maple_tree: fix get wrong data_end in mtree_lookup_walk()
[linux-block.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
c13af03d 188 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
243static inline bool mas_is_ptr(struct ma_state *mas)
244{
245 return mas->node == MAS_ROOT;
246}
247
248static inline bool mas_is_start(struct ma_state *mas)
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
428 * mas_parent_enum() - Return the maple_type of the parent from the stored
429 * parent type.
430 * @mas: The maple state
431 * @node: The maple_enode to extract the parent's enum
432 * Return: The node->parent maple_type
433 */
434static inline
435enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 struct maple_tree *mt)
437{
438 unsigned long p_type;
439
440 p_type = (unsigned long)p_enode;
441 if (p_type & MAPLE_PARENT_ROOT)
442 return 0; /* Validated in the caller. */
443
444 p_type &= MAPLE_NODE_MASK;
445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446
447 switch (p_type) {
448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 if (mt_is_alloc(mt))
450 return maple_arange_64;
451 return maple_range_64;
452 }
453
454 return 0;
455}
456
457static inline
458enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459{
460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461}
462
463/*
464 * mte_set_parent() - Set the parent node and encode the slot
465 * @enode: The encoded maple node.
466 * @parent: The encoded maple node that is the parent of @enode.
467 * @slot: The slot that @enode resides in @parent.
468 *
469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470 * parent type.
471 */
472static inline
473void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 unsigned char slot)
475{
831978e3 476 unsigned long val = (unsigned long)parent;
54a611b6
LH
477 unsigned long shift;
478 unsigned long type;
479 enum maple_type p_type = mte_node_type(parent);
480
481 BUG_ON(p_type == maple_dense);
482 BUG_ON(p_type == maple_leaf_64);
483
484 switch (p_type) {
485 case maple_range_64:
486 case maple_arange_64:
487 shift = MAPLE_PARENT_SLOT_SHIFT;
488 type = MAPLE_PARENT_RANGE64;
489 break;
490 default:
491 case maple_dense:
492 case maple_leaf_64:
493 shift = type = 0;
494 break;
495 }
496
497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 val |= (slot << shift) | type;
499 mte_to_node(enode)->parent = ma_parent_ptr(val);
500}
501
502/*
503 * mte_parent_slot() - get the parent slot of @enode.
504 * @enode: The encoded maple node.
505 *
506 * Return: The slot in the parent node where @enode resides.
507 */
508static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509{
831978e3 510 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 511
84fd3e1e 512 if (val & MA_ROOT_PARENT)
54a611b6
LH
513 return 0;
514
515 /*
516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 */
519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520}
521
522/*
523 * mte_parent() - Get the parent of @node.
524 * @node: The encoded maple node.
525 *
526 * Return: The parent maple node.
527 */
528static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529{
530 return (void *)((unsigned long)
531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532}
533
534/*
535 * ma_dead_node() - check if the @enode is dead.
536 * @enode: The encoded maple node
537 *
538 * Return: true if dead, false otherwise.
539 */
540static inline bool ma_dead_node(const struct maple_node *node)
541{
0a2b18d9 542 struct maple_node *parent;
54a611b6 543
0a2b18d9
LH
544 /* Do not reorder reads from the node prior to the parent check */
545 smp_rmb();
546 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
547 return (parent == node);
548}
39d0bd86 549
54a611b6
LH
550/*
551 * mte_dead_node() - check if the @enode is dead.
552 * @enode: The encoded maple node
553 *
554 * Return: true if dead, false otherwise.
555 */
556static inline bool mte_dead_node(const struct maple_enode *enode)
557{
558 struct maple_node *parent, *node;
559
560 node = mte_to_node(enode);
0a2b18d9
LH
561 /* Do not reorder reads from the node prior to the parent check */
562 smp_rmb();
54a611b6
LH
563 parent = mte_parent(enode);
564 return (parent == node);
565}
566
567/*
568 * mas_allocated() - Get the number of nodes allocated in a maple state.
569 * @mas: The maple state
570 *
571 * The ma_state alloc member is overloaded to hold a pointer to the first
572 * allocated node or to the number of requested nodes to allocate. If bit 0 is
573 * set, then the alloc contains the number of requested nodes. If there is an
574 * allocated node, then the total allocated nodes is in that node.
575 *
576 * Return: The total number of nodes allocated
577 */
578static inline unsigned long mas_allocated(const struct ma_state *mas)
579{
580 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
581 return 0;
582
583 return mas->alloc->total;
584}
585
586/*
587 * mas_set_alloc_req() - Set the requested number of allocations.
588 * @mas: the maple state
589 * @count: the number of allocations.
590 *
591 * The requested number of allocations is either in the first allocated node,
592 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
593 * no allocated node. Set the request either in the node or do the necessary
594 * encoding to store in @mas->alloc directly.
595 */
596static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
597{
598 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
599 if (!count)
600 mas->alloc = NULL;
601 else
602 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
603 return;
604 }
605
606 mas->alloc->request_count = count;
607}
608
609/*
610 * mas_alloc_req() - get the requested number of allocations.
611 * @mas: The maple state
612 *
613 * The alloc count is either stored directly in @mas, or in
614 * @mas->alloc->request_count if there is at least one node allocated. Decode
615 * the request count if it's stored directly in @mas->alloc.
616 *
617 * Return: The allocation request count.
618 */
619static inline unsigned int mas_alloc_req(const struct ma_state *mas)
620{
621 if ((unsigned long)mas->alloc & 0x1)
622 return (unsigned long)(mas->alloc) >> 1;
623 else if (mas->alloc)
624 return mas->alloc->request_count;
625 return 0;
626}
627
628/*
629 * ma_pivots() - Get a pointer to the maple node pivots.
630 * @node - the maple node
631 * @type - the node type
632 *
39d0bd86
LH
633 * In the event of a dead node, this array may be %NULL
634 *
54a611b6
LH
635 * Return: A pointer to the maple node pivots
636 */
637static inline unsigned long *ma_pivots(struct maple_node *node,
638 enum maple_type type)
639{
640 switch (type) {
641 case maple_arange_64:
642 return node->ma64.pivot;
643 case maple_range_64:
644 case maple_leaf_64:
645 return node->mr64.pivot;
646 case maple_dense:
647 return NULL;
648 }
649 return NULL;
650}
651
652/*
653 * ma_gaps() - Get a pointer to the maple node gaps.
654 * @node - the maple node
655 * @type - the node type
656 *
657 * Return: A pointer to the maple node gaps
658 */
659static inline unsigned long *ma_gaps(struct maple_node *node,
660 enum maple_type type)
661{
662 switch (type) {
663 case maple_arange_64:
664 return node->ma64.gap;
665 case maple_range_64:
666 case maple_leaf_64:
667 case maple_dense:
668 return NULL;
669 }
670 return NULL;
671}
672
673/*
674 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
675 * @mn: The maple encoded node.
676 * @piv: The pivot.
677 *
678 * Return: the pivot at @piv of @mn.
679 */
680static inline unsigned long mte_pivot(const struct maple_enode *mn,
681 unsigned char piv)
682{
683 struct maple_node *node = mte_to_node(mn);
ab6ef70a 684 enum maple_type type = mte_node_type(mn);
54a611b6 685
ab6ef70a 686 if (piv >= mt_pivots[type]) {
54a611b6
LH
687 WARN_ON(1);
688 return 0;
689 }
ab6ef70a 690 switch (type) {
54a611b6
LH
691 case maple_arange_64:
692 return node->ma64.pivot[piv];
693 case maple_range_64:
694 case maple_leaf_64:
695 return node->mr64.pivot[piv];
696 case maple_dense:
697 return 0;
698 }
699 return 0;
700}
701
702/*
703 * mas_safe_pivot() - get the pivot at @piv or mas->max.
704 * @mas: The maple state
705 * @pivots: The pointer to the maple node pivots
706 * @piv: The pivot to fetch
707 * @type: The maple node type
708 *
709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710 * otherwise.
711 */
712static inline unsigned long
713mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 unsigned char piv, enum maple_type type)
715{
716 if (piv >= mt_pivots[type])
717 return mas->max;
718
719 return pivots[piv];
720}
721
722/*
723 * mas_safe_min() - Return the minimum for a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 *
728 * Return: The minimum range value that is contained in @offset.
729 */
730static inline unsigned long
731mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732{
733 if (likely(offset))
734 return pivots[offset - 1] + 1;
735
736 return mas->min;
737}
738
739/*
740 * mas_logical_pivot() - Get the logical pivot of a given offset.
741 * @mas: The maple state
742 * @pivots: The pointer to the maple node pivots
743 * @offset: The offset into the pivot array
744 * @type: The maple node type
745 *
746 * When there is no value at a pivot (beyond the end of the data), then the
747 * pivot is actually @mas->max.
748 *
749 * Return: the logical pivot of a given @offset.
750 */
751static inline unsigned long
752mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
753 unsigned char offset, enum maple_type type)
754{
755 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
756
757 if (likely(lpiv))
758 return lpiv;
759
760 if (likely(offset))
761 return mas->max;
762
763 return lpiv;
764}
765
766/*
767 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
768 * @mn: The encoded maple node
769 * @piv: The pivot offset
770 * @val: The value of the pivot
771 */
772static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
773 unsigned long val)
774{
775 struct maple_node *node = mte_to_node(mn);
776 enum maple_type type = mte_node_type(mn);
777
778 BUG_ON(piv >= mt_pivots[type]);
779 switch (type) {
780 default:
781 case maple_range_64:
782 case maple_leaf_64:
783 node->mr64.pivot[piv] = val;
784 break;
785 case maple_arange_64:
786 node->ma64.pivot[piv] = val;
787 break;
788 case maple_dense:
789 break;
790 }
791
792}
793
794/*
795 * ma_slots() - Get a pointer to the maple node slots.
796 * @mn: The maple node
797 * @mt: The maple node type
798 *
799 * Return: A pointer to the maple node slots
800 */
801static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
802{
803 switch (mt) {
804 default:
805 case maple_arange_64:
806 return mn->ma64.slot;
807 case maple_range_64:
808 case maple_leaf_64:
809 return mn->mr64.slot;
810 case maple_dense:
811 return mn->slot;
812 }
813}
814
815static inline bool mt_locked(const struct maple_tree *mt)
816{
817 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
818 lockdep_is_held(&mt->ma_lock);
819}
820
821static inline void *mt_slot(const struct maple_tree *mt,
822 void __rcu **slots, unsigned char offset)
823{
824 return rcu_dereference_check(slots[offset], mt_locked(mt));
825}
826
790e1fa8
LH
827static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
828 unsigned char offset)
829{
830 return rcu_dereference_protected(slots[offset], mt_locked(mt));
831}
54a611b6
LH
832/*
833 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
834 * @mas: The maple state
835 * @slots: The pointer to the slots
836 * @offset: The offset into the slots array to fetch
837 *
838 * Return: The entry stored in @slots at the @offset.
839 */
840static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
841 unsigned char offset)
842{
790e1fa8 843 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
844}
845
846/*
847 * mas_slot() - Get the slot value when not holding the maple tree lock.
848 * @mas: The maple state
849 * @slots: The pointer to the slots
850 * @offset: The offset into the slots array to fetch
851 *
852 * Return: The entry stored in @slots at the @offset
853 */
854static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
855 unsigned char offset)
856{
857 return mt_slot(mas->tree, slots, offset);
858}
859
860/*
861 * mas_root() - Get the maple tree root.
