mm: compaction: limit the suitable target page order to be less than cc->order
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 55
facdaa91
NG
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 63#elif defined CONFIG_HUGETLBFS
facdaa91
NG
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
748446bb
MG
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
6bace090 72 unsigned long high_pfn = 0;
748446bb
MG
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 75 unsigned long pfn = page_to_pfn(page);
748446bb
MG
76 list_del(&page->lru);
77 __free_page(page);
6bace090
VB
78 if (pfn > high_pfn)
79 high_pfn = pfn;
748446bb
MG
80 }
81
6bace090 82 return high_pfn;
748446bb
MG
83}
84
4469ab98 85static void split_map_pages(struct list_head *list)
ff9543fd 86{
66c64223
JK
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
66c64223 96
46f24fd8 97 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
98 if (order)
99 split_page(page, order);
ff9543fd 100
66c64223
JK
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
ff9543fd 105 }
66c64223
JK
106
107 list_splice(&tmp_list, list);
ff9543fd
MN
108}
109
bb13ffeb 110#ifdef CONFIG_COMPACTION
68f2736a 111bool PageMovable(struct page *page)
bda807d4 112{
68f2736a 113 const struct movable_operations *mops;
bda807d4
MK
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
68f2736a 117 return false;
bda807d4 118
68f2736a
MWO
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
bda807d4 122
68f2736a 123 return false;
bda807d4 124}
bda807d4 125
68f2736a 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
bda807d4
MK
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
68f2736a
MWO
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
bda807d4 140 */
68f2736a 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
24e2716f
JK
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
860b3272 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
2271b016 153static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
2271b016 168static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
62b35fe0 176 if (++zone->compact_considered >= defer_limit) {
24e2716f 177 zone->compact_considered = defer_limit;
24e2716f 178 return false;
62b35fe0 179 }
24e2716f
JK
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
2271b016 205static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
bb13ffeb
MG
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
02333641
VB
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 228 zone->compact_cached_free_pfn =
06b6640a 229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
230}
231
9721fd82
BW
232#ifdef CONFIG_SPARSEMEM
233/*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
238static unsigned long skip_offline_sections(unsigned long start_pfn)
239{
240 unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242 if (online_section_nr(start_nr))
243 return 0;
244
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(start_nr))
247 return section_nr_to_pfn(start_nr);
248 }
249
250 return 0;
251}
e6e0c767
BW
252
253/*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259{
260 unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262 if (!start_nr || online_section_nr(start_nr))
263 return 0;
264
265 while (start_nr-- > 0) {
266 if (online_section_nr(start_nr))
267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 }
269
270 return 0;
271}
9721fd82
BW
272#else
273static unsigned long skip_offline_sections(unsigned long start_pfn)
274{
275 return 0;
276}
e6e0c767
BW
277
278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279{
280 return 0;
281}
9721fd82
BW
282#endif
283
21dc7e02 284/*
2271b016 285 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 288 */
b527cfe5 289static bool pageblock_skip_persistent(struct page *page)
21dc7e02 290{
b527cfe5 291 if (!PageCompound(page))
21dc7e02 292 return false;
b527cfe5
VB
293
294 page = compound_head(page);
295
296 if (compound_order(page) >= pageblock_order)
297 return true;
298
299 return false;
21dc7e02
DR
300}
301
e332f741
MG
302static bool
303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 bool check_target)
305{
306 struct page *page = pfn_to_online_page(pfn);
6b0868c8 307 struct page *block_page;
e332f741
MG
308 struct page *end_page;
309 unsigned long block_pfn;
310
311 if (!page)
312 return false;
313 if (zone != page_zone(page))
314 return false;
315 if (pageblock_skip_persistent(page))
316 return false;
317
318 /*
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
321 */
322 if (check_source && check_target && !get_pageblock_skip(page))
323 return true;
324
325 /*
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
328 */
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 return false;
332
6b0868c8
MG
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
337 if (block_page) {
338 page = block_page;
339 pfn = block_pfn;
340 }
341
342 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 343 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(block_pfn);
346 if (!end_page)
347 return false;
348
e332f741
MG
349 /*
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
353 */
e332f741 354 do {
859a85dd
MR
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
357 return true;
358 }
e332f741 359
859a85dd
MR
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
362 return true;
e332f741
MG
363 }
364
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 366 } while (page <= end_page);
e332f741
MG
367
368 return false;
369}
370
bb13ffeb
MG
371/*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
62997027 376static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 377{
e332f741 378 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
384
8df4e28c 385 /* Only flush if a full compaction finished recently */
e332f741
MG
386 if (!zone->compact_blockskip_flush)
387 return;
bb13ffeb 388
62997027 389 zone->compact_blockskip_flush = false;
bb13ffeb 390
e332f741
MG
391 /*
392 * Walk the zone and update pageblock skip information. Source looks
393 * for PageLRU while target looks for PageBuddy. When the scanner
394 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 * is suitable as both source and target.
396 */
397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
399 cond_resched();
400
e332f741
MG
401 /* Update the migrate PFN */
402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 migrate_pfn < reset_migrate) {
404 source_set = true;
405 reset_migrate = migrate_pfn;
406 zone->compact_init_migrate_pfn = reset_migrate;
407 zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 }
bb13ffeb 410
e332f741
MG
411 /* Update the free PFN */
412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 free_pfn > reset_free) {
414 free_set = true;
415 reset_free = free_pfn;
416 zone->compact_init_free_pfn = reset_free;
417 zone->compact_cached_free_pfn = reset_free;
418 }
bb13ffeb 419 }
02333641 420
e332f741
MG
421 /* Leave no distance if no suitable block was reset */
422 if (reset_migrate >= reset_free) {
423 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 zone->compact_cached_free_pfn = free_pfn;
426 }
bb13ffeb
MG
427}
428
62997027
MG
429void reset_isolation_suitable(pg_data_t *pgdat)
430{
431 int zoneid;
432
433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 struct zone *zone = &pgdat->node_zones[zoneid];
435 if (!populated_zone(zone))
436 continue;
437
8df4e28c 438 __reset_isolation_suitable(zone);
62997027
MG
439 }
440}
441
e380bebe
MG
442/*
443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444 * locks are not required for read/writers. Returns true if it was already set.
445 */
590ccea8 446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
447{
448 bool skip;
449
590ccea8 450 /* Do not update if skip hint is being ignored */
e380bebe
MG
451 if (cc->ignore_skip_hint)
452 return false;
453
e380bebe
MG
454 skip = get_pageblock_skip(page);
455 if (!skip && !cc->no_set_skip_hint)
456 set_pageblock_skip(page);
457
458 return skip;
459}
460
461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462{
463 struct zone *zone = cc->zone;
464
e380bebe
MG
465 /* Set for isolation rather than compaction */
466 if (cc->no_set_skip_hint)
467 return;
468
3c099a2b
KS
469 pfn = pageblock_end_pfn(pfn);
470
cf043a00 471 /* Update where async and sync compaction should restart */
e380bebe
MG
472 if (pfn > zone->compact_cached_migrate_pfn[0])
473 zone->compact_cached_migrate_pfn[0] = pfn;
474 if (cc->mode != MIGRATE_ASYNC &&
475 pfn > zone->compact_cached_migrate_pfn[1])
476 zone->compact_cached_migrate_pfn[1] = pfn;
477}
478
bb13ffeb
MG
479/*
480 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 481 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 482 */
c89511ab 483static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 484 struct page *page, unsigned long pfn)
bb13ffeb 485{
c89511ab 486 struct zone *zone = cc->zone;
6815bf3f 487
2583d671 488 if (cc->no_set_skip_hint)
6815bf3f
JK
489 return;
490
edc2ca61 491 set_pageblock_skip(page);
c89511ab 492
e380bebe
MG
493 if (pfn < zone->compact_cached_free_pfn)
494 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
495}
496#else
497static inline bool isolation_suitable(struct compact_control *cc,
498 struct page *page)
499{
500 return true;
501}
502
b527cfe5 503static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
504{
505 return false;
506}
507
508static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 509 struct page *page, unsigned long pfn)
bb13ffeb
MG
510{
511}
e380bebe
MG
512
513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514{
515}
516
590ccea8 517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
518{
519 return false;
520}
bb13ffeb
MG
521#endif /* CONFIG_COMPACTION */
522
8b44d279
VB
523/*
524 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
525 * very heavily contended. For async compaction, trylock and record if the
526 * lock is contended. The lock will still be acquired but compaction will
527 * abort when the current block is finished regardless of success rate.
528 * Sync compaction acquires the lock.
8b44d279 529 *
cb2dcaf0 530 * Always returns true which makes it easier to track lock state in callers.
8b44d279 531 */
cb2dcaf0 532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 533 struct compact_control *cc)
77337ede 534 __acquires(lock)
2a1402aa 535{
cb2dcaf0
MG
536 /* Track if the lock is contended in async mode */
537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 if (spin_trylock_irqsave(lock, *flags))
539 return true;
540
541 cc->contended = true;
8b44d279 542 }
1f9efdef 543
cb2dcaf0 544 spin_lock_irqsave(lock, *flags);
8b44d279 545 return true;
2a1402aa
MG
546}
547
c67fe375
MG
548/*
549 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
550 * very heavily contended. The lock should be periodically unlocked to avoid
551 * having disabled IRQs for a long time, even when there is nobody waiting on
552 * the lock. It might also be that allowing the IRQs will result in
d56c1584 553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
554 * Either compaction type will also abort if a fatal signal is pending.
555 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 556 *
d56c1584
ML
557 * Returns true if compaction should abort due to fatal signal pending.
558 * Returns false when compaction can continue.
c67fe375 559 */
8b44d279
VB
560static bool compact_unlock_should_abort(spinlock_t *lock,
561 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 562{
8b44d279
VB
563 if (*locked) {
564 spin_unlock_irqrestore(lock, flags);
565 *locked = false;
566 }
1f9efdef 567
8b44d279 568 if (fatal_signal_pending(current)) {
c3486f53 569 cc->contended = true;
8b44d279
VB
570 return true;
571 }
c67fe375 572
cf66f070 573 cond_resched();
be976572
VB
574
575 return false;
576}
577
85aa125f 578/*
9e4be470
JM
579 * Isolate free pages onto a private freelist. If @strict is true, will abort
580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581 * (even though it may still end up isolating some pages).
85aa125f 582 */
f40d1e42 583static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 584 unsigned long *start_pfn,
85aa125f
MN
585 unsigned long end_pfn,
586 struct list_head *freelist,
4fca9730 587 unsigned int stride,
85aa125f 588 bool strict)
748446bb 589{
b7aba698 590 int nr_scanned = 0, total_isolated = 0;
dc13292c 591 struct page *page;
b8b2d825 592 unsigned long flags = 0;
f40d1e42 593 bool locked = false;
e14c720e 594 unsigned long blockpfn = *start_pfn;
66c64223 595 unsigned int order;
748446bb 596
4fca9730
MG
597 /* Strict mode is for isolation, speed is secondary */
598 if (strict)
599 stride = 1;
600
dc13292c 601 page = pfn_to_page(blockpfn);
748446bb 602
f40d1e42 603 /* Isolate free pages. */
dc13292c 604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
66c64223 605 int isolated;
748446bb 606
8b44d279
VB
607 /*
608 * Periodically drop the lock (if held) regardless of its
609 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 610 * pending.
8b44d279 611 */
c036ddff 612 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
613 && compact_unlock_should_abort(&cc->zone->lock, flags,
614 &locked, cc))
615 break;
616
b7aba698 617 nr_scanned++;
2af120bc 618
9fcd6d2e
VB
619 /*
620 * For compound pages such as THP and hugetlbfs, we can save
621 * potentially a lot of iterations if we skip them at once.
622 * The check is racy, but we can consider only valid values
623 * and the only danger is skipping too much.
624 */
625 if (PageCompound(page)) {
21dc7e02
DR
626 const unsigned int order = compound_order(page);
627
3da0272a 628 if (blockpfn + (1UL << order) <= end_pfn) {
21dc7e02 629 blockpfn += (1UL << order) - 1;
dc13292c 630 page += (1UL << order) - 1;
56d48d8d 631 nr_scanned += (1UL << order) - 1;
9fcd6d2e 632 }
3da0272a 633
9fcd6d2e
VB
634 goto isolate_fail;
635 }
636
f40d1e42 637 if (!PageBuddy(page))
2af120bc 638 goto isolate_fail;
f40d1e42 639
85f73e6d 640 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 641 if (!locked) {
cb2dcaf0 642 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 643 &flags, cc);
f40d1e42 644
69b7189f
VB
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
647 goto isolate_fail;
648 }
748446bb 649
66c64223 650 /* Found a free page, will break it into order-0 pages */
ab130f91 651 order = buddy_order(page);
66c64223 652 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
653 if (!isolated)
654 break;
66c64223 655 set_page_private(page, order);
a4f04f2c 656
b717d6b9 657 nr_scanned += isolated - 1;
748446bb 658 total_isolated += isolated;
a4f04f2c 659 cc->nr_freepages += isolated;
66c64223
JK
660 list_add_tail(&page->lru, freelist);
661
a4f04f2c
DR
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
664 break;
748446bb 665 }
a4f04f2c
DR
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
dc13292c 668 page += isolated - 1;
a4f04f2c 669 continue;
2af120bc
LA
670
671isolate_fail:
672 if (strict)
673 break;
2af120bc 674
748446bb
MG
675 }
676
a4f04f2c
DR
677 if (locked)
678 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
9fcd6d2e 680 /*
3da0272a 681 * Be careful to not go outside of the pageblock.
