Merge tag 'uml-for-linus-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 55
facdaa91
NG
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 63#elif defined CONFIG_HUGETLBFS
facdaa91
NG
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
748446bb
MG
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
6bace090 72 unsigned long high_pfn = 0;
748446bb
MG
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 75 unsigned long pfn = page_to_pfn(page);
748446bb
MG
76 list_del(&page->lru);
77 __free_page(page);
6bace090
VB
78 if (pfn > high_pfn)
79 high_pfn = pfn;
748446bb
MG
80 }
81
6bace090 82 return high_pfn;
748446bb
MG
83}
84
4469ab98 85static void split_map_pages(struct list_head *list)
ff9543fd 86{
66c64223
JK
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
66c64223 96
46f24fd8 97 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
98 if (order)
99 split_page(page, order);
ff9543fd 100
66c64223
JK
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
ff9543fd 105 }
66c64223
JK
106
107 list_splice(&tmp_list, list);
ff9543fd
MN
108}
109
bb13ffeb 110#ifdef CONFIG_COMPACTION
68f2736a 111bool PageMovable(struct page *page)
bda807d4 112{
68f2736a 113 const struct movable_operations *mops;
bda807d4
MK
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
68f2736a 117 return false;
bda807d4 118
68f2736a
MWO
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
bda807d4 122
68f2736a 123 return false;
bda807d4 124}
bda807d4 125
68f2736a 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
bda807d4
MK
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
68f2736a
MWO
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
bda807d4 140 */
68f2736a 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
24e2716f
JK
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
860b3272 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
2271b016 153static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
2271b016 168static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
62b35fe0 176 if (++zone->compact_considered >= defer_limit) {
24e2716f 177 zone->compact_considered = defer_limit;
24e2716f 178 return false;
62b35fe0 179 }
24e2716f
JK
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
2271b016 205static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
bb13ffeb
MG
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
02333641
VB
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 228 zone->compact_cached_free_pfn =
06b6640a 229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
230}
231
9721fd82
BW
232#ifdef CONFIG_SPARSEMEM
233/*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
238static unsigned long skip_offline_sections(unsigned long start_pfn)
239{
240 unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242 if (online_section_nr(start_nr))
243 return 0;
244
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(start_nr))
247 return section_nr_to_pfn(start_nr);
248 }
249
250 return 0;
251}
e6e0c767
BW
252
253/*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259{
260 unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262 if (!start_nr || online_section_nr(start_nr))
263 return 0;
264
265 while (start_nr-- > 0) {
266 if (online_section_nr(start_nr))
267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 }
269
270 return 0;
271}
9721fd82
BW
272#else
273static unsigned long skip_offline_sections(unsigned long start_pfn)
274{
275 return 0;
276}
e6e0c767
BW
277
278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279{
280 return 0;
281}
9721fd82
BW
282#endif
283
21dc7e02 284/*
2271b016 285 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 288 */
b527cfe5 289static bool pageblock_skip_persistent(struct page *page)
21dc7e02 290{
b527cfe5 291 if (!PageCompound(page))
21dc7e02 292 return false;
b527cfe5
VB
293
294 page = compound_head(page);
295
296 if (compound_order(page) >= pageblock_order)
297 return true;
298
299 return false;
21dc7e02
DR
300}
301
e332f741
MG
302static bool
303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 bool check_target)
305{
306 struct page *page = pfn_to_online_page(pfn);
6b0868c8 307 struct page *block_page;
e332f741
MG
308 struct page *end_page;
309 unsigned long block_pfn;
310
311 if (!page)
312 return false;
313 if (zone != page_zone(page))
314 return false;
315 if (pageblock_skip_persistent(page))
316 return false;
317
318 /*
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
321 */
322 if (check_source && check_target && !get_pageblock_skip(page))
323 return true;
324
325 /*
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
328 */
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 return false;
332
6b0868c8
MG
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
337 if (block_page) {
338 page = block_page;
339 pfn = block_pfn;
340 }
341
342 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 343 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(block_pfn);
346 if (!end_page)
347 return false;
348
e332f741
MG
349 /*
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
353 */
e332f741 354 do {
859a85dd
MR
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
357 return true;
358 }
e332f741 359
859a85dd
MR
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
362 return true;
e332f741
MG
363 }
364
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 366 } while (page <= end_page);
e332f741
MG
367
368 return false;
369}
370
bb13ffeb
MG
371/*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
62997027 376static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 377{
e332f741 378 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
384
8df4e28c 385 /* Only flush if a full compaction finished recently */
e332f741
MG
386 if (!zone->compact_blockskip_flush)
387 return;
bb13ffeb 388
62997027 389 zone->compact_blockskip_flush = false;
bb13ffeb 390
e332f741
MG
391 /*
392 * Walk the zone and update pageblock skip information. Source looks
393 * for PageLRU while target looks for PageBuddy. When the scanner
394 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 * is suitable as both source and target.
396 */
397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
399 cond_resched();
400
e332f741
MG
401 /* Update the migrate PFN */
402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 migrate_pfn < reset_migrate) {
404 source_set = true;
405 reset_migrate = migrate_pfn;
406 zone->compact_init_migrate_pfn = reset_migrate;
407 zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 }
bb13ffeb 410
e332f741
MG
411 /* Update the free PFN */
412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 free_pfn > reset_free) {
414 free_set = true;
415 reset_free = free_pfn;
416 zone->compact_init_free_pfn = reset_free;
417 zone->compact_cached_free_pfn = reset_free;
418 }
bb13ffeb 419 }
02333641 420
e332f741
MG
421 /* Leave no distance if no suitable block was reset */
422 if (reset_migrate >= reset_free) {
423 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 zone->compact_cached_free_pfn = free_pfn;
426 }
bb13ffeb
MG
427}
428
62997027
MG
429void reset_isolation_suitable(pg_data_t *pgdat)
430{
431 int zoneid;
432
433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 struct zone *zone = &pgdat->node_zones[zoneid];
435 if (!populated_zone(zone))
436 continue;
437
8df4e28c 438 __reset_isolation_suitable(zone);
62997027
MG
439 }
440}
441
e380bebe
MG
442/*
443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444 * locks are not required for read/writers. Returns true if it was already set.
445 */
590ccea8 446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
447{
448 bool skip;
449
590ccea8 450 /* Do not update if skip hint is being ignored */
e380bebe
MG
451 if (cc->ignore_skip_hint)
452 return false;
453
e380bebe
MG
454 skip = get_pageblock_skip(page);
455 if (!skip && !cc->no_set_skip_hint)
456 set_pageblock_skip(page);
457
458 return skip;
459}
460
461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462{
463 struct zone *zone = cc->zone;
464
e380bebe
MG
465 /* Set for isolation rather than compaction */
466 if (cc->no_set_skip_hint)
467 return;
468
3c099a2b
KS
469 pfn = pageblock_end_pfn(pfn);
470
cf043a00 471 /* Update where async and sync compaction should restart */
e380bebe
MG
472 if (pfn > zone->compact_cached_migrate_pfn[0])
473 zone->compact_cached_migrate_pfn[0] = pfn;
474 if (cc->mode != MIGRATE_ASYNC &&
475 pfn > zone->compact_cached_migrate_pfn[1])
476 zone->compact_cached_migrate_pfn[1] = pfn;
477}
478
bb13ffeb
MG
479/*
480 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 481 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 482 */
c89511ab 483static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 484 struct page *page, unsigned long pfn)
bb13ffeb 485{
c89511ab 486 struct zone *zone = cc->zone;
6815bf3f 487
2583d671 488 if (cc->no_set_skip_hint)
6815bf3f
JK
489 return;
490
edc2ca61 491 set_pageblock_skip(page);
c89511ab 492
e380bebe
MG
493 if (pfn < zone->compact_cached_free_pfn)
494 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
495}
496#else
497static inline bool isolation_suitable(struct compact_control *cc,
498 struct page *page)
499{
500 return true;
501}
502
b527cfe5 503static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
504{
505 return false;
506}
507
508static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 509 struct page *page, unsigned long pfn)
bb13ffeb
MG
510{
511}
e380bebe
MG
512
513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514{
515}
516
590ccea8 517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
518{
519 return false;
520}
bb13ffeb
MG
521#endif /* CONFIG_COMPACTION */
522
8b44d279
VB
523/*
524 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
525 * very heavily contended. For async compaction, trylock and record if the
526 * lock is contended. The lock will still be acquired but compaction will
527 * abort when the current block is finished regardless of success rate.
528 * Sync compaction acquires the lock.
8b44d279 529 *
cb2dcaf0 530 * Always returns true which makes it easier to track lock state in callers.
8b44d279 531 */
cb2dcaf0 532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 533 struct compact_control *cc)
77337ede 534 __acquires(lock)
2a1402aa 535{
cb2dcaf0
MG
536 /* Track if the lock is contended in async mode */
537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 if (spin_trylock_irqsave(lock, *flags))
539 return true;
540
541 cc->contended = true;
8b44d279 542 }
1f9efdef 543
cb2dcaf0 544 spin_lock_irqsave(lock, *flags);
8b44d279 545 return true;
2a1402aa
MG
546}
547
c67fe375
MG
548/*
549 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
550 * very heavily contended. The lock should be periodically unlocked to avoid
551 * having disabled IRQs for a long time, even when there is nobody waiting on
552 * the lock. It might also be that allowing the IRQs will result in
d56c1584 553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
554 * Either compaction type will also abort if a fatal signal is pending.
555 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 556 *
d56c1584
ML
557 * Returns true if compaction should abort due to fatal signal pending.
558 * Returns false when compaction can continue.
c67fe375 559 */
8b44d279
VB
560static bool compact_unlock_should_abort(spinlock_t *lock,
561 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 562{
8b44d279
VB
563 if (*locked) {
564 spin_unlock_irqrestore(lock, flags);
565 *locked = false;
566 }
1f9efdef 567
8b44d279 568 if (fatal_signal_pending(current)) {
c3486f53 569 cc->contended = true;
8b44d279
VB
570 return true;
571 }
c67fe375 572
cf66f070 573 cond_resched();
be976572
VB
574
575 return false;
576}
577
85aa125f 578/*
9e4be470
JM
579 * Isolate free pages onto a private freelist. If @strict is true, will abort
580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581 * (even though it may still end up isolating some pages).
85aa125f 582 */
f40d1e42 583static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 584 unsigned long *start_pfn,
85aa125f
MN
585 unsigned long end_pfn,
586 struct list_head *freelist,
4fca9730 587 unsigned int stride,
85aa125f 588 bool strict)
748446bb 589{
b7aba698 590 int nr_scanned = 0, total_isolated = 0;
dc13292c 591 struct page *page;
b8b2d825 592 unsigned long flags = 0;
f40d1e42 593 bool locked = false;
e14c720e 594 unsigned long blockpfn = *start_pfn;
66c64223 595 unsigned int order;
748446bb 596
4fca9730
MG
597 /* Strict mode is for isolation, speed is secondary */
598 if (strict)
599 stride = 1;
600
dc13292c 601 page = pfn_to_page(blockpfn);
748446bb 602
f40d1e42 603 /* Isolate free pages. */
dc13292c 604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
66c64223 605 int isolated;
748446bb 606
8b44d279
VB
607 /*
608 * Periodically drop the lock (if held) regardless of its
609 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 610 * pending.
8b44d279 611 */
c036ddff 612 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
613 && compact_unlock_should_abort(&cc->zone->lock, flags,
614 &locked, cc))
615 break;
616
b7aba698 617 nr_scanned++;
2af120bc 618
9fcd6d2e
VB
619 /*
620 * For compound pages such as THP and hugetlbfs, we can save
621 * potentially a lot of iterations if we skip them at once.
622 * The check is racy, but we can consider only valid values
623 * and the only danger is skipping too much.
624 */
625 if (PageCompound(page)) {
21dc7e02
DR
626 const unsigned int order = compound_order(page);
627
3da0272a 628 if (blockpfn + (1UL << order) <= end_pfn) {
21dc7e02 629 blockpfn += (1UL << order) - 1;
dc13292c 630 page += (1UL << order) - 1;
56d48d8d 631 nr_scanned += (1UL << order) - 1;
9fcd6d2e 632 }
3da0272a 633
9fcd6d2e
VB
634 goto isolate_fail;
635 }
636
f40d1e42 637 if (!PageBuddy(page))
2af120bc 638 goto isolate_fail;
f40d1e42 639
85f73e6d 640 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 641 if (!locked) {
cb2dcaf0 642 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 643 &flags, cc);
f40d1e42 644
69b7189f
VB
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
647 goto isolate_fail;
648 }
748446bb 649
66c64223 650 /* Found a free page, will break it into order-0 pages */
ab130f91 651 order = buddy_order(page);
66c64223 652 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
653 if (!isolated)
654 break;
66c64223 655 set_page_private(page, order);
a4f04f2c 656
b717d6b9 657 nr_scanned += isolated - 1;
748446bb 658 total_isolated += isolated;
a4f04f2c 659 cc->nr_freepages += isolated;
66c64223
JK
660 list_add_tail(&page->lru, freelist);
661
a4f04f2c
DR
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
664 break;
748446bb 665 }
a4f04f2c
DR
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
dc13292c 668 page += isolated - 1;
a4f04f2c 669 continue;
2af120bc
LA
670
671isolate_fail:
672 if (strict)
673 break;
2af120bc 674
748446bb
MG
675 }
676
a4f04f2c
DR
677 if (locked)
678 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
9fcd6d2e 680 /*
3da0272a 681 * Be careful to not go outside of the pageblock.
