Merge tag 'pci-v6.2-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[linux-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 55
facdaa91
NG
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 63#elif defined CONFIG_HUGETLBFS
facdaa91
NG
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
748446bb
MG
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
6bace090 72 unsigned long high_pfn = 0;
748446bb
MG
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 75 unsigned long pfn = page_to_pfn(page);
748446bb
MG
76 list_del(&page->lru);
77 __free_page(page);
6bace090
VB
78 if (pfn > high_pfn)
79 high_pfn = pfn;
748446bb
MG
80 }
81
6bace090 82 return high_pfn;
748446bb
MG
83}
84
4469ab98 85static void split_map_pages(struct list_head *list)
ff9543fd 86{
66c64223
JK
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
66c64223 96
46f24fd8 97 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
98 if (order)
99 split_page(page, order);
ff9543fd 100
66c64223
JK
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
ff9543fd 105 }
66c64223
JK
106
107 list_splice(&tmp_list, list);
ff9543fd
MN
108}
109
bb13ffeb 110#ifdef CONFIG_COMPACTION
68f2736a 111bool PageMovable(struct page *page)
bda807d4 112{
68f2736a 113 const struct movable_operations *mops;
bda807d4
MK
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
68f2736a 117 return false;
bda807d4 118
68f2736a
MWO
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
bda807d4 122
68f2736a 123 return false;
bda807d4
MK
124}
125EXPORT_SYMBOL(PageMovable);
126
68f2736a 127void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
128{
129 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
130 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
131 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
132}
133EXPORT_SYMBOL(__SetPageMovable);
134
135void __ClearPageMovable(struct page *page)
136{
bda807d4
MK
137 VM_BUG_ON_PAGE(!PageMovable(page), page);
138 /*
68f2736a
MWO
139 * This page still has the type of a movable page, but it's
140 * actually not movable any more.
bda807d4 141 */
68f2736a 142 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
143}
144EXPORT_SYMBOL(__ClearPageMovable);
145
24e2716f
JK
146/* Do not skip compaction more than 64 times */
147#define COMPACT_MAX_DEFER_SHIFT 6
148
149/*
150 * Compaction is deferred when compaction fails to result in a page
860b3272 151 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153 */
2271b016 154static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
155{
156 zone->compact_considered = 0;
157 zone->compact_defer_shift++;
158
159 if (order < zone->compact_order_failed)
160 zone->compact_order_failed = order;
161
162 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
163 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164
165 trace_mm_compaction_defer_compaction(zone, order);
166}
167
168/* Returns true if compaction should be skipped this time */
2271b016 169static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
170{
171 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172
173 if (order < zone->compact_order_failed)
174 return false;
175
176 /* Avoid possible overflow */
62b35fe0 177 if (++zone->compact_considered >= defer_limit) {
24e2716f 178 zone->compact_considered = defer_limit;
24e2716f 179 return false;
62b35fe0 180 }
24e2716f
JK
181
182 trace_mm_compaction_deferred(zone, order);
183
184 return true;
185}
186
187/*
188 * Update defer tracking counters after successful compaction of given order,
189 * which means an allocation either succeeded (alloc_success == true) or is
190 * expected to succeed.
191 */
192void compaction_defer_reset(struct zone *zone, int order,
193 bool alloc_success)
194{
195 if (alloc_success) {
196 zone->compact_considered = 0;
197 zone->compact_defer_shift = 0;
198 }
199 if (order >= zone->compact_order_failed)
200 zone->compact_order_failed = order + 1;
201
202 trace_mm_compaction_defer_reset(zone, order);
203}
204
205/* Returns true if restarting compaction after many failures */
2271b016 206static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
207{
208 if (order < zone->compact_order_failed)
209 return false;
210
211 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
212 zone->compact_considered >= 1UL << zone->compact_defer_shift;
213}
214
bb13ffeb
MG
215/* Returns true if the pageblock should be scanned for pages to isolate. */
216static inline bool isolation_suitable(struct compact_control *cc,
217 struct page *page)
218{
219 if (cc->ignore_skip_hint)
220 return true;
221
222 return !get_pageblock_skip(page);
223}
224
02333641
VB
225static void reset_cached_positions(struct zone *zone)
226{
227 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
228 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 229 zone->compact_cached_free_pfn =
06b6640a 230 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
231}
232
21dc7e02 233/*
2271b016 234 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
235 * released. It is always pointless to compact pages of such order (if they are
236 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 237 */
b527cfe5 238static bool pageblock_skip_persistent(struct page *page)
21dc7e02 239{
b527cfe5 240 if (!PageCompound(page))
21dc7e02 241 return false;
b527cfe5
VB
242
243 page = compound_head(page);
244
245 if (compound_order(page) >= pageblock_order)
246 return true;
247
248 return false;
21dc7e02
DR
249}
250
e332f741
MG
251static bool
252__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
253 bool check_target)
254{
255 struct page *page = pfn_to_online_page(pfn);
6b0868c8 256 struct page *block_page;
e332f741
MG
257 struct page *end_page;
258 unsigned long block_pfn;
259
260 if (!page)
261 return false;
262 if (zone != page_zone(page))
263 return false;
264 if (pageblock_skip_persistent(page))
265 return false;
266
267 /*
268 * If skip is already cleared do no further checking once the
269 * restart points have been set.
270 */
271 if (check_source && check_target && !get_pageblock_skip(page))
272 return true;
273
274 /*
275 * If clearing skip for the target scanner, do not select a
276 * non-movable pageblock as the starting point.
277 */
278 if (!check_source && check_target &&
279 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
280 return false;
281
6b0868c8
MG
282 /* Ensure the start of the pageblock or zone is online and valid */
283 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
284 block_pfn = max(block_pfn, zone->zone_start_pfn);
285 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
286 if (block_page) {
287 page = block_page;
288 pfn = block_pfn;
289 }
290
291 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 292 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
293 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
294 end_page = pfn_to_online_page(block_pfn);
295 if (!end_page)
296 return false;
297
e332f741
MG
298 /*
299 * Only clear the hint if a sample indicates there is either a
300 * free page or an LRU page in the block. One or other condition
301 * is necessary for the block to be a migration source/target.
302 */
e332f741 303 do {
859a85dd
MR
304 if (check_source && PageLRU(page)) {
305 clear_pageblock_skip(page);
306 return true;
307 }
e332f741 308
859a85dd
MR
309 if (check_target && PageBuddy(page)) {
310 clear_pageblock_skip(page);
311 return true;
e332f741
MG
312 }
313
314 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 315 } while (page <= end_page);
e332f741
MG
316
317 return false;
318}
319
bb13ffeb
MG
320/*
321 * This function is called to clear all cached information on pageblocks that
322 * should be skipped for page isolation when the migrate and free page scanner
323 * meet.
324 */
62997027 325static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 326{
e332f741 327 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 328 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
329 unsigned long reset_migrate = free_pfn;
330 unsigned long reset_free = migrate_pfn;
331 bool source_set = false;
332 bool free_set = false;
333
334 if (!zone->compact_blockskip_flush)
335 return;
bb13ffeb 336
62997027 337 zone->compact_blockskip_flush = false;
bb13ffeb 338
e332f741
MG
339 /*
340 * Walk the zone and update pageblock skip information. Source looks
341 * for PageLRU while target looks for PageBuddy. When the scanner
342 * is found, both PageBuddy and PageLRU are checked as the pageblock
343 * is suitable as both source and target.
344 */
345 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
346 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
347 cond_resched();
348
e332f741
MG
349 /* Update the migrate PFN */
350 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
351 migrate_pfn < reset_migrate) {
352 source_set = true;
353 reset_migrate = migrate_pfn;
354 zone->compact_init_migrate_pfn = reset_migrate;
355 zone->compact_cached_migrate_pfn[0] = reset_migrate;
356 zone->compact_cached_migrate_pfn[1] = reset_migrate;
357 }
bb13ffeb 358
e332f741
MG
359 /* Update the free PFN */
360 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
361 free_pfn > reset_free) {
362 free_set = true;
363 reset_free = free_pfn;
364 zone->compact_init_free_pfn = reset_free;
365 zone->compact_cached_free_pfn = reset_free;
366 }
bb13ffeb 367 }
02333641 368
e332f741
MG
369 /* Leave no distance if no suitable block was reset */
370 if (reset_migrate >= reset_free) {
371 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
372 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
373 zone->compact_cached_free_pfn = free_pfn;
374 }
bb13ffeb
MG
375}
376
62997027
MG
377void reset_isolation_suitable(pg_data_t *pgdat)
378{
379 int zoneid;
380
381 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
382 struct zone *zone = &pgdat->node_zones[zoneid];
383 if (!populated_zone(zone))
384 continue;
385
386 /* Only flush if a full compaction finished recently */
387 if (zone->compact_blockskip_flush)
388 __reset_isolation_suitable(zone);
389 }
390}
391
e380bebe
MG
392/*
393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
394 * locks are not required for read/writers. Returns true if it was already set.
395 */
396static bool test_and_set_skip(struct compact_control *cc, struct page *page,
397 unsigned long pfn)
398{
399 bool skip;
400
401 /* Do no update if skip hint is being ignored */
402 if (cc->ignore_skip_hint)
403 return false;
404
ee0913c4 405 if (!pageblock_aligned(pfn))
e380bebe
MG
406 return false;
407
408 skip = get_pageblock_skip(page);
409 if (!skip && !cc->no_set_skip_hint)
410 set_pageblock_skip(page);
411
412 return skip;
413}
414
415static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
416{
417 struct zone *zone = cc->zone;
418
419 pfn = pageblock_end_pfn(pfn);
420
421 /* Set for isolation rather than compaction */
422 if (cc->no_set_skip_hint)
423 return;
424
425 if (pfn > zone->compact_cached_migrate_pfn[0])
426 zone->compact_cached_migrate_pfn[0] = pfn;
427 if (cc->mode != MIGRATE_ASYNC &&
428 pfn > zone->compact_cached_migrate_pfn[1])
429 zone->compact_cached_migrate_pfn[1] = pfn;
430}
431
bb13ffeb
MG
432/*
433 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 434 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 435 */
c89511ab 436static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 437 struct page *page, unsigned long pfn)
bb13ffeb 438{
c89511ab 439 struct zone *zone = cc->zone;
6815bf3f 440
2583d671 441 if (cc->no_set_skip_hint)
6815bf3f
JK
442 return;
443
bb13ffeb
MG
444 if (!page)
445 return;
446
edc2ca61 447 set_pageblock_skip(page);
c89511ab 448
35979ef3 449 /* Update where async and sync compaction should restart */
e380bebe
MG
450 if (pfn < zone->compact_cached_free_pfn)
451 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
452}
453#else
454static inline bool isolation_suitable(struct compact_control *cc,
455 struct page *page)
456{
457 return true;
458}
459
b527cfe5 460static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
461{
462 return false;
463}
464
465static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 466 struct page *page, unsigned long pfn)
bb13ffeb
MG
467{
468}
e380bebe
MG
469
470static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
471{
472}
473
474static bool test_and_set_skip(struct compact_control *cc, struct page *page,
475 unsigned long pfn)
476{
477 return false;
478}
bb13ffeb
MG
479#endif /* CONFIG_COMPACTION */
480
8b44d279
VB
481/*
482 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
483 * very heavily contended. For async compaction, trylock and record if the
484 * lock is contended. The lock will still be acquired but compaction will
485 * abort when the current block is finished regardless of success rate.
486 * Sync compaction acquires the lock.
8b44d279 487 *
cb2dcaf0 488 * Always returns true which makes it easier to track lock state in callers.