9fcd6d2e
VB
682 */
683 if (unlikely(blockpfn > end_pfn))
684 blockpfn = end_pfn;
685
e34d85f0
JK
686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 nr_scanned, total_isolated);
688
e14c720e
VB
689 /* Record how far we have got within the block */
690 *start_pfn = blockpfn;
691
f40d1e42
MG
692 /*
693 * If strict isolation is requested by CMA then check that all the
694 * pages requested were isolated. If there were any failures, 0 is
695 * returned and CMA will fail.
696 */
2af120bc 697 if (strict && blockpfn < end_pfn)
f40d1e42
MG
698 total_isolated = 0;
699
7f354a54 700 cc->total_free_scanned += nr_scanned;
397487db 701 if (total_isolated)
010fc29a 702 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
703 return total_isolated;
704}
705
85aa125f
MN
706/**
707 * isolate_freepages_range() - isolate free pages.
e8b098fc 708 * @cc: Compaction control structure.
85aa125f
MN
709 * @start_pfn: The first PFN to start isolating.
710 * @end_pfn: The one-past-last PFN.
711 *
712 * Non-free pages, invalid PFNs, or zone boundaries within the
713 * [start_pfn, end_pfn) range are considered errors, cause function to
714 * undo its actions and return zero.
715 *
716 * Otherwise, function returns one-past-the-last PFN of isolated page
717 * (which may be greater then end_pfn if end fell in a middle of
718 * a free page).
719 */
ff9543fd 720unsigned long
bb13ffeb
MG
721isolate_freepages_range(struct compact_control *cc,
722 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 723{
e1409c32 724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
725 LIST_HEAD(freelist);
726
7d49d886 727 pfn = start_pfn;
06b6640a 728 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
729 if (block_start_pfn < cc->zone->zone_start_pfn)
730 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 731 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
732
733 for (; pfn < end_pfn; pfn += isolated,
e1409c32 734 block_start_pfn = block_end_pfn,
7d49d886 735 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
736 /* Protect pfn from changing by isolate_freepages_block */
737 unsigned long isolate_start_pfn = pfn;
85aa125f 738
58420016
JK
739 /*
740 * pfn could pass the block_end_pfn if isolated freepage
741 * is more than pageblock order. In this case, we adjust
742 * scanning range to right one.
743 */
744 if (pfn >= block_end_pfn) {
06b6640a
VB
745 block_start_pfn = pageblock_start_pfn(pfn);
746 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
747 }
748
a2864a67
KS
749 block_end_pfn = min(block_end_pfn, end_pfn);
750
e1409c32
JK
751 if (!pageblock_pfn_to_page(block_start_pfn,
752 block_end_pfn, cc->zone))
7d49d886
VB
753 break;
754
e14c720e 755 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 756 block_end_pfn, &freelist, 0, true);
85aa125f
MN
757
758 /*
759 * In strict mode, isolate_freepages_block() returns 0 if
760 * there are any holes in the block (ie. invalid PFNs or
761 * non-free pages).
762 */
763 if (!isolated)
764 break;
765
766 /*
767 * If we managed to isolate pages, it is always (1 << n) *
768 * pageblock_nr_pages for some non-negative n. (Max order
769 * page may span two pageblocks).
770 */
771 }
772
66c64223 773 /* __isolate_free_page() does not map the pages */
4469ab98 774 split_map_pages(&freelist);
85aa125f
MN
775
776 if (pfn < end_pfn) {
777 /* Loop terminated early, cleanup. */
778 release_freepages(&freelist);
779 return 0;
780 }
781
782 /* We don't use freelists for anything. */
783 return pfn;
784}
785
748446bb 786/* Similar to reclaim, but different enough that they don't share logic */
4fbbb3fd 787static bool too_many_isolated(struct compact_control *cc)
748446bb 788{
4fbbb3fd 789 pg_data_t *pgdat = cc->zone->zone_pgdat;
d818fca1
MG
790 bool too_many;
791
bc693045 792 unsigned long active, inactive, isolated;
748446bb 793
5f438eee
AR
794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 node_page_state(pgdat, NR_INACTIVE_ANON);
796 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 node_page_state(pgdat, NR_ACTIVE_ANON);
798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 800
4fbbb3fd
JW
801 /*
802 * Allow GFP_NOFS to isolate past the limit set for regular
803 * compaction runs. This prevents an ABBA deadlock when other
804 * compactors have already isolated to the limit, but are
805 * blocked on filesystem locks held by the GFP_NOFS thread.
806 */
807 if (cc->gfp_mask & __GFP_FS) {
808 inactive >>= 3;
809 active >>= 3;
810 }
811
d818fca1
MG
812 too_many = isolated > (inactive + active) / 2;
813 if (!too_many)
814 wake_throttle_isolated(pgdat);
815
816 return too_many;
748446bb
MG
817}
818
2fe86e00 819/**
edc2ca61
VB
820 * isolate_migratepages_block() - isolate all migrate-able pages within
821 * a single pageblock
2fe86e00 822 * @cc: Compaction control structure.
edc2ca61
VB
823 * @low_pfn: The first PFN to isolate
824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 825 * @mode: Isolation mode to be used.
2fe86e00
MN
826 *
827 * Isolate all pages that can be migrated from the range specified by
edc2ca61 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 830 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 831 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 832 *
edc2ca61 833 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 834 * and cc->nr_migratepages is updated accordingly.
748446bb 835 */
c2ad7a1f 836static int
edc2ca61 837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 838 unsigned long end_pfn, isolate_mode_t mode)
748446bb 839{
5f438eee 840 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 841 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 842 struct lruvec *lruvec;
b8b2d825 843 unsigned long flags = 0;
6168d0da 844 struct lruvec *locked = NULL;
56ae0bb3 845 struct folio *folio = NULL;
bb13ffeb 846 struct page *page = NULL, *valid_page = NULL;
89f6c88a 847 struct address_space *mapping;
e34d85f0 848 unsigned long start_pfn = low_pfn;
fdd048e1
VB
849 bool skip_on_failure = false;
850 unsigned long next_skip_pfn = 0;
e380bebe 851 bool skip_updated = false;
c2ad7a1f
OS
852 int ret = 0;
853
854 cc->migrate_pfn = low_pfn;
748446bb 855
748446bb
MG
856 /*
857 * Ensure that there are not too many pages isolated from the LRU
858 * list by either parallel reclaimers or compaction. If there are,
859 * delay for some time until fewer pages are isolated
860 */
4fbbb3fd 861 while (unlikely(too_many_isolated(cc))) {
d20bdd57
ZY
862 /* stop isolation if there are still pages not migrated */
863 if (cc->nr_migratepages)
c2ad7a1f 864 return -EAGAIN;
d20bdd57 865
f9e35b3b 866 /* async migration should just abort */
e0b9daeb 867 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 868 return -EAGAIN;
f9e35b3b 869
c3f4a9a2 870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
871
872 if (fatal_signal_pending(current))
c2ad7a1f 873 return -EINTR;
748446bb
MG
874 }
875
cf66f070 876 cond_resched();
aeef4b83 877
fdd048e1
VB
878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 skip_on_failure = true;
880 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 }
882
748446bb 883 /* Time to isolate some pages for migration */
748446bb 884 for (; low_pfn < end_pfn; low_pfn++) {
0003e2a4 885 bool is_dirty, is_unevictable;
29c0dde8 886
fdd048e1
VB
887 if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 /*
889 * We have isolated all migration candidates in the
890 * previous order-aligned block, and did not skip it due
891 * to failure. We should migrate the pages now and
892 * hopefully succeed compaction.
893 */
894 if (nr_isolated)
895 break;
896
897 /*
898 * We failed to isolate in the previous order-aligned
899 * block. Set the new boundary to the end of the
900 * current block. Note we can't simply increase
901 * next_skip_pfn by 1 << order, as low_pfn might have
902 * been incremented by a higher number due to skipping
903 * a compound or a high-order buddy page in the
904 * previous loop iteration.
905 */
906 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 }
908
8b44d279
VB
909 /*
910 * Periodically drop the lock (if held) regardless of its
670105a2
MG
911 * contention, to give chance to IRQs. Abort completely if
912 * a fatal signal is pending.
8b44d279 913 */
c036ddff 914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
915 if (locked) {
916 unlock_page_lruvec_irqrestore(locked, flags);
917 locked = NULL;
918 }
919
920 if (fatal_signal_pending(current)) {
921 cc->contended = true;
c2ad7a1f 922 ret = -EINTR;
6168d0da 923
6168d0da
AS
924 goto fatal_pending;
925 }
926
927 cond_resched();
670105a2 928 }
c67fe375 929
b7aba698 930 nr_scanned++;
748446bb 931
748446bb 932 page = pfn_to_page(low_pfn);
dc908600 933
e380bebe
MG
934 /*
935 * Check if the pageblock has already been marked skipped.
493614da 936 * Only the first PFN is checked as the caller isolates
e380bebe
MG
937 * COMPACT_CLUSTER_MAX at a time so the second call must
938 * not falsely conclude that the block should be skipped.
939 */
493614da
JW
940 if (!valid_page && (pageblock_aligned(low_pfn) ||
941 low_pfn == cc->zone->zone_start_pfn)) {
4af12d04 942 if (!isolation_suitable(cc, page)) {
e380bebe 943 low_pfn = end_pfn;
56ae0bb3 944 folio = NULL;
e380bebe
MG
945 goto isolate_abort;
946 }
bb13ffeb 947 valid_page = page;
e380bebe 948 }
bb13ffeb 949
369fa227 950 if (PageHuge(page) && cc->alloc_contig) {
1c06b6a5
BW
951 if (locked) {
952 unlock_page_lruvec_irqrestore(locked, flags);
953 locked = NULL;
954 }
955
ae37c7ff 956 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
957
958 /*
959 * Fail isolation in case isolate_or_dissolve_huge_page()
960 * reports an error. In case of -ENOMEM, abort right away.
961 */
962 if (ret < 0) {
963 /* Do not report -EBUSY down the chain */
964 if (ret == -EBUSY)
965 ret = 0;
66fe1cf7 966 low_pfn += compound_nr(page) - 1;
56d48d8d 967 nr_scanned += compound_nr(page) - 1;
369fa227
OS
968 goto isolate_fail;
969 }
970
ae37c7ff
OS
971 if (PageHuge(page)) {
972 /*
973 * Hugepage was successfully isolated and placed
974 * on the cc->migratepages list.
975 */
56ae0bb3
KW
976 folio = page_folio(page);
977 low_pfn += folio_nr_pages(folio) - 1;
ae37c7ff
OS
978 goto isolate_success_no_list;
979 }
980
369fa227
OS
981 /*
982 * Ok, the hugepage was dissolved. Now these pages are
983 * Buddy and cannot be re-allocated because they are
984 * isolated. Fall-through as the check below handles
985 * Buddy pages.
986 */
987 }
988
6c14466c 989 /*
99c0fd5e
VB
990 * Skip if free. We read page order here without zone lock
991 * which is generally unsafe, but the race window is small and
992 * the worst thing that can happen is that we skip some
993 * potential isolation targets.
6c14466c 994 */
99c0fd5e 995 if (PageBuddy(page)) {
ab130f91 996 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
997
998 /*
999 * Without lock, we cannot be sure that what we got is
1000 * a valid page order. Consider only values in the
1001 * valid order range to prevent low_pfn overflow.
1002 */
5e0a760b 1003 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
99c0fd5e 1004 low_pfn += (1UL << freepage_order) - 1;
56d48d8d
BW
1005 nr_scanned += (1UL << freepage_order) - 1;
1006 }
748446bb 1007 continue;
99c0fd5e 1008 }
748446bb 1009
bc835011 1010 /*
29c0dde8 1011 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
1012 * hugetlbfs are not to be compacted unless we are attempting
1013 * an allocation much larger than the huge page size (eg CMA).
1014 * We can potentially save a lot of iterations if we skip them
1015 * at once. The check is racy, but we can consider only valid
1016 * values and the only danger is skipping too much.
bc835011 1017 */
1da2f328 1018 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 1019 const unsigned int order = compound_order(page);
edc2ca61 1020
5e0a760b 1021 if (likely(order <= MAX_PAGE_ORDER)) {
21dc7e02 1022 low_pfn += (1UL << order) - 1;
56d48d8d
BW
1023 nr_scanned += (1UL << order) - 1;
1024 }
fdd048e1 1025 goto isolate_fail;
2a1402aa
MG
1026 }
1027
bda807d4
MK
1028 /*
1029 * Check may be lockless but that's ok as we recheck later.
