Merge tag 'drm-misc-fixes-2022-03-24' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741 308 do {
859a85dd
MR
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
e332f741 313
859a85dd
MR
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
e332f741
MG
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 321 } while (page <= end_page);
e332f741
MG
322
323 return false;
324}
325
bb13ffeb
MG
326/*
327 * This function is called to clear all cached information on pageblocks that
328 * should be skipped for page isolation when the migrate and free page scanner
329 * meet.
330 */
62997027 331static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 332{
e332f741 333 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 334 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
335 unsigned long reset_migrate = free_pfn;
336 unsigned long reset_free = migrate_pfn;
337 bool source_set = false;
338 bool free_set = false;
339
340 if (!zone->compact_blockskip_flush)
341 return;
bb13ffeb 342
62997027 343 zone->compact_blockskip_flush = false;
bb13ffeb 344
e332f741
MG
345 /*
346 * Walk the zone and update pageblock skip information. Source looks
347 * for PageLRU while target looks for PageBuddy. When the scanner
348 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 * is suitable as both source and target.
350 */
351 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
353 cond_resched();
354
e332f741
MG
355 /* Update the migrate PFN */
356 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 migrate_pfn < reset_migrate) {
358 source_set = true;
359 reset_migrate = migrate_pfn;
360 zone->compact_init_migrate_pfn = reset_migrate;
361 zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 }
bb13ffeb 364
e332f741
MG
365 /* Update the free PFN */
366 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 free_pfn > reset_free) {
368 free_set = true;
369 reset_free = free_pfn;
370 zone->compact_init_free_pfn = reset_free;
371 zone->compact_cached_free_pfn = reset_free;
372 }
bb13ffeb 373 }
02333641 374
e332f741
MG
375 /* Leave no distance if no suitable block was reset */
376 if (reset_migrate >= reset_free) {
377 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 zone->compact_cached_free_pfn = free_pfn;
380 }
bb13ffeb
MG
381}
382
62997027
MG
383void reset_isolation_suitable(pg_data_t *pgdat)
384{
385 int zoneid;
386
387 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 struct zone *zone = &pgdat->node_zones[zoneid];
389 if (!populated_zone(zone))
390 continue;
391
392 /* Only flush if a full compaction finished recently */
393 if (zone->compact_blockskip_flush)
394 __reset_isolation_suitable(zone);
395 }
396}
397
e380bebe
MG
398/*
399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400 * locks are not required for read/writers. Returns true if it was already set.
401 */
402static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 unsigned long pfn)
404{
405 bool skip;
406
407 /* Do no update if skip hint is being ignored */
408 if (cc->ignore_skip_hint)
409 return false;
410
411 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 return false;
413
414 skip = get_pageblock_skip(page);
415 if (!skip && !cc->no_set_skip_hint)
416 set_pageblock_skip(page);
417
418 return skip;
419}
420
421static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422{
423 struct zone *zone = cc->zone;
424
425 pfn = pageblock_end_pfn(pfn);
426
427 /* Set for isolation rather than compaction */
428 if (cc->no_set_skip_hint)
429 return;
430
431 if (pfn > zone->compact_cached_migrate_pfn[0])
432 zone->compact_cached_migrate_pfn[0] = pfn;
433 if (cc->mode != MIGRATE_ASYNC &&
434 pfn > zone->compact_cached_migrate_pfn[1])
435 zone->compact_cached_migrate_pfn[1] = pfn;
436}
437
bb13ffeb
MG
438/*
439 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 440 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 441 */
c89511ab 442static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 443 struct page *page, unsigned long pfn)
bb13ffeb 444{
c89511ab 445 struct zone *zone = cc->zone;
6815bf3f 446
2583d671 447 if (cc->no_set_skip_hint)
6815bf3f
JK
448 return;
449
bb13ffeb
MG
450 if (!page)
451 return;
452
edc2ca61 453 set_pageblock_skip(page);
c89511ab 454
35979ef3 455 /* Update where async and sync compaction should restart */
e380bebe
MG
456 if (pfn < zone->compact_cached_free_pfn)
457 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
458}
459#else
460static inline bool isolation_suitable(struct compact_control *cc,
461 struct page *page)
462{
463 return true;
464}
465
b527cfe5 466static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
467{
468 return false;
469}
470
471static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 472 struct page *page, unsigned long pfn)
bb13ffeb
MG
473{
474}
e380bebe
MG
475
476static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477{
478}
479
480static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 unsigned long pfn)
482{
483 return false;
484}
bb13ffeb
MG
485#endif /* CONFIG_COMPACTION */
486
8b44d279
VB
487/*
488 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
489 * very heavily contended. For async compaction, trylock and record if the
490 * lock is contended. The lock will still be acquired but compaction will
491 * abort when the current block is finished regardless of success rate.
492 * Sync compaction acquires the lock.
8b44d279 493 *
cb2dcaf0 494 * Always returns true which makes it easier to track lock state in callers.
8b44d279 495 */
cb2dcaf0 496static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 497 struct compact_control *cc)
77337ede 498 __acquires(lock)
2a1402aa 499{
cb2dcaf0
MG
500 /* Track if the lock is contended in async mode */
501 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 if (spin_trylock_irqsave(lock, *flags))
503 return true;
504
505 cc->contended = true;
8b44d279 506 }
1f9efdef 507
cb2dcaf0 508 spin_lock_irqsave(lock, *flags);
8b44d279 509 return true;
2a1402aa
MG
510}
511
c67fe375
MG
512/*
513 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
514 * very heavily contended. The lock should be periodically unlocked to avoid
515 * having disabled IRQs for a long time, even when there is nobody waiting on
516 * the lock. It might also be that allowing the IRQs will result in
517 * need_resched() becoming true. If scheduling is needed, async compaction
518 * aborts. Sync compaction schedules.
519 * Either compaction type will also abort if a fatal signal is pending.
520 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 521 *
8b44d279
VB
522 * Returns true if compaction should abort due to fatal signal pending, or
523 * async compaction due to need_resched()
524 * Returns false when compaction can continue (sync compaction might have
525 * scheduled)
c67fe375 526 */
8b44d279
VB
527static bool compact_unlock_should_abort(spinlock_t *lock,
528 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 529{
8b44d279
VB
530 if (*locked) {
531 spin_unlock_irqrestore(lock, flags);
532 *locked = false;
533 }
1f9efdef 534
8b44d279 535 if (fatal_signal_pending(current)) {
c3486f53 536 cc->contended = true;
8b44d279
VB
537 return true;
538 }
c67fe375 539
cf66f070 540 cond_resched();
be976572
VB
541
542 return false;
543}
544
85aa125f 545/*
9e4be470
JM
546 * Isolate free pages onto a private freelist. If @strict is true, will abort
547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548 * (even though it may still end up isolating some pages).
85aa125f 549 */
f40d1e42 550static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 551 unsigned long *start_pfn,
85aa125f
MN
552 unsigned long end_pfn,
553 struct list_head *freelist,
4fca9730 554 unsigned int stride,
85aa125f 555 bool strict)
748446bb 556{
b7aba698 557 int nr_scanned = 0, total_isolated = 0;
d097a6f6 558 struct page *cursor;
b8b2d825 559 unsigned long flags = 0;
f40d1e42 560 bool locked = false;
e14c720e 561 unsigned long blockpfn = *start_pfn;
66c64223 562 unsigned int order;
748446bb 563
4fca9730
MG
564 /* Strict mode is for isolation, speed is secondary */
565 if (strict)
566 stride = 1;
567
748446bb
MG
568 cursor = pfn_to_page(blockpfn);
569
f40d1e42 570 /* Isolate free pages. */
4fca9730 571 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 572 int isolated;
748446bb
MG
573 struct page *page = cursor;
574
8b44d279
VB
575 /*
576 * Periodically drop the lock (if held) regardless of its
577 * contention, to give chance to IRQs. Abort if fatal signal
578 * pending or async compaction detects need_resched()
579 */
580 if (!(blockpfn % SWAP_CLUSTER_MAX)
581 && compact_unlock_should_abort(&cc->zone->lock, flags,
582 &locked, cc))
583 break;
584
b7aba698 585 nr_scanned++;
2af120bc 586
9fcd6d2e
VB
587 /*
588 * For compound pages such as THP and hugetlbfs, we can save
589 * potentially a lot of iterations if we skip them at once.
590 * The check is racy, but we can consider only valid values
591 * and the only danger is skipping too much.
592 */
593 if (PageCompound(page)) {
21dc7e02
DR
594 const unsigned int order = compound_order(page);
595
d3c85bad 596 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
597 blockpfn += (1UL << order) - 1;
598 cursor += (1UL << order) - 1;
9fcd6d2e 599 }
9fcd6d2e
VB
600 goto isolate_fail;
601 }
602
f40d1e42 603 if (!PageBuddy(page))
2af120bc 604 goto isolate_fail;
f40d1e42
MG
605
606 /*
69b7189f
VB
607 * If we already hold the lock, we can skip some rechecking.
608 * Note that if we hold the lock now, checked_pageblock was
609 * already set in some previous iteration (or strict is true),
610 * so it is correct to skip the suitable migration target
611 * recheck as well.
f40d1e42 612 */
69b7189f 613 if (!locked) {
cb2dcaf0 614 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 615 &flags, cc);
f40d1e42 616
69b7189f
VB
617 /* Recheck this is a buddy page under lock */
618 if (!PageBuddy(page))
619 goto isolate_fail;
620 }
748446bb 621
66c64223 622 /* Found a free page, will break it into order-0 pages */
ab130f91 623 order = buddy_order(page);
66c64223 624 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
625 if (!isolated)
626 break;
66c64223 627 set_page_private(page, order);
a4f04f2c 628
748446bb 629 total_isolated += isolated;
a4f04f2c 630 cc->nr_freepages += isolated;
66c64223
JK
631 list_add_tail(&page->lru, freelist);
632
a4f04f2c
DR
633 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 blockpfn += isolated;
635 break;
748446bb 636 }
a4f04f2c
DR
637 /* Advance to the end of split page */
638 blockpfn += isolated - 1;
639 cursor += isolated - 1;
640 continue;
2af120bc
LA
641
642isolate_fail:
643 if (strict)
644 break;
645 else
646 continue;
647
748446bb
MG
648 }
649
a4f04f2c
DR
650 if (locked)
651 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
9fcd6d2e
VB
653 /*
654 * There is a tiny chance that we have read bogus compound_order(),
655 * so be careful to not go outside of the pageblock.
656 */
657 if (unlikely(blockpfn > end_pfn))
658 blockpfn = end_pfn;
659
e34d85f0
JK
660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 nr_scanned, total_isolated);
662
e14c720e
VB
663 /* Record how far we have got within the block */
664 *start_pfn = blockpfn;
665
f40d1e42
MG
666 /*
667 * If strict isolation is requested by CMA then check that all the
668 * pages requested were isolated. If there were any failures, 0 is
669 * returned and CMA will fail.
670 */
2af120bc 671 if (strict && blockpfn < end_pfn)
f40d1e42
MG
672 total_isolated = 0;
673
7f354a54 674 cc->total_free_scanned += nr_scanned;
397487db 675 if (total_isolated)
010fc29a 676 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
677 return total_isolated;
678}
679
85aa125f
MN
680/**
681 * isolate_freepages_range() - isolate free pages.
e8b098fc 682 * @cc: Compaction control structure.
