ata: sata_mv: Fix PCI device ID table declaration compilation warning
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
ee6f62fd
ZY
43
44/*
45 * order == -1 is expected when compacting proactively via
46 * 1. /proc/sys/vm/compact_memory
47 * 2. /sys/devices/system/node/nodex/compact
48 * 3. /proc/sys/vm/compaction_proactiveness
49 */
50static inline bool is_via_compact_memory(int order)
51{
52 return order == -1;
53}
54
010fc29a
MK
55#else
56#define count_compact_event(item) do { } while (0)
57#define count_compact_events(item, delta) do { } while (0)
ee6f62fd 58static inline bool is_via_compact_memory(int order) { return false; }
010fc29a
MK
59#endif
60
ff9543fd
MN
61#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62
b7aba698
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/compaction.h>
65
06b6640a
VB
66#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
67#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 68
facdaa91
NG
69/*
70 * Page order with-respect-to which proactive compaction
71 * calculates external fragmentation, which is used as
72 * the "fragmentation score" of a node/zone.
73 */
74#if defined CONFIG_TRANSPARENT_HUGEPAGE
75#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 76#elif defined CONFIG_HUGETLBFS
facdaa91
NG
77#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
78#else
79#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
80#endif
81
733aea0b 82static void split_map_pages(struct list_head *freepages)
748446bb 83{
733aea0b 84 unsigned int i, order;
748446bb 85 struct page *page, *next;
733aea0b 86 LIST_HEAD(tmp_list);
748446bb 87
733aea0b
ZY
88 for (order = 0; order < NR_PAGE_ORDERS; order++) {
89 list_for_each_entry_safe(page, next, &freepages[order], lru) {
90 unsigned int nr_pages;
748446bb 91
733aea0b
ZY
92 list_del(&page->lru);
93
94 nr_pages = 1 << order;
95
96 post_alloc_hook(page, order, __GFP_MOVABLE);
97 if (order)
98 split_page(page, order);
99
100 for (i = 0; i < nr_pages; i++) {
101 list_add(&page->lru, &tmp_list);
102 page++;
103 }
104 }
105 list_splice_init(&tmp_list, &freepages[0]);
106 }
748446bb
MG
107}
108
733aea0b 109static unsigned long release_free_list(struct list_head *freepages)
ff9543fd 110{
733aea0b
ZY
111 int order;
112 unsigned long high_pfn = 0;
66c64223 113
733aea0b
ZY
114 for (order = 0; order < NR_PAGE_ORDERS; order++) {
115 struct page *page, *next;
66c64223 116
733aea0b
ZY
117 list_for_each_entry_safe(page, next, &freepages[order], lru) {
118 unsigned long pfn = page_to_pfn(page);
ff9543fd 119
733aea0b
ZY
120 list_del(&page->lru);
121 /*
122 * Convert free pages into post allocation pages, so
123 * that we can free them via __free_page.
124 */
125 post_alloc_hook(page, order, __GFP_MOVABLE);
126 __free_pages(page, order);
127 if (pfn > high_pfn)
128 high_pfn = pfn;
66c64223 129 }
ff9543fd 130 }
733aea0b 131 return high_pfn;
ff9543fd
MN
132}
133
bb13ffeb 134#ifdef CONFIG_COMPACTION
68f2736a 135bool PageMovable(struct page *page)
bda807d4 136{
68f2736a 137 const struct movable_operations *mops;
bda807d4
MK
138
139 VM_BUG_ON_PAGE(!PageLocked(page), page);
140 if (!__PageMovable(page))
68f2736a 141 return false;
bda807d4 142
68f2736a
MWO
143 mops = page_movable_ops(page);
144 if (mops)
145 return true;
bda807d4 146
68f2736a 147 return false;
bda807d4 148}
bda807d4 149
68f2736a 150void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
151{
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
153 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
154 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
155}
156EXPORT_SYMBOL(__SetPageMovable);
157
158void __ClearPageMovable(struct page *page)
159{
bda807d4
MK
160 VM_BUG_ON_PAGE(!PageMovable(page), page);
161 /*
68f2736a
MWO
162 * This page still has the type of a movable page, but it's
163 * actually not movable any more.
bda807d4 164 */
68f2736a 165 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
166}
167EXPORT_SYMBOL(__ClearPageMovable);
168
24e2716f
JK
169/* Do not skip compaction more than 64 times */
170#define COMPACT_MAX_DEFER_SHIFT 6
171
172/*
173 * Compaction is deferred when compaction fails to result in a page
860b3272 174 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
175 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
176 */
2271b016 177static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
178{
179 zone->compact_considered = 0;
180 zone->compact_defer_shift++;
181
182 if (order < zone->compact_order_failed)
183 zone->compact_order_failed = order;
184
185 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
186 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
187
188 trace_mm_compaction_defer_compaction(zone, order);
189}
190
191/* Returns true if compaction should be skipped this time */
2271b016 192static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
193{
194 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
195
196 if (order < zone->compact_order_failed)
197 return false;
198
199 /* Avoid possible overflow */
62b35fe0 200 if (++zone->compact_considered >= defer_limit) {
24e2716f 201 zone->compact_considered = defer_limit;
24e2716f 202 return false;
62b35fe0 203 }
24e2716f
JK
204
205 trace_mm_compaction_deferred(zone, order);
206
207 return true;
208}
209
210/*
211 * Update defer tracking counters after successful compaction of given order,
212 * which means an allocation either succeeded (alloc_success == true) or is
213 * expected to succeed.
214 */
215void compaction_defer_reset(struct zone *zone, int order,
216 bool alloc_success)
217{
218 if (alloc_success) {
219 zone->compact_considered = 0;
220 zone->compact_defer_shift = 0;
221 }
222 if (order >= zone->compact_order_failed)
223 zone->compact_order_failed = order + 1;
224
225 trace_mm_compaction_defer_reset(zone, order);
226}
227
228/* Returns true if restarting compaction after many failures */
2271b016 229static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
230{
231 if (order < zone->compact_order_failed)
232 return false;
233
234 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
235 zone->compact_considered >= 1UL << zone->compact_defer_shift;
236}
237
bb13ffeb
MG
238/* Returns true if the pageblock should be scanned for pages to isolate. */
239static inline bool isolation_suitable(struct compact_control *cc,
240 struct page *page)
241{
242 if (cc->ignore_skip_hint)
243 return true;
244
245 return !get_pageblock_skip(page);
246}
247
02333641
VB
248static void reset_cached_positions(struct zone *zone)
249{
250 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
251 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 252 zone->compact_cached_free_pfn =
06b6640a 253 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
254}
255
9721fd82
BW
256#ifdef CONFIG_SPARSEMEM
257/*
258 * If the PFN falls into an offline section, return the start PFN of the
259 * next online section. If the PFN falls into an online section or if
260 * there is no next online section, return 0.
261 */
262static unsigned long skip_offline_sections(unsigned long start_pfn)
263{
264 unsigned long start_nr = pfn_to_section_nr(start_pfn);
265
266 if (online_section_nr(start_nr))
267 return 0;
268
269 while (++start_nr <= __highest_present_section_nr) {
270 if (online_section_nr(start_nr))
271 return section_nr_to_pfn(start_nr);
272 }
273
274 return 0;
275}
e6e0c767
BW
276
277/*
278 * If the PFN falls into an offline section, return the end PFN of the
279 * next online section in reverse. If the PFN falls into an online section
280 * or if there is no next online section in reverse, return 0.
281 */
282static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
283{
284 unsigned long start_nr = pfn_to_section_nr(start_pfn);
285
286 if (!start_nr || online_section_nr(start_nr))
287 return 0;
288
289 while (start_nr-- > 0) {
290 if (online_section_nr(start_nr))
291 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
292 }
293
294 return 0;
295}
9721fd82
BW
296#else
297static unsigned long skip_offline_sections(unsigned long start_pfn)
298{
299 return 0;
300}
e6e0c767
BW
301
302static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
303{
304 return 0;
305}
9721fd82
BW
306#endif
307
21dc7e02 308/*
2271b016 309 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
310 * released. It is always pointless to compact pages of such order (if they are
311 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 312 */
b527cfe5 313static bool pageblock_skip_persistent(struct page *page)
21dc7e02 314{
b527cfe5 315 if (!PageCompound(page))
21dc7e02 316 return false;
b527cfe5
VB
317
318 page = compound_head(page);
319
320 if (compound_order(page) >= pageblock_order)
321 return true;
322
323 return false;
21dc7e02
DR
324}
325
e332f741
MG
326static bool
327__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
328 bool check_target)
329{
330 struct page *page = pfn_to_online_page(pfn);
6b0868c8 331 struct page *block_page;
e332f741
MG
332 struct page *end_page;
333 unsigned long block_pfn;
334
335 if (!page)
336 return false;
337 if (zone != page_zone(page))
338 return false;
339 if (pageblock_skip_persistent(page))
340 return false;
341
342 /*
343 * If skip is already cleared do no further checking once the
344 * restart points have been set.
345 */
346 if (check_source && check_target && !get_pageblock_skip(page))
347 return true;
348
349 /*
350 * If clearing skip for the target scanner, do not select a
351 * non-movable pageblock as the starting point.
352 */
353 if (!check_source && check_target &&
354 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
355 return false;
356
6b0868c8
MG
357 /* Ensure the start of the pageblock or zone is online and valid */
358 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
359 block_pfn = max(block_pfn, zone->zone_start_pfn);
360 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
361 if (block_page) {
362 page = block_page;
363 pfn = block_pfn;
364 }
365
366 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 367 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
368 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
369 end_page = pfn_to_online_page(block_pfn);
370 if (!end_page)
371 return false;
372
e332f741
MG
373 /*
374 * Only clear the hint if a sample indicates there is either a
375 * free page or an LRU page in the block. One or other condition
376 * is necessary for the block to be a migration source/target.
377 */
e332f741 378 do {
859a85dd
MR
379 if (check_source && PageLRU(page)) {
380 clear_pageblock_skip(page);
381 return true;
382 }
e332f741 383
859a85dd
MR
384 if (check_target && PageBuddy(page)) {
385 clear_pageblock_skip(page);
386 return true;
e332f741
MG
387 }
388
389 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 390 } while (page <= end_page);
e332f741
MG
391
392 return false;
393}
394
bb13ffeb
MG
395/*
396 * This function is called to clear all cached information on pageblocks that
397 * should be skipped for page isolation when the migrate and free page scanner
398 * meet.
399 */
62997027 400static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 401{
e332f741 402 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 403 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
404 unsigned long reset_migrate = free_pfn;
405 unsigned long reset_free = migrate_pfn;
406 bool source_set = false;
407 bool free_set = false;
408
8df4e28c 409 /* Only flush if a full compaction finished recently */
e332f741
MG
410 if (!zone->compact_blockskip_flush)
411 return;
bb13ffeb 412
62997027 413 zone->compact_blockskip_flush = false;
bb13ffeb 414
e332f741
MG
415 /*
416 * Walk the zone and update pageblock skip information. Source looks
417 * for PageLRU while target looks for PageBuddy. When the scanner
418 * is found, both PageBuddy and PageLRU are checked as the pageblock
419 * is suitable as both source and target.
420 */
421 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
422 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
423 cond_resched();
424
e332f741
MG
425 /* Update the migrate PFN */
426 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
427 migrate_pfn < reset_migrate) {
428 source_set = true;
429 reset_migrate = migrate_pfn;
430 zone->compact_init_migrate_pfn = reset_migrate;
431 zone->compact_cached_migrate_pfn[0] = reset_migrate;
432 zone->compact_cached_migrate_pfn[1] = reset_migrate;
433 }
bb13ffeb 434
e332f741
MG
435 /* Update the free PFN */
436 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
437 free_pfn > reset_free) {
438 free_set = true;
439 reset_free = free_pfn;
440 zone->compact_init_free_pfn = reset_free;
441 zone->compact_cached_free_pfn = reset_free;
442 }
bb13ffeb 443 }
02333641 444
e332f741
MG
445 /* Leave no distance if no suitable block was reset */
446 if (reset_migrate >= reset_free) {
447 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
448 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
449 zone->compact_cached_free_pfn = free_pfn;
450 }
bb13ffeb
MG
451}
452
62997027
MG
453void reset_isolation_suitable(pg_data_t *pgdat)
454{
455 int zoneid;
456
457 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
458 struct zone *zone = &pgdat->node_zones[zoneid];
459 if (!populated_zone(zone))
460 continue;
461
8df4e28c 462 __reset_isolation_suitable(zone);
62997027
MG
463 }
464}
465
e380bebe
MG
466/*
467 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
468 * locks are not required for read/writers. Returns true if it was already set.
469 */
590ccea8 470static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
471{
472 bool skip;
473
590ccea8 474 /* Do not update if skip hint is being ignored */
e380bebe
MG
475 if (cc->ignore_skip_hint)
476 return false;
477
e380bebe
MG
478 skip = get_pageblock_skip(page);
479 if (!skip && !cc->no_set_skip_hint)
480 set_pageblock_skip(page);
481
482 return skip;
483}
484
485static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
486{
487 struct zone *zone = cc->zone;
488
e380bebe
MG
489 /* Set for isolation rather than compaction */
490 if (cc->no_set_skip_hint)
491 return;
492
3c099a2b
KS
493 pfn = pageblock_end_pfn(pfn);
494
cf043a00 495 /* Update where async and sync compaction should restart */
e380bebe
MG
496 if (pfn > zone->compact_cached_migrate_pfn[0])
497 zone->compact_cached_migrate_pfn[0] = pfn;
498 if (cc->mode != MIGRATE_ASYNC &&
499 pfn > zone->compact_cached_migrate_pfn[1])
500 zone->compact_cached_migrate_pfn[1] = pfn;
501}
502
bb13ffeb
MG
503/*
504 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 505 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 506 */
c89511ab 507static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 508 struct page *page, unsigned long pfn)
bb13ffeb 509{
c89511ab 510 struct zone *zone = cc->zone;
6815bf3f 511
2583d671 512 if (cc->no_set_skip_hint)
6815bf3f
JK
513 return;
514
edc2ca61 515 set_pageblock_skip(page);
c89511ab 516
e380bebe
MG
517 if (pfn < zone->compact_cached_free_pfn)
518 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
519}
520#else
521static inline bool isolation_suitable(struct compact_control *cc,
522 struct page *page)
523{
524 return true;
525}
526
b527cfe5 527static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
528{
529 return false;
530}
531
532static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 533 struct page *page, unsigned long pfn)
bb13ffeb
MG
534{
535}
e380bebe
MG
536
537static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
538{
539}
540
590ccea8 541static bool test_and_set_skip(struct compact_control *cc, struct page *page)
e380bebe
MG
542{
543 return false;
544}
bb13ffeb
MG
545#endif /* CONFIG_COMPACTION */
546
8b44d279
VB
547/*
548 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
549 * very heavily contended. For async compaction, trylock and record if the
550 * lock is contended. The lock will still be acquired but compaction will
551 * abort when the current block is finished regardless of success rate.
