rbtree test: fix sparse warning about 64-bit constant
[linux-block.git] / lib / rbtree.c
CommitLineData
1da177e4
LT
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 linux/lib/rbtree.c
21*/
22
23#include <linux/rbtree.h>
8bc3bcc9 24#include <linux/export.h>
1da177e4 25
5bc9188a
ML
26/*
27 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
28 *
29 * 1) A node is either red or black
30 * 2) The root is black
31 * 3) All leaves (NULL) are black
32 * 4) Both children of every red node are black
33 * 5) Every simple path from root to leaves contains the same number
34 * of black nodes.
35 *
36 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37 * consecutive red nodes in a path and every red node is therefore followed by
38 * a black. So if B is the number of black nodes on every simple path (as per
39 * 5), then the longest possible path due to 4 is 2B.
40 *
41 * We shall indicate color with case, where black nodes are uppercase and red
6280d235
ML
42 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
43 * parentheses and have some accompanying text comment.
5bc9188a
ML
44 */
45
bf7ad8ee
ML
46#define RB_RED 0
47#define RB_BLACK 1
48
49#define rb_color(r) ((r)->__rb_parent_color & 1)
50#define rb_is_red(r) (!rb_color(r))
51#define rb_is_black(r) rb_color(r)
bf7ad8ee
ML
52
53static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
54{
55 rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
56}
bf7ad8ee 57
5bc9188a
ML
58static inline void rb_set_parent_color(struct rb_node *rb,
59 struct rb_node *p, int color)
60{
61 rb->__rb_parent_color = (unsigned long)p | color;
62}
63
64static inline struct rb_node *rb_red_parent(struct rb_node *red)
65{
66 return (struct rb_node *)red->__rb_parent_color;
67}
68
5bc9188a
ML
69/*
70 * Helper function for rotations:
71 * - old's parent and color get assigned to new
72 * - old gets assigned new as a parent and 'color' as a color.
73 */
74static inline void
75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76 struct rb_root *root, int color)
77{
78 struct rb_node *parent = rb_parent(old);
79 new->__rb_parent_color = old->__rb_parent_color;
80 rb_set_parent_color(old, new, color);
81 if (parent) {
82 if (parent->rb_left == old)
83 parent->rb_left = new;
84 else
85 parent->rb_right = new;
86 } else
87 root->rb_node = new;
88}
89
1da177e4
LT
90void rb_insert_color(struct rb_node *node, struct rb_root *root)
91{
5bc9188a 92 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
1da177e4 93
6d58452d
ML
94 while (true) {
95 /*
96 * Loop invariant: node is red
97 *
98 * If there is a black parent, we are done.
99 * Otherwise, take some corrective action as we don't
100 * want a red root or two consecutive red nodes.
101 */
6d58452d 102 if (!parent) {
5bc9188a 103 rb_set_parent_color(node, NULL, RB_BLACK);
6d58452d
ML
104 break;
105 } else if (rb_is_black(parent))
106 break;
107
5bc9188a
ML
108 gparent = rb_red_parent(parent);
109
59633abf
ML
110 tmp = gparent->rb_right;
111 if (parent != tmp) { /* parent == gparent->rb_left */
5bc9188a
ML
112 if (tmp && rb_is_red(tmp)) {
113 /*
114 * Case 1 - color flips
115 *
116 * G g
117 * / \ / \
118 * p u --> P U
119 * / /
120 * n N
121 *
122 * However, since g's parent might be red, and
123 * 4) does not allow this, we need to recurse
124 * at g.
125 */
126 rb_set_parent_color(tmp, gparent, RB_BLACK);
127 rb_set_parent_color(parent, gparent, RB_BLACK);
128 node = gparent;
129 parent = rb_parent(node);
130 rb_set_parent_color(node, parent, RB_RED);
131 continue;
1da177e4
LT
132 }
133
59633abf
ML
134 tmp = parent->rb_right;
135 if (node == tmp) {
5bc9188a
ML
136 /*
137 * Case 2 - left rotate at parent
138 *
139 * G G
140 * / \ / \
141 * p U --> n U
142 * \ /
143 * n p
144 *
145 * This still leaves us in violation of 4), the
146 * continuation into Case 3 will fix that.