85aa125f
MN
683 * @start_pfn: The first PFN to start isolating.
684 * @end_pfn: The one-past-last PFN.
685 *
686 * Non-free pages, invalid PFNs, or zone boundaries within the
687 * [start_pfn, end_pfn) range are considered errors, cause function to
688 * undo its actions and return zero.
689 *
690 * Otherwise, function returns one-past-the-last PFN of isolated page
691 * (which may be greater then end_pfn if end fell in a middle of
692 * a free page).
693 */
ff9543fd 694unsigned long
bb13ffeb
MG
695isolate_freepages_range(struct compact_control *cc,
696 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 697{
e1409c32 698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
699 LIST_HEAD(freelist);
700
7d49d886 701 pfn = start_pfn;
06b6640a 702 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
703 if (block_start_pfn < cc->zone->zone_start_pfn)
704 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 705 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
706
707 for (; pfn < end_pfn; pfn += isolated,
e1409c32 708 block_start_pfn = block_end_pfn,
7d49d886 709 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
710 /* Protect pfn from changing by isolate_freepages_block */
711 unsigned long isolate_start_pfn = pfn;
85aa125f 712
85aa125f
MN
713 block_end_pfn = min(block_end_pfn, end_pfn);
714
58420016
JK
715 /*
716 * pfn could pass the block_end_pfn if isolated freepage
717 * is more than pageblock order. In this case, we adjust
718 * scanning range to right one.
719 */
720 if (pfn >= block_end_pfn) {
06b6640a
VB
721 block_start_pfn = pageblock_start_pfn(pfn);
722 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
723 block_end_pfn = min(block_end_pfn, end_pfn);
724 }
725
e1409c32
JK
726 if (!pageblock_pfn_to_page(block_start_pfn,
727 block_end_pfn, cc->zone))
7d49d886
VB
728 break;
729
e14c720e 730 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 731 block_end_pfn, &freelist, 0, true);
85aa125f
MN
732
733 /*
734 * In strict mode, isolate_freepages_block() returns 0 if
735 * there are any holes in the block (ie. invalid PFNs or
736 * non-free pages).
737 */
738 if (!isolated)
739 break;
740
741 /*
742 * If we managed to isolate pages, it is always (1 << n) *
743 * pageblock_nr_pages for some non-negative n. (Max order
744 * page may span two pageblocks).
745 */
746 }
747
66c64223 748 /* __isolate_free_page() does not map the pages */
4469ab98 749 split_map_pages(&freelist);
85aa125f
MN
750
751 if (pfn < end_pfn) {
752 /* Loop terminated early, cleanup. */
753 release_freepages(&freelist);
754 return 0;
755 }
756
757 /* We don't use freelists for anything. */
758 return pfn;
759}
760
748446bb 761/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 762static bool too_many_isolated(pg_data_t *pgdat)
748446bb 763{
d818fca1
MG
764 bool too_many;
765
bc693045 766 unsigned long active, inactive, isolated;
748446bb 767
5f438eee
AR
768 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769 node_page_state(pgdat, NR_INACTIVE_ANON);
770 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771 node_page_state(pgdat, NR_ACTIVE_ANON);
772 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 774
d818fca1
MG
775 too_many = isolated > (inactive + active) / 2;
776 if (!too_many)
777 wake_throttle_isolated(pgdat);
778
779 return too_many;
748446bb
MG
780}
781
2fe86e00 782/**
edc2ca61
VB
783 * isolate_migratepages_block() - isolate all migrate-able pages within
784 * a single pageblock
2fe86e00 785 * @cc: Compaction control structure.
edc2ca61
VB
786 * @low_pfn: The first PFN to isolate
787 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 788 * @mode: Isolation mode to be used.
2fe86e00
MN
789 *
790 * Isolate all pages that can be migrated from the range specified by
edc2ca61 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 792 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 793 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 794 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 795 *
edc2ca61 796 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 797 * and cc->nr_migratepages is updated accordingly.
748446bb 798 */
c2ad7a1f 799static int
edc2ca61 800isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 801 unsigned long end_pfn, isolate_mode_t mode)
748446bb 802{
5f438eee 803 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 804 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 805 struct lruvec *lruvec;
b8b2d825 806 unsigned long flags = 0;
6168d0da 807 struct lruvec *locked = NULL;
bb13ffeb 808 struct page *page = NULL, *valid_page = NULL;
89f6c88a 809 struct address_space *mapping;
e34d85f0 810 unsigned long start_pfn = low_pfn;
fdd048e1
VB
811 bool skip_on_failure = false;
812 unsigned long next_skip_pfn = 0;
e380bebe 813 bool skip_updated = false;
c2ad7a1f
OS
814 int ret = 0;
815
816 cc->migrate_pfn = low_pfn;
748446bb 817
748446bb
MG
818 /*
819 * Ensure that there are not too many pages isolated from the LRU
820 * list by either parallel reclaimers or compaction. If there are,
821 * delay for some time until fewer pages are isolated
822 */
5f438eee 823 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
824 /* stop isolation if there are still pages not migrated */
825 if (cc->nr_migratepages)
c2ad7a1f 826 return -EAGAIN;
d20bdd57 827
f9e35b3b 828 /* async migration should just abort */
e0b9daeb 829 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 830 return -EAGAIN;
f9e35b3b 831
c3f4a9a2 832 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
833
834 if (fatal_signal_pending(current))
c2ad7a1f 835 return -EINTR;
748446bb
MG
836 }
837
cf66f070 838 cond_resched();
aeef4b83 839
fdd048e1
VB
840 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
841 skip_on_failure = true;
842 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843 }
844
748446bb 845 /* Time to isolate some pages for migration */
748446bb 846 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 847
fdd048e1
VB
848 if (skip_on_failure && low_pfn >= next_skip_pfn) {
849 /*
850 * We have isolated all migration candidates in the
851 * previous order-aligned block, and did not skip it due
852 * to failure. We should migrate the pages now and
853 * hopefully succeed compaction.
854 */
855 if (nr_isolated)
856 break;
857
858 /*
859 * We failed to isolate in the previous order-aligned
860 * block. Set the new boundary to the end of the
861 * current block. Note we can't simply increase
862 * next_skip_pfn by 1 << order, as low_pfn might have
863 * been incremented by a higher number due to skipping
864 * a compound or a high-order buddy page in the
865 * previous loop iteration.
866 */
867 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
868 }
869
8b44d279
VB
870 /*
871 * Periodically drop the lock (if held) regardless of its
670105a2
MG
872 * contention, to give chance to IRQs. Abort completely if
873 * a fatal signal is pending.
8b44d279 874 */
6168d0da
AS
875 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
876 if (locked) {
877 unlock_page_lruvec_irqrestore(locked, flags);
878 locked = NULL;
879 }
880
881 if (fatal_signal_pending(current)) {
882 cc->contended = true;
c2ad7a1f 883 ret = -EINTR;
6168d0da 884
6168d0da
AS
885 goto fatal_pending;
886 }
887
888 cond_resched();
670105a2 889 }
c67fe375 890
b7aba698 891 nr_scanned++;
748446bb 892
748446bb 893 page = pfn_to_page(low_pfn);
dc908600 894
e380bebe
MG
895 /*
896 * Check if the pageblock has already been marked skipped.
897 * Only the aligned PFN is checked as the caller isolates
898 * COMPACT_CLUSTER_MAX at a time so the second call must
899 * not falsely conclude that the block should be skipped.
900 */
901 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
902 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
903 low_pfn = end_pfn;
9df41314 904 page = NULL;
e380bebe
MG
905 goto isolate_abort;
906 }
bb13ffeb 907 valid_page = page;
e380bebe 908 }
bb13ffeb 909
369fa227 910 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 911 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
912
913 /*
914 * Fail isolation in case isolate_or_dissolve_huge_page()
915 * reports an error. In case of -ENOMEM, abort right away.
916 */
917 if (ret < 0) {
918 /* Do not report -EBUSY down the chain */
919 if (ret == -EBUSY)
920 ret = 0;
921 low_pfn += (1UL << compound_order(page)) - 1;
922 goto isolate_fail;
923 }
924
ae37c7ff
OS
925 if (PageHuge(page)) {
926 /*
927 * Hugepage was successfully isolated and placed
928 * on the cc->migratepages list.
929 */
930 low_pfn += compound_nr(page) - 1;
931 goto isolate_success_no_list;
932 }
933
369fa227
OS
934 /*
935 * Ok, the hugepage was dissolved. Now these pages are
936 * Buddy and cannot be re-allocated because they are
937 * isolated. Fall-through as the check below handles
938 * Buddy pages.
939 */
940 }
941
6c14466c 942 /*
99c0fd5e
VB
943 * Skip if free. We read page order here without zone lock
944 * which is generally unsafe, but the race window is small and
945 * the worst thing that can happen is that we skip some
946 * potential isolation targets.
6c14466c 947 */
99c0fd5e 948 if (PageBuddy(page)) {
ab130f91 949 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
950
951 /*
952 * Without lock, we cannot be sure that what we got is
953 * a valid page order. Consider only values in the
954 * valid order range to prevent low_pfn overflow.
955 */
956 if (freepage_order > 0 && freepage_order < MAX_ORDER)
957 low_pfn += (1UL << freepage_order) - 1;
748446bb 958 continue;
99c0fd5e 959 }
748446bb 960
bc835011 961 /*
29c0dde8 962 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
963 * hugetlbfs are not to be compacted unless we are attempting
964 * an allocation much larger than the huge page size (eg CMA).
965 * We can potentially save a lot of iterations if we skip them
966 * at once. The check is racy, but we can consider only valid
967 * values and the only danger is skipping too much.
bc835011 968 */
1da2f328 969 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 970 const unsigned int order = compound_order(page);
edc2ca61 971
d3c85bad 972 if (likely(order < MAX_ORDER))
21dc7e02 973 low_pfn += (1UL << order) - 1;
fdd048e1 974 goto isolate_fail;
2a1402aa
MG
975 }
976
bda807d4
MK
977 /*
978 * Check may be lockless but that's ok as we recheck later.
979 * It's possible to migrate LRU and non-lru movable pages.
980 * Skip any other type of page
981 */
982 if (!PageLRU(page)) {
bda807d4
MK
983 /*
984 * __PageMovable can return false positive so we need
985 * to verify it under page_lock.
986 */
987 if (unlikely(__PageMovable(page)) &&
988 !PageIsolated(page)) {
989 if (locked) {
6168d0da
AS
990 unlock_page_lruvec_irqrestore(locked, flags);
991 locked = NULL;
bda807d4
MK
992 }
993
89f6c88a 994 if (!isolate_movable_page(page, mode))
bda807d4
MK
995 goto isolate_success;
996 }
997
fdd048e1 998 goto isolate_fail;
bda807d4 999 }
29c0dde8 1000
119d6d59
DR
1001 /*
1002 * Migration will fail if an anonymous page is pinned in memory,
1003 * so avoid taking lru_lock and isolating it unnecessarily in an
1004 * admittedly racy check.
1005 */
89f6c88a
HD
1006 mapping = page_mapping(page);
1007 if (!mapping && page_count(page) > page_mapcount(page))
fdd048e1 1008 goto isolate_fail;
119d6d59 1009
73e64c51
MH
1010 /*
1011 * Only allow to migrate anonymous pages in GFP_NOFS context
1012 * because those do not depend on fs locks.
