radix tree test suite: Run iteration tests for longer
[linux-2.6-block.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
0a835c4f
MW
25#include <linux/bitmap.h>
26#include <linux/bitops.h>
e157b555 27#include <linux/cpu.h>
1da177e4 28#include <linux/errno.h>
0a835c4f
MW
29#include <linux/export.h>
30#include <linux/idr.h>
1da177e4
LT
31#include <linux/init.h>
32#include <linux/kernel.h>
0a835c4f 33#include <linux/kmemleak.h>
1da177e4 34#include <linux/percpu.h>
0a835c4f
MW
35#include <linux/preempt.h> /* in_interrupt() */
36#include <linux/radix-tree.h>
37#include <linux/rcupdate.h>
1da177e4 38#include <linux/slab.h>
1da177e4 39#include <linux/string.h>
1da177e4
LT
40
41
c78c66d1
KS
42/* Number of nodes in fully populated tree of given height */
43static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
1da177e4
LT
45/*
46 * Radix tree node cache.
47 */
e18b890b 48static struct kmem_cache *radix_tree_node_cachep;
1da177e4 49
55368052
NP
50/*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
0a835c4f
MW
63/*
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
66 */
67#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
71
7ad3d4d8
MW
72/*
73 * The IDA is even shorter since it uses a bitmap at the last level.
74 */
75#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
79
1da177e4
LT
80/*
81 * Per-cpu pool of preloaded nodes
82 */
83struct radix_tree_preload {
2fcd9005 84 unsigned nr;
1293d5c5 85 /* nodes->parent points to next preallocated node */
9d2a8da0 86 struct radix_tree_node *nodes;
1da177e4 87};
8cef7d57 88static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 89
148deab2
MW
90static inline struct radix_tree_node *entry_to_node(void *ptr)
91{
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93}
94
a4db4dce 95static inline void *node_to_entry(void *ptr)
27d20fdd 96{
30ff46cc 97 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
98}
99
a4db4dce 100#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 101
db050f29
MW
102#ifdef CONFIG_RADIX_TREE_MULTIORDER
103/* Sibling slots point directly to another slot in the same node */
35534c86
MW
104static inline
105bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
db050f29
MW
106{
107 void **ptr = node;
108 return (parent->slots <= ptr) &&
109 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110}
111#else
35534c86
MW
112static inline
113bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
db050f29
MW
114{
115 return false;
116}
117#endif
118
35534c86
MW
119static inline
120unsigned long get_slot_offset(const struct radix_tree_node *parent, void **slot)
db050f29
MW
121{
122 return slot - parent->slots;
123}
124
35534c86 125static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 126 struct radix_tree_node **nodep, unsigned long index)
db050f29 127{
9e85d811 128 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
129 void **entry = rcu_dereference_raw(parent->slots[offset]);
130
131#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 132 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
133 if (is_sibling_entry(parent, entry)) {
134 void **sibentry = (void **) entry_to_node(entry);
135 offset = get_slot_offset(parent, sibentry);
136 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
137 }
138 }
139#endif
140
141 *nodep = (void *)entry;
142 return offset;
143}
144
35534c86 145static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19
NP
146{
147 return root->gfp_mask & __GFP_BITS_MASK;
148}
149
643b52b9
NP
150static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
151 int offset)
152{
153 __set_bit(offset, node->tags[tag]);
154}
155
156static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
157 int offset)
158{
159 __clear_bit(offset, node->tags[tag]);
160}
161
35534c86 162static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
163 int offset)
164{
165 return test_bit(offset, node->tags[tag]);
166}
167
35534c86 168static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 169{
0a835c4f 170 root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
171}
172
2fcd9005 173static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 174{
0a835c4f 175 root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
176}
177
178static inline void root_tag_clear_all(struct radix_tree_root *root)
179{
0a835c4f 180 root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
643b52b9
NP
181}
182
35534c86 183static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 184{
0a835c4f 185 return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
186}
187
35534c86 188static inline unsigned root_tags_get(const struct radix_tree_root *root)
7b60e9ad 189{
0a835c4f
MW
190 return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
191}
192
193static inline bool is_idr(const struct radix_tree_root *root)
194{
195 return !!(root->gfp_mask & ROOT_IS_IDR);
7b60e9ad
MW
196}
197
643b52b9
NP
198/*
199 * Returns 1 if any slot in the node has this tag set.
200 * Otherwise returns 0.
201 */
35534c86
MW
202static inline int any_tag_set(const struct radix_tree_node *node,
203 unsigned int tag)
643b52b9 204{
2fcd9005 205 unsigned idx;
643b52b9
NP
206 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
207 if (node->tags[tag][idx])
208 return 1;
209 }
210 return 0;
211}
78c1d784 212
0a835c4f
MW
213static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
214{
215 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
216}
217
78c1d784
KK
218/**
219 * radix_tree_find_next_bit - find the next set bit in a memory region
220 *
221 * @addr: The address to base the search on
222 * @size: The bitmap size in bits
223 * @offset: The bitnumber to start searching at
224 *
225 * Unrollable variant of find_next_bit() for constant size arrays.
226 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
227 * Returns next bit offset, or size if nothing found.
228 */
229static __always_inline unsigned long
bc412fca
MW
230radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
231 unsigned long offset)
78c1d784 232{
bc412fca 233 const unsigned long *addr = node->tags[tag];
78c1d784 234
bc412fca 235 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
236 unsigned long tmp;
237
238 addr += offset / BITS_PER_LONG;
239 tmp = *addr >> (offset % BITS_PER_LONG);
240 if (tmp)
241 return __ffs(tmp) + offset;
242 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 243 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
244 tmp = *++addr;
245 if (tmp)
246 return __ffs(tmp) + offset;
247 offset += BITS_PER_LONG;
248 }
249 }
bc412fca 250 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
251}
252
268f42de
MW
253static unsigned int iter_offset(const struct radix_tree_iter *iter)
254{
255 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
256}
257
218ed750
MW
258/*
259 * The maximum index which can be stored in a radix tree
260 */
261static inline unsigned long shift_maxindex(unsigned int shift)
262{
263 return (RADIX_TREE_MAP_SIZE << shift) - 1;
264}
265
35534c86 266static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
267{
268 return shift_maxindex(node->shift);
269}
270
0a835c4f
MW
271static unsigned long next_index(unsigned long index,
272 const struct radix_tree_node *node,
273 unsigned long offset)
274{
275 return (index & ~node_maxindex(node)) + (offset << node->shift);
276}
277
0796c583 278#ifndef __KERNEL__
d0891265 279static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 280{
0796c583 281 unsigned long i;
7cf19af4 282
218ed750
MW
283 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
284 node, node->offset, index, index | node_maxindex(node),
285 node->parent,
0796c583 286 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 287 node->shift, node->count, node->exceptional);
0796c583
RZ
288
289 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
290 unsigned long first = index | (i << node->shift);
291 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
292 void *entry = node->slots[i];
293 if (!entry)
294 continue;
218ed750
MW
295 if (entry == RADIX_TREE_RETRY) {
296 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
297 i, first, last, node);
b194d16c 298 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
299 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
300 entry, i, first, last, node);
301 } else if (is_sibling_entry(node, entry)) {
302 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
303 entry, i, first, last, node,
304 *(void **)entry_to_node(entry));
0796c583 305 } else {
4dd6c098 306 dump_node(entry_to_node(entry), first);
0796c583
RZ
307 }
308 }
7cf19af4
MW
309}
310
311/* For debug */
312static void radix_tree_dump(struct radix_tree_root *root)
313{
d0891265
MW
314 pr_debug("radix root: %p rnode %p tags %x\n",
315 root, root->rnode,
0a835c4f 316 root->gfp_mask >> ROOT_TAG_SHIFT);
b194d16c 317 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 318 return;
4dd6c098 319 dump_node(entry_to_node(root->rnode), 0);
7cf19af4 320}
0a835c4f
MW
321
322static void dump_ida_node(void *entry, unsigned long index)
323{
324 unsigned long i;
325
326 if (!entry)
327 return;
328
329 if (radix_tree_is_internal_node(entry)) {
330 struct radix_tree_node *node = entry_to_node(entry);
331
332 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
333 node, node->offset, index * IDA_BITMAP_BITS,
334 ((index | node_maxindex(node)) + 1) *
335 IDA_BITMAP_BITS - 1,
336 node->parent, node->tags[0][0], node->shift,
337 node->count);
338 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
339 dump_ida_node(node->slots[i],
340 index | (i << node->shift));
d37cacc5
MW
341 } else if (radix_tree_exceptional_entry(entry)) {
342 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
343 entry, (int)(index & RADIX_TREE_MAP_MASK),
344 index * IDA_BITMAP_BITS,
345 index * IDA_BITMAP_BITS + BITS_PER_LONG -
346 RADIX_TREE_EXCEPTIONAL_SHIFT,
347 (unsigned long)entry >>
348 RADIX_TREE_EXCEPTIONAL_SHIFT);
0a835c4f
MW
349 } else {
350 struct ida_bitmap *bitmap = entry;
351
352 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
353 (int)(index & RADIX_TREE_MAP_MASK),
354 index * IDA_BITMAP_BITS,
355 (index + 1) * IDA_BITMAP_BITS - 1);
356 for (i = 0; i < IDA_BITMAP_LONGS; i++)
357 pr_cont(" %lx", bitmap->bitmap[i]);
358 pr_cont("\n");
359 }
360}
361
362static void ida_dump(struct ida *ida)
363{
364 struct radix_tree_root *root = &ida->ida_rt;
7ad3d4d8
MW
365 pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
366 root->gfp_mask >> ROOT_TAG_SHIFT);
0a835c4f
MW
367 dump_ida_node(root->rnode, 0);
368}
7cf19af4
MW
369#endif
370
1da177e4
LT
371/*
372 * This assumes that the caller has performed appropriate preallocation, and
373 * that the caller has pinned this thread of control to the current CPU.