862 * @mas: The maple state.
863 *
864 * Return: The pointer to the root of the tree
865 */
866static inline void *mas_root(struct ma_state *mas)
867{
868 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
869}
870
871static inline void *mt_root_locked(struct maple_tree *mt)
872{
873 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
874}
875
876/*
877 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
878 * @mas: The maple state.
879 *
880 * Return: The pointer to the root of the tree
881 */
882static inline void *mas_root_locked(struct ma_state *mas)
883{
884 return mt_root_locked(mas->tree);
885}
886
887static inline struct maple_metadata *ma_meta(struct maple_node *mn,
888 enum maple_type mt)
889{
890 switch (mt) {
891 case maple_arange_64:
892 return &mn->ma64.meta;
893 default:
894 return &mn->mr64.meta;
895 }
896}
897
898/*
899 * ma_set_meta() - Set the metadata information of a node.
900 * @mn: The maple node
901 * @mt: The maple node type
902 * @offset: The offset of the highest sub-gap in this node.
903 * @end: The end of the data in this node.
904 */
905static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
906 unsigned char offset, unsigned char end)
907{
908 struct maple_metadata *meta = ma_meta(mn, mt);
909
910 meta->gap = offset;
911 meta->end = end;
912}
913
2e5b4921 914/*
790e1fa8
LH
915 * mt_clear_meta() - clear the metadata information of a node, if it exists
916 * @mt: The maple tree
2e5b4921 917 * @mn: The maple node
790e1fa8 918 * @type: The maple node type
2e5b4921
LH
919 * @offset: The offset of the highest sub-gap in this node.
920 * @end: The end of the data in this node.
921 */
790e1fa8
LH
922static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
923 enum maple_type type)
2e5b4921
LH
924{
925 struct maple_metadata *meta;
926 unsigned long *pivots;
927 void __rcu **slots;
928 void *next;
929
790e1fa8 930 switch (type) {
2e5b4921
LH
931 case maple_range_64:
932 pivots = mn->mr64.pivot;
933 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
934 slots = mn->mr64.slot;
790e1fa8
LH
935 next = mt_slot_locked(mt, slots,
936 MAPLE_RANGE64_SLOTS - 1);
937 if (unlikely((mte_to_node(next) &&
938 mte_node_type(next))))
939 return; /* no metadata, could be node */
2e5b4921
LH
940 }
941 fallthrough;
942 case maple_arange_64:
790e1fa8 943 meta = ma_meta(mn, type);
2e5b4921
LH
944 break;
945 default:
946 return;
947 }
948
949 meta->gap = 0;
950 meta->end = 0;
951}
952
54a611b6
LH
953/*
954 * ma_meta_end() - Get the data end of a node from the metadata
955 * @mn: The maple node
956 * @mt: The maple node type
957 */
958static inline unsigned char ma_meta_end(struct maple_node *mn,
959 enum maple_type mt)
960{
961 struct maple_metadata *meta = ma_meta(mn, mt);
962
963 return meta->end;
964}
965
966/*
967 * ma_meta_gap() - Get the largest gap location of a node from the metadata
968 * @mn: The maple node
969 * @mt: The maple node type
970 */
971static inline unsigned char ma_meta_gap(struct maple_node *mn,
972 enum maple_type mt)
973{
974 BUG_ON(mt != maple_arange_64);
975
976 return mn->ma64.meta.gap;
977}
978
979/*
980 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
981 * @mn: The maple node
982 * @mn: The maple node type
983 * @offset: The location of the largest gap.
984 */
985static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
986 unsigned char offset)
987{
988
989 struct maple_metadata *meta = ma_meta(mn, mt);
990
991 meta->gap = offset;
992}
993
994/*
995 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
996 * @mat - the ma_topiary, a linked list of dead nodes.
997 * @dead_enode - the node to be marked as dead and added to the tail of the list
998 *
999 * Add the @dead_enode to the linked list in @mat.
1000 */
1001static inline void mat_add(struct ma_topiary *mat,
1002 struct maple_enode *dead_enode)
1003{
1004 mte_set_node_dead(dead_enode);
1005 mte_to_mat(dead_enode)->next = NULL;
1006 if (!mat->tail) {
1007 mat->tail = mat->head = dead_enode;
1008 return;
1009 }
1010
1011 mte_to_mat(mat->tail)->next = dead_enode;
1012 mat->tail = dead_enode;
1013}
1014
1015static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1016static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1017
1018/*
1019 * mas_mat_free() - Free all nodes in a dead list.
1020 * @mas - the maple state
1021 * @mat - the ma_topiary linked list of dead nodes to free.
1022 *
1023 * Free walk a dead list.
1024 */
1025static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1026{
1027 struct maple_enode *next;
1028
1029 while (mat->head) {
1030 next = mte_to_mat(mat->head)->next;
1031 mas_free(mas, mat->head);
1032 mat->head = next;
1033 }
1034}
1035
1036/*
1037 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1038 * @mas - the maple state
1039 * @mat - the ma_topiary linked list of dead nodes to free.
1040 *
1041 * Destroy walk a dead list.
1042 */
1043static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1044{
1045 struct maple_enode *next;
1046
1047 while (mat->head) {
1048 next = mte_to_mat(mat->head)->next;
1049 mte_destroy_walk(mat->head, mat->mtree);
1050 mat->head = next;
1051 }
1052}
1053/*
1054 * mas_descend() - Descend into the slot stored in the ma_state.
1055 * @mas - the maple state.
1056 *
1057 * Note: Not RCU safe, only use in write side or debug code.
1058 */
1059static inline void mas_descend(struct ma_state *mas)
1060{
1061 enum maple_type type;
1062 unsigned long *pivots;
1063 struct maple_node *node;
1064 void __rcu **slots;
1065
1066 node = mas_mn(mas);
1067 type = mte_node_type(mas->node);
1068 pivots = ma_pivots(node, type);
1069 slots = ma_slots(node, type);
1070
1071 if (mas->offset)
1072 mas->min = pivots[mas->offset - 1] + 1;
1073 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1074 mas->node = mas_slot(mas, slots, mas->offset);
1075}
1076
1077/*
1078 * mte_set_gap() - Set a maple node gap.
1079 * @mn: The encoded maple node
1080 * @gap: The offset of the gap to set
1081 * @val: The gap value
1082 */
1083static inline void mte_set_gap(const struct maple_enode *mn,
1084 unsigned char gap, unsigned long val)
1085{
1086 switch (mte_node_type(mn)) {
1087 default:
1088 break;
1089 case maple_arange_64:
1090 mte_to_node(mn)->ma64.gap[gap] = val;
1091 break;
1092 }
1093}
1094
1095/*
1096 * mas_ascend() - Walk up a level of the tree.
1097 * @mas: The maple state
1098 *
1099 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1100 * may cause several levels of walking up to find the correct min and max.
1101 * May find a dead node which will cause a premature return.
1102 * Return: 1 on dead node, 0 otherwise
1103 */
1104static int mas_ascend(struct ma_state *mas)
1105{
1106 struct maple_enode *p_enode; /* parent enode. */
1107 struct maple_enode *a_enode; /* ancestor enode. */
1108 struct maple_node *a_node; /* ancestor node. */
1109 struct maple_node *p_node; /* parent node. */
1110 unsigned char a_slot;
1111 enum maple_type a_type;
1112 unsigned long min, max;
1113 unsigned long *pivots;
1114 unsigned char offset;
1115 bool set_max = false, set_min = false;
1116
1117 a_node = mas_mn(mas);
1118 if (ma_is_root(a_node)) {
1119 mas->offset = 0;
1120 return 0;
1121 }
1122
1123 p_node = mte_parent(mas->node);
1124 if (unlikely(a_node == p_node))
1125 return 1;
1126 a_type = mas_parent_enum(mas, mas->node);
1127 offset = mte_parent_slot(mas->node);
1128 a_enode = mt_mk_node(p_node, a_type);
1129
1130 /* Check to make sure all parent information is still accurate */
1131 if (p_node != mte_parent(mas->node))
1132 return 1;
1133
1134 mas->node = a_enode;
1135 mas->offset = offset;
1136
1137 if (mte_is_root(a_enode)) {
1138 mas->max = ULONG_MAX;
1139 mas->min = 0;
1140 return 0;
1141 }
1142
1143 min = 0;
1144 max = ULONG_MAX;
1145 do {
1146 p_enode = a_enode;
1147 a_type = mas_parent_enum(mas, p_enode);
1148 a_node = mte_parent(p_enode);
1149 a_slot = mte_parent_slot(p_enode);
54a611b6 1150 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1151 pivots = ma_pivots(a_node, a_type);
1152
1153 if (unlikely(ma_dead_node(a_node)))
1154 return 1;
54a611b6
LH
1155
1156 if (!set_min && a_slot) {
1157 set_min = true;
1158 min = pivots[a_slot - 1] + 1;
1159 }
1160
1161 if (!set_max && a_slot < mt_pivots[a_type]) {
1162 set_max = true;
1163 max = pivots[a_slot];
1164 }
1165
1166 if (unlikely(ma_dead_node(a_node)))
1167 return 1;
1168
1169 if (unlikely(ma_is_root(a_node)))
1170 break;
1171
1172 } while (!set_min || !set_max);
1173
1174 mas->max = max;
1175 mas->min = min;
1176 return 0;
1177}
1178
1179/*
1180 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1181 * @mas: The maple state
1182 *
1183 * Return: A pointer to a maple node.
1184 */
1185static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1186{
1187 struct maple_alloc *ret, *node = mas->alloc;
1188 unsigned long total = mas_allocated(mas);
541e06b7 1189 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1190
1191 /* nothing or a request pending. */
541e06b7 1192 if (WARN_ON(!total))
54a611b6
LH
1193 return NULL;
1194
1195 if (total == 1) {
1196 /* single allocation in this ma_state */
1197 mas->alloc = NULL;
1198 ret = node;
1199 goto single_node;
1200 }
1201
541e06b7 1202 if (node->node_count == 1) {
54a611b6
LH
1203 /* Single allocation in this node. */
1204 mas->alloc = node->slot[0];
54a611b6
LH
1205 mas->alloc->total = node->total - 1;
1206 ret = node;
1207 goto new_head;
1208 }
54a611b6 1209 node->total--;
541e06b7
LH
1210 ret = node->slot[--node->node_count];
1211 node->slot[node->node_count] = NULL;
54a611b6
LH
1212
1213single_node:
1214new_head:
541e06b7
LH
1215 if (req) {
1216 req++;
1217 mas_set_alloc_req(mas, req);
54a611b6 1218 }
541e06b7
LH
1219
1220 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1221 return (struct maple_node *)ret;
1222}
1223
1224/*
1225 * mas_push_node() - Push a node back on the maple state allocation.
1226 * @mas: The maple state
1227 * @used: The used maple node
1228 *
1229 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1230 * requested node count as necessary.