1013 */
89f6c88a 1014 if (!(cc->gfp_mask & __GFP_FS) && mapping)
73e64c51
MH
1015 goto isolate_fail;
1016
9df41314
AS
1017 /*
1018 * Be careful not to clear PageLRU until after we're
1019 * sure the page is not being freed elsewhere -- the
1020 * page release code relies on it.
1021 */
1022 if (unlikely(!get_page_unless_zero(page)))
1023 goto isolate_fail;
1024
89f6c88a
HD
1025 /* Only take pages on LRU: a check now makes later tests safe */
1026 if (!PageLRU(page))
1027 goto isolate_fail_put;
1028
1029 /* Compaction might skip unevictable pages but CMA takes them */
1030 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031 goto isolate_fail_put;
1032
1033 /*
1034 * To minimise LRU disruption, the caller can indicate with
1035 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036 * it will be able to migrate without blocking - clean pages
1037 * for the most part. PageWriteback would require blocking.
1038 */
1039 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1040 goto isolate_fail_put;
1041
89f6c88a
HD
1042 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1043 bool migrate_dirty;
1044
1045 /*
1046 * Only pages without mappings or that have a
1047 * ->migratepage callback are possible to migrate
1048 * without blocking. However, we can be racing with
1049 * truncation so it's necessary to lock the page
1050 * to stabilise the mapping as truncation holds
1051 * the page lock until after the page is removed
1052 * from the page cache.
1053 */
1054 if (!trylock_page(page))
1055 goto isolate_fail_put;
1056
1057 mapping = page_mapping(page);
1058 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1059 unlock_page(page);
1060 if (!migrate_dirty)
1061 goto isolate_fail_put;
1062 }
1063
9df41314
AS
1064 /* Try isolate the page */
1065 if (!TestClearPageLRU(page))
1066 goto isolate_fail_put;
1067
b1baabd9 1068 lruvec = folio_lruvec(page_folio(page));
6168d0da 1069
69b7189f 1070 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1071 if (lruvec != locked) {
1072 if (locked)
1073 unlock_page_lruvec_irqrestore(locked, flags);
1074
1075 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1076 locked = lruvec;
6168d0da 1077
e809c3fe 1078 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1079
e380bebe
MG
1080 /* Try get exclusive access under lock */
1081 if (!skip_updated) {
1082 skip_updated = true;
1083 if (test_and_set_skip(cc, page, low_pfn))
1084 goto isolate_abort;
1085 }
2a1402aa 1086
29c0dde8
VB
1087 /*
1088 * Page become compound since the non-locked check,
1089 * and it's on LRU. It can only be a THP so the order
1090 * is safe to read and it's 0 for tail pages.
1091 */
1da2f328 1092 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1093 low_pfn += compound_nr(page) - 1;
9df41314
AS
1094 SetPageLRU(page);
1095 goto isolate_fail_put;
69b7189f 1096 }
d99fd5fe 1097 }
fa9add64 1098
1da2f328
RR
1099 /* The whole page is taken off the LRU; skip the tail pages. */
1100 if (PageCompound(page))
1101 low_pfn += compound_nr(page) - 1;
bc835011 1102
748446bb 1103 /* Successfully isolated */
46ae6b2c 1104 del_page_from_lru_list(page, lruvec);
1da2f328 1105 mod_node_page_state(page_pgdat(page),
9de4f22a 1106 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1107 thp_nr_pages(page));
b6c75016
JK
1108
1109isolate_success:
fdd048e1 1110 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1111isolate_success_no_list:
38935861
ZY
1112 cc->nr_migratepages += compound_nr(page);
1113 nr_isolated += compound_nr(page);
748446bb 1114
804d3121
MG
1115 /*
1116 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1117 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1118 * or a lock is contended. For contention, isolate quickly to
1119 * potentially remove one source of contention.
804d3121 1120 */
38935861 1121 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1122 !cc->rescan && !cc->contended) {
31b8384a 1123 ++low_pfn;
748446bb 1124 break;
31b8384a 1125 }
fdd048e1
VB
1126
1127 continue;
9df41314
AS
1128
1129isolate_fail_put:
1130 /* Avoid potential deadlock in freeing page under lru_lock */
1131 if (locked) {
6168d0da
AS
1132 unlock_page_lruvec_irqrestore(locked, flags);
1133 locked = NULL;
9df41314
AS
1134 }
1135 put_page(page);
1136
fdd048e1 1137isolate_fail:
369fa227 1138 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1139 continue;
1140
1141 /*
1142 * We have isolated some pages, but then failed. Release them
1143 * instead of migrating, as we cannot form the cc->order buddy
1144 * page anyway.
1145 */
1146 if (nr_isolated) {
1147 if (locked) {
6168d0da
AS
1148 unlock_page_lruvec_irqrestore(locked, flags);
1149 locked = NULL;
fdd048e1 1150 }
fdd048e1
VB
1151 putback_movable_pages(&cc->migratepages);
1152 cc->nr_migratepages = 0;
fdd048e1
VB
1153 nr_isolated = 0;
1154 }
1155
1156 if (low_pfn < next_skip_pfn) {
1157 low_pfn = next_skip_pfn - 1;
1158 /*
1159 * The check near the loop beginning would have updated
1160 * next_skip_pfn too, but this is a bit simpler.
1161 */
1162 next_skip_pfn += 1UL << cc->order;
1163 }
369fa227
OS
1164
1165 if (ret == -ENOMEM)
1166 break;
748446bb
MG
1167 }
1168
99c0fd5e
VB
1169 /*
1170 * The PageBuddy() check could have potentially brought us outside
1171 * the range to be scanned.
1172 */
1173 if (unlikely(low_pfn > end_pfn))
1174 low_pfn = end_pfn;
1175
9df41314
AS
1176 page = NULL;
1177
e380bebe 1178isolate_abort:
c67fe375 1179 if (locked)
6168d0da 1180 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1181 if (page) {
1182 SetPageLRU(page);
1183 put_page(page);
1184 }
748446bb 1185
50b5b094 1186 /*
804d3121
MG
1187 * Updated the cached scanner pfn once the pageblock has been scanned
1188 * Pages will either be migrated in which case there is no point
1189 * scanning in the near future or migration failed in which case the
1190 * failure reason may persist. The block is marked for skipping if
1191 * there were no pages isolated in the block or if the block is
1192 * rescanned twice in a row.
50b5b094 1193 */
804d3121 1194 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1195 if (valid_page && !skip_updated)
1196 set_pageblock_skip(valid_page);
1197 update_cached_migrate(cc, low_pfn);
1198 }
bb13ffeb 1199
e34d85f0
JK
1200 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1201 nr_scanned, nr_isolated);
b7aba698 1202
670105a2 1203fatal_pending:
7f354a54 1204 cc->total_migrate_scanned += nr_scanned;
397487db 1205 if (nr_isolated)
010fc29a 1206 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1207
c2ad7a1f
OS
1208 cc->migrate_pfn = low_pfn;
1209
1210 return ret;
2fe86e00
MN
1211}
1212
edc2ca61
VB
1213/**
1214 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1215 * @cc: Compaction control structure.
1216 * @start_pfn: The first PFN to start isolating.
1217 * @end_pfn: The one-past-last PFN.
1218 *
369fa227
OS
1219 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1220 * in case we could not allocate a page, or 0.
edc2ca61 1221 */
c2ad7a1f 1222int
edc2ca61
VB
1223isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1224 unsigned long end_pfn)
1225{
e1409c32 1226 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1227 int ret = 0;
edc2ca61
VB
1228
1229 /* Scan block by block. First and last block may be incomplete */
1230 pfn = start_pfn;
06b6640a 1231 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1232 if (block_start_pfn < cc->zone->zone_start_pfn)
1233 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1234 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1235
1236 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1237 block_start_pfn = block_end_pfn,
edc2ca61
VB
1238 block_end_pfn += pageblock_nr_pages) {
1239
1240 block_end_pfn = min(block_end_pfn, end_pfn);
1241
e1409c32
JK
1242 if (!pageblock_pfn_to_page(block_start_pfn,
1243 block_end_pfn, cc->zone))
edc2ca61
VB
1244 continue;
1245
c2ad7a1f
OS
1246 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1247 ISOLATE_UNEVICTABLE);
edc2ca61 1248
c2ad7a1f 1249 if (ret)
edc2ca61 1250 break;
6ea41c0c 1251
38935861 1252 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1253 break;
edc2ca61 1254 }
edc2ca61 1255
c2ad7a1f 1256 return ret;
edc2ca61
VB
1257}
1258
ff9543fd
MN
1259#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1260#ifdef CONFIG_COMPACTION
018e9a49 1261
b682debd
VB
1262static bool suitable_migration_source(struct compact_control *cc,
1263 struct page *page)
1264{
282722b0
VB
1265 int block_mt;
1266
9bebefd5
MG
1267 if (pageblock_skip_persistent(page))
1268 return false;
1269
282722b0 1270 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1271 return true;
1272
282722b0
VB
1273 block_mt = get_pageblock_migratetype(page);
1274
1275 if (cc->migratetype == MIGRATE_MOVABLE)
1276 return is_migrate_movable(block_mt);
1277 else
1278 return block_mt == cc->migratetype;
b682debd
VB
1279}
1280
018e9a49 1281/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1282static bool suitable_migration_target(struct compact_control *cc,
1283 struct page *page)
018e9a49
AM
1284{
1285 /* If the page is a large free page, then disallow migration */
1286 if (PageBuddy(page)) {
1287 /*
1288 * We are checking page_order without zone->lock taken. But
1289 * the only small danger is that we skip a potentially suitable
1290 * pageblock, so it's not worth to check order for valid range.
1291 */
ab130f91 1292 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1293 return false;
1294 }
1295
1ef36db2
YX
1296 if (cc->ignore_block_suitable)
1297 return true;
1298
018e9a49 1299 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1300 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1301 return true;
1302
1303 /* Otherwise skip the block */
1304 return false;
1305}
1306
70b44595
MG
1307static inline unsigned int
1308freelist_scan_limit(struct compact_control *cc)
1309{
dd7ef7bd
QC
1310 unsigned short shift = BITS_PER_LONG - 1;
1311
1312 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1313}
1314
f2849aa0
VB
1315/*
1316 * Test whether the free scanner has reached the same or lower pageblock than
1317 * the migration scanner, and compaction should thus terminate.
1318 */
1319static inline bool compact_scanners_met(struct compact_control *cc)
1320{
1321 return (cc->free_pfn >> pageblock_order)
1322 <= (cc->migrate_pfn >> pageblock_order);
1323}
1324
5a811889
MG
1325/*
1326 * Used when scanning for a suitable migration target which scans freelists
1327 * in reverse. Reorders the list such as the unscanned pages are scanned
1328 * first on the next iteration of the free scanner
1329 */
1330static void
1331move_freelist_head(struct list_head *freelist, struct page *freepage)
1332{
1333 LIST_HEAD(sublist);
1334
1335 if (!list_is_last(freelist, &freepage->lru)) {
1336 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1337 list_splice_tail(&sublist, freelist);
5a811889
MG
1338 }
1339}
1340
1341/*
1342 * Similar to move_freelist_head except used by the migration scanner
1343 * when scanning forward. It's possible for these list operations to
1344 * move against each other if they search the free list exactly in
1345 * lockstep.