8b44d279 489 */
cb2dcaf0 490static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 491 struct compact_control *cc)
77337ede 492 __acquires(lock)
2a1402aa 493{
cb2dcaf0
MG
494 /* Track if the lock is contended in async mode */
495 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
496 if (spin_trylock_irqsave(lock, *flags))
497 return true;
498
499 cc->contended = true;
8b44d279 500 }
1f9efdef 501
cb2dcaf0 502 spin_lock_irqsave(lock, *flags);
8b44d279 503 return true;
2a1402aa
MG
504}
505
c67fe375
MG
506/*
507 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
508 * very heavily contended. The lock should be periodically unlocked to avoid
509 * having disabled IRQs for a long time, even when there is nobody waiting on
510 * the lock. It might also be that allowing the IRQs will result in
d56c1584 511 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
512 * Either compaction type will also abort if a fatal signal is pending.
513 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 514 *
d56c1584
ML
515 * Returns true if compaction should abort due to fatal signal pending.
516 * Returns false when compaction can continue.
c67fe375 517 */
8b44d279
VB
518static bool compact_unlock_should_abort(spinlock_t *lock,
519 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 520{
8b44d279
VB
521 if (*locked) {
522 spin_unlock_irqrestore(lock, flags);
523 *locked = false;
524 }
1f9efdef 525
8b44d279 526 if (fatal_signal_pending(current)) {
c3486f53 527 cc->contended = true;
8b44d279
VB
528 return true;
529 }
c67fe375 530
cf66f070 531 cond_resched();
be976572
VB
532
533 return false;
534}
535
85aa125f 536/*
9e4be470
JM
537 * Isolate free pages onto a private freelist. If @strict is true, will abort
538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
539 * (even though it may still end up isolating some pages).
85aa125f 540 */
f40d1e42 541static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 542 unsigned long *start_pfn,
85aa125f
MN
543 unsigned long end_pfn,
544 struct list_head *freelist,
4fca9730 545 unsigned int stride,
85aa125f 546 bool strict)
748446bb 547{
b7aba698 548 int nr_scanned = 0, total_isolated = 0;
d097a6f6 549 struct page *cursor;
b8b2d825 550 unsigned long flags = 0;
f40d1e42 551 bool locked = false;
e14c720e 552 unsigned long blockpfn = *start_pfn;
66c64223 553 unsigned int order;
748446bb 554
4fca9730
MG
555 /* Strict mode is for isolation, speed is secondary */
556 if (strict)
557 stride = 1;
558
748446bb
MG
559 cursor = pfn_to_page(blockpfn);
560
f40d1e42 561 /* Isolate free pages. */
4fca9730 562 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 563 int isolated;
748446bb
MG
564 struct page *page = cursor;
565
8b44d279
VB
566 /*
567 * Periodically drop the lock (if held) regardless of its
568 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 569 * pending.
8b44d279 570 */
c036ddff 571 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
572 && compact_unlock_should_abort(&cc->zone->lock, flags,
573 &locked, cc))
574 break;
575
b7aba698 576 nr_scanned++;
2af120bc 577
9fcd6d2e
VB
578 /*
579 * For compound pages such as THP and hugetlbfs, we can save
580 * potentially a lot of iterations if we skip them at once.
581 * The check is racy, but we can consider only valid values
582 * and the only danger is skipping too much.
583 */
584 if (PageCompound(page)) {
21dc7e02
DR
585 const unsigned int order = compound_order(page);
586
d3c85bad 587 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
588 blockpfn += (1UL << order) - 1;
589 cursor += (1UL << order) - 1;
9fcd6d2e 590 }
9fcd6d2e
VB
591 goto isolate_fail;
592 }
593
f40d1e42 594 if (!PageBuddy(page))
2af120bc 595 goto isolate_fail;
f40d1e42 596
85f73e6d 597 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 598 if (!locked) {
cb2dcaf0 599 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 600 &flags, cc);
f40d1e42 601
69b7189f
VB
602 /* Recheck this is a buddy page under lock */
603 if (!PageBuddy(page))
604 goto isolate_fail;
605 }
748446bb 606
66c64223 607 /* Found a free page, will break it into order-0 pages */
ab130f91 608 order = buddy_order(page);
66c64223 609 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
610 if (!isolated)
611 break;
66c64223 612 set_page_private(page, order);
a4f04f2c 613
b717d6b9 614 nr_scanned += isolated - 1;
748446bb 615 total_isolated += isolated;
a4f04f2c 616 cc->nr_freepages += isolated;
66c64223
JK
617 list_add_tail(&page->lru, freelist);
618
a4f04f2c
DR
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
748446bb 622 }
a4f04f2c
DR
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
2af120bc
LA
627
628isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
748446bb
MG
634 }
635
a4f04f2c
DR
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
9fcd6d2e
VB
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
e34d85f0
JK
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
e14c720e
VB
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
f40d1e42
MG
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
2af120bc 657 if (strict && blockpfn < end_pfn)
f40d1e42
MG
658 total_isolated = 0;
659
7f354a54 660 cc->total_free_scanned += nr_scanned;
397487db 661 if (total_isolated)
010fc29a 662 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
663 return total_isolated;
664}
665
85aa125f
MN
666/**
667 * isolate_freepages_range() - isolate free pages.
e8b098fc 668 * @cc: Compaction control structure.
85aa125f
MN
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
ff9543fd 680unsigned long
bb13ffeb
MG
681isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 683{
e1409c32 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
685 LIST_HEAD(freelist);
686
7d49d886 687 pfn = start_pfn;
06b6640a 688 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 691 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
692
693 for (; pfn < end_pfn; pfn += isolated,
e1409c32 694 block_start_pfn = block_end_pfn,
7d49d886 695 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
85aa125f 698
85aa125f
MN
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
58420016
JK
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
06b6640a
VB
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
e1409c32
JK
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
7d49d886
VB
714 break;
715
e14c720e 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 717 block_end_pfn, &freelist, 0, true);
85aa125f
MN
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
66c64223 734 /* __isolate_free_page() does not map the pages */
4469ab98 735 split_map_pages(&freelist);
85aa125f
MN
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745}
746
748446bb 747/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 748static bool too_many_isolated(pg_data_t *pgdat)
748446bb 749{
d818fca1
MG
750 bool too_many;
751
bc693045 752 unsigned long active, inactive, isolated;
748446bb 753
5f438eee
AR
754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 node_page_state(pgdat, NR_INACTIVE_ANON);
756 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 node_page_state(pgdat, NR_ACTIVE_ANON);
758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 760
d818fca1
MG
761 too_many = isolated > (inactive + active) / 2;
762 if (!too_many)
763 wake_throttle_isolated(pgdat);
764
765 return too_many;
748446bb
MG
766}
767
2fe86e00 768/**
edc2ca61
VB
769 * isolate_migratepages_block() - isolate all migrate-able pages within
770 * a single pageblock
2fe86e00 771 * @cc: Compaction control structure.
edc2ca61
VB
772 * @low_pfn: The first PFN to isolate
773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 774 * @mode: Isolation mode to be used.
2fe86e00
MN
775 *
776 * Isolate all pages that can be migrated from the range specified by
edc2ca61 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 779 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 780 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 781 *
edc2ca61 782 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 783 * and cc->nr_migratepages is updated accordingly.
748446bb 784 */
c2ad7a1f 785static int
edc2ca61 786isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 787 unsigned long end_pfn, isolate_mode_t mode)
748446bb 788{
5f438eee 789 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 790 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 791 struct lruvec *lruvec;
b8b2d825 792 unsigned long flags = 0;
6168d0da 793 struct lruvec *locked = NULL;
bb13ffeb 794 struct page *page = NULL, *valid_page = NULL;
89f6c88a 795 struct address_space *mapping;
e34d85f0 796 unsigned long start_pfn = low_pfn;
fdd048e1
VB
797 bool skip_on_failure = false;
798 unsigned long next_skip_pfn = 0;
e380bebe 799 bool skip_updated = false;
c2ad7a1f
OS
800 int ret = 0;
801
802 cc->migrate_pfn = low_pfn;
748446bb 803
748446bb
MG
804 /*
805 * Ensure that there are not too many pages isolated from the LRU
806 * list by either parallel reclaimers or compaction. If there are,
807 * delay for some time until fewer pages are isolated
808 */
5f438eee 809 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
810 /* stop isolation if there are still pages not migrated */
811 if (cc->nr_migratepages)
c2ad7a1f 812 return -EAGAIN;
d20bdd57 813
f9e35b3b 814 /* async migration should just abort */
e0b9daeb 815 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 816 return -EAGAIN;
f9e35b3b 817
c3f4a9a2 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
819
820 if (fatal_signal_pending(current))
c2ad7a1f 821 return -EINTR;
748446bb
MG
822 }
823
cf66f070 824 cond_resched();
aeef4b83 825
fdd048e1
VB
826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 skip_on_failure = true;
828 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829 }
830
748446bb 831 /* Time to isolate some pages for migration */
748446bb 832 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 833
fdd048e1
VB
834 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 /*
836 * We have isolated all migration candidates in the
837 * previous order-aligned block, and did not skip it due
838 * to failure. We should migrate the pages now and
839 * hopefully succeed compaction.
840 */
841 if (nr_isolated)
842 break;
843
844 /*
845 * We failed to isolate in the previous order-aligned
846 * block. Set the new boundary to the end of the
847 * current block. Note we can't simply increase
848 * next_skip_pfn by 1 << order, as low_pfn might have
849 * been incremented by a higher number due to skipping
850 * a compound or a high-order buddy page in the
851 * previous loop iteration.
852 */
853 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854 }
855
8b44d279
VB
856 /*
857 * Periodically drop the lock (if held) regardless of its
670105a2
MG
858 * contention, to give chance to IRQs. Abort completely if
859 * a fatal signal is pending.
8b44d279 860 */
c036ddff 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
862 if (locked) {
863 unlock_page_lruvec_irqrestore(locked, flags);
864 locked = NULL;
865 }
866
867 if (fatal_signal_pending(current)) {
868 cc->contended = true;
c2ad7a1f 869 ret = -EINTR;
6168d0da 870
6168d0da
AS
871 goto fatal_pending;
872 }
873
874 cond_resched();
670105a2 875 }
c67fe375 876
b7aba698 877 nr_scanned++;
748446bb 878
748446bb 879 page = pfn_to_page(low_pfn);
dc908600 880
e380bebe
MG
881 /*
882 * Check if the pageblock has already been marked skipped.
883 * Only the aligned PFN is checked as the caller isolates
884 * COMPACT_CLUSTER_MAX at a time so the second call must
885 * not falsely conclude that the block should be skipped.
886 */
ee0913c4 887 if (!valid_page && pageblock_aligned(low_pfn)) {
4af12d04 888 if (!isolation_suitable(cc, page)) {
e380bebe 889 low_pfn = end_pfn;
9df41314 890 page = NULL;
e380bebe
MG
891 goto isolate_abort;
892 }
bb13ffeb 893 valid_page = page;
e380bebe 894 }
bb13ffeb 895
369fa227 896 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 897 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
898
899 /*
900 * Fail isolation in case isolate_or_dissolve_huge_page()
901 * reports an error. In case of -ENOMEM, abort right away.
902 */
903 if (ret < 0) {
904 /* Do not report -EBUSY down the chain */
905 if (ret == -EBUSY)
906 ret = 0;
66fe1cf7 907 low_pfn += compound_nr(page) - 1;
369fa227
OS
908 goto isolate_fail;
909 }
910
ae37c7ff
OS
911 if (PageHuge(page)) {
912 /*
913 * Hugepage was successfully isolated and placed
914 * on the cc->migratepages list.
915 */
916 low_pfn += compound_nr(page) - 1;
917 goto isolate_success_no_list;
918 }
919
369fa227
OS
920 /*
921 * Ok, the hugepage was dissolved. Now these pages are
922 * Buddy and cannot be re-allocated because they are
923 * isolated. Fall-through as the check below handles
924 * Buddy pages.