1030 * It's possible to migrate LRU and non-lru movable pages.
1031 * Skip any other type of page
1032 */
1033 if (!PageLRU(page)) {
bda807d4
MK
1034 /*
1035 * __PageMovable can return false positive so we need
1036 * to verify it under page_lock.
1037 */
1038 if (unlikely(__PageMovable(page)) &&
1039 !PageIsolated(page)) {
1040 if (locked) {
6168d0da
AS
1041 unlock_page_lruvec_irqrestore(locked, flags);
1042 locked = NULL;
bda807d4
MK
1043 }
1044
56ae0bb3
KW
1045 if (isolate_movable_page(page, mode)) {
1046 folio = page_folio(page);
bda807d4 1047 goto isolate_success;
56ae0bb3 1048 }
bda807d4
MK
1049 }
1050
fdd048e1 1051 goto isolate_fail;
bda807d4 1052 }
29c0dde8 1053
829ae0f8
GS
1054 /*
1055 * Be careful not to clear PageLRU until after we're
1056 * sure the page is not being freed elsewhere -- the
1057 * page release code relies on it.
1058 */
56ae0bb3
KW
1059 folio = folio_get_nontail_page(page);
1060 if (unlikely(!folio))
829ae0f8
GS
1061 goto isolate_fail;
1062
119d6d59
DR
1063 /*
1064 * Migration will fail if an anonymous page is pinned in memory,
1065 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 * admittedly racy check.
1067 */
56ae0bb3
KW
1068 mapping = folio_mapping(folio);
1069 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
829ae0f8 1070 goto isolate_fail_put;
119d6d59 1071
73e64c51
MH
1072 /*
1073 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 * because those do not depend on fs locks.
1075 */
89f6c88a 1076 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1077 goto isolate_fail_put;
9df41314 1078
89f6c88a 1079 /* Only take pages on LRU: a check now makes later tests safe */
56ae0bb3 1080 if (!folio_test_lru(folio))
89f6c88a
HD
1081 goto isolate_fail_put;
1082
0003e2a4
SC
1083 is_unevictable = folio_test_unevictable(folio);
1084
89f6c88a 1085 /* Compaction might skip unevictable pages but CMA takes them */
0003e2a4 1086 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
89f6c88a
HD
1087 goto isolate_fail_put;
1088
1089 /*
1090 * To minimise LRU disruption, the caller can indicate with
1091 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092 * it will be able to migrate without blocking - clean pages
1093 * for the most part. PageWriteback would require blocking.
1094 */
56ae0bb3 1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
9df41314
AS
1096 goto isolate_fail_put;
1097
0003e2a4
SC
1098 is_dirty = folio_test_dirty(folio);
1099
1100 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101 (mapping && is_unevictable)) {
1102 bool migrate_dirty = true;
1103 bool is_unmovable;
89f6c88a
HD
1104
1105 /*
866ff801 1106 * Only folios without mappings or that have
0003e2a4
SC
1107 * a ->migrate_folio callback are possible to migrate
1108 * without blocking.
1109 *
1110 * Folios from unmovable mappings are not migratable.
1111 *
1112 * However, we can be racing with truncation, which can
1113 * free the mapping that we need to check. Truncation
1114 * holds the folio lock until after the folio is removed
1115 * from the page so holding it ourselves is sufficient.
1116 *
1117 * To avoid locking the folio just to check unmovable,
1118 * assume every unmovable folio is also unevictable,
1119 * which is a cheaper test. If our assumption goes
1120 * wrong, it's not a correctness bug, just potentially
1121 * wasted cycles.
89f6c88a 1122 */
56ae0bb3 1123 if (!folio_trylock(folio))
89f6c88a
HD
1124 goto isolate_fail_put;
1125
56ae0bb3 1126 mapping = folio_mapping(folio);
0003e2a4
SC
1127 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128 migrate_dirty = !mapping ||
1129 mapping->a_ops->migrate_folio;
1130 }
1131 is_unmovable = mapping && mapping_unmovable(mapping);
56ae0bb3 1132 folio_unlock(folio);
0003e2a4 1133 if (!migrate_dirty || is_unmovable)
89f6c88a
HD
1134 goto isolate_fail_put;
1135 }
1136
56ae0bb3
KW
1137 /* Try isolate the folio */
1138 if (!folio_test_clear_lru(folio))
9df41314
AS
1139 goto isolate_fail_put;
1140
56ae0bb3 1141 lruvec = folio_lruvec(folio);
6168d0da 1142
69b7189f 1143 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1144 if (lruvec != locked) {
1145 if (locked)
1146 unlock_page_lruvec_irqrestore(locked, flags);
1147
1148 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149 locked = lruvec;
6168d0da 1150
56ae0bb3 1151 lruvec_memcg_debug(lruvec, folio);
e380bebe 1152
590ccea8
MG
1153 /*
1154 * Try get exclusive access under lock. If marked for
1155 * skip, the scan is aborted unless the current context
1156 * is a rescan to reach the end of the pageblock.
1157 */
1158 if (!skip_updated && valid_page) {
e380bebe 1159 skip_updated = true;
590ccea8
MG
1160 if (test_and_set_skip(cc, valid_page) &&
1161 !cc->finish_pageblock) {
7545e2f2 1162 low_pfn = end_pfn;
e380bebe 1163 goto isolate_abort;
590ccea8 1164 }
e380bebe 1165 }
2a1402aa 1166
29c0dde8 1167 /*
56ae0bb3
KW
1168 * folio become large since the non-locked check,
1169 * and it's on LRU.
29c0dde8 1170 */
56ae0bb3
KW
1171 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172 low_pfn += folio_nr_pages(folio) - 1;
1173 nr_scanned += folio_nr_pages(folio) - 1;
1174 folio_set_lru(folio);
9df41314 1175 goto isolate_fail_put;
69b7189f 1176 }
d99fd5fe 1177 }
fa9add64 1178
56ae0bb3
KW
1179 /* The folio is taken off the LRU */
1180 if (folio_test_large(folio))
1181 low_pfn += folio_nr_pages(folio) - 1;
bc835011 1182
748446bb 1183 /* Successfully isolated */
56ae0bb3
KW
1184 lruvec_del_folio(lruvec, folio);
1185 node_stat_mod_folio(folio,
1186 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187 folio_nr_pages(folio));
b6c75016
JK
1188
1189isolate_success:
56ae0bb3 1190 list_add(&folio->lru, &cc->migratepages);
ae37c7ff 1191isolate_success_no_list:
56ae0bb3
KW
1192 cc->nr_migratepages += folio_nr_pages(folio);
1193 nr_isolated += folio_nr_pages(folio);
1194 nr_scanned += folio_nr_pages(folio) - 1;
748446bb 1195
804d3121
MG
1196 /*
1197 * Avoid isolating too much unless this block is being
48731c84 1198 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
cb2dcaf0
MG
1199 * or a lock is contended. For contention, isolate quickly to
1200 * potentially remove one source of contention.
804d3121 1201 */
38935861 1202 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
48731c84 1203 !cc->finish_pageblock && !cc->contended) {
31b8384a 1204 ++low_pfn;
748446bb 1205 break;
31b8384a 1206 }
fdd048e1
VB
1207
1208 continue;
9df41314
AS
1209
1210isolate_fail_put:
1211 /* Avoid potential deadlock in freeing page under lru_lock */
1212 if (locked) {
6168d0da
AS
1213 unlock_page_lruvec_irqrestore(locked, flags);
1214 locked = NULL;
9df41314 1215 }
56ae0bb3 1216 folio_put(folio);
9df41314 1217
fdd048e1 1218isolate_fail:
369fa227 1219 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1220 continue;
1221
1222 /*
1223 * We have isolated some pages, but then failed. Release them
1224 * instead of migrating, as we cannot form the cc->order buddy
1225 * page anyway.
1226 */
1227 if (nr_isolated) {
1228 if (locked) {
6168d0da
AS
1229 unlock_page_lruvec_irqrestore(locked, flags);
1230 locked = NULL;
fdd048e1 1231 }
fdd048e1
VB
1232 putback_movable_pages(&cc->migratepages);
1233 cc->nr_migratepages = 0;
fdd048e1
VB
1234 nr_isolated = 0;
1235 }
1236
1237 if (low_pfn < next_skip_pfn) {
1238 low_pfn = next_skip_pfn - 1;
1239 /*
1240 * The check near the loop beginning would have updated
1241 * next_skip_pfn too, but this is a bit simpler.
1242 */
1243 next_skip_pfn += 1UL << cc->order;
1244 }
369fa227
OS
1245
1246 if (ret == -ENOMEM)
1247 break;
748446bb
MG
1248 }
1249
99c0fd5e
VB
1250 /*
1251 * The PageBuddy() check could have potentially brought us outside
1252 * the range to be scanned.
1253 */
1254 if (unlikely(low_pfn > end_pfn))
1255 low_pfn = end_pfn;
1256
56ae0bb3 1257 folio = NULL;
9df41314 1258
e380bebe 1259isolate_abort:
c67fe375 1260 if (locked)
6168d0da 1261 unlock_page_lruvec_irqrestore(locked, flags);
56ae0bb3
KW
1262 if (folio) {
1263 folio_set_lru(folio);
1264 folio_put(folio);
9df41314 1265 }
748446bb 1266
50b5b094 1267 /*
48731c84 1268 * Update the cached scanner pfn once the pageblock has been scanned.
804d3121
MG
1269 * Pages will either be migrated in which case there is no point
1270 * scanning in the near future or migration failed in which case the
1271 * failure reason may persist. The block is marked for skipping if
1272 * there were no pages isolated in the block or if the block is
1273 * rescanned twice in a row.
50b5b094 1274 */
48731c84 1275 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
8b71b499 1276 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
e380bebe
MG
1277 set_pageblock_skip(valid_page);
1278 update_cached_migrate(cc, low_pfn);
1279 }
bb13ffeb 1280
e34d85f0
JK
1281 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282 nr_scanned, nr_isolated);
b7aba698 1283
670105a2 1284fatal_pending:
7f354a54 1285 cc->total_migrate_scanned += nr_scanned;
397487db 1286 if (nr_isolated)
010fc29a 1287 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1288
c2ad7a1f
OS
1289 cc->migrate_pfn = low_pfn;
1290
1291 return ret;
2fe86e00
MN
1292}
1293
edc2ca61
VB
1294/**
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc: Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn: The one-past-last PFN.
1299 *
369fa227
OS
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
edc2ca61 1302 */
c2ad7a1f 1303int
edc2ca61
VB
1304isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305 unsigned long end_pfn)
1306{
e1409c32 1307 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1308 int ret = 0;
edc2ca61
VB
1309
1310 /* Scan block by block. First and last block may be incomplete */
1311 pfn = start_pfn;
06b6640a 1312 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1313 if (block_start_pfn < cc->zone->zone_start_pfn)
1314 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1315 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1316
1317 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1318 block_start_pfn = block_end_pfn,
edc2ca61
VB
1319 block_end_pfn += pageblock_nr_pages) {
1320
1321 block_end_pfn = min(block_end_pfn, end_pfn);
1322
e1409c32
JK
1323 if (!pageblock_pfn_to_page(block_start_pfn,
1324 block_end_pfn, cc->zone))
edc2ca61
VB
1325 continue;
1326
c2ad7a1f
OS
1327 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328 ISOLATE_UNEVICTABLE);
edc2ca61 1329
c2ad7a1f 1330 if (ret)
edc2ca61 1331 break;
6ea41c0c 1332
38935861 1333 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1334 break;
edc2ca61 1335 }
edc2ca61 1336
c2ad7a1f 1337 return ret;
edc2ca61
VB
1338}
1339
ff9543fd
MN
1340#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341#ifdef CONFIG_COMPACTION
018e9a49 1342
b682debd
VB
1343static bool suitable_migration_source(struct compact_control *cc,
1344 struct page *page)
1345{
282722b0
VB
1346 int block_mt;
1347
9bebefd5
MG
1348 if (pageblock_skip_persistent(page))
1349 return false;
1350
282722b0 1351 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1352 return true;
1353
282722b0
VB
1354 block_mt = get_pageblock_migratetype(page);
1355
1356 if (cc->migratetype == MIGRATE_MOVABLE)
1357 return is_migrate_movable(block_mt);
1358 else
1359 return block_mt == cc->migratetype;
b682debd
VB
1360}
1361
018e9a49 1362/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1363static bool suitable_migration_target(struct compact_control *cc,
1364 struct page *page)
018e9a49
AM
1365{
1366 /* If the page is a large free page, then disallow migration */
1367 if (PageBuddy(page)) {
1883e8ac
BW
1368 int order = cc->order > 0 ? cc->order : pageblock_order;
1369
018e9a49
AM
1370 /*
1371 * We are checking page_order without zone->lock taken. But
1372 * the only small danger is that we skip a potentially suitable
1373 * pageblock, so it's not worth to check order for valid range.
