order, false);
1f9efdef 1764
c3486f53 1765 break;
1f9efdef
VB
1766 }
1767
a5508cd8 1768 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 1769 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
1770 /*
1771 * We think that allocation won't succeed in this zone
1772 * so we defer compaction there. If it ends up
1773 * succeeding after all, it will be reset.
1774 */
1775 defer_compaction(zone, order);
1f9efdef
VB
1776
1777 /*
1778 * We might have stopped compacting due to need_resched() in
1779 * async compaction, or due to a fatal signal detected. In that
c3486f53 1780 * case do not try further zones
1f9efdef 1781 */
c3486f53
VB
1782 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1783 || fatal_signal_pending(current))
1784 break;
56de7263
MG
1785 }
1786
1787 return rc;
1788}
1789
1790
76ab0f53 1791/* Compact all zones within a node */
791cae96 1792static void compact_node(int nid)
76ab0f53 1793{
791cae96 1794 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 1795 int zoneid;
76ab0f53 1796 struct zone *zone;
791cae96
VB
1797 struct compact_control cc = {
1798 .order = -1,
7f354a54
DR
1799 .total_migrate_scanned = 0,
1800 .total_free_scanned = 0,
791cae96
VB
1801 .mode = MIGRATE_SYNC,
1802 .ignore_skip_hint = true,
1803 .whole_zone = true,
73e64c51 1804 .gfp_mask = GFP_KERNEL,
791cae96
VB
1805 };
1806
76ab0f53 1807
76ab0f53 1808 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1809
1810 zone = &pgdat->node_zones[zoneid];
1811 if (!populated_zone(zone))
1812 continue;
1813
791cae96
VB
1814 cc.nr_freepages = 0;
1815 cc.nr_migratepages = 0;
1816 cc.zone = zone;
1817 INIT_LIST_HEAD(&cc.freepages);
1818 INIT_LIST_HEAD(&cc.migratepages);
76ab0f53 1819
791cae96 1820 compact_zone(zone, &cc);
75469345 1821
791cae96
VB
1822 VM_BUG_ON(!list_empty(&cc.freepages));
1823 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 1824 }
76ab0f53
MG
1825}
1826
1827/* Compact all nodes in the system */
7964c06d 1828static void compact_nodes(void)
76ab0f53
MG
1829{
1830 int nid;
1831
8575ec29
HD
1832 /* Flush pending updates to the LRU lists */
1833 lru_add_drain_all();
1834
76ab0f53
MG
1835 for_each_online_node(nid)
1836 compact_node(nid);
76ab0f53
MG
1837}
1838
1839/* The written value is actually unused, all memory is compacted */
1840int sysctl_compact_memory;
1841
fec4eb2c
YB
1842/*
1843 * This is the entry point for compacting all nodes via
1844 * /proc/sys/vm/compact_memory
1845 */
76ab0f53
MG
1846int sysctl_compaction_handler(struct ctl_table *table, int write,
1847 void __user *buffer, size_t *length, loff_t *ppos)
1848{
1849 if (write)
7964c06d 1850 compact_nodes();
76ab0f53
MG
1851
1852 return 0;
1853}
ed4a6d7f 1854
5e771905
MG
1855int sysctl_extfrag_handler(struct ctl_table *table, int write,
1856 void __user *buffer, size_t *length, loff_t *ppos)
1857{
1858 proc_dointvec_minmax(table, write, buffer, length, ppos);
1859
1860 return 0;
1861}
1862
ed4a6d7f 1863#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1864static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1865 struct device_attribute *attr,
ed4a6d7f
MG
1866 const char *buf, size_t count)
1867{
8575ec29
HD
1868 int nid = dev->id;
1869
1870 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1871 /* Flush pending updates to the LRU lists */
1872 lru_add_drain_all();
1873
1874 compact_node(nid);
1875 }
ed4a6d7f
MG
1876
1877 return count;
1878}
10fbcf4c 1879static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1880
1881int compaction_register_node(struct node *node)
1882{
10fbcf4c 1883 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1884}
1885
1886void compaction_unregister_node(struct node *node)
1887{
10fbcf4c 1888 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1889}
1890#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1891
698b1b30
VB
1892static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1893{
172400c6 1894 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1895}
1896
1897static bool kcompactd_node_suitable(pg_data_t *pgdat)
1898{
1899 int zoneid;
1900 struct zone *zone;
1901 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1902
6cd9dc3e 1903 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1904 zone = &pgdat->node_zones[zoneid];
1905
1906 if (!populated_zone(zone))
1907 continue;
1908
1909 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1910 classzone_idx) == COMPACT_CONTINUE)
1911 return true;
1912 }
1913
1914 return false;
1915}
1916
1917static void kcompactd_do_work(pg_data_t *pgdat)
1918{
1919 /*
1920 * With no special task, compact all zones so that a page of requested
1921 * order is allocatable.