1231 */
1232static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1233{
1234 struct maple_alloc *reuse = (struct maple_alloc *)used;
1235 struct maple_alloc *head = mas->alloc;
1236 unsigned long count;
1237 unsigned int requested = mas_alloc_req(mas);
1238
54a611b6
LH
1239 count = mas_allocated(mas);
1240
541e06b7
LH
1241 reuse->request_count = 0;
1242 reuse->node_count = 0;
1243 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1244 head->slot[head->node_count++] = reuse;
54a611b6
LH
1245 head->total++;
1246 goto done;
1247 }
1248
1249 reuse->total = 1;
1250 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1251 reuse->slot[0] = head;
541e06b7 1252 reuse->node_count = 1;
54a611b6
LH
1253 reuse->total += head->total;
1254 }
1255
1256 mas->alloc = reuse;
1257done:
1258 if (requested > 1)
1259 mas_set_alloc_req(mas, requested - 1);
1260}
1261
1262/*
1263 * mas_alloc_nodes() - Allocate nodes into a maple state
1264 * @mas: The maple state
1265 * @gfp: The GFP Flags
1266 */
1267static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1268{
1269 struct maple_alloc *node;
54a611b6 1270 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1271 unsigned int requested = mas_alloc_req(mas);
1272 unsigned int count;
1273 void **slots = NULL;
1274 unsigned int max_req = 0;
1275
1276 if (!requested)
1277 return;
1278
1279 mas_set_alloc_req(mas, 0);
1280 if (mas->mas_flags & MA_STATE_PREALLOC) {
1281 if (allocated)
1282 return;
1283 WARN_ON(!allocated);
1284 }
1285
541e06b7 1286 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1287 node = (struct maple_alloc *)mt_alloc_one(gfp);
1288 if (!node)
1289 goto nomem_one;
1290
541e06b7 1291 if (allocated) {
54a611b6 1292 node->slot[0] = mas->alloc;
541e06b7
LH
1293 node->node_count = 1;
1294 } else {
1295 node->node_count = 0;
1296 }
54a611b6 1297
54a611b6 1298 mas->alloc = node;
541e06b7 1299 node->total = ++allocated;
54a611b6
LH
1300 requested--;
1301 }
1302
1303 node = mas->alloc;
541e06b7 1304 node->request_count = 0;
54a611b6
LH
1305 while (requested) {
1306 max_req = MAPLE_ALLOC_SLOTS;
541e06b7
LH
1307 if (node->node_count) {
1308 unsigned int offset = node->node_count;
54a611b6
LH
1309
1310 slots = (void **)&node->slot[offset];
1311 max_req -= offset;
1312 } else {
1313 slots = (void **)&node->slot;
1314 }
1315
1316 max_req = min(requested, max_req);
1317 count = mt_alloc_bulk(gfp, max_req, slots);
1318 if (!count)
1319 goto nomem_bulk;
1320
1321 node->node_count += count;
541e06b7 1322 allocated += count;
c61b3a2b 1323 node = node->slot[0];
541e06b7
LH
1324 node->node_count = 0;
1325 node->request_count = 0;
54a611b6
LH
1326 requested -= count;
1327 }
541e06b7 1328 mas->alloc->total = allocated;
54a611b6
LH
1329 return;
1330
1331nomem_bulk:
1332 /* Clean up potential freed allocations on bulk failure */
1333 memset(slots, 0, max_req * sizeof(unsigned long));
1334nomem_one:
1335 mas_set_alloc_req(mas, requested);
1336 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1337 mas->alloc->total = allocated;
54a611b6 1338 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1339}
1340
1341/*
1342 * mas_free() - Free an encoded maple node
1343 * @mas: The maple state
1344 * @used: The encoded maple node to free.
1345 *
1346 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1347 * otherwise.
1348 */
1349static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1350{
1351 struct maple_node *tmp = mte_to_node(used);
1352
1353 if (mt_in_rcu(mas->tree))
1354 ma_free_rcu(tmp);
1355 else
1356 mas_push_node(mas, tmp);
1357}
1358
1359/*
1360 * mas_node_count() - Check if enough nodes are allocated and request more if
1361 * there is not enough nodes.
1362 * @mas: The maple state
1363 * @count: The number of nodes needed
1364 * @gfp: the gfp flags
1365 */
1366static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1367{
1368 unsigned long allocated = mas_allocated(mas);
1369
1370 if (allocated < count) {
1371 mas_set_alloc_req(mas, count - allocated);
1372 mas_alloc_nodes(mas, gfp);
1373 }
1374}
1375
1376/*
1377 * mas_node_count() - Check if enough nodes are allocated and request more if
1378 * there is not enough nodes.
1379 * @mas: The maple state
1380 * @count: The number of nodes needed
1381 *
1382 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1383 */
1384static void mas_node_count(struct ma_state *mas, int count)
1385{
1386 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1387}
1388
1389/*
1390 * mas_start() - Sets up maple state for operations.
1391 * @mas: The maple state.
1392 *
46b34584 1393 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1394 * defaults.
1395 *
1396 * Return:
1397 * - If mas->node is an error or not MAS_START, return NULL.
1398 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1399 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1400 * - If it's a tree: NULL & mas->node == safe root node.
1401 */
1402static inline struct maple_enode *mas_start(struct ma_state *mas)
1403{
1404 if (likely(mas_is_start(mas))) {
1405 struct maple_enode *root;
1406
54a611b6
LH
1407 mas->min = 0;
1408 mas->max = ULONG_MAX;
1409 mas->depth = 0;
54a611b6 1410
a7b92d59 1411retry:
54a611b6
LH
1412 root = mas_root(mas);
1413 /* Tree with nodes */
1414 if (likely(xa_is_node(root))) {
9bbba563 1415 mas->depth = 1;
54a611b6 1416 mas->node = mte_safe_root(root);
46b34584 1417 mas->offset = 0;
a7b92d59
LH
1418 if (mte_dead_node(mas->node))
1419 goto retry;
1420
54a611b6
LH
1421 return NULL;
1422 }
1423
1424 /* empty tree */
1425 if (unlikely(!root)) {
46b34584 1426 mas->node = MAS_NONE;
54a611b6
LH
1427 mas->offset = MAPLE_NODE_SLOTS;
1428 return NULL;
1429 }
1430
1431 /* Single entry tree */
1432 mas->node = MAS_ROOT;
1433 mas->offset = MAPLE_NODE_SLOTS;
1434
1435 /* Single entry tree. */
1436 if (mas->index > 0)
1437 return NULL;
1438
1439 return root;
1440 }
1441
1442 return NULL;
1443}
1444
1445/*
1446 * ma_data_end() - Find the end of the data in a node.
1447 * @node: The maple node
1448 * @type: The maple node type
1449 * @pivots: The array of pivots in the node
1450 * @max: The maximum value in the node
1451 *
1452 * Uses metadata to find the end of the data when possible.
1453 * Return: The zero indexed last slot with data (may be null).
1454 */
1455static inline unsigned char ma_data_end(struct maple_node *node,
1456 enum maple_type type,
1457 unsigned long *pivots,
1458 unsigned long max)
1459{
1460 unsigned char offset;
1461
39d0bd86
LH
1462 if (!pivots)
1463 return 0;
1464
54a611b6
LH
1465 if (type == maple_arange_64)
1466 return ma_meta_end(node, type);
1467
1468 offset = mt_pivots[type] - 1;
1469 if (likely(!pivots[offset]))
1470 return ma_meta_end(node, type);
1471
1472 if (likely(pivots[offset] == max))
1473 return offset;
1474
1475 return mt_pivots[type];
1476}
1477
1478/*
1479 * mas_data_end() - Find the end of the data (slot).
1480 * @mas: the maple state
1481 *
1482 * This method is optimized to check the metadata of a node if the node type
1483 * supports data end metadata.
1484 *
1485 * Return: The zero indexed last slot with data (may be null).
1486 */
1487static inline unsigned char mas_data_end(struct ma_state *mas)
1488{
1489 enum maple_type type;
1490 struct maple_node *node;
1491 unsigned char offset;
1492 unsigned long *pivots;
1493
1494 type = mte_node_type(mas->node);
1495 node = mas_mn(mas);
1496 if (type == maple_arange_64)
1497 return ma_meta_end(node, type);
1498
1499 pivots = ma_pivots(node, type);
39d0bd86
LH
1500 if (unlikely(ma_dead_node(node)))
1501 return 0;
1502
54a611b6
LH
1503 offset = mt_pivots[type] - 1;
1504 if (likely(!pivots[offset]))
1505 return ma_meta_end(node, type);
1506
1507 if (likely(pivots[offset] == mas->max))
1508 return offset;
1509
1510 return mt_pivots[type];
1511}
1512
1513/*
1514 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1515 * @mas - the maple state
1516 *
1517 * Return: The maximum gap in the leaf.
1518 */
1519static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1520{
1521 enum maple_type mt;
1522 unsigned long pstart, gap, max_gap;
1523 struct maple_node *mn;
1524 unsigned long *pivots;
1525 void __rcu **slots;
1526 unsigned char i;
1527 unsigned char max_piv;
1528
1529 mt = mte_node_type(mas->node);
1530 mn = mas_mn(mas);
1531 slots = ma_slots(mn, mt);
1532 max_gap = 0;
1533 if (unlikely(ma_is_dense(mt))) {
1534 gap = 0;
1535 for (i = 0; i < mt_slots[mt]; i++) {
1536 if (slots[i]) {
1537 if (gap > max_gap)
1538 max_gap = gap;
1539 gap = 0;
1540 } else {
1541 gap++;
1542 }
1543 }
1544 if (gap > max_gap)
1545 max_gap = gap;
1546 return max_gap;
1547 }
1548
1549 /*
1550 * Check the first implied pivot optimizes the loop below and slot 1 may
1551 * be skipped if there is a gap in slot 0.
1552 */
1553 pivots = ma_pivots(mn, mt);
1554 if (likely(!slots[0])) {
1555 max_gap = pivots[0] - mas->min + 1;
1556 i = 2;
1557 } else {
1558 i = 1;
1559 }
1560
1561 /* reduce max_piv as the special case is checked before the loop */
1562 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1563 /*
1564 * Check end implied pivot which can only be a gap on the right most
1565 * node.
1566 */
1567 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1568 gap = ULONG_MAX - pivots[max_piv];
1569 if (gap > max_gap)
1570 max_gap = gap;
1571 }
1572
1573 for (; i <= max_piv; i++) {
1574 /* data == no gap. */
1575 if (likely(slots[i]))
1576 continue;
1577
1578 pstart = pivots[i - 1];
1579 gap = pivots[i] - pstart;
1580 if (gap > max_gap)
1581 max_gap = gap;
1582
1583 /* There cannot be two gaps in a row. */
1584 i++;
1585 }
1586 return max_gap;
1587}
1588
1589/*
1590 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1591 * @node: The maple node
1592 * @gaps: The pointer to the gaps
1593 * @mt: The maple node type
1594 * @*off: Pointer to store the offset location of the gap.
1595 *
1596 * Uses the metadata data end to scan backwards across set gaps.
1597 *
1598 * Return: The maximum gap value
1599 */
1600static inline unsigned long
1601ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1602 unsigned char *off)
1603{
1604 unsigned char offset, i;
1605 unsigned long max_gap = 0;
1606
1607 i = offset = ma_meta_end(node, mt);
1608 do {
1609 if (gaps[i] > max_gap) {
1610 max_gap = gaps[i];
1611 offset = i;
1612 }
1613 } while (i--);
1614
1615 *off = offset;
1616 return max_gap;
1617}
1618
1619/*
1620 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1621 * @mas: The maple state.
1622 *
1623 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1624 *
1625 * Return: The gap value.