1374 */
1883e8ac 1375 if (buddy_order_unsafe(page) >= order)
018e9a49
AM
1376 return false;
1377 }
1378
1ef36db2
YX
1379 if (cc->ignore_block_suitable)
1380 return true;
1381
018e9a49 1382 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1383 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1384 return true;
1385
1386 /* Otherwise skip the block */
1387 return false;
1388}
1389
70b44595
MG
1390static inline unsigned int
1391freelist_scan_limit(struct compact_control *cc)
1392{
dd7ef7bd
QC
1393 unsigned short shift = BITS_PER_LONG - 1;
1394
1395 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1396}
1397
f2849aa0
VB
1398/*
1399 * Test whether the free scanner has reached the same or lower pageblock than
1400 * the migration scanner, and compaction should thus terminate.
1401 */
1402static inline bool compact_scanners_met(struct compact_control *cc)
1403{
1404 return (cc->free_pfn >> pageblock_order)
1405 <= (cc->migrate_pfn >> pageblock_order);
1406}
1407
5a811889
MG
1408/*
1409 * Used when scanning for a suitable migration target which scans freelists
1410 * in reverse. Reorders the list such as the unscanned pages are scanned
1411 * first on the next iteration of the free scanner
1412 */
1413static void
1414move_freelist_head(struct list_head *freelist, struct page *freepage)
1415{
1416 LIST_HEAD(sublist);
1417
4c179891 1418 if (!list_is_first(&freepage->buddy_list, freelist)) {
bbefa0fc 1419 list_cut_before(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1420 list_splice_tail(&sublist, freelist);
5a811889
MG
1421 }
1422}
1423
1424/*
1425 * Similar to move_freelist_head except used by the migration scanner
1426 * when scanning forward. It's possible for these list operations to
1427 * move against each other if they search the free list exactly in
1428 * lockstep.
1429 */
70b44595
MG
1430static void
1431move_freelist_tail(struct list_head *freelist, struct page *freepage)
1432{
1433 LIST_HEAD(sublist);
1434
4c179891 1435 if (!list_is_last(&freepage->buddy_list, freelist)) {
bbefa0fc 1436 list_cut_position(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1437 list_splice_tail(&sublist, freelist);
70b44595
MG
1438 }
1439}
1440
5a811889 1441static void
be21b32a 1442fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1443{
1444 unsigned long start_pfn, end_pfn;
6e2b7044 1445 struct page *page;
5a811889
MG
1446
1447 /* Do not search around if there are enough pages already */
1448 if (cc->nr_freepages >= cc->nr_migratepages)
1449 return;
1450
1451 /* Minimise scanning during async compaction */
1452 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1453 return;
1454
1455 /* Pageblock boundaries */
6e2b7044
VB
1456 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1457 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1458
1459 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1460 if (!page)
1461 return;
5a811889 1462
be21b32a 1463 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1464
1465 /* Skip this pageblock in the future as it's full or nearly full */
18c59d58 1466 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
5a811889
MG
1467 set_pageblock_skip(page);
1468}
1469
dbe2d4e4
MG
1470/* Search orders in round-robin fashion */
1471static int next_search_order(struct compact_control *cc, int order)
1472{
1473 order--;
1474 if (order < 0)
1475 order = cc->order - 1;
1476
1477 /* Search wrapped around? */
1478 if (order == cc->search_order) {
1479 cc->search_order--;
1480 if (cc->search_order < 0)
1481 cc->search_order = cc->order - 1;
1482 return -1;
1483 }
1484
1485 return order;
1486}
1487
2dbd9005 1488static void fast_isolate_freepages(struct compact_control *cc)
5a811889 1489{
b55ca526 1490 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
447ba886 1491 unsigned int nr_scanned = 0, total_isolated = 0;
74e21484 1492 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1493 unsigned long nr_isolated = 0;
1494 unsigned long distance;
1495 struct page *page = NULL;
1496 bool scan_start = false;
1497 int order;
1498
1499 /* Full compaction passes in a negative order */
1500 if (cc->order <= 0)
2dbd9005 1501 return;
5a811889
MG
1502
1503 /*
1504 * If starting the scan, use a deeper search and use the highest
1505 * PFN found if a suitable one is not found.
1506 */
e332f741 1507 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1508 limit = pageblock_nr_pages >> 1;
1509 scan_start = true;
1510 }
1511
1512 /*
1513 * Preferred point is in the top quarter of the scan space but take
1514 * a pfn from the top half if the search is problematic.
1515 */
1516 distance = (cc->free_pfn - cc->migrate_pfn);
1517 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1518 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1519
1520 if (WARN_ON_ONCE(min_pfn > low_pfn))
1521 low_pfn = min_pfn;
1522
dbe2d4e4
MG
1523 /*
1524 * Search starts from the last successful isolation order or the next
1525 * order to search after a previous failure
1526 */
1527 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1528
1529 for (order = cc->search_order;
1530 !page && order >= 0;
1531 order = next_search_order(cc, order)) {
5a811889
MG
1532 struct free_area *area = &cc->zone->free_area[order];
1533 struct list_head *freelist;
1534 struct page *freepage;
1535 unsigned long flags;
1536 unsigned int order_scanned = 0;
74e21484 1537 unsigned long high_pfn = 0;
5a811889
MG
1538
1539 if (!area->nr_free)
1540 continue;
1541
1542 spin_lock_irqsave(&cc->zone->lock, flags);
1543 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 1544 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
5a811889
MG
1545 unsigned long pfn;
1546
1547 order_scanned++;
1548 nr_scanned++;
1549 pfn = page_to_pfn(freepage);
1550
1551 if (pfn >= highest)
6e2b7044
VB
1552 highest = max(pageblock_start_pfn(pfn),
1553 cc->zone->zone_start_pfn);
5a811889
MG
1554
1555 if (pfn >= low_pfn) {
1556 cc->fast_search_fail = 0;
dbe2d4e4 1557 cc->search_order = order;
5a811889
MG
1558 page = freepage;
1559 break;
1560 }
1561
1562 if (pfn >= min_pfn && pfn > high_pfn) {
1563 high_pfn = pfn;
1564
1565 /* Shorten the scan if a candidate is found */
1566 limit >>= 1;
1567 }
1568
1569 if (order_scanned >= limit)
1570 break;
1571 }
1572
e6bd14ec 1573 /* Use a maximum candidate pfn if a preferred one was not found */
5a811889
MG
1574 if (!page && high_pfn) {
1575 page = pfn_to_page(high_pfn);
1576
1577 /* Update freepage for the list reorder below */
1578 freepage = page;
1579 }
1580
1581 /* Reorder to so a future search skips recent pages */
1582 move_freelist_head(freelist, freepage);
1583
1584 /* Isolate the page if available */
1585 if (page) {
1586 if (__isolate_free_page(page, order)) {
1587 set_page_private(page, order);
1588 nr_isolated = 1 << order;
b717d6b9 1589 nr_scanned += nr_isolated - 1;
447ba886 1590 total_isolated += nr_isolated;
5a811889
MG
1591 cc->nr_freepages += nr_isolated;
1592 list_add_tail(&page->lru, &cc->freepages);
1593 count_compact_events(COMPACTISOLATED, nr_isolated);
1594 } else {
1595 /* If isolation fails, abort the search */
5b56d996 1596 order = cc->search_order + 1;
5a811889
MG
1597 page = NULL;
1598 }
1599 }
1600
1601 spin_unlock_irqrestore(&cc->zone->lock, flags);
1602
a8d13355
BW
1603 /* Skip fast search if enough freepages isolated */
1604 if (cc->nr_freepages >= cc->nr_migratepages)
1605 break;
1606
5a811889 1607 /*
b55ca526 1608 * Smaller scan on next order so the total scan is related
5a811889
MG
1609 * to freelist_scan_limit.
1610 */
1611 if (order_scanned >= limit)
b55ca526 1612 limit = max(1U, limit >> 1);
5a811889
MG
1613 }
1614
447ba886
BW
1615 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1616 nr_scanned, total_isolated);
1617
5a811889
MG
1618 if (!page) {
1619 cc->fast_search_fail++;
1620 if (scan_start) {
1621 /*
1622 * Use the highest PFN found above min. If one was
f3867755 1623 * not found, be pessimistic for direct compaction
5a811889
MG
1624 * and use the min mark.
1625 */
ca2864e5 1626 if (highest >= min_pfn) {
5a811889
MG
1627 page = pfn_to_page(highest);
1628 cc->free_pfn = highest;
1629 } else {
e577c8b6 1630 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1631 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1632 min(pageblock_end_pfn(min_pfn),
1633 zone_end_pfn(cc->zone)),
73a6e474 1634 cc->zone);
d19b1a17
BS
1635 if (page && !suitable_migration_target(cc, page))
1636 page = NULL;
1637
5a811889
MG
1638 cc->free_pfn = min_pfn;
1639 }
1640 }
1641 }
1642 }
1643
d097a6f6
MG
1644 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1645 highest -= pageblock_nr_pages;
5a811889 1646 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1647 }
5a811889
MG
1648
1649 cc->total_free_scanned += nr_scanned;
1650 if (!page)
2dbd9005 1651 return;
5a811889
MG
1652
1653 low_pfn = page_to_pfn(page);
be21b32a 1654 fast_isolate_around(cc, low_pfn);
5a811889
MG
1655}
1656
2fe86e00 1657/*
ff9543fd
MN
1658 * Based on information in the current compact_control, find blocks
1659 * suitable for isolating free pages from and then isolate them.
2fe86e00 1660 */
edc2ca61 1661static void isolate_freepages(struct compact_control *cc)
2fe86e00 1662{
edc2ca61 1663 struct zone *zone = cc->zone;
ff9543fd 1664 struct page *page;
c96b9e50 1665 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1666 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1667 unsigned long block_end_pfn; /* end of current pageblock */
1668 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1669 struct list_head *freelist = &cc->freepages;
4fca9730 1670 unsigned int stride;
2fe86e00 1671
5a811889 1672 /* Try a small search of the free lists for a candidate */
00bc102f 1673 fast_isolate_freepages(cc);
5a811889
MG
1674 if (cc->nr_freepages)
1675 goto splitmap;
1676
ff9543fd
MN
1677 /*
1678 * Initialise the free scanner. The starting point is where we last
49e068f0 1679 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1680 * zone when isolating for the first time. For looping we also need
1681 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1682 * block_start_pfn -= pageblock_nr_pages in the for loop.
1683 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1684 * zone which ends in the middle of a pageblock.
49e068f0
VB
1685 * The low boundary is the end of the pageblock the migration scanner
1686 * is using.
ff9543fd 1687 */
e14c720e 1688 isolate_start_pfn = cc->free_pfn;
5a811889 1689 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1690 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1691 zone_end_pfn(zone));
06b6640a 1692 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1693 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1694
ff9543fd
MN
1695 /*
1696 * Isolate free pages until enough are available to migrate the
1697 * pages on cc->migratepages. We stop searching if the migrate
1698 * and free page scanners meet or enough free pages are isolated.
1699 */
f5f61a32 1700 for (; block_start_pfn >= low_pfn;
c96b9e50 1701 block_end_pfn = block_start_pfn,
e14c720e
VB
1702 block_start_pfn -= pageblock_nr_pages,
1703 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1704 unsigned long nr_isolated;
1705
f6ea3adb
DR
1706 /*
1707 * This can iterate a massively long zone without finding any
cb810ad2 1708 * suitable migration targets, so periodically check resched.
f6ea3adb 1709 */
c036ddff 1710 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1711 cond_resched();
f6ea3adb 1712
7d49d886
VB
1713 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1714 zone);
e6e0c767
BW
1715 if (!page) {
1716 unsigned long next_pfn;
1717
1718 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1719 if (next_pfn)
1720 block_start_pfn = max(next_pfn, low_pfn);
1721
ff9543fd 1722 continue;
e6e0c767 1723 }
ff9543fd
MN
1724
1725 /* Check the block is suitable for migration */
9f7e3387 1726 if (!suitable_migration_target(cc, page))
ff9543fd 1727 continue;
68e3e926 1728
bb13ffeb
MG
1729 /* If isolation recently failed, do not retry */
1730 if (!isolation_suitable(cc, page))
1731 continue;
1732
e14c720e 1733 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1734 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1735 block_end_pfn, freelist, stride, false);
ff9543fd 1736
d097a6f6
MG
1737 /* Update the skip hint if the full pageblock was scanned */
1738 if (isolate_start_pfn == block_end_pfn)
16951789
KS
1739 update_pageblock_skip(cc, page, block_start_pfn -
1740 pageblock_nr_pages);
d097a6f6 1741
cb2dcaf0
MG
1742 /* Are enough freepages isolated? */
1743 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1744 if (isolate_start_pfn >= block_end_pfn) {
1745 /*
1746 * Restart at previous pageblock if more
1747 * freepages can be isolated next time.