552 * Sync compaction acquires the lock.
8b44d279 553 *
cb2dcaf0 554 * Always returns true which makes it easier to track lock state in callers.
8b44d279 555 */
cb2dcaf0 556static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 557 struct compact_control *cc)
77337ede 558 __acquires(lock)
2a1402aa 559{
cb2dcaf0
MG
560 /* Track if the lock is contended in async mode */
561 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
562 if (spin_trylock_irqsave(lock, *flags))
563 return true;
564
565 cc->contended = true;
8b44d279 566 }
1f9efdef 567
cb2dcaf0 568 spin_lock_irqsave(lock, *flags);
8b44d279 569 return true;
2a1402aa
MG
570}
571
c67fe375
MG
572/*
573 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
574 * very heavily contended. The lock should be periodically unlocked to avoid
575 * having disabled IRQs for a long time, even when there is nobody waiting on
576 * the lock. It might also be that allowing the IRQs will result in
d56c1584 577 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
578 * Either compaction type will also abort if a fatal signal is pending.
579 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 580 *
d56c1584
ML
581 * Returns true if compaction should abort due to fatal signal pending.
582 * Returns false when compaction can continue.
c67fe375 583 */
8b44d279
VB
584static bool compact_unlock_should_abort(spinlock_t *lock,
585 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 586{
8b44d279
VB
587 if (*locked) {
588 spin_unlock_irqrestore(lock, flags);
589 *locked = false;
590 }
1f9efdef 591
8b44d279 592 if (fatal_signal_pending(current)) {
c3486f53 593 cc->contended = true;
8b44d279
VB
594 return true;
595 }
c67fe375 596
cf66f070 597 cond_resched();
be976572
VB
598
599 return false;
600}
601
85aa125f 602/*
9e4be470
JM
603 * Isolate free pages onto a private freelist. If @strict is true, will abort
604 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
605 * (even though it may still end up isolating some pages).
85aa125f 606 */
f40d1e42 607static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 608 unsigned long *start_pfn,
85aa125f
MN
609 unsigned long end_pfn,
610 struct list_head *freelist,
4fca9730 611 unsigned int stride,
85aa125f 612 bool strict)
748446bb 613{
b7aba698 614 int nr_scanned = 0, total_isolated = 0;
dc13292c 615 struct page *page;
b8b2d825 616 unsigned long flags = 0;
f40d1e42 617 bool locked = false;
e14c720e 618 unsigned long blockpfn = *start_pfn;
66c64223 619 unsigned int order;
748446bb 620
4fca9730
MG
621 /* Strict mode is for isolation, speed is secondary */
622 if (strict)
623 stride = 1;
624
dc13292c 625 page = pfn_to_page(blockpfn);
748446bb 626
f40d1e42 627 /* Isolate free pages. */
dc13292c 628 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
66c64223 629 int isolated;
748446bb 630
8b44d279
VB
631 /*
632 * Periodically drop the lock (if held) regardless of its
633 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 634 * pending.
8b44d279 635 */
c036ddff 636 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
637 && compact_unlock_should_abort(&cc->zone->lock, flags,
638 &locked, cc))
639 break;
640
b7aba698 641 nr_scanned++;
2af120bc 642
9fcd6d2e
VB
643 /*
644 * For compound pages such as THP and hugetlbfs, we can save
645 * potentially a lot of iterations if we skip them at once.
646 * The check is racy, but we can consider only valid values
647 * and the only danger is skipping too much.
648 */
649 if (PageCompound(page)) {
21dc7e02
DR
650 const unsigned int order = compound_order(page);
651
3da0272a 652 if (blockpfn + (1UL << order) <= end_pfn) {
21dc7e02 653 blockpfn += (1UL << order) - 1;
dc13292c 654 page += (1UL << order) - 1;
56d48d8d 655 nr_scanned += (1UL << order) - 1;
9fcd6d2e 656 }
3da0272a 657
9fcd6d2e
VB
658 goto isolate_fail;
659 }
660
f40d1e42 661 if (!PageBuddy(page))
2af120bc 662 goto isolate_fail;
f40d1e42 663
85f73e6d 664 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 665 if (!locked) {
cb2dcaf0 666 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 667 &flags, cc);
f40d1e42 668
69b7189f
VB
669 /* Recheck this is a buddy page under lock */
670 if (!PageBuddy(page))
671 goto isolate_fail;
672 }
748446bb 673
66c64223 674 /* Found a free page, will break it into order-0 pages */
ab130f91 675 order = buddy_order(page);
66c64223 676 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
677 if (!isolated)
678 break;
66c64223 679 set_page_private(page, order);
a4f04f2c 680
b717d6b9 681 nr_scanned += isolated - 1;
748446bb 682 total_isolated += isolated;
a4f04f2c 683 cc->nr_freepages += isolated;
733aea0b 684 list_add_tail(&page->lru, &freelist[order]);
66c64223 685
a4f04f2c
DR
686 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
687 blockpfn += isolated;
688 break;
748446bb 689 }
a4f04f2c
DR
690 /* Advance to the end of split page */
691 blockpfn += isolated - 1;
dc13292c 692 page += isolated - 1;
a4f04f2c 693 continue;
2af120bc
LA
694
695isolate_fail:
696 if (strict)
697 break;
2af120bc 698
748446bb
MG
699 }
700
a4f04f2c
DR
701 if (locked)
702 spin_unlock_irqrestore(&cc->zone->lock, flags);
703
9fcd6d2e 704 /*
3da0272a 705 * Be careful to not go outside of the pageblock.
9fcd6d2e
VB
706 */
707 if (unlikely(blockpfn > end_pfn))
708 blockpfn = end_pfn;
709
e34d85f0
JK
710 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
711 nr_scanned, total_isolated);
712
e14c720e
VB
713 /* Record how far we have got within the block */
714 *start_pfn = blockpfn;
715
f40d1e42
MG
716 /*
717 * If strict isolation is requested by CMA then check that all the
718 * pages requested were isolated. If there were any failures, 0 is
719 * returned and CMA will fail.
720 */
2af120bc 721 if (strict && blockpfn < end_pfn)
f40d1e42
MG
722 total_isolated = 0;
723
7f354a54 724 cc->total_free_scanned += nr_scanned;
397487db 725 if (total_isolated)
010fc29a 726 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
727 return total_isolated;
728}
729
85aa125f
MN
730/**
731 * isolate_freepages_range() - isolate free pages.
e8b098fc 732 * @cc: Compaction control structure.
85aa125f
MN
733 * @start_pfn: The first PFN to start isolating.
734 * @end_pfn: The one-past-last PFN.
735 *
736 * Non-free pages, invalid PFNs, or zone boundaries within the
737 * [start_pfn, end_pfn) range are considered errors, cause function to
738 * undo its actions and return zero.
739 *
740 * Otherwise, function returns one-past-the-last PFN of isolated page
741 * (which may be greater then end_pfn if end fell in a middle of
742 * a free page).
743 */
ff9543fd 744unsigned long
bb13ffeb
MG
745isolate_freepages_range(struct compact_control *cc,
746 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 747{
e1409c32 748 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
733aea0b
ZY
749 int order;
750 struct list_head tmp_freepages[NR_PAGE_ORDERS];
751
752 for (order = 0; order < NR_PAGE_ORDERS; order++)
753 INIT_LIST_HEAD(&tmp_freepages[order]);
85aa125f 754
7d49d886 755 pfn = start_pfn;
06b6640a 756 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
757 if (block_start_pfn < cc->zone->zone_start_pfn)
758 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 759 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
760
761 for (; pfn < end_pfn; pfn += isolated,
e1409c32 762 block_start_pfn = block_end_pfn,
7d49d886 763 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
764 /* Protect pfn from changing by isolate_freepages_block */
765 unsigned long isolate_start_pfn = pfn;
85aa125f 766
58420016
JK
767 /*
768 * pfn could pass the block_end_pfn if isolated freepage
769 * is more than pageblock order. In this case, we adjust
770 * scanning range to right one.
771 */
772 if (pfn >= block_end_pfn) {
06b6640a
VB
773 block_start_pfn = pageblock_start_pfn(pfn);
774 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
775 }
776
a2864a67
KS
777 block_end_pfn = min(block_end_pfn, end_pfn);
778
e1409c32
JK
779 if (!pageblock_pfn_to_page(block_start_pfn,
780 block_end_pfn, cc->zone))
7d49d886
VB
781 break;
782
e14c720e 783 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733aea0b 784 block_end_pfn, tmp_freepages, 0, true);
85aa125f
MN
785
786 /*
787 * In strict mode, isolate_freepages_block() returns 0 if
788 * there are any holes in the block (ie. invalid PFNs or
789 * non-free pages).
790 */
791 if (!isolated)
792 break;
793
794 /*
795 * If we managed to isolate pages, it is always (1 << n) *
796 * pageblock_nr_pages for some non-negative n. (Max order
797 * page may span two pageblocks).
798 */
799 }
800
85aa125f
MN
801 if (pfn < end_pfn) {
802 /* Loop terminated early, cleanup. */
733aea0b 803 release_free_list(tmp_freepages);
85aa125f
MN
804 return 0;
805 }
806
733aea0b
ZY
807 /* __isolate_free_page() does not map the pages */
808 split_map_pages(tmp_freepages);
809
85aa125f
MN
810 /* We don't use freelists for anything. */
811 return pfn;
812}
813
748446bb 814/* Similar to reclaim, but different enough that they don't share logic */
4fbbb3fd 815static bool too_many_isolated(struct compact_control *cc)
748446bb 816{
4fbbb3fd 817 pg_data_t *pgdat = cc->zone->zone_pgdat;
d818fca1
MG
818 bool too_many;
819
bc693045 820 unsigned long active, inactive, isolated;
748446bb 821
5f438eee
AR
822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
823 node_page_state(pgdat, NR_INACTIVE_ANON);
824 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
825 node_page_state(pgdat, NR_ACTIVE_ANON);
826 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
827 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 828
4fbbb3fd
JW
829 /*
830 * Allow GFP_NOFS to isolate past the limit set for regular
831 * compaction runs. This prevents an ABBA deadlock when other
832 * compactors have already isolated to the limit, but are
833 * blocked on filesystem locks held by the GFP_NOFS thread.
834 */
835 if (cc->gfp_mask & __GFP_FS) {
836 inactive >>= 3;
837 active >>= 3;
838 }
839
d818fca1
MG
840 too_many = isolated > (inactive + active) / 2;
841 if (!too_many)
842 wake_throttle_isolated(pgdat);
843
844 return too_many;
748446bb
MG
845}
846
ee6f62fd
ZY
847/**
848 * skip_isolation_on_order() - determine when to skip folio isolation based on
849 * folio order and compaction target order
850 * @order: to-be-isolated folio order
851 * @target_order: compaction target order
852 *
853 * This avoids unnecessary folio isolations during compaction.
854 */
855static bool skip_isolation_on_order(int order, int target_order)
856{
857 /*
858 * Unless we are performing global compaction (i.e.,
859 * is_via_compact_memory), skip any folios that are larger than the
860 * target order: we wouldn't be here if we'd have a free folio with
861 * the desired target_order, so migrating this folio would likely fail
862 * later.
863 */
864 if (!is_via_compact_memory(target_order) && order >= target_order)
865 return true;
866 /*
867 * We limit memory compaction to pageblocks and won't try
868 * creating free blocks of memory that are larger than that.
869 */
870 return order >= pageblock_order;
871}
872
2fe86e00 873/**
edc2ca61
VB
874 * isolate_migratepages_block() - isolate all migrate-able pages within
875 * a single pageblock
2fe86e00 876 * @cc: Compaction control structure.
edc2ca61
VB
877 * @low_pfn: The first PFN to isolate
878 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 879 * @mode: Isolation mode to be used.
2fe86e00
MN
880 *
881 * Isolate all pages that can be migrated from the range specified by
edc2ca61 882 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 883 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 884 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 885 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 886 *
edc2ca61 887 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 888 * and cc->nr_migratepages is updated accordingly.
748446bb 889 */
c2ad7a1f 890static int
edc2ca61 891isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 892 unsigned long end_pfn, isolate_mode_t mode)
748446bb 893{
5f438eee 894 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 895 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 896 struct lruvec *lruvec;
b8b2d825 897 unsigned long flags = 0;
6168d0da 898 struct lruvec *locked = NULL;
56ae0bb3 899 struct folio *folio = NULL;
bb13ffeb 900 struct page *page = NULL, *valid_page = NULL;
89f6c88a 901 struct address_space *mapping;
e34d85f0 902 unsigned long start_pfn = low_pfn;
fdd048e1
VB
903 bool skip_on_failure = false;
904 unsigned long next_skip_pfn = 0;
e380bebe 905 bool skip_updated = false;
c2ad7a1f
OS
906 int ret = 0;
907
908 cc->migrate_pfn = low_pfn;
748446bb 909
748446bb
MG
910 /*
911 * Ensure that there are not too many pages isolated from the LRU
912 * list by either parallel reclaimers or compaction. If there are,
913 * delay for some time until fewer pages are isolated
914 */
4fbbb3fd 915 while (unlikely(too_many_isolated(cc))) {
d20bdd57
ZY
916 /* stop isolation if there are still pages not migrated */
917 if (cc->nr_migratepages)
c2ad7a1f 918 return -EAGAIN;
d20bdd57 919
f9e35b3b 920 /* async migration should just abort */
e0b9daeb 921 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 922 return -EAGAIN;
f9e35b3b 923
c3f4a9a2 924 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
925
926 if (fatal_signal_pending(current))
c2ad7a1f 927 return -EINTR;
748446bb
MG
928 }
929
cf66f070 930 cond_resched();
aeef4b83 931
fdd048e1
VB
932 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
933 skip_on_failure = true;
934 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
935 }
936
748446bb 937 /* Time to isolate some pages for migration */
748446bb 938 for (; low_pfn < end_pfn; low_pfn++) {
0003e2a4 939 bool is_dirty, is_unevictable;
29c0dde8 940
fdd048e1
VB
941 if (skip_on_failure && low_pfn >= next_skip_pfn) {
942 /*
943 * We have isolated all migration candidates in the
944 * previous order-aligned block, and did not skip it due
945 * to failure. We should migrate the pages now and
946 * hopefully succeed compaction.