374 */
375static struct radix_tree_node *
0a835c4f 376radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 377 struct radix_tree_root *root,
e8de4340
MW
378 unsigned int shift, unsigned int offset,
379 unsigned int count, unsigned int exceptional)
1da177e4 380{
e2848a0e 381 struct radix_tree_node *ret = NULL;
1da177e4 382
5e4c0d97 383 /*
2fcd9005
MW
384 * Preload code isn't irq safe and it doesn't make sense to use
385 * preloading during an interrupt anyway as all the allocations have
386 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 387 */
d0164adc 388 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
389 struct radix_tree_preload *rtp;
390
58e698af
VD
391 /*
392 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
393 * cache first for the new node to get accounted to the memory
394 * cgroup.
58e698af
VD
395 */
396 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 397 gfp_mask | __GFP_NOWARN);
58e698af
VD
398 if (ret)
399 goto out;
400
e2848a0e
NP
401 /*
402 * Provided the caller has preloaded here, we will always
403 * succeed in getting a node here (and never reach
404 * kmem_cache_alloc)
405 */
7c8e0181 406 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 407 if (rtp->nr) {
9d2a8da0 408 ret = rtp->nodes;
1293d5c5 409 rtp->nodes = ret->parent;
1da177e4
LT
410 rtp->nr--;
411 }
ce80b067
CM
412 /*
413 * Update the allocation stack trace as this is more useful
414 * for debugging.
415 */
416 kmemleak_update_trace(ret);
58e698af 417 goto out;
1da177e4 418 }
05eb6e72 419 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 420out:
b194d16c 421 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 422 if (ret) {
e8de4340
MW
423 ret->shift = shift;
424 ret->offset = offset;
425 ret->count = count;
426 ret->exceptional = exceptional;
d58275bc
MW
427 ret->parent = parent;
428 ret->root = root;
e8de4340 429 }
1da177e4
LT
430 return ret;
431}
432
7cf9c2c7
NP
433static void radix_tree_node_rcu_free(struct rcu_head *head)
434{
435 struct radix_tree_node *node =
436 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
437
438 /*
175542f5
MW
439 * Must only free zeroed nodes into the slab. We can be left with
440 * non-NULL entries by radix_tree_free_nodes, so clear the entries
441 * and tags here.
643b52b9 442 */
175542f5
MW
443 memset(node->slots, 0, sizeof(node->slots));
444 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 445 INIT_LIST_HEAD(&node->private_list);
643b52b9 446
7cf9c2c7
NP
447 kmem_cache_free(radix_tree_node_cachep, node);
448}
449
1da177e4
LT
450static inline void
451radix_tree_node_free(struct radix_tree_node *node)
452{
7cf9c2c7 453 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
454}
455
456/*
457 * Load up this CPU's radix_tree_node buffer with sufficient objects to
458 * ensure that the addition of a single element in the tree cannot fail. On
459 * success, return zero, with preemption disabled. On error, return -ENOMEM
460 * with preemption not disabled.
b34df792
DH
461 *
462 * To make use of this facility, the radix tree must be initialised without
d0164adc 463 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 464 */
2791653a 465static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
466{
467 struct radix_tree_preload *rtp;
468 struct radix_tree_node *node;
469 int ret = -ENOMEM;
470
05eb6e72
VD
471 /*
472 * Nodes preloaded by one cgroup can be be used by another cgroup, so
473 * they should never be accounted to any particular memory cgroup.
474 */
475 gfp_mask &= ~__GFP_ACCOUNT;
476
1da177e4 477 preempt_disable();
7c8e0181 478 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 479 while (rtp->nr < nr) {
1da177e4 480 preempt_enable();
488514d1 481 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
482 if (node == NULL)
483 goto out;
484 preempt_disable();
7c8e0181 485 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 486 if (rtp->nr < nr) {
1293d5c5 487 node->parent = rtp->nodes;
9d2a8da0
KS
488 rtp->nodes = node;
489 rtp->nr++;
490 } else {
1da177e4 491 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 492 }
1da177e4
LT
493 }
494 ret = 0;
495out:
496 return ret;
497}
5e4c0d97
JK
498
499/*
500 * Load up this CPU's radix_tree_node buffer with sufficient objects to
501 * ensure that the addition of a single element in the tree cannot fail. On
502 * success, return zero, with preemption disabled. On error, return -ENOMEM
503 * with preemption not disabled.
504 *
505 * To make use of this facility, the radix tree must be initialised without
d0164adc 506 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
507 */
508int radix_tree_preload(gfp_t gfp_mask)
509{
510 /* Warn on non-sensical use... */
d0164adc 511 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 512 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 513}
d7f0923d 514EXPORT_SYMBOL(radix_tree_preload);
1da177e4 515
5e4c0d97
JK
516/*
517 * The same as above function, except we don't guarantee preloading happens.
518 * We do it, if we decide it helps. On success, return zero with preemption
519 * disabled. On error, return -ENOMEM with preemption not disabled.
520 */
521int radix_tree_maybe_preload(gfp_t gfp_mask)
522{
d0164adc 523 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 524 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
525 /* Preloading doesn't help anything with this gfp mask, skip it */
526 preempt_disable();
527 return 0;
528}
529EXPORT_SYMBOL(radix_tree_maybe_preload);
530
2791653a
MW
531#ifdef CONFIG_RADIX_TREE_MULTIORDER
532/*
533 * Preload with enough objects to ensure that we can split a single entry
534 * of order @old_order into many entries of size @new_order
535 */
536int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
537 gfp_t gfp_mask)
538{
539 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
540 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
541 (new_order / RADIX_TREE_MAP_SHIFT);
542 unsigned nr = 0;
543
544 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
545 BUG_ON(new_order >= old_order);
546
547 while (layers--)
548 nr = nr * RADIX_TREE_MAP_SIZE + 1;
549 return __radix_tree_preload(gfp_mask, top * nr);
550}
551#endif
552
c78c66d1
KS
553/*
554 * The same as function above, but preload number of nodes required to insert
555 * (1 << order) continuous naturally-aligned elements.
556 */
557int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
558{
559 unsigned long nr_subtrees;
560 int nr_nodes, subtree_height;
561
562 /* Preloading doesn't help anything with this gfp mask, skip it */
563 if (!gfpflags_allow_blocking(gfp_mask)) {
564 preempt_disable();
565 return 0;
566 }
567
568 /*
569 * Calculate number and height of fully populated subtrees it takes to
570 * store (1 << order) elements.
571 */
572 nr_subtrees = 1 << order;
573 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
574 subtree_height++)
575 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
576
577 /*
578 * The worst case is zero height tree with a single item at index 0 and
579 * then inserting items starting at ULONG_MAX - (1 << order).
580 *
581 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
582 * 0-index item.
583 */
584 nr_nodes = RADIX_TREE_MAX_PATH;
585
586 /* Plus branch to fully populated subtrees. */
587 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
588
589 /* Root node is shared. */
590 nr_nodes--;
591
592 /* Plus nodes required to build subtrees. */
593 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
594
595 return __radix_tree_preload(gfp_mask, nr_nodes);
596}
597
35534c86 598static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
599 struct radix_tree_node **nodep, unsigned long *maxindex)
600{
601 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
602
603 *nodep = node;
604
b194d16c 605 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 606 node = entry_to_node(node);
1456a439 607 *maxindex = node_maxindex(node);
c12e51b0 608 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
609 }
610
611 *maxindex = 0;
612 return 0;
613}
614
1da177e4
LT
615/*
616 * Extend a radix tree so it can store key @index.