1922 */
1923 int zoneid;
1924 struct zone *zone;
1925 struct compact_control cc = {
1926 .order = pgdat->kcompactd_max_order,
7f354a54
DR
1927 .total_migrate_scanned = 0,
1928 .total_free_scanned = 0,
698b1b30
VB
1929 .classzone_idx = pgdat->kcompactd_classzone_idx,
1930 .mode = MIGRATE_SYNC_LIGHT,
1931 .ignore_skip_hint = true,
73e64c51 1932 .gfp_mask = GFP_KERNEL,
698b1b30
VB
1933
1934 };
698b1b30
VB
1935 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1936 cc.classzone_idx);
7f354a54 1937 count_compact_event(KCOMPACTD_WAKE);
698b1b30 1938
6cd9dc3e 1939 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1940 int status;
1941
1942 zone = &pgdat->node_zones[zoneid];
1943 if (!populated_zone(zone))
1944 continue;
1945
1946 if (compaction_deferred(zone, cc.order))
1947 continue;
1948
1949 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1950 COMPACT_CONTINUE)
1951 continue;
1952
1953 cc.nr_freepages = 0;
1954 cc.nr_migratepages = 0;
7f354a54
DR
1955 cc.total_migrate_scanned = 0;
1956 cc.total_free_scanned = 0;
698b1b30
VB
1957 cc.zone = zone;
1958 INIT_LIST_HEAD(&cc.freepages);
1959 INIT_LIST_HEAD(&cc.migratepages);
1960
172400c6
VB
1961 if (kthread_should_stop())
1962 return;
698b1b30
VB
1963 status = compact_zone(zone, &cc);
1964
7ceb009a 1965 if (status == COMPACT_SUCCESS) {
698b1b30 1966 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1967 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1968 /*
1969 * We use sync migration mode here, so we defer like
1970 * sync direct compaction does.
1971 */
1972 defer_compaction(zone, cc.order);
1973 }
1974
7f354a54
DR
1975 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1976 cc.total_migrate_scanned);
1977 count_compact_events(KCOMPACTD_FREE_SCANNED,
1978 cc.total_free_scanned);
1979
698b1b30
VB
1980 VM_BUG_ON(!list_empty(&cc.freepages));
1981 VM_BUG_ON(!list_empty(&cc.migratepages));
1982 }
1983
1984 /*
1985 * Regardless of success, we are done until woken up next. But remember
1986 * the requested order/classzone_idx in case it was higher/tighter than
1987 * our current ones
1988 */
1989 if (pgdat->kcompactd_max_order <= cc.order)
1990 pgdat->kcompactd_max_order = 0;
1991 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1992 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1993}
1994
1995void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1996{
1997 if (!order)
1998 return;
1999
2000 if (pgdat->kcompactd_max_order < order)
2001 pgdat->kcompactd_max_order = order;
2002
2003 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2004 pgdat->kcompactd_classzone_idx = classzone_idx;
2005
6818600f
DB
2006 /*
2007 * Pairs with implicit barrier in wait_event_freezable()
2008 * such that wakeups are not missed.
2009 */
2010 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2011 return;
2012
2013 if (!kcompactd_node_suitable(pgdat))
2014 return;
2015
2016 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2017 classzone_idx);
2018 wake_up_interruptible(&pgdat->kcompactd_wait);
2019}
2020
2021/*
2022 * The background compaction daemon, started as a kernel thread
2023 * from the init process.
2024 */
2025static int kcompactd(void *p)
2026{
2027 pg_data_t *pgdat = (pg_data_t*)p;
2028 struct task_struct *tsk = current;
2029
2030 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2031
2032 if (!cpumask_empty(cpumask))
2033 set_cpus_allowed_ptr(tsk, cpumask);
2034
2035 set_freezable();
2036
2037 pgdat->kcompactd_max_order = 0;
2038 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2039
2040 while (!kthread_should_stop()) {
2041 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2042 wait_event_freezable(pgdat->kcompactd_wait,
2043 kcompactd_work_requested(pgdat));
2044
2045 kcompactd_do_work(pgdat);
2046 }
2047
2048 return 0;
2049}
2050
2051/*
2052 * This kcompactd start function will be called by init and node-hot-add.
2053 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2054 */
2055int kcompactd_run(int nid)
2056{
2057 pg_data_t *pgdat = NODE_DATA(nid);
2058 int ret = 0;
2059
2060 if (pgdat->kcompactd)
2061 return 0;
2062
2063 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2064 if (IS_ERR(pgdat->kcompactd)) {
2065 pr_err("Failed to start kcompactd on node %d\n", nid);
2066 ret = PTR_ERR(pgdat->kcompactd);
2067 pgdat->kcompactd = NULL;
2068 }
2069 return ret;
2070}
2071
2072/*
2073 * Called by memory hotplug when all memory in a node is offlined. Caller must
2074 * hold mem_hotplug_begin/end().
2075 */
2076void kcompactd_stop(int nid)
2077{
2078 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2079
2080 if (kcompactd) {
2081 kthread_stop(kcompactd);
2082 NODE_DATA(nid)->kcompactd = NULL;
2083 }
2084}
2085
2086/*
2087 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2088 * not required for correctness. So if the last cpu in a node goes
2089 * away, we get changed to run anywhere: as the first one comes back,
2090 * restore their cpu bindings.
2091 */
e46b1db2 2092static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2093{
2094 int nid;
2095
e46b1db2
AMG
2096 for_each_node_state(nid, N_MEMORY) {
2097 pg_data_t *pgdat = NODE_DATA(nid);
2098 const struct cpumask *mask;
698b1b30 2099
e46b1db2 2100 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2101
e46b1db2
AMG
2102 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2103 /* One of our CPUs online: restore mask */
2104 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2105 }
e46b1db2 2106 return 0;
698b1b30
VB
2107}
2108
2109static int __init kcompactd_init(void)
2110{
2111 int nid;
e46b1db2
AMG
2112 int ret;
2113
2114 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2115 "mm/compaction:online",
2116 kcompactd_cpu_online, NULL);
2117 if (ret < 0) {
2118 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2119 return ret;
2120 }
698b1b30
VB
2121
2122 for_each_node_state(nid, N_MEMORY)
2123 kcompactd_run(nid);
698b1b30
VB
2124 return 0;
2125}
2126subsys_initcall(kcompactd_init)
2127
ff9543fd 2128#endif /* CONFIG_COMPACTION */