XArray: Add support for 1s-based allocation
[linux-2.6-block.git] / lib / xarray.c
CommitLineData
f8d5d0cc
MW
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
6 */
7
9b89a035 8#include <linux/bitmap.h>
f8d5d0cc 9#include <linux/export.h>
58d6ea30
MW
10#include <linux/list.h>
11#include <linux/slab.h>
f8d5d0cc
MW
12#include <linux/xarray.h>
13
14/*
15 * Coding conventions in this file:
16 *
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
20 * ambiguity.
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
24 * this function.
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
28 */
29
58d6ea30
MW
30static inline unsigned int xa_lock_type(const struct xarray *xa)
31{
32 return (__force unsigned int)xa->xa_flags & 3;
33}
34
35static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36{
37 if (lock_type == XA_LOCK_IRQ)
38 xas_lock_irq(xas);
39 else if (lock_type == XA_LOCK_BH)
40 xas_lock_bh(xas);
41 else
42 xas_lock(xas);
43}
44
45static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46{
47 if (lock_type == XA_LOCK_IRQ)
48 xas_unlock_irq(xas);
49 else if (lock_type == XA_LOCK_BH)
50 xas_unlock_bh(xas);
51 else
52 xas_unlock(xas);
53}
54
371c752d
MW
55static inline bool xa_track_free(const struct xarray *xa)
56{
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58}
59
3ccaf57a
MW
60static inline bool xa_zero_busy(const struct xarray *xa)
61{
62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
63}
64
9b89a035
MW
65static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
66{
67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 xa->xa_flags |= XA_FLAGS_MARK(mark);
69}
70
71static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
72{
73 if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
75}
76
77static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
78{
79 return node->marks[(__force unsigned)mark];
80}
81
82static inline bool node_get_mark(struct xa_node *node,
83 unsigned int offset, xa_mark_t mark)
84{
85 return test_bit(offset, node_marks(node, mark));
86}
87
88/* returns true if the bit was set */
89static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 xa_mark_t mark)
91{
92 return __test_and_set_bit(offset, node_marks(node, mark));
93}
94
95/* returns true if the bit was set */
96static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 xa_mark_t mark)
98{
99 return __test_and_clear_bit(offset, node_marks(node, mark));
100}
101
102static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
103{
104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
105}
106
371c752d
MW
107static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
108{
109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
110}
111
58d6ea30
MW
112#define mark_inc(mark) do { \
113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114} while (0)
115
116/*
117 * xas_squash_marks() - Merge all marks to the first entry
118 * @xas: Array operation state.
119 *
120 * Set a mark on the first entry if any entry has it set. Clear marks on
121 * all sibling entries.
122 */
123static void xas_squash_marks(const struct xa_state *xas)
124{
125 unsigned int mark = 0;
126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127
128 if (!xas->xa_sibs)
129 return;
130
131 do {
132 unsigned long *marks = xas->xa_node->marks[mark];
133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 continue;
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 } while (mark++ != (__force unsigned)XA_MARK_MAX);
138}
139
ad3d6c72
MW
140/* extracts the offset within this node from the index */
141static unsigned int get_offset(unsigned long index, struct xa_node *node)
142{
143 return (index >> node->shift) & XA_CHUNK_MASK;
144}
145
b803b428
MW
146static void xas_set_offset(struct xa_state *xas)
147{
148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
149}
150
ad3d6c72
MW
151/* move the index either forwards (find) or backwards (sibling slot) */
152static void xas_move_index(struct xa_state *xas, unsigned long offset)
153{
154 unsigned int shift = xas->xa_node->shift;
155 xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 xas->xa_index += offset << shift;
157}
158
b803b428
MW
159static void xas_advance(struct xa_state *xas)
160{
161 xas->xa_offset++;
162 xas_move_index(xas, xas->xa_offset);
163}
164
ad3d6c72
MW
165static void *set_bounds(struct xa_state *xas)
166{
167 xas->xa_node = XAS_BOUNDS;
168 return NULL;
169}
170
171/*
172 * Starts a walk. If the @xas is already valid, we assume that it's on
173 * the right path and just return where we've got to. If we're in an
174 * error state, return NULL. If the index is outside the current scope
175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
176 * set @xas->xa_node to NULL and return the current head of the array.
177 */
178static void *xas_start(struct xa_state *xas)
179{
180 void *entry;
181
182 if (xas_valid(xas))
183 return xas_reload(xas);
184 if (xas_error(xas))
185 return NULL;
186
187 entry = xa_head(xas->xa);
188 if (!xa_is_node(entry)) {
189 if (xas->xa_index)
190 return set_bounds(xas);
191 } else {
192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 return set_bounds(xas);
194 }
195
196 xas->xa_node = NULL;
197 return entry;
198}
199
200static void *xas_descend(struct xa_state *xas, struct xa_node *node)
201{
202 unsigned int offset = get_offset(xas->xa_index, node);
203 void *entry = xa_entry(xas->xa, node, offset);
204
205 xas->xa_node = node;
206 if (xa_is_sibling(entry)) {
207 offset = xa_to_sibling(entry);
208 entry = xa_entry(xas->xa, node, offset);
209 }
210
211 xas->xa_offset = offset;
212 return entry;
213}
214
215/**
216 * xas_load() - Load an entry from the XArray (advanced).
217 * @xas: XArray operation state.
218 *
219 * Usually walks the @xas to the appropriate state to load the entry
220 * stored at xa_index. However, it will do nothing and return %NULL if
221 * @xas is in an error state. xas_load() will never expand the tree.
222 *
223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
224 * may return %NULL or an internal entry, even if there are entries
225 * present within the range specified by @xas.
226 *
227 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
228 * Return: Usually an entry in the XArray, but see description for exceptions.
229 */
230void *xas_load(struct xa_state *xas)
231{
232 void *entry = xas_start(xas);
233
234 while (xa_is_node(entry)) {
235 struct xa_node *node = xa_to_node(entry);
236
237 if (xas->xa_shift > node->shift)
238 break;
239 entry = xas_descend(xas, node);
76b4e529
MW
240 if (node->shift == 0)
241 break;
ad3d6c72
MW
242 }
243 return entry;
244}
245EXPORT_SYMBOL_GPL(xas_load);
246
58d6ea30
MW
247/* Move the radix tree node cache here */
248extern struct kmem_cache *radix_tree_node_cachep;
249extern void radix_tree_node_rcu_free(struct rcu_head *head);
250
251#define XA_RCU_FREE ((struct xarray *)1)
252
253static void xa_node_free(struct xa_node *node)
254{
255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 node->array = XA_RCU_FREE;
257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
258}
259
260/*
261 * xas_destroy() - Free any resources allocated during the XArray operation.
262 * @xas: XArray operation state.
263 *
264 * This function is now internal-only.
265 */
266static void xas_destroy(struct xa_state *xas)
267{
268 struct xa_node *node = xas->xa_alloc;
269
270 if (!node)
271 return;
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 kmem_cache_free(radix_tree_node_cachep, node);
274 xas->xa_alloc = NULL;
275}
276
277/**
278 * xas_nomem() - Allocate memory if needed.
279 * @xas: XArray operation state.
280 * @gfp: Memory allocation flags.
281 *
282 * If we need to add new nodes to the XArray, we try to allocate memory
283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
284 * If it fails, @xas is flagged as needing memory to continue. The caller
285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
286 * the caller should retry the operation.
287 *
288 * Forward progress is guaranteed as one node is allocated here and
289 * stored in the xa_state where it will be found by xas_alloc(). More
290 * nodes will likely be found in the slab allocator, but we do not tie
291 * them up here.
292 *
293 * Return: true if memory was needed, and was successfully allocated.
294 */
295bool xas_nomem(struct xa_state *xas, gfp_t gfp)
296{
297 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 xas_destroy(xas);
299 return false;
300 }
301 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
302 if (!xas->xa_alloc)
303 return false;
304 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
305 xas->xa_node = XAS_RESTART;
306 return true;
307}
308EXPORT_SYMBOL_GPL(xas_nomem);
309
310/*
311 * __xas_nomem() - Drop locks and allocate memory if needed.
312 * @xas: XArray operation state.
313 * @gfp: Memory allocation flags.
314 *
315 * Internal variant of xas_nomem().