147 */
148 parent->rb_right = tmp = node->rb_left;
149 node->rb_left = parent;
150 if (tmp)
151 rb_set_parent_color(tmp, parent,
152 RB_BLACK);
153 rb_set_parent_color(parent, node, RB_RED);
1da177e4 154 parent = node;
59633abf 155 tmp = node->rb_right;
1da177e4
LT
156 }
157
5bc9188a
ML
158 /*
159 * Case 3 - right rotate at gparent
160 *
161 * G P
162 * / \ / \
163 * p U --> n g
164 * / \
165 * n U
166 */
59633abf 167 gparent->rb_left = tmp; /* == parent->rb_right */
5bc9188a
ML
168 parent->rb_right = gparent;
169 if (tmp)
170 rb_set_parent_color(tmp, gparent, RB_BLACK);
171 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 172 break;
1da177e4 173 } else {
5bc9188a
ML
174 tmp = gparent->rb_left;
175 if (tmp && rb_is_red(tmp)) {
176 /* Case 1 - color flips */
177 rb_set_parent_color(tmp, gparent, RB_BLACK);
178 rb_set_parent_color(parent, gparent, RB_BLACK);
179 node = gparent;
180 parent = rb_parent(node);
181 rb_set_parent_color(node, parent, RB_RED);
182 continue;
1da177e4
LT
183 }
184
59633abf
ML
185 tmp = parent->rb_left;
186 if (node == tmp) {
5bc9188a
ML
187 /* Case 2 - right rotate at parent */
188 parent->rb_left = tmp = node->rb_right;
189 node->rb_right = parent;
190 if (tmp)
191 rb_set_parent_color(tmp, parent,
192 RB_BLACK);
193 rb_set_parent_color(parent, node, RB_RED);
1da177e4 194 parent = node;
59633abf 195 tmp = node->rb_left;
1da177e4
LT
196 }
197
5bc9188a 198 /* Case 3 - left rotate at gparent */
59633abf 199 gparent->rb_right = tmp; /* == parent->rb_left */
5bc9188a
ML
200 parent->rb_left = gparent;
201 if (tmp)
202 rb_set_parent_color(tmp, gparent, RB_BLACK);
203 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
1f052865 204 break;
1da177e4
LT
205 }
206 }
1da177e4
LT
207}
208EXPORT_SYMBOL(rb_insert_color);
209
210static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
211 struct rb_root *root)
212{
6280d235 213 struct rb_node *sibling, *tmp1, *tmp2;
1da177e4 214
d6ff1273
ML
215 while (true) {
216 /*
217 * Loop invariant: all leaf paths going through node have a
218 * black node count that is 1 lower than other leaf paths.
219 *
220 * If node is red, we can flip it to black to adjust.
221 * If node is the root, all leaf paths go through it.
222 * Otherwise, we need to adjust the tree through color flips
223 * and tree rotations as per one of the 4 cases below.
224 */
225 if (node && rb_is_red(node)) {
6280d235 226 rb_set_parent_color(node, parent, RB_BLACK);
d6ff1273
ML
227 break;
228 } else if (!parent) {
229 break;
59633abf
ML
230 }
231 sibling = parent->rb_right;
232 if (node != sibling) { /* node == parent->rb_left */
6280d235
ML
233 if (rb_is_red(sibling)) {
234 /*
235 * Case 1 - left rotate at parent
236 *
237 * P S
238 * / \ / \
239 * N s --> p Sr
240 * / \ / \
241 * Sl Sr N Sl
242 */
243 parent->rb_right = tmp1 = sibling->rb_left;
244 sibling->rb_left = parent;
245 rb_set_parent_color(tmp1, parent, RB_BLACK);
246 __rb_rotate_set_parents(parent, sibling, root,
247 RB_RED);
248 sibling = tmp1;
1da177e4 249 }
6280d235
ML
250 tmp1 = sibling->rb_right;
251 if (!tmp1 || rb_is_black(tmp1)) {
252 tmp2 = sibling->rb_left;
253 if (!tmp2 || rb_is_black(tmp2)) {
254 /*
255 * Case 2 - sibling color flip
256 * (p could be either color here)
257 *
258 * (p) (p)
259 * / \ / \
260 * N S --> N s
261 * / \ / \
262 * Sl Sr Sl Sr
263 *
264 * This leaves us violating 5), so
265 * recurse at p. If p is red, the
266 * recursion will just flip it to black
267 * and exit. If coming from Case 1,
268 * p is known to be red.