9fcd6d2e
VB
682 */
683 if (unlikely(blockpfn > end_pfn))
684 blockpfn = end_pfn;
685
e34d85f0
JK
686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 nr_scanned, total_isolated);
688
e14c720e
VB
689 /* Record how far we have got within the block */
690 *start_pfn = blockpfn;
691
f40d1e42
MG
692 /*
693 * If strict isolation is requested by CMA then check that all the
694 * pages requested were isolated. If there were any failures, 0 is
695 * returned and CMA will fail.
696 */
2af120bc 697 if (strict && blockpfn < end_pfn)
f40d1e42
MG
698 total_isolated = 0;
699
7f354a54 700 cc->total_free_scanned += nr_scanned;
397487db 701 if (total_isolated)
010fc29a 702 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
703 return total_isolated;
704}
705
85aa125f
MN
706/**
707 * isolate_freepages_range() - isolate free pages.
e8b098fc 708 * @cc: Compaction control structure.
85aa125f
MN
709 * @start_pfn: The first PFN to start isolating.
710 * @end_pfn: The one-past-last PFN.
711 *
712 * Non-free pages, invalid PFNs, or zone boundaries within the
713 * [start_pfn, end_pfn) range are considered errors, cause function to
714 * undo its actions and return zero.
715 *
716 * Otherwise, function returns one-past-the-last PFN of isolated page
717 * (which may be greater then end_pfn if end fell in a middle of
718 * a free page).
719 */
ff9543fd 720unsigned long
bb13ffeb
MG
721isolate_freepages_range(struct compact_control *cc,
722 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 723{
e1409c32 724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
725 LIST_HEAD(freelist);
726
7d49d886 727 pfn = start_pfn;
06b6640a 728 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
729 if (block_start_pfn < cc->zone->zone_start_pfn)
730 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 731 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
732
733 for (; pfn < end_pfn; pfn += isolated,
e1409c32 734 block_start_pfn = block_end_pfn,
7d49d886 735 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
736 /* Protect pfn from changing by isolate_freepages_block */
737 unsigned long isolate_start_pfn = pfn;
85aa125f 738
58420016
JK
739 /*
740 * pfn could pass the block_end_pfn if isolated freepage
741 * is more than pageblock order. In this case, we adjust
742 * scanning range to right one.
743 */
744 if (pfn >= block_end_pfn) {
06b6640a
VB
745 block_start_pfn = pageblock_start_pfn(pfn);
746 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
747 }
748
a2864a67
KS
749 block_end_pfn = min(block_end_pfn, end_pfn);
750
e1409c32
JK
751 if (!pageblock_pfn_to_page(block_start_pfn,
752 block_end_pfn, cc->zone))
7d49d886
VB
753 break;
754
e14c720e 755 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 756 block_end_pfn, &freelist, 0, true);
85aa125f
MN
757
758 /*
759 * In strict mode, isolate_freepages_block() returns 0 if
760 * there are any holes in the block (ie. invalid PFNs or
761 * non-free pages).
762 */
763 if (!isolated)
764 break;
765
766 /*
767 * If we managed to isolate pages, it is always (1 << n) *
768 * pageblock_nr_pages for some non-negative n. (Max order
769 * page may span two pageblocks).
770 */
771 }
772
66c64223 773 /* __isolate_free_page() does not map the pages */
4469ab98 774 split_map_pages(&freelist);
85aa125f
MN
775
776 if (pfn < end_pfn) {
777 /* Loop terminated early, cleanup. */
778 release_freepages(&freelist);
779 return 0;
780 }
781
782 /* We don't use freelists for anything. */
783 return pfn;
784}
785
748446bb 786/* Similar to reclaim, but different enough that they don't share logic */
4fbbb3fd 787static bool too_many_isolated(struct compact_control *cc)
748446bb 788{
4fbbb3fd 789 pg_data_t *pgdat = cc->zone->zone_pgdat;
d818fca1
MG
790 bool too_many;
791
bc693045 792 unsigned long active, inactive, isolated;
748446bb 793
5f438eee
AR
794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 node_page_state(pgdat, NR_INACTIVE_ANON);
796 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 node_page_state(pgdat, NR_ACTIVE_ANON);
798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 800
4fbbb3fd
JW
801 /*
802 * Allow GFP_NOFS to isolate past the limit set for regular
803 * compaction runs. This prevents an ABBA deadlock when other
804 * compactors have already isolated to the limit, but are
805 * blocked on filesystem locks held by the GFP_NOFS thread.
806 */
807 if (cc->gfp_mask & __GFP_FS) {
808 inactive >>= 3;
809 active >>= 3;
810 }
811
d818fca1
MG
812 too_many = isolated > (inactive + active) / 2;
813 if (!too_many)
814 wake_throttle_isolated(pgdat);
815
816 return too_many;
748446bb
MG
817}
818
2fe86e00 819/**
edc2ca61
VB
820 * isolate_migratepages_block() - isolate all migrate-able pages within
821 * a single pageblock
2fe86e00 822 * @cc: Compaction control structure.
edc2ca61
VB
823 * @low_pfn: The first PFN to isolate
824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 825 * @mode: Isolation mode to be used.
2fe86e00
MN
826 *
827 * Isolate all pages that can be migrated from the range specified by
edc2ca61 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 830 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 831 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 832 *
edc2ca61 833 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 834 * and cc->nr_migratepages is updated accordingly.
748446bb 835 */
c2ad7a1f 836static int
edc2ca61 837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 838 unsigned long end_pfn, isolate_mode_t mode)
748446bb 839{
5f438eee 840 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 841 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 842 struct lruvec *lruvec;
b8b2d825 843 unsigned long flags = 0;
6168d0da 844 struct lruvec *locked = NULL;
56ae0bb3 845 struct folio *folio = NULL;
bb13ffeb 846 struct page *page = NULL, *valid_page = NULL;
89f6c88a 847 struct address_space *mapping;
e34d85f0 848 unsigned long start_pfn = low_pfn;
fdd048e1
VB
849 bool skip_on_failure = false;
850 unsigned long next_skip_pfn = 0;
e380bebe 851 bool skip_updated = false;
c2ad7a1f
OS
852 int ret = 0;
853
854 cc->migrate_pfn = low_pfn;
748446bb 855
748446bb
MG
856 /*
857 * Ensure that there are not too many pages isolated from the LRU
858 * list by either parallel reclaimers or compaction. If there are,
859 * delay for some time until fewer pages are isolated
860 */
4fbbb3fd 861 while (unlikely(too_many_isolated(cc))) {
d20bdd57
ZY
862 /* stop isolation if there are still pages not migrated */
863 if (cc->nr_migratepages)
c2ad7a1f 864 return -EAGAIN;
d20bdd57 865
f9e35b3b 866 /* async migration should just abort */
e0b9daeb 867 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 868 return -EAGAIN;
f9e35b3b 869
c3f4a9a2 870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
871
872 if (fatal_signal_pending(current))
c2ad7a1f 873 return -EINTR;
748446bb
MG
874 }
875
cf66f070 876 cond_resched();
aeef4b83 877
fdd048e1
VB
878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 skip_on_failure = true;
880 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 }
882
748446bb 883 /* Time to isolate some pages for migration */
748446bb 884 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 885
fdd048e1
VB
886 if (skip_on_failure && low_pfn >= next_skip_pfn) {
887 /*
888 * We have isolated all migration candidates in the
889 * previous order-aligned block, and did not skip it due
890 * to failure. We should migrate the pages now and
891 * hopefully succeed compaction.
892 */
893 if (nr_isolated)
894 break;
895
896 /*
897 * We failed to isolate in the previous order-aligned
898 * block. Set the new boundary to the end of the
899 * current block. Note we can't simply increase
900 * next_skip_pfn by 1 << order, as low_pfn might have
901 * been incremented by a higher number due to skipping
902 * a compound or a high-order buddy page in the
903 * previous loop iteration.
904 */
905 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
906 }
907
8b44d279
VB
908 /*
909 * Periodically drop the lock (if held) regardless of its
670105a2
MG
910 * contention, to give chance to IRQs. Abort completely if
911 * a fatal signal is pending.
8b44d279 912 */
c036ddff 913 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
914 if (locked) {
915 unlock_page_lruvec_irqrestore(locked, flags);
916 locked = NULL;
917 }
918
919 if (fatal_signal_pending(current)) {
920 cc->contended = true;
c2ad7a1f 921 ret = -EINTR;
6168d0da 922
6168d0da
AS
923 goto fatal_pending;
924 }
925
926 cond_resched();
670105a2 927 }
c67fe375 928
b7aba698 929 nr_scanned++;
748446bb 930
748446bb 931 page = pfn_to_page(low_pfn);
dc908600 932
e380bebe
MG
933 /*
934 * Check if the pageblock has already been marked skipped.
493614da 935 * Only the first PFN is checked as the caller isolates
e380bebe
MG
936 * COMPACT_CLUSTER_MAX at a time so the second call must
937 * not falsely conclude that the block should be skipped.
938 */
493614da
JW
939 if (!valid_page && (pageblock_aligned(low_pfn) ||
940 low_pfn == cc->zone->zone_start_pfn)) {
4af12d04 941 if (!isolation_suitable(cc, page)) {
e380bebe 942 low_pfn = end_pfn;
56ae0bb3 943 folio = NULL;
e380bebe
MG
944 goto isolate_abort;
945 }
bb13ffeb 946 valid_page = page;
e380bebe 947 }
bb13ffeb 948
369fa227 949 if (PageHuge(page) && cc->alloc_contig) {
1c06b6a5
BW
950 if (locked) {
951 unlock_page_lruvec_irqrestore(locked, flags);
952 locked = NULL;
953 }
954
ae37c7ff 955 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
956
957 /*
958 * Fail isolation in case isolate_or_dissolve_huge_page()
959 * reports an error. In case of -ENOMEM, abort right away.
960 */
961 if (ret < 0) {
962 /* Do not report -EBUSY down the chain */
963 if (ret == -EBUSY)
964 ret = 0;
66fe1cf7 965 low_pfn += compound_nr(page) - 1;
56d48d8d 966 nr_scanned += compound_nr(page) - 1;
369fa227
OS
967 goto isolate_fail;
968 }
969
ae37c7ff
OS
970 if (PageHuge(page)) {
971 /*
972 * Hugepage was successfully isolated and placed
973 * on the cc->migratepages list.
974 */
56ae0bb3
KW
975 folio = page_folio(page);
976 low_pfn += folio_nr_pages(folio) - 1;
ae37c7ff
OS
977 goto isolate_success_no_list;
978 }
979
369fa227
OS
980 /*
981 * Ok, the hugepage was dissolved. Now these pages are
982 * Buddy and cannot be re-allocated because they are
983 * isolated. Fall-through as the check below handles
984 * Buddy pages.
985 */
986 }
987
6c14466c 988 /*
99c0fd5e
VB
989 * Skip if free. We read page order here without zone lock
990 * which is generally unsafe, but the race window is small and
991 * the worst thing that can happen is that we skip some
992 * potential isolation targets.
6c14466c 993 */
99c0fd5e 994 if (PageBuddy(page)) {
ab130f91 995 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
996
997 /*
998 * Without lock, we cannot be sure that what we got is
999 * a valid page order. Consider only values in the
1000 * valid order range to prevent low_pfn overflow.
1001 */
5e0a760b 1002 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
99c0fd5e 1003 low_pfn += (1UL << freepage_order) - 1;
56d48d8d
BW
1004 nr_scanned += (1UL << freepage_order) - 1;
1005 }
748446bb 1006 continue;
99c0fd5e 1007 }
748446bb 1008
bc835011 1009 /*
29c0dde8 1010 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
1011 * hugetlbfs are not to be compacted unless we are attempting
1012 * an allocation much larger than the huge page size (eg CMA).
1013 * We can potentially save a lot of iterations if we skip them
1014 * at once. The check is racy, but we can consider only valid
1015 * values and the only danger is skipping too much.
bc835011 1016 */
1da2f328 1017 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 1018 const unsigned int order = compound_order(page);
edc2ca61 1019
5e0a760b 1020 if (likely(order <= MAX_PAGE_ORDER)) {
21dc7e02 1021 low_pfn += (1UL << order) - 1;
56d48d8d
BW
1022 nr_scanned += (1UL << order) - 1;
1023 }
fdd048e1 1024 goto isolate_fail;
2a1402aa
MG
1025 }
1026
bda807d4
MK
1027 /*
1028 * Check may be lockless but that's ok as we recheck later.