316 *
317 * Return: true if memory was needed, and was successfully allocated.
318 */
319static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
320 __must_hold(xas->xa->xa_lock)
321{
322 unsigned int lock_type = xa_lock_type(xas->xa);
323
324 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
325 xas_destroy(xas);
326 return false;
327 }
328 if (gfpflags_allow_blocking(gfp)) {
329 xas_unlock_type(xas, lock_type);
330 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
331 xas_lock_type(xas, lock_type);
332 } else {
333 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
334 }
335 if (!xas->xa_alloc)
336 return false;
337 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
338 xas->xa_node = XAS_RESTART;
339 return true;
340}
341
342static void xas_update(struct xa_state *xas, struct xa_node *node)
343{
344 if (xas->xa_update)
345 xas->xa_update(node);
346 else
347 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
348}
349
350static void *xas_alloc(struct xa_state *xas, unsigned int shift)
351{
352 struct xa_node *parent = xas->xa_node;
353 struct xa_node *node = xas->xa_alloc;
354
355 if (xas_invalid(xas))
356 return NULL;
357
358 if (node) {
359 xas->xa_alloc = NULL;
360 } else {
361 node = kmem_cache_alloc(radix_tree_node_cachep,
362 GFP_NOWAIT | __GFP_NOWARN);
363 if (!node) {
364 xas_set_err(xas, -ENOMEM);
365 return NULL;
366 }
367 }
368
369 if (parent) {
370 node->offset = xas->xa_offset;
371 parent->count++;
372 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
373 xas_update(xas, parent);
374 }
375 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
376 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
377 node->shift = shift;
378 node->count = 0;
379 node->nr_values = 0;
380 RCU_INIT_POINTER(node->parent, xas->xa_node);
381 node->array = xas->xa;
382
383 return node;
384}
385
0e9446c3
MW
386#ifdef CONFIG_XARRAY_MULTI
387/* Returns the number of indices covered by a given xa_state */
388static unsigned long xas_size(const struct xa_state *xas)
389{
390 return (xas->xa_sibs + 1UL) << xas->xa_shift;
391}
392#endif
393
58d6ea30
MW
394/*
395 * Use this to calculate the maximum index that will need to be created
396 * in order to add the entry described by @xas. Because we cannot store a
397 * multiple-index entry at index 0, the calculation is a little more complex
398 * than you might expect.
399 */
400static unsigned long xas_max(struct xa_state *xas)
401{
402 unsigned long max = xas->xa_index;
403
404#ifdef CONFIG_XARRAY_MULTI
405 if (xas->xa_shift || xas->xa_sibs) {
0e9446c3 406 unsigned long mask = xas_size(xas) - 1;
58d6ea30
MW
407 max |= mask;
408 if (mask == max)
409 max++;
410 }
411#endif
412
413 return max;
414}
415
416/* The maximum index that can be contained in the array without expanding it */
417static unsigned long max_index(void *entry)
418{
419 if (!xa_is_node(entry))
420 return 0;
421 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
422}
423
424static void xas_shrink(struct xa_state *xas)
425{
426 struct xarray *xa = xas->xa;
427 struct xa_node *node = xas->xa_node;
428
429 for (;;) {
430 void *entry;
431
432 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
433 if (node->count != 1)
434 break;
435 entry = xa_entry_locked(xa, node, 0);
436 if (!entry)
437 break;
438 if (!xa_is_node(entry) && node->shift)
439 break;
3ccaf57a
MW
440 if (xa_is_zero(entry) && xa_zero_busy(xa))
441 entry = NULL;
58d6ea30
MW
442 xas->xa_node = XAS_BOUNDS;
443
444 RCU_INIT_POINTER(xa->xa_head, entry);
371c752d
MW
445 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
446 xa_mark_clear(xa, XA_FREE_MARK);
58d6ea30
MW
447
448 node->count = 0;
449 node->nr_values = 0;
450 if (!xa_is_node(entry))
451 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
452 xas_update(xas, node);
453 xa_node_free(node);
454 if (!xa_is_node(entry))
455 break;
456 node = xa_to_node(entry);
457 node->parent = NULL;
458 }
459}
460
461/*
462 * xas_delete_node() - Attempt to delete an xa_node
463 * @xas: Array operation state.
464 *
465 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
466 * a non-zero reference count.
467 */
468static void xas_delete_node(struct xa_state *xas)
469{
470 struct xa_node *node = xas->xa_node;
471
472 for (;;) {
473 struct xa_node *parent;
474
475 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
476 if (node->count)
477 break;
478
479 parent = xa_parent_locked(xas->xa, node);
480 xas->xa_node = parent;
481 xas->xa_offset = node->offset;
482 xa_node_free(node);
483
484 if (!parent) {
485 xas->xa->xa_head = NULL;
486 xas->xa_node = XAS_BOUNDS;
487 return;
488 }
489
490 parent->slots[xas->xa_offset] = NULL;
491 parent->count--;
492 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
493 node = parent;
494 xas_update(xas, node);
495 }
496
497 if (!node->parent)
498 xas_shrink(xas);
499}
500
501/**
502 * xas_free_nodes() - Free this node and all nodes that it references
503 * @xas: Array operation state.
504 * @top: Node to free
505 *
506 * This node has been removed from the tree. We must now free it and all
507 * of its subnodes. There may be RCU walkers with references into the tree,
508 * so we must replace all entries with retry markers.
509 */
510static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
511{
512 unsigned int offset = 0;
513 struct xa_node *node = top;
514
515 for (;;) {
516 void *entry = xa_entry_locked(xas->xa, node, offset);
517
76b4e529 518 if (node->shift && xa_is_node(entry)) {
58d6ea30
MW
519 node = xa_to_node(entry);
520 offset = 0;
521 continue;
522 }
523 if (entry)
524 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
525 offset++;
526 while (offset == XA_CHUNK_SIZE) {
527 struct xa_node *parent;
528
529 parent = xa_parent_locked(xas->xa, node);
530 offset = node->offset + 1;
531 node->count = 0;
532 node->nr_values = 0;
533 xas_update(xas, node);
534 xa_node_free(node);
535 if (node == top)
536 return;
537 node = parent;
538 }
539 }
540}
541
542/*
543 * xas_expand adds nodes to the head of the tree until it has reached
544 * sufficient height to be able to contain @xas->xa_index
545 */
546static int xas_expand(struct xa_state *xas, void *head)
547{
548 struct xarray *xa = xas->xa;
549 struct xa_node *node = NULL;
550 unsigned int shift = 0;
551 unsigned long max = xas_max(xas);
552
553 if (!head) {
554 if (max == 0)
555 return 0;
556 while ((max >> shift) >= XA_CHUNK_SIZE)
557 shift += XA_CHUNK_SHIFT;
558 return shift + XA_CHUNK_SHIFT;
559 } else if (xa_is_node(head)) {
560 node = xa_to_node(head);
561 shift = node->shift + XA_CHUNK_SHIFT;
562 }
563 xas->xa_node = NULL;
564
565 while (max > max_index(head)) {
566 xa_mark_t mark = 0;
567
568 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
569 node = xas_alloc(xas, shift);
570 if (!node)
571 return -ENOMEM;
572
573 node->count = 1;
574 if (xa_is_value(head))
575 node->nr_values = 1;
576 RCU_INIT_POINTER(node->slots[0], head);
577
578 /* Propagate the aggregated mark info to the new child */
579 for (;;) {
371c752d
MW
580 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
581 node_mark_all(node, XA_FREE_MARK);
582 if (!xa_marked(xa, XA_FREE_MARK)) {
583 node_clear_mark(node, 0, XA_FREE_MARK);
584 xa_mark_set(xa, XA_FREE_MARK);
585 }
586 } else if (xa_marked(xa, mark)) {
58d6ea30 587 node_set_mark(node, 0, mark);
371c752d 588 }
58d6ea30
MW
589 if (mark == XA_MARK_MAX)
590 break;
591 mark_inc(mark);
592 }
593
594 /*
595 * Now that the new node is fully initialised, we can add
596 * it to the tree
597 */
598 if (xa_is_node(head)) {
599 xa_to_node(head)->offset = 0;
600 rcu_assign_pointer(xa_to_node(head)->parent, node);
601 }
602 head = xa_mk_node(node);
603 rcu_assign_pointer(xa->xa_head, head);
604 xas_update(xas, node);
605
606 shift += XA_CHUNK_SHIFT;
607 }
608
609 xas->xa_node = node;
610 return shift;
611}
612
613/*
614 * xas_create() - Create a slot to store an entry in.