617 */
0a835c4f 618static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 619 unsigned long index, unsigned int shift)
1da177e4 620{
e2bdb933 621 struct radix_tree_node *slot;
d0891265 622 unsigned int maxshift;
1da177e4
LT
623 int tag;
624
d0891265
MW
625 /* Figure out what the shift should be. */
626 maxshift = shift;
627 while (index > shift_maxindex(maxshift))
628 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 629
d0891265 630 slot = root->rnode;
0a835c4f 631 if (!slot && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 632 goto out;
1da177e4 633
1da177e4 634 do {
0a835c4f 635 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 636 root, shift, 0, 1, 0);
2fcd9005 637 if (!node)
1da177e4
LT
638 return -ENOMEM;
639
0a835c4f
MW
640 if (is_idr(root)) {
641 all_tag_set(node, IDR_FREE);
642 if (!root_tag_get(root, IDR_FREE)) {
643 tag_clear(node, IDR_FREE, 0);
644 root_tag_set(root, IDR_FREE);
645 }
646 } else {
647 /* Propagate the aggregated tag info to the new child */
648 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
649 if (root_tag_get(root, tag))
650 tag_set(node, tag, 0);
651 }
1da177e4
LT
652 }
653
d0891265 654 BUG_ON(shift > BITS_PER_LONG);
f7942430 655 if (radix_tree_is_internal_node(slot)) {
4dd6c098 656 entry_to_node(slot)->parent = node;
e8de4340 657 } else if (radix_tree_exceptional_entry(slot)) {
f7942430 658 /* Moving an exceptional root->rnode to a node */
e8de4340 659 node->exceptional = 1;
f7942430 660 }
e2bdb933 661 node->slots[0] = slot;
a4db4dce
MW
662 slot = node_to_entry(node);
663 rcu_assign_pointer(root->rnode, slot);
d0891265 664 shift += RADIX_TREE_MAP_SHIFT;
d0891265 665 } while (shift <= maxshift);
1da177e4 666out:
d0891265 667 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
668}
669
f4b109c6
JW
670/**
671 * radix_tree_shrink - shrink radix tree to minimum height
672 * @root radix tree root
673 */
0ac398ef 674static inline bool radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
675 radix_tree_update_node_t update_node,
676 void *private)
f4b109c6 677{
0ac398ef
MW
678 bool shrunk = false;
679
f4b109c6
JW
680 for (;;) {
681 struct radix_tree_node *node = root->rnode;
682 struct radix_tree_node *child;
683
684 if (!radix_tree_is_internal_node(node))
685 break;
686 node = entry_to_node(node);
687
688 /*
689 * The candidate node has more than one child, or its child
690 * is not at the leftmost slot, or the child is a multiorder
691 * entry, we cannot shrink.
692 */
693 if (node->count != 1)
694 break;
695 child = node->slots[0];
696 if (!child)
697 break;
698 if (!radix_tree_is_internal_node(child) && node->shift)
699 break;
700
701 if (radix_tree_is_internal_node(child))
702 entry_to_node(child)->parent = NULL;
703
704 /*
705 * We don't need rcu_assign_pointer(), since we are simply
706 * moving the node from one part of the tree to another: if it
707 * was safe to dereference the old pointer to it
708 * (node->slots[0]), it will be safe to dereference the new
709 * one (root->rnode) as far as dependent read barriers go.
710 */
711 root->rnode = child;
0a835c4f
MW
712 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
713 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
714
715 /*
716 * We have a dilemma here. The node's slot[0] must not be
717 * NULLed in case there are concurrent lookups expecting to
718 * find the item. However if this was a bottom-level node,
719 * then it may be subject to the slot pointer being visible
720 * to callers dereferencing it. If item corresponding to
721 * slot[0] is subsequently deleted, these callers would expect
722 * their slot to become empty sooner or later.
723 *
724 * For example, lockless pagecache will look up a slot, deref
725 * the page pointer, and if the page has 0 refcount it means it
726 * was concurrently deleted from pagecache so try the deref
727 * again. Fortunately there is already a requirement for logic
728 * to retry the entire slot lookup -- the indirect pointer
729 * problem (replacing direct root node with an indirect pointer
730 * also results in a stale slot). So tag the slot as indirect
731 * to force callers to retry.
732 */
4d693d08
JW
733 node->count = 0;
734 if (!radix_tree_is_internal_node(child)) {
f4b109c6 735 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
736 if (update_node)
737 update_node(node, private);
738 }
f4b109c6 739
ea07b862 740 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 741 radix_tree_node_free(node);
0ac398ef 742 shrunk = true;
f4b109c6 743 }
0ac398ef
MW
744
745 return shrunk;
f4b109c6
JW
746}
747
0ac398ef 748static bool delete_node(struct radix_tree_root *root,
4d693d08
JW
749 struct radix_tree_node *node,
750 radix_tree_update_node_t update_node, void *private)
f4b109c6 751{
0ac398ef
MW
752 bool deleted = false;
753
f4b109c6
JW
754 do {
755 struct radix_tree_node *parent;
756
757 if (node->count) {
758 if (node == entry_to_node(root->rnode))
0ac398ef
MW
759 deleted |= radix_tree_shrink(root, update_node,
760 private);
761 return deleted;
f4b109c6
JW
762 }
763
764 parent = node->parent;
765 if (parent) {
766 parent->slots[node->offset] = NULL;
767 parent->count--;
768 } else {
0a835c4f
MW
769 /*
770 * Shouldn't the tags already have all been cleared
771 * by the caller?
772 */
773 if (!is_idr(root))
774 root_tag_clear_all(root);
f4b109c6
JW
775 root->rnode = NULL;
776 }
777
ea07b862 778 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 779 radix_tree_node_free(node);
0ac398ef 780 deleted = true;
f4b109c6
JW
781
782 node = parent;
783 } while (node);
0ac398ef
MW
784
785 return deleted;
f4b109c6
JW
786}
787
1da177e4 788/**
139e5616 789 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
790 * @root: radix tree root
791 * @index: index key
e6145236 792 * @order: index occupies 2^order aligned slots
139e5616
JW
793 * @nodep: returns node
794 * @slotp: returns slot
1da177e4 795 *
139e5616
JW
796 * Create, if necessary, and return the node and slot for an item
797 * at position @index in the radix tree @root.
798 *
799 * Until there is more than one item in the tree, no nodes are
800 * allocated and @root->rnode is used as a direct slot instead of
801 * pointing to a node, in which case *@nodep will be NULL.
802 *
803 * Returns -ENOMEM, or 0 for success.
1da177e4 804 */
139e5616 805int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
806 unsigned order, struct radix_tree_node **nodep,
807 void ***slotp)
1da177e4 808{
89148aa4
MW
809 struct radix_tree_node *node = NULL, *child;
810 void **slot = (void **)&root->rnode;
49ea6ebc 811 unsigned long maxindex;
89148aa4 812 unsigned int shift, offset = 0;
49ea6ebc 813 unsigned long max = index | ((1UL << order) - 1);
0a835c4f 814 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 815
89148aa4 816 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
817
818 /* Make sure the tree is high enough. */
175542f5
MW
819 if (order > 0 && max == ((1UL << order) - 1))
820 max++;
49ea6ebc 821 if (max > maxindex) {
0a835c4f 822 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 823 if (error < 0)
1da177e4 824 return error;
49ea6ebc 825 shift = error;
89148aa4 826 child = root->rnode;
1da177e4
LT
827 }
828
e6145236 829 while (shift > order) {
c12e51b0 830 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 831 if (child == NULL) {
1da177e4 832 /* Have to add a child node. */
d58275bc 833 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 834 offset, 0, 0);
89148aa4 835 if (!child)
1da177e4 836 return -ENOMEM;
89148aa4
MW
837 rcu_assign_pointer(*slot, node_to_entry(child));
838 if (node)
1da177e4 839 node->count++;
89148aa4 840 } else if (!radix_tree_is_internal_node(child))
e6145236 841 break;
1da177e4
LT
842
843 /* Go a level down */
89148aa4 844 node = entry_to_node(child);
9e85d811 845 offset = radix_tree_descend(node, &child, index);
89148aa4 846 slot = &node->slots[offset];
e6145236
MW
847 }
848
175542f5
MW
849 if (nodep)
850 *nodep = node;
851 if (slotp)
852 *slotp = slot;
853 return 0;
854}
855
175542f5
MW
856/*
857 * Free any nodes below this node. The tree is presumed to not need
858 * shrinking, and any user data in the tree is presumed to not need a
859 * destructor called on it. If we need to add a destructor, we can
860 * add that functionality later. Note that we may not clear tags or
861 * slots from the tree as an RCU walker may still have a pointer into
862 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
863 * but we'll still have to clear those in rcu_free.
864 */
865static void radix_tree_free_nodes(struct radix_tree_node *node)
866{
867 unsigned offset = 0;
868 struct radix_tree_node *child = entry_to_node(node);
869
870 for (;;) {
871 void *entry = child->slots[offset];
872 if (radix_tree_is_internal_node(entry) &&
873 !is_sibling_entry(child, entry)) {
874 child = entry_to_node(entry);
875 offset = 0;
876 continue;
877 }
878 offset++;
879 while (offset == RADIX_TREE_MAP_SIZE) {
880 struct radix_tree_node *old = child;
881 offset = child->offset + 1;
882 child = child->parent;
dd040b6f 883 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
884 radix_tree_node_free(old);
885 if (old == entry_to_node(node))
886 return;
887 }
888 }
889}
890
0a835c4f 891#ifdef CONFIG_RADIX_TREE_MULTIORDER
175542f5
MW
892static inline int insert_entries(struct radix_tree_node *node, void **slot,
893 void *item, unsigned order, bool replace)
894{
895 struct radix_tree_node *child;
896 unsigned i, n, tag, offset, tags = 0;
897
898 if (node) {
e157b555
MW
899 if (order > node->shift)
900 n = 1 << (order - node->shift);
901 else
902 n = 1;
175542f5
MW
903 offset = get_slot_offset(node, slot);
904 } else {
905 n = 1;
906 offset = 0;
907 }
908
909 if (n > 1) {
e6145236 910 offset = offset & ~(n - 1);
89148aa4 911 slot = &node->slots[offset];
175542f5
MW
912 }
913 child = node_to_entry(slot);
914
915 for (i = 0; i < n; i++) {
916 if (slot[i]) {
917 if (replace) {
918 node->count--;
919 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
920 if (tag_get(node, tag, offset + i))
921 tags |= 1 << tag;
922 } else
e6145236
MW
923 return -EEXIST;
924 }
175542f5 925 }
e6145236 926
175542f5
MW
927 for (i = 0; i < n; i++) {
928 struct radix_tree_node *old = slot[i];
929 if (i) {
89148aa4 930 rcu_assign_pointer(slot[i], child);
175542f5
MW
931 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
932 if (tags & (1 << tag))
933 tag_clear(node, tag, offset + i);
934 } else {
935 rcu_assign_pointer(slot[i], item);
936 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
937 if (tags & (1 << tag))
938 tag_set(node, tag, offset);
e6145236 939 }
175542f5 940 if (radix_tree_is_internal_node(old) &&
e157b555
MW
941 !is_sibling_entry(node, old) &&
942 (old != RADIX_TREE_RETRY))
175542f5
MW
943 radix_tree_free_nodes(old);
944 if (radix_tree_exceptional_entry(old))
945 node->exceptional--;
612d6c19 946 }
175542f5
MW
947 if (node) {
948 node->count += n;
949 if (radix_tree_exceptional_entry(item))
950 node->exceptional += n;
951 }
952 return n;
139e5616 953}
175542f5
MW
954#else
955static inline int insert_entries(struct radix_tree_node *node, void **slot,
956 void *item, unsigned order, bool replace)
957{
958 if (*slot)
959 return -EEXIST;
960 rcu_assign_pointer(*slot, item);
961 if (node) {
962 node->count++;
963 if (radix_tree_exceptional_entry(item))
964 node->exceptional++;
965 }
966 return 1;
967}
968#endif
139e5616
JW
969
970/**
e6145236 971 * __radix_tree_insert - insert into a radix tree
139e5616
JW
972 * @root: radix tree root
973 * @index: index key
e6145236 974 * @order: key covers the 2^order indices around index
139e5616
JW
975 * @item: item to insert
976 *
977 * Insert an item into the radix tree at position @index.