947 */
948 if (nr_isolated)
949 break;
950
951 /*
952 * We failed to isolate in the previous order-aligned
953 * block. Set the new boundary to the end of the
954 * current block. Note we can't simply increase
955 * next_skip_pfn by 1 << order, as low_pfn might have
956 * been incremented by a higher number due to skipping
957 * a compound or a high-order buddy page in the
958 * previous loop iteration.
959 */
960 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
961 }
962
8b44d279
VB
963 /*
964 * Periodically drop the lock (if held) regardless of its
670105a2
MG
965 * contention, to give chance to IRQs. Abort completely if
966 * a fatal signal is pending.
8b44d279 967 */
c036ddff 968 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
969 if (locked) {
970 unlock_page_lruvec_irqrestore(locked, flags);
971 locked = NULL;
972 }
973
974 if (fatal_signal_pending(current)) {
975 cc->contended = true;
c2ad7a1f 976 ret = -EINTR;
6168d0da 977
6168d0da
AS
978 goto fatal_pending;
979 }
980
981 cond_resched();
670105a2 982 }
c67fe375 983
b7aba698 984 nr_scanned++;
748446bb 985
748446bb 986 page = pfn_to_page(low_pfn);
dc908600 987
e380bebe
MG
988 /*
989 * Check if the pageblock has already been marked skipped.
493614da 990 * Only the first PFN is checked as the caller isolates
e380bebe
MG
991 * COMPACT_CLUSTER_MAX at a time so the second call must
992 * not falsely conclude that the block should be skipped.
993 */
493614da
JW
994 if (!valid_page && (pageblock_aligned(low_pfn) ||
995 low_pfn == cc->zone->zone_start_pfn)) {
4af12d04 996 if (!isolation_suitable(cc, page)) {
e380bebe 997 low_pfn = end_pfn;
56ae0bb3 998 folio = NULL;
e380bebe
MG
999 goto isolate_abort;
1000 }
bb13ffeb 1001 valid_page = page;
e380bebe 1002 }
bb13ffeb 1003
ee6f62fd
ZY
1004 if (PageHuge(page)) {
1005 /*
1006 * skip hugetlbfs if we are not compacting for pages
1007 * bigger than its order. THPs and other compound pages
1008 * are handled below.
1009 */
1010 if (!cc->alloc_contig) {
1011 const unsigned int order = compound_order(page);
1012
1013 if (order <= MAX_PAGE_ORDER) {
1014 low_pfn += (1UL << order) - 1;
1015 nr_scanned += (1UL << order) - 1;
1016 }
1017 goto isolate_fail;
1018 }
1019 /* for alloc_contig case */
1c06b6a5
BW
1020 if (locked) {
1021 unlock_page_lruvec_irqrestore(locked, flags);
1022 locked = NULL;
1023 }
1024
ae37c7ff 1025 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
1026
1027 /*
1028 * Fail isolation in case isolate_or_dissolve_huge_page()
1029 * reports an error. In case of -ENOMEM, abort right away.
1030 */
1031 if (ret < 0) {
1032 /* Do not report -EBUSY down the chain */
1033 if (ret == -EBUSY)
1034 ret = 0;
66fe1cf7 1035 low_pfn += compound_nr(page) - 1;
56d48d8d 1036 nr_scanned += compound_nr(page) - 1;
369fa227
OS
1037 goto isolate_fail;
1038 }
1039
ae37c7ff
OS
1040 if (PageHuge(page)) {
1041 /*
1042 * Hugepage was successfully isolated and placed
1043 * on the cc->migratepages list.
1044 */
56ae0bb3
KW
1045 folio = page_folio(page);
1046 low_pfn += folio_nr_pages(folio) - 1;
ae37c7ff
OS
1047 goto isolate_success_no_list;
1048 }
1049
369fa227
OS
1050 /*
1051 * Ok, the hugepage was dissolved. Now these pages are
1052 * Buddy and cannot be re-allocated because they are
1053 * isolated. Fall-through as the check below handles
1054 * Buddy pages.
1055 */
1056 }
1057
6c14466c 1058 /*
99c0fd5e
VB
1059 * Skip if free. We read page order here without zone lock
1060 * which is generally unsafe, but the race window is small and
1061 * the worst thing that can happen is that we skip some
1062 * potential isolation targets.
6c14466c 1063 */
99c0fd5e 1064 if (PageBuddy(page)) {
ab130f91 1065 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
1066
1067 /*
1068 * Without lock, we cannot be sure that what we got is
1069 * a valid page order. Consider only values in the
1070 * valid order range to prevent low_pfn overflow.
1071 */
5e0a760b 1072 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
99c0fd5e 1073 low_pfn += (1UL << freepage_order) - 1;
56d48d8d
BW
1074 nr_scanned += (1UL << freepage_order) - 1;
1075 }
748446bb 1076 continue;
99c0fd5e 1077 }
748446bb 1078
bc835011 1079 /*
ee6f62fd
ZY
1080 * Regardless of being on LRU, compound pages such as THP
1081 * (hugetlbfs is handled above) are not to be compacted unless
1082 * we are attempting an allocation larger than the compound
1083 * page size. We can potentially save a lot of iterations if we
1084 * skip them at once. The check is racy, but we can consider
1085 * only valid values and the only danger is skipping too much.
bc835011 1086 */
1da2f328 1087 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 1088 const unsigned int order = compound_order(page);
edc2ca61 1089
ee6f62fd
ZY
1090 /* Skip based on page order and compaction target order. */
1091 if (skip_isolation_on_order(order, cc->order)) {
1092 if (order <= MAX_PAGE_ORDER) {
1093 low_pfn += (1UL << order) - 1;
1094 nr_scanned += (1UL << order) - 1;
1095 }
1096 goto isolate_fail;
56d48d8d 1097 }
2a1402aa
MG
1098 }
1099
bda807d4
MK
1100 /*
1101 * Check may be lockless but that's ok as we recheck later.
1102 * It's possible to migrate LRU and non-lru movable pages.
1103 * Skip any other type of page
1104 */
1105 if (!PageLRU(page)) {
bda807d4
MK
1106 /*
1107 * __PageMovable can return false positive so we need
1108 * to verify it under page_lock.
1109 */
1110 if (unlikely(__PageMovable(page)) &&
1111 !PageIsolated(page)) {
1112 if (locked) {
6168d0da
AS
1113 unlock_page_lruvec_irqrestore(locked, flags);
1114 locked = NULL;
bda807d4
MK
1115 }
1116
56ae0bb3
KW
1117 if (isolate_movable_page(page, mode)) {
1118 folio = page_folio(page);
bda807d4 1119 goto isolate_success;
56ae0bb3 1120 }
bda807d4
MK
1121 }
1122
fdd048e1 1123 goto isolate_fail;
bda807d4 1124 }
29c0dde8 1125
829ae0f8
GS
1126 /*
1127 * Be careful not to clear PageLRU until after we're
1128 * sure the page is not being freed elsewhere -- the
1129 * page release code relies on it.
1130 */
56ae0bb3
KW
1131 folio = folio_get_nontail_page(page);
1132 if (unlikely(!folio))
829ae0f8
GS
1133 goto isolate_fail;
1134
119d6d59
DR
1135 /*
1136 * Migration will fail if an anonymous page is pinned in memory,
1137 * so avoid taking lru_lock and isolating it unnecessarily in an
1138 * admittedly racy check.
1139 */
56ae0bb3
KW
1140 mapping = folio_mapping(folio);
1141 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
829ae0f8 1142 goto isolate_fail_put;
119d6d59 1143
73e64c51
MH
1144 /*
1145 * Only allow to migrate anonymous pages in GFP_NOFS context
1146 * because those do not depend on fs locks.
1147 */
89f6c88a 1148 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1149 goto isolate_fail_put;
9df41314 1150
89f6c88a 1151 /* Only take pages on LRU: a check now makes later tests safe */
56ae0bb3 1152 if (!folio_test_lru(folio))
89f6c88a
HD
1153 goto isolate_fail_put;
1154
0003e2a4
SC
1155 is_unevictable = folio_test_unevictable(folio);
1156
89f6c88a 1157 /* Compaction might skip unevictable pages but CMA takes them */
0003e2a4 1158 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
89f6c88a
HD
1159 goto isolate_fail_put;
1160
1161 /*
1162 * To minimise LRU disruption, the caller can indicate with
1163 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1164 * it will be able to migrate without blocking - clean pages
1165 * for the most part. PageWriteback would require blocking.
1166 */
56ae0bb3 1167 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
9df41314
AS
1168 goto isolate_fail_put;
1169
0003e2a4
SC
1170 is_dirty = folio_test_dirty(folio);
1171
1172 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1173 (mapping && is_unevictable)) {
1174 bool migrate_dirty = true;
1175 bool is_unmovable;
89f6c88a
HD
1176
1177 /*
866ff801 1178 * Only folios without mappings or that have
0003e2a4
SC
1179 * a ->migrate_folio callback are possible to migrate
1180 * without blocking.
1181 *
1182 * Folios from unmovable mappings are not migratable.
1183 *
1184 * However, we can be racing with truncation, which can
1185 * free the mapping that we need to check. Truncation
1186 * holds the folio lock until after the folio is removed
1187 * from the page so holding it ourselves is sufficient.
1188 *
1189 * To avoid locking the folio just to check unmovable,
1190 * assume every unmovable folio is also unevictable,
1191 * which is a cheaper test. If our assumption goes
1192 * wrong, it's not a correctness bug, just potentially
1193 * wasted cycles.
89f6c88a 1194 */
56ae0bb3 1195 if (!folio_trylock(folio))
89f6c88a
HD
1196 goto isolate_fail_put;
1197
56ae0bb3 1198 mapping = folio_mapping(folio);
0003e2a4
SC
1199 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1200 migrate_dirty = !mapping ||
1201 mapping->a_ops->migrate_folio;
1202 }
1203 is_unmovable = mapping && mapping_unmovable(mapping);
56ae0bb3 1204 folio_unlock(folio);
0003e2a4 1205 if (!migrate_dirty || is_unmovable)
89f6c88a
HD
1206 goto isolate_fail_put;
1207 }
1208
56ae0bb3
KW
1209 /* Try isolate the folio */
1210 if (!folio_test_clear_lru(folio))
9df41314
AS
1211 goto isolate_fail_put;
1212
56ae0bb3 1213 lruvec = folio_lruvec(folio);
6168d0da 1214
69b7189f 1215 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1216 if (lruvec != locked) {
1217 if (locked)
1218 unlock_page_lruvec_irqrestore(locked, flags);
1219
1220 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1221 locked = lruvec;
6168d0da 1222
56ae0bb3 1223 lruvec_memcg_debug(lruvec, folio);
e380bebe 1224
590ccea8
MG
1225 /*
1226 * Try get exclusive access under lock. If marked for
1227 * skip, the scan is aborted unless the current context
1228 * is a rescan to reach the end of the pageblock.
1229 */
1230 if (!skip_updated && valid_page) {
e380bebe 1231 skip_updated = true;
590ccea8
MG
1232 if (test_and_set_skip(cc, valid_page) &&
1233 !cc->finish_pageblock) {
7545e2f2 1234 low_pfn = end_pfn;
e380bebe 1235 goto isolate_abort;
590ccea8 1236 }
e380bebe 1237 }
2a1402aa 1238
29c0dde8 1239 /*
ee6f62fd 1240 * Check LRU folio order under the lock
29c0dde8 1241 */
ee6f62fd
ZY
1242 if (unlikely(skip_isolation_on_order(folio_order(folio),
1243 cc->order) &&
1244 !cc->alloc_contig)) {
56ae0bb3
KW
1245 low_pfn += folio_nr_pages(folio) - 1;
1246 nr_scanned += folio_nr_pages(folio) - 1;
1247 folio_set_lru(folio);
9df41314 1248 goto isolate_fail_put;
69b7189f 1249 }
d99fd5fe 1250 }
fa9add64 1251
56ae0bb3
KW
1252 /* The folio is taken off the LRU */
1253 if (folio_test_large(folio))
1254 low_pfn += folio_nr_pages(folio) - 1;
bc835011 1255
748446bb 1256 /* Successfully isolated */
56ae0bb3
KW
1257 lruvec_del_folio(lruvec, folio);
1258 node_stat_mod_folio(folio,
1259 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1260 folio_nr_pages(folio));
b6c75016
JK
1261
1262isolate_success:
56ae0bb3 1263 list_add(&folio->lru, &cc->migratepages);
ae37c7ff 1264isolate_success_no_list:
56ae0bb3
KW
1265 cc->nr_migratepages += folio_nr_pages(folio);
1266 nr_isolated += folio_nr_pages(folio);
1267 nr_scanned += folio_nr_pages(folio) - 1;
748446bb 1268
804d3121
MG
1269 /*
1270 * Avoid isolating too much unless this block is being
48731c84 1271 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
cb2dcaf0
MG
1272 * or a lock is contended. For contention, isolate quickly to
1273 * potentially remove one source of contention.
804d3121 1274 */
38935861 1275 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
48731c84 1276 !cc->finish_pageblock && !cc->contended) {
31b8384a 1277 ++low_pfn;
748446bb 1278 break;
31b8384a 1279 }
fdd048e1
VB
1280
1281 continue;
9df41314
AS
1282
1283isolate_fail_put:
1284 /* Avoid potential deadlock in freeing page under lru_lock */
1285 if (locked) {
6168d0da
AS
1286 unlock_page_lruvec_irqrestore(locked, flags);
1287 locked = NULL;
9df41314 1288 }
56ae0bb3 1289 folio_put(folio);
9df41314 1290
fdd048e1 1291isolate_fail:
369fa227 1292 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1293 continue;
1294
1295 /*
1296 * We have isolated some pages, but then failed. Release them
1297 * instead of migrating, as we cannot form the cc->order buddy
1298 * page anyway.