1029 * It's possible to migrate LRU and non-lru movable pages.
1030 * Skip any other type of page
1031 */
1032 if (!PageLRU(page)) {
bda807d4
MK
1033 /*
1034 * __PageMovable can return false positive so we need
1035 * to verify it under page_lock.
1036 */
1037 if (unlikely(__PageMovable(page)) &&
1038 !PageIsolated(page)) {
1039 if (locked) {
6168d0da
AS
1040 unlock_page_lruvec_irqrestore(locked, flags);
1041 locked = NULL;
bda807d4
MK
1042 }
1043
56ae0bb3
KW
1044 if (isolate_movable_page(page, mode)) {
1045 folio = page_folio(page);
bda807d4 1046 goto isolate_success;
56ae0bb3 1047 }
bda807d4
MK
1048 }
1049
fdd048e1 1050 goto isolate_fail;
bda807d4 1051 }
29c0dde8 1052
829ae0f8
GS
1053 /*
1054 * Be careful not to clear PageLRU until after we're
1055 * sure the page is not being freed elsewhere -- the
1056 * page release code relies on it.
1057 */
56ae0bb3
KW
1058 folio = folio_get_nontail_page(page);
1059 if (unlikely(!folio))
829ae0f8
GS
1060 goto isolate_fail;
1061
119d6d59
DR
1062 /*
1063 * Migration will fail if an anonymous page is pinned in memory,
1064 * so avoid taking lru_lock and isolating it unnecessarily in an
1065 * admittedly racy check.
1066 */
56ae0bb3
KW
1067 mapping = folio_mapping(folio);
1068 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
829ae0f8 1069 goto isolate_fail_put;
119d6d59 1070
73e64c51
MH
1071 /*
1072 * Only allow to migrate anonymous pages in GFP_NOFS context
1073 * because those do not depend on fs locks.
1074 */
89f6c88a 1075 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1076 goto isolate_fail_put;
9df41314 1077
89f6c88a 1078 /* Only take pages on LRU: a check now makes later tests safe */
56ae0bb3 1079 if (!folio_test_lru(folio))
89f6c88a
HD
1080 goto isolate_fail_put;
1081
1082 /* Compaction might skip unevictable pages but CMA takes them */
56ae0bb3 1083 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
89f6c88a
HD
1084 goto isolate_fail_put;
1085
1086 /*
1087 * To minimise LRU disruption, the caller can indicate with
1088 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1089 * it will be able to migrate without blocking - clean pages
1090 * for the most part. PageWriteback would require blocking.
1091 */
56ae0bb3 1092 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
9df41314
AS
1093 goto isolate_fail_put;
1094
56ae0bb3 1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
89f6c88a
HD
1096 bool migrate_dirty;
1097
1098 /*
866ff801
MW
1099 * Only folios without mappings or that have
1100 * a ->migrate_folio callback are possible to
1101 * migrate without blocking. However, we may
1102 * be racing with truncation, which can free
1103 * the mapping. Truncation holds the folio lock
1104 * until after the folio is removed from the page
1105 * cache so holding it ourselves is sufficient.
89f6c88a 1106 */
56ae0bb3 1107 if (!folio_trylock(folio))
89f6c88a
HD
1108 goto isolate_fail_put;
1109
56ae0bb3 1110 mapping = folio_mapping(folio);
5490da4f 1111 migrate_dirty = !mapping ||
9d0ddc0c 1112 mapping->a_ops->migrate_folio;
56ae0bb3 1113 folio_unlock(folio);
89f6c88a
HD
1114 if (!migrate_dirty)
1115 goto isolate_fail_put;
1116 }
1117
56ae0bb3
KW
1118 /* Try isolate the folio */
1119 if (!folio_test_clear_lru(folio))
9df41314
AS
1120 goto isolate_fail_put;
1121
56ae0bb3 1122 lruvec = folio_lruvec(folio);
6168d0da 1123
69b7189f 1124 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1125 if (lruvec != locked) {
1126 if (locked)
1127 unlock_page_lruvec_irqrestore(locked, flags);
1128
1129 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1130 locked = lruvec;
6168d0da 1131
56ae0bb3 1132 lruvec_memcg_debug(lruvec, folio);
e380bebe 1133
590ccea8
MG
1134 /*
1135 * Try get exclusive access under lock. If marked for
1136 * skip, the scan is aborted unless the current context
1137 * is a rescan to reach the end of the pageblock.
1138 */
1139 if (!skip_updated && valid_page) {
e380bebe 1140 skip_updated = true;
590ccea8
MG
1141 if (test_and_set_skip(cc, valid_page) &&
1142 !cc->finish_pageblock) {
7545e2f2 1143 low_pfn = end_pfn;
e380bebe 1144 goto isolate_abort;
590ccea8 1145 }
e380bebe 1146 }
2a1402aa 1147
29c0dde8 1148 /*
56ae0bb3
KW
1149 * folio become large since the non-locked check,
1150 * and it's on LRU.
29c0dde8 1151 */
56ae0bb3
KW
1152 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1153 low_pfn += folio_nr_pages(folio) - 1;
1154 nr_scanned += folio_nr_pages(folio) - 1;
1155 folio_set_lru(folio);
9df41314 1156 goto isolate_fail_put;
69b7189f 1157 }
d99fd5fe 1158 }
fa9add64 1159
56ae0bb3
KW
1160 /* The folio is taken off the LRU */
1161 if (folio_test_large(folio))
1162 low_pfn += folio_nr_pages(folio) - 1;
bc835011 1163
748446bb 1164 /* Successfully isolated */
56ae0bb3
KW
1165 lruvec_del_folio(lruvec, folio);
1166 node_stat_mod_folio(folio,
1167 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1168 folio_nr_pages(folio));
b6c75016
JK
1169
1170isolate_success:
56ae0bb3 1171 list_add(&folio->lru, &cc->migratepages);
ae37c7ff 1172isolate_success_no_list:
56ae0bb3
KW
1173 cc->nr_migratepages += folio_nr_pages(folio);
1174 nr_isolated += folio_nr_pages(folio);
1175 nr_scanned += folio_nr_pages(folio) - 1;
748446bb 1176
804d3121
MG
1177 /*
1178 * Avoid isolating too much unless this block is being
48731c84 1179 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
cb2dcaf0
MG
1180 * or a lock is contended. For contention, isolate quickly to
1181 * potentially remove one source of contention.
804d3121 1182 */
38935861 1183 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
48731c84 1184 !cc->finish_pageblock && !cc->contended) {
31b8384a 1185 ++low_pfn;
748446bb 1186 break;
31b8384a 1187 }
fdd048e1
VB
1188
1189 continue;
9df41314
AS
1190
1191isolate_fail_put:
1192 /* Avoid potential deadlock in freeing page under lru_lock */
1193 if (locked) {
6168d0da
AS
1194 unlock_page_lruvec_irqrestore(locked, flags);
1195 locked = NULL;
9df41314 1196 }
56ae0bb3 1197 folio_put(folio);
9df41314 1198
fdd048e1 1199isolate_fail:
369fa227 1200 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1201 continue;
1202
1203 /*
1204 * We have isolated some pages, but then failed. Release them
1205 * instead of migrating, as we cannot form the cc->order buddy
1206 * page anyway.
1207 */
1208 if (nr_isolated) {
1209 if (locked) {
6168d0da
AS
1210 unlock_page_lruvec_irqrestore(locked, flags);
1211 locked = NULL;
fdd048e1 1212 }
fdd048e1
VB
1213 putback_movable_pages(&cc->migratepages);
1214 cc->nr_migratepages = 0;
fdd048e1
VB
1215 nr_isolated = 0;
1216 }
1217
1218 if (low_pfn < next_skip_pfn) {
1219 low_pfn = next_skip_pfn - 1;
1220 /*
1221 * The check near the loop beginning would have updated
1222 * next_skip_pfn too, but this is a bit simpler.
1223 */
1224 next_skip_pfn += 1UL << cc->order;
1225 }
369fa227
OS
1226
1227 if (ret == -ENOMEM)
1228 break;
748446bb
MG
1229 }
1230
99c0fd5e
VB
1231 /*
1232 * The PageBuddy() check could have potentially brought us outside
1233 * the range to be scanned.
1234 */
1235 if (unlikely(low_pfn > end_pfn))
1236 low_pfn = end_pfn;
1237
56ae0bb3 1238 folio = NULL;
9df41314 1239
e380bebe 1240isolate_abort:
c67fe375 1241 if (locked)
6168d0da 1242 unlock_page_lruvec_irqrestore(locked, flags);
56ae0bb3
KW
1243 if (folio) {
1244 folio_set_lru(folio);
1245 folio_put(folio);
9df41314 1246 }
748446bb 1247
50b5b094 1248 /*
48731c84 1249 * Update the cached scanner pfn once the pageblock has been scanned.
804d3121
MG
1250 * Pages will either be migrated in which case there is no point
1251 * scanning in the near future or migration failed in which case the
1252 * failure reason may persist. The block is marked for skipping if
1253 * there were no pages isolated in the block or if the block is
1254 * rescanned twice in a row.
50b5b094 1255 */
48731c84 1256 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
8b71b499 1257 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
e380bebe
MG
1258 set_pageblock_skip(valid_page);
1259 update_cached_migrate(cc, low_pfn);
1260 }
bb13ffeb 1261
e34d85f0
JK
1262 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1263 nr_scanned, nr_isolated);
b7aba698 1264
670105a2 1265fatal_pending:
7f354a54 1266 cc->total_migrate_scanned += nr_scanned;
397487db 1267 if (nr_isolated)
010fc29a 1268 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1269
c2ad7a1f
OS
1270 cc->migrate_pfn = low_pfn;
1271
1272 return ret;
2fe86e00
MN
1273}
1274
edc2ca61
VB
1275/**
1276 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1277 * @cc: Compaction control structure.
1278 * @start_pfn: The first PFN to start isolating.
1279 * @end_pfn: The one-past-last PFN.
1280 *
369fa227
OS
1281 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1282 * in case we could not allocate a page, or 0.
edc2ca61 1283 */
c2ad7a1f 1284int
edc2ca61
VB
1285isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1286 unsigned long end_pfn)
1287{
e1409c32 1288 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1289 int ret = 0;
edc2ca61
VB
1290
1291 /* Scan block by block. First and last block may be incomplete */
1292 pfn = start_pfn;
06b6640a 1293 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1294 if (block_start_pfn < cc->zone->zone_start_pfn)
1295 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1296 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1297
1298 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1299 block_start_pfn = block_end_pfn,
edc2ca61
VB
1300 block_end_pfn += pageblock_nr_pages) {
1301
1302 block_end_pfn = min(block_end_pfn, end_pfn);
1303
e1409c32
JK
1304 if (!pageblock_pfn_to_page(block_start_pfn,
1305 block_end_pfn, cc->zone))
edc2ca61
VB
1306 continue;
1307
c2ad7a1f
OS
1308 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1309 ISOLATE_UNEVICTABLE);
edc2ca61 1310
c2ad7a1f 1311 if (ret)
edc2ca61 1312 break;
6ea41c0c 1313
38935861 1314 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1315 break;
edc2ca61 1316 }
edc2ca61 1317
c2ad7a1f 1318 return ret;
edc2ca61
VB
1319}
1320
ff9543fd
MN
1321#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1322#ifdef CONFIG_COMPACTION
018e9a49 1323
b682debd
VB
1324static bool suitable_migration_source(struct compact_control *cc,
1325 struct page *page)
1326{
282722b0
VB
1327 int block_mt;
1328
9bebefd5
MG
1329 if (pageblock_skip_persistent(page))
1330 return false;
1331
282722b0 1332 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1333 return true;
1334
282722b0
VB
1335 block_mt = get_pageblock_migratetype(page);
1336
1337 if (cc->migratetype == MIGRATE_MOVABLE)
1338 return is_migrate_movable(block_mt);
1339 else
1340 return block_mt == cc->migratetype;
b682debd
VB
1341}
1342
018e9a49 1343/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1344static bool suitable_migration_target(struct compact_control *cc,
1345 struct page *page)
018e9a49
AM
1346{
1347 /* If the page is a large free page, then disallow migration */
1348 if (PageBuddy(page)) {
1349 /*
1350 * We are checking page_order without zone->lock taken. But
1351 * the only small danger is that we skip a potentially suitable
1352 * pageblock, so it's not worth to check order for valid range.