978 */
e6145236
MW
979int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
980 unsigned order, void *item)
139e5616
JW
981{
982 struct radix_tree_node *node;
983 void **slot;
984 int error;
985
b194d16c 986 BUG_ON(radix_tree_is_internal_node(item));
139e5616 987
e6145236 988 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
989 if (error)
990 return error;
175542f5
MW
991
992 error = insert_entries(node, slot, item, order, false);
993 if (error < 0)
994 return error;
201b6264 995
612d6c19 996 if (node) {
7b60e9ad 997 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
998 BUG_ON(tag_get(node, 0, offset));
999 BUG_ON(tag_get(node, 1, offset));
1000 BUG_ON(tag_get(node, 2, offset));
612d6c19 1001 } else {
7b60e9ad 1002 BUG_ON(root_tags_get(root));
612d6c19 1003 }
1da177e4 1004
1da177e4
LT
1005 return 0;
1006}
e6145236 1007EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 1008
139e5616
JW
1009/**
1010 * __radix_tree_lookup - lookup an item in a radix tree
1011 * @root: radix tree root
1012 * @index: index key
1013 * @nodep: returns node
1014 * @slotp: returns slot
1015 *
1016 * Lookup and return the item at position @index in the radix
1017 * tree @root.
1018 *
1019 * Until there is more than one item in the tree, no nodes are
1020 * allocated and @root->rnode is used as a direct slot instead of
1021 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 1022 */
35534c86
MW
1023void *__radix_tree_lookup(const struct radix_tree_root *root,
1024 unsigned long index, struct radix_tree_node **nodep,
1025 void ***slotp)
1da177e4 1026{
139e5616 1027 struct radix_tree_node *node, *parent;
85829954 1028 unsigned long maxindex;
139e5616 1029 void **slot;
612d6c19 1030
85829954
MW
1031 restart:
1032 parent = NULL;
1033 slot = (void **)&root->rnode;
9e85d811 1034 radix_tree_load_root(root, &node, &maxindex);
85829954 1035 if (index > maxindex)
1da177e4
LT
1036 return NULL;
1037
b194d16c 1038 while (radix_tree_is_internal_node(node)) {
85829954 1039 unsigned offset;
1da177e4 1040
85829954
MW
1041 if (node == RADIX_TREE_RETRY)
1042 goto restart;
4dd6c098 1043 parent = entry_to_node(node);
9e85d811 1044 offset = radix_tree_descend(parent, &node, index);
85829954
MW
1045 slot = parent->slots + offset;
1046 }
1da177e4 1047
139e5616
JW
1048 if (nodep)
1049 *nodep = parent;
1050 if (slotp)
1051 *slotp = slot;
1052 return node;
b72b71c6
HS
1053}
1054
1055/**
1056 * radix_tree_lookup_slot - lookup a slot in a radix tree
1057 * @root: radix tree root
1058 * @index: index key
1059 *
1060 * Returns: the slot corresponding to the position @index in the
1061 * radix tree @root. This is useful for update-if-exists operations.
1062 *
1063 * This function can be called under rcu_read_lock iff the slot is not
1064 * modified by radix_tree_replace_slot, otherwise it must be called
1065 * exclusive from other writers. Any dereference of the slot must be done
1066 * using radix_tree_deref_slot.
1067 */
35534c86
MW
1068void **radix_tree_lookup_slot(const struct radix_tree_root *root,
1069 unsigned long index)
b72b71c6 1070{
139e5616
JW
1071 void **slot;
1072
1073 if (!__radix_tree_lookup(root, index, NULL, &slot))
1074 return NULL;
1075 return slot;
a4331366 1076}
a4331366
HR
1077EXPORT_SYMBOL(radix_tree_lookup_slot);
1078
1079/**
1080 * radix_tree_lookup - perform lookup operation on a radix tree
1081 * @root: radix tree root
1082 * @index: index key
1083 *
1084 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
1085 *
1086 * This function can be called under rcu_read_lock, however the caller
1087 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1088 * them safely). No RCU barriers are required to access or modify the
1089 * returned item, however.
a4331366 1090 */
35534c86 1091void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 1092{
139e5616 1093 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
1094}
1095EXPORT_SYMBOL(radix_tree_lookup);
1096
0a835c4f
MW
1097static inline void replace_sibling_entries(struct radix_tree_node *node,
1098 void **slot, int count, int exceptional)
a90eb3a2 1099{
a90eb3a2
MW
1100#ifdef CONFIG_RADIX_TREE_MULTIORDER
1101 void *ptr = node_to_entry(slot);
0a835c4f 1102 unsigned offset = get_slot_offset(node, slot) + 1;
a90eb3a2 1103
0a835c4f
MW
1104 while (offset < RADIX_TREE_MAP_SIZE) {
1105 if (node->slots[offset] != ptr)
a90eb3a2 1106 break;
0a835c4f
MW
1107 if (count < 0) {
1108 node->slots[offset] = NULL;
1109 node->count--;
1110 }
1111 node->exceptional += exceptional;
1112 offset++;
a90eb3a2
MW
1113 }
1114#endif
a90eb3a2
MW
1115}
1116
0a835c4f
MW
1117static void replace_slot(void **slot, void *item, struct radix_tree_node *node,
1118 int count, int exceptional)
f7942430 1119{
0a835c4f
MW
1120 if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1121 return;
f7942430 1122
0a835c4f 1123 if (node && (count || exceptional)) {
f4b109c6 1124 node->count += count;
0a835c4f
MW
1125 node->exceptional += exceptional;
1126 replace_sibling_entries(node, slot, count, exceptional);
f4b109c6 1127 }
f7942430
JW
1128
1129 rcu_assign_pointer(*slot, item);
1130}
1131
0a835c4f
MW
1132static bool node_tag_get(const struct radix_tree_root *root,
1133 const struct radix_tree_node *node,
1134 unsigned int tag, unsigned int offset)
a90eb3a2 1135{
0a835c4f
MW
1136 if (node)
1137 return tag_get(node, tag, offset);
1138 return root_tag_get(root, tag);
1139}
a90eb3a2 1140
0a835c4f
MW
1141/*
1142 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1143 * free, don't adjust the count, even if it's transitioning between NULL and
1144 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1145 * have empty bits, but it only stores NULL in slots when they're being
1146 * deleted.
1147 */
1148static int calculate_count(struct radix_tree_root *root,
1149 struct radix_tree_node *node, void **slot,
1150 void *item, void *old)
1151{
1152 if (is_idr(root)) {
1153 unsigned offset = get_slot_offset(node, slot);
1154 bool free = node_tag_get(root, node, IDR_FREE, offset);
1155 if (!free)
1156 return 0;
1157 if (!old)
1158 return 1;
a90eb3a2 1159 }
0a835c4f 1160 return !!item - !!old;
a90eb3a2
MW
1161}
1162
6d75f366
JW
1163/**
1164 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1165 * @root: radix tree root
1166 * @node: pointer to tree node
1167 * @slot: pointer to slot in @node
1168 * @item: new item to store in the slot.
1169 * @update_node: callback for changing leaf nodes
1170 * @private: private data to pass to @update_node
6d75f366
JW
1171 *
1172 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1173 * across slot lookup and replacement.