1346 */
70b44595
MG
1347static void
1348move_freelist_tail(struct list_head *freelist, struct page *freepage)
1349{
1350 LIST_HEAD(sublist);
1351
1352 if (!list_is_first(freelist, &freepage->lru)) {
1353 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1354 list_splice_tail(&sublist, freelist);
70b44595
MG
1355 }
1356}
1357
5a811889
MG
1358static void
1359fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1360{
1361 unsigned long start_pfn, end_pfn;
6e2b7044 1362 struct page *page;
5a811889
MG
1363
1364 /* Do not search around if there are enough pages already */
1365 if (cc->nr_freepages >= cc->nr_migratepages)
1366 return;
1367
1368 /* Minimise scanning during async compaction */
1369 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1370 return;
1371
1372 /* Pageblock boundaries */
6e2b7044
VB
1373 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1374 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1375
1376 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1377 if (!page)
1378 return;
5a811889
MG
1379
1380 /* Scan before */
1381 if (start_pfn != pfn) {
4fca9730 1382 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1383 if (cc->nr_freepages >= cc->nr_migratepages)
1384 return;
1385 }
1386
1387 /* Scan after */
1388 start_pfn = pfn + nr_isolated;
60fce36a 1389 if (start_pfn < end_pfn)
4fca9730 1390 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1391
1392 /* Skip this pageblock in the future as it's full or nearly full */
1393 if (cc->nr_freepages < cc->nr_migratepages)
1394 set_pageblock_skip(page);
1395}
1396
dbe2d4e4
MG
1397/* Search orders in round-robin fashion */
1398static int next_search_order(struct compact_control *cc, int order)
1399{
1400 order--;
1401 if (order < 0)
1402 order = cc->order - 1;
1403
1404 /* Search wrapped around? */
1405 if (order == cc->search_order) {
1406 cc->search_order--;
1407 if (cc->search_order < 0)
1408 cc->search_order = cc->order - 1;
1409 return -1;
1410 }
1411
1412 return order;
1413}
1414
5a811889
MG
1415static unsigned long
1416fast_isolate_freepages(struct compact_control *cc)
1417{
b55ca526 1418 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1419 unsigned int nr_scanned = 0;
74e21484 1420 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1421 unsigned long nr_isolated = 0;
1422 unsigned long distance;
1423 struct page *page = NULL;
1424 bool scan_start = false;
1425 int order;
1426
1427 /* Full compaction passes in a negative order */
1428 if (cc->order <= 0)
1429 return cc->free_pfn;
1430
1431 /*
1432 * If starting the scan, use a deeper search and use the highest
1433 * PFN found if a suitable one is not found.
1434 */
e332f741 1435 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1436 limit = pageblock_nr_pages >> 1;
1437 scan_start = true;
1438 }
1439
1440 /*
1441 * Preferred point is in the top quarter of the scan space but take
1442 * a pfn from the top half if the search is problematic.
1443 */
1444 distance = (cc->free_pfn - cc->migrate_pfn);
1445 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1447
1448 if (WARN_ON_ONCE(min_pfn > low_pfn))
1449 low_pfn = min_pfn;
1450
dbe2d4e4
MG
1451 /*
1452 * Search starts from the last successful isolation order or the next
1453 * order to search after a previous failure
1454 */
1455 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1456
1457 for (order = cc->search_order;
1458 !page && order >= 0;
1459 order = next_search_order(cc, order)) {
5a811889
MG
1460 struct free_area *area = &cc->zone->free_area[order];
1461 struct list_head *freelist;
1462 struct page *freepage;
1463 unsigned long flags;
1464 unsigned int order_scanned = 0;
74e21484 1465 unsigned long high_pfn = 0;
5a811889
MG
1466
1467 if (!area->nr_free)
1468 continue;
1469
1470 spin_lock_irqsave(&cc->zone->lock, flags);
1471 freelist = &area->free_list[MIGRATE_MOVABLE];
1472 list_for_each_entry_reverse(freepage, freelist, lru) {
1473 unsigned long pfn;
1474
1475 order_scanned++;
1476 nr_scanned++;
1477 pfn = page_to_pfn(freepage);
1478
1479 if (pfn >= highest)
6e2b7044
VB
1480 highest = max(pageblock_start_pfn(pfn),
1481 cc->zone->zone_start_pfn);
5a811889
MG
1482
1483 if (pfn >= low_pfn) {
1484 cc->fast_search_fail = 0;
dbe2d4e4 1485 cc->search_order = order;
5a811889
MG
1486 page = freepage;
1487 break;
1488 }
1489
1490 if (pfn >= min_pfn && pfn > high_pfn) {
1491 high_pfn = pfn;
1492
1493 /* Shorten the scan if a candidate is found */
1494 limit >>= 1;
1495 }
1496
1497 if (order_scanned >= limit)
1498 break;
1499 }
1500
1501 /* Use a minimum pfn if a preferred one was not found */
1502 if (!page && high_pfn) {
1503 page = pfn_to_page(high_pfn);
1504
1505 /* Update freepage for the list reorder below */
1506 freepage = page;
1507 }
1508
1509 /* Reorder to so a future search skips recent pages */
1510 move_freelist_head(freelist, freepage);
1511
1512 /* Isolate the page if available */
1513 if (page) {
1514 if (__isolate_free_page(page, order)) {
1515 set_page_private(page, order);
1516 nr_isolated = 1 << order;
1517 cc->nr_freepages += nr_isolated;
1518 list_add_tail(&page->lru, &cc->freepages);
1519 count_compact_events(COMPACTISOLATED, nr_isolated);
1520 } else {
1521 /* If isolation fails, abort the search */
5b56d996 1522 order = cc->search_order + 1;
5a811889
MG
1523 page = NULL;
1524 }
1525 }
1526
1527 spin_unlock_irqrestore(&cc->zone->lock, flags);
1528
1529 /*
b55ca526 1530 * Smaller scan on next order so the total scan is related
5a811889
MG
1531 * to freelist_scan_limit.
1532 */
1533 if (order_scanned >= limit)
b55ca526 1534 limit = max(1U, limit >> 1);
5a811889
MG
1535 }
1536
1537 if (!page) {
1538 cc->fast_search_fail++;
1539 if (scan_start) {
1540 /*
1541 * Use the highest PFN found above min. If one was
f3867755 1542 * not found, be pessimistic for direct compaction
5a811889
MG
1543 * and use the min mark.
1544 */
1545 if (highest) {
1546 page = pfn_to_page(highest);
1547 cc->free_pfn = highest;
1548 } else {
e577c8b6 1549 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1550 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1551 min(pageblock_end_pfn(min_pfn),
1552 zone_end_pfn(cc->zone)),
73a6e474 1553 cc->zone);
5a811889
MG
1554 cc->free_pfn = min_pfn;
1555 }
1556 }
1557 }
1558 }
1559
d097a6f6
MG
1560 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1561 highest -= pageblock_nr_pages;
5a811889 1562 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1563 }
5a811889
MG
1564
1565 cc->total_free_scanned += nr_scanned;
1566 if (!page)
1567 return cc->free_pfn;
1568
1569 low_pfn = page_to_pfn(page);
1570 fast_isolate_around(cc, low_pfn, nr_isolated);
1571 return low_pfn;
1572}
1573
2fe86e00 1574/*
ff9543fd
MN
1575 * Based on information in the current compact_control, find blocks
1576 * suitable for isolating free pages from and then isolate them.
2fe86e00 1577 */
edc2ca61 1578static void isolate_freepages(struct compact_control *cc)
2fe86e00 1579{
edc2ca61 1580 struct zone *zone = cc->zone;
ff9543fd 1581 struct page *page;
c96b9e50 1582 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1583 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1584 unsigned long block_end_pfn; /* end of current pageblock */
1585 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1586 struct list_head *freelist = &cc->freepages;
4fca9730 1587 unsigned int stride;
2fe86e00 1588
5a811889
MG
1589 /* Try a small search of the free lists for a candidate */
1590 isolate_start_pfn = fast_isolate_freepages(cc);
1591 if (cc->nr_freepages)
1592 goto splitmap;
1593
ff9543fd
MN
1594 /*
1595 * Initialise the free scanner. The starting point is where we last
49e068f0 1596 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1597 * zone when isolating for the first time. For looping we also need
1598 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1599 * block_start_pfn -= pageblock_nr_pages in the for loop.
1600 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1601 * zone which ends in the middle of a pageblock.
49e068f0
VB
1602 * The low boundary is the end of the pageblock the migration scanner
1603 * is using.
ff9543fd 1604 */
e14c720e 1605 isolate_start_pfn = cc->free_pfn;
5a811889 1606 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1607 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1608 zone_end_pfn(zone));
06b6640a 1609 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1610 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1611
ff9543fd
MN
1612 /*
1613 * Isolate free pages until enough are available to migrate the
1614 * pages on cc->migratepages. We stop searching if the migrate
1615 * and free page scanners meet or enough free pages are isolated.
1616 */
f5f61a32 1617 for (; block_start_pfn >= low_pfn;
c96b9e50 1618 block_end_pfn = block_start_pfn,
e14c720e
VB
1619 block_start_pfn -= pageblock_nr_pages,
1620 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1621 unsigned long nr_isolated;
1622
f6ea3adb
DR
1623 /*
1624 * This can iterate a massively long zone without finding any
cb810ad2 1625 * suitable migration targets, so periodically check resched.
f6ea3adb 1626 */
cb810ad2 1627 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1628 cond_resched();
f6ea3adb 1629
7d49d886
VB
1630 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1631 zone);
1632 if (!page)
ff9543fd
MN
1633 continue;
1634
1635 /* Check the block is suitable for migration */
9f7e3387 1636 if (!suitable_migration_target(cc, page))
ff9543fd 1637 continue;
68e3e926 1638
bb13ffeb
MG
1639 /* If isolation recently failed, do not retry */
1640 if (!isolation_suitable(cc, page))
1641 continue;
1642
e14c720e 1643 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1644 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1645 block_end_pfn, freelist, stride, false);
ff9543fd 1646
d097a6f6
MG
1647 /* Update the skip hint if the full pageblock was scanned */
1648 if (isolate_start_pfn == block_end_pfn)
1649 update_pageblock_skip(cc, page, block_start_pfn);
1650
cb2dcaf0
MG
1651 /* Are enough freepages isolated? */
1652 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1653 if (isolate_start_pfn >= block_end_pfn) {
1654 /*
1655 * Restart at previous pageblock if more
1656 * freepages can be isolated next time.
1657 */
f5f61a32
VB
1658 isolate_start_pfn =
1659 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1660 }
be976572 1661 break;
a46cbf3b 1662 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1663 /*
a46cbf3b
DR
1664 * If isolation failed early, do not continue
1665 * needlessly.
f5f61a32 1666 */
a46cbf3b 1667 break;
f5f61a32 1668 }
4fca9730
MG
1669
1670 /* Adjust stride depending on isolation */
1671 if (nr_isolated) {
1672 stride = 1;
1673 continue;
1674 }
1675 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1676 }
1677
7ed695e0 1678 /*
f5f61a32
VB
1679 * Record where the free scanner will restart next time. Either we
1680 * broke from the loop and set isolate_start_pfn based on the last
1681 * call to isolate_freepages_block(), or we met the migration scanner
1682 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1683 */
f5f61a32 1684 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1685
1686splitmap:
1687 /* __isolate_free_page() does not map the pages */
1688 split_map_pages(freelist);
748446bb
MG
1689}
1690
1691/*
1692 * This is a migrate-callback that "allocates" freepages by taking pages
1693 * from the isolated freelists in the block we are migrating to.