1353 */
ab130f91 1354 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1355 return false;
1356 }
1357
1ef36db2
YX
1358 if (cc->ignore_block_suitable)
1359 return true;
1360
018e9a49 1361 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1362 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1363 return true;
1364
1365 /* Otherwise skip the block */
1366 return false;
1367}
1368
70b44595
MG
1369static inline unsigned int
1370freelist_scan_limit(struct compact_control *cc)
1371{
dd7ef7bd
QC
1372 unsigned short shift = BITS_PER_LONG - 1;
1373
1374 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1375}
1376
f2849aa0
VB
1377/*
1378 * Test whether the free scanner has reached the same or lower pageblock than
1379 * the migration scanner, and compaction should thus terminate.
1380 */
1381static inline bool compact_scanners_met(struct compact_control *cc)
1382{
1383 return (cc->free_pfn >> pageblock_order)
1384 <= (cc->migrate_pfn >> pageblock_order);
1385}
1386
5a811889
MG
1387/*
1388 * Used when scanning for a suitable migration target which scans freelists
1389 * in reverse. Reorders the list such as the unscanned pages are scanned
1390 * first on the next iteration of the free scanner
1391 */
1392static void
1393move_freelist_head(struct list_head *freelist, struct page *freepage)
1394{
1395 LIST_HEAD(sublist);
1396
4c179891 1397 if (!list_is_first(&freepage->buddy_list, freelist)) {
bbefa0fc 1398 list_cut_before(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1399 list_splice_tail(&sublist, freelist);
5a811889
MG
1400 }
1401}
1402
1403/*
1404 * Similar to move_freelist_head except used by the migration scanner
1405 * when scanning forward. It's possible for these list operations to
1406 * move against each other if they search the free list exactly in
1407 * lockstep.
1408 */
70b44595
MG
1409static void
1410move_freelist_tail(struct list_head *freelist, struct page *freepage)
1411{
1412 LIST_HEAD(sublist);
1413
4c179891 1414 if (!list_is_last(&freepage->buddy_list, freelist)) {
bbefa0fc 1415 list_cut_position(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1416 list_splice_tail(&sublist, freelist);
70b44595
MG
1417 }
1418}
1419
5a811889 1420static void
be21b32a 1421fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1422{
1423 unsigned long start_pfn, end_pfn;
6e2b7044 1424 struct page *page;
5a811889
MG
1425
1426 /* Do not search around if there are enough pages already */
1427 if (cc->nr_freepages >= cc->nr_migratepages)
1428 return;
1429
1430 /* Minimise scanning during async compaction */
1431 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1432 return;
1433
1434 /* Pageblock boundaries */
6e2b7044
VB
1435 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1436 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1437
1438 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1439 if (!page)
1440 return;
5a811889 1441
be21b32a 1442 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1443
1444 /* Skip this pageblock in the future as it's full or nearly full */
18c59d58 1445 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
5a811889
MG
1446 set_pageblock_skip(page);
1447}
1448
dbe2d4e4
MG
1449/* Search orders in round-robin fashion */
1450static int next_search_order(struct compact_control *cc, int order)
1451{
1452 order--;
1453 if (order < 0)
1454 order = cc->order - 1;
1455
1456 /* Search wrapped around? */
1457 if (order == cc->search_order) {
1458 cc->search_order--;
1459 if (cc->search_order < 0)
1460 cc->search_order = cc->order - 1;
1461 return -1;
1462 }
1463
1464 return order;
1465}
1466
2dbd9005 1467static void fast_isolate_freepages(struct compact_control *cc)
5a811889 1468{
b55ca526 1469 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
447ba886 1470 unsigned int nr_scanned = 0, total_isolated = 0;
74e21484 1471 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1472 unsigned long nr_isolated = 0;
1473 unsigned long distance;
1474 struct page *page = NULL;
1475 bool scan_start = false;
1476 int order;
1477
1478 /* Full compaction passes in a negative order */
1479 if (cc->order <= 0)
2dbd9005 1480 return;
5a811889
MG
1481
1482 /*
1483 * If starting the scan, use a deeper search and use the highest
1484 * PFN found if a suitable one is not found.
1485 */
e332f741 1486 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1487 limit = pageblock_nr_pages >> 1;
1488 scan_start = true;
1489 }
1490
1491 /*
1492 * Preferred point is in the top quarter of the scan space but take
1493 * a pfn from the top half if the search is problematic.
1494 */
1495 distance = (cc->free_pfn - cc->migrate_pfn);
1496 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1497 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1498
1499 if (WARN_ON_ONCE(min_pfn > low_pfn))
1500 low_pfn = min_pfn;
1501
dbe2d4e4
MG
1502 /*
1503 * Search starts from the last successful isolation order or the next
1504 * order to search after a previous failure
1505 */
1506 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1507
1508 for (order = cc->search_order;
1509 !page && order >= 0;
1510 order = next_search_order(cc, order)) {
5a811889
MG
1511 struct free_area *area = &cc->zone->free_area[order];
1512 struct list_head *freelist;
1513 struct page *freepage;
1514 unsigned long flags;
1515 unsigned int order_scanned = 0;
74e21484 1516 unsigned long high_pfn = 0;
5a811889
MG
1517
1518 if (!area->nr_free)
1519 continue;
1520
1521 spin_lock_irqsave(&cc->zone->lock, flags);
1522 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 1523 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
5a811889
MG
1524 unsigned long pfn;
1525
1526 order_scanned++;
1527 nr_scanned++;
1528 pfn = page_to_pfn(freepage);
1529
1530 if (pfn >= highest)
6e2b7044
VB
1531 highest = max(pageblock_start_pfn(pfn),
1532 cc->zone->zone_start_pfn);
5a811889
MG
1533
1534 if (pfn >= low_pfn) {
1535 cc->fast_search_fail = 0;
dbe2d4e4 1536 cc->search_order = order;
5a811889
MG
1537 page = freepage;
1538 break;
1539 }
1540
1541 if (pfn >= min_pfn && pfn > high_pfn) {
1542 high_pfn = pfn;
1543
1544 /* Shorten the scan if a candidate is found */
1545 limit >>= 1;
1546 }
1547
1548 if (order_scanned >= limit)
1549 break;
1550 }
1551
e6bd14ec 1552 /* Use a maximum candidate pfn if a preferred one was not found */
5a811889
MG
1553 if (!page && high_pfn) {
1554 page = pfn_to_page(high_pfn);
1555
1556 /* Update freepage for the list reorder below */
1557 freepage = page;
1558 }
1559
1560 /* Reorder to so a future search skips recent pages */
1561 move_freelist_head(freelist, freepage);
1562
1563 /* Isolate the page if available */
1564 if (page) {
1565 if (__isolate_free_page(page, order)) {
1566 set_page_private(page, order);
1567 nr_isolated = 1 << order;
b717d6b9 1568 nr_scanned += nr_isolated - 1;
447ba886 1569 total_isolated += nr_isolated;
5a811889
MG
1570 cc->nr_freepages += nr_isolated;
1571 list_add_tail(&page->lru, &cc->freepages);
1572 count_compact_events(COMPACTISOLATED, nr_isolated);
1573 } else {
1574 /* If isolation fails, abort the search */
5b56d996 1575 order = cc->search_order + 1;
5a811889
MG
1576 page = NULL;
1577 }
1578 }
1579
1580 spin_unlock_irqrestore(&cc->zone->lock, flags);
1581
a8d13355
BW
1582 /* Skip fast search if enough freepages isolated */
1583 if (cc->nr_freepages >= cc->nr_migratepages)
1584 break;
1585
5a811889 1586 /*
b55ca526 1587 * Smaller scan on next order so the total scan is related
5a811889
MG
1588 * to freelist_scan_limit.
1589 */
1590 if (order_scanned >= limit)
b55ca526 1591 limit = max(1U, limit >> 1);
5a811889
MG
1592 }
1593
447ba886
BW
1594 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1595 nr_scanned, total_isolated);
1596
5a811889
MG
1597 if (!page) {
1598 cc->fast_search_fail++;
1599 if (scan_start) {
1600 /*
1601 * Use the highest PFN found above min. If one was
f3867755 1602 * not found, be pessimistic for direct compaction
5a811889
MG
1603 * and use the min mark.
1604 */
ca2864e5 1605 if (highest >= min_pfn) {
5a811889
MG
1606 page = pfn_to_page(highest);
1607 cc->free_pfn = highest;
1608 } else {
e577c8b6 1609 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1610 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1611 min(pageblock_end_pfn(min_pfn),
1612 zone_end_pfn(cc->zone)),
73a6e474 1613 cc->zone);
d19b1a17
BS
1614 if (page && !suitable_migration_target(cc, page))
1615 page = NULL;
1616
5a811889
MG
1617 cc->free_pfn = min_pfn;
1618 }
1619 }
1620 }
1621 }
1622
d097a6f6
MG
1623 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1624 highest -= pageblock_nr_pages;
5a811889 1625 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1626 }
5a811889
MG
1627
1628 cc->total_free_scanned += nr_scanned;
1629 if (!page)
2dbd9005 1630 return;
5a811889
MG
1631
1632 low_pfn = page_to_pfn(page);
be21b32a 1633 fast_isolate_around(cc, low_pfn);
5a811889
MG
1634}
1635
2fe86e00 1636/*
ff9543fd
MN
1637 * Based on information in the current compact_control, find blocks
1638 * suitable for isolating free pages from and then isolate them.
2fe86e00 1639 */
edc2ca61 1640static void isolate_freepages(struct compact_control *cc)
2fe86e00 1641{
edc2ca61 1642 struct zone *zone = cc->zone;
ff9543fd 1643 struct page *page;
c96b9e50 1644 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1645 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1646 unsigned long block_end_pfn; /* end of current pageblock */
1647 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1648 struct list_head *freelist = &cc->freepages;
4fca9730 1649 unsigned int stride;
2fe86e00 1650
5a811889 1651 /* Try a small search of the free lists for a candidate */
00bc102f 1652 fast_isolate_freepages(cc);
5a811889
MG
1653 if (cc->nr_freepages)
1654 goto splitmap;
1655
ff9543fd
MN
1656 /*
1657 * Initialise the free scanner. The starting point is where we last
49e068f0 1658 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1659 * zone when isolating for the first time. For looping we also need
1660 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1661 * block_start_pfn -= pageblock_nr_pages in the for loop.
1662 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1663 * zone which ends in the middle of a pageblock.
49e068f0
VB
1664 * The low boundary is the end of the pageblock the migration scanner
1665 * is using.
ff9543fd 1666 */
e14c720e 1667 isolate_start_pfn = cc->free_pfn;
5a811889 1668 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1669 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1670 zone_end_pfn(zone));
06b6640a 1671 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1672 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1673
ff9543fd
MN
1674 /*
1675 * Isolate free pages until enough are available to migrate the
1676 * pages on cc->migratepages. We stop searching if the migrate
1677 * and free page scanners meet or enough free pages are isolated.
1678 */
f5f61a32 1679 for (; block_start_pfn >= low_pfn;
c96b9e50 1680 block_end_pfn = block_start_pfn,
e14c720e
VB
1681 block_start_pfn -= pageblock_nr_pages,
1682 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1683 unsigned long nr_isolated;
1684
f6ea3adb
DR
1685 /*
1686 * This can iterate a massively long zone without finding any
cb810ad2 1687 * suitable migration targets, so periodically check resched.
f6ea3adb 1688 */
c036ddff 1689 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1690 cond_resched();
f6ea3adb 1691
7d49d886
VB
1692 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1693 zone);
e6e0c767
BW
1694 if (!page) {
1695 unsigned long next_pfn;
1696
1697 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1698 if (next_pfn)
1699 block_start_pfn = max(next_pfn, low_pfn);
1700
ff9543fd 1701 continue;
e6e0c767 1702 }
ff9543fd
MN
1703
1704 /* Check the block is suitable for migration */
9f7e3387 1705 if (!suitable_migration_target(cc, page))
ff9543fd 1706 continue;
68e3e926 1707
bb13ffeb
MG
1708 /* If isolation recently failed, do not retry */
1709 if (!isolation_suitable(cc, page))
1710 continue;
1711
e14c720e 1712 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1713 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1714 block_end_pfn, freelist, stride, false);
ff9543fd 1715
d097a6f6
MG
1716 /* Update the skip hint if the full pageblock was scanned */
1717 if (isolate_start_pfn == block_end_pfn)
16951789
KS
1718 update_pageblock_skip(cc, page, block_start_pfn -
1719 pageblock_nr_pages);
d097a6f6 1720
cb2dcaf0
MG
1721 /* Are enough freepages isolated? */
1722 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1723 if (isolate_start_pfn >= block_end_pfn) {
1724 /*
1725 * Restart at previous pageblock if more
1726 * freepages can be isolated next time.