1748 */
f5f61a32
VB
1749 isolate_start_pfn =
1750 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1751 }
be976572 1752 break;
a46cbf3b 1753 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1754 /*
a46cbf3b
DR
1755 * If isolation failed early, do not continue
1756 * needlessly.
f5f61a32 1757 */
a46cbf3b 1758 break;
f5f61a32 1759 }
4fca9730
MG
1760
1761 /* Adjust stride depending on isolation */
1762 if (nr_isolated) {
1763 stride = 1;
1764 continue;
1765 }
1766 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1767 }
1768
7ed695e0 1769 /*
f5f61a32
VB
1770 * Record where the free scanner will restart next time. Either we
1771 * broke from the loop and set isolate_start_pfn based on the last
1772 * call to isolate_freepages_block(), or we met the migration scanner
1773 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1774 */
f5f61a32 1775 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1776
1777splitmap:
1778 /* __isolate_free_page() does not map the pages */
1779 split_map_pages(freelist);
748446bb
MG
1780}
1781
1782/*
1783 * This is a migrate-callback that "allocates" freepages by taking pages
1784 * from the isolated freelists in the block we are migrating to.
1785 */
4e096ae1 1786static struct folio *compaction_alloc(struct folio *src, unsigned long data)
748446bb
MG
1787{
1788 struct compact_control *cc = (struct compact_control *)data;
4e096ae1 1789 struct folio *dst;
748446bb 1790
748446bb 1791 if (list_empty(&cc->freepages)) {
cb2dcaf0 1792 isolate_freepages(cc);
748446bb
MG
1793
1794 if (list_empty(&cc->freepages))
1795 return NULL;
1796 }
1797
4e096ae1
MWO
1798 dst = list_entry(cc->freepages.next, struct folio, lru);
1799 list_del(&dst->lru);
748446bb 1800 cc->nr_freepages--;
ab755bf4 1801 cc->nr_migratepages--;
748446bb 1802
4e096ae1 1803 return dst;
748446bb
MG
1804}
1805
1806/*
d53aea3d
DR
1807 * This is a migrate-callback that "frees" freepages back to the isolated
1808 * freelist. All pages on the freelist are from the same zone, so there is no
1809 * special handling needed for NUMA.
1810 */
4e096ae1 1811static void compaction_free(struct folio *dst, unsigned long data)
d53aea3d
DR
1812{
1813 struct compact_control *cc = (struct compact_control *)data;
1814
4e096ae1 1815 list_add(&dst->lru, &cc->freepages);
d53aea3d 1816 cc->nr_freepages++;
ab755bf4 1817 cc->nr_migratepages++;
d53aea3d
DR
1818}
1819
ff9543fd
MN
1820/* possible outcome of isolate_migratepages */
1821typedef enum {
1822 ISOLATE_ABORT, /* Abort compaction now */
1823 ISOLATE_NONE, /* No pages isolated, continue scanning */
1824 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1825} isolate_migrate_t;
1826
5bbe3547
EM
1827/*
1828 * Allow userspace to control policy on scanning the unevictable LRU for
1829 * compactable pages.
1830 */
48fe8ab8
MC
1831static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1832/*
1833 * Tunable for proactive compaction. It determines how
1834 * aggressively the kernel should compact memory in the
1835 * background. It takes values in the range [0, 100].
1836 */
1837static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1838static int sysctl_extfrag_threshold = 500;
8b9167cd 1839static int __read_mostly sysctl_compact_memory;
5bbe3547 1840
70b44595
MG
1841static inline void
1842update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1843{
1844 if (cc->fast_start_pfn == ULONG_MAX)
1845 return;
1846
1847 if (!cc->fast_start_pfn)
1848 cc->fast_start_pfn = pfn;
1849
1850 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1851}
1852
1853static inline unsigned long
1854reinit_migrate_pfn(struct compact_control *cc)
1855{
1856 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1857 return cc->migrate_pfn;
1858
1859 cc->migrate_pfn = cc->fast_start_pfn;
1860 cc->fast_start_pfn = ULONG_MAX;
1861
1862 return cc->migrate_pfn;
1863}
1864
1865/*
1866 * Briefly search the free lists for a migration source that already has
1867 * some free pages to reduce the number of pages that need migration
1868 * before a pageblock is free.
1869 */
1870static unsigned long fast_find_migrateblock(struct compact_control *cc)
1871{
1872 unsigned int limit = freelist_scan_limit(cc);
1873 unsigned int nr_scanned = 0;
1874 unsigned long distance;
1875 unsigned long pfn = cc->migrate_pfn;
1876 unsigned long high_pfn;
1877 int order;
15d28d0d 1878 bool found_block = false;
70b44595
MG
1879
1880 /* Skip hints are relied on to avoid repeats on the fast search */
1881 if (cc->ignore_skip_hint)
1882 return pfn;
1883
f9d7fc1a
MG
1884 /*
1885 * If the pageblock should be finished then do not select a different
1886 * pageblock.
1887 */
1888 if (cc->finish_pageblock)
1889 return pfn;
1890
70b44595
MG
1891 /*
1892 * If the migrate_pfn is not at the start of a zone or the start
1893 * of a pageblock then assume this is a continuation of a previous
1894 * scan restarted due to COMPACT_CLUSTER_MAX.
1895 */
1896 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1897 return pfn;
1898
1899 /*
1900 * For smaller orders, just linearly scan as the number of pages
1901 * to migrate should be relatively small and does not necessarily
1902 * justify freeing up a large block for a small allocation.
1903 */
1904 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1905 return pfn;
1906
1907 /*
1908 * Only allow kcompactd and direct requests for movable pages to
1909 * quickly clear out a MOVABLE pageblock for allocation. This
1910 * reduces the risk that a large movable pageblock is freed for
1911 * an unmovable/reclaimable small allocation.
1912 */
1913 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1914 return pfn;
1915
1916 /*
1917 * When starting the migration scanner, pick any pageblock within the
1918 * first half of the search space. Otherwise try and pick a pageblock
1919 * within the first eighth to reduce the chances that a migration
1920 * target later becomes a source.
1921 */
1922 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1923 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1924 distance >>= 2;
1925 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1926
1927 for (order = cc->order - 1;
15d28d0d 1928 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1929 order--) {
1930 struct free_area *area = &cc->zone->free_area[order];
1931 struct list_head *freelist;
1932 unsigned long flags;
1933 struct page *freepage;
1934
1935 if (!area->nr_free)
1936 continue;
1937
1938 spin_lock_irqsave(&cc->zone->lock, flags);
1939 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 1940 list_for_each_entry(freepage, freelist, buddy_list) {
70b44595
MG
1941 unsigned long free_pfn;
1942
15d28d0d
WY
1943 if (nr_scanned++ >= limit) {
1944 move_freelist_tail(freelist, freepage);
1945 break;
1946 }
1947
70b44595
MG
1948 free_pfn = page_to_pfn(freepage);
1949 if (free_pfn < high_pfn) {
70b44595
MG
1950 /*
1951 * Avoid if skipped recently. Ideally it would
1952 * move to the tail but even safe iteration of
1953 * the list assumes an entry is deleted, not
1954 * reordered.
1955 */
15d28d0d 1956 if (get_pageblock_skip(freepage))
70b44595 1957 continue;
70b44595
MG
1958
1959 /* Reorder to so a future search skips recent pages */
1960 move_freelist_tail(freelist, freepage);
1961
e380bebe 1962 update_fast_start_pfn(cc, free_pfn);
70b44595 1963 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1964 if (pfn < cc->zone->zone_start_pfn)
1965 pfn = cc->zone->zone_start_pfn;
70b44595 1966 cc->fast_search_fail = 0;
15d28d0d 1967 found_block = true;
70b44595
MG
1968 break;
1969 }
70b44595
MG
1970 }
1971 spin_unlock_irqrestore(&cc->zone->lock, flags);
1972 }
1973
1974 cc->total_migrate_scanned += nr_scanned;
1975
1976 /*
1977 * If fast scanning failed then use a cached entry for a page block
1978 * that had free pages as the basis for starting a linear scan.
1979 */
15d28d0d
WY
1980 if (!found_block) {
1981 cc->fast_search_fail++;
70b44595 1982 pfn = reinit_migrate_pfn(cc);
15d28d0d 1983 }
70b44595
MG
1984 return pfn;
1985}
1986
ff9543fd 1987/*
edc2ca61
VB
1988 * Isolate all pages that can be migrated from the first suitable block,
1989 * starting at the block pointed to by the migrate scanner pfn within
1990 * compact_control.
ff9543fd 1991 */
32aaf055 1992static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1993{
e1409c32
JK
1994 unsigned long block_start_pfn;
1995 unsigned long block_end_pfn;
1996 unsigned long low_pfn;
edc2ca61
VB
1997 struct page *page;
1998 const isolate_mode_t isolate_mode =
5bbe3547 1999 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 2000 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 2001 bool fast_find_block;
ff9543fd 2002
edc2ca61
VB
2003 /*
2004 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
2005 * initialized by compact_zone(). The first failure will use
2006 * the lowest PFN as the starting point for linear scanning.
edc2ca61 2007 */
70b44595 2008 low_pfn = fast_find_migrateblock(cc);
06b6640a 2009 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
2010 if (block_start_pfn < cc->zone->zone_start_pfn)
2011 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 2012
70b44595 2013 /*
0aa8ea3c
KS
2014 * fast_find_migrateblock() has already ensured the pageblock is not
2015 * set with a skipped flag, so to avoid the isolation_suitable check
2016 * below again, check whether the fast search was successful.
70b44595
MG
2017 */
2018 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2019
ff9543fd 2020 /* Only scan within a pageblock boundary */
06b6640a 2021 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 2022
edc2ca61
VB
2023 /*
2024 * Iterate over whole pageblocks until we find the first suitable.
2025 * Do not cross the free scanner.
2026 */
e1409c32 2027 for (; block_end_pfn <= cc->free_pfn;
70b44595 2028 fast_find_block = false,
c2ad7a1f 2029 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
2030 block_start_pfn = block_end_pfn,
2031 block_end_pfn += pageblock_nr_pages) {
ff9543fd 2032
edc2ca61
VB
2033 /*
2034 * This can potentially iterate a massively long zone with
2035 * many pageblocks unsuitable, so periodically check if we
cb810ad2 2036 * need to schedule.
edc2ca61 2037 */
c036ddff 2038 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 2039 cond_resched();
ff9543fd 2040
32aaf055
PL
2041 page = pageblock_pfn_to_page(block_start_pfn,
2042 block_end_pfn, cc->zone);
9721fd82
BW
2043 if (!page) {
2044 unsigned long next_pfn;
2045
2046 next_pfn = skip_offline_sections(block_start_pfn);
2047 if (next_pfn)
2048 block_end_pfn = min(next_pfn, cc->free_pfn);
edc2ca61 2049 continue;
9721fd82 2050 }
edc2ca61 2051
e380bebe
MG
2052 /*
2053 * If isolation recently failed, do not retry. Only check the
2054 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2055 * to be visited multiple times. Assume skip was checked
2056 * before making it "skip" so other compaction instances do
2057 * not scan the same block.
2058 */
493614da
JW
2059 if ((pageblock_aligned(low_pfn) ||
2060 low_pfn == cc->zone->zone_start_pfn) &&
e380bebe 2061 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
2062 continue;
2063
2064 /*
556162bf
ML
2065 * For async direct compaction, only scan the pageblocks of the
2066 * same migratetype without huge pages. Async direct compaction
2067 * is optimistic to see if the minimum amount of work satisfies
2068 * the allocation. The cached PFN is updated as it's possible
2069 * that all remaining blocks between source and target are
2070 * unsuitable and the compaction scanners fail to meet.
edc2ca61 2071 */
9bebefd5
MG
2072 if (!suitable_migration_source(cc, page)) {
2073 update_cached_migrate(cc, block_end_pfn);
edc2ca61 2074 continue;
9bebefd5 2075 }
edc2ca61
VB
2076
2077 /* Perform the isolation */
c2ad7a1f
OS
2078 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2079 isolate_mode))
edc2ca61
VB
2080 return ISOLATE_ABORT;
2081
2082 /*
2083 * Either we isolated something and proceed with migration. Or
2084 * we failed and compact_zone should decide if we should
2085 * continue or not.
2086 */
2087 break;
2088 }
2089
edc2ca61 2090 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
2091}
2092
21c527a3 2093/*
9cc17ede
KS
2094 * order == -1 is expected when compacting proactively via
2095 * 1. /proc/sys/vm/compact_memory
2096 * 2. /sys/devices/system/node/nodex/compact
2097 * 3. /proc/sys/vm/compaction_proactiveness
21c527a3
YB
2098 */
2099static inline bool is_via_compact_memory(int order)
2100{
2101 return order == -1;
2102}
2103
b4a0215e
KW
2104/*
2105 * Determine whether kswapd is (or recently was!) running on this node.
2106 *
2107 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2108 * zero it.