1694 */
1695static struct page *compaction_alloc(struct page *migratepage,
666feb21 1696 unsigned long data)
748446bb
MG
1697{
1698 struct compact_control *cc = (struct compact_control *)data;
1699 struct page *freepage;
1700
748446bb 1701 if (list_empty(&cc->freepages)) {
cb2dcaf0 1702 isolate_freepages(cc);
748446bb
MG
1703
1704 if (list_empty(&cc->freepages))
1705 return NULL;
1706 }
1707
1708 freepage = list_entry(cc->freepages.next, struct page, lru);
1709 list_del(&freepage->lru);
1710 cc->nr_freepages--;
1711
1712 return freepage;
1713}
1714
1715/*
d53aea3d
DR
1716 * This is a migrate-callback that "frees" freepages back to the isolated
1717 * freelist. All pages on the freelist are from the same zone, so there is no
1718 * special handling needed for NUMA.
1719 */
1720static void compaction_free(struct page *page, unsigned long data)
1721{
1722 struct compact_control *cc = (struct compact_control *)data;
1723
1724 list_add(&page->lru, &cc->freepages);
1725 cc->nr_freepages++;
1726}
1727
ff9543fd
MN
1728/* possible outcome of isolate_migratepages */
1729typedef enum {
1730 ISOLATE_ABORT, /* Abort compaction now */
1731 ISOLATE_NONE, /* No pages isolated, continue scanning */
1732 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1733} isolate_migrate_t;
1734
5bbe3547
EM
1735/*
1736 * Allow userspace to control policy on scanning the unevictable LRU for
1737 * compactable pages.
1738 */
6923aa0d
SAS
1739#ifdef CONFIG_PREEMPT_RT
1740int sysctl_compact_unevictable_allowed __read_mostly = 0;
1741#else
5bbe3547 1742int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1743#endif
5bbe3547 1744
70b44595
MG
1745static inline void
1746update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1747{
1748 if (cc->fast_start_pfn == ULONG_MAX)
1749 return;
1750
1751 if (!cc->fast_start_pfn)
1752 cc->fast_start_pfn = pfn;
1753
1754 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1755}
1756
1757static inline unsigned long
1758reinit_migrate_pfn(struct compact_control *cc)
1759{
1760 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1761 return cc->migrate_pfn;
1762
1763 cc->migrate_pfn = cc->fast_start_pfn;
1764 cc->fast_start_pfn = ULONG_MAX;
1765
1766 return cc->migrate_pfn;
1767}
1768
1769/*
1770 * Briefly search the free lists for a migration source that already has
1771 * some free pages to reduce the number of pages that need migration
1772 * before a pageblock is free.
1773 */
1774static unsigned long fast_find_migrateblock(struct compact_control *cc)
1775{
1776 unsigned int limit = freelist_scan_limit(cc);
1777 unsigned int nr_scanned = 0;
1778 unsigned long distance;
1779 unsigned long pfn = cc->migrate_pfn;
1780 unsigned long high_pfn;
1781 int order;
15d28d0d 1782 bool found_block = false;
70b44595
MG
1783
1784 /* Skip hints are relied on to avoid repeats on the fast search */
1785 if (cc->ignore_skip_hint)
1786 return pfn;
1787
1788 /*
1789 * If the migrate_pfn is not at the start of a zone or the start
1790 * of a pageblock then assume this is a continuation of a previous
1791 * scan restarted due to COMPACT_CLUSTER_MAX.
1792 */
1793 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1794 return pfn;
1795
1796 /*
1797 * For smaller orders, just linearly scan as the number of pages
1798 * to migrate should be relatively small and does not necessarily
1799 * justify freeing up a large block for a small allocation.
1800 */
1801 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1802 return pfn;
1803
1804 /*
1805 * Only allow kcompactd and direct requests for movable pages to
1806 * quickly clear out a MOVABLE pageblock for allocation. This
1807 * reduces the risk that a large movable pageblock is freed for
1808 * an unmovable/reclaimable small allocation.
1809 */
1810 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1811 return pfn;
1812
1813 /*
1814 * When starting the migration scanner, pick any pageblock within the
1815 * first half of the search space. Otherwise try and pick a pageblock
1816 * within the first eighth to reduce the chances that a migration
1817 * target later becomes a source.
1818 */
1819 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1820 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1821 distance >>= 2;
1822 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1823
1824 for (order = cc->order - 1;
15d28d0d 1825 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1826 order--) {
1827 struct free_area *area = &cc->zone->free_area[order];
1828 struct list_head *freelist;
1829 unsigned long flags;
1830 struct page *freepage;
1831
1832 if (!area->nr_free)
1833 continue;
1834
1835 spin_lock_irqsave(&cc->zone->lock, flags);
1836 freelist = &area->free_list[MIGRATE_MOVABLE];
1837 list_for_each_entry(freepage, freelist, lru) {
1838 unsigned long free_pfn;
1839
15d28d0d
WY
1840 if (nr_scanned++ >= limit) {
1841 move_freelist_tail(freelist, freepage);
1842 break;
1843 }
1844
70b44595
MG
1845 free_pfn = page_to_pfn(freepage);
1846 if (free_pfn < high_pfn) {
70b44595
MG
1847 /*
1848 * Avoid if skipped recently. Ideally it would
1849 * move to the tail but even safe iteration of
1850 * the list assumes an entry is deleted, not
1851 * reordered.
1852 */
15d28d0d 1853 if (get_pageblock_skip(freepage))
70b44595 1854 continue;
70b44595
MG
1855
1856 /* Reorder to so a future search skips recent pages */
1857 move_freelist_tail(freelist, freepage);
1858
e380bebe 1859 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1860 pfn = pageblock_start_pfn(free_pfn);
1861 cc->fast_search_fail = 0;
15d28d0d 1862 found_block = true;
70b44595
MG
1863 set_pageblock_skip(freepage);
1864 break;
1865 }
70b44595
MG
1866 }
1867 spin_unlock_irqrestore(&cc->zone->lock, flags);
1868 }
1869
1870 cc->total_migrate_scanned += nr_scanned;
1871
1872 /*
1873 * If fast scanning failed then use a cached entry for a page block
1874 * that had free pages as the basis for starting a linear scan.
1875 */
15d28d0d
WY
1876 if (!found_block) {
1877 cc->fast_search_fail++;
70b44595 1878 pfn = reinit_migrate_pfn(cc);
15d28d0d 1879 }
70b44595
MG
1880 return pfn;
1881}
1882
ff9543fd 1883/*
edc2ca61
VB
1884 * Isolate all pages that can be migrated from the first suitable block,
1885 * starting at the block pointed to by the migrate scanner pfn within
1886 * compact_control.
ff9543fd 1887 */
32aaf055 1888static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1889{
e1409c32
JK
1890 unsigned long block_start_pfn;
1891 unsigned long block_end_pfn;
1892 unsigned long low_pfn;
edc2ca61
VB
1893 struct page *page;
1894 const isolate_mode_t isolate_mode =
5bbe3547 1895 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1896 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1897 bool fast_find_block;
ff9543fd 1898
edc2ca61
VB
1899 /*
1900 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1901 * initialized by compact_zone(). The first failure will use
1902 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1903 */
70b44595 1904 low_pfn = fast_find_migrateblock(cc);
06b6640a 1905 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1906 if (block_start_pfn < cc->zone->zone_start_pfn)
1907 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1908
70b44595
MG
1909 /*
1910 * fast_find_migrateblock marks a pageblock skipped so to avoid
1911 * the isolation_suitable check below, check whether the fast
1912 * search was successful.
1913 */
1914 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1915
ff9543fd 1916 /* Only scan within a pageblock boundary */
06b6640a 1917 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1918
edc2ca61
VB
1919 /*
1920 * Iterate over whole pageblocks until we find the first suitable.
1921 * Do not cross the free scanner.
1922 */
e1409c32 1923 for (; block_end_pfn <= cc->free_pfn;
70b44595 1924 fast_find_block = false,
c2ad7a1f 1925 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1926 block_start_pfn = block_end_pfn,
1927 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1928
edc2ca61
VB
1929 /*
1930 * This can potentially iterate a massively long zone with
1931 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1932 * need to schedule.
edc2ca61 1933 */
cb810ad2 1934 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1935 cond_resched();
ff9543fd 1936
32aaf055
PL
1937 page = pageblock_pfn_to_page(block_start_pfn,
1938 block_end_pfn, cc->zone);
7d49d886 1939 if (!page)
edc2ca61
VB
1940 continue;
1941
e380bebe
MG
1942 /*
1943 * If isolation recently failed, do not retry. Only check the
1944 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1945 * to be visited multiple times. Assume skip was checked
1946 * before making it "skip" so other compaction instances do
1947 * not scan the same block.
1948 */
1949 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1950 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1951 continue;
1952
1953 /*
9bebefd5
MG
1954 * For async compaction, also only scan in MOVABLE blocks
1955 * without huge pages. Async compaction is optimistic to see
1956 * if the minimum amount of work satisfies the allocation.
1957 * The cached PFN is updated as it's possible that all
1958 * remaining blocks between source and target are unsuitable
1959 * and the compaction scanners fail to meet.
edc2ca61 1960 */
9bebefd5
MG
1961 if (!suitable_migration_source(cc, page)) {
1962 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1963 continue;
9bebefd5 1964 }
edc2ca61
VB
1965
1966 /* Perform the isolation */
c2ad7a1f
OS
1967 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1968 isolate_mode))
edc2ca61
VB
1969 return ISOLATE_ABORT;
1970
1971 /*
1972 * Either we isolated something and proceed with migration. Or
1973 * we failed and compact_zone should decide if we should
1974 * continue or not.
1975 */
1976 break;
1977 }
1978
edc2ca61 1979 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1980}
1981
21c527a3
YB
1982/*
1983 * order == -1 is expected when compacting via
1984 * /proc/sys/vm/compact_memory
1985 */
1986static inline bool is_via_compact_memory(int order)
1987{
1988 return order == -1;
1989}
1990
facdaa91
NG
1991static bool kswapd_is_running(pg_data_t *pgdat)
1992{
b03fbd4f 1993 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1994}
1995
1996/*
1997 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1998 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1999 */
2000static unsigned int fragmentation_score_zone(struct zone *zone)
2001{
2002 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2003}
2004
2005/*
2006 * A weighted zone's fragmentation score is the external fragmentation
2007 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2008 * returns a value in the range [0, 100].
facdaa91
NG
2009 *
2010 * The scaling factor ensures that proactive compaction focuses on larger
2011 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2012 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2013 * and thus never exceeds the high threshold for proactive compaction.
2014 */
40d7e203 2015static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2016{
2017 unsigned long score;
2018
40d7e203 2019 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2020 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2021}
2022
2023/*
2024 * The per-node proactive (background) compaction process is started by its
2025 * corresponding kcompactd thread when the node's fragmentation score
2026 * exceeds the high threshold. The compaction process remains active till
2027 * the node's score falls below the low threshold, or one of the back-off
2028 * conditions is met.