1727 */
f5f61a32
VB
1728 isolate_start_pfn =
1729 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1730 }
be976572 1731 break;
a46cbf3b 1732 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1733 /*
a46cbf3b
DR
1734 * If isolation failed early, do not continue
1735 * needlessly.
f5f61a32 1736 */
a46cbf3b 1737 break;
f5f61a32 1738 }
4fca9730
MG
1739
1740 /* Adjust stride depending on isolation */
1741 if (nr_isolated) {
1742 stride = 1;
1743 continue;
1744 }
1745 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1746 }
1747
7ed695e0 1748 /*
f5f61a32
VB
1749 * Record where the free scanner will restart next time. Either we
1750 * broke from the loop and set isolate_start_pfn based on the last
1751 * call to isolate_freepages_block(), or we met the migration scanner
1752 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1753 */
f5f61a32 1754 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1755
1756splitmap:
1757 /* __isolate_free_page() does not map the pages */
1758 split_map_pages(freelist);
748446bb
MG
1759}
1760
1761/*
1762 * This is a migrate-callback that "allocates" freepages by taking pages
1763 * from the isolated freelists in the block we are migrating to.
1764 */
4e096ae1 1765static struct folio *compaction_alloc(struct folio *src, unsigned long data)
748446bb
MG
1766{
1767 struct compact_control *cc = (struct compact_control *)data;
4e096ae1 1768 struct folio *dst;
748446bb 1769
748446bb 1770 if (list_empty(&cc->freepages)) {
cb2dcaf0 1771 isolate_freepages(cc);
748446bb
MG
1772
1773 if (list_empty(&cc->freepages))
1774 return NULL;
1775 }
1776
4e096ae1
MWO
1777 dst = list_entry(cc->freepages.next, struct folio, lru);
1778 list_del(&dst->lru);
748446bb
MG
1779 cc->nr_freepages--;
1780
4e096ae1 1781 return dst;
748446bb
MG
1782}
1783
1784/*
d53aea3d
DR
1785 * This is a migrate-callback that "frees" freepages back to the isolated
1786 * freelist. All pages on the freelist are from the same zone, so there is no
1787 * special handling needed for NUMA.
1788 */
4e096ae1 1789static void compaction_free(struct folio *dst, unsigned long data)
d53aea3d
DR
1790{
1791 struct compact_control *cc = (struct compact_control *)data;
1792
4e096ae1 1793 list_add(&dst->lru, &cc->freepages);
d53aea3d
DR
1794 cc->nr_freepages++;
1795}
1796
ff9543fd
MN
1797/* possible outcome of isolate_migratepages */
1798typedef enum {
1799 ISOLATE_ABORT, /* Abort compaction now */
1800 ISOLATE_NONE, /* No pages isolated, continue scanning */
1801 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1802} isolate_migrate_t;
1803
5bbe3547
EM
1804/*
1805 * Allow userspace to control policy on scanning the unevictable LRU for
1806 * compactable pages.
1807 */
48fe8ab8
MC
1808static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1809/*
1810 * Tunable for proactive compaction. It determines how
1811 * aggressively the kernel should compact memory in the
1812 * background. It takes values in the range [0, 100].
1813 */
1814static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1815static int sysctl_extfrag_threshold = 500;
8b9167cd 1816static int __read_mostly sysctl_compact_memory;
5bbe3547 1817
70b44595
MG
1818static inline void
1819update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1820{
1821 if (cc->fast_start_pfn == ULONG_MAX)
1822 return;
1823
1824 if (!cc->fast_start_pfn)
1825 cc->fast_start_pfn = pfn;
1826
1827 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1828}
1829
1830static inline unsigned long
1831reinit_migrate_pfn(struct compact_control *cc)
1832{
1833 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1834 return cc->migrate_pfn;
1835
1836 cc->migrate_pfn = cc->fast_start_pfn;
1837 cc->fast_start_pfn = ULONG_MAX;
1838
1839 return cc->migrate_pfn;
1840}
1841
1842/*
1843 * Briefly search the free lists for a migration source that already has
1844 * some free pages to reduce the number of pages that need migration
1845 * before a pageblock is free.
1846 */
1847static unsigned long fast_find_migrateblock(struct compact_control *cc)
1848{
1849 unsigned int limit = freelist_scan_limit(cc);
1850 unsigned int nr_scanned = 0;
1851 unsigned long distance;
1852 unsigned long pfn = cc->migrate_pfn;
1853 unsigned long high_pfn;
1854 int order;
15d28d0d 1855 bool found_block = false;
70b44595
MG
1856
1857 /* Skip hints are relied on to avoid repeats on the fast search */
1858 if (cc->ignore_skip_hint)
1859 return pfn;
1860
f9d7fc1a
MG
1861 /*
1862 * If the pageblock should be finished then do not select a different
1863 * pageblock.
1864 */
1865 if (cc->finish_pageblock)
1866 return pfn;
1867
70b44595
MG
1868 /*
1869 * If the migrate_pfn is not at the start of a zone or the start
1870 * of a pageblock then assume this is a continuation of a previous
1871 * scan restarted due to COMPACT_CLUSTER_MAX.
1872 */
1873 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1874 return pfn;
1875
1876 /*
1877 * For smaller orders, just linearly scan as the number of pages
1878 * to migrate should be relatively small and does not necessarily
1879 * justify freeing up a large block for a small allocation.
1880 */
1881 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1882 return pfn;
1883
1884 /*
1885 * Only allow kcompactd and direct requests for movable pages to
1886 * quickly clear out a MOVABLE pageblock for allocation. This
1887 * reduces the risk that a large movable pageblock is freed for
1888 * an unmovable/reclaimable small allocation.
1889 */
1890 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1891 return pfn;
1892
1893 /*
1894 * When starting the migration scanner, pick any pageblock within the
1895 * first half of the search space. Otherwise try and pick a pageblock
1896 * within the first eighth to reduce the chances that a migration
1897 * target later becomes a source.
1898 */
1899 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1900 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1901 distance >>= 2;
1902 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1903
1904 for (order = cc->order - 1;
15d28d0d 1905 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1906 order--) {
1907 struct free_area *area = &cc->zone->free_area[order];
1908 struct list_head *freelist;
1909 unsigned long flags;
1910 struct page *freepage;
1911
1912 if (!area->nr_free)
1913 continue;
1914
1915 spin_lock_irqsave(&cc->zone->lock, flags);
1916 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 1917 list_for_each_entry(freepage, freelist, buddy_list) {
70b44595
MG
1918 unsigned long free_pfn;
1919
15d28d0d
WY
1920 if (nr_scanned++ >= limit) {
1921 move_freelist_tail(freelist, freepage);
1922 break;
1923 }
1924
70b44595
MG
1925 free_pfn = page_to_pfn(freepage);
1926 if (free_pfn < high_pfn) {
70b44595
MG
1927 /*
1928 * Avoid if skipped recently. Ideally it would
1929 * move to the tail but even safe iteration of
1930 * the list assumes an entry is deleted, not
1931 * reordered.
1932 */
15d28d0d 1933 if (get_pageblock_skip(freepage))
70b44595 1934 continue;
70b44595
MG
1935
1936 /* Reorder to so a future search skips recent pages */
1937 move_freelist_tail(freelist, freepage);
1938
e380bebe 1939 update_fast_start_pfn(cc, free_pfn);
70b44595 1940 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1941 if (pfn < cc->zone->zone_start_pfn)
1942 pfn = cc->zone->zone_start_pfn;
70b44595 1943 cc->fast_search_fail = 0;
15d28d0d 1944 found_block = true;
70b44595
MG
1945 break;
1946 }
70b44595
MG
1947 }
1948 spin_unlock_irqrestore(&cc->zone->lock, flags);
1949 }
1950
1951 cc->total_migrate_scanned += nr_scanned;
1952
1953 /*
1954 * If fast scanning failed then use a cached entry for a page block
1955 * that had free pages as the basis for starting a linear scan.
1956 */
15d28d0d
WY
1957 if (!found_block) {
1958 cc->fast_search_fail++;
70b44595 1959 pfn = reinit_migrate_pfn(cc);
15d28d0d 1960 }
70b44595
MG
1961 return pfn;
1962}
1963
ff9543fd 1964/*
edc2ca61
VB
1965 * Isolate all pages that can be migrated from the first suitable block,
1966 * starting at the block pointed to by the migrate scanner pfn within
1967 * compact_control.
ff9543fd 1968 */
32aaf055 1969static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1970{
e1409c32
JK
1971 unsigned long block_start_pfn;
1972 unsigned long block_end_pfn;
1973 unsigned long low_pfn;
edc2ca61
VB
1974 struct page *page;
1975 const isolate_mode_t isolate_mode =
5bbe3547 1976 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1977 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1978 bool fast_find_block;
ff9543fd 1979
edc2ca61
VB
1980 /*
1981 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1982 * initialized by compact_zone(). The first failure will use
1983 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1984 */
70b44595 1985 low_pfn = fast_find_migrateblock(cc);
06b6640a 1986 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1987 if (block_start_pfn < cc->zone->zone_start_pfn)
1988 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1989
70b44595 1990 /*
0aa8ea3c
KS
1991 * fast_find_migrateblock() has already ensured the pageblock is not
1992 * set with a skipped flag, so to avoid the isolation_suitable check
1993 * below again, check whether the fast search was successful.
70b44595
MG
1994 */
1995 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1996
ff9543fd 1997 /* Only scan within a pageblock boundary */
06b6640a 1998 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1999
edc2ca61
VB
2000 /*
2001 * Iterate over whole pageblocks until we find the first suitable.
2002 * Do not cross the free scanner.
2003 */
e1409c32 2004 for (; block_end_pfn <= cc->free_pfn;
70b44595 2005 fast_find_block = false,
c2ad7a1f 2006 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
2007 block_start_pfn = block_end_pfn,
2008 block_end_pfn += pageblock_nr_pages) {
ff9543fd 2009
edc2ca61
VB
2010 /*
2011 * This can potentially iterate a massively long zone with
2012 * many pageblocks unsuitable, so periodically check if we
cb810ad2 2013 * need to schedule.
edc2ca61 2014 */
c036ddff 2015 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 2016 cond_resched();
ff9543fd 2017
32aaf055
PL
2018 page = pageblock_pfn_to_page(block_start_pfn,
2019 block_end_pfn, cc->zone);
9721fd82
BW
2020 if (!page) {
2021 unsigned long next_pfn;
2022
2023 next_pfn = skip_offline_sections(block_start_pfn);
2024 if (next_pfn)
2025 block_end_pfn = min(next_pfn, cc->free_pfn);
edc2ca61 2026 continue;
9721fd82 2027 }
edc2ca61 2028
e380bebe
MG
2029 /*
2030 * If isolation recently failed, do not retry. Only check the
2031 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2032 * to be visited multiple times. Assume skip was checked
2033 * before making it "skip" so other compaction instances do
2034 * not scan the same block.
2035 */
493614da
JW
2036 if ((pageblock_aligned(low_pfn) ||
2037 low_pfn == cc->zone->zone_start_pfn) &&
e380bebe 2038 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
2039 continue;
2040
2041 /*
556162bf
ML
2042 * For async direct compaction, only scan the pageblocks of the
2043 * same migratetype without huge pages. Async direct compaction
2044 * is optimistic to see if the minimum amount of work satisfies
2045 * the allocation. The cached PFN is updated as it's possible
2046 * that all remaining blocks between source and target are
2047 * unsuitable and the compaction scanners fail to meet.
edc2ca61 2048 */
9bebefd5
MG
2049 if (!suitable_migration_source(cc, page)) {
2050 update_cached_migrate(cc, block_end_pfn);
edc2ca61 2051 continue;
9bebefd5 2052 }
edc2ca61
VB
2053
2054 /* Perform the isolation */
c2ad7a1f
OS
2055 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2056 isolate_mode))
edc2ca61
VB
2057 return ISOLATE_ABORT;
2058
2059 /*
2060 * Either we isolated something and proceed with migration. Or
2061 * we failed and compact_zone should decide if we should
2062 * continue or not.
2063 */
2064 break;
2065 }
2066
edc2ca61 2067 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
2068}
2069
21c527a3 2070/*
9cc17ede
KS
2071 * order == -1 is expected when compacting proactively via
2072 * 1. /proc/sys/vm/compact_memory
2073 * 2. /sys/devices/system/node/nodex/compact
2074 * 3. /proc/sys/vm/compaction_proactiveness
21c527a3
YB
2075 */
2076static inline bool is_via_compact_memory(int order)
2077{
2078 return order == -1;
2079}
2080
b4a0215e
KW
2081/*
2082 * Determine whether kswapd is (or recently was!) running on this node.
2083 *
2084 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2085 * zero it.
2086 */
facdaa91
NG
2087static bool kswapd_is_running(pg_data_t *pgdat)
2088{
b4a0215e
KW
2089 bool running;
2090
2091 pgdat_kswapd_lock(pgdat);
2092 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2093 pgdat_kswapd_unlock(pgdat);
2094
2095 return running;
facdaa91
NG
2096}
2097
2098/*
2099 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
2100 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2101 */
2102static unsigned int fragmentation_score_zone(struct zone *zone)
2103{
2104 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2105}
2106
2107/*
2108 * A weighted zone's fragmentation score is the external fragmentation
2109 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2110 * returns a value in the range [0, 100].
facdaa91
NG
2111 *
2112 * The scaling factor ensures that proactive compaction focuses on larger
2113 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2114 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2115 * and thus never exceeds the high threshold for proactive compaction.