925 */
926 }
927
6c14466c 928 /*
99c0fd5e
VB
929 * Skip if free. We read page order here without zone lock
930 * which is generally unsafe, but the race window is small and
931 * the worst thing that can happen is that we skip some
932 * potential isolation targets.
6c14466c 933 */
99c0fd5e 934 if (PageBuddy(page)) {
ab130f91 935 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
936
937 /*
938 * Without lock, we cannot be sure that what we got is
939 * a valid page order. Consider only values in the
940 * valid order range to prevent low_pfn overflow.
941 */
942 if (freepage_order > 0 && freepage_order < MAX_ORDER)
943 low_pfn += (1UL << freepage_order) - 1;
748446bb 944 continue;
99c0fd5e 945 }
748446bb 946
bc835011 947 /*
29c0dde8 948 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
949 * hugetlbfs are not to be compacted unless we are attempting
950 * an allocation much larger than the huge page size (eg CMA).
951 * We can potentially save a lot of iterations if we skip them
952 * at once. The check is racy, but we can consider only valid
953 * values and the only danger is skipping too much.
bc835011 954 */
1da2f328 955 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 956 const unsigned int order = compound_order(page);
edc2ca61 957
d3c85bad 958 if (likely(order < MAX_ORDER))
21dc7e02 959 low_pfn += (1UL << order) - 1;
fdd048e1 960 goto isolate_fail;
2a1402aa
MG
961 }
962
bda807d4
MK
963 /*
964 * Check may be lockless but that's ok as we recheck later.
965 * It's possible to migrate LRU and non-lru movable pages.
966 * Skip any other type of page
967 */
968 if (!PageLRU(page)) {
bda807d4
MK
969 /*
970 * __PageMovable can return false positive so we need
971 * to verify it under page_lock.
972 */
973 if (unlikely(__PageMovable(page)) &&
974 !PageIsolated(page)) {
975 if (locked) {
6168d0da
AS
976 unlock_page_lruvec_irqrestore(locked, flags);
977 locked = NULL;
bda807d4
MK
978 }
979
89f6c88a 980 if (!isolate_movable_page(page, mode))
bda807d4
MK
981 goto isolate_success;
982 }
983
fdd048e1 984 goto isolate_fail;
bda807d4 985 }
29c0dde8 986
829ae0f8
GS
987 /*
988 * Be careful not to clear PageLRU until after we're
989 * sure the page is not being freed elsewhere -- the
990 * page release code relies on it.
991 */
992 if (unlikely(!get_page_unless_zero(page)))
993 goto isolate_fail;
994
119d6d59
DR
995 /*
996 * Migration will fail if an anonymous page is pinned in memory,
997 * so avoid taking lru_lock and isolating it unnecessarily in an
998 * admittedly racy check.
999 */
89f6c88a 1000 mapping = page_mapping(page);
829ae0f8
GS
1001 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1002 goto isolate_fail_put;
119d6d59 1003
73e64c51
MH
1004 /*
1005 * Only allow to migrate anonymous pages in GFP_NOFS context
1006 * because those do not depend on fs locks.
1007 */
89f6c88a 1008 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1009 goto isolate_fail_put;
9df41314 1010
89f6c88a
HD
1011 /* Only take pages on LRU: a check now makes later tests safe */
1012 if (!PageLRU(page))
1013 goto isolate_fail_put;
1014
1015 /* Compaction might skip unevictable pages but CMA takes them */
1016 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017 goto isolate_fail_put;
1018
1019 /*
1020 * To minimise LRU disruption, the caller can indicate with
1021 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022 * it will be able to migrate without blocking - clean pages
1023 * for the most part. PageWriteback would require blocking.
1024 */
1025 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1026 goto isolate_fail_put;
1027
89f6c88a
HD
1028 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1029 bool migrate_dirty;
1030
1031 /*
1032 * Only pages without mappings or that have a
9d0ddc0c 1033 * ->migrate_folio callback are possible to migrate
89f6c88a
HD
1034 * without blocking. However, we can be racing with
1035 * truncation so it's necessary to lock the page
1036 * to stabilise the mapping as truncation holds
1037 * the page lock until after the page is removed
1038 * from the page cache.
1039 */
1040 if (!trylock_page(page))
1041 goto isolate_fail_put;
1042
1043 mapping = page_mapping(page);
5490da4f 1044 migrate_dirty = !mapping ||
9d0ddc0c 1045 mapping->a_ops->migrate_folio;
89f6c88a
HD
1046 unlock_page(page);
1047 if (!migrate_dirty)
1048 goto isolate_fail_put;
1049 }
1050
9df41314
AS
1051 /* Try isolate the page */
1052 if (!TestClearPageLRU(page))
1053 goto isolate_fail_put;
1054
b1baabd9 1055 lruvec = folio_lruvec(page_folio(page));
6168d0da 1056
69b7189f 1057 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1058 if (lruvec != locked) {
1059 if (locked)
1060 unlock_page_lruvec_irqrestore(locked, flags);
1061
1062 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063 locked = lruvec;
6168d0da 1064
e809c3fe 1065 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1066
e380bebe
MG
1067 /* Try get exclusive access under lock */
1068 if (!skip_updated) {
1069 skip_updated = true;
1070 if (test_and_set_skip(cc, page, low_pfn))
1071 goto isolate_abort;
1072 }
2a1402aa 1073
29c0dde8
VB
1074 /*
1075 * Page become compound since the non-locked check,
1076 * and it's on LRU. It can only be a THP so the order
1077 * is safe to read and it's 0 for tail pages.
1078 */
1da2f328 1079 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1080 low_pfn += compound_nr(page) - 1;
9df41314
AS
1081 SetPageLRU(page);
1082 goto isolate_fail_put;
69b7189f 1083 }
d99fd5fe 1084 }
fa9add64 1085
1da2f328
RR
1086 /* The whole page is taken off the LRU; skip the tail pages. */
1087 if (PageCompound(page))
1088 low_pfn += compound_nr(page) - 1;
bc835011 1089
748446bb 1090 /* Successfully isolated */
46ae6b2c 1091 del_page_from_lru_list(page, lruvec);
1da2f328 1092 mod_node_page_state(page_pgdat(page),
9de4f22a 1093 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1094 thp_nr_pages(page));
b6c75016
JK
1095
1096isolate_success:
fdd048e1 1097 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1098isolate_success_no_list:
38935861
ZY
1099 cc->nr_migratepages += compound_nr(page);
1100 nr_isolated += compound_nr(page);
b717d6b9 1101 nr_scanned += compound_nr(page) - 1;
748446bb 1102
804d3121
MG
1103 /*
1104 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1105 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106 * or a lock is contended. For contention, isolate quickly to
1107 * potentially remove one source of contention.
804d3121 1108 */
38935861 1109 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1110 !cc->rescan && !cc->contended) {
31b8384a 1111 ++low_pfn;
748446bb 1112 break;
31b8384a 1113 }
fdd048e1
VB
1114
1115 continue;
9df41314
AS
1116
1117isolate_fail_put:
1118 /* Avoid potential deadlock in freeing page under lru_lock */
1119 if (locked) {
6168d0da
AS
1120 unlock_page_lruvec_irqrestore(locked, flags);
1121 locked = NULL;
9df41314
AS
1122 }
1123 put_page(page);
1124
fdd048e1 1125isolate_fail:
369fa227 1126 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1127 continue;
1128
1129 /*
1130 * We have isolated some pages, but then failed. Release them
1131 * instead of migrating, as we cannot form the cc->order buddy
1132 * page anyway.
1133 */
1134 if (nr_isolated) {
1135 if (locked) {
6168d0da
AS
1136 unlock_page_lruvec_irqrestore(locked, flags);
1137 locked = NULL;
fdd048e1 1138 }
fdd048e1
VB
1139 putback_movable_pages(&cc->migratepages);
1140 cc->nr_migratepages = 0;
fdd048e1
VB
1141 nr_isolated = 0;
1142 }
1143
1144 if (low_pfn < next_skip_pfn) {
1145 low_pfn = next_skip_pfn - 1;
1146 /*
1147 * The check near the loop beginning would have updated
1148 * next_skip_pfn too, but this is a bit simpler.
1149 */
1150 next_skip_pfn += 1UL << cc->order;
1151 }
369fa227
OS
1152
1153 if (ret == -ENOMEM)
1154 break;
748446bb
MG
1155 }
1156
99c0fd5e
VB
1157 /*
1158 * The PageBuddy() check could have potentially brought us outside
1159 * the range to be scanned.
1160 */
1161 if (unlikely(low_pfn > end_pfn))
1162 low_pfn = end_pfn;
1163
9df41314
AS
1164 page = NULL;
1165
e380bebe 1166isolate_abort:
c67fe375 1167 if (locked)
6168d0da 1168 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1169 if (page) {
1170 SetPageLRU(page);
1171 put_page(page);
1172 }
748446bb 1173
50b5b094 1174 /*
804d3121
MG
1175 * Updated the cached scanner pfn once the pageblock has been scanned
1176 * Pages will either be migrated in which case there is no point
1177 * scanning in the near future or migration failed in which case the
1178 * failure reason may persist. The block is marked for skipping if
1179 * there were no pages isolated in the block or if the block is
1180 * rescanned twice in a row.
50b5b094 1181 */
804d3121 1182 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1183 if (valid_page && !skip_updated)
1184 set_pageblock_skip(valid_page);
1185 update_cached_migrate(cc, low_pfn);
1186 }
bb13ffeb 1187
e34d85f0
JK
1188 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189 nr_scanned, nr_isolated);
b7aba698 1190
670105a2 1191fatal_pending:
7f354a54 1192 cc->total_migrate_scanned += nr_scanned;
397487db 1193 if (nr_isolated)
010fc29a 1194 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1195
c2ad7a1f
OS
1196 cc->migrate_pfn = low_pfn;
1197
1198 return ret;
2fe86e00
MN
1199}
1200
edc2ca61
VB
1201/**
1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203 * @cc: Compaction control structure.
1204 * @start_pfn: The first PFN to start isolating.
1205 * @end_pfn: The one-past-last PFN.
1206 *
369fa227
OS
1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208 * in case we could not allocate a page, or 0.
edc2ca61 1209 */
c2ad7a1f 1210int
edc2ca61
VB
1211isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212 unsigned long end_pfn)
1213{
e1409c32 1214 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1215 int ret = 0;
edc2ca61
VB
1216
1217 /* Scan block by block. First and last block may be incomplete */
1218 pfn = start_pfn;
06b6640a 1219 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1220 if (block_start_pfn < cc->zone->zone_start_pfn)
1221 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1222 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1223
1224 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1225 block_start_pfn = block_end_pfn,
edc2ca61
VB
1226 block_end_pfn += pageblock_nr_pages) {
1227
1228 block_end_pfn = min(block_end_pfn, end_pfn);
1229
e1409c32
JK
1230 if (!pageblock_pfn_to_page(block_start_pfn,
1231 block_end_pfn, cc->zone))
edc2ca61
VB
1232 continue;
1233
c2ad7a1f
OS
1234 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235 ISOLATE_UNEVICTABLE);
edc2ca61 1236
c2ad7a1f 1237 if (ret)
edc2ca61 1238 break;
6ea41c0c 1239
38935861 1240 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1241 break;
edc2ca61 1242 }
edc2ca61 1243
c2ad7a1f 1244 return ret;
edc2ca61
VB
1245}
1246
ff9543fd
MN
1247#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248#ifdef CONFIG_COMPACTION
018e9a49 1249
b682debd
VB
1250static bool suitable_migration_source(struct compact_control *cc,
1251 struct page *page)
1252{
282722b0
VB
1253 int block_mt;
1254
9bebefd5
MG
1255 if (pageblock_skip_persistent(page))
1256 return false;
1257
282722b0 1258 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1259 return true;
1260
282722b0
VB
1261 block_mt = get_pageblock_migratetype(page);
1262
1263 if (cc->migratetype == MIGRATE_MOVABLE)
1264 return is_migrate_movable(block_mt);
1265 else
1266 return block_mt == cc->migratetype;
b682debd
VB
1267}
1268
018e9a49 1269/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1270static bool suitable_migration_target(struct compact_control *cc,
1271 struct page *page)
018e9a49
AM
1272{
1273 /* If the page is a large free page, then disallow migration */
1274 if (PageBuddy(page)) {
1275 /*
1276 * We are checking page_order without zone->lock taken. But
1277 * the only small danger is that we skip a potentially suitable
1278 * pageblock, so it's not worth to check order for valid range.
