mm: make alloc_contig_range handle free hugetlb pages
[linux-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741
MG
308 do {
309 if (pfn_valid_within(pfn)) {
310 if (check_source && PageLRU(page)) {
311 clear_pageblock_skip(page);
312 return true;
313 }
314
315 if (check_target && PageBuddy(page)) {
316 clear_pageblock_skip(page);
317 return true;
318 }
319 }
320
321 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 323 } while (page <= end_page);
e332f741
MG
324
325 return false;
326}
327
bb13ffeb
MG
328/*
329 * This function is called to clear all cached information on pageblocks that
330 * should be skipped for page isolation when the migrate and free page scanner
331 * meet.
332 */
62997027 333static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 334{
e332f741 335 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 336 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
337 unsigned long reset_migrate = free_pfn;
338 unsigned long reset_free = migrate_pfn;
339 bool source_set = false;
340 bool free_set = false;
341
342 if (!zone->compact_blockskip_flush)
343 return;
bb13ffeb 344
62997027 345 zone->compact_blockskip_flush = false;
bb13ffeb 346
e332f741
MG
347 /*
348 * Walk the zone and update pageblock skip information. Source looks
349 * for PageLRU while target looks for PageBuddy. When the scanner
350 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 * is suitable as both source and target.
352 */
353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
355 cond_resched();
356
e332f741
MG
357 /* Update the migrate PFN */
358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 migrate_pfn < reset_migrate) {
360 source_set = true;
361 reset_migrate = migrate_pfn;
362 zone->compact_init_migrate_pfn = reset_migrate;
363 zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 }
bb13ffeb 366
e332f741
MG
367 /* Update the free PFN */
368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 free_pfn > reset_free) {
370 free_set = true;
371 reset_free = free_pfn;
372 zone->compact_init_free_pfn = reset_free;
373 zone->compact_cached_free_pfn = reset_free;
374 }
bb13ffeb 375 }
02333641 376
e332f741
MG
377 /* Leave no distance if no suitable block was reset */
378 if (reset_migrate >= reset_free) {
379 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 zone->compact_cached_free_pfn = free_pfn;
382 }
bb13ffeb
MG
383}
384
62997027
MG
385void reset_isolation_suitable(pg_data_t *pgdat)
386{
387 int zoneid;
388
389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 struct zone *zone = &pgdat->node_zones[zoneid];
391 if (!populated_zone(zone))
392 continue;
393
394 /* Only flush if a full compaction finished recently */
395 if (zone->compact_blockskip_flush)
396 __reset_isolation_suitable(zone);
397 }
398}
399
e380bebe
MG
400/*
401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402 * locks are not required for read/writers. Returns true if it was already set.
403 */
404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 unsigned long pfn)
406{
407 bool skip;
408
409 /* Do no update if skip hint is being ignored */
410 if (cc->ignore_skip_hint)
411 return false;
412
413 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 return false;
415
416 skip = get_pageblock_skip(page);
417 if (!skip && !cc->no_set_skip_hint)
418 set_pageblock_skip(page);
419
420 return skip;
421}
422
423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424{
425 struct zone *zone = cc->zone;
426
427 pfn = pageblock_end_pfn(pfn);
428
429 /* Set for isolation rather than compaction */
430 if (cc->no_set_skip_hint)
431 return;
432
433 if (pfn > zone->compact_cached_migrate_pfn[0])
434 zone->compact_cached_migrate_pfn[0] = pfn;
435 if (cc->mode != MIGRATE_ASYNC &&
436 pfn > zone->compact_cached_migrate_pfn[1])
437 zone->compact_cached_migrate_pfn[1] = pfn;
438}
439
bb13ffeb
MG
440/*
441 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 442 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 443 */
c89511ab 444static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 445 struct page *page, unsigned long pfn)
bb13ffeb 446{
c89511ab 447 struct zone *zone = cc->zone;
6815bf3f 448
2583d671 449 if (cc->no_set_skip_hint)
6815bf3f
JK
450 return;
451
bb13ffeb
MG
452 if (!page)
453 return;
454
edc2ca61 455 set_pageblock_skip(page);
c89511ab 456
35979ef3 457 /* Update where async and sync compaction should restart */
e380bebe
MG
458 if (pfn < zone->compact_cached_free_pfn)
459 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
460}
461#else
462static inline bool isolation_suitable(struct compact_control *cc,
463 struct page *page)
464{
465 return true;
466}
467
b527cfe5 468static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
469{
470 return false;
471}
472
473static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 474 struct page *page, unsigned long pfn)
bb13ffeb
MG
475{
476}
e380bebe
MG
477
478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479{
480}
481
482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 unsigned long pfn)
484{
485 return false;
486}
bb13ffeb
MG
487#endif /* CONFIG_COMPACTION */
488
8b44d279
VB
489/*
490 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
491 * very heavily contended. For async compaction, trylock and record if the
492 * lock is contended. The lock will still be acquired but compaction will
493 * abort when the current block is finished regardless of success rate.
494 * Sync compaction acquires the lock.
8b44d279 495 *
cb2dcaf0 496 * Always returns true which makes it easier to track lock state in callers.
8b44d279 497 */
cb2dcaf0 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 499 struct compact_control *cc)
77337ede 500 __acquires(lock)
2a1402aa 501{
cb2dcaf0
MG
502 /* Track if the lock is contended in async mode */
503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 if (spin_trylock_irqsave(lock, *flags))
505 return true;
506
507 cc->contended = true;
8b44d279 508 }
1f9efdef 509
cb2dcaf0 510 spin_lock_irqsave(lock, *flags);
8b44d279 511 return true;
2a1402aa
MG
512}
513
c67fe375
MG
514/*
515 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
516 * very heavily contended. The lock should be periodically unlocked to avoid
517 * having disabled IRQs for a long time, even when there is nobody waiting on
518 * the lock. It might also be that allowing the IRQs will result in
519 * need_resched() becoming true. If scheduling is needed, async compaction
520 * aborts. Sync compaction schedules.
521 * Either compaction type will also abort if a fatal signal is pending.
522 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 523 *
8b44d279
VB
524 * Returns true if compaction should abort due to fatal signal pending, or
525 * async compaction due to need_resched()
526 * Returns false when compaction can continue (sync compaction might have
527 * scheduled)
c67fe375 528 */
8b44d279
VB
529static bool compact_unlock_should_abort(spinlock_t *lock,
530 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 531{
8b44d279
VB
532 if (*locked) {
533 spin_unlock_irqrestore(lock, flags);
534 *locked = false;
535 }
1f9efdef 536
8b44d279 537 if (fatal_signal_pending(current)) {
c3486f53 538 cc->contended = true;
8b44d279
VB
539 return true;
540 }
c67fe375 541
cf66f070 542 cond_resched();
be976572
VB
543
544 return false;
545}
546
85aa125f 547/*
9e4be470
JM
548 * Isolate free pages onto a private freelist. If @strict is true, will abort
549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550 * (even though it may still end up isolating some pages).
85aa125f 551 */
f40d1e42 552static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 553 unsigned long *start_pfn,
85aa125f
MN
554 unsigned long end_pfn,
555 struct list_head *freelist,
4fca9730 556 unsigned int stride,
85aa125f 557 bool strict)
748446bb 558{
b7aba698 559 int nr_scanned = 0, total_isolated = 0;
d097a6f6 560 struct page *cursor;
b8b2d825 561 unsigned long flags = 0;
f40d1e42 562 bool locked = false;
e14c720e 563 unsigned long blockpfn = *start_pfn;
66c64223 564 unsigned int order;
748446bb 565
4fca9730
MG
566 /* Strict mode is for isolation, speed is secondary */
567 if (strict)
568 stride = 1;
569
748446bb
MG
570 cursor = pfn_to_page(blockpfn);
571
f40d1e42 572 /* Isolate free pages. */
4fca9730 573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 574 int isolated;
748446bb
MG
575 struct page *page = cursor;
576
8b44d279
VB
577 /*
578 * Periodically drop the lock (if held) regardless of its
579 * contention, to give chance to IRQs. Abort if fatal signal
580 * pending or async compaction detects need_resched()
581 */
582 if (!(blockpfn % SWAP_CLUSTER_MAX)
583 && compact_unlock_should_abort(&cc->zone->lock, flags,
584 &locked, cc))
585 break;
586
b7aba698 587 nr_scanned++;
f40d1e42 588 if (!pfn_valid_within(blockpfn))
2af120bc
LA
589 goto isolate_fail;
590
9fcd6d2e
VB
591 /*
592 * For compound pages such as THP and hugetlbfs, we can save
593 * potentially a lot of iterations if we skip them at once.
594 * The check is racy, but we can consider only valid values
595 * and the only danger is skipping too much.
596 */
597 if (PageCompound(page)) {
21dc7e02
DR
598 const unsigned int order = compound_order(page);
599
d3c85bad 600 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
601 blockpfn += (1UL << order) - 1;
602 cursor += (1UL << order) - 1;
9fcd6d2e 603 }
9fcd6d2e
VB
604 goto isolate_fail;
605 }
606
f40d1e42 607 if (!PageBuddy(page))
2af120bc 608 goto isolate_fail;
f40d1e42
MG
609
610 /*
69b7189f
VB
611 * If we already hold the lock, we can skip some rechecking.
612 * Note that if we hold the lock now, checked_pageblock was
613 * already set in some previous iteration (or strict is true),
614 * so it is correct to skip the suitable migration target
615 * recheck as well.
f40d1e42 616 */
69b7189f 617 if (!locked) {
cb2dcaf0 618 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 619 &flags, cc);
f40d1e42 620
69b7189f
VB
621 /* Recheck this is a buddy page under lock */
622 if (!PageBuddy(page))
623 goto isolate_fail;
624 }
748446bb 625
66c64223 626 /* Found a free page, will break it into order-0 pages */
ab130f91 627 order = buddy_order(page);
66c64223 628 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
629 if (!isolated)
630 break;
66c64223 631 set_page_private(page, order);
a4f04f2c 632
748446bb 633 total_isolated += isolated;
a4f04f2c 634 cc->nr_freepages += isolated;
66c64223
JK
635 list_add_tail(&page->lru, freelist);
636
a4f04f2c
DR
637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 blockpfn += isolated;
639 break;
748446bb 640 }
a4f04f2c
DR
641 /* Advance to the end of split page */
642 blockpfn += isolated - 1;
643 cursor += isolated - 1;
644 continue;
2af120bc
LA
645
646isolate_fail:
647 if (strict)
648 break;
649 else
650 continue;
651
748446bb
MG
652 }
653
a4f04f2c
DR
654 if (locked)
655 spin_unlock_irqrestore(&cc->zone->lock, flags);
656
9fcd6d2e
VB
657 /*
658 * There is a tiny chance that we have read bogus compound_order(),
659 * so be careful to not go outside of the pageblock.