615 * @xas: XArray operation state.
76b4e529 616 * @allow_root: %true if we can store the entry in the root directly
58d6ea30
MW
617 *
618 * Most users will not need to call this function directly, as it is called
619 * by xas_store(). It is useful for doing conditional store operations
620 * (see the xa_cmpxchg() implementation for an example).
621 *
622 * Return: If the slot already existed, returns the contents of this slot.
804dfaf0
MW
623 * If the slot was newly created, returns %NULL. If it failed to create the
624 * slot, returns %NULL and indicates the error in @xas.
58d6ea30 625 */
76b4e529 626static void *xas_create(struct xa_state *xas, bool allow_root)
58d6ea30
MW
627{
628 struct xarray *xa = xas->xa;
629 void *entry;
630 void __rcu **slot;
631 struct xa_node *node = xas->xa_node;
632 int shift;
633 unsigned int order = xas->xa_shift;
634
635 if (xas_top(node)) {
636 entry = xa_head_locked(xa);
637 xas->xa_node = NULL;
3ccaf57a
MW
638 if (!entry && xa_zero_busy(xa))
639 entry = XA_ZERO_ENTRY;
58d6ea30
MW
640 shift = xas_expand(xas, entry);
641 if (shift < 0)
642 return NULL;
76b4e529
MW
643 if (!shift && !allow_root)
644 shift = XA_CHUNK_SHIFT;
58d6ea30
MW
645 entry = xa_head_locked(xa);
646 slot = &xa->xa_head;
647 } else if (xas_error(xas)) {
648 return NULL;
649 } else if (node) {
650 unsigned int offset = xas->xa_offset;
651
652 shift = node->shift;
653 entry = xa_entry_locked(xa, node, offset);
654 slot = &node->slots[offset];
655 } else {
656 shift = 0;
657 entry = xa_head_locked(xa);
658 slot = &xa->xa_head;
659 }
660
661 while (shift > order) {
662 shift -= XA_CHUNK_SHIFT;
663 if (!entry) {
664 node = xas_alloc(xas, shift);
665 if (!node)
666 break;
371c752d
MW
667 if (xa_track_free(xa))
668 node_mark_all(node, XA_FREE_MARK);
58d6ea30
MW
669 rcu_assign_pointer(*slot, xa_mk_node(node));
670 } else if (xa_is_node(entry)) {
671 node = xa_to_node(entry);
672 } else {
673 break;
674 }
675 entry = xas_descend(xas, node);
676 slot = &node->slots[xas->xa_offset];
677 }
678
679 return entry;
680}
681
2264f513
MW
682/**
683 * xas_create_range() - Ensure that stores to this range will succeed
684 * @xas: XArray operation state.
685 *
686 * Creates all of the slots in the range covered by @xas. Sets @xas to
687 * create single-index entries and positions it at the beginning of the
688 * range. This is for the benefit of users which have not yet been
689 * converted to use multi-index entries.
690 */
691void xas_create_range(struct xa_state *xas)
692{
693 unsigned long index = xas->xa_index;
694 unsigned char shift = xas->xa_shift;
695 unsigned char sibs = xas->xa_sibs;
696
697 xas->xa_index |= ((sibs + 1) << shift) - 1;
698 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
699 xas->xa_offset |= sibs;
700 xas->xa_shift = 0;
701 xas->xa_sibs = 0;
702
703 for (;;) {
76b4e529 704 xas_create(xas, true);
2264f513
MW
705 if (xas_error(xas))
706 goto restore;
707 if (xas->xa_index <= (index | XA_CHUNK_MASK))
708 goto success;
709 xas->xa_index -= XA_CHUNK_SIZE;
710
711 for (;;) {
712 struct xa_node *node = xas->xa_node;
713 xas->xa_node = xa_parent_locked(xas->xa, node);
714 xas->xa_offset = node->offset - 1;
715 if (node->offset != 0)
716 break;
717 }
718 }
719
720restore:
721 xas->xa_shift = shift;
722 xas->xa_sibs = sibs;
723 xas->xa_index = index;
724 return;
725success:
726 xas->xa_index = index;
727 if (xas->xa_node)
728 xas_set_offset(xas);
729}
730EXPORT_SYMBOL_GPL(xas_create_range);
731
58d6ea30
MW
732static void update_node(struct xa_state *xas, struct xa_node *node,
733 int count, int values)
734{
735 if (!node || (!count && !values))
736 return;
737
738 node->count += count;
739 node->nr_values += values;
740 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
741 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
742 xas_update(xas, node);
743 if (count < 0)
744 xas_delete_node(xas);
745}
746
747/**
748 * xas_store() - Store this entry in the XArray.
749 * @xas: XArray operation state.
750 * @entry: New entry.
751 *
752 * If @xas is operating on a multi-index entry, the entry returned by this
753 * function is essentially meaningless (it may be an internal entry or it
754 * may be %NULL, even if there are non-NULL entries at some of the indices
755 * covered by the range). This is not a problem for any current users,
756 * and can be changed if needed.
757 *
758 * Return: The old entry at this index.
759 */
760void *xas_store(struct xa_state *xas, void *entry)
761{
762 struct xa_node *node;
763 void __rcu **slot = &xas->xa->xa_head;
764 unsigned int offset, max;
765 int count = 0;
766 int values = 0;
767 void *first, *next;
768 bool value = xa_is_value(entry);
769
770 if (entry)
76b4e529 771 first = xas_create(xas, !xa_is_node(entry));
58d6ea30
MW
772 else
773 first = xas_load(xas);
774
775 if (xas_invalid(xas))
776 return first;
777 node = xas->xa_node;
778 if (node && (xas->xa_shift < node->shift))
779 xas->xa_sibs = 0;
780 if ((first == entry) && !xas->xa_sibs)
781 return first;
782
783 next = first;
784 offset = xas->xa_offset;
785 max = xas->xa_offset + xas->xa_sibs;
786 if (node) {
787 slot = &node->slots[offset];
788 if (xas->xa_sibs)
789 xas_squash_marks(xas);
790 }
791 if (!entry)
792 xas_init_marks(xas);
793
794 for (;;) {
795 /*
796 * Must clear the marks before setting the entry to NULL,
797 * otherwise xas_for_each_marked may find a NULL entry and
798 * stop early. rcu_assign_pointer contains a release barrier
799 * so the mark clearing will appear to happen before the
800 * entry is set to NULL.
801 */
802 rcu_assign_pointer(*slot, entry);
803 if (xa_is_node(next))
804 xas_free_nodes(xas, xa_to_node(next));
805 if (!node)
806 break;
807 count += !next - !entry;
808 values += !xa_is_value(first) - !value;
809 if (entry) {
810 if (offset == max)
811 break;
812 if (!xa_is_sibling(entry))
813 entry = xa_mk_sibling(xas->xa_offset);
814 } else {
815 if (offset == XA_CHUNK_MASK)
816 break;
817 }
818 next = xa_entry_locked(xas->xa, node, ++offset);
819 if (!xa_is_sibling(next)) {
820 if (!entry && (offset > max))
821 break;
822 first = next;
823 }
824 slot++;
825 }
826
827 update_node(xas, node, count, values);
828 return first;
829}
830EXPORT_SYMBOL_GPL(xas_store);
831
9b89a035
MW
832/**
833 * xas_get_mark() - Returns the state of this mark.
834 * @xas: XArray operation state.
835 * @mark: Mark number.
836 *
837 * Return: true if the mark is set, false if the mark is clear or @xas
838 * is in an error state.
839 */
840bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
841{
842 if (xas_invalid(xas))
843 return false;
844 if (!xas->xa_node)
845 return xa_marked(xas->xa, mark);
846 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
847}
848EXPORT_SYMBOL_GPL(xas_get_mark);
849
850/**
851 * xas_set_mark() - Sets the mark on this entry and its parents.
852 * @xas: XArray operation state.
853 * @mark: Mark number.
854 *
855 * Sets the specified mark on this entry, and walks up the tree setting it
856 * on all the ancestor entries. Does nothing if @xas has not been walked to
857 * an entry, or is in an error state.