1626 */
1627static inline unsigned long mas_max_gap(struct ma_state *mas)
1628{
1629 unsigned long *gaps;
1630 unsigned char offset;
1631 enum maple_type mt;
1632 struct maple_node *node;
1633
1634 mt = mte_node_type(mas->node);
1635 if (ma_is_leaf(mt))
1636 return mas_leaf_max_gap(mas);
1637
1638 node = mas_mn(mas);
1639 offset = ma_meta_gap(node, mt);
1640 if (offset == MAPLE_ARANGE64_META_MAX)
1641 return 0;
1642
1643 gaps = ma_gaps(node, mt);
1644 return gaps[offset];
1645}
1646
1647/*
1648 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1649 * @mas: The maple state
1650 * @offset: The gap offset in the parent to set
1651 * @new: The new gap value.
1652 *
1653 * Set the parent gap then continue to set the gap upwards, using the metadata
1654 * of the parent to see if it is necessary to check the node above.
1655 */
1656static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1657 unsigned long new)
1658{
1659 unsigned long meta_gap = 0;
1660 struct maple_node *pnode;
1661 struct maple_enode *penode;
1662 unsigned long *pgaps;
1663 unsigned char meta_offset;
1664 enum maple_type pmt;
1665
1666 pnode = mte_parent(mas->node);
1667 pmt = mas_parent_enum(mas, mas->node);
1668 penode = mt_mk_node(pnode, pmt);
1669 pgaps = ma_gaps(pnode, pmt);
1670
1671ascend:
1672 meta_offset = ma_meta_gap(pnode, pmt);
1673 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1674 meta_gap = 0;
1675 else
1676 meta_gap = pgaps[meta_offset];
1677
1678 pgaps[offset] = new;
1679
1680 if (meta_gap == new)
1681 return;
1682
1683 if (offset != meta_offset) {
1684 if (meta_gap > new)
1685 return;
1686
1687 ma_set_meta_gap(pnode, pmt, offset);
1688 } else if (new < meta_gap) {
1689 meta_offset = 15;
1690 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1691 ma_set_meta_gap(pnode, pmt, meta_offset);
1692 }
1693
1694 if (ma_is_root(pnode))
1695 return;
1696
1697 /* Go to the parent node. */
1698 pnode = mte_parent(penode);
1699 pmt = mas_parent_enum(mas, penode);
1700 pgaps = ma_gaps(pnode, pmt);
1701 offset = mte_parent_slot(penode);
1702 penode = mt_mk_node(pnode, pmt);
1703 goto ascend;
1704}
1705
1706/*
1707 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1708 * @mas - the maple state.
1709 */
1710static inline void mas_update_gap(struct ma_state *mas)
1711{
1712 unsigned char pslot;
1713 unsigned long p_gap;
1714 unsigned long max_gap;
1715
1716 if (!mt_is_alloc(mas->tree))
1717 return;
1718
1719 if (mte_is_root(mas->node))
1720 return;
1721
1722 max_gap = mas_max_gap(mas);
1723
1724 pslot = mte_parent_slot(mas->node);
1725 p_gap = ma_gaps(mte_parent(mas->node),
1726 mas_parent_enum(mas, mas->node))[pslot];
1727
1728 if (p_gap != max_gap)
1729 mas_parent_gap(mas, pslot, max_gap);
1730}
1731
1732/*
1733 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1734 * @parent with the slot encoded.
1735 * @mas - the maple state (for the tree)
1736 * @parent - the maple encoded node containing the children.
1737 */
1738static inline void mas_adopt_children(struct ma_state *mas,
1739 struct maple_enode *parent)
1740{
1741 enum maple_type type = mte_node_type(parent);
1742 struct maple_node *node = mas_mn(mas);
1743 void __rcu **slots = ma_slots(node, type);
1744 unsigned long *pivots = ma_pivots(node, type);
1745 struct maple_enode *child;
1746 unsigned char offset;
1747
1748 offset = ma_data_end(node, type, pivots, mas->max);
1749 do {
1750 child = mas_slot_locked(mas, slots, offset);
1751 mte_set_parent(child, parent, offset);
1752 } while (offset--);
1753}
1754
1755/*
1756 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1757 * parent encoding to locate the maple node in the tree.
1758 * @mas - the ma_state to use for operations.
1759 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1760 * leave the node (true) and handle the adoption and free elsewhere.
1761 */
1762static inline void mas_replace(struct ma_state *mas, bool advanced)
1763 __must_hold(mas->tree->lock)
1764{
1765 struct maple_node *mn = mas_mn(mas);
1766 struct maple_enode *old_enode;
1767 unsigned char offset = 0;
1768 void __rcu **slots = NULL;
1769
1770 if (ma_is_root(mn)) {
1771 old_enode = mas_root_locked(mas);
1772 } else {
1773 offset = mte_parent_slot(mas->node);
1774 slots = ma_slots(mte_parent(mas->node),
1775 mas_parent_enum(mas, mas->node));
1776 old_enode = mas_slot_locked(mas, slots, offset);
1777 }
1778
1779 if (!advanced && !mte_is_leaf(mas->node))
1780 mas_adopt_children(mas, mas->node);
1781
1782 if (mte_is_root(mas->node)) {
1783 mn->parent = ma_parent_ptr(
1784 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1785 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1786 mas_set_height(mas);
1787 } else {
1788 rcu_assign_pointer(slots[offset], mas->node);
1789 }
1790
c13af03d
LH
1791 if (!advanced) {
1792 mte_set_node_dead(old_enode);
54a611b6 1793 mas_free(mas, old_enode);
c13af03d 1794 }
54a611b6
LH
1795}
1796
1797/*
1798 * mas_new_child() - Find the new child of a node.
1799 * @mas: the maple state
1800 * @child: the maple state to store the child.
1801 */
1802static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1803 __must_hold(mas->tree->lock)
1804{
1805 enum maple_type mt;
1806 unsigned char offset;
1807 unsigned char end;
1808 unsigned long *pivots;
1809 struct maple_enode *entry;
1810 struct maple_node *node;
1811 void __rcu **slots;
1812
1813 mt = mte_node_type(mas->node);
1814 node = mas_mn(mas);
1815 slots = ma_slots(node, mt);
1816 pivots = ma_pivots(node, mt);
1817 end = ma_data_end(node, mt, pivots, mas->max);
1818 for (offset = mas->offset; offset <= end; offset++) {
1819 entry = mas_slot_locked(mas, slots, offset);
1820 if (mte_parent(entry) == node) {
1821 *child = *mas;
1822 mas->offset = offset + 1;
1823 child->offset = offset;
1824 mas_descend(child);
1825 child->offset = 0;
1826 return true;
1827 }
1828 }
1829 return false;
1830}
1831
1832/*
1833 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1834 * old data or set b_node->b_end.
1835 * @b_node: the maple_big_node
1836 * @shift: the shift count
1837 */
1838static inline void mab_shift_right(struct maple_big_node *b_node,
1839 unsigned char shift)
1840{
1841 unsigned long size = b_node->b_end * sizeof(unsigned long);
1842
1843 memmove(b_node->pivot + shift, b_node->pivot, size);
1844 memmove(b_node->slot + shift, b_node->slot, size);
1845 if (b_node->type == maple_arange_64)
1846 memmove(b_node->gap + shift, b_node->gap, size);
1847}
1848
1849/*
1850 * mab_middle_node() - Check if a middle node is needed (unlikely)
1851 * @b_node: the maple_big_node that contains the data.
1852 * @size: the amount of data in the b_node
1853 * @split: the potential split location
1854 * @slot_count: the size that can be stored in a single node being considered.
1855 *
1856 * Return: true if a middle node is required.
1857 */
1858static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1859 unsigned char slot_count)
1860{
1861 unsigned char size = b_node->b_end;
1862
1863 if (size >= 2 * slot_count)
1864 return true;
1865
1866 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1867 return true;
1868
1869 return false;
1870}
1871
1872/*
1873 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1874 * @b_node: the maple_big_node with the data
1875 * @split: the suggested split location
1876 * @slot_count: the number of slots in the node being considered.
1877 *
1878 * Return: the split location.
1879 */
1880static inline int mab_no_null_split(struct maple_big_node *b_node,
1881 unsigned char split, unsigned char slot_count)
1882{
1883 if (!b_node->slot[split]) {
1884 /*
1885 * If the split is less than the max slot && the right side will
1886 * still be sufficient, then increment the split on NULL.
1887 */
1888 if ((split < slot_count - 1) &&
1889 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1890 split++;
1891 else
1892 split--;
1893 }
1894 return split;
1895}
1896
1897/*
1898 * mab_calc_split() - Calculate the split location and if there needs to be two
1899 * splits.
1900 * @bn: The maple_big_node with the data
1901 * @mid_split: The second split, if required. 0 otherwise.
1902 *
1903 * Return: The first split location. The middle split is set in @mid_split.
1904 */
1905static inline int mab_calc_split(struct ma_state *mas,
1906 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1907{
1908 unsigned char b_end = bn->b_end;
1909 int split = b_end / 2; /* Assume equal split. */
1910 unsigned char slot_min, slot_count = mt_slots[bn->type];
1911
1912 /*
1913 * To support gap tracking, all NULL entries are kept together and a node cannot
1914 * end on a NULL entry, with the exception of the left-most leaf. The
1915 * limitation means that the split of a node must be checked for this condition
1916 * and be able to put more data in one direction or the other.
1917 */
1918 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1919 *mid_split = 0;
1920 split = b_end - mt_min_slots[bn->type];
1921
1922 if (!ma_is_leaf(bn->type))
1923 return split;
1924
1925 mas->mas_flags |= MA_STATE_REBALANCE;
1926 if (!bn->slot[split])
1927 split--;
1928 return split;
1929 }
1930
1931 /*
1932 * Although extremely rare, it is possible to enter what is known as the 3-way
1933 * split scenario. The 3-way split comes about by means of a store of a range
1934 * that overwrites the end and beginning of two full nodes. The result is a set
1935 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1936 * also be located in different parent nodes which are also full. This can
1937 * carry upwards all the way to the root in the worst case.
1938 */
1939 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1940 split = b_end / 3;
1941 *mid_split = split * 2;
1942 } else {
1943 slot_min = mt_min_slots[bn->type];
1944
1945 *mid_split = 0;
1946 /*
1947 * Avoid having a range less than the slot count unless it
1948 * causes one node to be deficient.
1949 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1950 */
1951 while (((bn->pivot[split] - min) < slot_count - 1) &&
1952 (split < slot_count - 1) && (b_end - split > slot_min))
1953 split++;
1954 }
1955
1956 /* Avoid ending a node on a NULL entry */
1957 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1958
e11cb683
VY
1959 if (unlikely(*mid_split))
1960 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1961
1962 return split;
1963}
1964
1965/*
1966 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1967 * and set @b_node->b_end to the next free slot.
1968 * @mas: The maple state
1969 * @mas_start: The starting slot to copy
1970 * @mas_end: The end slot to copy (inclusively)
1971 * @b_node: The maple_big_node to place the data
1972 * @mab_start: The starting location in maple_big_node to store the data.