1279 */
ab130f91 1280 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1281 return false;
1282 }
1283
1ef36db2
YX
1284 if (cc->ignore_block_suitable)
1285 return true;
1286
018e9a49 1287 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1288 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1289 return true;
1290
1291 /* Otherwise skip the block */
1292 return false;
1293}
1294
70b44595
MG
1295static inline unsigned int
1296freelist_scan_limit(struct compact_control *cc)
1297{
dd7ef7bd
QC
1298 unsigned short shift = BITS_PER_LONG - 1;
1299
1300 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1301}
1302
f2849aa0
VB
1303/*
1304 * Test whether the free scanner has reached the same or lower pageblock than
1305 * the migration scanner, and compaction should thus terminate.
1306 */
1307static inline bool compact_scanners_met(struct compact_control *cc)
1308{
1309 return (cc->free_pfn >> pageblock_order)
1310 <= (cc->migrate_pfn >> pageblock_order);
1311}
1312
5a811889
MG
1313/*
1314 * Used when scanning for a suitable migration target which scans freelists
1315 * in reverse. Reorders the list such as the unscanned pages are scanned
1316 * first on the next iteration of the free scanner
1317 */
1318static void
1319move_freelist_head(struct list_head *freelist, struct page *freepage)
1320{
1321 LIST_HEAD(sublist);
1322
1323 if (!list_is_last(freelist, &freepage->lru)) {
1324 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1325 list_splice_tail(&sublist, freelist);
5a811889
MG
1326 }
1327}
1328
1329/*
1330 * Similar to move_freelist_head except used by the migration scanner
1331 * when scanning forward. It's possible for these list operations to
1332 * move against each other if they search the free list exactly in
1333 * lockstep.
1334 */
70b44595
MG
1335static void
1336move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337{
1338 LIST_HEAD(sublist);
1339
1340 if (!list_is_first(freelist, &freepage->lru)) {
1341 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1342 list_splice_tail(&sublist, freelist);
70b44595
MG
1343 }
1344}
1345
5a811889 1346static void
be21b32a 1347fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1348{
1349 unsigned long start_pfn, end_pfn;
6e2b7044 1350 struct page *page;
5a811889
MG
1351
1352 /* Do not search around if there are enough pages already */
1353 if (cc->nr_freepages >= cc->nr_migratepages)
1354 return;
1355
1356 /* Minimise scanning during async compaction */
1357 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358 return;
1359
1360 /* Pageblock boundaries */
6e2b7044
VB
1361 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363
1364 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365 if (!page)
1366 return;
5a811889 1367
be21b32a 1368 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1369
1370 /* Skip this pageblock in the future as it's full or nearly full */
1371 if (cc->nr_freepages < cc->nr_migratepages)
1372 set_pageblock_skip(page);
be21b32a
NA
1373
1374 return;
5a811889
MG
1375}
1376
dbe2d4e4
MG
1377/* Search orders in round-robin fashion */
1378static int next_search_order(struct compact_control *cc, int order)
1379{
1380 order--;
1381 if (order < 0)
1382 order = cc->order - 1;
1383
1384 /* Search wrapped around? */
1385 if (order == cc->search_order) {
1386 cc->search_order--;
1387 if (cc->search_order < 0)
1388 cc->search_order = cc->order - 1;
1389 return -1;
1390 }
1391
1392 return order;
1393}
1394
5a811889
MG
1395static unsigned long
1396fast_isolate_freepages(struct compact_control *cc)
1397{
b55ca526 1398 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1399 unsigned int nr_scanned = 0;
74e21484 1400 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1401 unsigned long nr_isolated = 0;
1402 unsigned long distance;
1403 struct page *page = NULL;
1404 bool scan_start = false;
1405 int order;
1406
1407 /* Full compaction passes in a negative order */
1408 if (cc->order <= 0)
1409 return cc->free_pfn;
1410
1411 /*
1412 * If starting the scan, use a deeper search and use the highest
1413 * PFN found if a suitable one is not found.
1414 */
e332f741 1415 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1416 limit = pageblock_nr_pages >> 1;
1417 scan_start = true;
1418 }
1419
1420 /*
1421 * Preferred point is in the top quarter of the scan space but take
1422 * a pfn from the top half if the search is problematic.
1423 */
1424 distance = (cc->free_pfn - cc->migrate_pfn);
1425 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1426 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1427
1428 if (WARN_ON_ONCE(min_pfn > low_pfn))
1429 low_pfn = min_pfn;
1430
dbe2d4e4
MG
1431 /*
1432 * Search starts from the last successful isolation order or the next
1433 * order to search after a previous failure
1434 */
1435 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1436
1437 for (order = cc->search_order;
1438 !page && order >= 0;
1439 order = next_search_order(cc, order)) {
5a811889
MG
1440 struct free_area *area = &cc->zone->free_area[order];
1441 struct list_head *freelist;
1442 struct page *freepage;
1443 unsigned long flags;
1444 unsigned int order_scanned = 0;
74e21484 1445 unsigned long high_pfn = 0;
5a811889
MG
1446
1447 if (!area->nr_free)
1448 continue;
1449
1450 spin_lock_irqsave(&cc->zone->lock, flags);
1451 freelist = &area->free_list[MIGRATE_MOVABLE];
1452 list_for_each_entry_reverse(freepage, freelist, lru) {
1453 unsigned long pfn;
1454
1455 order_scanned++;
1456 nr_scanned++;
1457 pfn = page_to_pfn(freepage);
1458
1459 if (pfn >= highest)
6e2b7044
VB
1460 highest = max(pageblock_start_pfn(pfn),
1461 cc->zone->zone_start_pfn);
5a811889
MG
1462
1463 if (pfn >= low_pfn) {
1464 cc->fast_search_fail = 0;
dbe2d4e4 1465 cc->search_order = order;
5a811889
MG
1466 page = freepage;
1467 break;
1468 }
1469
1470 if (pfn >= min_pfn && pfn > high_pfn) {
1471 high_pfn = pfn;
1472
1473 /* Shorten the scan if a candidate is found */
1474 limit >>= 1;
1475 }
1476
1477 if (order_scanned >= limit)
1478 break;
1479 }
1480
1481 /* Use a minimum pfn if a preferred one was not found */
1482 if (!page && high_pfn) {
1483 page = pfn_to_page(high_pfn);
1484
1485 /* Update freepage for the list reorder below */
1486 freepage = page;
1487 }
1488
1489 /* Reorder to so a future search skips recent pages */
1490 move_freelist_head(freelist, freepage);
1491
1492 /* Isolate the page if available */
1493 if (page) {
1494 if (__isolate_free_page(page, order)) {
1495 set_page_private(page, order);
1496 nr_isolated = 1 << order;
b717d6b9 1497 nr_scanned += nr_isolated - 1;
5a811889
MG
1498 cc->nr_freepages += nr_isolated;
1499 list_add_tail(&page->lru, &cc->freepages);
1500 count_compact_events(COMPACTISOLATED, nr_isolated);
1501 } else {
1502 /* If isolation fails, abort the search */
5b56d996 1503 order = cc->search_order + 1;
5a811889
MG
1504 page = NULL;
1505 }
1506 }
1507
1508 spin_unlock_irqrestore(&cc->zone->lock, flags);
1509
1510 /*
b55ca526 1511 * Smaller scan on next order so the total scan is related
5a811889
MG
1512 * to freelist_scan_limit.
1513 */
1514 if (order_scanned >= limit)
b55ca526 1515 limit = max(1U, limit >> 1);
5a811889
MG
1516 }
1517
1518 if (!page) {
1519 cc->fast_search_fail++;
1520 if (scan_start) {
1521 /*
1522 * Use the highest PFN found above min. If one was
f3867755 1523 * not found, be pessimistic for direct compaction
5a811889
MG
1524 * and use the min mark.
1525 */
ca2864e5 1526 if (highest >= min_pfn) {
5a811889
MG
1527 page = pfn_to_page(highest);
1528 cc->free_pfn = highest;
1529 } else {
e577c8b6 1530 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1531 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1532 min(pageblock_end_pfn(min_pfn),
1533 zone_end_pfn(cc->zone)),
73a6e474 1534 cc->zone);
5a811889
MG
1535 cc->free_pfn = min_pfn;
1536 }
1537 }
1538 }
1539 }
1540
d097a6f6
MG
1541 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1542 highest -= pageblock_nr_pages;
5a811889 1543 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1544 }
5a811889
MG
1545
1546 cc->total_free_scanned += nr_scanned;
1547 if (!page)
1548 return cc->free_pfn;
1549
1550 low_pfn = page_to_pfn(page);
be21b32a 1551 fast_isolate_around(cc, low_pfn);
5a811889
MG
1552 return low_pfn;
1553}
1554
2fe86e00 1555/*
ff9543fd
MN
1556 * Based on information in the current compact_control, find blocks
1557 * suitable for isolating free pages from and then isolate them.
2fe86e00 1558 */
edc2ca61 1559static void isolate_freepages(struct compact_control *cc)
2fe86e00 1560{
edc2ca61 1561 struct zone *zone = cc->zone;
ff9543fd 1562 struct page *page;
c96b9e50 1563 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1564 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1565 unsigned long block_end_pfn; /* end of current pageblock */
1566 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1567 struct list_head *freelist = &cc->freepages;
4fca9730 1568 unsigned int stride;
2fe86e00 1569
5a811889 1570 /* Try a small search of the free lists for a candidate */
00bc102f 1571 fast_isolate_freepages(cc);
5a811889
MG
1572 if (cc->nr_freepages)
1573 goto splitmap;
1574
ff9543fd
MN
1575 /*
1576 * Initialise the free scanner. The starting point is where we last
49e068f0 1577 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1578 * zone when isolating for the first time. For looping we also need
1579 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1580 * block_start_pfn -= pageblock_nr_pages in the for loop.
1581 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1582 * zone which ends in the middle of a pageblock.
49e068f0
VB
1583 * The low boundary is the end of the pageblock the migration scanner
1584 * is using.
ff9543fd 1585 */
e14c720e 1586 isolate_start_pfn = cc->free_pfn;
5a811889 1587 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1588 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1589 zone_end_pfn(zone));
06b6640a 1590 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1591 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1592
ff9543fd
MN
1593 /*
1594 * Isolate free pages until enough are available to migrate the
1595 * pages on cc->migratepages. We stop searching if the migrate
1596 * and free page scanners meet or enough free pages are isolated.