2109 */
facdaa91
NG
2110static bool kswapd_is_running(pg_data_t *pgdat)
2111{
b4a0215e
KW
2112 bool running;
2113
2114 pgdat_kswapd_lock(pgdat);
2115 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2116 pgdat_kswapd_unlock(pgdat);
2117
2118 return running;
facdaa91
NG
2119}
2120
2121/*
2122 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
2123 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2124 */
2125static unsigned int fragmentation_score_zone(struct zone *zone)
2126{
2127 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2128}
2129
2130/*
2131 * A weighted zone's fragmentation score is the external fragmentation
2132 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2133 * returns a value in the range [0, 100].
facdaa91
NG
2134 *
2135 * The scaling factor ensures that proactive compaction focuses on larger
2136 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2137 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2138 * and thus never exceeds the high threshold for proactive compaction.
2139 */
40d7e203 2140static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2141{
2142 unsigned long score;
2143
40d7e203 2144 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2145 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2146}
2147
2148/*
2149 * The per-node proactive (background) compaction process is started by its
2150 * corresponding kcompactd thread when the node's fragmentation score
2151 * exceeds the high threshold. The compaction process remains active till
2152 * the node's score falls below the low threshold, or one of the back-off
2153 * conditions is met.
2154 */
d34c0a75 2155static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2156{
d34c0a75 2157 unsigned int score = 0;
facdaa91
NG
2158 int zoneid;
2159
2160 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2161 struct zone *zone;
2162
2163 zone = &pgdat->node_zones[zoneid];
9e552271
BW
2164 if (!populated_zone(zone))
2165 continue;
40d7e203 2166 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2167 }
2168
2169 return score;
2170}
2171
8fbb92bd 2172static unsigned int fragmentation_score_wmark(bool low)
facdaa91 2173{
d34c0a75 2174 unsigned int wmark_low;
facdaa91
NG
2175
2176 /*
f0953a1b
IM
2177 * Cap the low watermark to avoid excessive compaction
2178 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2179 * close to 100 (maximum).
2180 */
d34c0a75
NG
2181 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2182 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2183}
2184
2185static bool should_proactive_compact_node(pg_data_t *pgdat)
2186{
2187 int wmark_high;
2188
2189 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2190 return false;
2191
8fbb92bd 2192 wmark_high = fragmentation_score_wmark(false);
facdaa91
NG
2193 return fragmentation_score_node(pgdat) > wmark_high;
2194}
2195
40cacbcb 2196static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2197{
8fb74b9f 2198 unsigned int order;
d39773a0 2199 const int migratetype = cc->migratetype;
cb2dcaf0 2200 int ret;
748446bb 2201
753341a4 2202 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2203 if (compact_scanners_met(cc)) {
55b7c4c9 2204 /* Let the next compaction start anew. */
40cacbcb 2205 reset_cached_positions(cc->zone);
55b7c4c9 2206
62997027
MG
2207 /*
2208 * Mark that the PG_migrate_skip information should be cleared
accf6242 2209 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2210 * flag itself as the decision to be clear should be directly
2211 * based on an allocation request.
2212 */
accf6242 2213 if (cc->direct_compaction)
40cacbcb 2214 cc->zone->compact_blockskip_flush = true;
62997027 2215
c8f7de0b
MH
2216 if (cc->whole_zone)
2217 return COMPACT_COMPLETE;
2218 else
2219 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2220 }
748446bb 2221
facdaa91
NG
2222 if (cc->proactive_compaction) {
2223 int score, wmark_low;
2224 pg_data_t *pgdat;
2225
2226 pgdat = cc->zone->zone_pgdat;
2227 if (kswapd_is_running(pgdat))
2228 return COMPACT_PARTIAL_SKIPPED;
2229
2230 score = fragmentation_score_zone(cc->zone);
8fbb92bd 2231 wmark_low = fragmentation_score_wmark(true);
facdaa91
NG
2232
2233 if (score > wmark_low)
2234 ret = COMPACT_CONTINUE;
2235 else
2236 ret = COMPACT_SUCCESS;
2237
2238 goto out;
2239 }
2240
21c527a3 2241 if (is_via_compact_memory(cc->order))
56de7263
MG
2242 return COMPACT_CONTINUE;
2243
efe771c7
MG
2244 /*
2245 * Always finish scanning a pageblock to reduce the possibility of
2246 * fallbacks in the future. This is particularly important when
2247 * migration source is unmovable/reclaimable but it's not worth
2248 * special casing.
2249 */
ee0913c4 2250 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2251 return COMPACT_CONTINUE;
baf6a9a1 2252
56de7263 2253 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2254 ret = COMPACT_NO_SUITABLE_PAGE;
fd377218 2255 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
40cacbcb 2256 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2257 bool can_steal;
8fb74b9f
MG
2258
2259 /* Job done if page is free of the right migratetype */
b03641af 2260 if (!free_area_empty(area, migratetype))
cf378319 2261 return COMPACT_SUCCESS;
8fb74b9f 2262
2149cdae
JK
2263#ifdef CONFIG_CMA
2264 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2265 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2266 !free_area_empty(area, MIGRATE_CMA))
cf378319 2267 return COMPACT_SUCCESS;
2149cdae
JK
2268#endif
2269 /*
2270 * Job done if allocation would steal freepages from
2271 * other migratetype buddy lists.
2272 */
2273 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2274 true, &can_steal) != -1)
baf6a9a1 2275 /*
fa599c44
ML
2276 * Movable pages are OK in any pageblock. If we are
2277 * stealing for a non-movable allocation, make sure
2278 * we finish compacting the current pageblock first
2279 * (which is assured by the above migrate_pfn align
2280 * check) so it is as free as possible and we won't
2281 * have to steal another one soon.
baf6a9a1 2282 */
fa599c44 2283 return COMPACT_SUCCESS;
56de7263
MG
2284 }
2285
facdaa91 2286out:
cb2dcaf0
MG
2287 if (cc->contended || fatal_signal_pending(current))
2288 ret = COMPACT_CONTENDED;
2289
2290 return ret;
837d026d
JK
2291}
2292
40cacbcb 2293static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2294{
2295 int ret;
2296
40cacbcb
MG
2297 ret = __compact_finished(cc);
2298 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2299 if (ret == COMPACT_NO_SUITABLE_PAGE)
2300 ret = COMPACT_CONTINUE;
2301
2302 return ret;
748446bb
MG
2303}
2304
3cf04937
JW
2305static bool __compaction_suitable(struct zone *zone, int order,
2306 int highest_zoneidx,
2307 unsigned long wmark_target)
3e7d3449 2308{
3e7d3449 2309 unsigned long watermark;
3e7d3449 2310 /*
9861a62c 2311 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2312 * isolate free pages for migration targets. This means that the
2313 * watermark and alloc_flags have to match, or be more pessimistic than
2314 * the check in __isolate_free_page(). We don't use the direct
2315 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2316 * isolation. We however do use the direct compactor's highest_zoneidx
2317 * to skip over zones where lowmem reserves would prevent allocation
2318 * even if compaction succeeds.
8348faf9
VB
2319 * For costly orders, we require low watermark instead of min for
2320 * compaction to proceed to increase its chances.
d883c6cf
JK
2321 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2322 * suitable migration targets
3e7d3449 2323 */
8348faf9
VB
2324 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2325 low_wmark_pages(zone) : min_wmark_pages(zone);
2326 watermark += compact_gap(order);
3cf04937
JW
2327 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2328 ALLOC_CMA, wmark_target);
cc5c9f09
VB
2329}
2330
2b1a20c3
HS
2331/*
2332 * compaction_suitable: Is this suitable to run compaction on this zone now?
2b1a20c3 2333 */
3cf04937 2334bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
cc5c9f09 2335{
3cf04937
JW
2336 enum compact_result compact_result;
2337 bool suitable;
cc5c9f09 2338
3cf04937
JW
2339 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2340 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2341 /*
2342 * fragmentation index determines if allocation failures are due to
2343 * low memory or external fragmentation
2344 *
ebff3980
VB
2345 * index of -1000 would imply allocations might succeed depending on
2346 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2347 * index towards 0 implies failure is due to lack of memory
2348 * index towards 1000 implies failure is due to fragmentation
2349 *
20311420
VB
2350 * Only compact if a failure would be due to fragmentation. Also
2351 * ignore fragindex for non-costly orders where the alternative to
2352 * a successful reclaim/compaction is OOM. Fragindex and the
2353 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2354 * excessive compaction for costly orders, but it should not be at the
2355 * expense of system stability.
3e7d3449 2356 */
3cf04937
JW
2357 if (suitable) {
2358 compact_result = COMPACT_CONTINUE;
2359 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2360 int fragindex = fragmentation_index(zone, order);
2361
2362 if (fragindex >= 0 &&
2363 fragindex <= sysctl_extfrag_threshold) {
2364 suitable = false;
2365 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2366 }
2367 }
2368 } else {
2369 compact_result = COMPACT_SKIPPED;
cc5c9f09 2370 }
837d026d 2371
3cf04937 2372 trace_mm_compaction_suitable(zone, order, compact_result);
837d026d 2373
3cf04937 2374 return suitable;
837d026d
JK
2375}
2376
86a294a8
MH
2377bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2378 int alloc_flags)
2379{
2380 struct zone *zone;
2381 struct zoneref *z;
2382
2383 /*
2384 * Make sure at least one zone would pass __compaction_suitable if we continue
2385 * retrying the reclaim.
2386 */
97a225e6
JK
2387 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2388 ac->highest_zoneidx, ac->nodemask) {
86a294a8 2389 unsigned long available;
86a294a8
MH
2390
2391 /*
2392 * Do not consider all the reclaimable memory because we do not
2393 * want to trash just for a single high order allocation which
2394 * is even not guaranteed to appear even if __compaction_suitable
2395 * is happy about the watermark check.
2396 */
5a1c84b4 2397 available = zone_reclaimable_pages(zone) / order;
86a294a8 2398 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
e8606320 2399 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
3cf04937 2400 available))
86a294a8
MH
2401 return true;
2402 }
2403
2404 return false;
2405}
2406
e19a3f59
KS
2407/*
2408 * Should we do compaction for target allocation order.
2409 * Return COMPACT_SUCCESS if allocation for target order can be already
2410 * satisfied
2411 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2412 * Return COMPACT_CONTINUE if compaction for target order should be ran
2413 */
2414static enum compact_result
2415compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2416 int highest_zoneidx, unsigned int alloc_flags)
2417{
2418 unsigned long watermark;
2419
2420 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2421 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2422 alloc_flags))
2423 return COMPACT_SUCCESS;
2424
2425 if (!compaction_suitable(zone, order, highest_zoneidx))
2426 return COMPACT_SKIPPED;
2427
2428 return COMPACT_CONTINUE;
2429}
2430
5e1f0f09
MG
2431static enum compact_result
2432compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2433{
ea7ab982 2434 enum compact_result ret;
40cacbcb
MG
2435 unsigned long start_pfn = cc->zone->zone_start_pfn;
2436 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2437 unsigned long last_migrated_pfn;
e0b9daeb 2438 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2439 bool update_cached;
ab755bf4 2440 unsigned int nr_succeeded = 0, nr_migratepages;
748446bb 2441
a94b5252
YS
2442 /*
2443 * These counters track activities during zone compaction. Initialize
2444 * them before compacting a new zone.
2445 */
2446 cc->total_migrate_scanned = 0;
2447 cc->total_free_scanned = 0;
2448 cc->nr_migratepages = 0;
2449 cc->nr_freepages = 0;
2450 INIT_LIST_HEAD(&cc->freepages);
2451 INIT_LIST_HEAD(&cc->migratepages);
2452
01c0bfe0 2453 cc->migratetype = gfp_migratetype(cc->gfp_mask);
e8606320
JW
2454
2455 if (!is_via_compact_memory(cc->order)) {
e19a3f59
KS
2456 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2457 cc->highest_zoneidx,
2458 cc->alloc_flags);
2459 if (ret != COMPACT_CONTINUE)
2460 return ret;
e8606320 2461 }
c46649de 2462
d3132e4b
VB
2463 /*
2464 * Clear pageblock skip if there were failures recently and compaction
accf6242 2465 * is about to be retried after being deferred.
d3132e4b 2466 */
40cacbcb
MG
2467 if (compaction_restarting(cc->zone, cc->order))
2468 __reset_isolation_suitable(cc->zone);
d3132e4b 2469
c89511ab
MG
2470 /*
2471 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2472 * information on where the scanners should start (unless we explicitly
2473 * want to compact the whole zone), but check that it is initialised
2474 * by ensuring the values are within zone boundaries.
c89511ab 2475 */
70b44595 2476 cc->fast_start_pfn = 0;
06ed2998 2477 if (cc->whole_zone) {
c89511ab 2478 cc->migrate_pfn = start_pfn;
06ed2998
VB
2479 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2480 } else {
40cacbcb
MG
2481 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2482 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2483 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2484 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2485 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2486 }
2487 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2488 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2489 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2490 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2491 }
c8f7de0b 2492
e332f741 2493 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2494 cc->whole_zone = true;
2495 }
c8f7de0b 2496
566e54e1 2497 last_migrated_pfn = 0;
748446bb 2498
8854c55f
MG
2499 /*
2500 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2501 * the basis that some migrations will fail in ASYNC mode. However,
2502 * if the cached PFNs match and pageblocks are skipped due to having
2503 * no isolation candidates, then the sync state does not matter.