1174 */
1175void __radix_tree_replace(struct radix_tree_root *root,
1176 struct radix_tree_node *node,
4d693d08
JW
1177 void **slot, void *item,
1178 radix_tree_update_node_t update_node, void *private)
6d75f366 1179{
0a835c4f
MW
1180 void *old = rcu_dereference_raw(*slot);
1181 int exceptional = !!radix_tree_exceptional_entry(item) -
1182 !!radix_tree_exceptional_entry(old);
1183 int count = calculate_count(root, node, slot, item, old);
1184
6d75f366 1185 /*
f4b109c6
JW
1186 * This function supports replacing exceptional entries and
1187 * deleting entries, but that needs accounting against the
1188 * node unless the slot is root->rnode.
6d75f366 1189 */
0a835c4f
MW
1190 WARN_ON_ONCE(!node && (slot != (void **)&root->rnode) &&
1191 (count || exceptional));
1192 replace_slot(slot, item, node, count, exceptional);
f4b109c6 1193
4d693d08
JW
1194 if (!node)
1195 return;
1196
1197 if (update_node)
1198 update_node(node, private);
1199
1200 delete_node(root, node, update_node, private);
6d75f366
JW
1201}
1202
1203/**
1204 * radix_tree_replace_slot - replace item in a slot
1205 * @root: radix tree root
1206 * @slot: pointer to slot
1207 * @item: new item to store in the slot.
1208 *
1209 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1210 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1211 * across slot lookup and replacement.
1212 *
1213 * NOTE: This cannot be used to switch between non-entries (empty slots),
1214 * regular entries, and exceptional entries, as that requires accounting
f4b109c6 1215 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1216 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1217 * radix_tree_iter_replace().
6d75f366
JW
1218 */
1219void radix_tree_replace_slot(struct radix_tree_root *root,
1220 void **slot, void *item)
1221{
0a835c4f 1222 __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
6d75f366
JW
1223}
1224
e157b555
MW
1225/**
1226 * radix_tree_iter_replace - replace item in a slot
1227 * @root: radix tree root
1228 * @slot: pointer to slot
1229 * @item: new item to store in the slot.
1230 *
1231 * For use with radix_tree_split() and radix_tree_for_each_slot().
1232 * Caller must hold tree write locked across split and replacement.
1233 */
1234void radix_tree_iter_replace(struct radix_tree_root *root,
1235 const struct radix_tree_iter *iter, void **slot, void *item)
1236{
1237 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1238}
1239
175542f5
MW
1240#ifdef CONFIG_RADIX_TREE_MULTIORDER
1241/**
1242 * radix_tree_join - replace multiple entries with one multiorder entry
1243 * @root: radix tree root
1244 * @index: an index inside the new entry
1245 * @order: order of the new entry
1246 * @item: new entry
1247 *
1248 * Call this function to replace several entries with one larger entry.
1249 * The existing entries are presumed to not need freeing as a result of
1250 * this call.
1251 *
1252 * The replacement entry will have all the tags set on it that were set
1253 * on any of the entries it is replacing.
1254 */
1255int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1256 unsigned order, void *item)
1257{
1258 struct radix_tree_node *node;
1259 void **slot;
1260 int error;
1261
1262 BUG_ON(radix_tree_is_internal_node(item));
1263
1264 error = __radix_tree_create(root, index, order, &node, &slot);
1265 if (!error)
1266 error = insert_entries(node, slot, item, order, true);
1267 if (error > 0)
1268 error = 0;
1269
1270 return error;
1271}
e157b555
MW
1272
1273/**
1274 * radix_tree_split - Split an entry into smaller entries
1275 * @root: radix tree root
1276 * @index: An index within the large entry
1277 * @order: Order of new entries
1278 *
1279 * Call this function as the first step in replacing a multiorder entry
1280 * with several entries of lower order. After this function returns,
1281 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1282 * and call radix_tree_iter_replace() to set up each new entry.
1283 *
1284 * The tags from this entry are replicated to all the new entries.
1285 *
1286 * The radix tree should be locked against modification during the entire
1287 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1288 * should prompt RCU walkers to restart the lookup from the root.
1289 */
1290int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1291 unsigned order)
1292{
1293 struct radix_tree_node *parent, *node, *child;
1294 void **slot;
1295 unsigned int offset, end;
1296 unsigned n, tag, tags = 0;
0a835c4f 1297 gfp_t gfp = root_gfp_mask(root);
e157b555
MW
1298
1299 if (!__radix_tree_lookup(root, index, &parent, &slot))
1300 return -ENOENT;
1301 if (!parent)
1302 return -ENOENT;
1303
1304 offset = get_slot_offset(parent, slot);
1305
1306 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1307 if (tag_get(parent, tag, offset))
1308 tags |= 1 << tag;
1309
1310 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1311 if (!is_sibling_entry(parent, parent->slots[end]))
1312 break;
1313 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1314 if (tags & (1 << tag))
1315 tag_set(parent, tag, end);
1316 /* rcu_assign_pointer ensures tags are set before RETRY */
1317 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1318 }
1319 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1320 parent->exceptional -= (end - offset);
1321
1322 if (order == parent->shift)
1323 return 0;
1324 if (order > parent->shift) {
1325 while (offset < end)
1326 offset += insert_entries(parent, &parent->slots[offset],
1327 RADIX_TREE_RETRY, order, true);
1328 return 0;
1329 }
1330
1331 node = parent;
1332
1333 for (;;) {
1334 if (node->shift > order) {
d58275bc 1335 child = radix_tree_node_alloc(gfp, node, root,
e8de4340
MW
1336 node->shift - RADIX_TREE_MAP_SHIFT,
1337 offset, 0, 0);
e157b555
MW
1338 if (!child)
1339 goto nomem;
e157b555
MW
1340 if (node != parent) {
1341 node->count++;
1342 node->slots[offset] = node_to_entry(child);
1343 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1344 if (tags & (1 << tag))
1345 tag_set(node, tag, offset);
1346 }
1347
1348 node = child;
1349 offset = 0;
1350 continue;
1351 }
1352
1353 n = insert_entries(node, &node->slots[offset],
1354 RADIX_TREE_RETRY, order, false);
1355 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1356
1357 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1358 if (tags & (1 << tag))
1359 tag_set(node, tag, offset);
1360 offset += n;
1361
1362 while (offset == RADIX_TREE_MAP_SIZE) {
1363 if (node == parent)
1364 break;
1365 offset = node->offset;
1366 child = node;
1367 node = node->parent;
1368 rcu_assign_pointer(node->slots[offset],
1369 node_to_entry(child));
1370 offset++;
1371 }
1372 if ((node == parent) && (offset == end))
1373 return 0;
1374 }
1375
1376 nomem:
1377 /* Shouldn't happen; did user forget to preload? */
1378 /* TODO: free all the allocated nodes */
1379 WARN_ON(1);
1380 return -ENOMEM;
1381}
175542f5
MW
1382#endif
1383
30b888ba
MW
1384static void node_tag_set(struct radix_tree_root *root,
1385 struct radix_tree_node *node,
1386 unsigned int tag, unsigned int offset)
1387{
1388 while (node) {
1389 if (tag_get(node, tag, offset))
1390 return;
1391 tag_set(node, tag, offset);
1392 offset = node->offset;
1393 node = node->parent;
1394 }
1395
1396 if (!root_tag_get(root, tag))
1397 root_tag_set(root, tag);
1398}
1399
1da177e4
LT
1400/**
1401 * radix_tree_tag_set - set a tag on a radix tree node
1402 * @root: radix tree root
1403 * @index: index key
2fcd9005 1404 * @tag: tag index
1da177e4 1405 *
daff89f3
JC
1406 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1407 * corresponding to @index in the radix tree. From
1da177e4
LT
1408 * the root all the way down to the leaf node.
1409 *
2fcd9005 1410 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1411 * item is a bug.
1412 */
1413void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1414 unsigned long index, unsigned int tag)
1da177e4 1415{
fb969909
RZ
1416 struct radix_tree_node *node, *parent;
1417 unsigned long maxindex;
1da177e4 1418
9e85d811 1419 radix_tree_load_root(root, &node, &maxindex);
fb969909 1420 BUG_ON(index > maxindex);
1da177e4 1421
b194d16c 1422 while (radix_tree_is_internal_node(node)) {
fb969909 1423 unsigned offset;
1da177e4 1424
4dd6c098 1425 parent = entry_to_node(node);
9e85d811 1426 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1427 BUG_ON(!node);
1428
1429 if (!tag_get(parent, tag, offset))
1430 tag_set(parent, tag, offset);
1da177e4
LT
1431 }
1432
612d6c19 1433 /* set the root's tag bit */
fb969909 1434 if (!root_tag_get(root, tag))
612d6c19
NP
1435 root_tag_set(root, tag);
1436
fb969909 1437 return node;
1da177e4
LT
1438}
1439EXPORT_SYMBOL(radix_tree_tag_set);
1440
30b888ba
MW
1441/**
1442 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1443 * @root: radix tree root
1444 * @iter: iterator state
1445 * @tag: tag to set
1446 */
1447void radix_tree_iter_tag_set(struct radix_tree_root *root,
1448 const struct radix_tree_iter *iter, unsigned int tag)
1449{
1450 node_tag_set(root, iter->node, tag, iter_offset(iter));
1451}
1452
d604c324
MW
1453static void node_tag_clear(struct radix_tree_root *root,
1454 struct radix_tree_node *node,
1455 unsigned int tag, unsigned int offset)
1456{
1457 while (node) {
1458 if (!tag_get(node, tag, offset))
1459 return;
1460 tag_clear(node, tag, offset);
1461 if (any_tag_set(node, tag))
1462 return;
1463
1464 offset = node->offset;
1465 node = node->parent;
1466 }
1467
1468 /* clear the root's tag bit */
1469 if (root_tag_get(root, tag))
1470 root_tag_clear(root, tag);
1471}
1472
1da177e4
LT
1473/**
1474 * radix_tree_tag_clear - clear a tag on a radix tree node
1475 * @root: radix tree root
1476 * @index: index key
2fcd9005 1477 * @tag: tag index
1da177e4 1478 *
daff89f3 1479 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1480 * corresponding to @index in the radix tree. If this causes
1481 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1482 * next-to-leaf node, etc.