858 */
859void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
860{
861 struct xa_node *node = xas->xa_node;
862 unsigned int offset = xas->xa_offset;
863
864 if (xas_invalid(xas))
865 return;
866
867 while (node) {
868 if (node_set_mark(node, offset, mark))
869 return;
870 offset = node->offset;
871 node = xa_parent_locked(xas->xa, node);
872 }
873
874 if (!xa_marked(xas->xa, mark))
875 xa_mark_set(xas->xa, mark);
876}
877EXPORT_SYMBOL_GPL(xas_set_mark);
878
879/**
880 * xas_clear_mark() - Clears the mark on this entry and its parents.
881 * @xas: XArray operation state.
882 * @mark: Mark number.
883 *
884 * Clears the specified mark on this entry, and walks back to the head
885 * attempting to clear it on all the ancestor entries. Does nothing if
886 * @xas has not been walked to an entry, or is in an error state.
887 */
888void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
889{
890 struct xa_node *node = xas->xa_node;
891 unsigned int offset = xas->xa_offset;
892
893 if (xas_invalid(xas))
894 return;
895
896 while (node) {
897 if (!node_clear_mark(node, offset, mark))
898 return;
899 if (node_any_mark(node, mark))
900 return;
901
902 offset = node->offset;
903 node = xa_parent_locked(xas->xa, node);
904 }
905
906 if (xa_marked(xas->xa, mark))
907 xa_mark_clear(xas->xa, mark);
908}
909EXPORT_SYMBOL_GPL(xas_clear_mark);
910
58d6ea30
MW
911/**
912 * xas_init_marks() - Initialise all marks for the entry
913 * @xas: Array operations state.
914 *
915 * Initialise all marks for the entry specified by @xas. If we're tracking
916 * free entries with a mark, we need to set it on all entries. All other
917 * marks are cleared.
918 *
919 * This implementation is not as efficient as it could be; we may walk
920 * up the tree multiple times.
921 */
922void xas_init_marks(const struct xa_state *xas)
923{
924 xa_mark_t mark = 0;
925
926 for (;;) {
371c752d
MW
927 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
928 xas_set_mark(xas, mark);
929 else
930 xas_clear_mark(xas, mark);
58d6ea30
MW
931 if (mark == XA_MARK_MAX)
932 break;
933 mark_inc(mark);
934 }
935}
936EXPORT_SYMBOL_GPL(xas_init_marks);
937
b803b428
MW
938/**
939 * xas_pause() - Pause a walk to drop a lock.
940 * @xas: XArray operation state.
941 *
942 * Some users need to pause a walk and drop the lock they're holding in
943 * order to yield to a higher priority thread or carry out an operation
944 * on an entry. Those users should call this function before they drop
945 * the lock. It resets the @xas to be suitable for the next iteration
946 * of the loop after the user has reacquired the lock. If most entries
947 * found during a walk require you to call xas_pause(), the xa_for_each()
948 * iterator may be more appropriate.
949 *
950 * Note that xas_pause() only works for forward iteration. If a user needs
951 * to pause a reverse iteration, we will need a xas_pause_rev().
952 */
953void xas_pause(struct xa_state *xas)
954{
955 struct xa_node *node = xas->xa_node;
956
957 if (xas_invalid(xas))
958 return;
959
960 if (node) {
961 unsigned int offset = xas->xa_offset;
962 while (++offset < XA_CHUNK_SIZE) {
963 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
964 break;
965 }
966 xas->xa_index += (offset - xas->xa_offset) << node->shift;
967 } else {
968 xas->xa_index++;
969 }
970 xas->xa_node = XAS_RESTART;
971}
972EXPORT_SYMBOL_GPL(xas_pause);
973
64d3e9a9
MW
974/*
975 * __xas_prev() - Find the previous entry in the XArray.
976 * @xas: XArray operation state.
977 *
978 * Helper function for xas_prev() which handles all the complex cases
979 * out of line.
980 */
981void *__xas_prev(struct xa_state *xas)
982{
983 void *entry;
984
985 if (!xas_frozen(xas->xa_node))
986 xas->xa_index--;
987 if (xas_not_node(xas->xa_node))
988 return xas_load(xas);
989
990 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
991 xas->xa_offset--;
992
993 while (xas->xa_offset == 255) {
994 xas->xa_offset = xas->xa_node->offset - 1;
995 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
996 if (!xas->xa_node)
997 return set_bounds(xas);
998 }
999
1000 for (;;) {
1001 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1002 if (!xa_is_node(entry))
1003 return entry;
1004
1005 xas->xa_node = xa_to_node(entry);
1006 xas_set_offset(xas);
1007 }
1008}
1009EXPORT_SYMBOL_GPL(__xas_prev);
1010
1011/*
1012 * __xas_next() - Find the next entry in the XArray.
1013 * @xas: XArray operation state.
1014 *
1015 * Helper function for xas_next() which handles all the complex cases
1016 * out of line.
1017 */
1018void *__xas_next(struct xa_state *xas)
1019{
1020 void *entry;
1021
1022 if (!xas_frozen(xas->xa_node))
1023 xas->xa_index++;
1024 if (xas_not_node(xas->xa_node))
1025 return xas_load(xas);
1026
1027 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1028 xas->xa_offset++;
1029
1030 while (xas->xa_offset == XA_CHUNK_SIZE) {
1031 xas->xa_offset = xas->xa_node->offset + 1;
1032 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1033 if (!xas->xa_node)
1034 return set_bounds(xas);
1035 }
1036
1037 for (;;) {
1038 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1039 if (!xa_is_node(entry))
1040 return entry;
1041
1042 xas->xa_node = xa_to_node(entry);
1043 xas_set_offset(xas);
1044 }
1045}
1046EXPORT_SYMBOL_GPL(__xas_next);
1047
b803b428
MW
1048/**
1049 * xas_find() - Find the next present entry in the XArray.
1050 * @xas: XArray operation state.
1051 * @max: Highest index to return.
1052 *
1053 * If the @xas has not yet been walked to an entry, return the entry
1054 * which has an index >= xas.xa_index. If it has been walked, the entry
1055 * currently being pointed at has been processed, and so we move to the
1056 * next entry.
1057 *
1058 * If no entry is found and the array is smaller than @max, the iterator
1059 * is set to the smallest index not yet in the array. This allows @xas
1060 * to be immediately passed to xas_store().
1061 *
1062 * Return: The entry, if found, otherwise %NULL.
1063 */
1064void *xas_find(struct xa_state *xas, unsigned long max)
1065{
1066 void *entry;
1067
1068 if (xas_error(xas))
1069 return NULL;
1070
1071 if (!xas->xa_node) {
1072 xas->xa_index = 1;
1073 return set_bounds(xas);
1074 } else if (xas_top(xas->xa_node)) {
1075 entry = xas_load(xas);
1076 if (entry || xas_not_node(xas->xa_node))
1077 return entry;
1078 } else if (!xas->xa_node->shift &&
1079 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1080 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1081 }
1082
1083 xas_advance(xas);
1084
1085 while (xas->xa_node && (xas->xa_index <= max)) {
1086 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1087 xas->xa_offset = xas->xa_node->offset + 1;
1088 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1089 continue;
1090 }
1091
1092 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1093 if (xa_is_node(entry)) {
1094 xas->xa_node = xa_to_node(entry);
1095 xas->xa_offset = 0;
1096 continue;
1097 }
1098 if (entry && !xa_is_sibling(entry))
1099 return entry;
1100
1101 xas_advance(xas);
1102 }
1103
1104 if (!xas->xa_node)
1105 xas->xa_node = XAS_BOUNDS;
1106 return NULL;
1107}
1108EXPORT_SYMBOL_GPL(xas_find);
1109
1110/**
1111 * xas_find_marked() - Find the next marked entry in the XArray.
1112 * @xas: XArray operation state.
1113 * @max: Highest index to return.
1114 * @mark: Mark number to search for.
1115 *
1116 * If the @xas has not yet been walked to an entry, return the marked entry
1117 * which has an index >= xas.xa_index. If it has been walked, the entry
1118 * currently being pointed at has been processed, and so we return the
1119 * first marked entry with an index > xas.xa_index.