2116 */
40d7e203 2117static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2118{
2119 unsigned long score;
2120
40d7e203 2121 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2122 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2123}
2124
2125/*
2126 * The per-node proactive (background) compaction process is started by its
2127 * corresponding kcompactd thread when the node's fragmentation score
2128 * exceeds the high threshold. The compaction process remains active till
2129 * the node's score falls below the low threshold, or one of the back-off
2130 * conditions is met.
2131 */
d34c0a75 2132static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2133{
d34c0a75 2134 unsigned int score = 0;
facdaa91
NG
2135 int zoneid;
2136
2137 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2138 struct zone *zone;
2139
2140 zone = &pgdat->node_zones[zoneid];
9e552271
BW
2141 if (!populated_zone(zone))
2142 continue;
40d7e203 2143 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2144 }
2145
2146 return score;
2147}
2148
8fbb92bd 2149static unsigned int fragmentation_score_wmark(bool low)
facdaa91 2150{
d34c0a75 2151 unsigned int wmark_low;
facdaa91
NG
2152
2153 /*
f0953a1b
IM
2154 * Cap the low watermark to avoid excessive compaction
2155 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2156 * close to 100 (maximum).
2157 */
d34c0a75
NG
2158 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2159 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2160}
2161
2162static bool should_proactive_compact_node(pg_data_t *pgdat)
2163{
2164 int wmark_high;
2165
2166 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2167 return false;
2168
8fbb92bd 2169 wmark_high = fragmentation_score_wmark(false);
facdaa91
NG
2170 return fragmentation_score_node(pgdat) > wmark_high;
2171}
2172
40cacbcb 2173static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2174{
8fb74b9f 2175 unsigned int order;
d39773a0 2176 const int migratetype = cc->migratetype;
cb2dcaf0 2177 int ret;
748446bb 2178
753341a4 2179 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2180 if (compact_scanners_met(cc)) {
55b7c4c9 2181 /* Let the next compaction start anew. */
40cacbcb 2182 reset_cached_positions(cc->zone);
55b7c4c9 2183
62997027
MG
2184 /*
2185 * Mark that the PG_migrate_skip information should be cleared
accf6242 2186 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2187 * flag itself as the decision to be clear should be directly
2188 * based on an allocation request.
2189 */
accf6242 2190 if (cc->direct_compaction)
40cacbcb 2191 cc->zone->compact_blockskip_flush = true;
62997027 2192
c8f7de0b
MH
2193 if (cc->whole_zone)
2194 return COMPACT_COMPLETE;
2195 else
2196 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2197 }
748446bb 2198
facdaa91
NG
2199 if (cc->proactive_compaction) {
2200 int score, wmark_low;
2201 pg_data_t *pgdat;
2202
2203 pgdat = cc->zone->zone_pgdat;
2204 if (kswapd_is_running(pgdat))
2205 return COMPACT_PARTIAL_SKIPPED;
2206
2207 score = fragmentation_score_zone(cc->zone);
8fbb92bd 2208 wmark_low = fragmentation_score_wmark(true);
facdaa91
NG
2209
2210 if (score > wmark_low)
2211 ret = COMPACT_CONTINUE;
2212 else
2213 ret = COMPACT_SUCCESS;
2214
2215 goto out;
2216 }
2217
21c527a3 2218 if (is_via_compact_memory(cc->order))
56de7263
MG
2219 return COMPACT_CONTINUE;
2220
efe771c7
MG
2221 /*
2222 * Always finish scanning a pageblock to reduce the possibility of
2223 * fallbacks in the future. This is particularly important when
2224 * migration source is unmovable/reclaimable but it's not worth
2225 * special casing.
2226 */
ee0913c4 2227 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2228 return COMPACT_CONTINUE;
baf6a9a1 2229
56de7263 2230 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2231 ret = COMPACT_NO_SUITABLE_PAGE;
fd377218 2232 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
40cacbcb 2233 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2234 bool can_steal;
8fb74b9f
MG
2235
2236 /* Job done if page is free of the right migratetype */
b03641af 2237 if (!free_area_empty(area, migratetype))
cf378319 2238 return COMPACT_SUCCESS;
8fb74b9f 2239
2149cdae
JK
2240#ifdef CONFIG_CMA
2241 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2242 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2243 !free_area_empty(area, MIGRATE_CMA))
cf378319 2244 return COMPACT_SUCCESS;
2149cdae
JK
2245#endif
2246 /*
2247 * Job done if allocation would steal freepages from
2248 * other migratetype buddy lists.
2249 */
2250 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2251 true, &can_steal) != -1)
baf6a9a1 2252 /*
fa599c44
ML
2253 * Movable pages are OK in any pageblock. If we are
2254 * stealing for a non-movable allocation, make sure
2255 * we finish compacting the current pageblock first
2256 * (which is assured by the above migrate_pfn align
2257 * check) so it is as free as possible and we won't
2258 * have to steal another one soon.
baf6a9a1 2259 */
fa599c44 2260 return COMPACT_SUCCESS;
56de7263
MG
2261 }
2262
facdaa91 2263out:
cb2dcaf0
MG
2264 if (cc->contended || fatal_signal_pending(current))
2265 ret = COMPACT_CONTENDED;
2266
2267 return ret;
837d026d
JK
2268}
2269
40cacbcb 2270static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2271{
2272 int ret;
2273
40cacbcb
MG
2274 ret = __compact_finished(cc);
2275 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2276 if (ret == COMPACT_NO_SUITABLE_PAGE)
2277 ret = COMPACT_CONTINUE;
2278
2279 return ret;
748446bb
MG
2280}
2281
3cf04937
JW
2282static bool __compaction_suitable(struct zone *zone, int order,
2283 int highest_zoneidx,
2284 unsigned long wmark_target)
3e7d3449 2285{
3e7d3449 2286 unsigned long watermark;
3e7d3449 2287 /*
9861a62c 2288 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2289 * isolate free pages for migration targets. This means that the
2290 * watermark and alloc_flags have to match, or be more pessimistic than
2291 * the check in __isolate_free_page(). We don't use the direct
2292 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2293 * isolation. We however do use the direct compactor's highest_zoneidx
2294 * to skip over zones where lowmem reserves would prevent allocation
2295 * even if compaction succeeds.
8348faf9
VB
2296 * For costly orders, we require low watermark instead of min for
2297 * compaction to proceed to increase its chances.
d883c6cf
JK
2298 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2299 * suitable migration targets
3e7d3449 2300 */
8348faf9
VB
2301 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2302 low_wmark_pages(zone) : min_wmark_pages(zone);
2303 watermark += compact_gap(order);
3cf04937
JW
2304 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2305 ALLOC_CMA, wmark_target);
cc5c9f09
VB
2306}
2307
2b1a20c3
HS
2308/*
2309 * compaction_suitable: Is this suitable to run compaction on this zone now?
2b1a20c3 2310 */
3cf04937 2311bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
cc5c9f09 2312{
3cf04937
JW
2313 enum compact_result compact_result;
2314 bool suitable;
cc5c9f09 2315
3cf04937
JW
2316 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2317 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2318 /*
2319 * fragmentation index determines if allocation failures are due to
2320 * low memory or external fragmentation
2321 *
ebff3980
VB
2322 * index of -1000 would imply allocations might succeed depending on
2323 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2324 * index towards 0 implies failure is due to lack of memory
2325 * index towards 1000 implies failure is due to fragmentation
2326 *
20311420
VB
2327 * Only compact if a failure would be due to fragmentation. Also
2328 * ignore fragindex for non-costly orders where the alternative to
2329 * a successful reclaim/compaction is OOM. Fragindex and the
2330 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2331 * excessive compaction for costly orders, but it should not be at the
2332 * expense of system stability.
3e7d3449 2333 */
3cf04937
JW
2334 if (suitable) {
2335 compact_result = COMPACT_CONTINUE;
2336 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2337 int fragindex = fragmentation_index(zone, order);
2338
2339 if (fragindex >= 0 &&
2340 fragindex <= sysctl_extfrag_threshold) {
2341 suitable = false;
2342 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2343 }
2344 }
2345 } else {
2346 compact_result = COMPACT_SKIPPED;
cc5c9f09 2347 }
837d026d 2348
3cf04937 2349 trace_mm_compaction_suitable(zone, order, compact_result);
837d026d 2350
3cf04937 2351 return suitable;
837d026d
JK
2352}
2353
86a294a8
MH
2354bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2355 int alloc_flags)
2356{
2357 struct zone *zone;
2358 struct zoneref *z;
2359
2360 /*
2361 * Make sure at least one zone would pass __compaction_suitable if we continue
2362 * retrying the reclaim.
2363 */
97a225e6
JK
2364 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2365 ac->highest_zoneidx, ac->nodemask) {
86a294a8 2366 unsigned long available;
86a294a8
MH
2367
2368 /*
2369 * Do not consider all the reclaimable memory because we do not
2370 * want to trash just for a single high order allocation which
2371 * is even not guaranteed to appear even if __compaction_suitable
2372 * is happy about the watermark check.
2373 */
5a1c84b4 2374 available = zone_reclaimable_pages(zone) / order;
86a294a8 2375 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
e8606320 2376 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
3cf04937 2377 available))
86a294a8
MH
2378 return true;
2379 }
2380
2381 return false;
2382}
2383
e19a3f59
KS
2384/*
2385 * Should we do compaction for target allocation order.
2386 * Return COMPACT_SUCCESS if allocation for target order can be already
2387 * satisfied
2388 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2389 * Return COMPACT_CONTINUE if compaction for target order should be ran
2390 */
2391static enum compact_result
2392compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2393 int highest_zoneidx, unsigned int alloc_flags)
2394{
2395 unsigned long watermark;
2396
2397 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2398 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2399 alloc_flags))
2400 return COMPACT_SUCCESS;
2401
2402 if (!compaction_suitable(zone, order, highest_zoneidx))
2403 return COMPACT_SKIPPED;
2404
2405 return COMPACT_CONTINUE;
2406}
2407
5e1f0f09
MG
2408static enum compact_result
2409compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2410{
ea7ab982 2411 enum compact_result ret;
40cacbcb
MG
2412 unsigned long start_pfn = cc->zone->zone_start_pfn;
2413 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2414 unsigned long last_migrated_pfn;
e0b9daeb 2415 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2416 bool update_cached;
84b328aa 2417 unsigned int nr_succeeded = 0;
748446bb 2418
a94b5252
YS
2419 /*
2420 * These counters track activities during zone compaction. Initialize
2421 * them before compacting a new zone.
2422 */
2423 cc->total_migrate_scanned = 0;
2424 cc->total_free_scanned = 0;
2425 cc->nr_migratepages = 0;
2426 cc->nr_freepages = 0;
2427 INIT_LIST_HEAD(&cc->freepages);
2428 INIT_LIST_HEAD(&cc->migratepages);
2429
01c0bfe0 2430 cc->migratetype = gfp_migratetype(cc->gfp_mask);
e8606320
JW
2431
2432 if (!is_via_compact_memory(cc->order)) {
e19a3f59
KS
2433 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2434 cc->highest_zoneidx,
2435 cc->alloc_flags);
2436 if (ret != COMPACT_CONTINUE)
2437 return ret;
e8606320 2438 }
c46649de 2439
d3132e4b
VB
2440 /*
2441 * Clear pageblock skip if there were failures recently and compaction
accf6242 2442 * is about to be retried after being deferred.
d3132e4b 2443 */
40cacbcb
MG
2444 if (compaction_restarting(cc->zone, cc->order))
2445 __reset_isolation_suitable(cc->zone);
d3132e4b 2446
c89511ab
MG
2447 /*
2448 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2449 * information on where the scanners should start (unless we explicitly
2450 * want to compact the whole zone), but check that it is initialised
2451 * by ensuring the values are within zone boundaries.
c89511ab 2452 */
70b44595 2453 cc->fast_start_pfn = 0;
06ed2998 2454 if (cc->whole_zone) {
c89511ab 2455 cc->migrate_pfn = start_pfn;
06ed2998
VB
2456 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2457 } else {
40cacbcb
MG
2458 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2459 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2460 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2461 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2462 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2463 }
2464 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2465 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2466 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2467 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2468 }
c8f7de0b 2469
e332f741 2470 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2471 cc->whole_zone = true;
2472 }
c8f7de0b 2473
566e54e1 2474 last_migrated_pfn = 0;
748446bb 2475
8854c55f
MG
2476 /*
2477 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2478 * the basis that some migrations will fail in ASYNC mode. However,
2479 * if the cached PFNs match and pageblocks are skipped due to having
2480 * no isolation candidates, then the sync state does not matter.
2481 * Until a pageblock with isolation candidates is found, keep the
2482 * cached PFNs in sync to avoid revisiting the same blocks.