1483 *
1484 * Returns the address of the tagged item on success, else NULL. ie:
1485 * has the same return value and semantics as radix_tree_lookup().
1486 */
1487void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1488 unsigned long index, unsigned int tag)
1da177e4 1489{
00f47b58
RZ
1490 struct radix_tree_node *node, *parent;
1491 unsigned long maxindex;
e2bdb933 1492 int uninitialized_var(offset);
1da177e4 1493
9e85d811 1494 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1495 if (index > maxindex)
1496 return NULL;
1da177e4 1497
00f47b58 1498 parent = NULL;
1da177e4 1499
b194d16c 1500 while (radix_tree_is_internal_node(node)) {
4dd6c098 1501 parent = entry_to_node(node);
9e85d811 1502 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1503 }
1504
d604c324
MW
1505 if (node)
1506 node_tag_clear(root, parent, tag, offset);
1da177e4 1507
00f47b58 1508 return node;
1da177e4
LT
1509}
1510EXPORT_SYMBOL(radix_tree_tag_clear);
1511
30b888ba
MW
1512/**
1513 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1514 * @root: radix tree root
1515 * @iter: iterator state
1516 * @tag: tag to clear
1517 */
1518void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1519 const struct radix_tree_iter *iter, unsigned int tag)
1520{
1521 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1522}
1523
1da177e4 1524/**
32605a18
MT
1525 * radix_tree_tag_get - get a tag on a radix tree node
1526 * @root: radix tree root
1527 * @index: index key
2fcd9005 1528 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1529 *
32605a18 1530 * Return values:
1da177e4 1531 *
612d6c19
NP
1532 * 0: tag not present or not set
1533 * 1: tag set
ce82653d
DH
1534 *
1535 * Note that the return value of this function may not be relied on, even if
1536 * the RCU lock is held, unless tag modification and node deletion are excluded
1537 * from concurrency.
1da177e4 1538 */
35534c86 1539int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1540 unsigned long index, unsigned int tag)
1da177e4 1541{
4589ba6d
RZ
1542 struct radix_tree_node *node, *parent;
1543 unsigned long maxindex;
1da177e4 1544
612d6c19
NP
1545 if (!root_tag_get(root, tag))
1546 return 0;
1547
9e85d811 1548 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1549 if (index > maxindex)
1550 return 0;
7cf9c2c7 1551
b194d16c 1552 while (radix_tree_is_internal_node(node)) {
9e85d811 1553 unsigned offset;
1da177e4 1554
4dd6c098 1555 parent = entry_to_node(node);
9e85d811 1556 offset = radix_tree_descend(parent, &node, index);
1da177e4 1557
4589ba6d 1558 if (!tag_get(parent, tag, offset))
3fa36acb 1559 return 0;
4589ba6d
RZ
1560 if (node == RADIX_TREE_RETRY)
1561 break;
1da177e4 1562 }
4589ba6d
RZ
1563
1564 return 1;
1da177e4
LT
1565}
1566EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1567
21ef5339
RZ
1568static inline void __set_iter_shift(struct radix_tree_iter *iter,
1569 unsigned int shift)
1570{
1571#ifdef CONFIG_RADIX_TREE_MULTIORDER
1572 iter->shift = shift;
1573#endif
1574}
1575
148deab2
MW
1576/* Construct iter->tags bit-mask from node->tags[tag] array */
1577static void set_iter_tags(struct radix_tree_iter *iter,
1578 struct radix_tree_node *node, unsigned offset,
1579 unsigned tag)
1580{
1581 unsigned tag_long = offset / BITS_PER_LONG;
1582 unsigned tag_bit = offset % BITS_PER_LONG;
1583
0a835c4f
MW
1584 if (!node) {
1585 iter->tags = 1;
1586 return;
1587 }
1588
148deab2
MW
1589 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1590
1591 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1592 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1593 /* Pick tags from next element */
1594 if (tag_bit)
1595 iter->tags |= node->tags[tag][tag_long + 1] <<
1596 (BITS_PER_LONG - tag_bit);
1597 /* Clip chunk size, here only BITS_PER_LONG tags */
1598 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1599 }
1600}
1601
1602#ifdef CONFIG_RADIX_TREE_MULTIORDER
1603static void **skip_siblings(struct radix_tree_node **nodep,
1604 void **slot, struct radix_tree_iter *iter)
1605{
1606 void *sib = node_to_entry(slot - 1);
1607
1608 while (iter->index < iter->next_index) {
1609 *nodep = rcu_dereference_raw(*slot);
1610 if (*nodep && *nodep != sib)
1611 return slot;
1612 slot++;
1613 iter->index = __radix_tree_iter_add(iter, 1);
1614 iter->tags >>= 1;
1615 }
1616
1617 *nodep = NULL;
1618 return NULL;
1619}
1620
1621void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1622 unsigned flags)
1623{
1624 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1625 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1626
1627 slot = skip_siblings(&node, slot, iter);
1628
1629 while (radix_tree_is_internal_node(node)) {
1630 unsigned offset;
1631 unsigned long next_index;
1632
1633 if (node == RADIX_TREE_RETRY)
1634 return slot;
1635 node = entry_to_node(node);
268f42de 1636 iter->node = node;
148deab2
MW
1637 iter->shift = node->shift;
1638
1639 if (flags & RADIX_TREE_ITER_TAGGED) {
1640 offset = radix_tree_find_next_bit(node, tag, 0);
1641 if (offset == RADIX_TREE_MAP_SIZE)
1642 return NULL;
1643 slot = &node->slots[offset];
1644 iter->index = __radix_tree_iter_add(iter, offset);
1645 set_iter_tags(iter, node, offset, tag);
1646 node = rcu_dereference_raw(*slot);
1647 } else {
1648 offset = 0;
1649 slot = &node->slots[0];
1650 for (;;) {
1651 node = rcu_dereference_raw(*slot);
1652 if (node)
1653 break;
1654 slot++;
1655 offset++;
1656 if (offset == RADIX_TREE_MAP_SIZE)
1657 return NULL;
1658 }
1659 iter->index = __radix_tree_iter_add(iter, offset);
1660 }
1661 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1662 goto none;
1663 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1664 if (next_index < iter->next_index)
1665 iter->next_index = next_index;
1666 }
1667
1668 return slot;
1669 none:
1670 iter->next_index = 0;
1671 return NULL;
1672}
1673EXPORT_SYMBOL(__radix_tree_next_slot);
1674#else
1675static void **skip_siblings(struct radix_tree_node **nodep,
1676 void **slot, struct radix_tree_iter *iter)
1677{
1678 return slot;
1679}
1680#endif
1681
1682void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1683{
1684 struct radix_tree_node *node;
1685
1686 slot++;
1687 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1688 skip_siblings(&node, slot, iter);
1689 iter->next_index = iter->index;
1690 iter->tags = 0;
1691 return NULL;
1692}
1693EXPORT_SYMBOL(radix_tree_iter_resume);
1694
78c1d784
KK
1695/**
1696 * radix_tree_next_chunk - find next chunk of slots for iteration
1697 *
1698 * @root: radix tree root
1699 * @iter: iterator state
1700 * @flags: RADIX_TREE_ITER_* flags and tag index
1701 * Returns: pointer to chunk first slot, or NULL if iteration is over
1702 */
35534c86 1703void **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1704 struct radix_tree_iter *iter, unsigned flags)
1705{
9e85d811 1706 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1707 struct radix_tree_node *node, *child;
21ef5339 1708 unsigned long index, offset, maxindex;
78c1d784
KK
1709
1710 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1711 return NULL;
1712
1713 /*
1714 * Catch next_index overflow after ~0UL. iter->index never overflows
1715 * during iterating; it can be zero only at the beginning.