1973 */
1974static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1975 unsigned char mas_end, struct maple_big_node *b_node,
1976 unsigned char mab_start)
1977{
1978 enum maple_type mt;
1979 struct maple_node *node;
1980 void __rcu **slots;
1981 unsigned long *pivots, *gaps;
1982 int i = mas_start, j = mab_start;
1983 unsigned char piv_end;
1984
1985 node = mas_mn(mas);
1986 mt = mte_node_type(mas->node);
1987 pivots = ma_pivots(node, mt);
1988 if (!i) {
1989 b_node->pivot[j] = pivots[i++];
1990 if (unlikely(i > mas_end))
1991 goto complete;
1992 j++;
1993 }
1994
1995 piv_end = min(mas_end, mt_pivots[mt]);
1996 for (; i < piv_end; i++, j++) {
1997 b_node->pivot[j] = pivots[i];
1998 if (unlikely(!b_node->pivot[j]))
1999 break;
2000
2001 if (unlikely(mas->max == b_node->pivot[j]))
2002 goto complete;
2003 }
2004
2005 if (likely(i <= mas_end))
2006 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2007
2008complete:
2009 b_node->b_end = ++j;
2010 j -= mab_start;
2011 slots = ma_slots(node, mt);
2012 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2013 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2014 gaps = ma_gaps(node, mt);
2015 memcpy(b_node->gap + mab_start, gaps + mas_start,
2016 sizeof(unsigned long) * j);
2017 }
2018}
2019
2020/*
2021 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2022 * @mas: The maple state
2023 * @node: The maple node
2024 * @pivots: pointer to the maple node pivots
2025 * @mt: The maple type
2026 * @end: The assumed end
2027 *
2028 * Note, end may be incremented within this function but not modified at the
2029 * source. This is fine since the metadata is the last thing to be stored in a
2030 * node during a write.
2031 */
2032static inline void mas_leaf_set_meta(struct ma_state *mas,
2033 struct maple_node *node, unsigned long *pivots,
2034 enum maple_type mt, unsigned char end)
2035{
2036 /* There is no room for metadata already */
2037 if (mt_pivots[mt] <= end)
2038 return;
2039
2040 if (pivots[end] && pivots[end] < mas->max)
2041 end++;
2042
2043 if (end < mt_slots[mt] - 1)
2044 ma_set_meta(node, mt, 0, end);
2045}
2046
2047/*
2048 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2049 * @b_node: the maple_big_node that has the data
2050 * @mab_start: the start location in @b_node.
2051 * @mab_end: The end location in @b_node (inclusively)
2052 * @mas: The maple state with the maple encoded node.
2053 */
2054static inline void mab_mas_cp(struct maple_big_node *b_node,
2055 unsigned char mab_start, unsigned char mab_end,
2056 struct ma_state *mas, bool new_max)
2057{
2058 int i, j = 0;
2059 enum maple_type mt = mte_node_type(mas->node);
2060 struct maple_node *node = mte_to_node(mas->node);
2061 void __rcu **slots = ma_slots(node, mt);
2062 unsigned long *pivots = ma_pivots(node, mt);
2063 unsigned long *gaps = NULL;
2064 unsigned char end;
2065
2066 if (mab_end - mab_start > mt_pivots[mt])
2067 mab_end--;
2068
2069 if (!pivots[mt_pivots[mt] - 1])
2070 slots[mt_pivots[mt]] = NULL;
2071
2072 i = mab_start;
2073 do {
2074 pivots[j++] = b_node->pivot[i++];
2075 } while (i <= mab_end && likely(b_node->pivot[i]));
2076
2077 memcpy(slots, b_node->slot + mab_start,
2078 sizeof(void *) * (i - mab_start));
2079
2080 if (new_max)
2081 mas->max = b_node->pivot[i - 1];
2082
2083 end = j - 1;
2084 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2085 unsigned long max_gap = 0;
2086 unsigned char offset = 15;
2087
2088 gaps = ma_gaps(node, mt);
2089 do {
2090 gaps[--j] = b_node->gap[--i];
2091 if (gaps[j] > max_gap) {
2092 offset = j;
2093 max_gap = gaps[j];
2094 }
2095 } while (j);
2096
2097 ma_set_meta(node, mt, offset, end);
2098 } else {
2099 mas_leaf_set_meta(mas, node, pivots, mt, end);
2100 }
2101}
2102
2103/*
2104 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2105 * @mas: the maple state with the maple encoded node of the sub-tree.
2106 *
2107 * Descend through a sub-tree and adopt children who do not have the correct
2108 * parents set. Follow the parents which have the correct parents as they are
2109 * the new entries which need to be followed to find other incorrectly set
2110 * parents.
2111 */
2112static inline void mas_descend_adopt(struct ma_state *mas)
2113{
2114 struct ma_state list[3], next[3];
2115 int i, n;
2116
2117 /*
2118 * At each level there may be up to 3 correct parent pointers which indicates
2119 * the new nodes which need to be walked to find any new nodes at a lower level.
2120 */
2121
2122 for (i = 0; i < 3; i++) {
2123 list[i] = *mas;
2124 list[i].offset = 0;
2125 next[i].offset = 0;
2126 }
2127 next[0] = *mas;
2128
2129 while (!mte_is_leaf(list[0].node)) {
2130 n = 0;
2131 for (i = 0; i < 3; i++) {
2132 if (mas_is_none(&list[i]))
2133 continue;
2134
2135 if (i && list[i-1].node == list[i].node)
2136 continue;
2137
2138 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2139 n++;
2140
2141 mas_adopt_children(&list[i], list[i].node);
2142 }
2143
2144 while (n < 3)
2145 next[n++].node = MAS_NONE;
2146
2147 /* descend by setting the list to the children */
2148 for (i = 0; i < 3; i++)
2149 list[i] = next[i];
2150 }
2151}
2152
2153/*
2154 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2155 * @mas: The maple state
2156 * @end: The maple node end
2157 * @mt: The maple node type
2158 */
2159static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2160 enum maple_type mt)
2161{
2162 if (!(mas->mas_flags & MA_STATE_BULK))
2163 return;
2164
2165 if (mte_is_root(mas->node))
2166 return;
2167
2168 if (end > mt_min_slots[mt]) {
2169 mas->mas_flags &= ~MA_STATE_REBALANCE;
2170 return;
2171 }
2172}
2173
2174/*
2175 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2176 * data from a maple encoded node.
2177 * @wr_mas: the maple write state
2178 * @b_node: the maple_big_node to fill with data
2179 * @offset_end: the offset to end copying
2180 *
2181 * Return: The actual end of the data stored in @b_node
2182 */
44081c77 2183static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2184 struct maple_big_node *b_node, unsigned char offset_end)
2185{
2186 unsigned char slot;
2187 unsigned char b_end;
2188 /* Possible underflow of piv will wrap back to 0 before use. */
2189 unsigned long piv;
2190 struct ma_state *mas = wr_mas->mas;
2191
2192 b_node->type = wr_mas->type;
2193 b_end = 0;
2194 slot = mas->offset;
2195 if (slot) {
2196 /* Copy start data up to insert. */
2197 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2198 b_end = b_node->b_end;
2199 piv = b_node->pivot[b_end - 1];
2200 } else
2201 piv = mas->min - 1;
2202
2203 if (piv + 1 < mas->index) {
2204 /* Handle range starting after old range */
2205 b_node->slot[b_end] = wr_mas->content;
2206 if (!wr_mas->content)
2207 b_node->gap[b_end] = mas->index - 1 - piv;
2208 b_node->pivot[b_end++] = mas->index - 1;
2209 }
2210
2211 /* Store the new entry. */
2212 mas->offset = b_end;
2213 b_node->slot[b_end] = wr_mas->entry;
2214 b_node->pivot[b_end] = mas->last;
2215
2216 /* Appended. */
2217 if (mas->last >= mas->max)
2218 goto b_end;
2219
2220 /* Handle new range ending before old range ends */
2221 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2222 if (piv > mas->last) {
2223 if (piv == ULONG_MAX)
2224 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2225
2226 if (offset_end != slot)
2227 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2228 offset_end);
2229
2230 b_node->slot[++b_end] = wr_mas->content;
2231 if (!wr_mas->content)
2232 b_node->gap[b_end] = piv - mas->last + 1;
2233 b_node->pivot[b_end] = piv;
2234 }
2235
2236 slot = offset_end + 1;
2237 if (slot > wr_mas->node_end)
2238 goto b_end;
2239
2240 /* Copy end data to the end of the node. */
2241 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2242 b_node->b_end--;
2243 return;
2244
2245b_end:
2246 b_node->b_end = b_end;
2247}
2248
2249/*
2250 * mas_prev_sibling() - Find the previous node with the same parent.
2251 * @mas: the maple state
2252 *
2253 * Return: True if there is a previous sibling, false otherwise.
2254 */
2255static inline bool mas_prev_sibling(struct ma_state *mas)
2256{
2257 unsigned int p_slot = mte_parent_slot(mas->node);
2258
2259 if (mte_is_root(mas->node))
2260 return false;
2261
2262 if (!p_slot)
2263 return false;
2264
2265 mas_ascend(mas);
2266 mas->offset = p_slot - 1;
2267 mas_descend(mas);
2268 return true;
2269}
2270
2271/*
2272 * mas_next_sibling() - Find the next node with the same parent.
2273 * @mas: the maple state
2274 *
2275 * Return: true if there is a next sibling, false otherwise.
2276 */
2277static inline bool mas_next_sibling(struct ma_state *mas)
2278{
2279 MA_STATE(parent, mas->tree, mas->index, mas->last);
2280
2281 if (mte_is_root(mas->node))
2282 return false;
2283
2284 parent = *mas;
2285 mas_ascend(&parent);
2286 parent.offset = mte_parent_slot(mas->node) + 1;
2287 if (parent.offset > mas_data_end(&parent))
2288 return false;
2289
2290 *mas = parent;
2291 mas_descend(mas);
2292 return true;
2293}
2294
2295/*
2296 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2297 * @enode: The encoded maple node.
2298 *
2299 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2300 *
2301 * Return: @enode or MAS_NONE
2302 */
2303static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2304{
2305 if (enode)
2306 return enode;
2307
2308 return ma_enode_ptr(MAS_NONE);
2309}
2310
2311/*
2312 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2313 * @wr_mas: The maple write state
2314 *
2315 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2316 */
2317static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2318{
2319 struct ma_state *mas = wr_mas->mas;
2320 unsigned char count;
2321 unsigned char offset;
2322 unsigned long index, min, max;
2323
2324 if (unlikely(ma_is_dense(wr_mas->type))) {
2325 wr_mas->r_max = wr_mas->r_min = mas->index;
2326 mas->offset = mas->index = mas->min;
2327 return;
2328 }
2329
2330 wr_mas->node = mas_mn(wr_mas->mas);
2331 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2332 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2333 wr_mas->pivots, mas->max);
2334 offset = mas->offset;
2335 min = mas_safe_min(mas, wr_mas->pivots, offset);
2336 if (unlikely(offset == count))
2337 goto max;
2338
2339 max = wr_mas->pivots[offset];
2340 index = mas->index;
2341 if (unlikely(index <= max))
2342 goto done;
2343
2344 if (unlikely(!max && offset))
2345 goto max;
2346
2347 min = max + 1;
2348 while (++offset < count) {
2349 max = wr_mas->pivots[offset];
2350 if (index <= max)
2351 goto done;
2352 else if (unlikely(!max))
2353 break;
2354
2355 min = max + 1;
2356 }
2357
2358max:
2359 max = mas->max;
2360done:
2361 wr_mas->r_max = max;
2362 wr_mas->r_min = min;
2363 wr_mas->offset_end = mas->offset = offset;
2364}
2365
2366/*
2367 * mas_topiary_range() - Add a range of slots to the topiary.