2029 */
d34c0a75 2030static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2031{
d34c0a75 2032 unsigned int score = 0;
facdaa91
NG
2033 int zoneid;
2034
2035 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2036 struct zone *zone;
2037
2038 zone = &pgdat->node_zones[zoneid];
40d7e203 2039 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2040 }
2041
2042 return score;
2043}
2044
d34c0a75 2045static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2046{
d34c0a75 2047 unsigned int wmark_low;
facdaa91
NG
2048
2049 /*
f0953a1b
IM
2050 * Cap the low watermark to avoid excessive compaction
2051 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2052 * close to 100 (maximum).
2053 */
d34c0a75
NG
2054 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2055 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2056}
2057
2058static bool should_proactive_compact_node(pg_data_t *pgdat)
2059{
2060 int wmark_high;
2061
2062 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2063 return false;
2064
2065 wmark_high = fragmentation_score_wmark(pgdat, false);
2066 return fragmentation_score_node(pgdat) > wmark_high;
2067}
2068
40cacbcb 2069static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2070{
8fb74b9f 2071 unsigned int order;
d39773a0 2072 const int migratetype = cc->migratetype;
cb2dcaf0 2073 int ret;
748446bb 2074
753341a4 2075 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2076 if (compact_scanners_met(cc)) {
55b7c4c9 2077 /* Let the next compaction start anew. */
40cacbcb 2078 reset_cached_positions(cc->zone);
55b7c4c9 2079
62997027
MG
2080 /*
2081 * Mark that the PG_migrate_skip information should be cleared
accf6242 2082 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2083 * flag itself as the decision to be clear should be directly
2084 * based on an allocation request.
2085 */
accf6242 2086 if (cc->direct_compaction)
40cacbcb 2087 cc->zone->compact_blockskip_flush = true;
62997027 2088
c8f7de0b
MH
2089 if (cc->whole_zone)
2090 return COMPACT_COMPLETE;
2091 else
2092 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2093 }
748446bb 2094
facdaa91
NG
2095 if (cc->proactive_compaction) {
2096 int score, wmark_low;
2097 pg_data_t *pgdat;
2098
2099 pgdat = cc->zone->zone_pgdat;
2100 if (kswapd_is_running(pgdat))
2101 return COMPACT_PARTIAL_SKIPPED;
2102
2103 score = fragmentation_score_zone(cc->zone);
2104 wmark_low = fragmentation_score_wmark(pgdat, true);
2105
2106 if (score > wmark_low)
2107 ret = COMPACT_CONTINUE;
2108 else
2109 ret = COMPACT_SUCCESS;
2110
2111 goto out;
2112 }
2113
21c527a3 2114 if (is_via_compact_memory(cc->order))
56de7263
MG
2115 return COMPACT_CONTINUE;
2116
efe771c7
MG
2117 /*
2118 * Always finish scanning a pageblock to reduce the possibility of
2119 * fallbacks in the future. This is particularly important when
2120 * migration source is unmovable/reclaimable but it's not worth
2121 * special casing.
2122 */
2123 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2124 return COMPACT_CONTINUE;
baf6a9a1 2125
56de7263 2126 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2127 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2128 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2129 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2130 bool can_steal;
8fb74b9f
MG
2131
2132 /* Job done if page is free of the right migratetype */
b03641af 2133 if (!free_area_empty(area, migratetype))
cf378319 2134 return COMPACT_SUCCESS;
8fb74b9f 2135
2149cdae
JK
2136#ifdef CONFIG_CMA
2137 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2138 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2139 !free_area_empty(area, MIGRATE_CMA))
cf378319 2140 return COMPACT_SUCCESS;
2149cdae
JK
2141#endif
2142 /*
2143 * Job done if allocation would steal freepages from
2144 * other migratetype buddy lists.
2145 */
2146 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2147 true, &can_steal) != -1) {
2148
2149 /* movable pages are OK in any pageblock */
2150 if (migratetype == MIGRATE_MOVABLE)
2151 return COMPACT_SUCCESS;
2152
2153 /*
2154 * We are stealing for a non-movable allocation. Make
2155 * sure we finish compacting the current pageblock
2156 * first so it is as free as possible and we won't
2157 * have to steal another one soon. This only applies
2158 * to sync compaction, as async compaction operates
2159 * on pageblocks of the same migratetype.
2160 */
2161 if (cc->mode == MIGRATE_ASYNC ||
2162 IS_ALIGNED(cc->migrate_pfn,
2163 pageblock_nr_pages)) {
2164 return COMPACT_SUCCESS;
2165 }
2166
cb2dcaf0
MG
2167 ret = COMPACT_CONTINUE;
2168 break;
baf6a9a1 2169 }
56de7263
MG
2170 }
2171
facdaa91 2172out:
cb2dcaf0
MG
2173 if (cc->contended || fatal_signal_pending(current))
2174 ret = COMPACT_CONTENDED;
2175
2176 return ret;
837d026d
JK
2177}
2178
40cacbcb 2179static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2180{
2181 int ret;
2182
40cacbcb
MG
2183 ret = __compact_finished(cc);
2184 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2185 if (ret == COMPACT_NO_SUITABLE_PAGE)
2186 ret = COMPACT_CONTINUE;
2187
2188 return ret;
748446bb
MG
2189}
2190
ea7ab982 2191static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2192 unsigned int alloc_flags,
97a225e6 2193 int highest_zoneidx,
86a294a8 2194 unsigned long wmark_target)
3e7d3449 2195{
3e7d3449
MG
2196 unsigned long watermark;
2197
21c527a3 2198 if (is_via_compact_memory(order))
3957c776
MH
2199 return COMPACT_CONTINUE;
2200
a9214443 2201 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2202 /*
2203 * If watermarks for high-order allocation are already met, there
2204 * should be no need for compaction at all.
2205 */
97a225e6 2206 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2207 alloc_flags))
cf378319 2208 return COMPACT_SUCCESS;
ebff3980 2209
3e7d3449 2210 /*
9861a62c 2211 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2212 * isolate free pages for migration targets. This means that the
2213 * watermark and alloc_flags have to match, or be more pessimistic than
2214 * the check in __isolate_free_page(). We don't use the direct
2215 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2216 * isolation. We however do use the direct compactor's highest_zoneidx
2217 * to skip over zones where lowmem reserves would prevent allocation
2218 * even if compaction succeeds.
8348faf9
VB
2219 * For costly orders, we require low watermark instead of min for
2220 * compaction to proceed to increase its chances.
d883c6cf
JK
2221 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2222 * suitable migration targets
3e7d3449 2223 */
8348faf9
VB
2224 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2225 low_wmark_pages(zone) : min_wmark_pages(zone);
2226 watermark += compact_gap(order);
97a225e6 2227 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2228 ALLOC_CMA, wmark_target))
3e7d3449
MG
2229 return COMPACT_SKIPPED;
2230
cc5c9f09
VB
2231 return COMPACT_CONTINUE;
2232}
2233
2b1a20c3
HS
2234/*
2235 * compaction_suitable: Is this suitable to run compaction on this zone now?
2236 * Returns
2237 * COMPACT_SKIPPED - If there are too few free pages for compaction
2238 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2239 * COMPACT_CONTINUE - If compaction should run now
2240 */
cc5c9f09
VB
2241enum compact_result compaction_suitable(struct zone *zone, int order,
2242 unsigned int alloc_flags,
97a225e6 2243 int highest_zoneidx)
cc5c9f09
VB
2244{
2245 enum compact_result ret;
2246 int fragindex;
2247
97a225e6 2248 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2249 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2250 /*
2251 * fragmentation index determines if allocation failures are due to
2252 * low memory or external fragmentation
2253 *
ebff3980
VB
2254 * index of -1000 would imply allocations might succeed depending on
2255 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2256 * index towards 0 implies failure is due to lack of memory
2257 * index towards 1000 implies failure is due to fragmentation
2258 *
20311420
VB
2259 * Only compact if a failure would be due to fragmentation. Also
2260 * ignore fragindex for non-costly orders where the alternative to
2261 * a successful reclaim/compaction is OOM. Fragindex and the
2262 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2263 * excessive compaction for costly orders, but it should not be at the
2264 * expense of system stability.
3e7d3449 2265 */
20311420 2266 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2267 fragindex = fragmentation_index(zone, order);
2268 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2269 ret = COMPACT_NOT_SUITABLE_ZONE;
2270 }
837d026d 2271
837d026d
JK
2272 trace_mm_compaction_suitable(zone, order, ret);
2273 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2274 ret = COMPACT_SKIPPED;
2275
2276 return ret;
2277}
2278
86a294a8
MH
2279bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2280 int alloc_flags)
2281{
2282 struct zone *zone;
2283 struct zoneref *z;
2284
2285 /*
2286 * Make sure at least one zone would pass __compaction_suitable if we continue
2287 * retrying the reclaim.
2288 */
97a225e6
JK
2289 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2290 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2291 unsigned long available;
2292 enum compact_result compact_result;
2293
2294 /*
2295 * Do not consider all the reclaimable memory because we do not
2296 * want to trash just for a single high order allocation which
2297 * is even not guaranteed to appear even if __compaction_suitable
2298 * is happy about the watermark check.
2299 */
5a1c84b4 2300 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2301 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2302 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2303 ac->highest_zoneidx, available);
cc5c9f09 2304 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2305 return true;
2306 }
2307
2308 return false;
2309}
2310
5e1f0f09
MG
2311static enum compact_result
2312compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2313{
ea7ab982 2314 enum compact_result ret;
40cacbcb
MG
2315 unsigned long start_pfn = cc->zone->zone_start_pfn;
2316 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2317 unsigned long last_migrated_pfn;
e0b9daeb 2318 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2319 bool update_cached;
84b328aa 2320 unsigned int nr_succeeded = 0;
748446bb 2321
a94b5252
YS
2322 /*
2323 * These counters track activities during zone compaction. Initialize
2324 * them before compacting a new zone.
2325 */
2326 cc->total_migrate_scanned = 0;
2327 cc->total_free_scanned = 0;
2328 cc->nr_migratepages = 0;
2329 cc->nr_freepages = 0;
2330 INIT_LIST_HEAD(&cc->freepages);
2331 INIT_LIST_HEAD(&cc->migratepages);
2332
01c0bfe0 2333 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2334 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2335 cc->highest_zoneidx);
c46649de 2336 /* Compaction is likely to fail */
cf378319 2337 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2338 return ret;
c46649de
MH
2339
2340 /* huh, compaction_suitable is returning something unexpected */
2341 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2342
d3132e4b
VB
2343 /*
2344 * Clear pageblock skip if there were failures recently and compaction
accf6242 2345 * is about to be retried after being deferred.
d3132e4b 2346 */
40cacbcb
MG
2347 if (compaction_restarting(cc->zone, cc->order))
2348 __reset_isolation_suitable(cc->zone);
d3132e4b 2349
c89511ab
MG
2350 /*
2351 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2352 * information on where the scanners should start (unless we explicitly
2353 * want to compact the whole zone), but check that it is initialised
2354 * by ensuring the values are within zone boundaries.
c89511ab 2355 */
70b44595 2356 cc->fast_start_pfn = 0;
06ed2998 2357 if (cc->whole_zone) {
c89511ab 2358 cc->migrate_pfn = start_pfn;
06ed2998
VB
2359 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2360 } else {
40cacbcb
MG
2361 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2362 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2363 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2364 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2365 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2366 }
2367 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2368 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2369 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2370 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2371 }
c8f7de0b 2372
e332f741 2373 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2374 cc->whole_zone = true;
2375 }
c8f7de0b 2376
566e54e1 2377 last_migrated_pfn = 0;
748446bb 2378
8854c55f
MG
2379 /*
2380 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2381 * the basis that some migrations will fail in ASYNC mode. However,
2382 * if the cached PFNs match and pageblocks are skipped due to having
2383 * no isolation candidates, then the sync state does not matter.