2483 */
2484 update_cached = !sync &&
2485 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2486
abd4349f 2487 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2488
361a2a22
MK
2489 /* lru_add_drain_all could be expensive with involving other CPUs */
2490 lru_add_drain();
748446bb 2491
40cacbcb 2492 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2493 int err;
19d3cf9d 2494 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2495
804d3121 2496 /*
48731c84
MG
2497 * Avoid multiple rescans of the same pageblock which can
2498 * happen if a page cannot be isolated (dirty/writeback in
2499 * async mode) or if the migrated pages are being allocated
2500 * before the pageblock is cleared. The first rescan will
2501 * capture the entire pageblock for migration. If it fails,
2502 * it'll be marked skip and scanning will proceed as normal.
804d3121 2503 */
48731c84 2504 cc->finish_pageblock = false;
804d3121 2505 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2506 pageblock_start_pfn(iteration_start_pfn)) {
48731c84 2507 cc->finish_pageblock = true;
804d3121
MG
2508 }
2509
cfccd2e6 2510rescan:
32aaf055 2511 switch (isolate_migratepages(cc)) {
f9e35b3b 2512 case ISOLATE_ABORT:
2d1e1041 2513 ret = COMPACT_CONTENDED;
5733c7d1 2514 putback_movable_pages(&cc->migratepages);
e64c5237 2515 cc->nr_migratepages = 0;
f9e35b3b
MG
2516 goto out;
2517 case ISOLATE_NONE:
8854c55f
MG
2518 if (update_cached) {
2519 cc->zone->compact_cached_migrate_pfn[1] =
2520 cc->zone->compact_cached_migrate_pfn[0];
2521 }
2522
fdaf7f5c
VB
2523 /*
2524 * We haven't isolated and migrated anything, but
2525 * there might still be unflushed migrations from
2526 * previous cc->order aligned block.
2527 */
2528 goto check_drain;
f9e35b3b 2529 case ISOLATE_SUCCESS:
8854c55f 2530 update_cached = false;
7c0a84bd
KS
2531 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2532 pageblock_start_pfn(cc->migrate_pfn - 1));
f9e35b3b 2533 }
748446bb 2534
d53aea3d 2535 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2536 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2537 MR_COMPACTION, &nr_succeeded);
748446bb 2538
abd4349f 2539 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2540
f8c9301f
VB
2541 /* All pages were either migrated or will be released */
2542 cc->nr_migratepages = 0;
9d502c1c 2543 if (err) {
5733c7d1 2544 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2545 /*
2546 * migrate_pages() may return -ENOMEM when scanners meet
2547 * and we want compact_finished() to detect it
2548 */
f2849aa0 2549 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2550 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2551 goto out;
2552 }
fdd048e1 2553 /*
cfccd2e6 2554 * If an ASYNC or SYNC_LIGHT fails to migrate a page
c3750cc7 2555 * within the pageblock_order-aligned block and
9ecc5fc5 2556 * fast_find_migrateblock may be used then scan the
cfccd2e6
MG
2557 * remainder of the pageblock. This will mark the
2558 * pageblock "skip" to avoid rescanning in the near
2559 * future. This will isolate more pages than necessary
2560 * for the request but avoid loops due to
2561 * fast_find_migrateblock revisiting blocks that were
2562 * recently partially scanned.
fdd048e1 2563 */
539aa041 2564 if (!pageblock_aligned(cc->migrate_pfn) &&
9ecc5fc5 2565 !cc->ignore_skip_hint && !cc->finish_pageblock &&
539aa041 2566 (cc->mode < MIGRATE_SYNC)) {
cfccd2e6
MG
2567 cc->finish_pageblock = true;
2568
2569 /*
2570 * Draining pcplists does not help THP if
2571 * any page failed to migrate. Even after
2572 * drain, the pageblock will not be free.
2573 */
2574 if (cc->order == COMPACTION_HPAGE_ORDER)
2575 last_migrated_pfn = 0;
2576
2577 goto rescan;
fdd048e1 2578 }
748446bb 2579 }
fdaf7f5c 2580
16b3be40
MG
2581 /* Stop if a page has been captured */
2582 if (capc && capc->page) {
2583 ret = COMPACT_SUCCESS;
2584 break;
2585 }
2586
fdaf7f5c
VB
2587check_drain:
2588 /*
2589 * Has the migration scanner moved away from the previous
2590 * cc->order aligned block where we migrated from? If yes,
2591 * flush the pages that were freed, so that they can merge and
2592 * compact_finished() can detect immediately if allocation
2593 * would succeed.
2594 */
566e54e1 2595 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2596 unsigned long current_block_start =
06b6640a 2597 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2598
566e54e1 2599 if (last_migrated_pfn < current_block_start) {
b01b2141 2600 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2601 /* No more flushing until we migrate again */
566e54e1 2602 last_migrated_pfn = 0;
fdaf7f5c
VB
2603 }
2604 }
748446bb
MG
2605 }
2606
f9e35b3b 2607out:
6bace090
VB
2608 /*
2609 * Release free pages and update where the free scanner should restart,
2610 * so we don't leave any returned pages behind in the next attempt.
2611 */
2612 if (cc->nr_freepages > 0) {
2613 unsigned long free_pfn = release_freepages(&cc->freepages);
2614
2615 cc->nr_freepages = 0;
2616 VM_BUG_ON(free_pfn == 0);
2617 /* The cached pfn is always the first in a pageblock */
06b6640a 2618 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2619 /*
2620 * Only go back, not forward. The cached pfn might have been
2621 * already reset to zone end in compact_finished()
2622 */
40cacbcb
MG
2623 if (free_pfn > cc->zone->compact_cached_free_pfn)
2624 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2625 }
748446bb 2626
7f354a54
DR
2627 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2628 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2629
abd4349f 2630 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2631
753ec50d
BW
2632 VM_BUG_ON(!list_empty(&cc->freepages));
2633 VM_BUG_ON(!list_empty(&cc->migratepages));
2634
748446bb
MG
2635 return ret;
2636}
76ab0f53 2637
ea7ab982 2638static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2639 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2640 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2641 struct page **capture)
56de7263 2642{
ea7ab982 2643 enum compact_result ret;
56de7263 2644 struct compact_control cc = {
56de7263 2645 .order = order,
dbe2d4e4 2646 .search_order = order,
6d7ce559 2647 .gfp_mask = gfp_mask,
56de7263 2648 .zone = zone,
a5508cd8
VB
2649 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2650 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2651 .alloc_flags = alloc_flags,
97a225e6 2652 .highest_zoneidx = highest_zoneidx,
accf6242 2653 .direct_compaction = true,
a8e025e5 2654 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2655 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2656 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2657 };
5e1f0f09
MG
2658 struct capture_control capc = {
2659 .cc = &cc,
2660 .page = NULL,
2661 };
2662
b9e20f0d
VB
2663 /*
2664 * Make sure the structs are really initialized before we expose the
2665 * capture control, in case we are interrupted and the interrupt handler
2666 * frees a page.
2667 */
2668 barrier();
2669 WRITE_ONCE(current->capture_control, &capc);
56de7263 2670
5e1f0f09 2671 ret = compact_zone(&cc, &capc);
e64c5237 2672
b9e20f0d
VB
2673 /*
2674 * Make sure we hide capture control first before we read the captured
2675 * page pointer, otherwise an interrupt could free and capture a page
2676 * and we would leak it.
2677 */
2678 WRITE_ONCE(current->capture_control, NULL);
2679 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2680 /*
2681 * Technically, it is also possible that compaction is skipped but
2682 * the page is still captured out of luck(IRQ came and freed the page).
2683 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2684 * the COMPACT[STALL|FAIL] when compaction is skipped.
2685 */
2686 if (*capture)
2687 ret = COMPACT_SUCCESS;
5e1f0f09 2688
e64c5237 2689 return ret;
56de7263
MG
2690}
2691
2692/**
2693 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2694 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2695 * @order: The order of the current allocation
2696 * @alloc_flags: The allocation flags of the current allocation
2697 * @ac: The context of current allocation
112d2d29 2698 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2699 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2700 *
2701 * This is the main entry point for direct page compaction.
2702 */
ea7ab982 2703enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2704 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2705 enum compact_priority prio, struct page **capture)
56de7263 2706{
fe573327 2707 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2708 struct zoneref *z;
2709 struct zone *zone;
1d4746d3 2710 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2711
73e64c51
MH
2712 /*
2713 * Check if the GFP flags allow compaction - GFP_NOIO is really
2714 * tricky context because the migration might require IO
2715 */
2716 if (!may_perform_io)
53853e2d 2717 return COMPACT_SKIPPED;
56de7263 2718
a5508cd8 2719 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2720
56de7263 2721 /* Compact each zone in the list */
97a225e6
JK
2722 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2723 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2724 enum compact_result status;
56de7263 2725
a8e025e5
VB
2726 if (prio > MIN_COMPACT_PRIORITY
2727 && compaction_deferred(zone, order)) {
1d4746d3 2728 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2729 continue;
1d4746d3 2730 }
53853e2d 2731
a5508cd8 2732 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2733 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2734 rc = max(status, rc);
2735
7ceb009a
VB
2736 /* The allocation should succeed, stop compacting */
2737 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2738 /*
2739 * We think the allocation will succeed in this zone,
2740 * but it is not certain, hence the false. The caller
2741 * will repeat this with true if allocation indeed
2742 * succeeds in this zone.
2743 */
2744 compaction_defer_reset(zone, order, false);
1f9efdef 2745
c3486f53 2746 break;
1f9efdef
VB
2747 }
2748
a5508cd8 2749 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2750 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2751 /*
2752 * We think that allocation won't succeed in this zone
2753 * so we defer compaction there. If it ends up
2754 * succeeding after all, it will be reset.
2755 */
2756 defer_compaction(zone, order);
1f9efdef
VB
2757
2758 /*
2759 * We might have stopped compacting due to need_resched() in
2760 * async compaction, or due to a fatal signal detected. In that
c3486f53 2761 * case do not try further zones
1f9efdef 2762 */
c3486f53
VB
2763 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2764 || fatal_signal_pending(current))
2765 break;
56de7263
MG
2766 }
2767
2768 return rc;
2769}
2770
facdaa91
NG
2771/*
2772 * Compact all zones within a node till each zone's fragmentation score
2773 * reaches within proactive compaction thresholds (as determined by the
2774 * proactiveness tunable).
2775 *
2776 * It is possible that the function returns before reaching score targets
2777 * due to various back-off conditions, such as, contention on per-node or
2778 * per-zone locks.