2368 * @mas: The maple state
2369 * @destroy: The topiary to add the slots (usually destroy)
2370 * @start: The starting slot inclusively
2371 * @end: The end slot inclusively
2372 */
2373static inline void mas_topiary_range(struct ma_state *mas,
2374 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2375{
2376 void __rcu **slots;
2377 unsigned char offset;
2378
2379 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2380 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2381 for (offset = start; offset <= end; offset++) {
2382 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2383
2384 if (mte_dead_node(enode))
2385 continue;
2386
2387 mat_add(destroy, enode);
2388 }
2389}
2390
2391/*
2392 * mast_topiary() - Add the portions of the tree to the removal list; either to
2393 * be freed or discarded (destroy walk).
2394 * @mast: The maple_subtree_state.
2395 */
2396static inline void mast_topiary(struct maple_subtree_state *mast)
2397{
2398 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2399 unsigned char r_start, r_end;
2400 unsigned char l_start, l_end;
2401 void __rcu **l_slots, **r_slots;
2402
2403 wr_mas.type = mte_node_type(mast->orig_l->node);
2404 mast->orig_l->index = mast->orig_l->last;
2405 mas_wr_node_walk(&wr_mas);
2406 l_start = mast->orig_l->offset + 1;
2407 l_end = mas_data_end(mast->orig_l);
2408 r_start = 0;
2409 r_end = mast->orig_r->offset;
2410
2411 if (r_end)
2412 r_end--;
2413
2414 l_slots = ma_slots(mas_mn(mast->orig_l),
2415 mte_node_type(mast->orig_l->node));
2416
2417 r_slots = ma_slots(mas_mn(mast->orig_r),
2418 mte_node_type(mast->orig_r->node));
2419
2420 if ((l_start < l_end) &&
2421 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2422 l_start++;
2423 }
2424
2425 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2426 if (r_end)
2427 r_end--;
2428 }
2429
2430 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2431 return;
2432
2433 /* At the node where left and right sides meet, add the parts between */
2434 if (mast->orig_l->node == mast->orig_r->node) {
2435 return mas_topiary_range(mast->orig_l, mast->destroy,
2436 l_start, r_end);
2437 }
2438
2439 /* mast->orig_r is different and consumed. */
2440 if (mte_is_leaf(mast->orig_r->node))
2441 return;
2442
2443 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2444 l_end--;
2445
2446
2447 if (l_start <= l_end)
2448 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2449
2450 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2451 r_start++;
2452
2453 if (r_start <= r_end)
2454 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2455}
2456
2457/*
2458 * mast_rebalance_next() - Rebalance against the next node
2459 * @mast: The maple subtree state
2460 * @old_r: The encoded maple node to the right (next node).
2461 */
2462static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2463{
2464 unsigned char b_end = mast->bn->b_end;
2465
2466 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2467 mast->bn, b_end);
2468 mast->orig_r->last = mast->orig_r->max;
2469}
2470
2471/*
2472 * mast_rebalance_prev() - Rebalance against the previous node
2473 * @mast: The maple subtree state
2474 * @old_l: The encoded maple node to the left (previous node)
2475 */
2476static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2477{
2478 unsigned char end = mas_data_end(mast->orig_l) + 1;
2479 unsigned char b_end = mast->bn->b_end;
2480
2481 mab_shift_right(mast->bn, end);
2482 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2483 mast->l->min = mast->orig_l->min;
2484 mast->orig_l->index = mast->orig_l->min;
2485 mast->bn->b_end = end + b_end;
2486 mast->l->offset += end;
2487}
2488
2489/*
2490 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2491 * the node to the right. Checking the nodes to the right then the left at each
2492 * level upwards until root is reached. Free and destroy as needed.
2493 * Data is copied into the @mast->bn.
2494 * @mast: The maple_subtree_state.
2495 */
2496static inline
2497bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2498{
2499 struct ma_state r_tmp = *mast->orig_r;
2500 struct ma_state l_tmp = *mast->orig_l;
2501 struct maple_enode *ancestor = NULL;
2502 unsigned char start, end;
2503 unsigned char depth = 0;
2504
2505 r_tmp = *mast->orig_r;
2506 l_tmp = *mast->orig_l;
2507 do {
2508 mas_ascend(mast->orig_r);
2509 mas_ascend(mast->orig_l);
2510 depth++;
2511 if (!ancestor &&
2512 (mast->orig_r->node == mast->orig_l->node)) {
2513 ancestor = mast->orig_r->node;
2514 end = mast->orig_r->offset - 1;
2515 start = mast->orig_l->offset + 1;
2516 }
2517
2518 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2519 if (!ancestor) {
2520 ancestor = mast->orig_r->node;
2521 start = 0;
2522 }
2523
2524 mast->orig_r->offset++;
2525 do {
2526 mas_descend(mast->orig_r);
2527 mast->orig_r->offset = 0;
2528 depth--;
2529 } while (depth);
2530
2531 mast_rebalance_next(mast);
2532 do {
2533 unsigned char l_off = 0;
2534 struct maple_enode *child = r_tmp.node;
2535
2536 mas_ascend(&r_tmp);
2537 if (ancestor == r_tmp.node)
2538 l_off = start;
2539
2540 if (r_tmp.offset)
2541 r_tmp.offset--;
2542
2543 if (l_off < r_tmp.offset)
2544 mas_topiary_range(&r_tmp, mast->destroy,
2545 l_off, r_tmp.offset);
2546
2547 if (l_tmp.node != child)
2548 mat_add(mast->free, child);
2549
2550 } while (r_tmp.node != ancestor);
2551
2552 *mast->orig_l = l_tmp;
2553 return true;
2554
2555 } else if (mast->orig_l->offset != 0) {
2556 if (!ancestor) {
2557 ancestor = mast->orig_l->node;
2558 end = mas_data_end(mast->orig_l);
2559 }
2560
2561 mast->orig_l->offset--;
2562 do {
2563 mas_descend(mast->orig_l);
2564 mast->orig_l->offset =
2565 mas_data_end(mast->orig_l);
2566 depth--;
2567 } while (depth);
2568
2569 mast_rebalance_prev(mast);
2570 do {
2571 unsigned char r_off;
2572 struct maple_enode *child = l_tmp.node;
2573
2574 mas_ascend(&l_tmp);
2575 if (ancestor == l_tmp.node)
2576 r_off = end;
2577 else
2578 r_off = mas_data_end(&l_tmp);
2579
2580 if (l_tmp.offset < r_off)
2581 l_tmp.offset++;
2582
2583 if (l_tmp.offset < r_off)
2584 mas_topiary_range(&l_tmp, mast->destroy,
2585 l_tmp.offset, r_off);
2586
2587 if (r_tmp.node != child)
2588 mat_add(mast->free, child);
2589
2590 } while (l_tmp.node != ancestor);
2591
2592 *mast->orig_r = r_tmp;
2593 return true;
2594 }
2595 } while (!mte_is_root(mast->orig_r->node));
2596
2597 *mast->orig_r = r_tmp;
2598 *mast->orig_l = l_tmp;
2599 return false;
2600}
2601
2602/*
2603 * mast_ascend_free() - Add current original maple state nodes to the free list
2604 * and ascend.
2605 * @mast: the maple subtree state.
2606 *
2607 * Ascend the original left and right sides and add the previous nodes to the
2608 * free list. Set the slots to point to the correct location in the new nodes.
2609 */
2610static inline void
2611mast_ascend_free(struct maple_subtree_state *mast)
2612{
2613 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2614 struct maple_enode *left = mast->orig_l->node;
2615 struct maple_enode *right = mast->orig_r->node;
2616
2617 mas_ascend(mast->orig_l);
2618 mas_ascend(mast->orig_r);
2619 mat_add(mast->free, left);
2620
2621 if (left != right)
2622 mat_add(mast->free, right);
2623
2624 mast->orig_r->offset = 0;
2625 mast->orig_r->index = mast->r->max;
2626 /* last should be larger than or equal to index */
2627 if (mast->orig_r->last < mast->orig_r->index)
2628 mast->orig_r->last = mast->orig_r->index;
2629 /*
2630 * The node may not contain the value so set slot to ensure all
2631 * of the nodes contents are freed or destroyed.
2632 */
2633 wr_mas.type = mte_node_type(mast->orig_r->node);
2634 mas_wr_node_walk(&wr_mas);
2635 /* Set up the left side of things */
2636 mast->orig_l->offset = 0;
2637 mast->orig_l->index = mast->l->min;
2638 wr_mas.mas = mast->orig_l;
2639 wr_mas.type = mte_node_type(mast->orig_l->node);
2640 mas_wr_node_walk(&wr_mas);
2641
2642 mast->bn->type = wr_mas.type;
2643}
2644
2645/*
2646 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2647 * @mas: the maple state with the allocations.
2648 * @b_node: the maple_big_node with the type encoding.
2649 *
2650 * Use the node type from the maple_big_node to allocate a new node from the
2651 * ma_state. This function exists mainly for code readability.
2652 *
2653 * Return: A new maple encoded node
2654 */
2655static inline struct maple_enode
2656*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2657{
2658 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2659}
2660
2661/*
2662 * mas_mab_to_node() - Set up right and middle nodes
2663 *
2664 * @mas: the maple state that contains the allocations.
2665 * @b_node: the node which contains the data.
2666 * @left: The pointer which will have the left node
2667 * @right: The pointer which may have the right node
2668 * @middle: the pointer which may have the middle node (rare)
2669 * @mid_split: the split location for the middle node
2670 *
2671 * Return: the split of left.
2672 */
2673static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2674 struct maple_big_node *b_node, struct maple_enode **left,
2675 struct maple_enode **right, struct maple_enode **middle,
2676 unsigned char *mid_split, unsigned long min)
2677{
2678 unsigned char split = 0;
2679 unsigned char slot_count = mt_slots[b_node->type];
2680
2681 *left = mas_new_ma_node(mas, b_node);
2682 *right = NULL;
2683 *middle = NULL;
2684 *mid_split = 0;
2685
2686 if (b_node->b_end < slot_count) {
2687 split = b_node->b_end;
2688 } else {
2689 split = mab_calc_split(mas, b_node, mid_split, min);
2690 *right = mas_new_ma_node(mas, b_node);
2691 }
2692
2693 if (*mid_split)
2694 *middle = mas_new_ma_node(mas, b_node);
2695
2696 return split;
2697
2698}
2699
2700/*
2701 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2702 * pointer.
2703 * @b_node - the big node to add the entry
2704 * @mas - the maple state to get the pivot (mas->max)
2705 * @entry - the entry to add, if NULL nothing happens.
2706 */
2707static inline void mab_set_b_end(struct maple_big_node *b_node,
2708 struct ma_state *mas,
2709 void *entry)
2710{
2711 if (!entry)
2712 return;
2713
2714 b_node->slot[b_node->b_end] = entry;
2715 if (mt_is_alloc(mas->tree))
2716 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2717 b_node->pivot[b_node->b_end++] = mas->max;
2718}
2719
2720/*
2721 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2722 * of @mas->node to either @left or @right, depending on @slot and @split
2723 *
2724 * @mas - the maple state with the node that needs a parent
2725 * @left - possible parent 1
2726 * @right - possible parent 2
2727 * @slot - the slot the mas->node was placed
2728 * @split - the split location between @left and @right
2729 */
2730static inline void mas_set_split_parent(struct ma_state *mas,
2731 struct maple_enode *left,
2732 struct maple_enode *right,
2733 unsigned char *slot, unsigned char split)
2734{
2735 if (mas_is_none(mas))
2736 return;
2737
2738 if ((*slot) <= split)
2739 mte_set_parent(mas->node, left, *slot);
2740 else if (right)
2741 mte_set_parent(mas->node, right, (*slot) - split - 1);
2742
2743 (*slot)++;
2744}
2745
2746/*
2747 * mte_mid_split_check() - Check if the next node passes the mid-split
2748 * @**l: Pointer to left encoded maple node.