269 */
270 rb_set_parent_color(sibling, parent,
271 RB_RED);
e125d147
ML
272 node = parent;
273 parent = rb_parent(node);
274 continue;
1da177e4 275 }
6280d235
ML
276 /*
277 * Case 3 - right rotate at sibling
278 * (p could be either color here)
279 *
280 * (p) (p)
281 * / \ / \
282 * N S --> N Sl
283 * / \ \
284 * sl Sr s
285 * \
286 * Sr
287 */
288 sibling->rb_left = tmp1 = tmp2->rb_right;
289 tmp2->rb_right = sibling;
290 parent->rb_right = tmp2;
291 if (tmp1)
292 rb_set_parent_color(tmp1, sibling,
293 RB_BLACK);
294 tmp1 = sibling;
295 sibling = tmp2;
1da177e4 296 }
6280d235
ML
297 /*
298 * Case 4 - left rotate at parent + color flips
299 * (p and sl could be either color here.
300 * After rotation, p becomes black, s acquires
301 * p's color, and sl keeps its color)
302 *
303 * (p) (s)
304 * / \ / \
305 * N S --> P Sr
306 * / \ / \
307 * (sl) sr N (sl)
308 */
309 parent->rb_right = tmp2 = sibling->rb_left;
310 sibling->rb_left = parent;
311 rb_set_parent_color(tmp1, sibling, RB_BLACK);
312 if (tmp2)
313 rb_set_parent(tmp2, parent);
314 __rb_rotate_set_parents(parent, sibling, root,
315 RB_BLACK);
e125d147 316 break;
d6ff1273 317 } else {
6280d235
ML
318 sibling = parent->rb_left;
319 if (rb_is_red(sibling)) {
320 /* Case 1 - right rotate at parent */
321 parent->rb_left = tmp1 = sibling->rb_right;
322 sibling->rb_right = parent;
323 rb_set_parent_color(tmp1, parent, RB_BLACK);
324 __rb_rotate_set_parents(parent, sibling, root,
325 RB_RED);
326 sibling = tmp1;
1da177e4 327 }
6280d235
ML
328 tmp1 = sibling->rb_left;
329 if (!tmp1 || rb_is_black(tmp1)) {
330 tmp2 = sibling->rb_right;
331 if (!tmp2 || rb_is_black(tmp2)) {
332 /* Case 2 - sibling color flip */
333 rb_set_parent_color(sibling, parent,
334 RB_RED);
e125d147
ML
335 node = parent;
336 parent = rb_parent(node);
337 continue;
1da177e4 338 }
6280d235
ML
339 /* Case 3 - right rotate at sibling */
340 sibling->rb_right = tmp1 = tmp2->rb_left;
341 tmp2->rb_left = sibling;
342 parent->rb_left = tmp2;
343 if (tmp1)
344 rb_set_parent_color(tmp1, sibling,
345 RB_BLACK);
346 tmp1 = sibling;
347 sibling = tmp2;
1da177e4 348 }
6280d235
ML
349 /* Case 4 - left rotate at parent + color flips */
350 parent->rb_left = tmp2 = sibling->rb_right;
351 sibling->rb_right = parent;
352 rb_set_parent_color(tmp1, sibling, RB_BLACK);
353 if (tmp2)
354 rb_set_parent(tmp2, parent);
355 __rb_rotate_set_parents(parent, sibling, root,
356 RB_BLACK);
e125d147 357 break;
1da177e4
LT
358 }
359 }
1da177e4
LT
360}
361
362void rb_erase(struct rb_node *node, struct rb_root *root)
363{
364 struct rb_node *child, *parent;
365 int color;
366
367 if (!node->rb_left)
368 child = node->rb_right;
369 else if (!node->rb_right)
370 child = node->rb_left;
7ce6ff9e 371 else {
1da177e4
LT
372 struct rb_node *old = node, *left;
373
374 node = node->rb_right;
375 while ((left = node->rb_left) != NULL)
376 node = left;
16c047ad
WS
377
378 if (rb_parent(old)) {