660 */
661 if (unlikely(blockpfn > end_pfn))
662 blockpfn = end_pfn;
663
e34d85f0
JK
664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 nr_scanned, total_isolated);
666
e14c720e
VB
667 /* Record how far we have got within the block */
668 *start_pfn = blockpfn;
669
f40d1e42
MG
670 /*
671 * If strict isolation is requested by CMA then check that all the
672 * pages requested were isolated. If there were any failures, 0 is
673 * returned and CMA will fail.
674 */
2af120bc 675 if (strict && blockpfn < end_pfn)
f40d1e42
MG
676 total_isolated = 0;
677
7f354a54 678 cc->total_free_scanned += nr_scanned;
397487db 679 if (total_isolated)
010fc29a 680 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
681 return total_isolated;
682}
683
85aa125f
MN
684/**
685 * isolate_freepages_range() - isolate free pages.
e8b098fc 686 * @cc: Compaction control structure.
85aa125f
MN
687 * @start_pfn: The first PFN to start isolating.
688 * @end_pfn: The one-past-last PFN.
689 *
690 * Non-free pages, invalid PFNs, or zone boundaries within the
691 * [start_pfn, end_pfn) range are considered errors, cause function to
692 * undo its actions and return zero.
693 *
694 * Otherwise, function returns one-past-the-last PFN of isolated page
695 * (which may be greater then end_pfn if end fell in a middle of
696 * a free page).
697 */
ff9543fd 698unsigned long
bb13ffeb
MG
699isolate_freepages_range(struct compact_control *cc,
700 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 701{
e1409c32 702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
703 LIST_HEAD(freelist);
704
7d49d886 705 pfn = start_pfn;
06b6640a 706 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
707 if (block_start_pfn < cc->zone->zone_start_pfn)
708 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 709 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
710
711 for (; pfn < end_pfn; pfn += isolated,
e1409c32 712 block_start_pfn = block_end_pfn,
7d49d886 713 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
714 /* Protect pfn from changing by isolate_freepages_block */
715 unsigned long isolate_start_pfn = pfn;
85aa125f 716
85aa125f
MN
717 block_end_pfn = min(block_end_pfn, end_pfn);
718
58420016
JK
719 /*
720 * pfn could pass the block_end_pfn if isolated freepage
721 * is more than pageblock order. In this case, we adjust
722 * scanning range to right one.
723 */
724 if (pfn >= block_end_pfn) {
06b6640a
VB
725 block_start_pfn = pageblock_start_pfn(pfn);
726 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
727 block_end_pfn = min(block_end_pfn, end_pfn);
728 }
729
e1409c32
JK
730 if (!pageblock_pfn_to_page(block_start_pfn,
731 block_end_pfn, cc->zone))
7d49d886
VB
732 break;
733
e14c720e 734 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 735 block_end_pfn, &freelist, 0, true);
85aa125f
MN
736
737 /*
738 * In strict mode, isolate_freepages_block() returns 0 if
739 * there are any holes in the block (ie. invalid PFNs or
740 * non-free pages).
741 */
742 if (!isolated)
743 break;
744
745 /*
746 * If we managed to isolate pages, it is always (1 << n) *
747 * pageblock_nr_pages for some non-negative n. (Max order
748 * page may span two pageblocks).
749 */
750 }
751
66c64223 752 /* __isolate_free_page() does not map the pages */
4469ab98 753 split_map_pages(&freelist);
85aa125f
MN
754
755 if (pfn < end_pfn) {
756 /* Loop terminated early, cleanup. */
757 release_freepages(&freelist);
758 return 0;
759 }
760
761 /* We don't use freelists for anything. */
762 return pfn;
763}
764
748446bb 765/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 766static bool too_many_isolated(pg_data_t *pgdat)
748446bb 767{
bc693045 768 unsigned long active, inactive, isolated;
748446bb 769
5f438eee
AR
770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 node_page_state(pgdat, NR_INACTIVE_ANON);
772 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 node_page_state(pgdat, NR_ACTIVE_ANON);
774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 776
bc693045 777 return isolated > (inactive + active) / 2;
748446bb
MG
778}
779
2fe86e00 780/**
edc2ca61
VB
781 * isolate_migratepages_block() - isolate all migrate-able pages within
782 * a single pageblock
2fe86e00 783 * @cc: Compaction control structure.
edc2ca61
VB
784 * @low_pfn: The first PFN to isolate
785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
786 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
787 *
788 * Isolate all pages that can be migrated from the range specified by
edc2ca61 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 791 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 792 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 793 *
edc2ca61 794 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 795 * and cc->nr_migratepages is updated accordingly.
748446bb 796 */
c2ad7a1f 797static int
edc2ca61
VB
798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
799 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 800{
5f438eee 801 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 802 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 803 struct lruvec *lruvec;
b8b2d825 804 unsigned long flags = 0;
6168d0da 805 struct lruvec *locked = NULL;
bb13ffeb 806 struct page *page = NULL, *valid_page = NULL;
e34d85f0 807 unsigned long start_pfn = low_pfn;
fdd048e1
VB
808 bool skip_on_failure = false;
809 unsigned long next_skip_pfn = 0;
e380bebe 810 bool skip_updated = false;
c2ad7a1f
OS
811 int ret = 0;
812
813 cc->migrate_pfn = low_pfn;
748446bb 814
748446bb
MG
815 /*
816 * Ensure that there are not too many pages isolated from the LRU
817 * list by either parallel reclaimers or compaction. If there are,
818 * delay for some time until fewer pages are isolated
819 */
5f438eee 820 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
821 /* stop isolation if there are still pages not migrated */
822 if (cc->nr_migratepages)
c2ad7a1f 823 return -EAGAIN;
d20bdd57 824
f9e35b3b 825 /* async migration should just abort */
e0b9daeb 826 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 827 return -EAGAIN;
f9e35b3b 828
748446bb
MG
829 congestion_wait(BLK_RW_ASYNC, HZ/10);
830
831 if (fatal_signal_pending(current))
c2ad7a1f 832 return -EINTR;
748446bb
MG
833 }
834
cf66f070 835 cond_resched();
aeef4b83 836
fdd048e1
VB
837 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
838 skip_on_failure = true;
839 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
840 }
841
748446bb 842 /* Time to isolate some pages for migration */
748446bb 843 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 844
fdd048e1
VB
845 if (skip_on_failure && low_pfn >= next_skip_pfn) {
846 /*
847 * We have isolated all migration candidates in the
848 * previous order-aligned block, and did not skip it due
849 * to failure. We should migrate the pages now and
850 * hopefully succeed compaction.
851 */
852 if (nr_isolated)
853 break;
854
855 /*
856 * We failed to isolate in the previous order-aligned
857 * block. Set the new boundary to the end of the
858 * current block. Note we can't simply increase
859 * next_skip_pfn by 1 << order, as low_pfn might have
860 * been incremented by a higher number due to skipping
861 * a compound or a high-order buddy page in the
862 * previous loop iteration.
863 */
864 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 }
866
8b44d279
VB
867 /*
868 * Periodically drop the lock (if held) regardless of its
670105a2
MG
869 * contention, to give chance to IRQs. Abort completely if
870 * a fatal signal is pending.
8b44d279 871 */
6168d0da
AS
872 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
873 if (locked) {
874 unlock_page_lruvec_irqrestore(locked, flags);
875 locked = NULL;
876 }
877
878 if (fatal_signal_pending(current)) {
879 cc->contended = true;
c2ad7a1f 880 ret = -EINTR;
6168d0da 881
6168d0da
AS
882 goto fatal_pending;
883 }
884
885 cond_resched();
670105a2 886 }
c67fe375 887
748446bb 888 if (!pfn_valid_within(low_pfn))
fdd048e1 889 goto isolate_fail;
b7aba698 890 nr_scanned++;
748446bb 891
748446bb 892 page = pfn_to_page(low_pfn);
dc908600 893
e380bebe
MG
894 /*
895 * Check if the pageblock has already been marked skipped.
896 * Only the aligned PFN is checked as the caller isolates
897 * COMPACT_CLUSTER_MAX at a time so the second call must
898 * not falsely conclude that the block should be skipped.
899 */
900 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902 low_pfn = end_pfn;
9df41314 903 page = NULL;
e380bebe
MG
904 goto isolate_abort;
905 }
bb13ffeb 906 valid_page = page;
e380bebe 907 }
bb13ffeb 908
369fa227
OS
909 if (PageHuge(page) && cc->alloc_contig) {
910 ret = isolate_or_dissolve_huge_page(page);
911
912 /*
913 * Fail isolation in case isolate_or_dissolve_huge_page()
914 * reports an error. In case of -ENOMEM, abort right away.
915 */
916 if (ret < 0) {
917 /* Do not report -EBUSY down the chain */
918 if (ret == -EBUSY)
919 ret = 0;
920 low_pfn += (1UL << compound_order(page)) - 1;
921 goto isolate_fail;
922 }
923
924 /*
925 * Ok, the hugepage was dissolved. Now these pages are
926 * Buddy and cannot be re-allocated because they are
927 * isolated. Fall-through as the check below handles
928 * Buddy pages.
929 */
930 }
931
6c14466c 932 /*
99c0fd5e
VB
933 * Skip if free. We read page order here without zone lock
934 * which is generally unsafe, but the race window is small and
935 * the worst thing that can happen is that we skip some
936 * potential isolation targets.
6c14466c 937 */
99c0fd5e 938 if (PageBuddy(page)) {
ab130f91 939 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
940
941 /*
942 * Without lock, we cannot be sure that what we got is
943 * a valid page order. Consider only values in the
944 * valid order range to prevent low_pfn overflow.
945 */
946 if (freepage_order > 0 && freepage_order < MAX_ORDER)
947 low_pfn += (1UL << freepage_order) - 1;
748446bb 948 continue;
99c0fd5e 949 }
748446bb 950
bc835011 951 /*
29c0dde8 952 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
953 * hugetlbfs are not to be compacted unless we are attempting
954 * an allocation much larger than the huge page size (eg CMA).
955 * We can potentially save a lot of iterations if we skip them
956 * at once. The check is racy, but we can consider only valid
957 * values and the only danger is skipping too much.
bc835011 958 */
1da2f328 959 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 960 const unsigned int order = compound_order(page);
edc2ca61 961
d3c85bad 962 if (likely(order < MAX_ORDER))
21dc7e02 963 low_pfn += (1UL << order) - 1;
fdd048e1 964 goto isolate_fail;
2a1402aa
MG
965 }
966
bda807d4
MK
967 /*
968 * Check may be lockless but that's ok as we recheck later.
969 * It's possible to migrate LRU and non-lru movable pages.
970 * Skip any other type of page
971 */
972 if (!PageLRU(page)) {
bda807d4
MK
973 /*
974 * __PageMovable can return false positive so we need
975 * to verify it under page_lock.
976 */
977 if (unlikely(__PageMovable(page)) &&
978 !PageIsolated(page)) {
979 if (locked) {
6168d0da
AS
980 unlock_page_lruvec_irqrestore(locked, flags);
981 locked = NULL;
bda807d4
MK
982 }
983
9e5bcd61 984 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
985 goto isolate_success;
986 }
987
fdd048e1 988 goto isolate_fail;
bda807d4 989 }
29c0dde8 990
119d6d59
DR
991 /*
992 * Migration will fail if an anonymous page is pinned in memory,
993 * so avoid taking lru_lock and isolating it unnecessarily in an
994 * admittedly racy check.