2504 * Until a pageblock with isolation candidates is found, keep the
2505 * cached PFNs in sync to avoid revisiting the same blocks.
2506 */
2507 update_cached = !sync &&
2508 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2509
abd4349f 2510 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2511
361a2a22
MK
2512 /* lru_add_drain_all could be expensive with involving other CPUs */
2513 lru_add_drain();
748446bb 2514
40cacbcb 2515 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2516 int err;
19d3cf9d 2517 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2518
804d3121 2519 /*
48731c84
MG
2520 * Avoid multiple rescans of the same pageblock which can
2521 * happen if a page cannot be isolated (dirty/writeback in
2522 * async mode) or if the migrated pages are being allocated
2523 * before the pageblock is cleared. The first rescan will
2524 * capture the entire pageblock for migration. If it fails,
2525 * it'll be marked skip and scanning will proceed as normal.
804d3121 2526 */
48731c84 2527 cc->finish_pageblock = false;
804d3121 2528 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2529 pageblock_start_pfn(iteration_start_pfn)) {
48731c84 2530 cc->finish_pageblock = true;
804d3121
MG
2531 }
2532
cfccd2e6 2533rescan:
32aaf055 2534 switch (isolate_migratepages(cc)) {
f9e35b3b 2535 case ISOLATE_ABORT:
2d1e1041 2536 ret = COMPACT_CONTENDED;
5733c7d1 2537 putback_movable_pages(&cc->migratepages);
e64c5237 2538 cc->nr_migratepages = 0;
f9e35b3b
MG
2539 goto out;
2540 case ISOLATE_NONE:
8854c55f
MG
2541 if (update_cached) {
2542 cc->zone->compact_cached_migrate_pfn[1] =
2543 cc->zone->compact_cached_migrate_pfn[0];
2544 }
2545
fdaf7f5c
VB
2546 /*
2547 * We haven't isolated and migrated anything, but
2548 * there might still be unflushed migrations from
2549 * previous cc->order aligned block.
2550 */
2551 goto check_drain;
f9e35b3b 2552 case ISOLATE_SUCCESS:
8854c55f 2553 update_cached = false;
7c0a84bd
KS
2554 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2555 pageblock_start_pfn(cc->migrate_pfn - 1));
f9e35b3b 2556 }
748446bb 2557
ab755bf4
BW
2558 /*
2559 * Record the number of pages to migrate since the
2560 * compaction_alloc/free() will update cc->nr_migratepages
2561 * properly.
2562 */
2563 nr_migratepages = cc->nr_migratepages;
d53aea3d 2564 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2565 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2566 MR_COMPACTION, &nr_succeeded);
748446bb 2567
ab755bf4 2568 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
748446bb 2569
f8c9301f
VB
2570 /* All pages were either migrated or will be released */
2571 cc->nr_migratepages = 0;
9d502c1c 2572 if (err) {
5733c7d1 2573 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2574 /*
2575 * migrate_pages() may return -ENOMEM when scanners meet
2576 * and we want compact_finished() to detect it
2577 */
f2849aa0 2578 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2579 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2580 goto out;
2581 }
fdd048e1 2582 /*
cfccd2e6 2583 * If an ASYNC or SYNC_LIGHT fails to migrate a page
c3750cc7 2584 * within the pageblock_order-aligned block and
9ecc5fc5 2585 * fast_find_migrateblock may be used then scan the
cfccd2e6
MG
2586 * remainder of the pageblock. This will mark the
2587 * pageblock "skip" to avoid rescanning in the near
2588 * future. This will isolate more pages than necessary
2589 * for the request but avoid loops due to
2590 * fast_find_migrateblock revisiting blocks that were
2591 * recently partially scanned.
fdd048e1 2592 */
539aa041 2593 if (!pageblock_aligned(cc->migrate_pfn) &&
9ecc5fc5 2594 !cc->ignore_skip_hint && !cc->finish_pageblock &&
539aa041 2595 (cc->mode < MIGRATE_SYNC)) {
cfccd2e6
MG
2596 cc->finish_pageblock = true;
2597
2598 /*
2599 * Draining pcplists does not help THP if
2600 * any page failed to migrate. Even after
2601 * drain, the pageblock will not be free.
2602 */
2603 if (cc->order == COMPACTION_HPAGE_ORDER)
2604 last_migrated_pfn = 0;
2605
2606 goto rescan;
fdd048e1 2607 }
748446bb 2608 }
fdaf7f5c 2609
16b3be40
MG
2610 /* Stop if a page has been captured */
2611 if (capc && capc->page) {
2612 ret = COMPACT_SUCCESS;
2613 break;
2614 }
2615
fdaf7f5c
VB
2616check_drain:
2617 /*
2618 * Has the migration scanner moved away from the previous
2619 * cc->order aligned block where we migrated from? If yes,
2620 * flush the pages that were freed, so that they can merge and
2621 * compact_finished() can detect immediately if allocation
2622 * would succeed.
2623 */
566e54e1 2624 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2625 unsigned long current_block_start =
06b6640a 2626 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2627
566e54e1 2628 if (last_migrated_pfn < current_block_start) {
b01b2141 2629 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2630 /* No more flushing until we migrate again */
566e54e1 2631 last_migrated_pfn = 0;
fdaf7f5c
VB
2632 }
2633 }
748446bb
MG
2634 }
2635
f9e35b3b 2636out:
6bace090
VB
2637 /*
2638 * Release free pages and update where the free scanner should restart,
2639 * so we don't leave any returned pages behind in the next attempt.
2640 */
2641 if (cc->nr_freepages > 0) {
2642 unsigned long free_pfn = release_freepages(&cc->freepages);
2643
2644 cc->nr_freepages = 0;
2645 VM_BUG_ON(free_pfn == 0);
2646 /* The cached pfn is always the first in a pageblock */
06b6640a 2647 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2648 /*
2649 * Only go back, not forward. The cached pfn might have been
2650 * already reset to zone end in compact_finished()
2651 */
40cacbcb
MG
2652 if (free_pfn > cc->zone->compact_cached_free_pfn)
2653 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2654 }
748446bb 2655
7f354a54
DR
2656 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2657 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2658
abd4349f 2659 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2660
753ec50d
BW
2661 VM_BUG_ON(!list_empty(&cc->freepages));
2662 VM_BUG_ON(!list_empty(&cc->migratepages));
2663
748446bb
MG
2664 return ret;
2665}
76ab0f53 2666
ea7ab982 2667static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2668 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2669 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2670 struct page **capture)
56de7263 2671{
ea7ab982 2672 enum compact_result ret;
56de7263 2673 struct compact_control cc = {
56de7263 2674 .order = order,
dbe2d4e4 2675 .search_order = order,
6d7ce559 2676 .gfp_mask = gfp_mask,
56de7263 2677 .zone = zone,
a5508cd8
VB
2678 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2679 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2680 .alloc_flags = alloc_flags,
97a225e6 2681 .highest_zoneidx = highest_zoneidx,
accf6242 2682 .direct_compaction = true,
a8e025e5 2683 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2684 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2685 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2686 };
5e1f0f09
MG
2687 struct capture_control capc = {
2688 .cc = &cc,
2689 .page = NULL,
2690 };
2691
b9e20f0d
VB
2692 /*
2693 * Make sure the structs are really initialized before we expose the
2694 * capture control, in case we are interrupted and the interrupt handler
2695 * frees a page.
2696 */
2697 barrier();
2698 WRITE_ONCE(current->capture_control, &capc);
56de7263 2699
5e1f0f09 2700 ret = compact_zone(&cc, &capc);
e64c5237 2701
b9e20f0d
VB
2702 /*
2703 * Make sure we hide capture control first before we read the captured
2704 * page pointer, otherwise an interrupt could free and capture a page
2705 * and we would leak it.
2706 */
2707 WRITE_ONCE(current->capture_control, NULL);
2708 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2709 /*
2710 * Technically, it is also possible that compaction is skipped but
2711 * the page is still captured out of luck(IRQ came and freed the page).
2712 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2713 * the COMPACT[STALL|FAIL] when compaction is skipped.
2714 */
2715 if (*capture)
2716 ret = COMPACT_SUCCESS;
5e1f0f09 2717
e64c5237 2718 return ret;
56de7263
MG
2719}
2720
2721/**
2722 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2723 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2724 * @order: The order of the current allocation
2725 * @alloc_flags: The allocation flags of the current allocation
2726 * @ac: The context of current allocation
112d2d29 2727 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2728 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2729 *
2730 * This is the main entry point for direct page compaction.
2731 */
ea7ab982 2732enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2733 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2734 enum compact_priority prio, struct page **capture)
56de7263 2735{
fe573327 2736 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2737 struct zoneref *z;
2738 struct zone *zone;
1d4746d3 2739 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2740
73e64c51
MH
2741 /*
2742 * Check if the GFP flags allow compaction - GFP_NOIO is really
2743 * tricky context because the migration might require IO
2744 */
2745 if (!may_perform_io)
53853e2d 2746 return COMPACT_SKIPPED;
56de7263 2747
a5508cd8 2748 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2749
56de7263 2750 /* Compact each zone in the list */
97a225e6
JK
2751 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2752 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2753 enum compact_result status;
56de7263 2754
a8e025e5
VB
2755 if (prio > MIN_COMPACT_PRIORITY
2756 && compaction_deferred(zone, order)) {
1d4746d3 2757 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2758 continue;
1d4746d3 2759 }
53853e2d 2760
a5508cd8 2761 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2762 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2763 rc = max(status, rc);
2764
7ceb009a
VB
2765 /* The allocation should succeed, stop compacting */
2766 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2767 /*
2768 * We think the allocation will succeed in this zone,
2769 * but it is not certain, hence the false. The caller
2770 * will repeat this with true if allocation indeed
2771 * succeeds in this zone.
2772 */
2773 compaction_defer_reset(zone, order, false);
1f9efdef 2774
c3486f53 2775 break;
1f9efdef
VB
2776 }
2777
a5508cd8 2778 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2779 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2780 /*
2781 * We think that allocation won't succeed in this zone
2782 * so we defer compaction there. If it ends up
2783 * succeeding after all, it will be reset.
2784 */
2785 defer_compaction(zone, order);
1f9efdef
VB
2786
2787 /*
2788 * We might have stopped compacting due to need_resched() in
2789 * async compaction, or due to a fatal signal detected. In that
c3486f53 2790 * case do not try further zones
1f9efdef 2791 */
c3486f53
VB
2792 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2793 || fatal_signal_pending(current))
2794 break;
56de7263
MG
2795 }
2796
2797 return rc;
2798}
2799
facdaa91 2800/*
3e40b3f4
KW
2801 * compact_node() - compact all zones within a node
2802 * @pgdat: The node page data
2803 * @proactive: Whether the compaction is proactive
facdaa91 2804 *
3e40b3f4
KW
2805 * For proactive compaction, compact till each zone's fragmentation score
2806 * reaches within proactive compaction thresholds (as determined by the
2807 * proactiveness tunable), it is possible that the function returns before
2808 * reaching score targets due to various back-off conditions, such as,
2809 * contention on per-node or per-zone locks.