379 if (rb_parent(old)->rb_left == old)
380 rb_parent(old)->rb_left = node;
381 else
382 rb_parent(old)->rb_right = node;
383 } else
384 root->rb_node = node;
385
1da177e4 386 child = node->rb_right;
55a98102 387 parent = rb_parent(node);
2f3243ae 388 color = rb_color(node);
1da177e4 389
55a98102 390 if (parent == old) {
1da177e4 391 parent = node;
4c601178
WS
392 } else {
393 if (child)
394 rb_set_parent(child, parent);
1975e593 395 parent->rb_left = child;
4b324126
WS
396
397 node->rb_right = old->rb_right;
398 rb_set_parent(old->rb_right, node);
4c601178 399 }
1975e593 400
bf7ad8ee 401 node->__rb_parent_color = old->__rb_parent_color;
1da177e4 402 node->rb_left = old->rb_left;
55a98102 403 rb_set_parent(old->rb_left, node);
4b324126 404
1da177e4
LT
405 goto color;
406 }
407
55a98102 408 parent = rb_parent(node);
2f3243ae 409 color = rb_color(node);
1da177e4
LT
410
411 if (child)
55a98102 412 rb_set_parent(child, parent);
7ce6ff9e 413 if (parent) {
1da177e4
LT
414 if (parent->rb_left == node)
415 parent->rb_left = child;
416 else
417 parent->rb_right = child;
7ce6ff9e 418 } else
b945d6b2 419 root->rb_node = child;
1da177e4 420
7ce6ff9e 421color:
1da177e4
LT
422 if (color == RB_BLACK)
423 __rb_erase_color(child, parent, root);
424}
425EXPORT_SYMBOL(rb_erase);
426
b945d6b2
PZ
427static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
428{
429 struct rb_node *parent;
430
431up:
432 func(node, data);
433 parent = rb_parent(node);
434 if (!parent)
435 return;
436
437 if (node == parent->rb_left && parent->rb_right)
438 func(parent->rb_right, data);
439 else if (parent->rb_left)
440 func(parent->rb_left, data);
441
442 node = parent;
443 goto up;
444}
445
446/*
447 * after inserting @node into the tree, update the tree to account for
448 * both the new entry and any damage done by rebalance
449 */
450void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
451{
452 if (node->rb_left)
453 node = node->rb_left;
454 else if (node->rb_right)
455 node = node->rb_right;
456
457 rb_augment_path(node, func, data);
458}
0b6bb66d 459EXPORT_SYMBOL(rb_augment_insert);
b945d6b2
PZ
460
461/*
462 * before removing the node, find the deepest node on the rebalance path
463 * that will still be there after @node gets removed
464 */
465struct rb_node *rb_augment_erase_begin(struct rb_node *node)
466{
467 struct rb_node *deepest;
468
469 if (!node->rb_right && !node->rb_left)
470 deepest = rb_parent(node);
471 else if (!node->rb_right)
472 deepest = node->rb_left;
473 else if (!node->rb_left)
474 deepest = node->rb_right;
475 else {
476 deepest = rb_next(node);
477 if (deepest->rb_right)
478 deepest = deepest->rb_right;
479 else if (rb_parent(deepest) != node)
480 deepest = rb_parent(deepest);
481 }
482
483 return deepest;
484}
0b6bb66d 485EXPORT_SYMBOL(rb_augment_erase_begin);
b945d6b2
PZ
486
487/*
488 * after removal, update the tree to account for the removed entry
489 * and any rebalance damage.