1299 */
1300 if (nr_isolated) {
1301 if (locked) {
6168d0da
AS
1302 unlock_page_lruvec_irqrestore(locked, flags);
1303 locked = NULL;
fdd048e1 1304 }
fdd048e1
VB
1305 putback_movable_pages(&cc->migratepages);
1306 cc->nr_migratepages = 0;
fdd048e1
VB
1307 nr_isolated = 0;
1308 }
1309
1310 if (low_pfn < next_skip_pfn) {
1311 low_pfn = next_skip_pfn - 1;
1312 /*
1313 * The check near the loop beginning would have updated
1314 * next_skip_pfn too, but this is a bit simpler.
1315 */
1316 next_skip_pfn += 1UL << cc->order;
1317 }
369fa227
OS
1318
1319 if (ret == -ENOMEM)
1320 break;
748446bb
MG
1321 }
1322
99c0fd5e
VB
1323 /*
1324 * The PageBuddy() check could have potentially brought us outside
1325 * the range to be scanned.
1326 */
1327 if (unlikely(low_pfn > end_pfn))
1328 low_pfn = end_pfn;
1329
56ae0bb3 1330 folio = NULL;
9df41314 1331
e380bebe 1332isolate_abort:
c67fe375 1333 if (locked)
6168d0da 1334 unlock_page_lruvec_irqrestore(locked, flags);
56ae0bb3
KW
1335 if (folio) {
1336 folio_set_lru(folio);
1337 folio_put(folio);
9df41314 1338 }
748446bb 1339
50b5b094 1340 /*
48731c84 1341 * Update the cached scanner pfn once the pageblock has been scanned.
804d3121
MG
1342 * Pages will either be migrated in which case there is no point
1343 * scanning in the near future or migration failed in which case the
1344 * failure reason may persist. The block is marked for skipping if
1345 * there were no pages isolated in the block or if the block is
1346 * rescanned twice in a row.
50b5b094 1347 */
48731c84 1348 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
8b71b499 1349 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
e380bebe
MG
1350 set_pageblock_skip(valid_page);
1351 update_cached_migrate(cc, low_pfn);
1352 }
bb13ffeb 1353
e34d85f0
JK
1354 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1355 nr_scanned, nr_isolated);
b7aba698 1356
670105a2 1357fatal_pending:
7f354a54 1358 cc->total_migrate_scanned += nr_scanned;
397487db 1359 if (nr_isolated)
010fc29a 1360 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1361
c2ad7a1f
OS
1362 cc->migrate_pfn = low_pfn;
1363
1364 return ret;
2fe86e00
MN
1365}
1366
edc2ca61
VB
1367/**
1368 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1369 * @cc: Compaction control structure.
1370 * @start_pfn: The first PFN to start isolating.
1371 * @end_pfn: The one-past-last PFN.
1372 *
369fa227
OS
1373 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1374 * in case we could not allocate a page, or 0.
edc2ca61 1375 */
c2ad7a1f 1376int
edc2ca61
VB
1377isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1378 unsigned long end_pfn)
1379{
e1409c32 1380 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1381 int ret = 0;
edc2ca61
VB
1382
1383 /* Scan block by block. First and last block may be incomplete */
1384 pfn = start_pfn;
06b6640a 1385 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1386 if (block_start_pfn < cc->zone->zone_start_pfn)
1387 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1388 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1389
1390 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1391 block_start_pfn = block_end_pfn,
edc2ca61
VB
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, end_pfn);
1395
e1409c32
JK
1396 if (!pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, cc->zone))
edc2ca61
VB
1398 continue;
1399
c2ad7a1f
OS
1400 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1401 ISOLATE_UNEVICTABLE);
edc2ca61 1402
c2ad7a1f 1403 if (ret)
edc2ca61 1404 break;
6ea41c0c 1405
38935861 1406 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1407 break;
edc2ca61 1408 }
edc2ca61 1409
c2ad7a1f 1410 return ret;
edc2ca61
VB
1411}
1412
ff9543fd
MN
1413#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1414#ifdef CONFIG_COMPACTION
018e9a49 1415
b682debd
VB
1416static bool suitable_migration_source(struct compact_control *cc,
1417 struct page *page)
1418{
282722b0
VB
1419 int block_mt;
1420
9bebefd5
MG
1421 if (pageblock_skip_persistent(page))
1422 return false;
1423
282722b0 1424 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1425 return true;
1426
282722b0
VB
1427 block_mt = get_pageblock_migratetype(page);
1428
1429 if (cc->migratetype == MIGRATE_MOVABLE)
1430 return is_migrate_movable(block_mt);
1431 else
1432 return block_mt == cc->migratetype;
b682debd
VB
1433}
1434
018e9a49 1435/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1436static bool suitable_migration_target(struct compact_control *cc,
1437 struct page *page)
018e9a49
AM
1438{
1439 /* If the page is a large free page, then disallow migration */
1440 if (PageBuddy(page)) {
1883e8ac
BW
1441 int order = cc->order > 0 ? cc->order : pageblock_order;
1442
018e9a49
AM
1443 /*
1444 * We are checking page_order without zone->lock taken. But
1445 * the only small danger is that we skip a potentially suitable
1446 * pageblock, so it's not worth to check order for valid range.
1447 */
1883e8ac 1448 if (buddy_order_unsafe(page) >= order)
018e9a49
AM
1449 return false;
1450 }
1451
1ef36db2
YX
1452 if (cc->ignore_block_suitable)
1453 return true;
1454
018e9a49 1455 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1456 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1457 return true;
1458
1459 /* Otherwise skip the block */
1460 return false;
1461}
1462
70b44595
MG
1463static inline unsigned int
1464freelist_scan_limit(struct compact_control *cc)
1465{
dd7ef7bd
QC
1466 unsigned short shift = BITS_PER_LONG - 1;
1467
1468 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1469}
1470
f2849aa0
VB
1471/*
1472 * Test whether the free scanner has reached the same or lower pageblock than
1473 * the migration scanner, and compaction should thus terminate.
1474 */
1475static inline bool compact_scanners_met(struct compact_control *cc)
1476{
1477 return (cc->free_pfn >> pageblock_order)
1478 <= (cc->migrate_pfn >> pageblock_order);
1479}
1480
5a811889
MG
1481/*
1482 * Used when scanning for a suitable migration target which scans freelists
1483 * in reverse. Reorders the list such as the unscanned pages are scanned
1484 * first on the next iteration of the free scanner
1485 */
1486static void
1487move_freelist_head(struct list_head *freelist, struct page *freepage)
1488{
1489 LIST_HEAD(sublist);
1490
4c179891 1491 if (!list_is_first(&freepage->buddy_list, freelist)) {
bbefa0fc 1492 list_cut_before(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1493 list_splice_tail(&sublist, freelist);
5a811889
MG
1494 }
1495}
1496
1497/*
1498 * Similar to move_freelist_head except used by the migration scanner
1499 * when scanning forward. It's possible for these list operations to
1500 * move against each other if they search the free list exactly in
1501 * lockstep.
1502 */
70b44595
MG
1503static void
1504move_freelist_tail(struct list_head *freelist, struct page *freepage)
1505{
1506 LIST_HEAD(sublist);
1507
4c179891 1508 if (!list_is_last(&freepage->buddy_list, freelist)) {
bbefa0fc 1509 list_cut_position(&sublist, freelist, &freepage->buddy_list);
d2155fe5 1510 list_splice_tail(&sublist, freelist);
70b44595
MG
1511 }
1512}
1513
5a811889 1514static void
be21b32a 1515fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1516{
1517 unsigned long start_pfn, end_pfn;
6e2b7044 1518 struct page *page;
5a811889
MG
1519
1520 /* Do not search around if there are enough pages already */
1521 if (cc->nr_freepages >= cc->nr_migratepages)
1522 return;
1523
1524 /* Minimise scanning during async compaction */
1525 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1526 return;
1527
1528 /* Pageblock boundaries */
6e2b7044
VB
1529 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1530 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1531
1532 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1533 if (!page)
1534 return;
5a811889 1535
733aea0b 1536 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
5a811889
MG
1537
1538 /* Skip this pageblock in the future as it's full or nearly full */
18c59d58 1539 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
5a811889
MG
1540 set_pageblock_skip(page);
1541}
1542
dbe2d4e4
MG
1543/* Search orders in round-robin fashion */
1544static int next_search_order(struct compact_control *cc, int order)
1545{
1546 order--;
1547 if (order < 0)
1548 order = cc->order - 1;
1549
1550 /* Search wrapped around? */
1551 if (order == cc->search_order) {
1552 cc->search_order--;
1553 if (cc->search_order < 0)
1554 cc->search_order = cc->order - 1;
1555 return -1;
1556 }
1557
1558 return order;
1559}
1560
2dbd9005 1561static void fast_isolate_freepages(struct compact_control *cc)
5a811889 1562{
b55ca526 1563 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
447ba886 1564 unsigned int nr_scanned = 0, total_isolated = 0;
74e21484 1565 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1566 unsigned long nr_isolated = 0;
1567 unsigned long distance;
1568 struct page *page = NULL;
1569 bool scan_start = false;
1570 int order;
1571
1572 /* Full compaction passes in a negative order */
1573 if (cc->order <= 0)
2dbd9005 1574 return;
5a811889
MG
1575
1576 /*
1577 * If starting the scan, use a deeper search and use the highest
1578 * PFN found if a suitable one is not found.
1579 */
e332f741 1580 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1581 limit = pageblock_nr_pages >> 1;
1582 scan_start = true;
1583 }
1584
1585 /*
1586 * Preferred point is in the top quarter of the scan space but take
1587 * a pfn from the top half if the search is problematic.
1588 */
1589 distance = (cc->free_pfn - cc->migrate_pfn);
1590 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1591 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1592
1593 if (WARN_ON_ONCE(min_pfn > low_pfn))
1594 low_pfn = min_pfn;
1595
dbe2d4e4
MG
1596 /*
1597 * Search starts from the last successful isolation order or the next
1598 * order to search after a previous failure
1599 */
1600 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1601
1602 for (order = cc->search_order;
1603 !page && order >= 0;
1604 order = next_search_order(cc, order)) {
5a811889
MG
1605 struct free_area *area = &cc->zone->free_area[order];
1606 struct list_head *freelist;
1607 struct page *freepage;
1608 unsigned long flags;
1609 unsigned int order_scanned = 0;
74e21484 1610 unsigned long high_pfn = 0;
5a811889
MG
1611
1612 if (!area->nr_free)
1613 continue;
1614
1615 spin_lock_irqsave(&cc->zone->lock, flags);
1616 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 1617 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
5a811889
MG
1618 unsigned long pfn;
1619
1620 order_scanned++;
1621 nr_scanned++;
1622 pfn = page_to_pfn(freepage);
1623
1624 if (pfn >= highest)
6e2b7044
VB
1625 highest = max(pageblock_start_pfn(pfn),
1626 cc->zone->zone_start_pfn);
5a811889
MG
1627
1628 if (pfn >= low_pfn) {
1629 cc->fast_search_fail = 0;
dbe2d4e4 1630 cc->search_order = order;
5a811889
MG
1631 page = freepage;
1632 break;
1633 }
1634
1635 if (pfn >= min_pfn && pfn > high_pfn) {
1636 high_pfn = pfn;
1637
1638 /* Shorten the scan if a candidate is found */
1639 limit >>= 1;
1640 }
1641
1642 if (order_scanned >= limit)
1643 break;
1644 }
1645
e6bd14ec 1646 /* Use a maximum candidate pfn if a preferred one was not found */
5a811889
MG
1647 if (!page && high_pfn) {
1648 page = pfn_to_page(high_pfn);
1649
1650 /* Update freepage for the list reorder below */
1651 freepage = page;
1652 }
1653
1654 /* Reorder to so a future search skips recent pages */
1655 move_freelist_head(freelist, freepage);
1656
1657 /* Isolate the page if available */
1658 if (page) {
1659 if (__isolate_free_page(page, order)) {
1660 set_page_private(page, order);
1661 nr_isolated = 1 << order;
b717d6b9 1662 nr_scanned += nr_isolated - 1;
447ba886 1663 total_isolated += nr_isolated;
5a811889 1664 cc->nr_freepages += nr_isolated;
733aea0b 1665 list_add_tail(&page->lru, &cc->freepages[order]);
5a811889
MG
1666 count_compact_events(COMPACTISOLATED, nr_isolated);
1667 } else {
1668 /* If isolation fails, abort the search */
5b56d996 1669 order = cc->search_order + 1;
5a811889
MG
1670 page = NULL;
1671 }
1672 }
1673
1674 spin_unlock_irqrestore(&cc->zone->lock, flags);
1675
a8d13355
BW
1676 /* Skip fast search if enough freepages isolated */
1677 if (cc->nr_freepages >= cc->nr_migratepages)
1678 break;
1679
5a811889 1680 /*
b55ca526 1681 * Smaller scan on next order so the total scan is related
5a811889
MG
1682 * to freelist_scan_limit.
1683 */
1684 if (order_scanned >= limit)
b55ca526 1685 limit = max(1U, limit >> 1);
5a811889
MG
1686 }
1687
447ba886
BW
1688 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1689 nr_scanned, total_isolated);
1690
5a811889
MG
1691 if (!page) {
1692 cc->fast_search_fail++;
1693 if (scan_start) {
1694 /*
1695 * Use the highest PFN found above min. If one was
f3867755 1696 * not found, be pessimistic for direct compaction
5a811889
MG
1697 * and use the min mark.
1698 */
ca2864e5 1699 if (highest >= min_pfn) {
5a811889
MG
1700 page = pfn_to_page(highest);
1701 cc->free_pfn = highest;
1702 } else {
e577c8b6 1703 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1704 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1705 min(pageblock_end_pfn(min_pfn),
1706 zone_end_pfn(cc->zone)),
73a6e474 1707 cc->zone);
d19b1a17
BS
1708 if (page && !suitable_migration_target(cc, page))
1709 page = NULL;
1710
5a811889
MG
1711 cc->free_pfn = min_pfn;
1712 }
1713 }
1714 }
1715 }
1716
d097a6f6
MG
1717 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1718 highest -= pageblock_nr_pages;
5a811889 1719 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1720 }
5a811889
MG
1721
1722 cc->total_free_scanned += nr_scanned;
1723 if (!page)
2dbd9005 1724 return;
5a811889
MG
1725
1726 low_pfn = page_to_pfn(page);
be21b32a 1727 fast_isolate_around(cc, low_pfn);
5a811889
MG
1728}
1729
2fe86e00 1730/*
ff9543fd
MN
1731 * Based on information in the current compact_control, find blocks
1732 * suitable for isolating free pages from and then isolate them.