995 */
996 if (!page_mapping(page) &&
997 page_count(page) > page_mapcount(page))
fdd048e1 998 goto isolate_fail;
119d6d59 999
73e64c51
MH
1000 /*
1001 * Only allow to migrate anonymous pages in GFP_NOFS context
1002 * because those do not depend on fs locks.
1003 */
1004 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1005 goto isolate_fail;
1006
9df41314
AS
1007 /*
1008 * Be careful not to clear PageLRU until after we're
1009 * sure the page is not being freed elsewhere -- the
1010 * page release code relies on it.
1011 */
1012 if (unlikely(!get_page_unless_zero(page)))
1013 goto isolate_fail;
1014
c2135f7c 1015 if (!__isolate_lru_page_prepare(page, isolate_mode))
9df41314
AS
1016 goto isolate_fail_put;
1017
1018 /* Try isolate the page */
1019 if (!TestClearPageLRU(page))
1020 goto isolate_fail_put;
1021
6168d0da
AS
1022 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1023
69b7189f 1024 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1025 if (lruvec != locked) {
1026 if (locked)
1027 unlock_page_lruvec_irqrestore(locked, flags);
1028
1029 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1030 locked = lruvec;
6168d0da
AS
1031
1032 lruvec_memcg_debug(lruvec, page);
e380bebe 1033
e380bebe
MG
1034 /* Try get exclusive access under lock */
1035 if (!skip_updated) {
1036 skip_updated = true;
1037 if (test_and_set_skip(cc, page, low_pfn))
1038 goto isolate_abort;
1039 }
2a1402aa 1040
29c0dde8
VB
1041 /*
1042 * Page become compound since the non-locked check,
1043 * and it's on LRU. It can only be a THP so the order
1044 * is safe to read and it's 0 for tail pages.
1045 */
1da2f328 1046 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1047 low_pfn += compound_nr(page) - 1;
9df41314
AS
1048 SetPageLRU(page);
1049 goto isolate_fail_put;
69b7189f 1050 }
d99fd5fe 1051 }
fa9add64 1052
1da2f328
RR
1053 /* The whole page is taken off the LRU; skip the tail pages. */
1054 if (PageCompound(page))
1055 low_pfn += compound_nr(page) - 1;
bc835011 1056
748446bb 1057 /* Successfully isolated */
46ae6b2c 1058 del_page_from_lru_list(page, lruvec);
1da2f328 1059 mod_node_page_state(page_pgdat(page),
9de4f22a 1060 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1061 thp_nr_pages(page));
b6c75016
JK
1062
1063isolate_success:
fdd048e1 1064 list_add(&page->lru, &cc->migratepages);
38935861
ZY
1065 cc->nr_migratepages += compound_nr(page);
1066 nr_isolated += compound_nr(page);
748446bb 1067
804d3121
MG
1068 /*
1069 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1070 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1071 * or a lock is contended. For contention, isolate quickly to
1072 * potentially remove one source of contention.
804d3121 1073 */
38935861 1074 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1075 !cc->rescan && !cc->contended) {
31b8384a 1076 ++low_pfn;
748446bb 1077 break;
31b8384a 1078 }
fdd048e1
VB
1079
1080 continue;
9df41314
AS
1081
1082isolate_fail_put:
1083 /* Avoid potential deadlock in freeing page under lru_lock */
1084 if (locked) {
6168d0da
AS
1085 unlock_page_lruvec_irqrestore(locked, flags);
1086 locked = NULL;
9df41314
AS
1087 }
1088 put_page(page);
1089
fdd048e1 1090isolate_fail:
369fa227 1091 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1092 continue;
1093
1094 /*
1095 * We have isolated some pages, but then failed. Release them
1096 * instead of migrating, as we cannot form the cc->order buddy
1097 * page anyway.
1098 */
1099 if (nr_isolated) {
1100 if (locked) {
6168d0da
AS
1101 unlock_page_lruvec_irqrestore(locked, flags);
1102 locked = NULL;
fdd048e1 1103 }
fdd048e1
VB
1104 putback_movable_pages(&cc->migratepages);
1105 cc->nr_migratepages = 0;
fdd048e1
VB
1106 nr_isolated = 0;
1107 }
1108
1109 if (low_pfn < next_skip_pfn) {
1110 low_pfn = next_skip_pfn - 1;
1111 /*
1112 * The check near the loop beginning would have updated
1113 * next_skip_pfn too, but this is a bit simpler.
1114 */
1115 next_skip_pfn += 1UL << cc->order;
1116 }
369fa227
OS
1117
1118 if (ret == -ENOMEM)
1119 break;
748446bb
MG
1120 }
1121
99c0fd5e
VB
1122 /*
1123 * The PageBuddy() check could have potentially brought us outside
1124 * the range to be scanned.
1125 */
1126 if (unlikely(low_pfn > end_pfn))
1127 low_pfn = end_pfn;
1128
9df41314
AS
1129 page = NULL;
1130
e380bebe 1131isolate_abort:
c67fe375 1132 if (locked)
6168d0da 1133 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1134 if (page) {
1135 SetPageLRU(page);
1136 put_page(page);
1137 }
748446bb 1138
50b5b094 1139 /*
804d3121
MG
1140 * Updated the cached scanner pfn once the pageblock has been scanned
1141 * Pages will either be migrated in which case there is no point
1142 * scanning in the near future or migration failed in which case the
1143 * failure reason may persist. The block is marked for skipping if
1144 * there were no pages isolated in the block or if the block is
1145 * rescanned twice in a row.
50b5b094 1146 */
804d3121 1147 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1148 if (valid_page && !skip_updated)
1149 set_pageblock_skip(valid_page);
1150 update_cached_migrate(cc, low_pfn);
1151 }
bb13ffeb 1152
e34d85f0
JK
1153 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1154 nr_scanned, nr_isolated);
b7aba698 1155
670105a2 1156fatal_pending:
7f354a54 1157 cc->total_migrate_scanned += nr_scanned;
397487db 1158 if (nr_isolated)
010fc29a 1159 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1160
c2ad7a1f
OS
1161 cc->migrate_pfn = low_pfn;
1162
1163 return ret;
2fe86e00
MN
1164}
1165
edc2ca61
VB
1166/**
1167 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1168 * @cc: Compaction control structure.
1169 * @start_pfn: The first PFN to start isolating.
1170 * @end_pfn: The one-past-last PFN.
1171 *
369fa227
OS
1172 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1173 * in case we could not allocate a page, or 0.
edc2ca61 1174 */
c2ad7a1f 1175int
edc2ca61
VB
1176isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1177 unsigned long end_pfn)
1178{
e1409c32 1179 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1180 int ret = 0;
edc2ca61
VB
1181
1182 /* Scan block by block. First and last block may be incomplete */
1183 pfn = start_pfn;
06b6640a 1184 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1185 if (block_start_pfn < cc->zone->zone_start_pfn)
1186 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1187 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1188
1189 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1190 block_start_pfn = block_end_pfn,
edc2ca61
VB
1191 block_end_pfn += pageblock_nr_pages) {
1192
1193 block_end_pfn = min(block_end_pfn, end_pfn);
1194
e1409c32
JK
1195 if (!pageblock_pfn_to_page(block_start_pfn,
1196 block_end_pfn, cc->zone))
edc2ca61
VB
1197 continue;
1198
c2ad7a1f
OS
1199 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1200 ISOLATE_UNEVICTABLE);
edc2ca61 1201
c2ad7a1f 1202 if (ret)
edc2ca61 1203 break;
6ea41c0c 1204
38935861 1205 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1206 break;
edc2ca61 1207 }
edc2ca61 1208
c2ad7a1f 1209 return ret;
edc2ca61
VB
1210}
1211
ff9543fd
MN
1212#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1213#ifdef CONFIG_COMPACTION
018e9a49 1214
b682debd
VB
1215static bool suitable_migration_source(struct compact_control *cc,
1216 struct page *page)
1217{
282722b0
VB
1218 int block_mt;
1219
9bebefd5
MG
1220 if (pageblock_skip_persistent(page))
1221 return false;
1222
282722b0 1223 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1224 return true;
1225
282722b0
VB
1226 block_mt = get_pageblock_migratetype(page);
1227
1228 if (cc->migratetype == MIGRATE_MOVABLE)
1229 return is_migrate_movable(block_mt);
1230 else
1231 return block_mt == cc->migratetype;
b682debd
VB
1232}
1233
018e9a49 1234/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1235static bool suitable_migration_target(struct compact_control *cc,
1236 struct page *page)
018e9a49
AM
1237{
1238 /* If the page is a large free page, then disallow migration */
1239 if (PageBuddy(page)) {
1240 /*
1241 * We are checking page_order without zone->lock taken. But
1242 * the only small danger is that we skip a potentially suitable
1243 * pageblock, so it's not worth to check order for valid range.
1244 */
ab130f91 1245 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1246 return false;
1247 }
1248
1ef36db2
YX
1249 if (cc->ignore_block_suitable)
1250 return true;
1251
018e9a49 1252 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1253 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1254 return true;
1255
1256 /* Otherwise skip the block */
1257 return false;
1258}
1259
70b44595
MG
1260static inline unsigned int
1261freelist_scan_limit(struct compact_control *cc)
1262{
dd7ef7bd
QC
1263 unsigned short shift = BITS_PER_LONG - 1;
1264
1265 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1266}
1267
f2849aa0
VB
1268/*
1269 * Test whether the free scanner has reached the same or lower pageblock than
1270 * the migration scanner, and compaction should thus terminate.
1271 */
1272static inline bool compact_scanners_met(struct compact_control *cc)
1273{
1274 return (cc->free_pfn >> pageblock_order)
1275 <= (cc->migrate_pfn >> pageblock_order);
1276}
1277
5a811889
MG
1278/*
1279 * Used when scanning for a suitable migration target which scans freelists
1280 * in reverse. Reorders the list such as the unscanned pages are scanned
1281 * first on the next iteration of the free scanner
1282 */
1283static void
1284move_freelist_head(struct list_head *freelist, struct page *freepage)
1285{
1286 LIST_HEAD(sublist);
1287
1288 if (!list_is_last(freelist, &freepage->lru)) {
1289 list_cut_before(&sublist, freelist, &freepage->lru);
1290 if (!list_empty(&sublist))
1291 list_splice_tail(&sublist, freelist);
1292 }
1293}
1294
1295/*
1296 * Similar to move_freelist_head except used by the migration scanner
1297 * when scanning forward. It's possible for these list operations to
1298 * move against each other if they search the free list exactly in
1299 * lockstep.