1597 */
f5f61a32 1598 for (; block_start_pfn >= low_pfn;
c96b9e50 1599 block_end_pfn = block_start_pfn,
e14c720e
VB
1600 block_start_pfn -= pageblock_nr_pages,
1601 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1602 unsigned long nr_isolated;
1603
f6ea3adb
DR
1604 /*
1605 * This can iterate a massively long zone without finding any
cb810ad2 1606 * suitable migration targets, so periodically check resched.
f6ea3adb 1607 */
c036ddff 1608 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1609 cond_resched();
f6ea3adb 1610
7d49d886
VB
1611 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1612 zone);
1613 if (!page)
ff9543fd
MN
1614 continue;
1615
1616 /* Check the block is suitable for migration */
9f7e3387 1617 if (!suitable_migration_target(cc, page))
ff9543fd 1618 continue;
68e3e926 1619
bb13ffeb
MG
1620 /* If isolation recently failed, do not retry */
1621 if (!isolation_suitable(cc, page))
1622 continue;
1623
e14c720e 1624 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1625 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1626 block_end_pfn, freelist, stride, false);
ff9543fd 1627
d097a6f6
MG
1628 /* Update the skip hint if the full pageblock was scanned */
1629 if (isolate_start_pfn == block_end_pfn)
1630 update_pageblock_skip(cc, page, block_start_pfn);
1631
cb2dcaf0
MG
1632 /* Are enough freepages isolated? */
1633 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1634 if (isolate_start_pfn >= block_end_pfn) {
1635 /*
1636 * Restart at previous pageblock if more
1637 * freepages can be isolated next time.
1638 */
f5f61a32
VB
1639 isolate_start_pfn =
1640 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1641 }
be976572 1642 break;
a46cbf3b 1643 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1644 /*
a46cbf3b
DR
1645 * If isolation failed early, do not continue
1646 * needlessly.
f5f61a32 1647 */
a46cbf3b 1648 break;
f5f61a32 1649 }
4fca9730
MG
1650
1651 /* Adjust stride depending on isolation */
1652 if (nr_isolated) {
1653 stride = 1;
1654 continue;
1655 }
1656 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1657 }
1658
7ed695e0 1659 /*
f5f61a32
VB
1660 * Record where the free scanner will restart next time. Either we
1661 * broke from the loop and set isolate_start_pfn based on the last
1662 * call to isolate_freepages_block(), or we met the migration scanner
1663 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1664 */
f5f61a32 1665 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1666
1667splitmap:
1668 /* __isolate_free_page() does not map the pages */
1669 split_map_pages(freelist);
748446bb
MG
1670}
1671
1672/*
1673 * This is a migrate-callback that "allocates" freepages by taking pages
1674 * from the isolated freelists in the block we are migrating to.
1675 */
1676static struct page *compaction_alloc(struct page *migratepage,
666feb21 1677 unsigned long data)
748446bb
MG
1678{
1679 struct compact_control *cc = (struct compact_control *)data;
1680 struct page *freepage;
1681
748446bb 1682 if (list_empty(&cc->freepages)) {
cb2dcaf0 1683 isolate_freepages(cc);
748446bb
MG
1684
1685 if (list_empty(&cc->freepages))
1686 return NULL;
1687 }
1688
1689 freepage = list_entry(cc->freepages.next, struct page, lru);
1690 list_del(&freepage->lru);
1691 cc->nr_freepages--;
1692
1693 return freepage;
1694}
1695
1696/*
d53aea3d
DR
1697 * This is a migrate-callback that "frees" freepages back to the isolated
1698 * freelist. All pages on the freelist are from the same zone, so there is no
1699 * special handling needed for NUMA.
1700 */
1701static void compaction_free(struct page *page, unsigned long data)
1702{
1703 struct compact_control *cc = (struct compact_control *)data;
1704
1705 list_add(&page->lru, &cc->freepages);
1706 cc->nr_freepages++;
1707}
1708
ff9543fd
MN
1709/* possible outcome of isolate_migratepages */
1710typedef enum {
1711 ISOLATE_ABORT, /* Abort compaction now */
1712 ISOLATE_NONE, /* No pages isolated, continue scanning */
1713 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1714} isolate_migrate_t;
1715
5bbe3547
EM
1716/*
1717 * Allow userspace to control policy on scanning the unevictable LRU for
1718 * compactable pages.
1719 */
c7e0b3d0 1720int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
5bbe3547 1721
70b44595
MG
1722static inline void
1723update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1724{
1725 if (cc->fast_start_pfn == ULONG_MAX)
1726 return;
1727
1728 if (!cc->fast_start_pfn)
1729 cc->fast_start_pfn = pfn;
1730
1731 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1732}
1733
1734static inline unsigned long
1735reinit_migrate_pfn(struct compact_control *cc)
1736{
1737 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1738 return cc->migrate_pfn;
1739
1740 cc->migrate_pfn = cc->fast_start_pfn;
1741 cc->fast_start_pfn = ULONG_MAX;
1742
1743 return cc->migrate_pfn;
1744}
1745
1746/*
1747 * Briefly search the free lists for a migration source that already has
1748 * some free pages to reduce the number of pages that need migration
1749 * before a pageblock is free.
1750 */
1751static unsigned long fast_find_migrateblock(struct compact_control *cc)
1752{
1753 unsigned int limit = freelist_scan_limit(cc);
1754 unsigned int nr_scanned = 0;
1755 unsigned long distance;
1756 unsigned long pfn = cc->migrate_pfn;
1757 unsigned long high_pfn;
1758 int order;
15d28d0d 1759 bool found_block = false;
70b44595
MG
1760
1761 /* Skip hints are relied on to avoid repeats on the fast search */
1762 if (cc->ignore_skip_hint)
1763 return pfn;
1764
1765 /*
1766 * If the migrate_pfn is not at the start of a zone or the start
1767 * of a pageblock then assume this is a continuation of a previous
1768 * scan restarted due to COMPACT_CLUSTER_MAX.
1769 */
1770 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1771 return pfn;
1772
1773 /*
1774 * For smaller orders, just linearly scan as the number of pages
1775 * to migrate should be relatively small and does not necessarily
1776 * justify freeing up a large block for a small allocation.
1777 */
1778 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1779 return pfn;
1780
1781 /*
1782 * Only allow kcompactd and direct requests for movable pages to
1783 * quickly clear out a MOVABLE pageblock for allocation. This
1784 * reduces the risk that a large movable pageblock is freed for
1785 * an unmovable/reclaimable small allocation.
1786 */
1787 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1788 return pfn;
1789
1790 /*
1791 * When starting the migration scanner, pick any pageblock within the
1792 * first half of the search space. Otherwise try and pick a pageblock
1793 * within the first eighth to reduce the chances that a migration
1794 * target later becomes a source.
1795 */
1796 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1797 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1798 distance >>= 2;
1799 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1800
1801 for (order = cc->order - 1;
15d28d0d 1802 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1803 order--) {
1804 struct free_area *area = &cc->zone->free_area[order];
1805 struct list_head *freelist;
1806 unsigned long flags;
1807 struct page *freepage;
1808
1809 if (!area->nr_free)
1810 continue;
1811
1812 spin_lock_irqsave(&cc->zone->lock, flags);
1813 freelist = &area->free_list[MIGRATE_MOVABLE];
1814 list_for_each_entry(freepage, freelist, lru) {
1815 unsigned long free_pfn;
1816
15d28d0d
WY
1817 if (nr_scanned++ >= limit) {
1818 move_freelist_tail(freelist, freepage);
1819 break;
1820 }
1821
70b44595
MG
1822 free_pfn = page_to_pfn(freepage);
1823 if (free_pfn < high_pfn) {
70b44595
MG
1824 /*
1825 * Avoid if skipped recently. Ideally it would
1826 * move to the tail but even safe iteration of
1827 * the list assumes an entry is deleted, not
1828 * reordered.
1829 */
15d28d0d 1830 if (get_pageblock_skip(freepage))
70b44595 1831 continue;
70b44595
MG
1832
1833 /* Reorder to so a future search skips recent pages */
1834 move_freelist_tail(freelist, freepage);
1835
e380bebe 1836 update_fast_start_pfn(cc, free_pfn);
70b44595 1837 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1838 if (pfn < cc->zone->zone_start_pfn)
1839 pfn = cc->zone->zone_start_pfn;
70b44595 1840 cc->fast_search_fail = 0;
15d28d0d 1841 found_block = true;
70b44595
MG
1842 break;
1843 }
70b44595
MG
1844 }
1845 spin_unlock_irqrestore(&cc->zone->lock, flags);
1846 }
1847
1848 cc->total_migrate_scanned += nr_scanned;
1849
1850 /*
1851 * If fast scanning failed then use a cached entry for a page block
1852 * that had free pages as the basis for starting a linear scan.
1853 */
15d28d0d
WY
1854 if (!found_block) {
1855 cc->fast_search_fail++;
70b44595 1856 pfn = reinit_migrate_pfn(cc);
15d28d0d 1857 }
70b44595
MG
1858 return pfn;
1859}
1860
ff9543fd 1861/*
edc2ca61
VB
1862 * Isolate all pages that can be migrated from the first suitable block,
1863 * starting at the block pointed to by the migrate scanner pfn within
1864 * compact_control.
ff9543fd 1865 */
32aaf055 1866static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1867{
e1409c32
JK
1868 unsigned long block_start_pfn;
1869 unsigned long block_end_pfn;
1870 unsigned long low_pfn;
edc2ca61
VB
1871 struct page *page;
1872 const isolate_mode_t isolate_mode =
5bbe3547 1873 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1874 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1875 bool fast_find_block;
ff9543fd 1876
edc2ca61
VB
1877 /*
1878 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1879 * initialized by compact_zone(). The first failure will use
1880 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1881 */
70b44595 1882 low_pfn = fast_find_migrateblock(cc);
06b6640a 1883 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1884 if (block_start_pfn < cc->zone->zone_start_pfn)
1885 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1886
70b44595
MG
1887 /*
1888 * fast_find_migrateblock marks a pageblock skipped so to avoid
1889 * the isolation_suitable check below, check whether the fast
1890 * search was successful.
1891 */
1892 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1893
ff9543fd 1894 /* Only scan within a pageblock boundary */
06b6640a 1895 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1896
edc2ca61
VB
1897 /*
1898 * Iterate over whole pageblocks until we find the first suitable.
1899 * Do not cross the free scanner.
1900 */
e1409c32 1901 for (; block_end_pfn <= cc->free_pfn;
70b44595 1902 fast_find_block = false,
c2ad7a1f 1903 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1904 block_start_pfn = block_end_pfn,
1905 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1906
edc2ca61
VB
1907 /*
1908 * This can potentially iterate a massively long zone with
1909 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1910 * need to schedule.
edc2ca61 1911 */
c036ddff 1912 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1913 cond_resched();
ff9543fd 1914
32aaf055
PL
1915 page = pageblock_pfn_to_page(block_start_pfn,
1916 block_end_pfn, cc->zone);
7d49d886 1917 if (!page)
edc2ca61
VB
1918 continue;
1919
e380bebe
MG
1920 /*
1921 * If isolation recently failed, do not retry. Only check the
1922 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1923 * to be visited multiple times. Assume skip was checked
1924 * before making it "skip" so other compaction instances do
1925 * not scan the same block.
1926 */
ee0913c4 1927 if (pageblock_aligned(low_pfn) &&
e380bebe 1928 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1929 continue;
1930
1931 /*
556162bf
ML
1932 * For async direct compaction, only scan the pageblocks of the
1933 * same migratetype without huge pages. Async direct compaction
1934 * is optimistic to see if the minimum amount of work satisfies
1935 * the allocation. The cached PFN is updated as it's possible
1936 * that all remaining blocks between source and target are
1937 * unsuitable and the compaction scanners fail to meet.
edc2ca61 1938 */
9bebefd5
MG
1939 if (!suitable_migration_source(cc, page)) {
1940 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1941 continue;
9bebefd5 1942 }
edc2ca61
VB
1943
1944 /* Perform the isolation */
c2ad7a1f
OS
1945 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1946 isolate_mode))
edc2ca61
VB
1947 return ISOLATE_ABORT;
1948
1949 /*
1950 * Either we isolated something and proceed with migration. Or
1951 * we failed and compact_zone should decide if we should
1952 * continue or not.