1120 *
1121 * If no marked entry is found and the array is smaller than @max, @xas is
1122 * set to the bounds state and xas->xa_index is set to the smallest index
1123 * not yet in the array. This allows @xas to be immediately passed to
1124 * xas_store().
1125 *
1126 * If no entry is found before @max is reached, @xas is set to the restart
1127 * state.
1128 *
1129 * Return: The entry, if found, otherwise %NULL.
1130 */
1131void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1132{
1133 bool advance = true;
1134 unsigned int offset;
1135 void *entry;
1136
1137 if (xas_error(xas))
1138 return NULL;
1139
1140 if (!xas->xa_node) {
1141 xas->xa_index = 1;
1142 goto out;
1143 } else if (xas_top(xas->xa_node)) {
1144 advance = false;
1145 entry = xa_head(xas->xa);
1146 xas->xa_node = NULL;
1147 if (xas->xa_index > max_index(entry))
48483614 1148 goto out;
b803b428
MW
1149 if (!xa_is_node(entry)) {
1150 if (xa_marked(xas->xa, mark))
1151 return entry;
1152 xas->xa_index = 1;
1153 goto out;
1154 }
1155 xas->xa_node = xa_to_node(entry);
1156 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1157 }
1158
1159 while (xas->xa_index <= max) {
1160 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1161 xas->xa_offset = xas->xa_node->offset + 1;
1162 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1163 if (!xas->xa_node)
1164 break;
1165 advance = false;
1166 continue;
1167 }
1168
1169 if (!advance) {
1170 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1171 if (xa_is_sibling(entry)) {
1172 xas->xa_offset = xa_to_sibling(entry);
1173 xas_move_index(xas, xas->xa_offset);
1174 }
1175 }
1176
1177 offset = xas_find_chunk(xas, advance, mark);
1178 if (offset > xas->xa_offset) {
1179 advance = false;
1180 xas_move_index(xas, offset);
1181 /* Mind the wrap */
1182 if ((xas->xa_index - 1) >= max)
1183 goto max;
1184 xas->xa_offset = offset;
1185 if (offset == XA_CHUNK_SIZE)
1186 continue;
1187 }
1188
1189 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1190 if (!xa_is_node(entry))
1191 return entry;
1192 xas->xa_node = xa_to_node(entry);
1193 xas_set_offset(xas);
1194 }
1195
1196out:
48483614 1197 if (xas->xa_index > max)
b803b428 1198 goto max;
48483614 1199 return set_bounds(xas);
b803b428
MW
1200max:
1201 xas->xa_node = XAS_RESTART;
1202 return NULL;
1203}
1204EXPORT_SYMBOL_GPL(xas_find_marked);
1205
4e99d4e9
MW
1206/**
1207 * xas_find_conflict() - Find the next present entry in a range.
1208 * @xas: XArray operation state.
1209 *
1210 * The @xas describes both a range and a position within that range.
1211 *
1212 * Context: Any context. Expects xa_lock to be held.
1213 * Return: The next entry in the range covered by @xas or %NULL.
1214 */
1215void *xas_find_conflict(struct xa_state *xas)
1216{
1217 void *curr;
1218
1219 if (xas_error(xas))
1220 return NULL;
1221
1222 if (!xas->xa_node)
1223 return NULL;
1224
1225 if (xas_top(xas->xa_node)) {
1226 curr = xas_start(xas);
1227 if (!curr)
1228 return NULL;
1229 while (xa_is_node(curr)) {
1230 struct xa_node *node = xa_to_node(curr);
1231 curr = xas_descend(xas, node);
1232 }
1233 if (curr)
1234 return curr;
1235 }
1236
1237 if (xas->xa_node->shift > xas->xa_shift)
1238 return NULL;
1239
1240 for (;;) {
1241 if (xas->xa_node->shift == xas->xa_shift) {
1242 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1243 break;
1244 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1245 xas->xa_offset = xas->xa_node->offset;
1246 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1247 if (!xas->xa_node)
1248 break;
1249 continue;
1250 }
1251 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1252 if (xa_is_sibling(curr))
1253 continue;
1254 while (xa_is_node(curr)) {
1255 xas->xa_node = xa_to_node(curr);
1256 xas->xa_offset = 0;
1257 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1258 }
1259 if (curr)
1260 return curr;
1261 }
1262 xas->xa_offset -= xas->xa_sibs;
1263 return NULL;
1264}
1265EXPORT_SYMBOL_GPL(xas_find_conflict);
1266
ad3d6c72
MW
1267/**
1268 * xa_load() - Load an entry from an XArray.
1269 * @xa: XArray.
1270 * @index: index into array.
1271 *
1272 * Context: Any context. Takes and releases the RCU lock.
1273 * Return: The entry at @index in @xa.
1274 */
1275void *xa_load(struct xarray *xa, unsigned long index)
1276{
1277 XA_STATE(xas, xa, index);
1278 void *entry;
1279
1280 rcu_read_lock();
1281 do {
1282 entry = xas_load(&xas);
9f14d4f1
MW
1283 if (xa_is_zero(entry))
1284 entry = NULL;
ad3d6c72
MW
1285 } while (xas_retry(&xas, entry));
1286 rcu_read_unlock();
1287
1288 return entry;
1289}
1290EXPORT_SYMBOL(xa_load);
1291
58d6ea30
MW
1292static void *xas_result(struct xa_state *xas, void *curr)
1293{
9f14d4f1
MW
1294 if (xa_is_zero(curr))
1295 return NULL;
58d6ea30
MW
1296 if (xas_error(xas))
1297 curr = xas->xa_node;
1298 return curr;
1299}
1300
1301/**
1302 * __xa_erase() - Erase this entry from the XArray while locked.
1303 * @xa: XArray.
1304 * @index: Index into array.
1305 *
809ab937
MW
1306 * After this function returns, loading from @index will return %NULL.
1307 * If the index is part of a multi-index entry, all indices will be erased
1308 * and none of the entries will be part of a multi-index entry.
58d6ea30 1309 *
809ab937
MW
1310 * Context: Any context. Expects xa_lock to be held on entry.
1311 * Return: The entry which used to be at this index.
58d6ea30
MW
1312 */
1313void *__xa_erase(struct xarray *xa, unsigned long index)
1314{
1315 XA_STATE(xas, xa, index);
1316 return xas_result(&xas, xas_store(&xas, NULL));
1317}
9ee5a3b7 1318EXPORT_SYMBOL(__xa_erase);
58d6ea30 1319
9c16bb88
MW
1320/**
1321 * xa_erase() - Erase this entry from the XArray.
1322 * @xa: XArray.
1323 * @index: Index of entry.
1324 *
809ab937
MW
1325 * After this function returns, loading from @index will return %NULL.
1326 * If the index is part of a multi-index entry, all indices will be erased
1327 * and none of the entries will be part of a multi-index entry.
9c16bb88
MW
1328 *
1329 * Context: Any context. Takes and releases the xa_lock.
1330 * Return: The entry which used to be at this index.
1331 */
1332void *xa_erase(struct xarray *xa, unsigned long index)
1333{
1334 void *entry;
1335
1336 xa_lock(xa);
1337 entry = __xa_erase(xa, index);
1338 xa_unlock(xa);
1339
1340 return entry;
1341}
1342EXPORT_SYMBOL(xa_erase);
1343
58d6ea30 1344/**
611f3186 1345 * __xa_store() - Store this entry in the XArray.
58d6ea30
MW
1346 * @xa: XArray.
1347 * @index: Index into array.
1348 * @entry: New entry.
1349 * @gfp: Memory allocation flags.
1350 *
611f3186
MW
1351 * You must already be holding the xa_lock when calling this function.
1352 * It will drop the lock if needed to allocate memory, and then reacquire
1353 * it afterwards.
58d6ea30 1354 *
611f3186
MW
1355 * Context: Any context. Expects xa_lock to be held on entry. May
1356 * release and reacquire xa_lock if @gfp flags permit.
1357 * Return: The old entry at this index or xa_err() if an error happened.