1300 */
70b44595
MG
1301static void
1302move_freelist_tail(struct list_head *freelist, struct page *freepage)
1303{
1304 LIST_HEAD(sublist);
1305
1306 if (!list_is_first(freelist, &freepage->lru)) {
1307 list_cut_position(&sublist, freelist, &freepage->lru);
1308 if (!list_empty(&sublist))
1309 list_splice_tail(&sublist, freelist);
1310 }
1311}
1312
5a811889
MG
1313static void
1314fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1315{
1316 unsigned long start_pfn, end_pfn;
6e2b7044 1317 struct page *page;
5a811889
MG
1318
1319 /* Do not search around if there are enough pages already */
1320 if (cc->nr_freepages >= cc->nr_migratepages)
1321 return;
1322
1323 /* Minimise scanning during async compaction */
1324 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1325 return;
1326
1327 /* Pageblock boundaries */
6e2b7044
VB
1328 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1329 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1330
1331 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1332 if (!page)
1333 return;
5a811889
MG
1334
1335 /* Scan before */
1336 if (start_pfn != pfn) {
4fca9730 1337 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1338 if (cc->nr_freepages >= cc->nr_migratepages)
1339 return;
1340 }
1341
1342 /* Scan after */
1343 start_pfn = pfn + nr_isolated;
60fce36a 1344 if (start_pfn < end_pfn)
4fca9730 1345 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1346
1347 /* Skip this pageblock in the future as it's full or nearly full */
1348 if (cc->nr_freepages < cc->nr_migratepages)
1349 set_pageblock_skip(page);
1350}
1351
dbe2d4e4
MG
1352/* Search orders in round-robin fashion */
1353static int next_search_order(struct compact_control *cc, int order)
1354{
1355 order--;
1356 if (order < 0)
1357 order = cc->order - 1;
1358
1359 /* Search wrapped around? */
1360 if (order == cc->search_order) {
1361 cc->search_order--;
1362 if (cc->search_order < 0)
1363 cc->search_order = cc->order - 1;
1364 return -1;
1365 }
1366
1367 return order;
1368}
1369
5a811889
MG
1370static unsigned long
1371fast_isolate_freepages(struct compact_control *cc)
1372{
1373 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1374 unsigned int nr_scanned = 0;
74e21484 1375 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1376 unsigned long nr_isolated = 0;
1377 unsigned long distance;
1378 struct page *page = NULL;
1379 bool scan_start = false;
1380 int order;
1381
1382 /* Full compaction passes in a negative order */
1383 if (cc->order <= 0)
1384 return cc->free_pfn;
1385
1386 /*
1387 * If starting the scan, use a deeper search and use the highest
1388 * PFN found if a suitable one is not found.
1389 */
e332f741 1390 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1391 limit = pageblock_nr_pages >> 1;
1392 scan_start = true;
1393 }
1394
1395 /*
1396 * Preferred point is in the top quarter of the scan space but take
1397 * a pfn from the top half if the search is problematic.
1398 */
1399 distance = (cc->free_pfn - cc->migrate_pfn);
1400 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1401 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1402
1403 if (WARN_ON_ONCE(min_pfn > low_pfn))
1404 low_pfn = min_pfn;
1405
dbe2d4e4
MG
1406 /*
1407 * Search starts from the last successful isolation order or the next
1408 * order to search after a previous failure
1409 */
1410 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1411
1412 for (order = cc->search_order;
1413 !page && order >= 0;
1414 order = next_search_order(cc, order)) {
5a811889
MG
1415 struct free_area *area = &cc->zone->free_area[order];
1416 struct list_head *freelist;
1417 struct page *freepage;
1418 unsigned long flags;
1419 unsigned int order_scanned = 0;
74e21484 1420 unsigned long high_pfn = 0;
5a811889
MG
1421
1422 if (!area->nr_free)
1423 continue;
1424
1425 spin_lock_irqsave(&cc->zone->lock, flags);
1426 freelist = &area->free_list[MIGRATE_MOVABLE];
1427 list_for_each_entry_reverse(freepage, freelist, lru) {
1428 unsigned long pfn;
1429
1430 order_scanned++;
1431 nr_scanned++;
1432 pfn = page_to_pfn(freepage);
1433
1434 if (pfn >= highest)
6e2b7044
VB
1435 highest = max(pageblock_start_pfn(pfn),
1436 cc->zone->zone_start_pfn);
5a811889
MG
1437
1438 if (pfn >= low_pfn) {
1439 cc->fast_search_fail = 0;
dbe2d4e4 1440 cc->search_order = order;
5a811889
MG
1441 page = freepage;
1442 break;
1443 }
1444
1445 if (pfn >= min_pfn && pfn > high_pfn) {
1446 high_pfn = pfn;
1447
1448 /* Shorten the scan if a candidate is found */
1449 limit >>= 1;
1450 }
1451
1452 if (order_scanned >= limit)
1453 break;
1454 }
1455
1456 /* Use a minimum pfn if a preferred one was not found */
1457 if (!page && high_pfn) {
1458 page = pfn_to_page(high_pfn);
1459
1460 /* Update freepage for the list reorder below */
1461 freepage = page;
1462 }
1463
1464 /* Reorder to so a future search skips recent pages */
1465 move_freelist_head(freelist, freepage);
1466
1467 /* Isolate the page if available */
1468 if (page) {
1469 if (__isolate_free_page(page, order)) {
1470 set_page_private(page, order);
1471 nr_isolated = 1 << order;
1472 cc->nr_freepages += nr_isolated;
1473 list_add_tail(&page->lru, &cc->freepages);
1474 count_compact_events(COMPACTISOLATED, nr_isolated);
1475 } else {
1476 /* If isolation fails, abort the search */
5b56d996 1477 order = cc->search_order + 1;
5a811889
MG
1478 page = NULL;
1479 }
1480 }
1481
1482 spin_unlock_irqrestore(&cc->zone->lock, flags);
1483
1484 /*
1485 * Smaller scan on next order so the total scan ig related
1486 * to freelist_scan_limit.
1487 */
1488 if (order_scanned >= limit)
1489 limit = min(1U, limit >> 1);
1490 }
1491
1492 if (!page) {
1493 cc->fast_search_fail++;
1494 if (scan_start) {
1495 /*
1496 * Use the highest PFN found above min. If one was
f3867755 1497 * not found, be pessimistic for direct compaction
5a811889
MG
1498 * and use the min mark.
1499 */
1500 if (highest) {
1501 page = pfn_to_page(highest);
1502 cc->free_pfn = highest;
1503 } else {
e577c8b6 1504 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1505 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1506 min(pageblock_end_pfn(min_pfn),
1507 zone_end_pfn(cc->zone)),
73a6e474 1508 cc->zone);
5a811889
MG
1509 cc->free_pfn = min_pfn;
1510 }
1511 }
1512 }
1513 }
1514
d097a6f6
MG
1515 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1516 highest -= pageblock_nr_pages;
5a811889 1517 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1518 }
5a811889
MG
1519
1520 cc->total_free_scanned += nr_scanned;
1521 if (!page)
1522 return cc->free_pfn;
1523
1524 low_pfn = page_to_pfn(page);
1525 fast_isolate_around(cc, low_pfn, nr_isolated);
1526 return low_pfn;
1527}
1528
2fe86e00 1529/*
ff9543fd
MN
1530 * Based on information in the current compact_control, find blocks
1531 * suitable for isolating free pages from and then isolate them.
2fe86e00 1532 */
edc2ca61 1533static void isolate_freepages(struct compact_control *cc)
2fe86e00 1534{
edc2ca61 1535 struct zone *zone = cc->zone;
ff9543fd 1536 struct page *page;
c96b9e50 1537 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1538 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1539 unsigned long block_end_pfn; /* end of current pageblock */
1540 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1541 struct list_head *freelist = &cc->freepages;
4fca9730 1542 unsigned int stride;
2fe86e00 1543
5a811889
MG
1544 /* Try a small search of the free lists for a candidate */
1545 isolate_start_pfn = fast_isolate_freepages(cc);
1546 if (cc->nr_freepages)
1547 goto splitmap;
1548
ff9543fd
MN
1549 /*
1550 * Initialise the free scanner. The starting point is where we last
49e068f0 1551 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1552 * zone when isolating for the first time. For looping we also need
1553 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1554 * block_start_pfn -= pageblock_nr_pages in the for loop.
1555 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1556 * zone which ends in the middle of a pageblock.
49e068f0
VB
1557 * The low boundary is the end of the pageblock the migration scanner
1558 * is using.
ff9543fd 1559 */
e14c720e 1560 isolate_start_pfn = cc->free_pfn;
5a811889 1561 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1562 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1563 zone_end_pfn(zone));
06b6640a 1564 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1565 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1566
ff9543fd
MN
1567 /*
1568 * Isolate free pages until enough are available to migrate the
1569 * pages on cc->migratepages. We stop searching if the migrate
1570 * and free page scanners meet or enough free pages are isolated.
1571 */
f5f61a32 1572 for (; block_start_pfn >= low_pfn;
c96b9e50 1573 block_end_pfn = block_start_pfn,
e14c720e
VB
1574 block_start_pfn -= pageblock_nr_pages,
1575 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1576 unsigned long nr_isolated;
1577
f6ea3adb
DR
1578 /*
1579 * This can iterate a massively long zone without finding any
cb810ad2 1580 * suitable migration targets, so periodically check resched.
f6ea3adb 1581 */
cb810ad2 1582 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1583 cond_resched();
f6ea3adb 1584
7d49d886
VB
1585 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1586 zone);
1587 if (!page)
ff9543fd
MN
1588 continue;
1589
1590 /* Check the block is suitable for migration */
9f7e3387 1591 if (!suitable_migration_target(cc, page))
ff9543fd 1592 continue;
68e3e926 1593
bb13ffeb
MG
1594 /* If isolation recently failed, do not retry */
1595 if (!isolation_suitable(cc, page))
1596 continue;
1597
e14c720e 1598 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1599 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1600 block_end_pfn, freelist, stride, false);
ff9543fd 1601
d097a6f6
MG
1602 /* Update the skip hint if the full pageblock was scanned */
1603 if (isolate_start_pfn == block_end_pfn)
1604 update_pageblock_skip(cc, page, block_start_pfn);
1605
cb2dcaf0
MG
1606 /* Are enough freepages isolated? */
1607 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1608 if (isolate_start_pfn >= block_end_pfn) {
1609 /*
1610 * Restart at previous pageblock if more
1611 * freepages can be isolated next time.
1612 */
f5f61a32
VB
1613 isolate_start_pfn =
1614 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1615 }
be976572 1616 break;
a46cbf3b 1617 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1618 /*
a46cbf3b
DR
1619 * If isolation failed early, do not continue
1620 * needlessly.
f5f61a32 1621 */
a46cbf3b 1622 break;
f5f61a32 1623 }
4fca9730
MG
1624
1625 /* Adjust stride depending on isolation */
1626 if (nr_isolated) {
1627 stride = 1;
1628 continue;
1629 }
1630 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1631 }
1632
7ed695e0 1633 /*
f5f61a32
VB
1634 * Record where the free scanner will restart next time. Either we
1635 * broke from the loop and set isolate_start_pfn based on the last
1636 * call to isolate_freepages_block(), or we met the migration scanner
1637 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1638 */
f5f61a32 1639 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1640
1641splitmap:
1642 /* __isolate_free_page() does not map the pages */
1643 split_map_pages(freelist);
748446bb
MG
1644}
1645
1646/*
1647 * This is a migrate-callback that "allocates" freepages by taking pages
1648 * from the isolated freelists in the block we are migrating to.
