lib: zstd: Upgrade to latest upstream zstd version 1.4.10
[linux-block.git] / lib / zstd / compress / zstd_ldm.c
CommitLineData
e0c1b49f
NT
1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11#include "zstd_ldm.h"
12
13#include "../common/debug.h"
14#include <linux/xxhash.h>
15#include "zstd_fast.h" /* ZSTD_fillHashTable() */
16#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
17#include "zstd_ldm_geartab.h"
18
19#define LDM_BUCKET_SIZE_LOG 3
20#define LDM_MIN_MATCH_LENGTH 64
21#define LDM_HASH_RLOG 7
22
23typedef struct {
24 U64 rolling;
25 U64 stopMask;
26} ldmRollingHashState_t;
27
28/* ZSTD_ldm_gear_init():
29 *
30 * Initializes the rolling hash state such that it will honor the
31 * settings in params. */
32static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
33{
34 unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
35 unsigned hashRateLog = params->hashRateLog;
36
37 state->rolling = ~(U32)0;
38
39 /* The choice of the splitting criterion is subject to two conditions:
40 * 1. it has to trigger on average every 2^(hashRateLog) bytes;
41 * 2. ideally, it has to depend on a window of minMatchLength bytes.
42 *
43 * In the gear hash algorithm, bit n depends on the last n bytes;
44 * so in order to obtain a good quality splitting criterion it is
45 * preferable to use bits with high weight.
46 *
47 * To match condition 1 we use a mask with hashRateLog bits set
48 * and, because of the previous remark, we make sure these bits
49 * have the highest possible weight while still respecting
50 * condition 2.
51 */
52 if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
53 state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
54 } else {
55 /* In this degenerate case we simply honor the hash rate. */
56 state->stopMask = ((U64)1 << hashRateLog) - 1;
57 }
58}
59
60/* ZSTD_ldm_gear_feed():
61 *
62 * Registers in the splits array all the split points found in the first
63 * size bytes following the data pointer. This function terminates when
64 * either all the data has been processed or LDM_BATCH_SIZE splits are
65 * present in the splits array.
66 *
67 * Precondition: The splits array must not be full.
68 * Returns: The number of bytes processed. */
69static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
70 BYTE const* data, size_t size,
71 size_t* splits, unsigned* numSplits)
72{
73 size_t n;
74 U64 hash, mask;
75
76 hash = state->rolling;
77 mask = state->stopMask;
78 n = 0;
79
80#define GEAR_ITER_ONCE() do { \
81 hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
82 n += 1; \
83 if (UNLIKELY((hash & mask) == 0)) { \
84 splits[*numSplits] = n; \
85 *numSplits += 1; \
86 if (*numSplits == LDM_BATCH_SIZE) \
87 goto done; \
88 } \
89 } while (0)
90
91 while (n + 3 < size) {
92 GEAR_ITER_ONCE();
93 GEAR_ITER_ONCE();
94 GEAR_ITER_ONCE();
95 GEAR_ITER_ONCE();
96 }
97 while (n < size) {
98 GEAR_ITER_ONCE();
99 }
100
101#undef GEAR_ITER_ONCE
102
103done:
104 state->rolling = hash;
105 return n;
106}
107
108void ZSTD_ldm_adjustParameters(ldmParams_t* params,
109 ZSTD_compressionParameters const* cParams)
110{
111 params->windowLog = cParams->windowLog;
112 ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
113 DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
114 if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
115 if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
116 if (params->hashLog == 0) {
117 params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
118 assert(params->hashLog <= ZSTD_HASHLOG_MAX);
119 }
120 if (params->hashRateLog == 0) {
121 params->hashRateLog = params->windowLog < params->hashLog
122 ? 0
123 : params->windowLog - params->hashLog;
124 }
125 params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
126}
127
128size_t ZSTD_ldm_getTableSize(ldmParams_t params)
129{
130 size_t const ldmHSize = ((size_t)1) << params.hashLog;
131 size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
132 size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
133 size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
134 + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
135 return params.enableLdm ? totalSize : 0;
136}
137
138size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
139{
140 return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
141}
142
143/* ZSTD_ldm_getBucket() :
144 * Returns a pointer to the start of the bucket associated with hash. */
145static ldmEntry_t* ZSTD_ldm_getBucket(
146 ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
147{
148 return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
149}
150
151/* ZSTD_ldm_insertEntry() :
152 * Insert the entry with corresponding hash into the hash table */
153static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
154 size_t const hash, const ldmEntry_t entry,
155 ldmParams_t const ldmParams)
156{
157 BYTE* const pOffset = ldmState->bucketOffsets + hash;
158 unsigned const offset = *pOffset;
159
160 *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
161 *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
162
163}
164
165/* ZSTD_ldm_countBackwardsMatch() :
166 * Returns the number of bytes that match backwards before pIn and pMatch.