1716 * And we cannot overflow iter->next_index in a single step,
1717 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1718 *
1719 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1720 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1721 */
1722 index = iter->next_index;
1723 if (!index && iter->index)
1724 return NULL;
1725
21ef5339 1726 restart:
9e85d811 1727 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1728 if (index > maxindex)
1729 return NULL;
8c1244de
MW
1730 if (!child)
1731 return NULL;
21ef5339 1732
8c1244de 1733 if (!radix_tree_is_internal_node(child)) {
78c1d784 1734 /* Single-slot tree */
21ef5339
RZ
1735 iter->index = index;
1736 iter->next_index = maxindex + 1;
78c1d784 1737 iter->tags = 1;
268f42de 1738 iter->node = NULL;
8c1244de 1739 __set_iter_shift(iter, 0);
78c1d784 1740 return (void **)&root->rnode;
8c1244de 1741 }
21ef5339 1742
8c1244de
MW
1743 do {
1744 node = entry_to_node(child);
9e85d811 1745 offset = radix_tree_descend(node, &child, index);
21ef5339 1746
78c1d784 1747 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1748 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1749 /* Hole detected */
1750 if (flags & RADIX_TREE_ITER_CONTIG)
1751 return NULL;
1752
1753 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1754 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1755 offset + 1);
1756 else
1757 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1758 void *slot = node->slots[offset];
1759 if (is_sibling_entry(node, slot))
1760 continue;
1761 if (slot)
78c1d784
KK
1762 break;
1763 }
8c1244de 1764 index &= ~node_maxindex(node);
9e85d811 1765 index += offset << node->shift;
78c1d784
KK
1766 /* Overflow after ~0UL */
1767 if (!index)
1768 return NULL;
1769 if (offset == RADIX_TREE_MAP_SIZE)
1770 goto restart;
8c1244de 1771 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1772 }
1773
e157b555 1774 if (!child)
78c1d784 1775 goto restart;
e157b555
MW
1776 if (child == RADIX_TREE_RETRY)
1777 break;
8c1244de 1778 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1779
1780 /* Update the iterator state */
8c1244de
MW
1781 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1782 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1783 iter->node = node;
9e85d811 1784 __set_iter_shift(iter, node->shift);
78c1d784 1785
148deab2
MW
1786 if (flags & RADIX_TREE_ITER_TAGGED)
1787 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1788
1789 return node->slots + offset;
1790}
1791EXPORT_SYMBOL(radix_tree_next_chunk);
1792
1da177e4
LT
1793/**
1794 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1795 * @root: radix tree root
1796 * @results: where the results of the lookup are placed
1797 * @first_index: start the lookup from this key
1798 * @max_items: place up to this many items at *results
1799 *
1800 * Performs an index-ascending scan of the tree for present items. Places
1801 * them at *@results and returns the number of items which were placed at
1802 * *@results.
1803 *
1804 * The implementation is naive.
7cf9c2c7
NP
1805 *
1806 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1807 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1808 * an atomic snapshot of the tree at a single point in time, the
1809 * semantics of an RCU protected gang lookup are as though multiple
1810 * radix_tree_lookups have been issued in individual locks, and results
1811 * stored in 'results'.
1da177e4
LT
1812 */
1813unsigned int
35534c86 1814radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1815 unsigned long first_index, unsigned int max_items)
1816{
cebbd29e
KK
1817 struct radix_tree_iter iter;
1818 void **slot;
1819 unsigned int ret = 0;
7cf9c2c7 1820
cebbd29e 1821 if (unlikely(!max_items))
7cf9c2c7 1822 return 0;
1da177e4 1823
cebbd29e 1824 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1825 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1826 if (!results[ret])
1827 continue;
b194d16c 1828 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1829 slot = radix_tree_iter_retry(&iter);
1830 continue;
1831 }
cebbd29e 1832 if (++ret == max_items)
1da177e4 1833 break;
1da177e4 1834 }
7cf9c2c7 1835
1da177e4
LT
1836 return ret;
1837}
1838EXPORT_SYMBOL(radix_tree_gang_lookup);
1839
47feff2c
NP
1840/**
1841 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1842 * @root: radix tree root
1843 * @results: where the results of the lookup are placed
6328650b 1844 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1845 * @first_index: start the lookup from this key
1846 * @max_items: place up to this many items at *results
1847 *
1848 * Performs an index-ascending scan of the tree for present items. Places
1849 * their slots at *@results and returns the number of items which were
1850 * placed at *@results.
1851 *
1852 * The implementation is naive.
1853 *
1854 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1855 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1856 * protection, radix_tree_deref_slot may fail requiring a retry.
1857 */
1858unsigned int
35534c86 1859radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
6328650b 1860 void ***results, unsigned long *indices,
47feff2c
NP
1861 unsigned long first_index, unsigned int max_items)
1862{
cebbd29e
KK
1863 struct radix_tree_iter iter;
1864 void **slot;
1865 unsigned int ret = 0;
47feff2c 1866
cebbd29e 1867 if (unlikely(!max_items))
47feff2c
NP
1868 return 0;
1869
cebbd29e
KK
1870 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1871 results[ret] = slot;
6328650b 1872 if (indices)
cebbd29e
KK
1873 indices[ret] = iter.index;
1874 if (++ret == max_items)
47feff2c 1875 break;
47feff2c
NP
1876 }
1877
1878 return ret;
1879}
1880EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1881
1da177e4
LT
1882/**
1883 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1884 * based on a tag
1885 * @root: radix tree root
1886 * @results: where the results of the lookup are placed
1887 * @first_index: start the lookup from this key
1888 * @max_items: place up to this many items at *results
daff89f3 1889 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1890 *
1891 * Performs an index-ascending scan of the tree for present items which
1892 * have the tag indexed by @tag set. Places the items at *@results and
1893 * returns the number of items which were placed at *@results.
1894 */
1895unsigned int
35534c86 1896radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1897 unsigned long first_index, unsigned int max_items,
1898 unsigned int tag)
1da177e4 1899{
cebbd29e
KK
1900 struct radix_tree_iter iter;
1901 void **slot;
1902 unsigned int ret = 0;
612d6c19 1903
cebbd29e 1904 if (unlikely(!max_items))
7cf9c2c7
NP
1905 return 0;
1906
cebbd29e 1907 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1908 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1909 if (!results[ret])
1910 continue;
b194d16c 1911 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1912 slot = radix_tree_iter_retry(&iter);
1913 continue;
1914 }
cebbd29e 1915 if (++ret == max_items)
1da177e4 1916 break;
1da177e4 1917 }
7cf9c2c7 1918
1da177e4
LT
1919 return ret;
1920}
1921EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1922
47feff2c
NP
1923/**
1924 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1925 * radix tree based on a tag
1926 * @root: radix tree root
1927 * @results: where the results of the lookup are placed
1928 * @first_index: start the lookup from this key
1929 * @max_items: place up to this many items at *results
1930 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1931 *
1932 * Performs an index-ascending scan of the tree for present items which
1933 * have the tag indexed by @tag set. Places the slots at *@results and
1934 * returns the number of slots which were placed at *@results.
1935 */
1936unsigned int
35534c86
MW
1937radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1938 void ***results, unsigned long first_index,
1939 unsigned int max_items, unsigned int tag)
47feff2c 1940{
cebbd29e
KK
1941 struct radix_tree_iter iter;
1942 void **slot;
1943 unsigned int ret = 0;
47feff2c 1944
cebbd29e 1945 if (unlikely(!max_items))
47feff2c
NP
1946 return 0;
1947
cebbd29e
KK
1948 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1949 results[ret] = slot;
1950 if (++ret == max_items)
47feff2c 1951 break;
47feff2c
NP
1952 }
1953
1954 return ret;
1955}
1956EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1957
139e5616
JW
1958/**
1959 * __radix_tree_delete_node - try to free node after clearing a slot
1960 * @root: radix tree root
139e5616 1961 * @node: node containing @index
ea07b862
JW
1962 * @update_node: callback for changing leaf nodes
1963 * @private: private data to pass to @update_node
139e5616
JW
1964 *
1965 * After clearing the slot at @index in @node from radix tree
1966 * rooted at @root, call this function to attempt freeing the
1967 * node and shrinking the tree.
139e5616 1968 */
14b46879 1969void __radix_tree_delete_node(struct radix_tree_root *root,
ea07b862
JW
1970 struct radix_tree_node *node,
1971 radix_tree_update_node_t update_node,
1972 void *private)
139e5616 1973{
ea07b862 1974 delete_node(root, node, update_node, private);
139e5616
JW
1975}
1976
0ac398ef
MW
1977static bool __radix_tree_delete(struct radix_tree_root *root,
1978 struct radix_tree_node *node, void **slot)
1979{
0a835c4f
MW
1980 void *old = rcu_dereference_raw(*slot);
1981 int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
0ac398ef
MW
1982 unsigned offset = get_slot_offset(node, slot);
1983 int tag;
1984
0a835c4f
MW
1985 if (is_idr(root))
1986 node_tag_set(root, node, IDR_FREE, offset);
1987 else
1988 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1989 node_tag_clear(root, node, tag, offset);
0ac398ef 1990
0a835c4f 1991 replace_slot(slot, NULL, node, -1, exceptional);
0ac398ef
MW
1992 return node && delete_node(root, node, NULL, NULL);
1993}
1994
1da177e4 1995/**
0ac398ef
MW
1996 * radix_tree_iter_delete - delete the entry at this iterator position
1997 * @root: radix tree root
1998 * @iter: iterator state
1999 * @slot: pointer to slot
1da177e4 2000 *
0ac398ef
MW
2001 * Delete the entry at the position currently pointed to by the iterator.
2002 * This may result in the current node being freed; if it is, the iterator
2003 * is advanced so that it will not reference the freed memory. This
2004 * function may be called without any locking if there are no other threads
2005 * which can access this tree.
2006 */
2007void radix_tree_iter_delete(struct radix_tree_root *root,
2008 struct radix_tree_iter *iter, void **slot)
2009{
2010 if (__radix_tree_delete(root, iter->node, slot))
2011 iter->index = iter->next_index;
2012}
2013
2014/**
2015 * radix_tree_delete_item - delete an item from a radix tree
2016 * @root: radix tree root
2017 * @index: index key
2018 * @item: expected item
2019 *
2020 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 2021 *
0ac398ef
MW
2022 * Return: the deleted entry, or %NULL if it was not present
2023 * or the entry at the given @index was not @item.