2fe86e00 1733 */
edc2ca61 1734static void isolate_freepages(struct compact_control *cc)
2fe86e00 1735{
edc2ca61 1736 struct zone *zone = cc->zone;
ff9543fd 1737 struct page *page;
c96b9e50 1738 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1739 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1740 unsigned long block_end_pfn; /* end of current pageblock */
1741 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
4fca9730 1742 unsigned int stride;
2fe86e00 1743
5a811889 1744 /* Try a small search of the free lists for a candidate */
00bc102f 1745 fast_isolate_freepages(cc);
5a811889 1746 if (cc->nr_freepages)
733aea0b 1747 return;
5a811889 1748
ff9543fd
MN
1749 /*
1750 * Initialise the free scanner. The starting point is where we last
49e068f0 1751 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1752 * zone when isolating for the first time. For looping we also need
1753 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1754 * block_start_pfn -= pageblock_nr_pages in the for loop.
1755 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1756 * zone which ends in the middle of a pageblock.
49e068f0
VB
1757 * The low boundary is the end of the pageblock the migration scanner
1758 * is using.
ff9543fd 1759 */
e14c720e 1760 isolate_start_pfn = cc->free_pfn;
5a811889 1761 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1762 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1763 zone_end_pfn(zone));
06b6640a 1764 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1765 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1766
ff9543fd
MN
1767 /*
1768 * Isolate free pages until enough are available to migrate the
1769 * pages on cc->migratepages. We stop searching if the migrate
1770 * and free page scanners meet or enough free pages are isolated.
1771 */
f5f61a32 1772 for (; block_start_pfn >= low_pfn;
c96b9e50 1773 block_end_pfn = block_start_pfn,
e14c720e
VB
1774 block_start_pfn -= pageblock_nr_pages,
1775 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1776 unsigned long nr_isolated;
1777
f6ea3adb
DR
1778 /*
1779 * This can iterate a massively long zone without finding any
cb810ad2 1780 * suitable migration targets, so periodically check resched.
f6ea3adb 1781 */
c036ddff 1782 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1783 cond_resched();
f6ea3adb 1784
7d49d886
VB
1785 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786 zone);
e6e0c767
BW
1787 if (!page) {
1788 unsigned long next_pfn;
1789
1790 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1791 if (next_pfn)
1792 block_start_pfn = max(next_pfn, low_pfn);
1793
ff9543fd 1794 continue;
e6e0c767 1795 }
ff9543fd
MN
1796
1797 /* Check the block is suitable for migration */
9f7e3387 1798 if (!suitable_migration_target(cc, page))
ff9543fd 1799 continue;
68e3e926 1800
bb13ffeb
MG
1801 /* If isolation recently failed, do not retry */
1802 if (!isolation_suitable(cc, page))
1803 continue;
1804
e14c720e 1805 /* Found a block suitable for isolating free pages from. */
4fca9730 1806 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733aea0b 1807 block_end_pfn, cc->freepages, stride, false);
ff9543fd 1808
d097a6f6
MG
1809 /* Update the skip hint if the full pageblock was scanned */
1810 if (isolate_start_pfn == block_end_pfn)
16951789
KS
1811 update_pageblock_skip(cc, page, block_start_pfn -
1812 pageblock_nr_pages);
d097a6f6 1813
cb2dcaf0
MG
1814 /* Are enough freepages isolated? */
1815 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1816 if (isolate_start_pfn >= block_end_pfn) {
1817 /*
1818 * Restart at previous pageblock if more
1819 * freepages can be isolated next time.
1820 */
f5f61a32
VB
1821 isolate_start_pfn =
1822 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1823 }
be976572 1824 break;
a46cbf3b 1825 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1826 /*
a46cbf3b
DR
1827 * If isolation failed early, do not continue
1828 * needlessly.
f5f61a32 1829 */
a46cbf3b 1830 break;
f5f61a32 1831 }
4fca9730
MG
1832
1833 /* Adjust stride depending on isolation */
1834 if (nr_isolated) {
1835 stride = 1;
1836 continue;
1837 }
1838 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1839 }
1840
7ed695e0 1841 /*
f5f61a32
VB
1842 * Record where the free scanner will restart next time. Either we
1843 * broke from the loop and set isolate_start_pfn based on the last
1844 * call to isolate_freepages_block(), or we met the migration scanner
1845 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1846 */
f5f61a32 1847 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1848}
1849
1850/*
1851 * This is a migrate-callback that "allocates" freepages by taking pages
1852 * from the isolated freelists in the block we are migrating to.
1853 */
4e096ae1 1854static struct folio *compaction_alloc(struct folio *src, unsigned long data)
748446bb
MG
1855{
1856 struct compact_control *cc = (struct compact_control *)data;
4e096ae1 1857 struct folio *dst;
733aea0b 1858 int order = folio_order(src);
73318e2c
ZY
1859 bool has_isolated_pages = false;
1860 int start_order;
1861 struct page *freepage;
1862 unsigned long size;
1863
1864again:
1865 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1866 if (!list_empty(&cc->freepages[start_order]))
1867 break;
748446bb 1868
73318e2c
ZY
1869 /* no free pages in the list */
1870 if (start_order == NR_PAGE_ORDERS) {
1871 if (has_isolated_pages)
748446bb 1872 return NULL;
73318e2c
ZY
1873 isolate_freepages(cc);
1874 has_isolated_pages = true;
1875 goto again;
748446bb
MG
1876 }
1877
73318e2c
ZY
1878 freepage = list_first_entry(&cc->freepages[start_order], struct page,
1879 lru);
1880 size = 1 << start_order;
1881
1882 list_del(&freepage->lru);
748446bb 1883
73318e2c
ZY
1884 while (start_order > order) {
1885 start_order--;
1886 size >>= 1;
1887
1888 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1889 set_page_private(&freepage[size], start_order);
748446bb 1890 }
73318e2c 1891 dst = (struct folio *)freepage;
748446bb 1892
733aea0b
ZY
1893 post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1894 if (order)
1895 prep_compound_page(&dst->page, order);
1896 cc->nr_freepages -= 1 << order;
1897 cc->nr_migratepages -= 1 << order;
1898 return page_rmappable_folio(&dst->page);
748446bb
MG
1899}
1900
1901/*
d53aea3d
DR
1902 * This is a migrate-callback that "frees" freepages back to the isolated
1903 * freelist. All pages on the freelist are from the same zone, so there is no
1904 * special handling needed for NUMA.
1905 */
4e096ae1 1906static void compaction_free(struct folio *dst, unsigned long data)
d53aea3d
DR
1907{
1908 struct compact_control *cc = (struct compact_control *)data;
733aea0b
ZY
1909 int order = folio_order(dst);
1910 struct page *page = &dst->page;
d53aea3d 1911
733aea0b
ZY
1912 if (folio_put_testzero(dst)) {
1913 free_pages_prepare(page, order);
1914 list_add(&dst->lru, &cc->freepages[order]);
1915 cc->nr_freepages += 1 << order;
1916 }
1917 cc->nr_migratepages += 1 << order;
1918 /*
1919 * someone else has referenced the page, we cannot take it back to our
1920 * free list.
1921 */
d53aea3d
DR
1922}
1923
ff9543fd
MN
1924/* possible outcome of isolate_migratepages */
1925typedef enum {
1926 ISOLATE_ABORT, /* Abort compaction now */
1927 ISOLATE_NONE, /* No pages isolated, continue scanning */
1928 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1929} isolate_migrate_t;
1930
5bbe3547
EM
1931/*
1932 * Allow userspace to control policy on scanning the unevictable LRU for
1933 * compactable pages.
1934 */
48fe8ab8
MC
1935static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1936/*
1937 * Tunable for proactive compaction. It determines how
1938 * aggressively the kernel should compact memory in the
1939 * background. It takes values in the range [0, 100].
1940 */
1941static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1942static int sysctl_extfrag_threshold = 500;
8b9167cd 1943static int __read_mostly sysctl_compact_memory;
5bbe3547 1944
70b44595
MG
1945static inline void
1946update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1947{
1948 if (cc->fast_start_pfn == ULONG_MAX)
1949 return;
1950
1951 if (!cc->fast_start_pfn)
1952 cc->fast_start_pfn = pfn;
1953
1954 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1955}
1956
1957static inline unsigned long
1958reinit_migrate_pfn(struct compact_control *cc)
1959{
1960 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1961 return cc->migrate_pfn;
1962
1963 cc->migrate_pfn = cc->fast_start_pfn;
1964 cc->fast_start_pfn = ULONG_MAX;
1965
1966 return cc->migrate_pfn;
1967}
1968
1969/*
1970 * Briefly search the free lists for a migration source that already has
1971 * some free pages to reduce the number of pages that need migration
1972 * before a pageblock is free.
1973 */
1974static unsigned long fast_find_migrateblock(struct compact_control *cc)
1975{
1976 unsigned int limit = freelist_scan_limit(cc);
1977 unsigned int nr_scanned = 0;
1978 unsigned long distance;
1979 unsigned long pfn = cc->migrate_pfn;
1980 unsigned long high_pfn;
1981 int order;
15d28d0d 1982 bool found_block = false;
70b44595
MG
1983
1984 /* Skip hints are relied on to avoid repeats on the fast search */
1985 if (cc->ignore_skip_hint)
1986 return pfn;
1987
f9d7fc1a
MG
1988 /*
1989 * If the pageblock should be finished then do not select a different
1990 * pageblock.
1991 */
1992 if (cc->finish_pageblock)
1993 return pfn;
1994
70b44595
MG
1995 /*
1996 * If the migrate_pfn is not at the start of a zone or the start
1997 * of a pageblock then assume this is a continuation of a previous
1998 * scan restarted due to COMPACT_CLUSTER_MAX.
1999 */
2000 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2001 return pfn;
2002
2003 /*
2004 * For smaller orders, just linearly scan as the number of pages
2005 * to migrate should be relatively small and does not necessarily
2006 * justify freeing up a large block for a small allocation.
2007 */
2008 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2009 return pfn;
2010
2011 /*
2012 * Only allow kcompactd and direct requests for movable pages to
2013 * quickly clear out a MOVABLE pageblock for allocation. This
2014 * reduces the risk that a large movable pageblock is freed for
2015 * an unmovable/reclaimable small allocation.
2016 */
2017 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2018 return pfn;
2019
2020 /*
2021 * When starting the migration scanner, pick any pageblock within the
2022 * first half of the search space. Otherwise try and pick a pageblock
2023 * within the first eighth to reduce the chances that a migration
2024 * target later becomes a source.
2025 */
2026 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2027 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2028 distance >>= 2;
2029 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2030
2031 for (order = cc->order - 1;
15d28d0d 2032 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
2033 order--) {
2034 struct free_area *area = &cc->zone->free_area[order];
2035 struct list_head *freelist;
2036 unsigned long flags;
2037 struct page *freepage;
2038
2039 if (!area->nr_free)
2040 continue;
2041
2042 spin_lock_irqsave(&cc->zone->lock, flags);
2043 freelist = &area->free_list[MIGRATE_MOVABLE];
94ec2003 2044 list_for_each_entry(freepage, freelist, buddy_list) {
70b44595
MG
2045 unsigned long free_pfn;
2046
15d28d0d
WY
2047 if (nr_scanned++ >= limit) {
2048 move_freelist_tail(freelist, freepage);
2049 break;
2050 }
2051
70b44595
MG
2052 free_pfn = page_to_pfn(freepage);
2053 if (free_pfn < high_pfn) {
70b44595
MG
2054 /*
2055 * Avoid if skipped recently. Ideally it would
2056 * move to the tail but even safe iteration of
2057 * the list assumes an entry is deleted, not
2058 * reordered.
2059 */
15d28d0d 2060 if (get_pageblock_skip(freepage))
70b44595 2061 continue;
70b44595
MG
2062
2063 /* Reorder to so a future search skips recent pages */
2064 move_freelist_tail(freelist, freepage);
2065
e380bebe 2066 update_fast_start_pfn(cc, free_pfn);
70b44595 2067 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
2068 if (pfn < cc->zone->zone_start_pfn)
2069 pfn = cc->zone->zone_start_pfn;
70b44595 2070 cc->fast_search_fail = 0;
15d28d0d 2071 found_block = true;
70b44595
MG
2072 break;
2073 }
70b44595
MG
2074 }
2075 spin_unlock_irqrestore(&cc->zone->lock, flags);
2076 }
2077
2078 cc->total_migrate_scanned += nr_scanned;
2079
2080 /*
2081 * If fast scanning failed then use a cached entry for a page block
2082 * that had free pages as the basis for starting a linear scan.
2083 */
15d28d0d
WY
2084 if (!found_block) {
2085 cc->fast_search_fail++;
70b44595 2086 pfn = reinit_migrate_pfn(cc);
15d28d0d 2087 }
70b44595
MG
2088 return pfn;
2089}
2090
ff9543fd 2091/*
edc2ca61
VB
2092 * Isolate all pages that can be migrated from the first suitable block,
2093 * starting at the block pointed to by the migrate scanner pfn within
2094 * compact_control.
ff9543fd 2095 */
32aaf055 2096static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 2097{
e1409c32
JK
2098 unsigned long block_start_pfn;
2099 unsigned long block_end_pfn;
2100 unsigned long low_pfn;
edc2ca61
VB
2101 struct page *page;
2102 const isolate_mode_t isolate_mode =
5bbe3547 2103 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 2104 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 2105 bool fast_find_block;
ff9543fd 2106
edc2ca61
VB
2107 /*
2108 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
2109 * initialized by compact_zone(). The first failure will use
2110 * the lowest PFN as the starting point for linear scanning.
edc2ca61 2111 */
70b44595 2112 low_pfn = fast_find_migrateblock(cc);
06b6640a 2113 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
2114 if (block_start_pfn < cc->zone->zone_start_pfn)
2115 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 2116
70b44595 2117 /*
0aa8ea3c
KS
2118 * fast_find_migrateblock() has already ensured the pageblock is not
2119 * set with a skipped flag, so to avoid the isolation_suitable check
2120 * below again, check whether the fast search was successful.