facdaa91 2810 */
3e40b3f4 2811static void compact_node(pg_data_t *pgdat, bool proactive)
facdaa91
NG
2812{
2813 int zoneid;
2814 struct zone *zone;
2815 struct compact_control cc = {
2816 .order = -1,
3e40b3f4 2817 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
facdaa91
NG
2818 .ignore_skip_hint = true,
2819 .whole_zone = true,
2820 .gfp_mask = GFP_KERNEL,
3e40b3f4 2821 .proactive_compaction = proactive,
facdaa91
NG
2822 };
2823
2824 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2825 zone = &pgdat->node_zones[zoneid];
2826 if (!populated_zone(zone))
2827 continue;
2828
2829 cc.zone = zone;
2830
2831 compact_zone(&cc, NULL);
2832
3e40b3f4
KW
2833 if (proactive) {
2834 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835 cc.total_migrate_scanned);
2836 count_compact_events(KCOMPACTD_FREE_SCANNED,
2837 cc.total_free_scanned);
2838 }
76ab0f53 2839 }
76ab0f53
MG
2840}
2841
3e40b3f4 2842/* Compact all zones of all nodes in the system */
7964c06d 2843static void compact_nodes(void)
76ab0f53
MG
2844{
2845 int nid;
2846
8575ec29
HD
2847 /* Flush pending updates to the LRU lists */
2848 lru_add_drain_all();
2849
76ab0f53 2850 for_each_online_node(nid)
3e40b3f4 2851 compact_node(NODE_DATA(nid), false);
76ab0f53
MG
2852}
2853
48fe8ab8 2854static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
65d759c8
CTR
2855 void *buffer, size_t *length, loff_t *ppos)
2856{
2857 int rc, nid;
2858
2859 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2860 if (rc)
2861 return rc;
2862
2863 if (write && sysctl_compaction_proactiveness) {
2864 for_each_online_node(nid) {
2865 pg_data_t *pgdat = NODE_DATA(nid);
2866
2867 if (pgdat->proactive_compact_trigger)
2868 continue;
2869
2870 pgdat->proactive_compact_trigger = true;
8fff8b6f
BW
2871 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2872 pgdat->nr_zones - 1);
65d759c8
CTR
2873 wake_up_interruptible(&pgdat->kcompactd_wait);
2874 }
2875 }
2876
2877 return 0;
2878}
2879
fec4eb2c
YB
2880/*
2881 * This is the entry point for compacting all nodes via
2882 * /proc/sys/vm/compact_memory
2883 */
48fe8ab8 2884static int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2885 void *buffer, size_t *length, loff_t *ppos)
76ab0f53 2886{
8b9167cd
WY
2887 int ret;
2888
2889 ret = proc_dointvec(table, write, buffer, length, ppos);
2890 if (ret)
2891 return ret;
2892
2893 if (sysctl_compact_memory != 1)
2894 return -EINVAL;
2895
76ab0f53 2896 if (write)
7964c06d 2897 compact_nodes();
76ab0f53
MG
2898
2899 return 0;
2900}
ed4a6d7f
MG
2901
2902#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2903static ssize_t compact_store(struct device *dev,
2904 struct device_attribute *attr,
2905 const char *buf, size_t count)
ed4a6d7f 2906{
8575ec29
HD
2907 int nid = dev->id;
2908
2909 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2910 /* Flush pending updates to the LRU lists */
2911 lru_add_drain_all();
2912
3e40b3f4 2913 compact_node(NODE_DATA(nid), false);
8575ec29 2914 }
ed4a6d7f
MG
2915
2916 return count;
2917}
17adb230 2918static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2919
2920int compaction_register_node(struct node *node)
2921{
10fbcf4c 2922 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2923}
2924
2925void compaction_unregister_node(struct node *node)
2926{
f82024cb 2927 device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2928}
2929#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2930
698b1b30
VB
2931static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2932{
65d759c8
CTR
2933 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2934 pgdat->proactive_compact_trigger;
698b1b30
VB
2935}
2936
2937static bool kcompactd_node_suitable(pg_data_t *pgdat)
2938{
2939 int zoneid;
2940 struct zone *zone;
97a225e6 2941 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
e19a3f59 2942 enum compact_result ret;
698b1b30 2943
97a225e6 2944 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2945 zone = &pgdat->node_zones[zoneid];
2946
2947 if (!populated_zone(zone))
2948 continue;
2949
e19a3f59
KS
2950 ret = compaction_suit_allocation_order(zone,
2951 pgdat->kcompactd_max_order,
2952 highest_zoneidx, ALLOC_WMARK_MIN);
2953 if (ret == COMPACT_CONTINUE)
698b1b30
VB
2954 return true;
2955 }
2956
2957 return false;
2958}
2959
2960static void kcompactd_do_work(pg_data_t *pgdat)
2961{
2962 /*
2963 * With no special task, compact all zones so that a page of requested
2964 * order is allocatable.
2965 */
2966 int zoneid;
2967 struct zone *zone;
2968 struct compact_control cc = {
2969 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2970 .search_order = pgdat->kcompactd_max_order,
97a225e6 2971 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2972 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2973 .ignore_skip_hint = false,
73e64c51 2974 .gfp_mask = GFP_KERNEL,
698b1b30 2975 };
e19a3f59
KS
2976 enum compact_result ret;
2977
698b1b30 2978 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2979 cc.highest_zoneidx);
7f354a54 2980 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2981
97a225e6 2982 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2983 int status;
2984
2985 zone = &pgdat->node_zones[zoneid];
2986 if (!populated_zone(zone))
2987 continue;
2988
2989 if (compaction_deferred(zone, cc.order))
2990 continue;
2991
e19a3f59
KS
2992 ret = compaction_suit_allocation_order(zone,
2993 cc.order, zoneid, ALLOC_WMARK_MIN);
2994 if (ret != COMPACT_CONTINUE)
e8606320 2995 continue;
f98a497e 2996
172400c6
VB
2997 if (kthread_should_stop())
2998 return;
a94b5252
YS
2999
3000 cc.zone = zone;
5e1f0f09 3001 status = compact_zone(&cc, NULL);
698b1b30 3002
7ceb009a 3003 if (status == COMPACT_SUCCESS) {
698b1b30 3004 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 3005 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
3006 /*
3007 * Buddy pages may become stranded on pcps that could
3008 * otherwise coalesce on the zone's free area for
3009 * order >= cc.order. This is ratelimited by the
3010 * upcoming deferral.
3011 */
3012 drain_all_pages(zone);
3013
698b1b30
VB
3014 /*
3015 * We use sync migration mode here, so we defer like
3016 * sync direct compaction does.
3017 */
3018 defer_compaction(zone, cc.order);
3019 }
3020
7f354a54
DR
3021 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3022 cc.total_migrate_scanned);
3023 count_compact_events(KCOMPACTD_FREE_SCANNED,
3024 cc.total_free_scanned);
698b1b30
VB
3025 }
3026
3027 /*
3028 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
3029 * the requested order/highest_zoneidx in case it was higher/tighter
3030 * than our current ones
698b1b30
VB
3031 */
3032 if (pgdat->kcompactd_max_order <= cc.order)
3033 pgdat->kcompactd_max_order = 0;
97a225e6
JK
3034 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3035 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3036}
3037
97a225e6 3038void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
3039{
3040 if (!order)
3041 return;
3042
3043 if (pgdat->kcompactd_max_order < order)
3044 pgdat->kcompactd_max_order = order;
3045
97a225e6
JK
3046 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3047 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 3048
6818600f
DB
3049 /*
3050 * Pairs with implicit barrier in wait_event_freezable()
3051 * such that wakeups are not missed.
3052 */
3053 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
3054 return;
3055
3056 if (!kcompactd_node_suitable(pgdat))
3057 return;
3058
3059 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 3060 highest_zoneidx);
698b1b30
VB
3061 wake_up_interruptible(&pgdat->kcompactd_wait);
3062}
3063
3064/*
3065 * The background compaction daemon, started as a kernel thread
3066 * from the init process.
3067 */
3068static int kcompactd(void *p)
3069{
68d68ff6 3070 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 3071 struct task_struct *tsk = current;
e1e92bfa
CTR
3072 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3073 long timeout = default_timeout;
698b1b30
VB
3074
3075 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3076
3077 if (!cpumask_empty(cpumask))
3078 set_cpus_allowed_ptr(tsk, cpumask);
3079
3080 set_freezable();
3081
3082 pgdat->kcompactd_max_order = 0;
97a225e6 3083 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3084
3085 while (!kthread_should_stop()) {
eb414681
JW
3086 unsigned long pflags;
3087
65d759c8
CTR
3088 /*
3089 * Avoid the unnecessary wakeup for proactive compaction
3090 * when it is disabled.
3091 */
3092 if (!sysctl_compaction_proactiveness)
3093 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 3094 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 3095 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
3096 kcompactd_work_requested(pgdat), timeout) &&
3097 !pgdat->proactive_compact_trigger) {
facdaa91
NG
3098
3099 psi_memstall_enter(&pflags);
3100 kcompactd_do_work(pgdat);
3101 psi_memstall_leave(&pflags);
e1e92bfa
CTR
3102 /*
3103 * Reset the timeout value. The defer timeout from
3104 * proactive compaction is lost here but that is fine
3105 * as the condition of the zone changing substantionally
3106 * then carrying on with the previous defer interval is
3107 * not useful.
3108 */
3109 timeout = default_timeout;
facdaa91
NG
3110 continue;
3111 }
698b1b30 3112
e1e92bfa
CTR
3113 /*
3114 * Start the proactive work with default timeout. Based
3115 * on the fragmentation score, this timeout is updated.
3116 */
3117 timeout = default_timeout;
facdaa91
NG
3118 if (should_proactive_compact_node(pgdat)) {
3119 unsigned int prev_score, score;
3120
facdaa91 3121 prev_score = fragmentation_score_node(pgdat);
3e40b3f4 3122 compact_node(pgdat, true);
facdaa91
NG
3123 score = fragmentation_score_node(pgdat);
3124 /*
3125 * Defer proactive compaction if the fragmentation
3126 * score did not go down i.e. no progress made.
3127 */
e1e92bfa
CTR
3128 if (unlikely(score >= prev_score))
3129 timeout =
3130 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3131 }
65d759c8
CTR
3132 if (unlikely(pgdat->proactive_compact_trigger))
3133 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3134 }
3135
3136 return 0;
3137}
3138
3139/*
3140 * This kcompactd start function will be called by init and node-hot-add.
3141 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3142 */
833dfc00 3143void __meminit kcompactd_run(int nid)
698b1b30
VB
3144{
3145 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3146
3147 if (pgdat->kcompactd)
024c61ea 3148 return;
698b1b30
VB
3149
3150 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3151 if (IS_ERR(pgdat->kcompactd)) {
3152 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3153 pgdat->kcompactd = NULL;
3154 }
698b1b30
VB
3155}
3156
3157/*
3158 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3159 * be holding mem_hotplug_begin/done().
698b1b30 3160 */
833dfc00 3161void __meminit kcompactd_stop(int nid)
698b1b30
VB
3162{
3163 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3164
3165 if (kcompactd) {
3166 kthread_stop(kcompactd);
3167 NODE_DATA(nid)->kcompactd = NULL;
3168 }
3169}
3170
3171/*
3172 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3173 * not required for correctness. So if the last cpu in a node goes
3174 * away, we get changed to run anywhere: as the first one comes back,
3175 * restore their cpu bindings.
3176 */
e46b1db2 3177static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3178{
3179 int nid;
3180
e46b1db2
AMG
3181 for_each_node_state(nid, N_MEMORY) {
3182 pg_data_t *pgdat = NODE_DATA(nid);
3183 const struct cpumask *mask;
698b1b30 3184
e46b1db2 3185 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3186
e46b1db2
AMG
3187 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3188 /* One of our CPUs online: restore mask */
3109de30
ML
3189 if (pgdat->kcompactd)
3190 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3191 }
e46b1db2 3192 return 0;
698b1b30
VB
3193}
3194
48fe8ab8
MC
3195static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3196 int write, void *buffer, size_t *lenp, loff_t *ppos)
3197{
3198 int ret, old;
3199
3200 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3201 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3202
3203 old = *(int *)table->data;
3204 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3205 if (ret)
3206 return ret;
3207 if (old != *(int *)table->data)
3208 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3209 table->procname, current->comm,
3210 task_pid_nr(current));
3211 return ret;
3212}
3213
48fe8ab8
MC
3214static struct ctl_table vm_compaction[] = {
3215 {
3216 .procname = "compact_memory",
8b9167cd 3217 .data = &sysctl_compact_memory,
48fe8ab8
MC
3218 .maxlen = sizeof(int),
3219 .mode = 0200,
3220 .proc_handler = sysctl_compaction_handler,
3221 },
3222 {
3223 .procname = "compaction_proactiveness",
3224 .data = &sysctl_compaction_proactiveness,
3225 .maxlen = sizeof(sysctl_compaction_proactiveness),
3226 .mode = 0644,
3227 .proc_handler = compaction_proactiveness_sysctl_handler,
3228 .extra1 = SYSCTL_ZERO,
3229 .extra2 = SYSCTL_ONE_HUNDRED,
3230 },
3231 {
3232 .procname = "extfrag_threshold",
3233 .data = &sysctl_extfrag_threshold,
3234 .maxlen = sizeof(int),
3235 .mode = 0644,
3236 .proc_handler = proc_dointvec_minmax,
3237 .extra1 = SYSCTL_ZERO,
3238 .extra2 = SYSCTL_ONE_THOUSAND,
3239 },
3240 {
3241 .procname = "compact_unevictable_allowed",
3242 .data = &sysctl_compact_unevictable_allowed,
3243 .maxlen = sizeof(int),
3244 .mode = 0644,
3245 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3246 .extra1 = SYSCTL_ZERO,
3247 .extra2 = SYSCTL_ONE,
3248 },
3249 { }
3250};
48fe8ab8 3251
698b1b30
VB
3252static int __init kcompactd_init(void)
3253{
3254 int nid;
e46b1db2
AMG
3255 int ret;
3256
3257 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3258 "mm/compaction:online",
3259 kcompactd_cpu_online, NULL);
3260 if (ret < 0) {
3261 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3262 return ret;
3263 }
698b1b30
VB
3264
3265 for_each_node_state(nid, N_MEMORY)
3266 kcompactd_run(nid);
48fe8ab8 3267 register_sysctl_init("vm", vm_compaction);
698b1b30
VB
3268 return 0;
3269}
3270subsys_initcall(kcompactd_init)
3271
ff9543fd 3272#endif /* CONFIG_COMPACTION */