58d6ea30 1358 */
611f3186 1359void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
58d6ea30
MW
1360{
1361 XA_STATE(xas, xa, index);
1362 void *curr;
1363
76b4e529 1364 if (WARN_ON_ONCE(xa_is_advanced(entry)))
58d6ea30 1365 return XA_ERROR(-EINVAL);
d9c48043
MW
1366 if (xa_track_free(xa) && !entry)
1367 entry = XA_ZERO_ENTRY;
58d6ea30
MW
1368
1369 do {
58d6ea30 1370 curr = xas_store(&xas, entry);
d9c48043 1371 if (xa_track_free(xa))
371c752d 1372 xas_clear_mark(&xas, XA_FREE_MARK);
611f3186 1373 } while (__xas_nomem(&xas, gfp));
58d6ea30
MW
1374
1375 return xas_result(&xas, curr);
1376}
611f3186 1377EXPORT_SYMBOL(__xa_store);
58d6ea30
MW
1378
1379/**
611f3186 1380 * xa_store() - Store this entry in the XArray.
58d6ea30
MW
1381 * @xa: XArray.
1382 * @index: Index into array.
1383 * @entry: New entry.
1384 * @gfp: Memory allocation flags.
1385 *
611f3186
MW
1386 * After this function returns, loads from this index will return @entry.
1387 * Storing into an existing multislot entry updates the entry of every index.
1388 * The marks associated with @index are unaffected unless @entry is %NULL.
58d6ea30 1389 *
611f3186
MW
1390 * Context: Any context. Takes and releases the xa_lock.
1391 * May sleep if the @gfp flags permit.
1392 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1393 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1394 * failed.
58d6ea30 1395 */
611f3186 1396void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
58d6ea30 1397{
58d6ea30
MW
1398 void *curr;
1399
611f3186
MW
1400 xa_lock(xa);
1401 curr = __xa_store(xa, index, entry, gfp);
1402 xa_unlock(xa);
58d6ea30 1403
611f3186 1404 return curr;
58d6ea30 1405}
611f3186 1406EXPORT_SYMBOL(xa_store);
58d6ea30 1407
41aec91f
MW
1408/**
1409 * __xa_cmpxchg() - Store this entry in the XArray.
1410 * @xa: XArray.
1411 * @index: Index into array.
1412 * @old: Old value to test against.
1413 * @entry: New entry.
1414 * @gfp: Memory allocation flags.
1415 *
1416 * You must already be holding the xa_lock when calling this function.
1417 * It will drop the lock if needed to allocate memory, and then reacquire
1418 * it afterwards.
1419 *
1420 * Context: Any context. Expects xa_lock to be held on entry. May
1421 * release and reacquire xa_lock if @gfp flags permit.
1422 * Return: The old entry at this index or xa_err() if an error happened.
1423 */
1424void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1425 void *old, void *entry, gfp_t gfp)
1426{
1427 XA_STATE(xas, xa, index);
1428 void *curr;
1429
76b4e529 1430 if (WARN_ON_ONCE(xa_is_advanced(entry)))
41aec91f 1431 return XA_ERROR(-EINVAL);
d9c48043
MW
1432 if (xa_track_free(xa) && !entry)
1433 entry = XA_ZERO_ENTRY;
41aec91f
MW
1434
1435 do {
1436 curr = xas_load(&xas);
9f14d4f1
MW
1437 if (curr == XA_ZERO_ENTRY)
1438 curr = NULL;
371c752d 1439 if (curr == old) {
41aec91f 1440 xas_store(&xas, entry);
d9c48043 1441 if (xa_track_free(xa))
371c752d
MW
1442 xas_clear_mark(&xas, XA_FREE_MARK);
1443 }
41aec91f
MW
1444 } while (__xas_nomem(&xas, gfp));
1445
1446 return xas_result(&xas, curr);
1447}
1448EXPORT_SYMBOL(__xa_cmpxchg);
1449
b0606fed
MW
1450/**
1451 * __xa_insert() - Store this entry in the XArray if no entry is present.
1452 * @xa: XArray.
1453 * @index: Index into array.
1454 * @entry: New entry.
1455 * @gfp: Memory allocation flags.
1456 *
1457 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1458 * if no entry is present. Inserting will fail if a reserved entry is
1459 * present, even though loading from this index will return NULL.
1460 *
1461 * Context: Any context. Expects xa_lock to be held on entry. May
1462 * release and reacquire xa_lock if @gfp flags permit.
fd9dc93e 1463 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
b0606fed
MW
1464 * -ENOMEM if memory could not be allocated.
1465 */
1466int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1467{
1468 XA_STATE(xas, xa, index);
1469 void *curr;
1470
1471 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1472 return -EINVAL;
1473 if (!entry)
1474 entry = XA_ZERO_ENTRY;
1475
1476 do {
1477 curr = xas_load(&xas);
1478 if (!curr) {
1479 xas_store(&xas, entry);
1480 if (xa_track_free(xa))
1481 xas_clear_mark(&xas, XA_FREE_MARK);
1482 } else {
fd9dc93e 1483 xas_set_err(&xas, -EBUSY);
b0606fed
MW
1484 }
1485 } while (__xas_nomem(&xas, gfp));
1486
1487 return xas_error(&xas);
1488}
1489EXPORT_SYMBOL(__xa_insert);
1490
9f14d4f1 1491/**
4c0608f4 1492 * __xa_reserve() - Reserve this index in the XArray.
9f14d4f1
MW
1493 * @xa: XArray.
1494 * @index: Index into array.
1495 * @gfp: Memory allocation flags.
1496 *
1497 * Ensures there is somewhere to store an entry at @index in the array.
1498 * If there is already something stored at @index, this function does
1499 * nothing. If there was nothing there, the entry is marked as reserved.
4c0608f4 1500 * Loading from a reserved entry returns a %NULL pointer.
9f14d4f1
MW
1501 *
1502 * If you do not use the entry that you have reserved, call xa_release()
1503 * or xa_erase() to free any unnecessary memory.
1504 *
4c0608f4
MW
1505 * Context: Any context. Expects the xa_lock to be held on entry. May
1506 * release the lock, sleep and reacquire the lock if the @gfp flags permit.
9f14d4f1
MW
1507 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1508 */
4c0608f4 1509int __xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
9f14d4f1
MW
1510{
1511 XA_STATE(xas, xa, index);
9f14d4f1
MW
1512 void *curr;
1513
1514 do {
9f14d4f1 1515 curr = xas_load(&xas);
d9c48043 1516 if (!curr) {
9f14d4f1 1517 xas_store(&xas, XA_ZERO_ENTRY);
d9c48043
MW
1518 if (xa_track_free(xa))
1519 xas_clear_mark(&xas, XA_FREE_MARK);
1520 }
4c0608f4 1521 } while (__xas_nomem(&xas, gfp));
9f14d4f1
MW
1522
1523 return xas_error(&xas);
1524}
4c0608f4 1525EXPORT_SYMBOL(__xa_reserve);
9f14d4f1 1526
0e9446c3
MW
1527#ifdef CONFIG_XARRAY_MULTI
1528static void xas_set_range(struct xa_state *xas, unsigned long first,
1529 unsigned long last)
1530{
1531 unsigned int shift = 0;
1532 unsigned long sibs = last - first;
1533 unsigned int offset = XA_CHUNK_MASK;
1534
1535 xas_set(xas, first);
1536
1537 while ((first & XA_CHUNK_MASK) == 0) {
1538 if (sibs < XA_CHUNK_MASK)
1539 break;
1540 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1541 break;
1542 shift += XA_CHUNK_SHIFT;
1543 if (offset == XA_CHUNK_MASK)
1544 offset = sibs & XA_CHUNK_MASK;
1545 sibs >>= XA_CHUNK_SHIFT;
1546 first >>= XA_CHUNK_SHIFT;
1547 }
1548
1549 offset = first & XA_CHUNK_MASK;
1550 if (offset + sibs > XA_CHUNK_MASK)
1551 sibs = XA_CHUNK_MASK - offset;
1552 if ((((first + sibs + 1) << shift) - 1) > last)
1553 sibs -= 1;
1554
1555 xas->xa_shift = shift;
1556 xas->xa_sibs = sibs;
1557}
1558
1559/**
1560 * xa_store_range() - Store this entry at a range of indices in the XArray.
1561 * @xa: XArray.
1562 * @first: First index to affect.
1563 * @last: Last index to affect.
1564 * @entry: New entry.
1565 * @gfp: Memory allocation flags.