1649 */
1650static struct page *compaction_alloc(struct page *migratepage,
666feb21 1651 unsigned long data)
748446bb
MG
1652{
1653 struct compact_control *cc = (struct compact_control *)data;
1654 struct page *freepage;
1655
748446bb 1656 if (list_empty(&cc->freepages)) {
cb2dcaf0 1657 isolate_freepages(cc);
748446bb
MG
1658
1659 if (list_empty(&cc->freepages))
1660 return NULL;
1661 }
1662
1663 freepage = list_entry(cc->freepages.next, struct page, lru);
1664 list_del(&freepage->lru);
1665 cc->nr_freepages--;
1666
1667 return freepage;
1668}
1669
1670/*
d53aea3d
DR
1671 * This is a migrate-callback that "frees" freepages back to the isolated
1672 * freelist. All pages on the freelist are from the same zone, so there is no
1673 * special handling needed for NUMA.
1674 */
1675static void compaction_free(struct page *page, unsigned long data)
1676{
1677 struct compact_control *cc = (struct compact_control *)data;
1678
1679 list_add(&page->lru, &cc->freepages);
1680 cc->nr_freepages++;
1681}
1682
ff9543fd
MN
1683/* possible outcome of isolate_migratepages */
1684typedef enum {
1685 ISOLATE_ABORT, /* Abort compaction now */
1686 ISOLATE_NONE, /* No pages isolated, continue scanning */
1687 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1688} isolate_migrate_t;
1689
5bbe3547
EM
1690/*
1691 * Allow userspace to control policy on scanning the unevictable LRU for
1692 * compactable pages.
1693 */
6923aa0d
SAS
1694#ifdef CONFIG_PREEMPT_RT
1695int sysctl_compact_unevictable_allowed __read_mostly = 0;
1696#else
5bbe3547 1697int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1698#endif
5bbe3547 1699
70b44595
MG
1700static inline void
1701update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1702{
1703 if (cc->fast_start_pfn == ULONG_MAX)
1704 return;
1705
1706 if (!cc->fast_start_pfn)
1707 cc->fast_start_pfn = pfn;
1708
1709 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1710}
1711
1712static inline unsigned long
1713reinit_migrate_pfn(struct compact_control *cc)
1714{
1715 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1716 return cc->migrate_pfn;
1717
1718 cc->migrate_pfn = cc->fast_start_pfn;
1719 cc->fast_start_pfn = ULONG_MAX;
1720
1721 return cc->migrate_pfn;
1722}
1723
1724/*
1725 * Briefly search the free lists for a migration source that already has
1726 * some free pages to reduce the number of pages that need migration
1727 * before a pageblock is free.
1728 */
1729static unsigned long fast_find_migrateblock(struct compact_control *cc)
1730{
1731 unsigned int limit = freelist_scan_limit(cc);
1732 unsigned int nr_scanned = 0;
1733 unsigned long distance;
1734 unsigned long pfn = cc->migrate_pfn;
1735 unsigned long high_pfn;
1736 int order;
15d28d0d 1737 bool found_block = false;
70b44595
MG
1738
1739 /* Skip hints are relied on to avoid repeats on the fast search */
1740 if (cc->ignore_skip_hint)
1741 return pfn;
1742
1743 /*
1744 * If the migrate_pfn is not at the start of a zone or the start
1745 * of a pageblock then assume this is a continuation of a previous
1746 * scan restarted due to COMPACT_CLUSTER_MAX.
1747 */
1748 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1749 return pfn;
1750
1751 /*
1752 * For smaller orders, just linearly scan as the number of pages
1753 * to migrate should be relatively small and does not necessarily
1754 * justify freeing up a large block for a small allocation.
1755 */
1756 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1757 return pfn;
1758
1759 /*
1760 * Only allow kcompactd and direct requests for movable pages to
1761 * quickly clear out a MOVABLE pageblock for allocation. This
1762 * reduces the risk that a large movable pageblock is freed for
1763 * an unmovable/reclaimable small allocation.
1764 */
1765 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1766 return pfn;
1767
1768 /*
1769 * When starting the migration scanner, pick any pageblock within the
1770 * first half of the search space. Otherwise try and pick a pageblock
1771 * within the first eighth to reduce the chances that a migration
1772 * target later becomes a source.
1773 */
1774 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1775 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1776 distance >>= 2;
1777 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1778
1779 for (order = cc->order - 1;
15d28d0d 1780 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1781 order--) {
1782 struct free_area *area = &cc->zone->free_area[order];
1783 struct list_head *freelist;
1784 unsigned long flags;
1785 struct page *freepage;
1786
1787 if (!area->nr_free)
1788 continue;
1789
1790 spin_lock_irqsave(&cc->zone->lock, flags);
1791 freelist = &area->free_list[MIGRATE_MOVABLE];
1792 list_for_each_entry(freepage, freelist, lru) {
1793 unsigned long free_pfn;
1794
15d28d0d
WY
1795 if (nr_scanned++ >= limit) {
1796 move_freelist_tail(freelist, freepage);
1797 break;
1798 }
1799
70b44595
MG
1800 free_pfn = page_to_pfn(freepage);
1801 if (free_pfn < high_pfn) {
70b44595
MG
1802 /*
1803 * Avoid if skipped recently. Ideally it would
1804 * move to the tail but even safe iteration of
1805 * the list assumes an entry is deleted, not
1806 * reordered.
1807 */
15d28d0d 1808 if (get_pageblock_skip(freepage))
70b44595 1809 continue;
70b44595
MG
1810
1811 /* Reorder to so a future search skips recent pages */
1812 move_freelist_tail(freelist, freepage);
1813
e380bebe 1814 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1815 pfn = pageblock_start_pfn(free_pfn);
1816 cc->fast_search_fail = 0;
15d28d0d 1817 found_block = true;
70b44595
MG
1818 set_pageblock_skip(freepage);
1819 break;
1820 }
70b44595
MG
1821 }
1822 spin_unlock_irqrestore(&cc->zone->lock, flags);
1823 }
1824
1825 cc->total_migrate_scanned += nr_scanned;
1826
1827 /*
1828 * If fast scanning failed then use a cached entry for a page block
1829 * that had free pages as the basis for starting a linear scan.
1830 */
15d28d0d
WY
1831 if (!found_block) {
1832 cc->fast_search_fail++;
70b44595 1833 pfn = reinit_migrate_pfn(cc);
15d28d0d 1834 }
70b44595
MG
1835 return pfn;
1836}
1837
ff9543fd 1838/*
edc2ca61
VB
1839 * Isolate all pages that can be migrated from the first suitable block,
1840 * starting at the block pointed to by the migrate scanner pfn within
1841 * compact_control.
ff9543fd 1842 */
32aaf055 1843static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1844{
e1409c32
JK
1845 unsigned long block_start_pfn;
1846 unsigned long block_end_pfn;
1847 unsigned long low_pfn;
edc2ca61
VB
1848 struct page *page;
1849 const isolate_mode_t isolate_mode =
5bbe3547 1850 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1851 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1852 bool fast_find_block;
ff9543fd 1853
edc2ca61
VB
1854 /*
1855 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1856 * initialized by compact_zone(). The first failure will use
1857 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1858 */
70b44595 1859 low_pfn = fast_find_migrateblock(cc);
06b6640a 1860 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1861 if (block_start_pfn < cc->zone->zone_start_pfn)
1862 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1863
70b44595
MG
1864 /*
1865 * fast_find_migrateblock marks a pageblock skipped so to avoid
1866 * the isolation_suitable check below, check whether the fast
1867 * search was successful.
1868 */
1869 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1870
ff9543fd 1871 /* Only scan within a pageblock boundary */
06b6640a 1872 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1873
edc2ca61
VB
1874 /*
1875 * Iterate over whole pageblocks until we find the first suitable.
1876 * Do not cross the free scanner.
1877 */
e1409c32 1878 for (; block_end_pfn <= cc->free_pfn;
70b44595 1879 fast_find_block = false,
c2ad7a1f 1880 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1881 block_start_pfn = block_end_pfn,
1882 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1883
edc2ca61
VB
1884 /*
1885 * This can potentially iterate a massively long zone with
1886 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1887 * need to schedule.
edc2ca61 1888 */
cb810ad2 1889 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1890 cond_resched();
ff9543fd 1891
32aaf055
PL
1892 page = pageblock_pfn_to_page(block_start_pfn,
1893 block_end_pfn, cc->zone);
7d49d886 1894 if (!page)
edc2ca61
VB
1895 continue;
1896
e380bebe
MG
1897 /*
1898 * If isolation recently failed, do not retry. Only check the
1899 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1900 * to be visited multiple times. Assume skip was checked
1901 * before making it "skip" so other compaction instances do
1902 * not scan the same block.
1903 */
1904 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1905 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1906 continue;
1907
1908 /*
9bebefd5
MG
1909 * For async compaction, also only scan in MOVABLE blocks
1910 * without huge pages. Async compaction is optimistic to see
1911 * if the minimum amount of work satisfies the allocation.
1912 * The cached PFN is updated as it's possible that all
1913 * remaining blocks between source and target are unsuitable
1914 * and the compaction scanners fail to meet.
edc2ca61 1915 */
9bebefd5
MG
1916 if (!suitable_migration_source(cc, page)) {
1917 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1918 continue;
9bebefd5 1919 }
edc2ca61
VB
1920
1921 /* Perform the isolation */
c2ad7a1f
OS
1922 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1923 isolate_mode))
edc2ca61
VB
1924 return ISOLATE_ABORT;
1925
1926 /*
1927 * Either we isolated something and proceed with migration. Or
1928 * we failed and compact_zone should decide if we should
1929 * continue or not.
1930 */
1931 break;
1932 }
1933
edc2ca61 1934 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1935}
1936
21c527a3
YB
1937/*
1938 * order == -1 is expected when compacting via
1939 * /proc/sys/vm/compact_memory
1940 */
1941static inline bool is_via_compact_memory(int order)
1942{
1943 return order == -1;
1944}
1945
facdaa91
NG
1946static bool kswapd_is_running(pg_data_t *pgdat)
1947{
1948 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1949}
1950
1951/*
1952 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1953 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1954 */
1955static unsigned int fragmentation_score_zone(struct zone *zone)
1956{
1957 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1958}
1959
1960/*
1961 * A weighted zone's fragmentation score is the external fragmentation
1962 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1963 * returns a value in the range [0, 100].
facdaa91
NG
1964 *
1965 * The scaling factor ensures that proactive compaction focuses on larger
1966 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1967 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1968 * and thus never exceeds the high threshold for proactive compaction.