2749 * @**m: Pointer to middle encoded maple node.
2750 * @**r: Pointer to right encoded maple node.
2751 * @slot: The offset
2752 * @*split: The split location.
2753 * @mid_split: The middle split.
2754 */
2755static inline void mte_mid_split_check(struct maple_enode **l,
2756 struct maple_enode **r,
2757 struct maple_enode *right,
2758 unsigned char slot,
2759 unsigned char *split,
2760 unsigned char mid_split)
2761{
2762 if (*r == right)
2763 return;
2764
2765 if (slot < mid_split)
2766 return;
2767
2768 *l = *r;
2769 *r = right;
2770 *split = mid_split;
2771}
2772
2773/*
2774 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2775 * is taken from @mast->l.
2776 * @mast - the maple subtree state
2777 * @left - the left node
2778 * @right - the right node
2779 * @split - the split location.
2780 */
2781static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2782 struct maple_enode *left,
2783 struct maple_enode *middle,
2784 struct maple_enode *right,
2785 unsigned char split,
2786 unsigned char mid_split)
2787{
2788 unsigned char slot;
2789 struct maple_enode *l = left;
2790 struct maple_enode *r = right;
2791
2792 if (mas_is_none(mast->l))
2793 return;
2794
2795 if (middle)
2796 r = middle;
2797
2798 slot = mast->l->offset;
2799
2800 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2801 mas_set_split_parent(mast->l, l, r, &slot, split);
2802
2803 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2804 mas_set_split_parent(mast->m, l, r, &slot, split);
2805
2806 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2807 mas_set_split_parent(mast->r, l, r, &slot, split);
2808}
2809
2810/*
2811 * mas_wmb_replace() - Write memory barrier and replace
2812 * @mas: The maple state
2813 * @free: the maple topiary list of nodes to free
2814 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2815 *
2816 * Updates gap as necessary.
2817 */
2818static inline void mas_wmb_replace(struct ma_state *mas,
2819 struct ma_topiary *free,
2820 struct ma_topiary *destroy)
2821{
2822 /* All nodes must see old data as dead prior to replacing that data */
2823 smp_wmb(); /* Needed for RCU */
2824
2825 /* Insert the new data in the tree */
2826 mas_replace(mas, true);
2827
2828 if (!mte_is_leaf(mas->node))
2829 mas_descend_adopt(mas);
2830
2831 mas_mat_free(mas, free);
2832
2833 if (destroy)
2834 mas_mat_destroy(mas, destroy);
2835
2836 if (mte_is_leaf(mas->node))
2837 return;
2838
2839 mas_update_gap(mas);
2840}
2841
2842/*
2843 * mast_new_root() - Set a new tree root during subtree creation
2844 * @mast: The maple subtree state
2845 * @mas: The maple state
2846 */
2847static inline void mast_new_root(struct maple_subtree_state *mast,
2848 struct ma_state *mas)
2849{
2850 mas_mn(mast->l)->parent =
2851 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2852 if (!mte_dead_node(mast->orig_l->node) &&
2853 !mte_is_root(mast->orig_l->node)) {
2854 do {
2855 mast_ascend_free(mast);
2856 mast_topiary(mast);
2857 } while (!mte_is_root(mast->orig_l->node));
2858 }
2859 if ((mast->orig_l->node != mas->node) &&
2860 (mast->l->depth > mas_mt_height(mas))) {
2861 mat_add(mast->free, mas->node);
2862 }
2863}
2864
2865/*
2866 * mast_cp_to_nodes() - Copy data out to nodes.
2867 * @mast: The maple subtree state
2868 * @left: The left encoded maple node
2869 * @middle: The middle encoded maple node
2870 * @right: The right encoded maple node
2871 * @split: The location to split between left and (middle ? middle : right)
2872 * @mid_split: The location to split between middle and right.
2873 */
2874static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2875 struct maple_enode *left, struct maple_enode *middle,
2876 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2877{
2878 bool new_lmax = true;
2879
2880 mast->l->node = mte_node_or_none(left);
2881 mast->m->node = mte_node_or_none(middle);
2882 mast->r->node = mte_node_or_none(right);
2883
2884 mast->l->min = mast->orig_l->min;
2885 if (split == mast->bn->b_end) {
2886 mast->l->max = mast->orig_r->max;
2887 new_lmax = false;
2888 }
2889
2890 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2891
2892 if (middle) {
2893 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2894 mast->m->min = mast->bn->pivot[split] + 1;
2895 split = mid_split;
2896 }
2897
2898 mast->r->max = mast->orig_r->max;
2899 if (right) {
2900 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2901 mast->r->min = mast->bn->pivot[split] + 1;
2902 }
2903}
2904
2905/*
2906 * mast_combine_cp_left - Copy in the original left side of the tree into the
2907 * combined data set in the maple subtree state big node.
2908 * @mast: The maple subtree state
2909 */
2910static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2911{
2912 unsigned char l_slot = mast->orig_l->offset;
2913
2914 if (!l_slot)
2915 return;
2916
2917 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2918}
2919
2920/*
2921 * mast_combine_cp_right: Copy in the original right side of the tree into the
2922 * combined data set in the maple subtree state big node.
2923 * @mast: The maple subtree state
2924 */
2925static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2926{
2927 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2928 return;
2929
2930 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2931 mt_slot_count(mast->orig_r->node), mast->bn,
2932 mast->bn->b_end);
2933 mast->orig_r->last = mast->orig_r->max;
2934}
2935
2936/*
2937 * mast_sufficient: Check if the maple subtree state has enough data in the big
2938 * node to create at least one sufficient node
2939 * @mast: the maple subtree state
2940 */
2941static inline bool mast_sufficient(struct maple_subtree_state *mast)
2942{
2943 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2944 return true;
2945
2946 return false;
2947}
2948
2949/*
2950 * mast_overflow: Check if there is too much data in the subtree state for a
2951 * single node.
2952 * @mast: The maple subtree state
2953 */
2954static inline bool mast_overflow(struct maple_subtree_state *mast)
2955{
2956 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2957 return true;
2958
2959 return false;
2960}
2961
2962static inline void *mtree_range_walk(struct ma_state *mas)
2963{
2964 unsigned long *pivots;
2965 unsigned char offset;
2966 struct maple_node *node;
2967 struct maple_enode *next, *last;
2968 enum maple_type type;
2969 void __rcu **slots;
2970 unsigned char end;
2971 unsigned long max, min;
2972 unsigned long prev_max, prev_min;
2973
1b9c9183
LB
2974 next = mas->node;
2975 min = mas->min;
54a611b6
LH
2976 max = mas->max;
2977 do {
2978 offset = 0;
2979 last = next;
2980 node = mte_to_node(next);
2981 type = mte_node_type(next);
2982 pivots = ma_pivots(node, type);
2983 end = ma_data_end(node, type, pivots, max);
2984 if (unlikely(ma_dead_node(node)))
2985 goto dead_node;
2986
2987 if (pivots[offset] >= mas->index) {
2988 prev_max = max;
2989 prev_min = min;
2990 max = pivots[offset];
2991 goto next;
2992 }
2993
2994 do {
2995 offset++;
2996 } while ((offset < end) && (pivots[offset] < mas->index));
2997
2998 prev_min = min;
2999 min = pivots[offset - 1] + 1;
3000 prev_max = max;
3001 if (likely(offset < end && pivots[offset]))
3002 max = pivots[offset];
3003
3004next:
3005 slots = ma_slots(node, type);
3006 next = mt_slot(mas->tree, slots, offset);
3007 if (unlikely(ma_dead_node(node)))
3008 goto dead_node;
3009 } while (!ma_is_leaf(type));
3010
3011 mas->offset = offset;
3012 mas->index = min;
3013 mas->last = max;
3014 mas->min = prev_min;
3015 mas->max = prev_max;
3016 mas->node = last;
831978e3 3017 return (void *)next;
54a611b6
LH
3018
3019dead_node:
3020 mas_reset(mas);
3021 return NULL;
3022}
3023
3024/*
3025 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
3026 * @mas: The starting maple state
3027 * @mast: The maple_subtree_state, keeps track of 4 maple states.
3028 * @count: The estimated count of iterations needed.
3029 *
3030 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3031 * is hit. First @b_node is split into two entries which are inserted into the
3032 * next iteration of the loop. @b_node is returned populated with the final
3033 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3034 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3035 * to account of what has been copied into the new sub-tree. The update of
3036 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3037 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3038 * the new sub-tree in case the sub-tree becomes the full tree.
3039 *
3040 * Return: the number of elements in b_node during the last loop.
3041 */
3042static int mas_spanning_rebalance(struct ma_state *mas,
3043 struct maple_subtree_state *mast, unsigned char count)
3044{
3045 unsigned char split, mid_split;
3046 unsigned char slot = 0;
3047 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3048
3049 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3050 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3051 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3052 MA_TOPIARY(free, mas->tree);
3053 MA_TOPIARY(destroy, mas->tree);
3054
3055 /*
3056 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3057 * Rebalancing is done by use of the ``struct maple_topiary``.
3058 */
3059 mast->l = &l_mas;
3060 mast->m = &m_mas;
3061 mast->r = &r_mas;
3062 mast->free = &free;
3063 mast->destroy = &destroy;
3064 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
3065
3066 /* Check if this is not root and has sufficient data. */
3067 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3068 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3069 mast_spanning_rebalance(mast);
3070
3071 mast->orig_l->depth = 0;
3072
3073 /*
3074 * Each level of the tree is examined and balanced, pushing data to the left or
3075 * right, or rebalancing against left or right nodes is employed to avoid
3076 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3077 * the tree is created, there may be a mix of new and old nodes. The old nodes
3078 * will have the incorrect parent pointers and currently be in two trees: the
3079 * original tree and the partially new tree. To remedy the parent pointers in
3080 * the old tree, the new data is swapped into the active tree and a walk down
3081 * the tree is performed and the parent pointers are updated.
3082 * See mas_descend_adopt() for more information..