70b44595
MG
2121 */
2122 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2123
ff9543fd 2124 /* Only scan within a pageblock boundary */
06b6640a 2125 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 2126
edc2ca61
VB
2127 /*
2128 * Iterate over whole pageblocks until we find the first suitable.
2129 * Do not cross the free scanner.
2130 */
e1409c32 2131 for (; block_end_pfn <= cc->free_pfn;
70b44595 2132 fast_find_block = false,
c2ad7a1f 2133 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
2134 block_start_pfn = block_end_pfn,
2135 block_end_pfn += pageblock_nr_pages) {
ff9543fd 2136
edc2ca61
VB
2137 /*
2138 * This can potentially iterate a massively long zone with
2139 * many pageblocks unsuitable, so periodically check if we
cb810ad2 2140 * need to schedule.
edc2ca61 2141 */
c036ddff 2142 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 2143 cond_resched();
ff9543fd 2144
32aaf055
PL
2145 page = pageblock_pfn_to_page(block_start_pfn,
2146 block_end_pfn, cc->zone);
9721fd82
BW
2147 if (!page) {
2148 unsigned long next_pfn;
2149
2150 next_pfn = skip_offline_sections(block_start_pfn);
2151 if (next_pfn)
2152 block_end_pfn = min(next_pfn, cc->free_pfn);
edc2ca61 2153 continue;
9721fd82 2154 }
edc2ca61 2155
e380bebe
MG
2156 /*
2157 * If isolation recently failed, do not retry. Only check the
2158 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2159 * to be visited multiple times. Assume skip was checked
2160 * before making it "skip" so other compaction instances do
2161 * not scan the same block.
2162 */
493614da
JW
2163 if ((pageblock_aligned(low_pfn) ||
2164 low_pfn == cc->zone->zone_start_pfn) &&
e380bebe 2165 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
2166 continue;
2167
2168 /*
556162bf
ML
2169 * For async direct compaction, only scan the pageblocks of the
2170 * same migratetype without huge pages. Async direct compaction
2171 * is optimistic to see if the minimum amount of work satisfies
2172 * the allocation. The cached PFN is updated as it's possible
2173 * that all remaining blocks between source and target are
2174 * unsuitable and the compaction scanners fail to meet.
edc2ca61 2175 */
9bebefd5
MG
2176 if (!suitable_migration_source(cc, page)) {
2177 update_cached_migrate(cc, block_end_pfn);
edc2ca61 2178 continue;
9bebefd5 2179 }
edc2ca61
VB
2180
2181 /* Perform the isolation */
c2ad7a1f
OS
2182 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2183 isolate_mode))
edc2ca61
VB
2184 return ISOLATE_ABORT;
2185
2186 /*
2187 * Either we isolated something and proceed with migration. Or
2188 * we failed and compact_zone should decide if we should
2189 * continue or not.
2190 */
2191 break;
2192 }
2193
edc2ca61 2194 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
2195}
2196
b4a0215e
KW
2197/*
2198 * Determine whether kswapd is (or recently was!) running on this node.
2199 *
2200 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2201 * zero it.
2202 */
facdaa91
NG
2203static bool kswapd_is_running(pg_data_t *pgdat)
2204{
b4a0215e
KW
2205 bool running;
2206
2207 pgdat_kswapd_lock(pgdat);
2208 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2209 pgdat_kswapd_unlock(pgdat);
2210
2211 return running;
facdaa91
NG
2212}
2213
2214/*
2215 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
2216 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2217 */
2218static unsigned int fragmentation_score_zone(struct zone *zone)
2219{
2220 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2221}
2222
2223/*
2224 * A weighted zone's fragmentation score is the external fragmentation
2225 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2226 * returns a value in the range [0, 100].
facdaa91
NG
2227 *
2228 * The scaling factor ensures that proactive compaction focuses on larger
2229 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2230 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2231 * and thus never exceeds the high threshold for proactive compaction.
2232 */
40d7e203 2233static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2234{
2235 unsigned long score;
2236
40d7e203 2237 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2238 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2239}
2240
2241/*
2242 * The per-node proactive (background) compaction process is started by its
2243 * corresponding kcompactd thread when the node's fragmentation score
2244 * exceeds the high threshold. The compaction process remains active till
2245 * the node's score falls below the low threshold, or one of the back-off
2246 * conditions is met.
2247 */
d34c0a75 2248static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2249{
d34c0a75 2250 unsigned int score = 0;
facdaa91
NG
2251 int zoneid;
2252
2253 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2254 struct zone *zone;
2255
2256 zone = &pgdat->node_zones[zoneid];
9e552271
BW
2257 if (!populated_zone(zone))
2258 continue;
40d7e203 2259 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2260 }
2261
2262 return score;
2263}
2264
8fbb92bd 2265static unsigned int fragmentation_score_wmark(bool low)
facdaa91 2266{
d34c0a75 2267 unsigned int wmark_low;
facdaa91
NG
2268
2269 /*
f0953a1b
IM
2270 * Cap the low watermark to avoid excessive compaction
2271 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2272 * close to 100 (maximum).
2273 */
d34c0a75
NG
2274 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2275 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2276}
2277
2278static bool should_proactive_compact_node(pg_data_t *pgdat)
2279{
2280 int wmark_high;
2281
2282 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2283 return false;
2284
8fbb92bd 2285 wmark_high = fragmentation_score_wmark(false);
facdaa91
NG
2286 return fragmentation_score_node(pgdat) > wmark_high;
2287}
2288
40cacbcb 2289static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2290{
8fb74b9f 2291 unsigned int order;
d39773a0 2292 const int migratetype = cc->migratetype;
cb2dcaf0 2293 int ret;
748446bb 2294
753341a4 2295 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2296 if (compact_scanners_met(cc)) {
55b7c4c9 2297 /* Let the next compaction start anew. */
40cacbcb 2298 reset_cached_positions(cc->zone);
55b7c4c9 2299
62997027
MG
2300 /*
2301 * Mark that the PG_migrate_skip information should be cleared
accf6242 2302 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2303 * flag itself as the decision to be clear should be directly
2304 * based on an allocation request.
2305 */
accf6242 2306 if (cc->direct_compaction)
40cacbcb 2307 cc->zone->compact_blockskip_flush = true;
62997027 2308
c8f7de0b
MH
2309 if (cc->whole_zone)
2310 return COMPACT_COMPLETE;
2311 else
2312 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2313 }
748446bb 2314
facdaa91
NG
2315 if (cc->proactive_compaction) {
2316 int score, wmark_low;
2317 pg_data_t *pgdat;
2318
2319 pgdat = cc->zone->zone_pgdat;
2320 if (kswapd_is_running(pgdat))
2321 return COMPACT_PARTIAL_SKIPPED;
2322
2323 score = fragmentation_score_zone(cc->zone);
8fbb92bd 2324 wmark_low = fragmentation_score_wmark(true);
facdaa91
NG
2325
2326 if (score > wmark_low)
2327 ret = COMPACT_CONTINUE;
2328 else
2329 ret = COMPACT_SUCCESS;
2330
2331 goto out;
2332 }
2333
21c527a3 2334 if (is_via_compact_memory(cc->order))
56de7263
MG
2335 return COMPACT_CONTINUE;
2336
efe771c7
MG
2337 /*
2338 * Always finish scanning a pageblock to reduce the possibility of
2339 * fallbacks in the future. This is particularly important when
2340 * migration source is unmovable/reclaimable but it's not worth
2341 * special casing.
2342 */
ee0913c4 2343 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2344 return COMPACT_CONTINUE;
baf6a9a1 2345
56de7263 2346 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2347 ret = COMPACT_NO_SUITABLE_PAGE;
fd377218 2348 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
40cacbcb 2349 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2350 bool can_steal;
8fb74b9f
MG
2351
2352 /* Job done if page is free of the right migratetype */
b03641af 2353 if (!free_area_empty(area, migratetype))
cf378319 2354 return COMPACT_SUCCESS;
8fb74b9f 2355
2149cdae
JK
2356#ifdef CONFIG_CMA
2357 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2358 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2359 !free_area_empty(area, MIGRATE_CMA))
cf378319 2360 return COMPACT_SUCCESS;
2149cdae
JK
2361#endif
2362 /*
2363 * Job done if allocation would steal freepages from
2364 * other migratetype buddy lists.
2365 */
2366 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2367 true, &can_steal) != -1)
baf6a9a1 2368 /*
fa599c44
ML
2369 * Movable pages are OK in any pageblock. If we are
2370 * stealing for a non-movable allocation, make sure
2371 * we finish compacting the current pageblock first
2372 * (which is assured by the above migrate_pfn align
2373 * check) so it is as free as possible and we won't
2374 * have to steal another one soon.
baf6a9a1 2375 */
fa599c44 2376 return COMPACT_SUCCESS;
56de7263
MG
2377 }
2378
facdaa91 2379out:
cb2dcaf0
MG
2380 if (cc->contended || fatal_signal_pending(current))
2381 ret = COMPACT_CONTENDED;
2382
2383 return ret;
837d026d
JK
2384}
2385
40cacbcb 2386static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2387{
2388 int ret;
2389
40cacbcb
MG
2390 ret = __compact_finished(cc);
2391 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2392 if (ret == COMPACT_NO_SUITABLE_PAGE)
2393 ret = COMPACT_CONTINUE;
2394
2395 return ret;
748446bb
MG
2396}
2397
3cf04937
JW
2398static bool __compaction_suitable(struct zone *zone, int order,
2399 int highest_zoneidx,
2400 unsigned long wmark_target)
3e7d3449 2401{
3e7d3449 2402 unsigned long watermark;
3e7d3449 2403 /*
9861a62c 2404 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2405 * isolate free pages for migration targets. This means that the
2406 * watermark and alloc_flags have to match, or be more pessimistic than
2407 * the check in __isolate_free_page(). We don't use the direct
2408 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2409 * isolation. We however do use the direct compactor's highest_zoneidx
2410 * to skip over zones where lowmem reserves would prevent allocation
2411 * even if compaction succeeds.
8348faf9
VB
2412 * For costly orders, we require low watermark instead of min for
2413 * compaction to proceed to increase its chances.
d883c6cf
JK
2414 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2415 * suitable migration targets
3e7d3449 2416 */
8348faf9
VB
2417 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2418 low_wmark_pages(zone) : min_wmark_pages(zone);
2419 watermark += compact_gap(order);
3cf04937
JW
2420 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2421 ALLOC_CMA, wmark_target);
cc5c9f09
VB
2422}
2423
2b1a20c3
HS
2424/*
2425 * compaction_suitable: Is this suitable to run compaction on this zone now?
2b1a20c3 2426 */
3cf04937 2427bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
cc5c9f09 2428{
3cf04937
JW
2429 enum compact_result compact_result;
2430 bool suitable;
cc5c9f09 2431
3cf04937
JW
2432 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2433 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2434 /*
2435 * fragmentation index determines if allocation failures are due to
2436 * low memory or external fragmentation
2437 *
ebff3980
VB
2438 * index of -1000 would imply allocations might succeed depending on
2439 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2440 * index towards 0 implies failure is due to lack of memory
2441 * index towards 1000 implies failure is due to fragmentation
2442 *
20311420
VB
2443 * Only compact if a failure would be due to fragmentation. Also
2444 * ignore fragindex for non-costly orders where the alternative to
2445 * a successful reclaim/compaction is OOM. Fragindex and the
2446 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2447 * excessive compaction for costly orders, but it should not be at the
2448 * expense of system stability.
3e7d3449 2449 */
3cf04937
JW
2450 if (suitable) {
2451 compact_result = COMPACT_CONTINUE;
2452 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2453 int fragindex = fragmentation_index(zone, order);
2454
2455 if (fragindex >= 0 &&
2456 fragindex <= sysctl_extfrag_threshold) {
2457 suitable = false;
2458 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2459 }
2460 }
2461 } else {
2462 compact_result = COMPACT_SKIPPED;
cc5c9f09 2463 }
837d026d 2464
3cf04937 2465 trace_mm_compaction_suitable(zone, order, compact_result);
837d026d 2466
3cf04937 2467 return suitable;
837d026d
JK
2468}
2469
86a294a8
MH
2470bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2471 int alloc_flags)
2472{
2473 struct zone *zone;
2474 struct zoneref *z;
2475
2476 /*
2477 * Make sure at least one zone would pass __compaction_suitable if we continue
2478 * retrying the reclaim.
2479 */
97a225e6
JK
2480 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2481 ac->highest_zoneidx, ac->nodemask) {
86a294a8 2482 unsigned long available;
86a294a8
MH
2483
2484 /*
2485 * Do not consider all the reclaimable memory because we do not
2486 * want to trash just for a single high order allocation which
2487 * is even not guaranteed to appear even if __compaction_suitable
2488 * is happy about the watermark check.
2489 */
5a1c84b4 2490 available = zone_reclaimable_pages(zone) / order;
86a294a8 2491 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
e8606320 2492 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
3cf04937 2493 available))
86a294a8
MH
2494 return true;
2495 }
2496
2497 return false;
2498}
2499
e19a3f59
KS
2500/*
2501 * Should we do compaction for target allocation order.
2502 * Return COMPACT_SUCCESS if allocation for target order can be already
2503 * satisfied
2504 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2505 * Return COMPACT_CONTINUE if compaction for target order should be ran
2506 */
2507static enum compact_result
2508compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2509 int highest_zoneidx, unsigned int alloc_flags)
2510{
2511 unsigned long watermark;
2512
2513 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2514 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2515 alloc_flags))
2516 return COMPACT_SUCCESS;
2517
2518 if (!compaction_suitable(zone, order, highest_zoneidx))
2519 return COMPACT_SKIPPED;
2520
2521 return COMPACT_CONTINUE;
2522}
2523
5e1f0f09
MG
2524static enum compact_result
2525compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2526{
ea7ab982 2527 enum compact_result ret;
40cacbcb
MG
2528 unsigned long start_pfn = cc->zone->zone_start_pfn;
2529 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2530 unsigned long last_migrated_pfn;
e0b9daeb 2531 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2532 bool update_cached;
ab755bf4 2533 unsigned int nr_succeeded = 0, nr_migratepages;
733aea0b 2534 int order;
748446bb 2535
a94b5252
YS
2536 /*
2537 * These counters track activities during zone compaction. Initialize
2538 * them before compacting a new zone.