167 *
168 * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
169static size_t ZSTD_ldm_countBackwardsMatch(
170 const BYTE* pIn, const BYTE* pAnchor,
171 const BYTE* pMatch, const BYTE* pMatchBase)
172{
173 size_t matchLength = 0;
174 while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
175 pIn--;
176 pMatch--;
177 matchLength++;
178 }
179 return matchLength;
180}
181
182/* ZSTD_ldm_countBackwardsMatch_2segments() :
183 * Returns the number of bytes that match backwards from pMatch,
184 * even with the backwards match spanning 2 different segments.
185 *
186 * On reaching `pMatchBase`, start counting from mEnd */
187static size_t ZSTD_ldm_countBackwardsMatch_2segments(
188 const BYTE* pIn, const BYTE* pAnchor,
189 const BYTE* pMatch, const BYTE* pMatchBase,
190 const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
191{
192 size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
193 if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
194 /* If backwards match is entirely in the extDict or prefix, immediately return */
195 return matchLength;
196 }
197 DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
198 matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
199 DEBUGLOG(7, "final backwards match length = %zu", matchLength);
200 return matchLength;
201}
202
203/* ZSTD_ldm_fillFastTables() :
204 *
205 * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
206 * This is similar to ZSTD_loadDictionaryContent.
207 *
208 * The tables for the other strategies are filled within their
209 * block compressors. */
210static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
211 void const* end)
212{
213 const BYTE* const iend = (const BYTE*)end;
214
215 switch(ms->cParams.strategy)
216 {
217 case ZSTD_fast:
218 ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
219 break;
220
221 case ZSTD_dfast:
222 ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
223 break;
224
225 case ZSTD_greedy:
226 case ZSTD_lazy:
227 case ZSTD_lazy2:
228 case ZSTD_btlazy2:
229 case ZSTD_btopt:
230 case ZSTD_btultra:
231 case ZSTD_btultra2:
232 break;
233 default:
234 assert(0); /* not possible : not a valid strategy id */
235 }
236
237 return 0;
238}
239
240void ZSTD_ldm_fillHashTable(
241 ldmState_t* ldmState, const BYTE* ip,
242 const BYTE* iend, ldmParams_t const* params)
243{
244 U32 const minMatchLength = params->minMatchLength;
245 U32 const hBits = params->hashLog - params->bucketSizeLog;
246 BYTE const* const base = ldmState->window.base;
247 BYTE const* const istart = ip;
248 ldmRollingHashState_t hashState;
249 size_t* const splits = ldmState->splitIndices;
250 unsigned numSplits;
251
252 DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
253
254 ZSTD_ldm_gear_init(&hashState, params);
255 while (ip < iend) {
256 size_t hashed;
257 unsigned n;
258
259 numSplits = 0;
260 hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
261
262 for (n = 0; n < numSplits; n++) {
263 if (ip + splits[n] >= istart + minMatchLength) {
264 BYTE const* const split = ip + splits[n] - minMatchLength;
265 U64 const xxhash = xxh64(split, minMatchLength, 0);
266 U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
267 ldmEntry_t entry;
268
269 entry.offset = (U32)(split - base);
270 entry.checksum = (U32)(xxhash >> 32);
271 ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
272 }
273 }
274
275 ip += hashed;
276 }
277}
278
279
280/* ZSTD_ldm_limitTableUpdate() :
281 *
282 * Sets cctx->nextToUpdate to a position corresponding closer to anchor
283 * if it is far way
284 * (after a long match, only update tables a limited amount). */
285static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
286{
287 U32 const curr = (U32)(anchor - ms->window.base);
288 if (curr > ms->nextToUpdate + 1024) {
289 ms->nextToUpdate =
290 curr - MIN(512, curr - ms->nextToUpdate - 1024);
291 }
292}
293
294static size_t ZSTD_ldm_generateSequences_internal(
295 ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
296 ldmParams_t const* params, void const* src, size_t srcSize)
297{
298 /* LDM parameters */
299 int const extDict = ZSTD_window_hasExtDict(ldmState->window);
300 U32 const minMatchLength = params->minMatchLength;
301 U32 const entsPerBucket = 1U << params->bucketSizeLog;
302 U32 const hBits = params->hashLog - params->bucketSizeLog;