490 */
491void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
492{
493 if (node)
494 rb_augment_path(node, func, data);
495}
0b6bb66d 496EXPORT_SYMBOL(rb_augment_erase_end);
b945d6b2 497
1da177e4
LT
498/*
499 * This function returns the first node (in sort order) of the tree.
500 */
f4b477c4 501struct rb_node *rb_first(const struct rb_root *root)
1da177e4
LT
502{
503 struct rb_node *n;
504
505 n = root->rb_node;
506 if (!n)
507 return NULL;
508 while (n->rb_left)
509 n = n->rb_left;
510 return n;
511}
512EXPORT_SYMBOL(rb_first);
513
f4b477c4 514struct rb_node *rb_last(const struct rb_root *root)
1da177e4
LT
515{
516 struct rb_node *n;
517
518 n = root->rb_node;
519 if (!n)
520 return NULL;
521 while (n->rb_right)
522 n = n->rb_right;
523 return n;
524}
525EXPORT_SYMBOL(rb_last);
526
f4b477c4 527struct rb_node *rb_next(const struct rb_node *node)
1da177e4 528{
55a98102
DW
529 struct rb_node *parent;
530
4c199a93 531 if (RB_EMPTY_NODE(node))
10fd48f2
JA
532 return NULL;
533
7ce6ff9e
ML
534 /*
535 * If we have a right-hand child, go down and then left as far
536 * as we can.
537 */
1da177e4
LT
538 if (node->rb_right) {
539 node = node->rb_right;
540 while (node->rb_left)
541 node=node->rb_left;
f4b477c4 542 return (struct rb_node *)node;
1da177e4
LT
543 }
544
7ce6ff9e
ML
545 /*
546 * No right-hand children. Everything down and left is smaller than us,
547 * so any 'next' node must be in the general direction of our parent.
548 * Go up the tree; any time the ancestor is a right-hand child of its
549 * parent, keep going up. First time it's a left-hand child of its
550 * parent, said parent is our 'next' node.
551 */
55a98102
DW
552 while ((parent = rb_parent(node)) && node == parent->rb_right)
553 node = parent;
1da177e4 554
55a98102 555 return parent;
1da177e4
LT
556}
557EXPORT_SYMBOL(rb_next);
558
f4b477c4 559struct rb_node *rb_prev(const struct rb_node *node)
1da177e4 560{
55a98102
DW
561 struct rb_node *parent;
562
4c199a93 563 if (RB_EMPTY_NODE(node))
10fd48f2
JA
564 return NULL;
565
7ce6ff9e
ML
566 /*
567 * If we have a left-hand child, go down and then right as far
568 * as we can.
569 */
1da177e4
LT
570 if (node->rb_left) {
571 node = node->rb_left;
572 while (node->rb_right)
573 node=node->rb_right;
f4b477c4 574 return (struct rb_node *)node;
1da177e4
LT
575 }
576
7ce6ff9e
ML
577 /*
578 * No left-hand children. Go up till we find an ancestor which
579 * is a right-hand child of its parent.
580 */
55a98102
DW
581 while ((parent = rb_parent(node)) && node == parent->rb_left)
582 node = parent;
1da177e4 583
55a98102 584 return parent;
1da177e4
LT
585}
586EXPORT_SYMBOL(rb_prev);
587
588void rb_replace_node(struct rb_node *victim, struct rb_node *new,
589 struct rb_root *root)
590{
55a98102 591 struct rb_node *parent = rb_parent(victim);
1da177e4
LT
592
593 /* Set the surrounding nodes to point to the replacement */
594 if (parent) {
595 if (victim == parent->rb_left)
596 parent->rb_left = new;
597 else
598 parent->rb_right = new;
599 } else {
600 root->rb_node = new;
601 }
602 if (victim->rb_left)
55a98102 603 rb_set_parent(victim->rb_left, new);
1da177e4 604 if (victim->rb_right)
55a98102 605 rb_set_parent(victim->rb_right, new);
1da177e4
LT
606
607 /* Copy the pointers/colour from the victim to the replacement */
608 *new = *victim;
609}
610EXPORT_SYMBOL(rb_replace_node);