1953 */
1954 break;
1955 }
1956
edc2ca61 1957 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1958}
1959
21c527a3
YB
1960/*
1961 * order == -1 is expected when compacting via
1962 * /proc/sys/vm/compact_memory
1963 */
1964static inline bool is_via_compact_memory(int order)
1965{
1966 return order == -1;
1967}
1968
b4a0215e
KW
1969/*
1970 * Determine whether kswapd is (or recently was!) running on this node.
1971 *
1972 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1973 * zero it.
1974 */
facdaa91
NG
1975static bool kswapd_is_running(pg_data_t *pgdat)
1976{
b4a0215e
KW
1977 bool running;
1978
1979 pgdat_kswapd_lock(pgdat);
1980 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1981 pgdat_kswapd_unlock(pgdat);
1982
1983 return running;
facdaa91
NG
1984}
1985
1986/*
1987 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1988 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1989 */
1990static unsigned int fragmentation_score_zone(struct zone *zone)
1991{
1992 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1993}
1994
1995/*
1996 * A weighted zone's fragmentation score is the external fragmentation
1997 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1998 * returns a value in the range [0, 100].
facdaa91
NG
1999 *
2000 * The scaling factor ensures that proactive compaction focuses on larger
2001 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2002 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2003 * and thus never exceeds the high threshold for proactive compaction.
2004 */
40d7e203 2005static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2006{
2007 unsigned long score;
2008
40d7e203 2009 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2010 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2011}
2012
2013/*
2014 * The per-node proactive (background) compaction process is started by its
2015 * corresponding kcompactd thread when the node's fragmentation score
2016 * exceeds the high threshold. The compaction process remains active till
2017 * the node's score falls below the low threshold, or one of the back-off
2018 * conditions is met.
2019 */
d34c0a75 2020static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2021{
d34c0a75 2022 unsigned int score = 0;
facdaa91
NG
2023 int zoneid;
2024
2025 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2026 struct zone *zone;
2027
2028 zone = &pgdat->node_zones[zoneid];
40d7e203 2029 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2030 }
2031
2032 return score;
2033}
2034
d34c0a75 2035static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2036{
d34c0a75 2037 unsigned int wmark_low;
facdaa91
NG
2038
2039 /*
f0953a1b
IM
2040 * Cap the low watermark to avoid excessive compaction
2041 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2042 * close to 100 (maximum).
2043 */
d34c0a75
NG
2044 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2045 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2046}
2047
2048static bool should_proactive_compact_node(pg_data_t *pgdat)
2049{
2050 int wmark_high;
2051
2052 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2053 return false;
2054
2055 wmark_high = fragmentation_score_wmark(pgdat, false);
2056 return fragmentation_score_node(pgdat) > wmark_high;
2057}
2058
40cacbcb 2059static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2060{
8fb74b9f 2061 unsigned int order;
d39773a0 2062 const int migratetype = cc->migratetype;
cb2dcaf0 2063 int ret;
748446bb 2064
753341a4 2065 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2066 if (compact_scanners_met(cc)) {
55b7c4c9 2067 /* Let the next compaction start anew. */
40cacbcb 2068 reset_cached_positions(cc->zone);
55b7c4c9 2069
62997027
MG
2070 /*
2071 * Mark that the PG_migrate_skip information should be cleared
accf6242 2072 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2073 * flag itself as the decision to be clear should be directly
2074 * based on an allocation request.
2075 */
accf6242 2076 if (cc->direct_compaction)
40cacbcb 2077 cc->zone->compact_blockskip_flush = true;
62997027 2078
c8f7de0b
MH
2079 if (cc->whole_zone)
2080 return COMPACT_COMPLETE;
2081 else
2082 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2083 }
748446bb 2084
facdaa91
NG
2085 if (cc->proactive_compaction) {
2086 int score, wmark_low;
2087 pg_data_t *pgdat;
2088
2089 pgdat = cc->zone->zone_pgdat;
2090 if (kswapd_is_running(pgdat))
2091 return COMPACT_PARTIAL_SKIPPED;
2092
2093 score = fragmentation_score_zone(cc->zone);
2094 wmark_low = fragmentation_score_wmark(pgdat, true);
2095
2096 if (score > wmark_low)
2097 ret = COMPACT_CONTINUE;
2098 else
2099 ret = COMPACT_SUCCESS;
2100
2101 goto out;
2102 }
2103
21c527a3 2104 if (is_via_compact_memory(cc->order))
56de7263
MG
2105 return COMPACT_CONTINUE;
2106
efe771c7
MG
2107 /*
2108 * Always finish scanning a pageblock to reduce the possibility of
2109 * fallbacks in the future. This is particularly important when
2110 * migration source is unmovable/reclaimable but it's not worth
2111 * special casing.
2112 */
ee0913c4 2113 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2114 return COMPACT_CONTINUE;
baf6a9a1 2115
56de7263 2116 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2117 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2118 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2119 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2120 bool can_steal;
8fb74b9f
MG
2121
2122 /* Job done if page is free of the right migratetype */
b03641af 2123 if (!free_area_empty(area, migratetype))
cf378319 2124 return COMPACT_SUCCESS;
8fb74b9f 2125
2149cdae
JK
2126#ifdef CONFIG_CMA
2127 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2128 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2129 !free_area_empty(area, MIGRATE_CMA))
cf378319 2130 return COMPACT_SUCCESS;
2149cdae
JK
2131#endif
2132 /*
2133 * Job done if allocation would steal freepages from
2134 * other migratetype buddy lists.
2135 */
2136 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2137 true, &can_steal) != -1)
baf6a9a1 2138 /*
fa599c44
ML
2139 * Movable pages are OK in any pageblock. If we are
2140 * stealing for a non-movable allocation, make sure
2141 * we finish compacting the current pageblock first
2142 * (which is assured by the above migrate_pfn align
2143 * check) so it is as free as possible and we won't
2144 * have to steal another one soon.
baf6a9a1 2145 */
fa599c44 2146 return COMPACT_SUCCESS;
56de7263
MG
2147 }
2148
facdaa91 2149out:
cb2dcaf0
MG
2150 if (cc->contended || fatal_signal_pending(current))
2151 ret = COMPACT_CONTENDED;
2152
2153 return ret;
837d026d
JK
2154}
2155
40cacbcb 2156static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2157{
2158 int ret;
2159
40cacbcb
MG
2160 ret = __compact_finished(cc);
2161 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2162 if (ret == COMPACT_NO_SUITABLE_PAGE)
2163 ret = COMPACT_CONTINUE;
2164
2165 return ret;
748446bb
MG
2166}
2167
ea7ab982 2168static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2169 unsigned int alloc_flags,
97a225e6 2170 int highest_zoneidx,
86a294a8 2171 unsigned long wmark_target)
3e7d3449 2172{
3e7d3449
MG
2173 unsigned long watermark;
2174
21c527a3 2175 if (is_via_compact_memory(order))
3957c776
MH
2176 return COMPACT_CONTINUE;
2177
a9214443 2178 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2179 /*
2180 * If watermarks for high-order allocation are already met, there
2181 * should be no need for compaction at all.
2182 */
97a225e6 2183 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2184 alloc_flags))
cf378319 2185 return COMPACT_SUCCESS;
ebff3980 2186
3e7d3449 2187 /*
9861a62c 2188 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2189 * isolate free pages for migration targets. This means that the
2190 * watermark and alloc_flags have to match, or be more pessimistic than
2191 * the check in __isolate_free_page(). We don't use the direct
2192 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2193 * isolation. We however do use the direct compactor's highest_zoneidx
2194 * to skip over zones where lowmem reserves would prevent allocation
2195 * even if compaction succeeds.
8348faf9
VB
2196 * For costly orders, we require low watermark instead of min for
2197 * compaction to proceed to increase its chances.
d883c6cf
JK
2198 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2199 * suitable migration targets
3e7d3449 2200 */
8348faf9
VB
2201 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2202 low_wmark_pages(zone) : min_wmark_pages(zone);
2203 watermark += compact_gap(order);
97a225e6 2204 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2205 ALLOC_CMA, wmark_target))
3e7d3449
MG
2206 return COMPACT_SKIPPED;
2207
cc5c9f09
VB
2208 return COMPACT_CONTINUE;
2209}
2210
2b1a20c3
HS
2211/*
2212 * compaction_suitable: Is this suitable to run compaction on this zone now?
2213 * Returns
2214 * COMPACT_SKIPPED - If there are too few free pages for compaction
2215 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2216 * COMPACT_CONTINUE - If compaction should run now
2217 */
cc5c9f09
VB
2218enum compact_result compaction_suitable(struct zone *zone, int order,
2219 unsigned int alloc_flags,
97a225e6 2220 int highest_zoneidx)
cc5c9f09
VB
2221{
2222 enum compact_result ret;
2223 int fragindex;
2224
97a225e6 2225 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2226 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2227 /*
2228 * fragmentation index determines if allocation failures are due to
2229 * low memory or external fragmentation
2230 *
ebff3980
VB
2231 * index of -1000 would imply allocations might succeed depending on
2232 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2233 * index towards 0 implies failure is due to lack of memory
2234 * index towards 1000 implies failure is due to fragmentation
2235 *
20311420
VB
2236 * Only compact if a failure would be due to fragmentation. Also
2237 * ignore fragindex for non-costly orders where the alternative to
2238 * a successful reclaim/compaction is OOM. Fragindex and the
2239 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2240 * excessive compaction for costly orders, but it should not be at the
2241 * expense of system stability.
3e7d3449 2242 */
20311420 2243 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2244 fragindex = fragmentation_index(zone, order);
2245 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2246 ret = COMPACT_NOT_SUITABLE_ZONE;
2247 }
837d026d 2248
837d026d
JK
2249 trace_mm_compaction_suitable(zone, order, ret);
2250 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2251 ret = COMPACT_SKIPPED;
2252
2253 return ret;
2254}
2255
86a294a8
MH
2256bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2257 int alloc_flags)
2258{
2259 struct zone *zone;
2260 struct zoneref *z;
2261
2262 /*
2263 * Make sure at least one zone would pass __compaction_suitable if we continue
2264 * retrying the reclaim.
2265 */
97a225e6
JK
2266 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2267 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2268 unsigned long available;
2269 enum compact_result compact_result;
2270
2271 /*
2272 * Do not consider all the reclaimable memory because we do not
2273 * want to trash just for a single high order allocation which
2274 * is even not guaranteed to appear even if __compaction_suitable
2275 * is happy about the watermark check.
2276 */
5a1c84b4 2277 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2278 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2279 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2280 ac->highest_zoneidx, available);
cff387d6 2281 if (compact_result == COMPACT_CONTINUE)
86a294a8
MH
2282 return true;
2283 }
2284
2285 return false;
2286}
2287
5e1f0f09
MG
2288static enum compact_result
2289compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2290{
ea7ab982 2291 enum compact_result ret;
40cacbcb
MG
2292 unsigned long start_pfn = cc->zone->zone_start_pfn;
2293 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2294 unsigned long last_migrated_pfn;
e0b9daeb 2295 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2296 bool update_cached;
84b328aa 2297 unsigned int nr_succeeded = 0;
748446bb 2298
a94b5252
YS
2299 /*
2300 * These counters track activities during zone compaction. Initialize
2301 * them before compacting a new zone.