1969 */
40d7e203 1970static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
1971{
1972 unsigned long score;
1973
40d7e203 1974 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
1975 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1976}
1977
1978/*
1979 * The per-node proactive (background) compaction process is started by its
1980 * corresponding kcompactd thread when the node's fragmentation score
1981 * exceeds the high threshold. The compaction process remains active till
1982 * the node's score falls below the low threshold, or one of the back-off
1983 * conditions is met.
1984 */
d34c0a75 1985static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 1986{
d34c0a75 1987 unsigned int score = 0;
facdaa91
NG
1988 int zoneid;
1989
1990 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1991 struct zone *zone;
1992
1993 zone = &pgdat->node_zones[zoneid];
40d7e203 1994 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
1995 }
1996
1997 return score;
1998}
1999
d34c0a75 2000static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2001{
d34c0a75 2002 unsigned int wmark_low;
facdaa91
NG
2003
2004 /*
2005 * Cap the low watermak to avoid excessive compaction
2006 * activity in case a user sets the proactivess tunable
2007 * close to 100 (maximum).
2008 */
d34c0a75
NG
2009 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2010 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2011}
2012
2013static bool should_proactive_compact_node(pg_data_t *pgdat)
2014{
2015 int wmark_high;
2016
2017 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2018 return false;
2019
2020 wmark_high = fragmentation_score_wmark(pgdat, false);
2021 return fragmentation_score_node(pgdat) > wmark_high;
2022}
2023
40cacbcb 2024static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2025{
8fb74b9f 2026 unsigned int order;
d39773a0 2027 const int migratetype = cc->migratetype;
cb2dcaf0 2028 int ret;
748446bb 2029
753341a4 2030 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2031 if (compact_scanners_met(cc)) {
55b7c4c9 2032 /* Let the next compaction start anew. */
40cacbcb 2033 reset_cached_positions(cc->zone);
55b7c4c9 2034
62997027
MG
2035 /*
2036 * Mark that the PG_migrate_skip information should be cleared
accf6242 2037 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2038 * flag itself as the decision to be clear should be directly
2039 * based on an allocation request.
2040 */
accf6242 2041 if (cc->direct_compaction)
40cacbcb 2042 cc->zone->compact_blockskip_flush = true;
62997027 2043
c8f7de0b
MH
2044 if (cc->whole_zone)
2045 return COMPACT_COMPLETE;
2046 else
2047 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2048 }
748446bb 2049
facdaa91
NG
2050 if (cc->proactive_compaction) {
2051 int score, wmark_low;
2052 pg_data_t *pgdat;
2053
2054 pgdat = cc->zone->zone_pgdat;
2055 if (kswapd_is_running(pgdat))
2056 return COMPACT_PARTIAL_SKIPPED;
2057
2058 score = fragmentation_score_zone(cc->zone);
2059 wmark_low = fragmentation_score_wmark(pgdat, true);
2060
2061 if (score > wmark_low)
2062 ret = COMPACT_CONTINUE;
2063 else
2064 ret = COMPACT_SUCCESS;
2065
2066 goto out;
2067 }
2068
21c527a3 2069 if (is_via_compact_memory(cc->order))
56de7263
MG
2070 return COMPACT_CONTINUE;
2071
efe771c7
MG
2072 /*
2073 * Always finish scanning a pageblock to reduce the possibility of
2074 * fallbacks in the future. This is particularly important when
2075 * migration source is unmovable/reclaimable but it's not worth
2076 * special casing.
2077 */
2078 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2079 return COMPACT_CONTINUE;
baf6a9a1 2080
56de7263 2081 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2082 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2083 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2084 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2085 bool can_steal;
8fb74b9f
MG
2086
2087 /* Job done if page is free of the right migratetype */
b03641af 2088 if (!free_area_empty(area, migratetype))
cf378319 2089 return COMPACT_SUCCESS;
8fb74b9f 2090
2149cdae
JK
2091#ifdef CONFIG_CMA
2092 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2093 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2094 !free_area_empty(area, MIGRATE_CMA))
cf378319 2095 return COMPACT_SUCCESS;
2149cdae
JK
2096#endif
2097 /*
2098 * Job done if allocation would steal freepages from
2099 * other migratetype buddy lists.
2100 */
2101 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2102 true, &can_steal) != -1) {
2103
2104 /* movable pages are OK in any pageblock */
2105 if (migratetype == MIGRATE_MOVABLE)
2106 return COMPACT_SUCCESS;
2107
2108 /*
2109 * We are stealing for a non-movable allocation. Make
2110 * sure we finish compacting the current pageblock
2111 * first so it is as free as possible and we won't
2112 * have to steal another one soon. This only applies
2113 * to sync compaction, as async compaction operates
2114 * on pageblocks of the same migratetype.
2115 */
2116 if (cc->mode == MIGRATE_ASYNC ||
2117 IS_ALIGNED(cc->migrate_pfn,
2118 pageblock_nr_pages)) {
2119 return COMPACT_SUCCESS;
2120 }
2121
cb2dcaf0
MG
2122 ret = COMPACT_CONTINUE;
2123 break;
baf6a9a1 2124 }
56de7263
MG
2125 }
2126
facdaa91 2127out:
cb2dcaf0
MG
2128 if (cc->contended || fatal_signal_pending(current))
2129 ret = COMPACT_CONTENDED;
2130
2131 return ret;
837d026d
JK
2132}
2133
40cacbcb 2134static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2135{
2136 int ret;
2137
40cacbcb
MG
2138 ret = __compact_finished(cc);
2139 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2140 if (ret == COMPACT_NO_SUITABLE_PAGE)
2141 ret = COMPACT_CONTINUE;
2142
2143 return ret;
748446bb
MG
2144}
2145
ea7ab982 2146static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2147 unsigned int alloc_flags,
97a225e6 2148 int highest_zoneidx,
86a294a8 2149 unsigned long wmark_target)
3e7d3449 2150{
3e7d3449
MG
2151 unsigned long watermark;
2152
21c527a3 2153 if (is_via_compact_memory(order))
3957c776
MH
2154 return COMPACT_CONTINUE;
2155
a9214443 2156 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2157 /*
2158 * If watermarks for high-order allocation are already met, there
2159 * should be no need for compaction at all.
2160 */
97a225e6 2161 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2162 alloc_flags))
cf378319 2163 return COMPACT_SUCCESS;
ebff3980 2164
3e7d3449 2165 /*
9861a62c 2166 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2167 * isolate free pages for migration targets. This means that the
2168 * watermark and alloc_flags have to match, or be more pessimistic than
2169 * the check in __isolate_free_page(). We don't use the direct
2170 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2171 * isolation. We however do use the direct compactor's highest_zoneidx
2172 * to skip over zones where lowmem reserves would prevent allocation
2173 * even if compaction succeeds.
8348faf9
VB
2174 * For costly orders, we require low watermark instead of min for
2175 * compaction to proceed to increase its chances.
d883c6cf
JK
2176 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2177 * suitable migration targets
3e7d3449 2178 */
8348faf9
VB
2179 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2180 low_wmark_pages(zone) : min_wmark_pages(zone);
2181 watermark += compact_gap(order);
97a225e6 2182 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2183 ALLOC_CMA, wmark_target))
3e7d3449
MG
2184 return COMPACT_SKIPPED;
2185
cc5c9f09
VB
2186 return COMPACT_CONTINUE;
2187}
2188
2b1a20c3
HS
2189/*
2190 * compaction_suitable: Is this suitable to run compaction on this zone now?
2191 * Returns
2192 * COMPACT_SKIPPED - If there are too few free pages for compaction
2193 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2194 * COMPACT_CONTINUE - If compaction should run now
2195 */
cc5c9f09
VB
2196enum compact_result compaction_suitable(struct zone *zone, int order,
2197 unsigned int alloc_flags,
97a225e6 2198 int highest_zoneidx)
cc5c9f09
VB
2199{
2200 enum compact_result ret;
2201 int fragindex;
2202
97a225e6 2203 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2204 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2205 /*
2206 * fragmentation index determines if allocation failures are due to
2207 * low memory or external fragmentation
2208 *
ebff3980
VB
2209 * index of -1000 would imply allocations might succeed depending on
2210 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2211 * index towards 0 implies failure is due to lack of memory
2212 * index towards 1000 implies failure is due to fragmentation
2213 *
20311420
VB
2214 * Only compact if a failure would be due to fragmentation. Also
2215 * ignore fragindex for non-costly orders where the alternative to
2216 * a successful reclaim/compaction is OOM. Fragindex and the
2217 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2218 * excessive compaction for costly orders, but it should not be at the
2219 * expense of system stability.
3e7d3449 2220 */
20311420 2221 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2222 fragindex = fragmentation_index(zone, order);
2223 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2224 ret = COMPACT_NOT_SUITABLE_ZONE;
2225 }
837d026d 2226
837d026d
JK
2227 trace_mm_compaction_suitable(zone, order, ret);
2228 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2229 ret = COMPACT_SKIPPED;
2230
2231 return ret;
2232}
2233
86a294a8
MH
2234bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2235 int alloc_flags)
2236{
2237 struct zone *zone;
2238 struct zoneref *z;
2239
2240 /*
2241 * Make sure at least one zone would pass __compaction_suitable if we continue
2242 * retrying the reclaim.
2243 */
97a225e6
JK
2244 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2245 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2246 unsigned long available;
2247 enum compact_result compact_result;
2248
2249 /*
2250 * Do not consider all the reclaimable memory because we do not
2251 * want to trash just for a single high order allocation which
2252 * is even not guaranteed to appear even if __compaction_suitable
2253 * is happy about the watermark check.
2254 */
5a1c84b4 2255 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2256 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2257 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2258 ac->highest_zoneidx, available);
cc5c9f09 2259 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2260 return true;
2261 }
2262
2263 return false;
2264}
2265
5e1f0f09
MG
2266static enum compact_result
2267compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2268{
ea7ab982 2269 enum compact_result ret;
40cacbcb
MG
2270 unsigned long start_pfn = cc->zone->zone_start_pfn;
2271 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2272 unsigned long last_migrated_pfn;
e0b9daeb 2273 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2274 bool update_cached;
748446bb 2275
a94b5252
YS
2276 /*
2277 * These counters track activities during zone compaction. Initialize
2278 * them before compacting a new zone.