303 /* Prefix and extDict parameters */
304 U32 const dictLimit = ldmState->window.dictLimit;
305 U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
306 BYTE const* const base = ldmState->window.base;
307 BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
308 BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
309 BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
310 BYTE const* const lowPrefixPtr = base + dictLimit;
311 /* Input bounds */
312 BYTE const* const istart = (BYTE const*)src;
313 BYTE const* const iend = istart + srcSize;
314 BYTE const* const ilimit = iend - HASH_READ_SIZE;
315 /* Input positions */
316 BYTE const* anchor = istart;
317 BYTE const* ip = istart;
318 /* Rolling hash state */
319 ldmRollingHashState_t hashState;
320 /* Arrays for staged-processing */
321 size_t* const splits = ldmState->splitIndices;
322 ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
323 unsigned numSplits;
324
325 if (srcSize < minMatchLength)
326 return iend - anchor;
327
328 /* Initialize the rolling hash state with the first minMatchLength bytes */
329 ZSTD_ldm_gear_init(&hashState, params);
330 {
331 size_t n = 0;
332
333 while (n < minMatchLength) {
334 numSplits = 0;
335 n += ZSTD_ldm_gear_feed(&hashState, ip + n, minMatchLength - n,
336 splits, &numSplits);
337 }
338 ip += minMatchLength;
339 }
340
341 while (ip < ilimit) {
342 size_t hashed;
343 unsigned n;
344
345 numSplits = 0;
346 hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
347 splits, &numSplits);
348
349 for (n = 0; n < numSplits; n++) {
350 BYTE const* const split = ip + splits[n] - minMatchLength;
351 U64 const xxhash = xxh64(split, minMatchLength, 0);
352 U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
353
354 candidates[n].split = split;
355 candidates[n].hash = hash;
356 candidates[n].checksum = (U32)(xxhash >> 32);
357 candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
358 PREFETCH_L1(candidates[n].bucket);
359 }
360
361 for (n = 0; n < numSplits; n++) {
362 size_t forwardMatchLength = 0, backwardMatchLength = 0,
363 bestMatchLength = 0, mLength;
364 BYTE const* const split = candidates[n].split;
365 U32 const checksum = candidates[n].checksum;
366 U32 const hash = candidates[n].hash;
367 ldmEntry_t* const bucket = candidates[n].bucket;
368 ldmEntry_t const* cur;
369 ldmEntry_t const* bestEntry = NULL;
370 ldmEntry_t newEntry;
371
372 newEntry.offset = (U32)(split - base);
373 newEntry.checksum = checksum;
374
375 /* If a split point would generate a sequence overlapping with
376 * the previous one, we merely register it in the hash table and
377 * move on */
378 if (split < anchor) {
379 ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
380 continue;
381 }
382
383 for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
384 size_t curForwardMatchLength, curBackwardMatchLength,
385 curTotalMatchLength;
386 if (cur->checksum != checksum || cur->offset <= lowestIndex) {
387 continue;
388 }
389 if (extDict) {
390 BYTE const* const curMatchBase =
391 cur->offset < dictLimit ? dictBase : base;
392 BYTE const* const pMatch = curMatchBase + cur->offset;
393 BYTE const* const matchEnd =
394 cur->offset < dictLimit ? dictEnd : iend;
395 BYTE const* const lowMatchPtr =
396 cur->offset < dictLimit ? dictStart : lowPrefixPtr;
397 curForwardMatchLength =
398 ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
399 if (curForwardMatchLength < minMatchLength) {
400 continue;
401 }
402 curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
403 split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
404 } else { /* !extDict */
405 BYTE const* const pMatch = base + cur->offset;
406 curForwardMatchLength = ZSTD_count(split, pMatch, iend);
407 if (curForwardMatchLength < minMatchLength) {
408 continue;
409 }
410 curBackwardMatchLength =
411 ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
412 }
413 curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
414
415 if (curTotalMatchLength > bestMatchLength) {
416 bestMatchLength = curTotalMatchLength;
417 forwardMatchLength = curForwardMatchLength;
418 backwardMatchLength = curBackwardMatchLength;
419 bestEntry = cur;
420 }
421 }
422
423 /* No match found -- insert an entry into the hash table
424 * and process the next candidate match */