1566 *
1567 * After this function returns, loads from any index between @first and @last,
1568 * inclusive will return @entry.
1569 * Storing into an existing multislot entry updates the entry of every index.
1570 * The marks associated with @index are unaffected unless @entry is %NULL.
1571 *
1572 * Context: Process context. Takes and releases the xa_lock. May sleep
1573 * if the @gfp flags permit.
1574 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1575 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1576 */
1577void *xa_store_range(struct xarray *xa, unsigned long first,
1578 unsigned long last, void *entry, gfp_t gfp)
1579{
1580 XA_STATE(xas, xa, 0);
1581
1582 if (WARN_ON_ONCE(xa_is_internal(entry)))
1583 return XA_ERROR(-EINVAL);
1584 if (last < first)
1585 return XA_ERROR(-EINVAL);
1586
1587 do {
1588 xas_lock(&xas);
1589 if (entry) {
44a4a66b
MW
1590 unsigned int order = BITS_PER_LONG;
1591 if (last + 1)
1592 order = __ffs(last + 1);
0e9446c3 1593 xas_set_order(&xas, last, order);
76b4e529 1594 xas_create(&xas, true);
0e9446c3
MW
1595 if (xas_error(&xas))
1596 goto unlock;
1597 }
1598 do {
1599 xas_set_range(&xas, first, last);
1600 xas_store(&xas, entry);
1601 if (xas_error(&xas))
1602 goto unlock;
1603 first += xas_size(&xas);
1604 } while (first <= last);
1605unlock:
1606 xas_unlock(&xas);
1607 } while (xas_nomem(&xas, gfp));
1608
1609 return xas_result(&xas, NULL);
1610}
1611EXPORT_SYMBOL(xa_store_range);
1612#endif /* CONFIG_XARRAY_MULTI */
1613
371c752d
MW
1614/**
1615 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1616 * @xa: XArray.
1617 * @id: Pointer to ID.
1618 * @max: Maximum ID to allocate (inclusive).
1619 * @entry: New entry.
1620 * @gfp: Memory allocation flags.
1621 *
1622 * Allocates an unused ID in the range specified by @id and @max.
1623 * Updates the @id pointer with the index, then stores the entry at that
1624 * index. A concurrent lookup will not see an uninitialised @id.
1625 *
1626 * Context: Any context. Expects xa_lock to be held on entry. May
1627 * release and reacquire xa_lock if @gfp flags permit.
1628 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
1629 * there is no more space in the XArray.
1630 */
1631int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp)
1632{
1633 XA_STATE(xas, xa, 0);
1634 int err;
1635
76b4e529 1636 if (WARN_ON_ONCE(xa_is_advanced(entry)))
371c752d
MW
1637 return -EINVAL;
1638 if (WARN_ON_ONCE(!xa_track_free(xa)))
1639 return -EINVAL;
1640
1641 if (!entry)
1642 entry = XA_ZERO_ENTRY;
1643
1644 do {
1645 xas.xa_index = *id;
1646 xas_find_marked(&xas, max, XA_FREE_MARK);
1647 if (xas.xa_node == XAS_RESTART)
1648 xas_set_err(&xas, -ENOSPC);
1649 xas_store(&xas, entry);
1650 xas_clear_mark(&xas, XA_FREE_MARK);
1651 } while (__xas_nomem(&xas, gfp));
1652
1653 err = xas_error(&xas);
1654 if (!err)
1655 *id = xas.xa_index;
1656 return err;
1657}
1658EXPORT_SYMBOL(__xa_alloc);
1659
9b89a035
MW
1660/**
1661 * __xa_set_mark() - Set this mark on this entry while locked.
1662 * @xa: XArray.
1663 * @index: Index of entry.
1664 * @mark: Mark number.
1665 *
804dfaf0 1666 * Attempting to set a mark on a %NULL entry does not succeed.
9b89a035
MW
1667 *
1668 * Context: Any context. Expects xa_lock to be held on entry.
1669 */
1670void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1671{
1672 XA_STATE(xas, xa, index);
1673 void *entry = xas_load(&xas);
1674
1675 if (entry)
1676 xas_set_mark(&xas, mark);
1677}
9ee5a3b7 1678EXPORT_SYMBOL(__xa_set_mark);
9b89a035
MW
1679
1680/**
1681 * __xa_clear_mark() - Clear this mark on this entry while locked.
1682 * @xa: XArray.
1683 * @index: Index of entry.
1684 * @mark: Mark number.
1685 *
1686 * Context: Any context. Expects xa_lock to be held on entry.
1687 */
1688void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1689{
1690 XA_STATE(xas, xa, index);
1691 void *entry = xas_load(&xas);
1692
1693 if (entry)
1694 xas_clear_mark(&xas, mark);
1695}
9ee5a3b7 1696EXPORT_SYMBOL(__xa_clear_mark);
9b89a035
MW
1697
1698/**
1699 * xa_get_mark() - Inquire whether this mark is set on this entry.
1700 * @xa: XArray.
1701 * @index: Index of entry.
1702 * @mark: Mark number.
1703 *
1704 * This function uses the RCU read lock, so the result may be out of date
1705 * by the time it returns. If you need the result to be stable, use a lock.
1706 *
1707 * Context: Any context. Takes and releases the RCU lock.
1708 * Return: True if the entry at @index has this mark set, false if it doesn't.
1709 */
1710bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1711{
1712 XA_STATE(xas, xa, index);
1713 void *entry;
1714
1715 rcu_read_lock();
1716 entry = xas_start(&xas);
1717 while (xas_get_mark(&xas, mark)) {
1718 if (!xa_is_node(entry))
1719 goto found;
1720 entry = xas_descend(&xas, xa_to_node(entry));
1721 }
1722 rcu_read_unlock();
1723 return false;
1724 found:
1725 rcu_read_unlock();
1726 return true;
1727}
1728EXPORT_SYMBOL(xa_get_mark);
1729
1730/**
1731 * xa_set_mark() - Set this mark on this entry.
1732 * @xa: XArray.
1733 * @index: Index of entry.
1734 * @mark: Mark number.
1735 *
804dfaf0 1736 * Attempting to set a mark on a %NULL entry does not succeed.
9b89a035
MW
1737 *
1738 * Context: Process context. Takes and releases the xa_lock.
1739 */
1740void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1741{
1742 xa_lock(xa);
1743 __xa_set_mark(xa, index, mark);
1744 xa_unlock(xa);
1745}
1746EXPORT_SYMBOL(xa_set_mark);
1747
1748/**
1749 * xa_clear_mark() - Clear this mark on this entry.
1750 * @xa: XArray.
1751 * @index: Index of entry.
1752 * @mark: Mark number.
1753 *
1754 * Clearing a mark always succeeds.
1755 *
1756 * Context: Process context. Takes and releases the xa_lock.
1757 */
1758void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1759{
1760 xa_lock(xa);
1761 __xa_clear_mark(xa, index, mark);
1762 xa_unlock(xa);
1763}
1764EXPORT_SYMBOL(xa_clear_mark);
1765
b803b428
MW
1766/**
1767 * xa_find() - Search the XArray for an entry.
1768 * @xa: XArray.
1769 * @indexp: Pointer to an index.
1770 * @max: Maximum index to search to.
1771 * @filter: Selection criterion.
1772 *
1773 * Finds the entry in @xa which matches the @filter, and has the lowest
1774 * index that is at least @indexp and no more than @max.
1775 * If an entry is found, @indexp is updated to be the index of the entry.
1776 * This function is protected by the RCU read lock, so it may not find
1777 * entries which are being simultaneously added. It will not return an
1778 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1779 *
1780 * Context: Any context. Takes and releases the RCU lock.
1781 * Return: The entry, if found, otherwise %NULL.
1782 */
1783void *xa_find(struct xarray *xa, unsigned long *indexp,
1784 unsigned long max, xa_mark_t filter)
1785{
1786 XA_STATE(xas, xa, *indexp);
1787 void *entry;
1788
1789 rcu_read_lock();
1790 do {
1791 if ((__force unsigned int)filter < XA_MAX_MARKS)
1792 entry = xas_find_marked(&xas, max, filter);
1793 else
1794 entry = xas_find(&xas, max);
1795 } while (xas_retry(&xas, entry));
1796 rcu_read_unlock();
1797
1798 if (entry)
1799 *indexp = xas.xa_index;
1800 return entry;
1801}
1802EXPORT_SYMBOL(xa_find);
1803
1804/**
1805 * xa_find_after() - Search the XArray for a present entry.