2384 * Until a pageblock with isolation candidates is found, keep the
2385 * cached PFNs in sync to avoid revisiting the same blocks.
2386 */
2387 update_cached = !sync &&
2388 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2389
abd4349f 2390 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2391
361a2a22
MK
2392 /* lru_add_drain_all could be expensive with involving other CPUs */
2393 lru_add_drain();
748446bb 2394
40cacbcb 2395 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2396 int err;
19d3cf9d 2397 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2398
804d3121
MG
2399 /*
2400 * Avoid multiple rescans which can happen if a page cannot be
2401 * isolated (dirty/writeback in async mode) or if the migrated
2402 * pages are being allocated before the pageblock is cleared.
2403 * The first rescan will capture the entire pageblock for
2404 * migration. If it fails, it'll be marked skip and scanning
2405 * will proceed as normal.
2406 */
2407 cc->rescan = false;
2408 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2409 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2410 cc->rescan = true;
2411 }
2412
32aaf055 2413 switch (isolate_migratepages(cc)) {
f9e35b3b 2414 case ISOLATE_ABORT:
2d1e1041 2415 ret = COMPACT_CONTENDED;
5733c7d1 2416 putback_movable_pages(&cc->migratepages);
e64c5237 2417 cc->nr_migratepages = 0;
f9e35b3b
MG
2418 goto out;
2419 case ISOLATE_NONE:
8854c55f
MG
2420 if (update_cached) {
2421 cc->zone->compact_cached_migrate_pfn[1] =
2422 cc->zone->compact_cached_migrate_pfn[0];
2423 }
2424
fdaf7f5c
VB
2425 /*
2426 * We haven't isolated and migrated anything, but
2427 * there might still be unflushed migrations from
2428 * previous cc->order aligned block.
2429 */
2430 goto check_drain;
f9e35b3b 2431 case ISOLATE_SUCCESS:
8854c55f 2432 update_cached = false;
19d3cf9d 2433 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2434 }
748446bb 2435
d53aea3d 2436 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2437 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2438 MR_COMPACTION, &nr_succeeded);
748446bb 2439
abd4349f 2440 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2441
f8c9301f
VB
2442 /* All pages were either migrated or will be released */
2443 cc->nr_migratepages = 0;
9d502c1c 2444 if (err) {
5733c7d1 2445 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2446 /*
2447 * migrate_pages() may return -ENOMEM when scanners meet
2448 * and we want compact_finished() to detect it
2449 */
f2849aa0 2450 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2451 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2452 goto out;
2453 }
fdd048e1
VB
2454 /*
2455 * We failed to migrate at least one page in the current
2456 * order-aligned block, so skip the rest of it.
2457 */
2458 if (cc->direct_compaction &&
2459 (cc->mode == MIGRATE_ASYNC)) {
2460 cc->migrate_pfn = block_end_pfn(
2461 cc->migrate_pfn - 1, cc->order);
2462 /* Draining pcplists is useless in this case */
566e54e1 2463 last_migrated_pfn = 0;
fdd048e1 2464 }
748446bb 2465 }
fdaf7f5c 2466
fdaf7f5c
VB
2467check_drain:
2468 /*
2469 * Has the migration scanner moved away from the previous
2470 * cc->order aligned block where we migrated from? If yes,
2471 * flush the pages that were freed, so that they can merge and
2472 * compact_finished() can detect immediately if allocation
2473 * would succeed.
2474 */
566e54e1 2475 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2476 unsigned long current_block_start =
06b6640a 2477 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2478
566e54e1 2479 if (last_migrated_pfn < current_block_start) {
b01b2141 2480 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2481 /* No more flushing until we migrate again */
566e54e1 2482 last_migrated_pfn = 0;
fdaf7f5c
VB
2483 }
2484 }
2485
5e1f0f09
MG
2486 /* Stop if a page has been captured */
2487 if (capc && capc->page) {
2488 ret = COMPACT_SUCCESS;
2489 break;
2490 }
748446bb
MG
2491 }
2492
f9e35b3b 2493out:
6bace090
VB
2494 /*
2495 * Release free pages and update where the free scanner should restart,
2496 * so we don't leave any returned pages behind in the next attempt.
2497 */
2498 if (cc->nr_freepages > 0) {
2499 unsigned long free_pfn = release_freepages(&cc->freepages);
2500
2501 cc->nr_freepages = 0;
2502 VM_BUG_ON(free_pfn == 0);
2503 /* The cached pfn is always the first in a pageblock */
06b6640a 2504 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2505 /*
2506 * Only go back, not forward. The cached pfn might have been
2507 * already reset to zone end in compact_finished()
2508 */
40cacbcb
MG
2509 if (free_pfn > cc->zone->compact_cached_free_pfn)
2510 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2511 }
748446bb 2512
7f354a54
DR
2513 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2514 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2515
abd4349f 2516 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2517
748446bb
MG
2518 return ret;
2519}
76ab0f53 2520
ea7ab982 2521static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2522 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2523 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2524 struct page **capture)
56de7263 2525{
ea7ab982 2526 enum compact_result ret;
56de7263 2527 struct compact_control cc = {
56de7263 2528 .order = order,
dbe2d4e4 2529 .search_order = order,
6d7ce559 2530 .gfp_mask = gfp_mask,
56de7263 2531 .zone = zone,
a5508cd8
VB
2532 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2533 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2534 .alloc_flags = alloc_flags,
97a225e6 2535 .highest_zoneidx = highest_zoneidx,
accf6242 2536 .direct_compaction = true,
a8e025e5 2537 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2538 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2540 };
5e1f0f09
MG
2541 struct capture_control capc = {
2542 .cc = &cc,
2543 .page = NULL,
2544 };
2545
b9e20f0d
VB
2546 /*
2547 * Make sure the structs are really initialized before we expose the
2548 * capture control, in case we are interrupted and the interrupt handler
2549 * frees a page.
2550 */
2551 barrier();
2552 WRITE_ONCE(current->capture_control, &capc);
56de7263 2553
5e1f0f09 2554 ret = compact_zone(&cc, &capc);
e64c5237
SL
2555
2556 VM_BUG_ON(!list_empty(&cc.freepages));
2557 VM_BUG_ON(!list_empty(&cc.migratepages));
2558
b9e20f0d
VB
2559 /*
2560 * Make sure we hide capture control first before we read the captured
2561 * page pointer, otherwise an interrupt could free and capture a page
2562 * and we would leak it.
2563 */
2564 WRITE_ONCE(current->capture_control, NULL);
2565 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2566 /*
2567 * Technically, it is also possible that compaction is skipped but
2568 * the page is still captured out of luck(IRQ came and freed the page).
2569 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2570 * the COMPACT[STALL|FAIL] when compaction is skipped.
2571 */
2572 if (*capture)
2573 ret = COMPACT_SUCCESS;
5e1f0f09 2574
e64c5237 2575 return ret;
56de7263
MG
2576}
2577
5e771905
MG
2578int sysctl_extfrag_threshold = 500;
2579
56de7263
MG
2580/**
2581 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2582 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2583 * @order: The order of the current allocation
2584 * @alloc_flags: The allocation flags of the current allocation
2585 * @ac: The context of current allocation
112d2d29 2586 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2587 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2588 *
2589 * This is the main entry point for direct page compaction.
2590 */
ea7ab982 2591enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2592 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2593 enum compact_priority prio, struct page **capture)
56de7263 2594{
56de7263 2595 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2596 struct zoneref *z;
2597 struct zone *zone;
1d4746d3 2598 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2599
73e64c51
MH
2600 /*
2601 * Check if the GFP flags allow compaction - GFP_NOIO is really
2602 * tricky context because the migration might require IO
2603 */
2604 if (!may_perform_io)
53853e2d 2605 return COMPACT_SKIPPED;
56de7263 2606
a5508cd8 2607 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2608
56de7263 2609 /* Compact each zone in the list */
97a225e6
JK
2610 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2611 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2612 enum compact_result status;
56de7263 2613
a8e025e5
VB
2614 if (prio > MIN_COMPACT_PRIORITY
2615 && compaction_deferred(zone, order)) {
1d4746d3 2616 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2617 continue;
1d4746d3 2618 }
53853e2d 2619
a5508cd8 2620 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2621 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2622 rc = max(status, rc);
2623
7ceb009a
VB
2624 /* The allocation should succeed, stop compacting */
2625 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2626 /*
2627 * We think the allocation will succeed in this zone,
2628 * but it is not certain, hence the false. The caller
2629 * will repeat this with true if allocation indeed
2630 * succeeds in this zone.
2631 */
2632 compaction_defer_reset(zone, order, false);
1f9efdef 2633
c3486f53 2634 break;
1f9efdef
VB
2635 }
2636
a5508cd8 2637 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2638 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2639 /*
2640 * We think that allocation won't succeed in this zone
2641 * so we defer compaction there. If it ends up
2642 * succeeding after all, it will be reset.
2643 */
2644 defer_compaction(zone, order);
1f9efdef
VB
2645
2646 /*
2647 * We might have stopped compacting due to need_resched() in
2648 * async compaction, or due to a fatal signal detected. In that
c3486f53 2649 * case do not try further zones
1f9efdef 2650 */
c3486f53
VB
2651 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2652 || fatal_signal_pending(current))
2653 break;
56de7263
MG
2654 }
2655
2656 return rc;
2657}
2658
facdaa91
NG
2659/*
2660 * Compact all zones within a node till each zone's fragmentation score
2661 * reaches within proactive compaction thresholds (as determined by the
2662 * proactiveness tunable).
2663 *
2664 * It is possible that the function returns before reaching score targets
2665 * due to various back-off conditions, such as, contention on per-node or
2666 * per-zone locks.