2302 */
2303 cc->total_migrate_scanned = 0;
2304 cc->total_free_scanned = 0;
2305 cc->nr_migratepages = 0;
2306 cc->nr_freepages = 0;
2307 INIT_LIST_HEAD(&cc->freepages);
2308 INIT_LIST_HEAD(&cc->migratepages);
2309
01c0bfe0 2310 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2311 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2312 cc->highest_zoneidx);
c46649de 2313 /* Compaction is likely to fail */
cf378319 2314 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2315 return ret;
c46649de
MH
2316
2317 /* huh, compaction_suitable is returning something unexpected */
2318 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2319
d3132e4b
VB
2320 /*
2321 * Clear pageblock skip if there were failures recently and compaction
accf6242 2322 * is about to be retried after being deferred.
d3132e4b 2323 */
40cacbcb
MG
2324 if (compaction_restarting(cc->zone, cc->order))
2325 __reset_isolation_suitable(cc->zone);
d3132e4b 2326
c89511ab
MG
2327 /*
2328 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2329 * information on where the scanners should start (unless we explicitly
2330 * want to compact the whole zone), but check that it is initialised
2331 * by ensuring the values are within zone boundaries.
c89511ab 2332 */
70b44595 2333 cc->fast_start_pfn = 0;
06ed2998 2334 if (cc->whole_zone) {
c89511ab 2335 cc->migrate_pfn = start_pfn;
06ed2998
VB
2336 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2337 } else {
40cacbcb
MG
2338 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2339 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2340 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2341 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2342 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2343 }
2344 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2345 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2346 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2347 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2348 }
c8f7de0b 2349
e332f741 2350 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2351 cc->whole_zone = true;
2352 }
c8f7de0b 2353
566e54e1 2354 last_migrated_pfn = 0;
748446bb 2355
8854c55f
MG
2356 /*
2357 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2358 * the basis that some migrations will fail in ASYNC mode. However,
2359 * if the cached PFNs match and pageblocks are skipped due to having
2360 * no isolation candidates, then the sync state does not matter.
2361 * Until a pageblock with isolation candidates is found, keep the
2362 * cached PFNs in sync to avoid revisiting the same blocks.
2363 */
2364 update_cached = !sync &&
2365 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2366
abd4349f 2367 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2368
361a2a22
MK
2369 /* lru_add_drain_all could be expensive with involving other CPUs */
2370 lru_add_drain();
748446bb 2371
40cacbcb 2372 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2373 int err;
19d3cf9d 2374 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2375
804d3121
MG
2376 /*
2377 * Avoid multiple rescans which can happen if a page cannot be
2378 * isolated (dirty/writeback in async mode) or if the migrated
2379 * pages are being allocated before the pageblock is cleared.
2380 * The first rescan will capture the entire pageblock for
2381 * migration. If it fails, it'll be marked skip and scanning
2382 * will proceed as normal.
2383 */
2384 cc->rescan = false;
2385 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2386 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2387 cc->rescan = true;
2388 }
2389
32aaf055 2390 switch (isolate_migratepages(cc)) {
f9e35b3b 2391 case ISOLATE_ABORT:
2d1e1041 2392 ret = COMPACT_CONTENDED;
5733c7d1 2393 putback_movable_pages(&cc->migratepages);
e64c5237 2394 cc->nr_migratepages = 0;
f9e35b3b
MG
2395 goto out;
2396 case ISOLATE_NONE:
8854c55f
MG
2397 if (update_cached) {
2398 cc->zone->compact_cached_migrate_pfn[1] =
2399 cc->zone->compact_cached_migrate_pfn[0];
2400 }
2401
fdaf7f5c
VB
2402 /*
2403 * We haven't isolated and migrated anything, but
2404 * there might still be unflushed migrations from
2405 * previous cc->order aligned block.
2406 */
2407 goto check_drain;
f9e35b3b 2408 case ISOLATE_SUCCESS:
8854c55f 2409 update_cached = false;
19d3cf9d 2410 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2411 }
748446bb 2412
d53aea3d 2413 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2414 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2415 MR_COMPACTION, &nr_succeeded);
748446bb 2416
abd4349f 2417 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2418
f8c9301f
VB
2419 /* All pages were either migrated or will be released */
2420 cc->nr_migratepages = 0;
9d502c1c 2421 if (err) {
5733c7d1 2422 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2423 /*
2424 * migrate_pages() may return -ENOMEM when scanners meet
2425 * and we want compact_finished() to detect it
2426 */
f2849aa0 2427 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2428 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2429 goto out;
2430 }
fdd048e1
VB
2431 /*
2432 * We failed to migrate at least one page in the current
2433 * order-aligned block, so skip the rest of it.
2434 */
2435 if (cc->direct_compaction &&
2436 (cc->mode == MIGRATE_ASYNC)) {
2437 cc->migrate_pfn = block_end_pfn(
2438 cc->migrate_pfn - 1, cc->order);
2439 /* Draining pcplists is useless in this case */
566e54e1 2440 last_migrated_pfn = 0;
fdd048e1 2441 }
748446bb 2442 }
fdaf7f5c 2443
fdaf7f5c
VB
2444check_drain:
2445 /*
2446 * Has the migration scanner moved away from the previous
2447 * cc->order aligned block where we migrated from? If yes,
2448 * flush the pages that were freed, so that they can merge and
2449 * compact_finished() can detect immediately if allocation
2450 * would succeed.
2451 */
566e54e1 2452 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2453 unsigned long current_block_start =
06b6640a 2454 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2455
566e54e1 2456 if (last_migrated_pfn < current_block_start) {
b01b2141 2457 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2458 /* No more flushing until we migrate again */
566e54e1 2459 last_migrated_pfn = 0;
fdaf7f5c
VB
2460 }
2461 }
2462
5e1f0f09
MG
2463 /* Stop if a page has been captured */
2464 if (capc && capc->page) {
2465 ret = COMPACT_SUCCESS;
2466 break;
2467 }
748446bb
MG
2468 }
2469
f9e35b3b 2470out:
6bace090
VB
2471 /*
2472 * Release free pages and update where the free scanner should restart,
2473 * so we don't leave any returned pages behind in the next attempt.
2474 */
2475 if (cc->nr_freepages > 0) {
2476 unsigned long free_pfn = release_freepages(&cc->freepages);
2477
2478 cc->nr_freepages = 0;
2479 VM_BUG_ON(free_pfn == 0);
2480 /* The cached pfn is always the first in a pageblock */
06b6640a 2481 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2482 /*
2483 * Only go back, not forward. The cached pfn might have been
2484 * already reset to zone end in compact_finished()
2485 */
40cacbcb
MG
2486 if (free_pfn > cc->zone->compact_cached_free_pfn)
2487 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2488 }
748446bb 2489
7f354a54
DR
2490 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2491 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2492
abd4349f 2493 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2494
748446bb
MG
2495 return ret;
2496}
76ab0f53 2497
ea7ab982 2498static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2499 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2500 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2501 struct page **capture)
56de7263 2502{
ea7ab982 2503 enum compact_result ret;
56de7263 2504 struct compact_control cc = {
56de7263 2505 .order = order,
dbe2d4e4 2506 .search_order = order,
6d7ce559 2507 .gfp_mask = gfp_mask,
56de7263 2508 .zone = zone,
a5508cd8
VB
2509 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2510 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2511 .alloc_flags = alloc_flags,
97a225e6 2512 .highest_zoneidx = highest_zoneidx,
accf6242 2513 .direct_compaction = true,
a8e025e5 2514 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2515 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2516 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2517 };
5e1f0f09
MG
2518 struct capture_control capc = {
2519 .cc = &cc,
2520 .page = NULL,
2521 };
2522
b9e20f0d
VB
2523 /*
2524 * Make sure the structs are really initialized before we expose the
2525 * capture control, in case we are interrupted and the interrupt handler
2526 * frees a page.
2527 */
2528 barrier();
2529 WRITE_ONCE(current->capture_control, &capc);
56de7263 2530
5e1f0f09 2531 ret = compact_zone(&cc, &capc);
e64c5237
SL
2532
2533 VM_BUG_ON(!list_empty(&cc.freepages));
2534 VM_BUG_ON(!list_empty(&cc.migratepages));
2535
b9e20f0d
VB
2536 /*
2537 * Make sure we hide capture control first before we read the captured
2538 * page pointer, otherwise an interrupt could free and capture a page
2539 * and we would leak it.
2540 */
2541 WRITE_ONCE(current->capture_control, NULL);
2542 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2543 /*
2544 * Technically, it is also possible that compaction is skipped but
2545 * the page is still captured out of luck(IRQ came and freed the page).
2546 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2547 * the COMPACT[STALL|FAIL] when compaction is skipped.
2548 */
2549 if (*capture)
2550 ret = COMPACT_SUCCESS;
5e1f0f09 2551
e64c5237 2552 return ret;
56de7263
MG
2553}
2554
5e771905
MG
2555int sysctl_extfrag_threshold = 500;
2556
56de7263
MG
2557/**
2558 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2559 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2560 * @order: The order of the current allocation
2561 * @alloc_flags: The allocation flags of the current allocation
2562 * @ac: The context of current allocation
112d2d29 2563 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2564 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2565 *
2566 * This is the main entry point for direct page compaction.
2567 */
ea7ab982 2568enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2569 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2570 enum compact_priority prio, struct page **capture)
56de7263 2571{
fe573327 2572 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2573 struct zoneref *z;
2574 struct zone *zone;
1d4746d3 2575 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2576
73e64c51
MH
2577 /*
2578 * Check if the GFP flags allow compaction - GFP_NOIO is really
2579 * tricky context because the migration might require IO
2580 */
2581 if (!may_perform_io)
53853e2d 2582 return COMPACT_SKIPPED;
56de7263 2583
a5508cd8 2584 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2585
56de7263 2586 /* Compact each zone in the list */
97a225e6
JK
2587 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2588 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2589 enum compact_result status;
56de7263 2590
a8e025e5
VB
2591 if (prio > MIN_COMPACT_PRIORITY
2592 && compaction_deferred(zone, order)) {
1d4746d3 2593 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2594 continue;
1d4746d3 2595 }
53853e2d 2596
a5508cd8 2597 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2598 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2599 rc = max(status, rc);
2600
7ceb009a
VB
2601 /* The allocation should succeed, stop compacting */
2602 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2603 /*
2604 * We think the allocation will succeed in this zone,
2605 * but it is not certain, hence the false. The caller
2606 * will repeat this with true if allocation indeed
2607 * succeeds in this zone.
2608 */
2609 compaction_defer_reset(zone, order, false);
1f9efdef 2610
c3486f53 2611 break;
1f9efdef
VB
2612 }
2613
a5508cd8 2614 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2615 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2616 /*
2617 * We think that allocation won't succeed in this zone
2618 * so we defer compaction there. If it ends up
2619 * succeeding after all, it will be reset.
2620 */
2621 defer_compaction(zone, order);
1f9efdef
VB
2622
2623 /*
2624 * We might have stopped compacting due to need_resched() in
2625 * async compaction, or due to a fatal signal detected. In that
c3486f53 2626 * case do not try further zones
1f9efdef 2627 */
c3486f53
VB
2628 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2629 || fatal_signal_pending(current))
2630 break;
56de7263
MG
2631 }
2632
2633 return rc;
2634}
2635
facdaa91
NG
2636/*
2637 * Compact all zones within a node till each zone's fragmentation score
2638 * reaches within proactive compaction thresholds (as determined by the
2639 * proactiveness tunable).
2640 *
2641 * It is possible that the function returns before reaching score targets
2642 * due to various back-off conditions, such as, contention on per-node or
2643 * per-zone locks.