2539 */
2540 cc->total_migrate_scanned = 0;
2541 cc->total_free_scanned = 0;
2542 cc->nr_migratepages = 0;
2543 cc->nr_freepages = 0;
733aea0b
ZY
2544 for (order = 0; order < NR_PAGE_ORDERS; order++)
2545 INIT_LIST_HEAD(&cc->freepages[order]);
a94b5252
YS
2546 INIT_LIST_HEAD(&cc->migratepages);
2547
01c0bfe0 2548 cc->migratetype = gfp_migratetype(cc->gfp_mask);
e8606320
JW
2549
2550 if (!is_via_compact_memory(cc->order)) {
e19a3f59
KS
2551 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2552 cc->highest_zoneidx,
2553 cc->alloc_flags);
2554 if (ret != COMPACT_CONTINUE)
2555 return ret;
e8606320 2556 }
c46649de 2557
d3132e4b
VB
2558 /*
2559 * Clear pageblock skip if there were failures recently and compaction
accf6242 2560 * is about to be retried after being deferred.
d3132e4b 2561 */
40cacbcb
MG
2562 if (compaction_restarting(cc->zone, cc->order))
2563 __reset_isolation_suitable(cc->zone);
d3132e4b 2564
c89511ab
MG
2565 /*
2566 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2567 * information on where the scanners should start (unless we explicitly
2568 * want to compact the whole zone), but check that it is initialised
2569 * by ensuring the values are within zone boundaries.
c89511ab 2570 */
70b44595 2571 cc->fast_start_pfn = 0;
06ed2998 2572 if (cc->whole_zone) {
c89511ab 2573 cc->migrate_pfn = start_pfn;
06ed2998
VB
2574 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2575 } else {
40cacbcb
MG
2576 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2577 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2578 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2579 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2580 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2581 }
2582 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2583 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2584 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2585 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2586 }
c8f7de0b 2587
e332f741 2588 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2589 cc->whole_zone = true;
2590 }
c8f7de0b 2591
566e54e1 2592 last_migrated_pfn = 0;
748446bb 2593
8854c55f
MG
2594 /*
2595 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2596 * the basis that some migrations will fail in ASYNC mode. However,
2597 * if the cached PFNs match and pageblocks are skipped due to having
2598 * no isolation candidates, then the sync state does not matter.
2599 * Until a pageblock with isolation candidates is found, keep the
2600 * cached PFNs in sync to avoid revisiting the same blocks.
2601 */
2602 update_cached = !sync &&
2603 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2604
abd4349f 2605 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2606
361a2a22
MK
2607 /* lru_add_drain_all could be expensive with involving other CPUs */
2608 lru_add_drain();
748446bb 2609
40cacbcb 2610 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2611 int err;
19d3cf9d 2612 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2613
804d3121 2614 /*
48731c84
MG
2615 * Avoid multiple rescans of the same pageblock which can
2616 * happen if a page cannot be isolated (dirty/writeback in
2617 * async mode) or if the migrated pages are being allocated
2618 * before the pageblock is cleared. The first rescan will
2619 * capture the entire pageblock for migration. If it fails,
2620 * it'll be marked skip and scanning will proceed as normal.
804d3121 2621 */
48731c84 2622 cc->finish_pageblock = false;
804d3121 2623 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2624 pageblock_start_pfn(iteration_start_pfn)) {
48731c84 2625 cc->finish_pageblock = true;
804d3121
MG
2626 }
2627
cfccd2e6 2628rescan:
32aaf055 2629 switch (isolate_migratepages(cc)) {
f9e35b3b 2630 case ISOLATE_ABORT:
2d1e1041 2631 ret = COMPACT_CONTENDED;
5733c7d1 2632 putback_movable_pages(&cc->migratepages);
e64c5237 2633 cc->nr_migratepages = 0;
f9e35b3b
MG
2634 goto out;
2635 case ISOLATE_NONE:
8854c55f
MG
2636 if (update_cached) {
2637 cc->zone->compact_cached_migrate_pfn[1] =
2638 cc->zone->compact_cached_migrate_pfn[0];
2639 }
2640
fdaf7f5c
VB
2641 /*
2642 * We haven't isolated and migrated anything, but
2643 * there might still be unflushed migrations from
2644 * previous cc->order aligned block.
2645 */
2646 goto check_drain;
f9e35b3b 2647 case ISOLATE_SUCCESS:
8854c55f 2648 update_cached = false;
7c0a84bd
KS
2649 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2650 pageblock_start_pfn(cc->migrate_pfn - 1));
f9e35b3b 2651 }
748446bb 2652
ab755bf4
BW
2653 /*
2654 * Record the number of pages to migrate since the
2655 * compaction_alloc/free() will update cc->nr_migratepages
2656 * properly.
2657 */
2658 nr_migratepages = cc->nr_migratepages;
d53aea3d 2659 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2660 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2661 MR_COMPACTION, &nr_succeeded);
748446bb 2662
ab755bf4 2663 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
748446bb 2664
f8c9301f
VB
2665 /* All pages were either migrated or will be released */
2666 cc->nr_migratepages = 0;
9d502c1c 2667 if (err) {
5733c7d1 2668 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2669 /*
2670 * migrate_pages() may return -ENOMEM when scanners meet
2671 * and we want compact_finished() to detect it
2672 */
f2849aa0 2673 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2674 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2675 goto out;
2676 }
fdd048e1 2677 /*
cfccd2e6 2678 * If an ASYNC or SYNC_LIGHT fails to migrate a page
c3750cc7 2679 * within the pageblock_order-aligned block and
9ecc5fc5 2680 * fast_find_migrateblock may be used then scan the
cfccd2e6
MG
2681 * remainder of the pageblock. This will mark the
2682 * pageblock "skip" to avoid rescanning in the near
2683 * future. This will isolate more pages than necessary
2684 * for the request but avoid loops due to
2685 * fast_find_migrateblock revisiting blocks that were
2686 * recently partially scanned.
fdd048e1 2687 */
539aa041 2688 if (!pageblock_aligned(cc->migrate_pfn) &&
9ecc5fc5 2689 !cc->ignore_skip_hint && !cc->finish_pageblock &&
539aa041 2690 (cc->mode < MIGRATE_SYNC)) {
cfccd2e6
MG
2691 cc->finish_pageblock = true;
2692
2693 /*
2694 * Draining pcplists does not help THP if
2695 * any page failed to migrate. Even after
2696 * drain, the pageblock will not be free.
2697 */
2698 if (cc->order == COMPACTION_HPAGE_ORDER)
2699 last_migrated_pfn = 0;
2700
2701 goto rescan;
fdd048e1 2702 }
748446bb 2703 }
fdaf7f5c 2704
16b3be40
MG
2705 /* Stop if a page has been captured */
2706 if (capc && capc->page) {
2707 ret = COMPACT_SUCCESS;
2708 break;
2709 }
2710
fdaf7f5c
VB
2711check_drain:
2712 /*
2713 * Has the migration scanner moved away from the previous
2714 * cc->order aligned block where we migrated from? If yes,
2715 * flush the pages that were freed, so that they can merge and
2716 * compact_finished() can detect immediately if allocation
2717 * would succeed.
2718 */
566e54e1 2719 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2720 unsigned long current_block_start =
06b6640a 2721 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2722
566e54e1 2723 if (last_migrated_pfn < current_block_start) {
b01b2141 2724 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2725 /* No more flushing until we migrate again */
566e54e1 2726 last_migrated_pfn = 0;
fdaf7f5c
VB
2727 }
2728 }
748446bb
MG
2729 }
2730
f9e35b3b 2731out:
6bace090
VB
2732 /*
2733 * Release free pages and update where the free scanner should restart,
2734 * so we don't leave any returned pages behind in the next attempt.
2735 */
2736 if (cc->nr_freepages > 0) {
733aea0b 2737 unsigned long free_pfn = release_free_list(cc->freepages);
6bace090
VB
2738
2739 cc->nr_freepages = 0;
2740 VM_BUG_ON(free_pfn == 0);
2741 /* The cached pfn is always the first in a pageblock */
06b6640a 2742 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2743 /*
2744 * Only go back, not forward. The cached pfn might have been
2745 * already reset to zone end in compact_finished()
2746 */
40cacbcb
MG
2747 if (free_pfn > cc->zone->compact_cached_free_pfn)
2748 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2749 }
748446bb 2750
7f354a54
DR
2751 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2752 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2753
abd4349f 2754 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2755
753ec50d
BW
2756 VM_BUG_ON(!list_empty(&cc->migratepages));
2757
748446bb
MG
2758 return ret;
2759}
76ab0f53 2760
ea7ab982 2761static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2762 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2763 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2764 struct page **capture)
56de7263 2765{
ea7ab982 2766 enum compact_result ret;
56de7263 2767 struct compact_control cc = {
56de7263 2768 .order = order,
dbe2d4e4 2769 .search_order = order,
6d7ce559 2770 .gfp_mask = gfp_mask,
56de7263 2771 .zone = zone,
a5508cd8
VB
2772 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2773 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2774 .alloc_flags = alloc_flags,
97a225e6 2775 .highest_zoneidx = highest_zoneidx,
accf6242 2776 .direct_compaction = true,
a8e025e5 2777 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2778 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2779 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2780 };
5e1f0f09
MG
2781 struct capture_control capc = {
2782 .cc = &cc,
2783 .page = NULL,
2784 };
2785
b9e20f0d
VB
2786 /*
2787 * Make sure the structs are really initialized before we expose the
2788 * capture control, in case we are interrupted and the interrupt handler
2789 * frees a page.
2790 */
2791 barrier();
2792 WRITE_ONCE(current->capture_control, &capc);
56de7263 2793
5e1f0f09 2794 ret = compact_zone(&cc, &capc);
e64c5237 2795
b9e20f0d
VB
2796 /*
2797 * Make sure we hide capture control first before we read the captured
2798 * page pointer, otherwise an interrupt could free and capture a page
2799 * and we would leak it.
2800 */
2801 WRITE_ONCE(current->capture_control, NULL);
2802 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2803 /*
2804 * Technically, it is also possible that compaction is skipped but
2805 * the page is still captured out of luck(IRQ came and freed the page).
2806 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2807 * the COMPACT[STALL|FAIL] when compaction is skipped.
2808 */
2809 if (*capture)
2810 ret = COMPACT_SUCCESS;
5e1f0f09 2811
e64c5237 2812 return ret;
56de7263
MG
2813}
2814
2815/**
2816 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2817 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2818 * @order: The order of the current allocation
2819 * @alloc_flags: The allocation flags of the current allocation
2820 * @ac: The context of current allocation
112d2d29 2821 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2822 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2823 *
2824 * This is the main entry point for direct page compaction.
2825 */
ea7ab982 2826enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2827 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2828 enum compact_priority prio, struct page **capture)
56de7263 2829{
56de7263
MG
2830 struct zoneref *z;
2831 struct zone *zone;
1d4746d3 2832 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2833
803de900 2834 if (!gfp_compaction_allowed(gfp_mask))
53853e2d 2835 return COMPACT_SKIPPED;
56de7263 2836
a5508cd8 2837 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2838
56de7263 2839 /* Compact each zone in the list */
97a225e6
JK
2840 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2841 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2842 enum compact_result status;
56de7263 2843
a8e025e5
VB
2844 if (prio > MIN_COMPACT_PRIORITY
2845 && compaction_deferred(zone, order)) {
1d4746d3 2846 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2847 continue;
1d4746d3 2848 }
53853e2d 2849
a5508cd8 2850 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2851 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2852 rc = max(status, rc);
2853
7ceb009a
VB
2854 /* The allocation should succeed, stop compacting */
2855 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2856 /*
2857 * We think the allocation will succeed in this zone,
2858 * but it is not certain, hence the false. The caller
2859 * will repeat this with true if allocation indeed
2860 * succeeds in this zone.
2861 */
2862 compaction_defer_reset(zone, order, false);
1f9efdef 2863
c3486f53 2864 break;
1f9efdef
VB
2865 }
2866
a5508cd8 2867 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2868 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2869 /*
2870 * We think that allocation won't succeed in this zone
2871 * so we defer compaction there. If it ends up
2872 * succeeding after all, it will be reset.