2279 */
2280 cc->total_migrate_scanned = 0;
2281 cc->total_free_scanned = 0;
2282 cc->nr_migratepages = 0;
2283 cc->nr_freepages = 0;
2284 INIT_LIST_HEAD(&cc->freepages);
2285 INIT_LIST_HEAD(&cc->migratepages);
2286
01c0bfe0 2287 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2288 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2289 cc->highest_zoneidx);
c46649de 2290 /* Compaction is likely to fail */
cf378319 2291 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2292 return ret;
c46649de
MH
2293
2294 /* huh, compaction_suitable is returning something unexpected */
2295 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2296
d3132e4b
VB
2297 /*
2298 * Clear pageblock skip if there were failures recently and compaction
accf6242 2299 * is about to be retried after being deferred.
d3132e4b 2300 */
40cacbcb
MG
2301 if (compaction_restarting(cc->zone, cc->order))
2302 __reset_isolation_suitable(cc->zone);
d3132e4b 2303
c89511ab
MG
2304 /*
2305 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2306 * information on where the scanners should start (unless we explicitly
2307 * want to compact the whole zone), but check that it is initialised
2308 * by ensuring the values are within zone boundaries.
c89511ab 2309 */
70b44595 2310 cc->fast_start_pfn = 0;
06ed2998 2311 if (cc->whole_zone) {
c89511ab 2312 cc->migrate_pfn = start_pfn;
06ed2998
VB
2313 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2314 } else {
40cacbcb
MG
2315 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2316 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2317 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2318 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2319 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2320 }
2321 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2322 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2323 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2324 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2325 }
c8f7de0b 2326
e332f741 2327 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2328 cc->whole_zone = true;
2329 }
c8f7de0b 2330
566e54e1 2331 last_migrated_pfn = 0;
748446bb 2332
8854c55f
MG
2333 /*
2334 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2335 * the basis that some migrations will fail in ASYNC mode. However,
2336 * if the cached PFNs match and pageblocks are skipped due to having
2337 * no isolation candidates, then the sync state does not matter.
2338 * Until a pageblock with isolation candidates is found, keep the
2339 * cached PFNs in sync to avoid revisiting the same blocks.
2340 */
2341 update_cached = !sync &&
2342 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2343
16c4a097
JK
2344 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2345 cc->free_pfn, end_pfn, sync);
0eb927c0 2346
748446bb
MG
2347 migrate_prep_local();
2348
40cacbcb 2349 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2350 int err;
19d3cf9d 2351 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2352
804d3121
MG
2353 /*
2354 * Avoid multiple rescans which can happen if a page cannot be
2355 * isolated (dirty/writeback in async mode) or if the migrated
2356 * pages are being allocated before the pageblock is cleared.
2357 * The first rescan will capture the entire pageblock for
2358 * migration. If it fails, it'll be marked skip and scanning
2359 * will proceed as normal.
2360 */
2361 cc->rescan = false;
2362 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2363 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2364 cc->rescan = true;
2365 }
2366
32aaf055 2367 switch (isolate_migratepages(cc)) {
f9e35b3b 2368 case ISOLATE_ABORT:
2d1e1041 2369 ret = COMPACT_CONTENDED;
5733c7d1 2370 putback_movable_pages(&cc->migratepages);
e64c5237 2371 cc->nr_migratepages = 0;
f9e35b3b
MG
2372 goto out;
2373 case ISOLATE_NONE:
8854c55f
MG
2374 if (update_cached) {
2375 cc->zone->compact_cached_migrate_pfn[1] =
2376 cc->zone->compact_cached_migrate_pfn[0];
2377 }
2378
fdaf7f5c
VB
2379 /*
2380 * We haven't isolated and migrated anything, but
2381 * there might still be unflushed migrations from
2382 * previous cc->order aligned block.
2383 */
2384 goto check_drain;
f9e35b3b 2385 case ISOLATE_SUCCESS:
8854c55f 2386 update_cached = false;
19d3cf9d 2387 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2388 }
748446bb 2389
d53aea3d 2390 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2391 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2392 MR_COMPACTION);
748446bb 2393
f8c9301f
VB
2394 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2395 &cc->migratepages);
748446bb 2396
f8c9301f
VB
2397 /* All pages were either migrated or will be released */
2398 cc->nr_migratepages = 0;
9d502c1c 2399 if (err) {
5733c7d1 2400 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2401 /*
2402 * migrate_pages() may return -ENOMEM when scanners meet
2403 * and we want compact_finished() to detect it
2404 */
f2849aa0 2405 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2406 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2407 goto out;
2408 }
fdd048e1
VB
2409 /*
2410 * We failed to migrate at least one page in the current
2411 * order-aligned block, so skip the rest of it.
2412 */
2413 if (cc->direct_compaction &&
2414 (cc->mode == MIGRATE_ASYNC)) {
2415 cc->migrate_pfn = block_end_pfn(
2416 cc->migrate_pfn - 1, cc->order);
2417 /* Draining pcplists is useless in this case */
566e54e1 2418 last_migrated_pfn = 0;
fdd048e1 2419 }
748446bb 2420 }
fdaf7f5c 2421
fdaf7f5c
VB
2422check_drain:
2423 /*
2424 * Has the migration scanner moved away from the previous
2425 * cc->order aligned block where we migrated from? If yes,
2426 * flush the pages that were freed, so that they can merge and
2427 * compact_finished() can detect immediately if allocation
2428 * would succeed.
2429 */
566e54e1 2430 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2431 unsigned long current_block_start =
06b6640a 2432 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2433
566e54e1 2434 if (last_migrated_pfn < current_block_start) {
b01b2141 2435 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2436 /* No more flushing until we migrate again */
566e54e1 2437 last_migrated_pfn = 0;
fdaf7f5c
VB
2438 }
2439 }
2440
5e1f0f09
MG
2441 /* Stop if a page has been captured */
2442 if (capc && capc->page) {
2443 ret = COMPACT_SUCCESS;
2444 break;
2445 }
748446bb
MG
2446 }
2447
f9e35b3b 2448out:
6bace090
VB
2449 /*
2450 * Release free pages and update where the free scanner should restart,
2451 * so we don't leave any returned pages behind in the next attempt.
2452 */
2453 if (cc->nr_freepages > 0) {
2454 unsigned long free_pfn = release_freepages(&cc->freepages);
2455
2456 cc->nr_freepages = 0;
2457 VM_BUG_ON(free_pfn == 0);
2458 /* The cached pfn is always the first in a pageblock */
06b6640a 2459 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2460 /*
2461 * Only go back, not forward. The cached pfn might have been
2462 * already reset to zone end in compact_finished()
2463 */
40cacbcb
MG
2464 if (free_pfn > cc->zone->compact_cached_free_pfn)
2465 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2466 }
748446bb 2467
7f354a54
DR
2468 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2469 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2470
16c4a097
JK
2471 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2472 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2473
748446bb
MG
2474 return ret;
2475}
76ab0f53 2476
ea7ab982 2477static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2478 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2479 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2480 struct page **capture)
56de7263 2481{
ea7ab982 2482 enum compact_result ret;
56de7263 2483 struct compact_control cc = {
56de7263 2484 .order = order,
dbe2d4e4 2485 .search_order = order,
6d7ce559 2486 .gfp_mask = gfp_mask,
56de7263 2487 .zone = zone,
a5508cd8
VB
2488 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2489 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2490 .alloc_flags = alloc_flags,
97a225e6 2491 .highest_zoneidx = highest_zoneidx,
accf6242 2492 .direct_compaction = true,
a8e025e5 2493 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2494 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2495 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2496 };
5e1f0f09
MG
2497 struct capture_control capc = {
2498 .cc = &cc,
2499 .page = NULL,
2500 };
2501
b9e20f0d
VB
2502 /*
2503 * Make sure the structs are really initialized before we expose the
2504 * capture control, in case we are interrupted and the interrupt handler
2505 * frees a page.
2506 */
2507 barrier();
2508 WRITE_ONCE(current->capture_control, &capc);
56de7263 2509
5e1f0f09 2510 ret = compact_zone(&cc, &capc);
e64c5237
SL
2511
2512 VM_BUG_ON(!list_empty(&cc.freepages));
2513 VM_BUG_ON(!list_empty(&cc.migratepages));
2514
b9e20f0d
VB
2515 /*
2516 * Make sure we hide capture control first before we read the captured
2517 * page pointer, otherwise an interrupt could free and capture a page
2518 * and we would leak it.
2519 */
2520 WRITE_ONCE(current->capture_control, NULL);
2521 *capture = READ_ONCE(capc.page);
5e1f0f09 2522
e64c5237 2523 return ret;
56de7263
MG
2524}
2525
5e771905
MG
2526int sysctl_extfrag_threshold = 500;
2527
56de7263
MG
2528/**
2529 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2530 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2531 * @order: The order of the current allocation
2532 * @alloc_flags: The allocation flags of the current allocation
2533 * @ac: The context of current allocation
112d2d29 2534 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2535 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2536 *
2537 * This is the main entry point for direct page compaction.
2538 */
ea7ab982 2539enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2540 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2541 enum compact_priority prio, struct page **capture)
56de7263 2542{
56de7263 2543 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2544 struct zoneref *z;
2545 struct zone *zone;
1d4746d3 2546 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2547
73e64c51
MH
2548 /*
2549 * Check if the GFP flags allow compaction - GFP_NOIO is really
2550 * tricky context because the migration might require IO
2551 */
2552 if (!may_perform_io)
53853e2d 2553 return COMPACT_SKIPPED;
56de7263 2554
a5508cd8 2555 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2556
56de7263 2557 /* Compact each zone in the list */
97a225e6
JK
2558 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2559 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2560 enum compact_result status;
56de7263 2561
a8e025e5
VB
2562 if (prio > MIN_COMPACT_PRIORITY
2563 && compaction_deferred(zone, order)) {
1d4746d3 2564 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2565 continue;
1d4746d3 2566 }
53853e2d 2567
a5508cd8 2568 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2569 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2570 rc = max(status, rc);
2571
7ceb009a
VB
2572 /* The allocation should succeed, stop compacting */
2573 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2574 /*
2575 * We think the allocation will succeed in this zone,
2576 * but it is not certain, hence the false. The caller
2577 * will repeat this with true if allocation indeed
2578 * succeeds in this zone.
2579 */
2580 compaction_defer_reset(zone, order, false);
1f9efdef 2581
c3486f53 2582 break;
1f9efdef
VB
2583 }
2584
a5508cd8 2585 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2586 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2587 /*
2588 * We think that allocation won't succeed in this zone
2589 * so we defer compaction there. If it ends up
2590 * succeeding after all, it will be reset.
2591 */
2592 defer_compaction(zone, order);
1f9efdef
VB
2593
2594 /*
2595 * We might have stopped compacting due to need_resched() in
2596 * async compaction, or due to a fatal signal detected. In that
c3486f53 2597 * case do not try further zones
1f9efdef 2598 */
c3486f53
VB
2599 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2600 || fatal_signal_pending(current))
2601 break;
56de7263
MG
2602 }
2603
2604 return rc;
2605}
2606
facdaa91
NG
2607/*
2608 * Compact all zones within a node till each zone's fragmentation score
2609 * reaches within proactive compaction thresholds (as determined by the
2610 * proactiveness tunable).
2611 *
2612 * It is possible that the function returns before reaching score targets
2613 * due to various back-off conditions, such as, contention on per-node or
2614 * per-zone locks.