425 if (bestEntry == NULL) {
426 ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
427 continue;
428 }
429
430 /* Match found */
431 mLength = forwardMatchLength + backwardMatchLength;
432 {
433 U32 const offset = (U32)(split - base) - bestEntry->offset;
434 rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
435
436 /* Out of sequence storage */
437 if (rawSeqStore->size == rawSeqStore->capacity)
438 return ERROR(dstSize_tooSmall);
439 seq->litLength = (U32)(split - backwardMatchLength - anchor);
440 seq->matchLength = (U32)mLength;
441 seq->offset = offset;
442 rawSeqStore->size++;
443 }
444
445 /* Insert the current entry into the hash table --- it must be
446 * done after the previous block to avoid clobbering bestEntry */
447 ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
448
449 anchor = split + forwardMatchLength;
450 }
451
452 ip += hashed;
453 }
454
455 return iend - anchor;
456}
457
458/*! ZSTD_ldm_reduceTable() :
459 * reduce table indexes by `reducerValue` */
460static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
461 U32 const reducerValue)
462{
463 U32 u;
464 for (u = 0; u < size; u++) {
465 if (table[u].offset < reducerValue) table[u].offset = 0;
466 else table[u].offset -= reducerValue;
467 }
468}
469
470size_t ZSTD_ldm_generateSequences(
471 ldmState_t* ldmState, rawSeqStore_t* sequences,
472 ldmParams_t const* params, void const* src, size_t srcSize)
473{
474 U32 const maxDist = 1U << params->windowLog;
475 BYTE const* const istart = (BYTE const*)src;
476 BYTE const* const iend = istart + srcSize;
477 size_t const kMaxChunkSize = 1 << 20;
478 size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
479 size_t chunk;
480 size_t leftoverSize = 0;
481
482 assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
483 /* Check that ZSTD_window_update() has been called for this chunk prior
484 * to passing it to this function.
485 */
486 assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
487 /* The input could be very large (in zstdmt), so it must be broken up into
488 * chunks to enforce the maximum distance and handle overflow correction.
489 */
490 assert(sequences->pos <= sequences->size);
491 assert(sequences->size <= sequences->capacity);
492 for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
493 BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
494 size_t const remaining = (size_t)(iend - chunkStart);
495 BYTE const *const chunkEnd =
496 (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
497 size_t const chunkSize = chunkEnd - chunkStart;
498 size_t newLeftoverSize;
499 size_t const prevSize = sequences->size;
500
501 assert(chunkStart < iend);
502 /* 1. Perform overflow correction if necessary. */
503 if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
504 U32 const ldmHSize = 1U << params->hashLog;
505 U32 const correction = ZSTD_window_correctOverflow(
506 &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
507 ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
508 /* invalidate dictionaries on overflow correction */
509 ldmState->loadedDictEnd = 0;
510 }
511 /* 2. We enforce the maximum offset allowed.
512 *
513 * kMaxChunkSize should be small enough that we don't lose too much of
514 * the window through early invalidation.
515 * TODO: * Test the chunk size.
516 * * Try invalidation after the sequence generation and test the
517 * the offset against maxDist directly.
518 *
519 * NOTE: Because of dictionaries + sequence splitting we MUST make sure
520 * that any offset used is valid at the END of the sequence, since it may
521 * be split into two sequences. This condition holds when using
522 * ZSTD_window_enforceMaxDist(), but if we move to checking offsets
523 * against maxDist directly, we'll have to carefully handle that case.
524 */
525 ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
526 /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
527 newLeftoverSize = ZSTD_ldm_generateSequences_internal(
528 ldmState, sequences, params, chunkStart, chunkSize);
529 if (ZSTD_isError(newLeftoverSize))
530 return newLeftoverSize;
531 /* 4. We add the leftover literals from previous iterations to the first
532 * newly generated sequence, or add the `newLeftoverSize` if none are
533 * generated.