2873 */
2874 defer_compaction(zone, order);
1f9efdef
VB
2875
2876 /*
2877 * We might have stopped compacting due to need_resched() in
2878 * async compaction, or due to a fatal signal detected. In that
c3486f53 2879 * case do not try further zones
1f9efdef 2880 */
c3486f53
VB
2881 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2882 || fatal_signal_pending(current))
2883 break;
56de7263
MG
2884 }
2885
2886 return rc;
2887}
2888
facdaa91 2889/*
3e40b3f4
KW
2890 * compact_node() - compact all zones within a node
2891 * @pgdat: The node page data
2892 * @proactive: Whether the compaction is proactive
facdaa91 2893 *
3e40b3f4
KW
2894 * For proactive compaction, compact till each zone's fragmentation score
2895 * reaches within proactive compaction thresholds (as determined by the
2896 * proactiveness tunable), it is possible that the function returns before
2897 * reaching score targets due to various back-off conditions, such as,
2898 * contention on per-node or per-zone locks.
facdaa91 2899 */
f6f3f275 2900static int compact_node(pg_data_t *pgdat, bool proactive)
facdaa91
NG
2901{
2902 int zoneid;
2903 struct zone *zone;
2904 struct compact_control cc = {
2905 .order = -1,
3e40b3f4 2906 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
facdaa91
NG
2907 .ignore_skip_hint = true,
2908 .whole_zone = true,
2909 .gfp_mask = GFP_KERNEL,
3e40b3f4 2910 .proactive_compaction = proactive,
facdaa91
NG
2911 };
2912
2913 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2914 zone = &pgdat->node_zones[zoneid];
2915 if (!populated_zone(zone))
2916 continue;
2917
f6f3f275
KW
2918 if (fatal_signal_pending(current))
2919 return -EINTR;
2920
facdaa91
NG
2921 cc.zone = zone;
2922
2923 compact_zone(&cc, NULL);
2924
3e40b3f4
KW
2925 if (proactive) {
2926 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2927 cc.total_migrate_scanned);
2928 count_compact_events(KCOMPACTD_FREE_SCANNED,
2929 cc.total_free_scanned);
2930 }
facdaa91 2931 }
76ab0f53 2932
f6f3f275 2933 return 0;
76ab0f53
MG
2934}
2935
3e40b3f4 2936/* Compact all zones of all nodes in the system */
f6f3f275 2937static int compact_nodes(void)
76ab0f53 2938{
f6f3f275 2939 int ret, nid;
76ab0f53 2940
8575ec29
HD
2941 /* Flush pending updates to the LRU lists */
2942 lru_add_drain_all();
2943
f6f3f275
KW
2944 for_each_online_node(nid) {
2945 ret = compact_node(NODE_DATA(nid), false);
2946 if (ret)
2947 return ret;
2948 }
2949
2950 return 0;
76ab0f53
MG
2951}
2952
48fe8ab8 2953static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
65d759c8
CTR
2954 void *buffer, size_t *length, loff_t *ppos)
2955{
2956 int rc, nid;
2957
2958 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2959 if (rc)
2960 return rc;
2961
2962 if (write && sysctl_compaction_proactiveness) {
2963 for_each_online_node(nid) {
2964 pg_data_t *pgdat = NODE_DATA(nid);
2965
2966 if (pgdat->proactive_compact_trigger)
2967 continue;
2968
2969 pgdat->proactive_compact_trigger = true;
8fff8b6f
BW
2970 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2971 pgdat->nr_zones - 1);
65d759c8
CTR
2972 wake_up_interruptible(&pgdat->kcompactd_wait);
2973 }
2974 }
2975
2976 return 0;
2977}
2978
fec4eb2c
YB
2979/*
2980 * This is the entry point for compacting all nodes via
2981 * /proc/sys/vm/compact_memory
2982 */
48fe8ab8 2983static int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2984 void *buffer, size_t *length, loff_t *ppos)
76ab0f53 2985{
8b9167cd
WY
2986 int ret;
2987
2988 ret = proc_dointvec(table, write, buffer, length, ppos);
2989 if (ret)
2990 return ret;
2991
2992 if (sysctl_compact_memory != 1)
2993 return -EINVAL;
2994
76ab0f53 2995 if (write)
f6f3f275 2996 ret = compact_nodes();
76ab0f53 2997
f6f3f275 2998 return ret;
76ab0f53 2999}
ed4a6d7f
MG
3000
3001#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
3002static ssize_t compact_store(struct device *dev,
3003 struct device_attribute *attr,
3004 const char *buf, size_t count)
ed4a6d7f 3005{
8575ec29
HD
3006 int nid = dev->id;
3007
3008 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3009 /* Flush pending updates to the LRU lists */
3010 lru_add_drain_all();
3011
3e40b3f4 3012 compact_node(NODE_DATA(nid), false);
8575ec29 3013 }
ed4a6d7f
MG
3014
3015 return count;
3016}
17adb230 3017static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
3018
3019int compaction_register_node(struct node *node)
3020{
10fbcf4c 3021 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
3022}
3023
3024void compaction_unregister_node(struct node *node)
3025{
f82024cb 3026 device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
3027}
3028#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 3029
698b1b30
VB
3030static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3031{
65d759c8
CTR
3032 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3033 pgdat->proactive_compact_trigger;
698b1b30
VB
3034}
3035
3036static bool kcompactd_node_suitable(pg_data_t *pgdat)
3037{
3038 int zoneid;
3039 struct zone *zone;
97a225e6 3040 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
e19a3f59 3041 enum compact_result ret;
698b1b30 3042
97a225e6 3043 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
3044 zone = &pgdat->node_zones[zoneid];
3045
3046 if (!populated_zone(zone))
3047 continue;
3048
e19a3f59
KS
3049 ret = compaction_suit_allocation_order(zone,
3050 pgdat->kcompactd_max_order,
3051 highest_zoneidx, ALLOC_WMARK_MIN);
3052 if (ret == COMPACT_CONTINUE)
698b1b30
VB
3053 return true;
3054 }
3055
3056 return false;
3057}
3058
3059static void kcompactd_do_work(pg_data_t *pgdat)
3060{
3061 /*
3062 * With no special task, compact all zones so that a page of requested
3063 * order is allocatable.
3064 */
3065 int zoneid;
3066 struct zone *zone;
3067 struct compact_control cc = {
3068 .order = pgdat->kcompactd_max_order,
dbe2d4e4 3069 .search_order = pgdat->kcompactd_max_order,
97a225e6 3070 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 3071 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 3072 .ignore_skip_hint = false,
73e64c51 3073 .gfp_mask = GFP_KERNEL,
698b1b30 3074 };
e19a3f59
KS
3075 enum compact_result ret;
3076
698b1b30 3077 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 3078 cc.highest_zoneidx);
7f354a54 3079 count_compact_event(KCOMPACTD_WAKE);
698b1b30 3080
97a225e6 3081 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
3082 int status;
3083
3084 zone = &pgdat->node_zones[zoneid];
3085 if (!populated_zone(zone))
3086 continue;
3087
3088 if (compaction_deferred(zone, cc.order))
3089 continue;
3090
e19a3f59
KS
3091 ret = compaction_suit_allocation_order(zone,
3092 cc.order, zoneid, ALLOC_WMARK_MIN);
3093 if (ret != COMPACT_CONTINUE)
e8606320 3094 continue;
f98a497e 3095
172400c6
VB
3096 if (kthread_should_stop())
3097 return;
a94b5252
YS
3098
3099 cc.zone = zone;
5e1f0f09 3100 status = compact_zone(&cc, NULL);
698b1b30 3101
7ceb009a 3102 if (status == COMPACT_SUCCESS) {
698b1b30 3103 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 3104 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
3105 /*
3106 * Buddy pages may become stranded on pcps that could
3107 * otherwise coalesce on the zone's free area for
3108 * order >= cc.order. This is ratelimited by the
3109 * upcoming deferral.
3110 */
3111 drain_all_pages(zone);
3112
698b1b30
VB
3113 /*
3114 * We use sync migration mode here, so we defer like
3115 * sync direct compaction does.
3116 */
3117 defer_compaction(zone, cc.order);
3118 }
3119
7f354a54
DR
3120 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3121 cc.total_migrate_scanned);
3122 count_compact_events(KCOMPACTD_FREE_SCANNED,
3123 cc.total_free_scanned);
698b1b30
VB
3124 }
3125
3126 /*
3127 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
3128 * the requested order/highest_zoneidx in case it was higher/tighter
3129 * than our current ones
698b1b30
VB
3130 */
3131 if (pgdat->kcompactd_max_order <= cc.order)
3132 pgdat->kcompactd_max_order = 0;
97a225e6
JK
3133 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3134 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3135}
3136
97a225e6 3137void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
3138{
3139 if (!order)
3140 return;
3141
3142 if (pgdat->kcompactd_max_order < order)
3143 pgdat->kcompactd_max_order = order;
3144
97a225e6
JK
3145 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3146 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 3147
6818600f
DB
3148 /*
3149 * Pairs with implicit barrier in wait_event_freezable()
3150 * such that wakeups are not missed.
3151 */
3152 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
3153 return;
3154
3155 if (!kcompactd_node_suitable(pgdat))
3156 return;
3157
3158 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 3159 highest_zoneidx);
698b1b30
VB
3160 wake_up_interruptible(&pgdat->kcompactd_wait);
3161}
3162
3163/*
3164 * The background compaction daemon, started as a kernel thread
3165 * from the init process.
3166 */
3167static int kcompactd(void *p)
3168{
68d68ff6 3169 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 3170 struct task_struct *tsk = current;
e1e92bfa
CTR
3171 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3172 long timeout = default_timeout;
698b1b30
VB
3173
3174 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3175
3176 if (!cpumask_empty(cpumask))
3177 set_cpus_allowed_ptr(tsk, cpumask);
3178
3179 set_freezable();
3180
3181 pgdat->kcompactd_max_order = 0;
97a225e6 3182 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
3183
3184 while (!kthread_should_stop()) {
eb414681
JW
3185 unsigned long pflags;
3186
65d759c8
CTR
3187 /*
3188 * Avoid the unnecessary wakeup for proactive compaction
3189 * when it is disabled.
3190 */
3191 if (!sysctl_compaction_proactiveness)
3192 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 3193 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 3194 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
3195 kcompactd_work_requested(pgdat), timeout) &&
3196 !pgdat->proactive_compact_trigger) {
facdaa91
NG
3197
3198 psi_memstall_enter(&pflags);
3199 kcompactd_do_work(pgdat);
3200 psi_memstall_leave(&pflags);
e1e92bfa
CTR
3201 /*
3202 * Reset the timeout value. The defer timeout from
3203 * proactive compaction is lost here but that is fine
3204 * as the condition of the zone changing substantionally
3205 * then carrying on with the previous defer interval is
3206 * not useful.
3207 */
3208 timeout = default_timeout;
facdaa91
NG
3209 continue;
3210 }
698b1b30 3211
e1e92bfa
CTR
3212 /*
3213 * Start the proactive work with default timeout. Based
3214 * on the fragmentation score, this timeout is updated.
3215 */
3216 timeout = default_timeout;
facdaa91
NG
3217 if (should_proactive_compact_node(pgdat)) {
3218 unsigned int prev_score, score;
3219
facdaa91 3220 prev_score = fragmentation_score_node(pgdat);
3e40b3f4 3221 compact_node(pgdat, true);
facdaa91
NG
3222 score = fragmentation_score_node(pgdat);
3223 /*
3224 * Defer proactive compaction if the fragmentation
3225 * score did not go down i.e. no progress made.
3226 */
e1e92bfa
CTR
3227 if (unlikely(score >= prev_score))
3228 timeout =
3229 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3230 }
65d759c8
CTR
3231 if (unlikely(pgdat->proactive_compact_trigger))
3232 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3233 }
3234
3235 return 0;
3236}
3237
3238/*
3239 * This kcompactd start function will be called by init and node-hot-add.
3240 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3241 */
833dfc00 3242void __meminit kcompactd_run(int nid)
698b1b30
VB
3243{
3244 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3245
3246 if (pgdat->kcompactd)
024c61ea 3247 return;
698b1b30
VB
3248
3249 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3250 if (IS_ERR(pgdat->kcompactd)) {
3251 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3252 pgdat->kcompactd = NULL;
3253 }
698b1b30
VB
3254}
3255
3256/*
3257 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3258 * be holding mem_hotplug_begin/done().
698b1b30 3259 */
833dfc00 3260void __meminit kcompactd_stop(int nid)
698b1b30
VB
3261{
3262 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3263
3264 if (kcompactd) {
3265 kthread_stop(kcompactd);
3266 NODE_DATA(nid)->kcompactd = NULL;
3267 }
3268}
3269
3270/*
3271 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3272 * not required for correctness. So if the last cpu in a node goes
3273 * away, we get changed to run anywhere: as the first one comes back,
3274 * restore their cpu bindings.
3275 */
e46b1db2 3276static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3277{
3278 int nid;
3279
e46b1db2
AMG
3280 for_each_node_state(nid, N_MEMORY) {
3281 pg_data_t *pgdat = NODE_DATA(nid);
3282 const struct cpumask *mask;
698b1b30 3283
e46b1db2 3284 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3285
e46b1db2
AMG
3286 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3287 /* One of our CPUs online: restore mask */
3109de30
ML
3288 if (pgdat->kcompactd)
3289 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3290 }
e46b1db2 3291 return 0;
698b1b30
VB
3292}
3293
48fe8ab8
MC
3294static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3295 int write, void *buffer, size_t *lenp, loff_t *ppos)
3296{
3297 int ret, old;
3298
3299 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3300 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3301
3302 old = *(int *)table->data;
3303 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3304 if (ret)
3305 return ret;
3306 if (old != *(int *)table->data)
3307 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3308 table->procname, current->comm,
3309 task_pid_nr(current));
3310 return ret;
3311}
3312
48fe8ab8
MC
3313static struct ctl_table vm_compaction[] = {
3314 {
3315 .procname = "compact_memory",
8b9167cd 3316 .data = &sysctl_compact_memory,
48fe8ab8
MC
3317 .maxlen = sizeof(int),
3318 .mode = 0200,
3319 .proc_handler = sysctl_compaction_handler,
3320 },
3321 {
3322 .procname = "compaction_proactiveness",
3323 .data = &sysctl_compaction_proactiveness,
3324 .maxlen = sizeof(sysctl_compaction_proactiveness),
3325 .mode = 0644,
3326 .proc_handler = compaction_proactiveness_sysctl_handler,
3327 .extra1 = SYSCTL_ZERO,
3328 .extra2 = SYSCTL_ONE_HUNDRED,
3329 },
3330 {
3331 .procname = "extfrag_threshold",
3332 .data = &sysctl_extfrag_threshold,
3333 .maxlen = sizeof(int),
3334 .mode = 0644,
3335 .proc_handler = proc_dointvec_minmax,
3336 .extra1 = SYSCTL_ZERO,
3337 .extra2 = SYSCTL_ONE_THOUSAND,
3338 },
3339 {
3340 .procname = "compact_unevictable_allowed",
3341 .data = &sysctl_compact_unevictable_allowed,
3342 .maxlen = sizeof(int),
3343 .mode = 0644,
3344 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3345 .extra1 = SYSCTL_ZERO,
3346 .extra2 = SYSCTL_ONE,
3347 },
3348 { }
3349};
48fe8ab8 3350
698b1b30
VB
3351static int __init kcompactd_init(void)
3352{
3353 int nid;
e46b1db2
AMG
3354 int ret;
3355
3356 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3357 "mm/compaction:online",
3358 kcompactd_cpu_online, NULL);
3359 if (ret < 0) {
3360 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3361 return ret;
3362 }
698b1b30
VB
3363
3364 for_each_node_state(nid, N_MEMORY)
3365 kcompactd_run(nid);
48fe8ab8 3366 register_sysctl_init("vm", vm_compaction);
698b1b30
VB
3367 return 0;
3368}
3369subsys_initcall(kcompactd_init)
3370
ff9543fd 3371#endif /* CONFIG_COMPACTION */