1da177e4 2024 */
53c59f26
JW
2025void *radix_tree_delete_item(struct radix_tree_root *root,
2026 unsigned long index, void *item)
1da177e4 2027{
0a835c4f 2028 struct radix_tree_node *node = NULL;
139e5616
JW
2029 void **slot;
2030 void *entry;
1da177e4 2031
139e5616 2032 entry = __radix_tree_lookup(root, index, &node, &slot);
0a835c4f
MW
2033 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2034 get_slot_offset(node, slot))))
139e5616 2035 return NULL;
1da177e4 2036
139e5616
JW
2037 if (item && entry != item)
2038 return NULL;
2039
0ac398ef 2040 __radix_tree_delete(root, node, slot);
612d6c19 2041
139e5616 2042 return entry;
1da177e4 2043}
53c59f26
JW
2044EXPORT_SYMBOL(radix_tree_delete_item);
2045
2046/**
0ac398ef
MW
2047 * radix_tree_delete - delete an entry from a radix tree
2048 * @root: radix tree root
2049 * @index: index key
53c59f26 2050 *
0ac398ef 2051 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 2052 *
0ac398ef 2053 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
2054 */
2055void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2056{
2057 return radix_tree_delete_item(root, index, NULL);
2058}
1da177e4
LT
2059EXPORT_SYMBOL(radix_tree_delete);
2060
d3798ae8
JW
2061void radix_tree_clear_tags(struct radix_tree_root *root,
2062 struct radix_tree_node *node,
2063 void **slot)
d604c324 2064{
d604c324
MW
2065 if (node) {
2066 unsigned int tag, offset = get_slot_offset(node, slot);
2067 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2068 node_tag_clear(root, node, tag, offset);
2069 } else {
0a835c4f 2070 root_tag_clear_all(root);
d604c324 2071 }
d604c324
MW
2072}
2073
1da177e4
LT
2074/**
2075 * radix_tree_tagged - test whether any items in the tree are tagged
2076 * @root: radix tree root
2077 * @tag: tag to test
2078 */
35534c86 2079int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 2080{
612d6c19 2081 return root_tag_get(root, tag);
1da177e4
LT
2082}
2083EXPORT_SYMBOL(radix_tree_tagged);
2084
0a835c4f
MW
2085/**
2086 * idr_preload - preload for idr_alloc()
2087 * @gfp_mask: allocation mask to use for preloading
2088 *
2089 * Preallocate memory to use for the next call to idr_alloc(). This function
2090 * returns with preemption disabled. It will be enabled by idr_preload_end().
2091 */
2092void idr_preload(gfp_t gfp_mask)
2093{
2094 __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
2095}
2096EXPORT_SYMBOL(idr_preload);
2097
7ad3d4d8
MW
2098/**
2099 * ida_pre_get - reserve resources for ida allocation
2100 * @ida: ida handle
2101 * @gfp: memory allocation flags
2102 *
2103 * This function should be called before calling ida_get_new_above(). If it
2104 * is unable to allocate memory, it will return %0. On success, it returns %1.
2105 */
2106int ida_pre_get(struct ida *ida, gfp_t gfp)
2107{
2108 __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
2109 /*
2110 * The IDA API has no preload_end() equivalent. Instead,
2111 * ida_get_new() can return -EAGAIN, prompting the caller
2112 * to return to the ida_pre_get() step.
2113 */
2114 preempt_enable();
2115
2116 if (!this_cpu_read(ida_bitmap)) {
2117 struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2118 if (!bitmap)
2119 return 0;
2120 bitmap = this_cpu_cmpxchg(ida_bitmap, NULL, bitmap);
2121 kfree(bitmap);
2122 }
2123
2124 return 1;
2125}
2126EXPORT_SYMBOL(ida_pre_get);
2127
0a835c4f
MW
2128void **idr_get_free(struct radix_tree_root *root,
2129 struct radix_tree_iter *iter, gfp_t gfp, int end)
2130{
2131 struct radix_tree_node *node = NULL, *child;
2132 void **slot = (void **)&root->rnode;
2133 unsigned long maxindex, start = iter->next_index;
2134 unsigned long max = end > 0 ? end - 1 : INT_MAX;
2135 unsigned int shift, offset = 0;
2136
2137 grow:
2138 shift = radix_tree_load_root(root, &child, &maxindex);
2139 if (!radix_tree_tagged(root, IDR_FREE))
2140 start = max(start, maxindex + 1);
2141 if (start > max)
2142 return ERR_PTR(-ENOSPC);
2143
2144 if (start > maxindex) {
2145 int error = radix_tree_extend(root, gfp, start, shift);
2146 if (error < 0)
2147 return ERR_PTR(error);
2148 shift = error;
2149 child = rcu_dereference_raw(root->rnode);
2150 }
2151
2152 while (shift) {
2153 shift -= RADIX_TREE_MAP_SHIFT;
2154 if (child == NULL) {
2155 /* Have to add a child node. */
d58275bc
MW
2156 child = radix_tree_node_alloc(gfp, node, root, shift,
2157 offset, 0, 0);
0a835c4f
MW
2158 if (!child)
2159 return ERR_PTR(-ENOMEM);
2160 all_tag_set(child, IDR_FREE);
2161 rcu_assign_pointer(*slot, node_to_entry(child));
2162 if (node)
2163 node->count++;
2164 } else if (!radix_tree_is_internal_node(child))
2165 break;
2166
2167 node = entry_to_node(child);
2168 offset = radix_tree_descend(node, &child, start);
2169 if (!tag_get(node, IDR_FREE, offset)) {
2170 offset = radix_tree_find_next_bit(node, IDR_FREE,
2171 offset + 1);
2172 start = next_index(start, node, offset);
2173 if (start > max)
2174 return ERR_PTR(-ENOSPC);
2175 while (offset == RADIX_TREE_MAP_SIZE) {
2176 offset = node->offset + 1;
2177 node = node->parent;
2178 if (!node)
2179 goto grow;
2180 shift = node->shift;
2181 }
2182 child = rcu_dereference_raw(node->slots[offset]);
2183 }
2184 slot = &node->slots[offset];
2185 }
2186
2187 iter->index = start;
2188 if (node)
2189 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2190 else
2191 iter->next_index = 1;
2192 iter->node = node;
2193 __set_iter_shift(iter, shift);
2194 set_iter_tags(iter, node, offset, IDR_FREE);
2195
2196 return slot;
2197}
2198
2199/**
2200 * idr_destroy - release all internal memory from an IDR
2201 * @idr: idr handle
2202 *
2203 * After this function is called, the IDR is empty, and may be reused or
2204 * the data structure containing it may be freed.
2205 *
2206 * A typical clean-up sequence for objects stored in an idr tree will use
2207 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2208 * free the memory used to keep track of those objects.
2209 */
2210void idr_destroy(struct idr *idr)
2211{
2212 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2213 if (radix_tree_is_internal_node(node))
2214 radix_tree_free_nodes(node);
2215 idr->idr_rt.rnode = NULL;
2216 root_tag_set(&idr->idr_rt, IDR_FREE);
2217}
2218EXPORT_SYMBOL(idr_destroy);
2219
1da177e4 2220static void
449dd698 2221radix_tree_node_ctor(void *arg)
1da177e4 2222{
449dd698
JW
2223 struct radix_tree_node *node = arg;
2224
2225 memset(node, 0, sizeof(*node));
2226 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
2227}
2228
c78c66d1
KS
2229static __init unsigned long __maxindex(unsigned int height)
2230{
2231 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2232 int shift = RADIX_TREE_INDEX_BITS - width;
2233
2234 if (shift < 0)
2235 return ~0UL;
2236 if (shift >= BITS_PER_LONG)
2237 return 0UL;
2238 return ~0UL >> shift;
2239}
2240
2241static __init void radix_tree_init_maxnodes(void)
2242{
2243 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2244 unsigned int i, j;
2245
2246 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2247 height_to_maxindex[i] = __maxindex(i);
2248 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2249 for (j = i; j > 0; j--)
2250 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2251 }
2252}
2253
d544abd5 2254static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 2255{
2fcd9005
MW
2256 struct radix_tree_preload *rtp;
2257 struct radix_tree_node *node;
2258
2259 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
2260 rtp = &per_cpu(radix_tree_preloads, cpu);
2261 while (rtp->nr) {
2262 node = rtp->nodes;
1293d5c5 2263 rtp->nodes = node->parent;
d544abd5
SAS
2264 kmem_cache_free(radix_tree_node_cachep, node);
2265 rtp->nr--;
2fcd9005 2266 }
7ad3d4d8
MW
2267 kfree(per_cpu(ida_bitmap, cpu));
2268 per_cpu(ida_bitmap, cpu) = NULL;
d544abd5 2269 return 0;
1da177e4 2270}
1da177e4
LT
2271
2272void __init radix_tree_init(void)
2273{
d544abd5 2274 int ret;
1da177e4
LT
2275 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2276 sizeof(struct radix_tree_node), 0,
488514d1
CL
2277 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2278 radix_tree_node_ctor);
c78c66d1 2279 radix_tree_init_maxnodes();
d544abd5
SAS
2280 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2281 NULL, radix_tree_cpu_dead);
2282 WARN_ON(ret < 0);
1da177e4 2283}