2779 */
2780static void proactive_compact_node(pg_data_t *pgdat)
2781{
2782 int zoneid;
2783 struct zone *zone;
2784 struct compact_control cc = {
2785 .order = -1,
2786 .mode = MIGRATE_SYNC_LIGHT,
2787 .ignore_skip_hint = true,
2788 .whole_zone = true,
2789 .gfp_mask = GFP_KERNEL,
2790 .proactive_compaction = true,
2791 };
2792
2793 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2794 zone = &pgdat->node_zones[zoneid];
2795 if (!populated_zone(zone))
2796 continue;
2797
2798 cc.zone = zone;
2799
2800 compact_zone(&cc, NULL);
2801
1bfb7684
BW
2802 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2803 cc.total_migrate_scanned);
2804 count_compact_events(KCOMPACTD_FREE_SCANNED,
2805 cc.total_free_scanned);
facdaa91
NG
2806 }
2807}
56de7263 2808
76ab0f53 2809/* Compact all zones within a node */
791cae96 2810static void compact_node(int nid)
76ab0f53 2811{
791cae96 2812 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2813 int zoneid;
76ab0f53 2814 struct zone *zone;
791cae96
VB
2815 struct compact_control cc = {
2816 .order = -1,
2817 .mode = MIGRATE_SYNC,
2818 .ignore_skip_hint = true,
2819 .whole_zone = true,
73e64c51 2820 .gfp_mask = GFP_KERNEL,
791cae96
VB
2821 };
2822
76ab0f53 2823
76ab0f53 2824 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2825
2826 zone = &pgdat->node_zones[zoneid];
2827 if (!populated_zone(zone))
2828 continue;
2829
791cae96 2830 cc.zone = zone;
76ab0f53 2831
5e1f0f09 2832 compact_zone(&cc, NULL);
76ab0f53 2833 }
76ab0f53
MG
2834}
2835
2836/* Compact all nodes in the system */
7964c06d 2837static void compact_nodes(void)
76ab0f53
MG
2838{
2839 int nid;
2840
8575ec29
HD
2841 /* Flush pending updates to the LRU lists */
2842 lru_add_drain_all();
2843
76ab0f53
MG
2844 for_each_online_node(nid)
2845 compact_node(nid);
76ab0f53
MG
2846}
2847
48fe8ab8 2848static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
65d759c8
CTR
2849 void *buffer, size_t *length, loff_t *ppos)
2850{
2851 int rc, nid;
2852
2853 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2854 if (rc)
2855 return rc;
2856
2857 if (write && sysctl_compaction_proactiveness) {
2858 for_each_online_node(nid) {
2859 pg_data_t *pgdat = NODE_DATA(nid);
2860
2861 if (pgdat->proactive_compact_trigger)
2862 continue;
2863
2864 pgdat->proactive_compact_trigger = true;
8fff8b6f
BW
2865 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2866 pgdat->nr_zones - 1);
65d759c8
CTR
2867 wake_up_interruptible(&pgdat->kcompactd_wait);
2868 }
2869 }
2870
2871 return 0;
2872}
2873
fec4eb2c
YB
2874/*
2875 * This is the entry point for compacting all nodes via
2876 * /proc/sys/vm/compact_memory
2877 */
48fe8ab8 2878static int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2879 void *buffer, size_t *length, loff_t *ppos)
76ab0f53 2880{
8b9167cd
WY
2881 int ret;
2882
2883 ret = proc_dointvec(table, write, buffer, length, ppos);
2884 if (ret)
2885 return ret;
2886
2887 if (sysctl_compact_memory != 1)
2888 return -EINVAL;
2889
76ab0f53 2890 if (write)
7964c06d 2891 compact_nodes();
76ab0f53
MG
2892
2893 return 0;
2894}
ed4a6d7f
MG
2895
2896#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2897static ssize_t compact_store(struct device *dev,
2898 struct device_attribute *attr,
2899 const char *buf, size_t count)
ed4a6d7f 2900{
8575ec29
HD
2901 int nid = dev->id;
2902
2903 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2904 /* Flush pending updates to the LRU lists */
2905 lru_add_drain_all();
2906
2907 compact_node(nid);
2908 }
ed4a6d7f
MG
2909
2910 return count;
2911}
17adb230 2912static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2913
2914int compaction_register_node(struct node *node)
2915{
10fbcf4c 2916 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2917}
2918
2919void compaction_unregister_node(struct node *node)
2920{
f82024cb 2921 device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2922}
2923#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2924
698b1b30
VB
2925static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2926{
65d759c8
CTR
2927 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2928 pgdat->proactive_compact_trigger;
698b1b30
VB
2929}
2930
2931static bool kcompactd_node_suitable(pg_data_t *pgdat)
2932{
2933 int zoneid;
2934 struct zone *zone;
97a225e6 2935 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
e19a3f59 2936 enum compact_result ret;
698b1b30 2937
97a225e6 2938 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2939 zone = &pgdat->node_zones[zoneid];
2940
2941 if (!populated_zone(zone))
2942 continue;
2943
e19a3f59
KS
2944 ret = compaction_suit_allocation_order(zone,
2945 pgdat->kcompactd_max_order,
2946 highest_zoneidx, ALLOC_WMARK_MIN);
2947 if (ret == COMPACT_CONTINUE)
698b1b30
VB
2948 return true;
2949 }
2950
2951 return false;
2952}
2953
2954static void kcompactd_do_work(pg_data_t *pgdat)
2955{
2956 /*
2957 * With no special task, compact all zones so that a page of requested
2958 * order is allocatable.
2959 */
2960 int zoneid;
2961 struct zone *zone;
2962 struct compact_control cc = {
2963 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2964 .search_order = pgdat->kcompactd_max_order,
97a225e6 2965 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2966 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2967 .ignore_skip_hint = false,
73e64c51 2968 .gfp_mask = GFP_KERNEL,
698b1b30 2969 };
e19a3f59
KS
2970 enum compact_result ret;
2971
698b1b30 2972 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2973 cc.highest_zoneidx);
7f354a54 2974 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2975
97a225e6 2976 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2977 int status;
2978
2979 zone = &pgdat->node_zones[zoneid];
2980 if (!populated_zone(zone))
2981 continue;
2982
2983 if (compaction_deferred(zone, cc.order))
2984 continue;
2985
e19a3f59
KS
2986 ret = compaction_suit_allocation_order(zone,
2987 cc.order, zoneid, ALLOC_WMARK_MIN);
2988 if (ret != COMPACT_CONTINUE)
e8606320 2989 continue;
f98a497e 2990
172400c6
VB
2991 if (kthread_should_stop())
2992 return;
a94b5252
YS
2993
2994 cc.zone = zone;
5e1f0f09 2995 status = compact_zone(&cc, NULL);
698b1b30 2996
7ceb009a 2997 if (status == COMPACT_SUCCESS) {
698b1b30 2998 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2999 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
3000 /*
3001 * Buddy pages may become stranded on pcps that could
3002 * otherwise coalesce on the zone's free area for
3003 * order >= cc.order. This is ratelimited by the
3004 * upcoming deferral.
3005 */
3006 drain_all_pages(zone);
3007
698b1b30
VB
3008 /*
3009 * We use sync migration mode here, so we defer like
3010 * sync direct compaction does.
3011 */
3012 defer_compaction(zone, cc.order);
3013 }
3014
7f354a54
DR
3015 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3016 cc.total_migrate_scanned);
3017 count_compact_events(KCOMPACTD_FREE_SCANNED,
3018 cc.total_free_scanned);
698b1b30
VB
3019 }
3020
3021 /*
3022 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
3023 * the requested order/highest_zoneidx in case it was higher/tighter
3024 * than our current ones
698b1b30
VB
3025 */
3026 if (pgdat->kcompactd_max_order <= cc.order)
3027 pgdat->kcompactd_max_order = 0;
97a225e6
JK
3028 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3029 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3030}
3031
97a225e6 3032void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
3033{
3034 if (!order)
3035 return;
3036
3037 if (pgdat->kcompactd_max_order < order)
3038 pgdat->kcompactd_max_order = order;
3039
97a225e6
JK
3040 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3041 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 3042
6818600f
DB
3043 /*
3044 * Pairs with implicit barrier in wait_event_freezable()
3045 * such that wakeups are not missed.
3046 */
3047 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
3048 return;
3049
3050 if (!kcompactd_node_suitable(pgdat))
3051 return;
3052
3053 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 3054 highest_zoneidx);
698b1b30
VB
3055 wake_up_interruptible(&pgdat->kcompactd_wait);
3056}
3057
3058/*
3059 * The background compaction daemon, started as a kernel thread
3060 * from the init process.
3061 */
3062static int kcompactd(void *p)
3063{
68d68ff6 3064 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 3065 struct task_struct *tsk = current;
e1e92bfa
CTR
3066 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3067 long timeout = default_timeout;
698b1b30
VB
3068
3069 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3070
3071 if (!cpumask_empty(cpumask))
3072 set_cpus_allowed_ptr(tsk, cpumask);
3073
3074 set_freezable();
3075
3076 pgdat->kcompactd_max_order = 0;
97a225e6 3077 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3078
3079 while (!kthread_should_stop()) {
eb414681
JW
3080 unsigned long pflags;
3081
65d759c8
CTR
3082 /*
3083 * Avoid the unnecessary wakeup for proactive compaction
3084 * when it is disabled.
3085 */
3086 if (!sysctl_compaction_proactiveness)
3087 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 3088 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 3089 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
3090 kcompactd_work_requested(pgdat), timeout) &&
3091 !pgdat->proactive_compact_trigger) {
facdaa91
NG
3092
3093 psi_memstall_enter(&pflags);
3094 kcompactd_do_work(pgdat);
3095 psi_memstall_leave(&pflags);
e1e92bfa
CTR
3096 /*
3097 * Reset the timeout value. The defer timeout from
3098 * proactive compaction is lost here but that is fine
3099 * as the condition of the zone changing substantionally
3100 * then carrying on with the previous defer interval is
3101 * not useful.
3102 */
3103 timeout = default_timeout;
facdaa91
NG
3104 continue;
3105 }
698b1b30 3106
e1e92bfa
CTR
3107 /*
3108 * Start the proactive work with default timeout. Based
3109 * on the fragmentation score, this timeout is updated.
3110 */
3111 timeout = default_timeout;
facdaa91
NG
3112 if (should_proactive_compact_node(pgdat)) {
3113 unsigned int prev_score, score;
3114
facdaa91
NG
3115 prev_score = fragmentation_score_node(pgdat);
3116 proactive_compact_node(pgdat);
3117 score = fragmentation_score_node(pgdat);
3118 /*
3119 * Defer proactive compaction if the fragmentation
3120 * score did not go down i.e. no progress made.
3121 */
e1e92bfa
CTR
3122 if (unlikely(score >= prev_score))
3123 timeout =
3124 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3125 }
65d759c8
CTR
3126 if (unlikely(pgdat->proactive_compact_trigger))
3127 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3128 }
3129
3130 return 0;
3131}
3132
3133/*
3134 * This kcompactd start function will be called by init and node-hot-add.
3135 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3136 */
833dfc00 3137void __meminit kcompactd_run(int nid)
698b1b30
VB
3138{
3139 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3140
3141 if (pgdat->kcompactd)
024c61ea 3142 return;
698b1b30
VB
3143
3144 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3145 if (IS_ERR(pgdat->kcompactd)) {
3146 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3147 pgdat->kcompactd = NULL;
3148 }
698b1b30
VB
3149}
3150
3151/*
3152 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3153 * be holding mem_hotplug_begin/done().
698b1b30 3154 */
833dfc00 3155void __meminit kcompactd_stop(int nid)
698b1b30
VB
3156{
3157 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3158
3159 if (kcompactd) {
3160 kthread_stop(kcompactd);
3161 NODE_DATA(nid)->kcompactd = NULL;
3162 }
3163}
3164
3165/*
3166 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3167 * not required for correctness. So if the last cpu in a node goes
3168 * away, we get changed to run anywhere: as the first one comes back,
3169 * restore their cpu bindings.
3170 */
e46b1db2 3171static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3172{
3173 int nid;
3174
e46b1db2
AMG
3175 for_each_node_state(nid, N_MEMORY) {
3176 pg_data_t *pgdat = NODE_DATA(nid);
3177 const struct cpumask *mask;
698b1b30 3178
e46b1db2 3179 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3180
e46b1db2
AMG
3181 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3182 /* One of our CPUs online: restore mask */
3109de30
ML
3183 if (pgdat->kcompactd)
3184 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3185 }
e46b1db2 3186 return 0;
698b1b30
VB
3187}
3188
48fe8ab8
MC
3189static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3190 int write, void *buffer, size_t *lenp, loff_t *ppos)
3191{
3192 int ret, old;
3193
3194 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3195 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3196
3197 old = *(int *)table->data;
3198 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3199 if (ret)
3200 return ret;
3201 if (old != *(int *)table->data)
3202 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3203 table->procname, current->comm,
3204 task_pid_nr(current));
3205 return ret;
3206}
3207
48fe8ab8
MC
3208static struct ctl_table vm_compaction[] = {
3209 {
3210 .procname = "compact_memory",
8b9167cd 3211 .data = &sysctl_compact_memory,
48fe8ab8
MC
3212 .maxlen = sizeof(int),
3213 .mode = 0200,
3214 .proc_handler = sysctl_compaction_handler,
3215 },
3216 {
3217 .procname = "compaction_proactiveness",
3218 .data = &sysctl_compaction_proactiveness,
3219 .maxlen = sizeof(sysctl_compaction_proactiveness),
3220 .mode = 0644,
3221 .proc_handler = compaction_proactiveness_sysctl_handler,
3222 .extra1 = SYSCTL_ZERO,
3223 .extra2 = SYSCTL_ONE_HUNDRED,
3224 },
3225 {
3226 .procname = "extfrag_threshold",
3227 .data = &sysctl_extfrag_threshold,
3228 .maxlen = sizeof(int),
3229 .mode = 0644,
3230 .proc_handler = proc_dointvec_minmax,
3231 .extra1 = SYSCTL_ZERO,
3232 .extra2 = SYSCTL_ONE_THOUSAND,
3233 },
3234 {
3235 .procname = "compact_unevictable_allowed",
3236 .data = &sysctl_compact_unevictable_allowed,
3237 .maxlen = sizeof(int),
3238 .mode = 0644,
3239 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3240 .extra1 = SYSCTL_ZERO,
3241 .extra2 = SYSCTL_ONE,
3242 },
3243 { }
3244};
48fe8ab8 3245
698b1b30
VB
3246static int __init kcompactd_init(void)
3247{
3248 int nid;
e46b1db2
AMG
3249 int ret;
3250
3251 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3252 "mm/compaction:online",
3253 kcompactd_cpu_online, NULL);
3254 if (ret < 0) {
3255 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3256 return ret;
3257 }
698b1b30
VB
3258
3259 for_each_node_state(nid, N_MEMORY)
3260 kcompactd_run(nid);
48fe8ab8 3261 register_sysctl_init("vm", vm_compaction);
698b1b30
VB
3262 return 0;
3263}
3264subsys_initcall(kcompactd_init)
3265
ff9543fd 3266#endif /* CONFIG_COMPACTION */