2615 */
2616static void proactive_compact_node(pg_data_t *pgdat)
2617{
2618 int zoneid;
2619 struct zone *zone;
2620 struct compact_control cc = {
2621 .order = -1,
2622 .mode = MIGRATE_SYNC_LIGHT,
2623 .ignore_skip_hint = true,
2624 .whole_zone = true,
2625 .gfp_mask = GFP_KERNEL,
2626 .proactive_compaction = true,
2627 };
2628
2629 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2630 zone = &pgdat->node_zones[zoneid];
2631 if (!populated_zone(zone))
2632 continue;
2633
2634 cc.zone = zone;
2635
2636 compact_zone(&cc, NULL);
2637
2638 VM_BUG_ON(!list_empty(&cc.freepages));
2639 VM_BUG_ON(!list_empty(&cc.migratepages));
2640 }
2641}
56de7263 2642
76ab0f53 2643/* Compact all zones within a node */
791cae96 2644static void compact_node(int nid)
76ab0f53 2645{
791cae96 2646 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2647 int zoneid;
76ab0f53 2648 struct zone *zone;
791cae96
VB
2649 struct compact_control cc = {
2650 .order = -1,
2651 .mode = MIGRATE_SYNC,
2652 .ignore_skip_hint = true,
2653 .whole_zone = true,
73e64c51 2654 .gfp_mask = GFP_KERNEL,
791cae96
VB
2655 };
2656
76ab0f53 2657
76ab0f53 2658 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2659
2660 zone = &pgdat->node_zones[zoneid];
2661 if (!populated_zone(zone))
2662 continue;
2663
791cae96 2664 cc.zone = zone;
76ab0f53 2665
5e1f0f09 2666 compact_zone(&cc, NULL);
75469345 2667
791cae96
VB
2668 VM_BUG_ON(!list_empty(&cc.freepages));
2669 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2670 }
76ab0f53
MG
2671}
2672
2673/* Compact all nodes in the system */
7964c06d 2674static void compact_nodes(void)
76ab0f53
MG
2675{
2676 int nid;
2677
8575ec29
HD
2678 /* Flush pending updates to the LRU lists */
2679 lru_add_drain_all();
2680
76ab0f53
MG
2681 for_each_online_node(nid)
2682 compact_node(nid);
76ab0f53
MG
2683}
2684
2685/* The written value is actually unused, all memory is compacted */
2686int sysctl_compact_memory;
2687
facdaa91
NG
2688/*
2689 * Tunable for proactive compaction. It determines how
2690 * aggressively the kernel should compact memory in the
2691 * background. It takes values in the range [0, 100].
2692 */
d34c0a75 2693unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2694
fec4eb2c
YB
2695/*
2696 * This is the entry point for compacting all nodes via
2697 * /proc/sys/vm/compact_memory
2698 */
76ab0f53 2699int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2700 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2701{
2702 if (write)
7964c06d 2703 compact_nodes();
76ab0f53
MG
2704
2705 return 0;
2706}
ed4a6d7f
MG
2707
2708#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2709static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2710 struct device_attribute *attr,
ed4a6d7f
MG
2711 const char *buf, size_t count)
2712{
8575ec29
HD
2713 int nid = dev->id;
2714
2715 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2716 /* Flush pending updates to the LRU lists */
2717 lru_add_drain_all();
2718
2719 compact_node(nid);
2720 }
ed4a6d7f
MG
2721
2722 return count;
2723}
0825a6f9 2724static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2725
2726int compaction_register_node(struct node *node)
2727{
10fbcf4c 2728 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2729}
2730
2731void compaction_unregister_node(struct node *node)
2732{
10fbcf4c 2733 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2734}
2735#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2736
698b1b30
VB
2737static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2738{
172400c6 2739 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2740}
2741
2742static bool kcompactd_node_suitable(pg_data_t *pgdat)
2743{
2744 int zoneid;
2745 struct zone *zone;
97a225e6 2746 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2747
97a225e6 2748 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2749 zone = &pgdat->node_zones[zoneid];
2750
2751 if (!populated_zone(zone))
2752 continue;
2753
2754 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2755 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2756 return true;
2757 }
2758
2759 return false;
2760}
2761
2762static void kcompactd_do_work(pg_data_t *pgdat)
2763{
2764 /*
2765 * With no special task, compact all zones so that a page of requested
2766 * order is allocatable.
2767 */
2768 int zoneid;
2769 struct zone *zone;
2770 struct compact_control cc = {
2771 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2772 .search_order = pgdat->kcompactd_max_order,
97a225e6 2773 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2774 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2775 .ignore_skip_hint = false,
73e64c51 2776 .gfp_mask = GFP_KERNEL,
698b1b30 2777 };
698b1b30 2778 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2779 cc.highest_zoneidx);
7f354a54 2780 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2781
97a225e6 2782 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2783 int status;
2784
2785 zone = &pgdat->node_zones[zoneid];
2786 if (!populated_zone(zone))
2787 continue;
2788
2789 if (compaction_deferred(zone, cc.order))
2790 continue;
2791
2792 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2793 COMPACT_CONTINUE)
2794 continue;
2795
172400c6
VB
2796 if (kthread_should_stop())
2797 return;
a94b5252
YS
2798
2799 cc.zone = zone;
5e1f0f09 2800 status = compact_zone(&cc, NULL);
698b1b30 2801
7ceb009a 2802 if (status == COMPACT_SUCCESS) {
698b1b30 2803 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2804 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2805 /*
2806 * Buddy pages may become stranded on pcps that could
2807 * otherwise coalesce on the zone's free area for
2808 * order >= cc.order. This is ratelimited by the
2809 * upcoming deferral.
2810 */
2811 drain_all_pages(zone);
2812
698b1b30
VB
2813 /*
2814 * We use sync migration mode here, so we defer like
2815 * sync direct compaction does.
2816 */
2817 defer_compaction(zone, cc.order);
2818 }
2819
7f354a54
DR
2820 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2821 cc.total_migrate_scanned);
2822 count_compact_events(KCOMPACTD_FREE_SCANNED,
2823 cc.total_free_scanned);
2824
698b1b30
VB
2825 VM_BUG_ON(!list_empty(&cc.freepages));
2826 VM_BUG_ON(!list_empty(&cc.migratepages));
2827 }
2828
2829 /*
2830 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2831 * the requested order/highest_zoneidx in case it was higher/tighter
2832 * than our current ones
698b1b30
VB
2833 */
2834 if (pgdat->kcompactd_max_order <= cc.order)
2835 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2836 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2837 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2838}
2839
97a225e6 2840void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2841{
2842 if (!order)
2843 return;
2844
2845 if (pgdat->kcompactd_max_order < order)
2846 pgdat->kcompactd_max_order = order;
2847
97a225e6
JK
2848 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2849 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2850
6818600f
DB
2851 /*
2852 * Pairs with implicit barrier in wait_event_freezable()
2853 * such that wakeups are not missed.
2854 */
2855 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2856 return;
2857
2858 if (!kcompactd_node_suitable(pgdat))
2859 return;
2860
2861 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2862 highest_zoneidx);
698b1b30
VB
2863 wake_up_interruptible(&pgdat->kcompactd_wait);
2864}
2865
2866/*
2867 * The background compaction daemon, started as a kernel thread
2868 * from the init process.
2869 */
2870static int kcompactd(void *p)
2871{
2872 pg_data_t *pgdat = (pg_data_t*)p;
2873 struct task_struct *tsk = current;
facdaa91 2874 unsigned int proactive_defer = 0;
698b1b30
VB
2875
2876 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2877
2878 if (!cpumask_empty(cpumask))
2879 set_cpus_allowed_ptr(tsk, cpumask);
2880
2881 set_freezable();
2882
2883 pgdat->kcompactd_max_order = 0;
97a225e6 2884 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2885
2886 while (!kthread_should_stop()) {
eb414681
JW
2887 unsigned long pflags;
2888
698b1b30 2889 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91
NG
2890 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2891 kcompactd_work_requested(pgdat),
2892 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2893
2894 psi_memstall_enter(&pflags);
2895 kcompactd_do_work(pgdat);
2896 psi_memstall_leave(&pflags);
2897 continue;
2898 }
698b1b30 2899
facdaa91
NG
2900 /* kcompactd wait timeout */
2901 if (should_proactive_compact_node(pgdat)) {
2902 unsigned int prev_score, score;
2903
2904 if (proactive_defer) {
2905 proactive_defer--;
2906 continue;
2907 }
2908 prev_score = fragmentation_score_node(pgdat);
2909 proactive_compact_node(pgdat);
2910 score = fragmentation_score_node(pgdat);
2911 /*
2912 * Defer proactive compaction if the fragmentation
2913 * score did not go down i.e. no progress made.
2914 */
2915 proactive_defer = score < prev_score ?
2916 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2917 }
698b1b30
VB
2918 }
2919
2920 return 0;
2921}
2922
2923/*
2924 * This kcompactd start function will be called by init and node-hot-add.
2925 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2926 */
2927int kcompactd_run(int nid)
2928{
2929 pg_data_t *pgdat = NODE_DATA(nid);
2930 int ret = 0;
2931
2932 if (pgdat->kcompactd)
2933 return 0;
2934
2935 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2936 if (IS_ERR(pgdat->kcompactd)) {
2937 pr_err("Failed to start kcompactd on node %d\n", nid);
2938 ret = PTR_ERR(pgdat->kcompactd);
2939 pgdat->kcompactd = NULL;
2940 }
2941 return ret;
2942}
2943
2944/*
2945 * Called by memory hotplug when all memory in a node is offlined. Caller must
2946 * hold mem_hotplug_begin/end().
2947 */
2948void kcompactd_stop(int nid)
2949{
2950 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2951
2952 if (kcompactd) {
2953 kthread_stop(kcompactd);
2954 NODE_DATA(nid)->kcompactd = NULL;
2955 }
2956}
2957
2958/*
2959 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2960 * not required for correctness. So if the last cpu in a node goes
2961 * away, we get changed to run anywhere: as the first one comes back,
2962 * restore their cpu bindings.
2963 */
e46b1db2 2964static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2965{
2966 int nid;
2967
e46b1db2
AMG
2968 for_each_node_state(nid, N_MEMORY) {
2969 pg_data_t *pgdat = NODE_DATA(nid);
2970 const struct cpumask *mask;
698b1b30 2971
e46b1db2 2972 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2973
e46b1db2
AMG
2974 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2975 /* One of our CPUs online: restore mask */
2976 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2977 }
e46b1db2 2978 return 0;
698b1b30
VB
2979}
2980
2981static int __init kcompactd_init(void)
2982{
2983 int nid;
e46b1db2
AMG
2984 int ret;
2985
2986 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2987 "mm/compaction:online",
2988 kcompactd_cpu_online, NULL);
2989 if (ret < 0) {
2990 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2991 return ret;
2992 }
698b1b30
VB
2993
2994 for_each_node_state(nid, N_MEMORY)
2995 kcompactd_run(nid);
698b1b30
VB
2996 return 0;
2997}
2998subsys_initcall(kcompactd_init)
2999
ff9543fd 3000#endif /* CONFIG_COMPACTION */