2667 */
2668static void proactive_compact_node(pg_data_t *pgdat)
2669{
2670 int zoneid;
2671 struct zone *zone;
2672 struct compact_control cc = {
2673 .order = -1,
2674 .mode = MIGRATE_SYNC_LIGHT,
2675 .ignore_skip_hint = true,
2676 .whole_zone = true,
2677 .gfp_mask = GFP_KERNEL,
2678 .proactive_compaction = true,
2679 };
2680
2681 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2682 zone = &pgdat->node_zones[zoneid];
2683 if (!populated_zone(zone))
2684 continue;
2685
2686 cc.zone = zone;
2687
2688 compact_zone(&cc, NULL);
2689
2690 VM_BUG_ON(!list_empty(&cc.freepages));
2691 VM_BUG_ON(!list_empty(&cc.migratepages));
2692 }
2693}
56de7263 2694
76ab0f53 2695/* Compact all zones within a node */
791cae96 2696static void compact_node(int nid)
76ab0f53 2697{
791cae96 2698 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2699 int zoneid;
76ab0f53 2700 struct zone *zone;
791cae96
VB
2701 struct compact_control cc = {
2702 .order = -1,
2703 .mode = MIGRATE_SYNC,
2704 .ignore_skip_hint = true,
2705 .whole_zone = true,
73e64c51 2706 .gfp_mask = GFP_KERNEL,
791cae96
VB
2707 };
2708
76ab0f53 2709
76ab0f53 2710 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2711
2712 zone = &pgdat->node_zones[zoneid];
2713 if (!populated_zone(zone))
2714 continue;
2715
791cae96 2716 cc.zone = zone;
76ab0f53 2717
5e1f0f09 2718 compact_zone(&cc, NULL);
75469345 2719
791cae96
VB
2720 VM_BUG_ON(!list_empty(&cc.freepages));
2721 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2722 }
76ab0f53
MG
2723}
2724
2725/* Compact all nodes in the system */
7964c06d 2726static void compact_nodes(void)
76ab0f53
MG
2727{
2728 int nid;
2729
8575ec29
HD
2730 /* Flush pending updates to the LRU lists */
2731 lru_add_drain_all();
2732
76ab0f53
MG
2733 for_each_online_node(nid)
2734 compact_node(nid);
76ab0f53
MG
2735}
2736
facdaa91
NG
2737/*
2738 * Tunable for proactive compaction. It determines how
2739 * aggressively the kernel should compact memory in the
2740 * background. It takes values in the range [0, 100].
2741 */
d34c0a75 2742unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2743
65d759c8
CTR
2744int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2745 void *buffer, size_t *length, loff_t *ppos)
2746{
2747 int rc, nid;
2748
2749 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2750 if (rc)
2751 return rc;
2752
2753 if (write && sysctl_compaction_proactiveness) {
2754 for_each_online_node(nid) {
2755 pg_data_t *pgdat = NODE_DATA(nid);
2756
2757 if (pgdat->proactive_compact_trigger)
2758 continue;
2759
2760 pgdat->proactive_compact_trigger = true;
2761 wake_up_interruptible(&pgdat->kcompactd_wait);
2762 }
2763 }
2764
2765 return 0;
2766}
2767
fec4eb2c
YB
2768/*
2769 * This is the entry point for compacting all nodes via
2770 * /proc/sys/vm/compact_memory
2771 */
76ab0f53 2772int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2773 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2774{
2775 if (write)
7964c06d 2776 compact_nodes();
76ab0f53
MG
2777
2778 return 0;
2779}
ed4a6d7f
MG
2780
2781#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2782static ssize_t compact_store(struct device *dev,
2783 struct device_attribute *attr,
2784 const char *buf, size_t count)
ed4a6d7f 2785{
8575ec29
HD
2786 int nid = dev->id;
2787
2788 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2789 /* Flush pending updates to the LRU lists */
2790 lru_add_drain_all();
2791
2792 compact_node(nid);
2793 }
ed4a6d7f
MG
2794
2795 return count;
2796}
17adb230 2797static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2798
2799int compaction_register_node(struct node *node)
2800{
10fbcf4c 2801 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2802}
2803
2804void compaction_unregister_node(struct node *node)
2805{
10fbcf4c 2806 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2807}
2808#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2809
698b1b30
VB
2810static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2811{
65d759c8
CTR
2812 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2813 pgdat->proactive_compact_trigger;
698b1b30
VB
2814}
2815
2816static bool kcompactd_node_suitable(pg_data_t *pgdat)
2817{
2818 int zoneid;
2819 struct zone *zone;
97a225e6 2820 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2821
97a225e6 2822 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2823 zone = &pgdat->node_zones[zoneid];
2824
2825 if (!populated_zone(zone))
2826 continue;
2827
2828 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2829 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2830 return true;
2831 }
2832
2833 return false;
2834}
2835
2836static void kcompactd_do_work(pg_data_t *pgdat)
2837{
2838 /*
2839 * With no special task, compact all zones so that a page of requested
2840 * order is allocatable.
2841 */
2842 int zoneid;
2843 struct zone *zone;
2844 struct compact_control cc = {
2845 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2846 .search_order = pgdat->kcompactd_max_order,
97a225e6 2847 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2848 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2849 .ignore_skip_hint = false,
73e64c51 2850 .gfp_mask = GFP_KERNEL,
698b1b30 2851 };
698b1b30 2852 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2853 cc.highest_zoneidx);
7f354a54 2854 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2855
97a225e6 2856 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2857 int status;
2858
2859 zone = &pgdat->node_zones[zoneid];
2860 if (!populated_zone(zone))
2861 continue;
2862
2863 if (compaction_deferred(zone, cc.order))
2864 continue;
2865
2866 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2867 COMPACT_CONTINUE)
2868 continue;
2869
172400c6
VB
2870 if (kthread_should_stop())
2871 return;
a94b5252
YS
2872
2873 cc.zone = zone;
5e1f0f09 2874 status = compact_zone(&cc, NULL);
698b1b30 2875
7ceb009a 2876 if (status == COMPACT_SUCCESS) {
698b1b30 2877 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2878 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2879 /*
2880 * Buddy pages may become stranded on pcps that could
2881 * otherwise coalesce on the zone's free area for
2882 * order >= cc.order. This is ratelimited by the
2883 * upcoming deferral.
2884 */
2885 drain_all_pages(zone);
2886
698b1b30
VB
2887 /*
2888 * We use sync migration mode here, so we defer like
2889 * sync direct compaction does.
2890 */
2891 defer_compaction(zone, cc.order);
2892 }
2893
7f354a54
DR
2894 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2895 cc.total_migrate_scanned);
2896 count_compact_events(KCOMPACTD_FREE_SCANNED,
2897 cc.total_free_scanned);
2898
698b1b30
VB
2899 VM_BUG_ON(!list_empty(&cc.freepages));
2900 VM_BUG_ON(!list_empty(&cc.migratepages));
2901 }
2902
2903 /*
2904 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2905 * the requested order/highest_zoneidx in case it was higher/tighter
2906 * than our current ones
698b1b30
VB
2907 */
2908 if (pgdat->kcompactd_max_order <= cc.order)
2909 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2910 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2911 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2912}
2913
97a225e6 2914void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2915{
2916 if (!order)
2917 return;
2918
2919 if (pgdat->kcompactd_max_order < order)
2920 pgdat->kcompactd_max_order = order;
2921
97a225e6
JK
2922 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2923 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2924
6818600f
DB
2925 /*
2926 * Pairs with implicit barrier in wait_event_freezable()
2927 * such that wakeups are not missed.
2928 */
2929 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2930 return;
2931
2932 if (!kcompactd_node_suitable(pgdat))
2933 return;
2934
2935 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2936 highest_zoneidx);
698b1b30
VB
2937 wake_up_interruptible(&pgdat->kcompactd_wait);
2938}
2939
2940/*
2941 * The background compaction daemon, started as a kernel thread
2942 * from the init process.
2943 */
2944static int kcompactd(void *p)
2945{
68d68ff6 2946 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2947 struct task_struct *tsk = current;
e1e92bfa
CTR
2948 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2949 long timeout = default_timeout;
698b1b30
VB
2950
2951 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2952
2953 if (!cpumask_empty(cpumask))
2954 set_cpus_allowed_ptr(tsk, cpumask);
2955
2956 set_freezable();
2957
2958 pgdat->kcompactd_max_order = 0;
97a225e6 2959 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2960
2961 while (!kthread_should_stop()) {
eb414681
JW
2962 unsigned long pflags;
2963
65d759c8
CTR
2964 /*
2965 * Avoid the unnecessary wakeup for proactive compaction
2966 * when it is disabled.
2967 */
2968 if (!sysctl_compaction_proactiveness)
2969 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2970 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2971 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2972 kcompactd_work_requested(pgdat), timeout) &&
2973 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2974
2975 psi_memstall_enter(&pflags);
2976 kcompactd_do_work(pgdat);
2977 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2978 /*
2979 * Reset the timeout value. The defer timeout from
2980 * proactive compaction is lost here but that is fine
2981 * as the condition of the zone changing substantionally
2982 * then carrying on with the previous defer interval is
2983 * not useful.
2984 */
2985 timeout = default_timeout;
facdaa91
NG
2986 continue;
2987 }
698b1b30 2988
e1e92bfa
CTR
2989 /*
2990 * Start the proactive work with default timeout. Based
2991 * on the fragmentation score, this timeout is updated.
2992 */
2993 timeout = default_timeout;
facdaa91
NG
2994 if (should_proactive_compact_node(pgdat)) {
2995 unsigned int prev_score, score;
2996
facdaa91
NG
2997 prev_score = fragmentation_score_node(pgdat);
2998 proactive_compact_node(pgdat);
2999 score = fragmentation_score_node(pgdat);
3000 /*
3001 * Defer proactive compaction if the fragmentation
3002 * score did not go down i.e. no progress made.
3003 */
e1e92bfa
CTR
3004 if (unlikely(score >= prev_score))
3005 timeout =
3006 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3007 }
65d759c8
CTR
3008 if (unlikely(pgdat->proactive_compact_trigger))
3009 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3010 }
3011
3012 return 0;
3013}
3014
3015/*
3016 * This kcompactd start function will be called by init and node-hot-add.
3017 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3018 */
3019int kcompactd_run(int nid)
3020{
3021 pg_data_t *pgdat = NODE_DATA(nid);
3022 int ret = 0;
3023
3024 if (pgdat->kcompactd)
3025 return 0;
3026
3027 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3028 if (IS_ERR(pgdat->kcompactd)) {
3029 pr_err("Failed to start kcompactd on node %d\n", nid);
3030 ret = PTR_ERR(pgdat->kcompactd);
3031 pgdat->kcompactd = NULL;
3032 }
3033 return ret;
3034}
3035
3036/*
3037 * Called by memory hotplug when all memory in a node is offlined. Caller must
3038 * hold mem_hotplug_begin/end().
3039 */
3040void kcompactd_stop(int nid)
3041{
3042 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3043
3044 if (kcompactd) {
3045 kthread_stop(kcompactd);
3046 NODE_DATA(nid)->kcompactd = NULL;
3047 }
3048}
3049
3050/*
3051 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3052 * not required for correctness. So if the last cpu in a node goes
3053 * away, we get changed to run anywhere: as the first one comes back,
3054 * restore their cpu bindings.
3055 */
e46b1db2 3056static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3057{
3058 int nid;
3059
e46b1db2
AMG
3060 for_each_node_state(nid, N_MEMORY) {
3061 pg_data_t *pgdat = NODE_DATA(nid);
3062 const struct cpumask *mask;
698b1b30 3063
e46b1db2 3064 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3065
e46b1db2
AMG
3066 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3067 /* One of our CPUs online: restore mask */
3068 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3069 }
e46b1db2 3070 return 0;
698b1b30
VB
3071}
3072
3073static int __init kcompactd_init(void)
3074{
3075 int nid;
e46b1db2
AMG
3076 int ret;
3077
3078 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3079 "mm/compaction:online",
3080 kcompactd_cpu_online, NULL);
3081 if (ret < 0) {
3082 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3083 return ret;
3084 }
698b1b30
VB
3085
3086 for_each_node_state(nid, N_MEMORY)
3087 kcompactd_run(nid);
698b1b30
VB
3088 return 0;
3089}
3090subsys_initcall(kcompactd_init)
3091
ff9543fd 3092#endif /* CONFIG_COMPACTION */