2644 */
2645static void proactive_compact_node(pg_data_t *pgdat)
2646{
2647 int zoneid;
2648 struct zone *zone;
2649 struct compact_control cc = {
2650 .order = -1,
2651 .mode = MIGRATE_SYNC_LIGHT,
2652 .ignore_skip_hint = true,
2653 .whole_zone = true,
2654 .gfp_mask = GFP_KERNEL,
2655 .proactive_compaction = true,
2656 };
2657
2658 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2659 zone = &pgdat->node_zones[zoneid];
2660 if (!populated_zone(zone))
2661 continue;
2662
2663 cc.zone = zone;
2664
2665 compact_zone(&cc, NULL);
2666
2667 VM_BUG_ON(!list_empty(&cc.freepages));
2668 VM_BUG_ON(!list_empty(&cc.migratepages));
2669 }
2670}
56de7263 2671
76ab0f53 2672/* Compact all zones within a node */
791cae96 2673static void compact_node(int nid)
76ab0f53 2674{
791cae96 2675 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2676 int zoneid;
76ab0f53 2677 struct zone *zone;
791cae96
VB
2678 struct compact_control cc = {
2679 .order = -1,
2680 .mode = MIGRATE_SYNC,
2681 .ignore_skip_hint = true,
2682 .whole_zone = true,
73e64c51 2683 .gfp_mask = GFP_KERNEL,
791cae96
VB
2684 };
2685
76ab0f53 2686
76ab0f53 2687 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2688
2689 zone = &pgdat->node_zones[zoneid];
2690 if (!populated_zone(zone))
2691 continue;
2692
791cae96 2693 cc.zone = zone;
76ab0f53 2694
5e1f0f09 2695 compact_zone(&cc, NULL);
75469345 2696
791cae96
VB
2697 VM_BUG_ON(!list_empty(&cc.freepages));
2698 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2699 }
76ab0f53
MG
2700}
2701
2702/* Compact all nodes in the system */
7964c06d 2703static void compact_nodes(void)
76ab0f53
MG
2704{
2705 int nid;
2706
8575ec29
HD
2707 /* Flush pending updates to the LRU lists */
2708 lru_add_drain_all();
2709
76ab0f53
MG
2710 for_each_online_node(nid)
2711 compact_node(nid);
76ab0f53
MG
2712}
2713
facdaa91
NG
2714/*
2715 * Tunable for proactive compaction. It determines how
2716 * aggressively the kernel should compact memory in the
2717 * background. It takes values in the range [0, 100].
2718 */
d34c0a75 2719unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2720
65d759c8
CTR
2721int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2722 void *buffer, size_t *length, loff_t *ppos)
2723{
2724 int rc, nid;
2725
2726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2727 if (rc)
2728 return rc;
2729
2730 if (write && sysctl_compaction_proactiveness) {
2731 for_each_online_node(nid) {
2732 pg_data_t *pgdat = NODE_DATA(nid);
2733
2734 if (pgdat->proactive_compact_trigger)
2735 continue;
2736
2737 pgdat->proactive_compact_trigger = true;
2738 wake_up_interruptible(&pgdat->kcompactd_wait);
2739 }
2740 }
2741
2742 return 0;
2743}
2744
fec4eb2c
YB
2745/*
2746 * This is the entry point for compacting all nodes via
2747 * /proc/sys/vm/compact_memory
2748 */
76ab0f53 2749int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2750 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2751{
2752 if (write)
7964c06d 2753 compact_nodes();
76ab0f53
MG
2754
2755 return 0;
2756}
ed4a6d7f
MG
2757
2758#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2759static ssize_t compact_store(struct device *dev,
2760 struct device_attribute *attr,
2761 const char *buf, size_t count)
ed4a6d7f 2762{
8575ec29
HD
2763 int nid = dev->id;
2764
2765 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2766 /* Flush pending updates to the LRU lists */
2767 lru_add_drain_all();
2768
2769 compact_node(nid);
2770 }
ed4a6d7f
MG
2771
2772 return count;
2773}
17adb230 2774static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2775
2776int compaction_register_node(struct node *node)
2777{
10fbcf4c 2778 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2779}
2780
2781void compaction_unregister_node(struct node *node)
2782{
10fbcf4c 2783 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2784}
2785#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2786
698b1b30
VB
2787static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2788{
65d759c8
CTR
2789 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2790 pgdat->proactive_compact_trigger;
698b1b30
VB
2791}
2792
2793static bool kcompactd_node_suitable(pg_data_t *pgdat)
2794{
2795 int zoneid;
2796 struct zone *zone;
97a225e6 2797 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2798
97a225e6 2799 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2800 zone = &pgdat->node_zones[zoneid];
2801
2802 if (!populated_zone(zone))
2803 continue;
2804
2805 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2806 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2807 return true;
2808 }
2809
2810 return false;
2811}
2812
2813static void kcompactd_do_work(pg_data_t *pgdat)
2814{
2815 /*
2816 * With no special task, compact all zones so that a page of requested
2817 * order is allocatable.
2818 */
2819 int zoneid;
2820 struct zone *zone;
2821 struct compact_control cc = {
2822 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2823 .search_order = pgdat->kcompactd_max_order,
97a225e6 2824 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2825 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2826 .ignore_skip_hint = false,
73e64c51 2827 .gfp_mask = GFP_KERNEL,
698b1b30 2828 };
698b1b30 2829 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2830 cc.highest_zoneidx);
7f354a54 2831 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2832
97a225e6 2833 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2834 int status;
2835
2836 zone = &pgdat->node_zones[zoneid];
2837 if (!populated_zone(zone))
2838 continue;
2839
2840 if (compaction_deferred(zone, cc.order))
2841 continue;
2842
2843 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2844 COMPACT_CONTINUE)
2845 continue;
2846
172400c6
VB
2847 if (kthread_should_stop())
2848 return;
a94b5252
YS
2849
2850 cc.zone = zone;
5e1f0f09 2851 status = compact_zone(&cc, NULL);
698b1b30 2852
7ceb009a 2853 if (status == COMPACT_SUCCESS) {
698b1b30 2854 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2855 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2856 /*
2857 * Buddy pages may become stranded on pcps that could
2858 * otherwise coalesce on the zone's free area for
2859 * order >= cc.order. This is ratelimited by the
2860 * upcoming deferral.
2861 */
2862 drain_all_pages(zone);
2863
698b1b30
VB
2864 /*
2865 * We use sync migration mode here, so we defer like
2866 * sync direct compaction does.
2867 */
2868 defer_compaction(zone, cc.order);
2869 }
2870
7f354a54
DR
2871 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2872 cc.total_migrate_scanned);
2873 count_compact_events(KCOMPACTD_FREE_SCANNED,
2874 cc.total_free_scanned);
2875
698b1b30
VB
2876 VM_BUG_ON(!list_empty(&cc.freepages));
2877 VM_BUG_ON(!list_empty(&cc.migratepages));
2878 }
2879
2880 /*
2881 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2882 * the requested order/highest_zoneidx in case it was higher/tighter
2883 * than our current ones
698b1b30
VB
2884 */
2885 if (pgdat->kcompactd_max_order <= cc.order)
2886 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2887 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2888 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2889}
2890
97a225e6 2891void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2892{
2893 if (!order)
2894 return;
2895
2896 if (pgdat->kcompactd_max_order < order)
2897 pgdat->kcompactd_max_order = order;
2898
97a225e6
JK
2899 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2900 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2901
6818600f
DB
2902 /*
2903 * Pairs with implicit barrier in wait_event_freezable()
2904 * such that wakeups are not missed.
2905 */
2906 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2907 return;
2908
2909 if (!kcompactd_node_suitable(pgdat))
2910 return;
2911
2912 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2913 highest_zoneidx);
698b1b30
VB
2914 wake_up_interruptible(&pgdat->kcompactd_wait);
2915}
2916
2917/*
2918 * The background compaction daemon, started as a kernel thread
2919 * from the init process.
2920 */
2921static int kcompactd(void *p)
2922{
68d68ff6 2923 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2924 struct task_struct *tsk = current;
e1e92bfa
CTR
2925 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2926 long timeout = default_timeout;
698b1b30
VB
2927
2928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2929
2930 if (!cpumask_empty(cpumask))
2931 set_cpus_allowed_ptr(tsk, cpumask);
2932
2933 set_freezable();
2934
2935 pgdat->kcompactd_max_order = 0;
97a225e6 2936 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2937
2938 while (!kthread_should_stop()) {
eb414681
JW
2939 unsigned long pflags;
2940
65d759c8
CTR
2941 /*
2942 * Avoid the unnecessary wakeup for proactive compaction
2943 * when it is disabled.
2944 */
2945 if (!sysctl_compaction_proactiveness)
2946 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2947 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2948 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2949 kcompactd_work_requested(pgdat), timeout) &&
2950 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2951
2952 psi_memstall_enter(&pflags);
2953 kcompactd_do_work(pgdat);
2954 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2955 /*
2956 * Reset the timeout value. The defer timeout from
2957 * proactive compaction is lost here but that is fine
2958 * as the condition of the zone changing substantionally
2959 * then carrying on with the previous defer interval is
2960 * not useful.
2961 */
2962 timeout = default_timeout;
facdaa91
NG
2963 continue;
2964 }
698b1b30 2965
e1e92bfa
CTR
2966 /*
2967 * Start the proactive work with default timeout. Based
2968 * on the fragmentation score, this timeout is updated.
2969 */
2970 timeout = default_timeout;
facdaa91
NG
2971 if (should_proactive_compact_node(pgdat)) {
2972 unsigned int prev_score, score;
2973
facdaa91
NG
2974 prev_score = fragmentation_score_node(pgdat);
2975 proactive_compact_node(pgdat);
2976 score = fragmentation_score_node(pgdat);
2977 /*
2978 * Defer proactive compaction if the fragmentation
2979 * score did not go down i.e. no progress made.
2980 */
e1e92bfa
CTR
2981 if (unlikely(score >= prev_score))
2982 timeout =
2983 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 2984 }
65d759c8
CTR
2985 if (unlikely(pgdat->proactive_compact_trigger))
2986 pgdat->proactive_compact_trigger = false;
698b1b30
VB
2987 }
2988
2989 return 0;
2990}
2991
2992/*
2993 * This kcompactd start function will be called by init and node-hot-add.
2994 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2995 */
024c61ea 2996void kcompactd_run(int nid)
698b1b30
VB
2997{
2998 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
2999
3000 if (pgdat->kcompactd)
024c61ea 3001 return;
698b1b30
VB
3002
3003 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3004 if (IS_ERR(pgdat->kcompactd)) {
3005 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3006 pgdat->kcompactd = NULL;
3007 }
698b1b30
VB
3008}
3009
3010/*
3011 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3012 * be holding mem_hotplug_begin/done().
698b1b30
VB
3013 */
3014void kcompactd_stop(int nid)
3015{
3016 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3017
3018 if (kcompactd) {
3019 kthread_stop(kcompactd);
3020 NODE_DATA(nid)->kcompactd = NULL;
3021 }
3022}
3023
3024/*
3025 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3026 * not required for correctness. So if the last cpu in a node goes
3027 * away, we get changed to run anywhere: as the first one comes back,
3028 * restore their cpu bindings.
3029 */
e46b1db2 3030static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3031{
3032 int nid;
3033
e46b1db2
AMG
3034 for_each_node_state(nid, N_MEMORY) {
3035 pg_data_t *pgdat = NODE_DATA(nid);
3036 const struct cpumask *mask;
698b1b30 3037
e46b1db2 3038 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3039
e46b1db2
AMG
3040 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3041 /* One of our CPUs online: restore mask */
3109de30
ML
3042 if (pgdat->kcompactd)
3043 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3044 }
e46b1db2 3045 return 0;
698b1b30
VB
3046}
3047
3048static int __init kcompactd_init(void)
3049{
3050 int nid;
e46b1db2
AMG
3051 int ret;
3052
3053 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3054 "mm/compaction:online",
3055 kcompactd_cpu_online, NULL);
3056 if (ret < 0) {
3057 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3058 return ret;
3059 }
698b1b30
VB
3060
3061 for_each_node_state(nid, N_MEMORY)
3062 kcompactd_run(nid);
698b1b30
VB
3063 return 0;
3064}
3065subsys_initcall(kcompactd_init)
3066
ff9543fd 3067#endif /* CONFIG_COMPACTION */