534 */
535 /* Prepend the leftover literals from the last call */
536 if (prevSize < sequences->size) {
537 sequences->seq[prevSize].litLength += (U32)leftoverSize;
538 leftoverSize = newLeftoverSize;
539 } else {
540 assert(newLeftoverSize == chunkSize);
541 leftoverSize += chunkSize;
542 }
543 }
544 return 0;
545}
546
547void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
548 while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
549 rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
550 if (srcSize <= seq->litLength) {
551 /* Skip past srcSize literals */
552 seq->litLength -= (U32)srcSize;
553 return;
554 }
555 srcSize -= seq->litLength;
556 seq->litLength = 0;
557 if (srcSize < seq->matchLength) {
558 /* Skip past the first srcSize of the match */
559 seq->matchLength -= (U32)srcSize;
560 if (seq->matchLength < minMatch) {
561 /* The match is too short, omit it */
562 if (rawSeqStore->pos + 1 < rawSeqStore->size) {
563 seq[1].litLength += seq[0].matchLength;
564 }
565 rawSeqStore->pos++;
566 }
567 return;
568 }
569 srcSize -= seq->matchLength;
570 seq->matchLength = 0;
571 rawSeqStore->pos++;
572 }
573}
574
575/*
576 * If the sequence length is longer than remaining then the sequence is split
577 * between this block and the next.
578 *
579 * Returns the current sequence to handle, or if the rest of the block should
580 * be literals, it returns a sequence with offset == 0.
581 */
582static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
583 U32 const remaining, U32 const minMatch)
584{
585 rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
586 assert(sequence.offset > 0);
587 /* Likely: No partial sequence */
588 if (remaining >= sequence.litLength + sequence.matchLength) {
589 rawSeqStore->pos++;
590 return sequence;
591 }
592 /* Cut the sequence short (offset == 0 ==> rest is literals). */
593 if (remaining <= sequence.litLength) {
594 sequence.offset = 0;
595 } else if (remaining < sequence.litLength + sequence.matchLength) {
596 sequence.matchLength = remaining - sequence.litLength;
597 if (sequence.matchLength < minMatch) {
598 sequence.offset = 0;
599 }
600 }
601 /* Skip past `remaining` bytes for the future sequences. */
602 ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
603 return sequence;
604}
605
606void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
607 U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
608 while (currPos && rawSeqStore->pos < rawSeqStore->size) {
609 rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
610 if (currPos >= currSeq.litLength + currSeq.matchLength) {
611 currPos -= currSeq.litLength + currSeq.matchLength;
612 rawSeqStore->pos++;
613 } else {
614 rawSeqStore->posInSequence = currPos;
615 break;
616 }
617 }
618 if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
619 rawSeqStore->posInSequence = 0;
620 }
621}
622
623size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
624 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
625 void const* src, size_t srcSize)
626{
627 const ZSTD_compressionParameters* const cParams = &ms->cParams;
628 unsigned const minMatch = cParams->minMatch;
629 ZSTD_blockCompressor const blockCompressor =
630 ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
631 /* Input bounds */
632 BYTE const* const istart = (BYTE const*)src;
633 BYTE const* const iend = istart + srcSize;
634 /* Input positions */
635 BYTE const* ip = istart;
636
637 DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
638 /* If using opt parser, use LDMs only as candidates rather than always accepting them */
639 if (cParams->strategy >= ZSTD_btopt) {
640 size_t lastLLSize;
641 ms->ldmSeqStore = rawSeqStore;
642 lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
643 ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
644 return lastLLSize;
645 }
646
647 assert(rawSeqStore->pos <= rawSeqStore->size);
648 assert(rawSeqStore->size <= rawSeqStore->capacity);
649 /* Loop through each sequence and apply the block compressor to the literals */
650 while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
651 /* maybeSplitSequence updates rawSeqStore->pos */
652 rawSeq const sequence = maybeSplitSequence(rawSeqStore,
653 (U32)(iend - ip), minMatch);
654 int i;
655 /* End signal */
656 if (sequence.offset == 0)
657 break;
658
659 assert(ip + sequence.litLength + sequence.matchLength <= iend);
660
661 /* Fill tables for block compressor */
662 ZSTD_ldm_limitTableUpdate(ms, ip);
663 ZSTD_ldm_fillFastTables(ms, ip);
664 /* Run the block compressor */
665 DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
666 {
667 size_t const newLitLength =
668 blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
669 ip += sequence.litLength;
670 /* Update the repcodes */
671 for (i = ZSTD_REP_NUM - 1; i > 0; i--)
672 rep[i] = rep[i-1];
673 rep[0] = sequence.offset;
674 /* Store the sequence */
675 ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
676 sequence.offset + ZSTD_REP_MOVE,
677 sequence.matchLength - MINMATCH);
678 ip += sequence.matchLength;
679 }
680 }
681 /* Fill the tables for the block compressor */
682 ZSTD_ldm_limitTableUpdate(ms, ip);
683 ZSTD_ldm_fillFastTables(ms, ip);
684 /* Compress the last literals */
685 return blockCompressor(ms, seqStore, rep, ip, iend - ip);
686}