1806 * @xa: XArray.
1807 * @indexp: Pointer to an index.
1808 * @max: Maximum index to search to.
1809 * @filter: Selection criterion.
1810 *
1811 * Finds the entry in @xa which matches the @filter and has the lowest
1812 * index that is above @indexp and no more than @max.
1813 * If an entry is found, @indexp is updated to be the index of the entry.
1814 * This function is protected by the RCU read lock, so it may miss entries
1815 * which are being simultaneously added. It will not return an
1816 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1817 *
1818 * Context: Any context. Takes and releases the RCU lock.
1819 * Return: The pointer, if found, otherwise %NULL.
1820 */
1821void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1822 unsigned long max, xa_mark_t filter)
1823{
1824 XA_STATE(xas, xa, *indexp + 1);
1825 void *entry;
1826
1827 rcu_read_lock();
1828 for (;;) {
1829 if ((__force unsigned int)filter < XA_MAX_MARKS)
1830 entry = xas_find_marked(&xas, max, filter);
1831 else
1832 entry = xas_find(&xas, max);
8229706e
MW
1833 if (xas.xa_node == XAS_BOUNDS)
1834 break;
b803b428
MW
1835 if (xas.xa_shift) {
1836 if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1837 continue;
1838 } else {
1839 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1840 continue;
1841 }
1842 if (!xas_retry(&xas, entry))
1843 break;
1844 }
1845 rcu_read_unlock();
1846
1847 if (entry)
1848 *indexp = xas.xa_index;
1849 return entry;
1850}
1851EXPORT_SYMBOL(xa_find_after);
1852
80a0a1a9
MW
1853static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1854 unsigned long max, unsigned int n)
1855{
1856 void *entry;
1857 unsigned int i = 0;
1858
1859 rcu_read_lock();
1860 xas_for_each(xas, entry, max) {
1861 if (xas_retry(xas, entry))
1862 continue;
1863 dst[i++] = entry;
1864 if (i == n)
1865 break;
1866 }
1867 rcu_read_unlock();
1868
1869 return i;
1870}
1871
1872static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1873 unsigned long max, unsigned int n, xa_mark_t mark)
1874{
1875 void *entry;
1876 unsigned int i = 0;
1877
1878 rcu_read_lock();
1879 xas_for_each_marked(xas, entry, max, mark) {
1880 if (xas_retry(xas, entry))
1881 continue;
1882 dst[i++] = entry;
1883 if (i == n)
1884 break;
1885 }
1886 rcu_read_unlock();
1887
1888 return i;
1889}
1890
1891/**
1892 * xa_extract() - Copy selected entries from the XArray into a normal array.
1893 * @xa: The source XArray to copy from.
1894 * @dst: The buffer to copy entries into.
1895 * @start: The first index in the XArray eligible to be selected.
1896 * @max: The last index in the XArray eligible to be selected.
1897 * @n: The maximum number of entries to copy.
1898 * @filter: Selection criterion.
1899 *
1900 * Copies up to @n entries that match @filter from the XArray. The
1901 * copied entries will have indices between @start and @max, inclusive.
1902 *
1903 * The @filter may be an XArray mark value, in which case entries which are
1904 * marked with that mark will be copied. It may also be %XA_PRESENT, in
804dfaf0 1905 * which case all entries which are not %NULL will be copied.
80a0a1a9
MW
1906 *
1907 * The entries returned may not represent a snapshot of the XArray at a
1908 * moment in time. For example, if another thread stores to index 5, then
1909 * index 10, calling xa_extract() may return the old contents of index 5
1910 * and the new contents of index 10. Indices not modified while this
1911 * function is running will not be skipped.
1912 *
1913 * If you need stronger guarantees, holding the xa_lock across calls to this
1914 * function will prevent concurrent modification.
1915 *
1916 * Context: Any context. Takes and releases the RCU lock.
1917 * Return: The number of entries copied.
1918 */
1919unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1920 unsigned long max, unsigned int n, xa_mark_t filter)
1921{
1922 XA_STATE(xas, xa, start);
1923
1924 if (!n)
1925 return 0;
1926
1927 if ((__force unsigned int)filter < XA_MAX_MARKS)
1928 return xas_extract_marked(&xas, dst, max, n, filter);
1929 return xas_extract_present(&xas, dst, max, n);
1930}
1931EXPORT_SYMBOL(xa_extract);
1932
687149fc
MW
1933/**
1934 * xa_destroy() - Free all internal data structures.
1935 * @xa: XArray.
1936 *
1937 * After calling this function, the XArray is empty and has freed all memory
1938 * allocated for its internal data structures. You are responsible for
1939 * freeing the objects referenced by the XArray.
1940 *
1941 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1942 */
1943void xa_destroy(struct xarray *xa)
1944{
1945 XA_STATE(xas, xa, 0);
1946 unsigned long flags;
1947 void *entry;
1948
1949 xas.xa_node = NULL;
1950 xas_lock_irqsave(&xas, flags);
1951 entry = xa_head_locked(xa);
1952 RCU_INIT_POINTER(xa->xa_head, NULL);
1953 xas_init_marks(&xas);
3ccaf57a
MW
1954 if (xa_zero_busy(xa))
1955 xa_mark_clear(xa, XA_FREE_MARK);
687149fc
MW
1956 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1957 if (xa_is_node(entry))
1958 xas_free_nodes(&xas, xa_to_node(entry));
1959 xas_unlock_irqrestore(&xas, flags);
1960}
1961EXPORT_SYMBOL(xa_destroy);
1962
ad3d6c72
MW
1963#ifdef XA_DEBUG
1964void xa_dump_node(const struct xa_node *node)
1965{
1966 unsigned i, j;
1967
1968 if (!node)
1969 return;
1970 if ((unsigned long)node & 3) {
1971 pr_cont("node %px\n", node);
1972 return;
1973 }
1974
1975 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1976 "array %px list %px %px marks",
1977 node, node->parent ? "offset" : "max", node->offset,
1978 node->parent, node->shift, node->count, node->nr_values,
1979 node->array, node->private_list.prev, node->private_list.next);
1980 for (i = 0; i < XA_MAX_MARKS; i++)
1981 for (j = 0; j < XA_MARK_LONGS; j++)
1982 pr_cont(" %lx", node->marks[i][j]);
1983 pr_cont("\n");
1984}
1985
1986void xa_dump_index(unsigned long index, unsigned int shift)
1987{
1988 if (!shift)
1989 pr_info("%lu: ", index);
1990 else if (shift >= BITS_PER_LONG)
1991 pr_info("0-%lu: ", ~0UL);
1992 else
1993 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
1994}
1995
1996void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
1997{
1998 if (!entry)
1999 return;
2000
2001 xa_dump_index(index, shift);
2002
2003 if (xa_is_node(entry)) {
2004 if (shift == 0) {
2005 pr_cont("%px\n", entry);
2006 } else {
2007 unsigned long i;
2008 struct xa_node *node = xa_to_node(entry);
2009 xa_dump_node(node);
2010 for (i = 0; i < XA_CHUNK_SIZE; i++)
2011 xa_dump_entry(node->slots[i],
2012 index + (i << node->shift), node->shift);
2013 }
2014 } else if (xa_is_value(entry))
2015 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2016 xa_to_value(entry), entry);
2017 else if (!xa_is_internal(entry))
2018 pr_cont("%px\n", entry);
2019 else if (xa_is_retry(entry))
2020 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2021 else if (xa_is_sibling(entry))
2022 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
9f14d4f1
MW
2023 else if (xa_is_zero(entry))
2024 pr_cont("zero (%ld)\n", xa_to_internal(entry));
ad3d6c72
MW
2025 else
2026 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2027}
2028
2029void xa_dump(const struct xarray *xa)
2030{
2031 void *entry = xa->xa_head;
2032 unsigned int shift = 0;
2033
2034 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
9b89a035
MW
2035 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2036 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
ad3d6c72
MW
2037 if (xa_is_node(entry))
2038 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2039 xa_dump_entry(entry, 0, shift);
2040}
2041#endif