3083 */
3084 while (count--) {
3085 mast->bn->b_end--;
3086 mast->bn->type = mte_node_type(mast->orig_l->node);
3087 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3088 &mid_split, mast->orig_l->min);
3089 mast_set_split_parents(mast, left, middle, right, split,
3090 mid_split);
3091 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3092
3093 /*
3094 * Copy data from next level in the tree to mast->bn from next
3095 * iteration
3096 */
3097 memset(mast->bn, 0, sizeof(struct maple_big_node));
3098 mast->bn->type = mte_node_type(left);
3099 mast->orig_l->depth++;
3100
3101 /* Root already stored in l->node. */
3102 if (mas_is_root_limits(mast->l))
3103 goto new_root;
3104
3105 mast_ascend_free(mast);
3106 mast_combine_cp_left(mast);
3107 l_mas.offset = mast->bn->b_end;
3108 mab_set_b_end(mast->bn, &l_mas, left);
3109 mab_set_b_end(mast->bn, &m_mas, middle);
3110 mab_set_b_end(mast->bn, &r_mas, right);
3111
3112 /* Copy anything necessary out of the right node. */
3113 mast_combine_cp_right(mast);
3114 mast_topiary(mast);
3115 mast->orig_l->last = mast->orig_l->max;
3116
3117 if (mast_sufficient(mast))
3118 continue;
3119
3120 if (mast_overflow(mast))
3121 continue;
3122
3123 /* May be a new root stored in mast->bn */
3124 if (mas_is_root_limits(mast->orig_l))
3125 break;
3126
3127 mast_spanning_rebalance(mast);
3128
3129 /* rebalancing from other nodes may require another loop. */
3130 if (!count)
3131 count++;
3132 }
3133
3134 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3135 mte_node_type(mast->orig_l->node));
3136 mast->orig_l->depth++;
3137 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3138 mte_set_parent(left, l_mas.node, slot);
3139 if (middle)
3140 mte_set_parent(middle, l_mas.node, ++slot);
3141
3142 if (right)
3143 mte_set_parent(right, l_mas.node, ++slot);
3144
3145 if (mas_is_root_limits(mast->l)) {
3146new_root:
3147 mast_new_root(mast, mas);
3148 } else {
3149 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3150 }
3151
3152 if (!mte_dead_node(mast->orig_l->node))
3153 mat_add(&free, mast->orig_l->node);
3154
3155 mas->depth = mast->orig_l->depth;
3156 *mast->orig_l = l_mas;
3157 mte_set_node_dead(mas->node);
3158
3159 /* Set up mas for insertion. */
3160 mast->orig_l->depth = mas->depth;
3161 mast->orig_l->alloc = mas->alloc;
3162 *mas = *mast->orig_l;
3163 mas_wmb_replace(mas, &free, &destroy);
3164 mtree_range_walk(mas);
3165 return mast->bn->b_end;
3166}
3167
3168/*
3169 * mas_rebalance() - Rebalance a given node.
3170 * @mas: The maple state
3171 * @b_node: The big maple node.
3172 *
3173 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3174 * Continue upwards until tree is sufficient.
3175 *
3176 * Return: the number of elements in b_node during the last loop.
3177 */
3178static inline int mas_rebalance(struct ma_state *mas,
3179 struct maple_big_node *b_node)
3180{
3181 char empty_count = mas_mt_height(mas);
3182 struct maple_subtree_state mast;
3183 unsigned char shift, b_end = ++b_node->b_end;
3184
3185 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3186 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3187
3188 trace_ma_op(__func__, mas);
3189
3190 /*
3191 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3192 * against the node to the right if it exists, otherwise the node to the
3193 * left of this node is rebalanced against this node. If rebalancing
3194 * causes just one node to be produced instead of two, then the parent
3195 * is also examined and rebalanced if it is insufficient. Every level
3196 * tries to combine the data in the same way. If one node contains the
3197 * entire range of the tree, then that node is used as a new root node.
3198 */
3199 mas_node_count(mas, 1 + empty_count * 3);
3200 if (mas_is_err(mas))
3201 return 0;
3202
3203 mast.orig_l = &l_mas;
3204 mast.orig_r = &r_mas;
3205 mast.bn = b_node;
3206 mast.bn->type = mte_node_type(mas->node);
3207
3208 l_mas = r_mas = *mas;
3209
3210 if (mas_next_sibling(&r_mas)) {
3211 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3212 r_mas.last = r_mas.index = r_mas.max;
3213 } else {
3214 mas_prev_sibling(&l_mas);
3215 shift = mas_data_end(&l_mas) + 1;
3216 mab_shift_right(b_node, shift);
3217 mas->offset += shift;
3218 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3219 b_node->b_end = shift + b_end;
3220 l_mas.index = l_mas.last = l_mas.min;
3221 }
3222
3223 return mas_spanning_rebalance(mas, &mast, empty_count);
3224}
3225
3226/*
3227 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3228 * state.
3229 * @mas: The maple state
3230 * @end: The end of the left-most node.
3231 *
3232 * During a mass-insert event (such as forking), it may be necessary to
3233 * rebalance the left-most node when it is not sufficient.
3234 */
3235static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3236{
3237 enum maple_type mt = mte_node_type(mas->node);
3238 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3239 struct maple_enode *eparent;
3240 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3241 void __rcu **l_slots, **slots;
3242 unsigned long *l_pivs, *pivs, gap;
3243 bool in_rcu = mt_in_rcu(mas->tree);
3244
3245 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3246
3247 l_mas = *mas;
3248 mas_prev_sibling(&l_mas);
3249
3250 /* set up node. */
3251 if (in_rcu) {
3252 /* Allocate for both left and right as well as parent. */
3253 mas_node_count(mas, 3);
3254 if (mas_is_err(mas))
3255 return;
3256
3257 newnode = mas_pop_node(mas);
3258 } else {
3259 newnode = &reuse;
3260 }
3261
3262 node = mas_mn(mas);
3263 newnode->parent = node->parent;
3264 slots = ma_slots(newnode, mt);
3265 pivs = ma_pivots(newnode, mt);
3266 left = mas_mn(&l_mas);
3267 l_slots = ma_slots(left, mt);
3268 l_pivs = ma_pivots(left, mt);
3269 if (!l_slots[split])
3270 split++;
3271 tmp = mas_data_end(&l_mas) - split;
3272
3273 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3274 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3275 pivs[tmp] = l_mas.max;
3276 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3277 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3278
3279 l_mas.max = l_pivs[split];
3280 mas->min = l_mas.max + 1;
3281 eparent = mt_mk_node(mte_parent(l_mas.node),
3282 mas_parent_enum(&l_mas, l_mas.node));
3283 tmp += end;
3284 if (!in_rcu) {
3285 unsigned char max_p = mt_pivots[mt];
3286 unsigned char max_s = mt_slots[mt];
3287
3288 if (tmp < max_p)
3289 memset(pivs + tmp, 0,
3290 sizeof(unsigned long *) * (max_p - tmp));
3291
3292 if (tmp < mt_slots[mt])
3293 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3294
3295 memcpy(node, newnode, sizeof(struct maple_node));
3296 ma_set_meta(node, mt, 0, tmp - 1);
3297 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3298 l_pivs[split]);
3299
3300 /* Remove data from l_pivs. */
3301 tmp = split + 1;
3302 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3303 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3304 ma_set_meta(left, mt, 0, split);
3305
3306 goto done;
3307 }
3308
3309 /* RCU requires replacing both l_mas, mas, and parent. */
3310 mas->node = mt_mk_node(newnode, mt);
3311 ma_set_meta(newnode, mt, 0, tmp);
3312
3313 new_left = mas_pop_node(mas);
3314 new_left->parent = left->parent;
3315 mt = mte_node_type(l_mas.node);
3316 slots = ma_slots(new_left, mt);
3317 pivs = ma_pivots(new_left, mt);
3318 memcpy(slots, l_slots, sizeof(void *) * split);
3319 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3320 ma_set_meta(new_left, mt, 0, split);
3321 l_mas.node = mt_mk_node(new_left, mt);
3322
3323 /* replace parent. */
3324 offset = mte_parent_slot(mas->node);
3325 mt = mas_parent_enum(&l_mas, l_mas.node);
3326 parent = mas_pop_node(mas);
3327 slots = ma_slots(parent, mt);
3328 pivs = ma_pivots(parent, mt);
3329 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3330 rcu_assign_pointer(slots[offset], mas->node);
3331 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3332 pivs[offset - 1] = l_mas.max;
3333 eparent = mt_mk_node(parent, mt);
3334done:
3335 gap = mas_leaf_max_gap(mas);
3336 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3337 gap = mas_leaf_max_gap(&l_mas);
3338 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3339 mas_ascend(mas);
3340
3341 if (in_rcu)
3342 mas_replace(mas, false);
3343
3344 mas_update_gap(mas);
3345}
3346
3347/*
3348 * mas_split_final_node() - Split the final node in a subtree operation.
3349 * @mast: the maple subtree state
3350 * @mas: The maple state
3351 * @height: The height of the tree in case it's a new root.
3352 */
3353static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3354 struct ma_state *mas, int height)
3355{
3356 struct maple_enode *ancestor;
3357
3358 if (mte_is_root(mas->node)) {
3359 if (mt_is_alloc(mas->tree))
3360 mast->bn->type = maple_arange_64;
3361 else
3362 mast->bn->type = maple_range_64;
3363 mas->depth = height;
3364 }
3365 /*
3366 * Only a single node is used here, could be root.
3367 * The Big_node data should just fit in a single node.
3368 */
3369 ancestor = mas_new_ma_node(mas, mast->bn);
3370 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3371 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3372 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3373
3374 mast->l->node = ancestor;
3375 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3376 mas->offset = mast->bn->b_end - 1;
3377 return true;
3378}
3379
3380/*
3381 * mast_fill_bnode() - Copy data into the big node in the subtree state
3382 * @mast: The maple subtree state
3383 * @mas: the maple state
3384 * @skip: The number of entries to skip for new nodes insertion.
3385 */
3386static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3387 struct ma_state *mas,
3388 unsigned char skip)
3389{
3390 bool cp = true;
3391 struct maple_enode *old = mas->node;
3392 unsigned char split;
3393
3394 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3395 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3396 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3397 mast->bn->b_end = 0;
3398
3399 if (mte_is_root(mas->node)) {
3400 cp = false;
3401 } else {
3402 mas_ascend(mas);
3403 mat_add(mast->free, old);
3404 mas->offset = mte_parent_slot(mas->node);
3405 }
3406
3407 if (cp && mast->l->offset)
3408 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3409
3410 split = mast->bn->b_end;
3411 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3412 mast->r->offset = mast->bn->b_end;
3413 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3414 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3415 cp = false;
3416
3417 if (cp)
3418 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3419 mast->bn, mast->bn->b_end);
3420
3421 mast->bn->b_end--;
3422 mast->bn->type = mte_node_type(mas->node);
3423}
3424
3425/*
3426 * mast_split_data() - Split the data in the subtree state big node into regular
3427 * nodes.
3428 * @mast: The maple subtree state
3429 * @mas: The maple state
3430 * @split: The location to split the big node
3431 */
3432static inline void mast_split_data(struct maple_subtree_state *mast,
3433 struct ma_state *mas, unsigned char split)
3434{
3435 unsigned char p_slot;
3436
3437 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3438 mte_set_pivot(mast->r->node, 0, mast->r->max);
3439 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3440 mast->l->offset = mte_parent_slot(mas->node);
3441 mast->l->max = mast->bn->pivot[split];
3442 mast->r->min = mast->l->max + 1;
3443 if (mte_is_leaf(mas->node))
3444 return;
3445
3446 p_slot = mast->orig_l->offset;
3447 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3448 &p_slot, split);
3449 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3450 &p_slot, split);
3451}
3452
3453/*
3454 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3455 * data to the right or left node if there is room.
3456 * @mas: The maple state
3457 * @height: The current height of the maple state
3458 * @mast: The maple subtree state
3459 * @left: Push left or not.
3460 *
3461 * Keeping the height of the tree low means faster lookups.
3462 *
3463 * Return: True if pushed, false otherwise.
3464 */
3465static inline bool mas_push_data(struct ma_state *mas, int height,
3466 struct maple_subtree_state *mast, bool left)
3467{
3468 unsigned char slot_total = mast->bn->b_end;
3469 unsigned char end, space, split;
3470
3471 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3472 tmp_mas = *mas;
3473 tmp_mas.depth = mast->l->depth;
3474
3475 if (left && !mas_prev_sibling(&tmp_mas))
3476 return false;
3477 else if (!left && !mas_next_sibling(&tmp_mas))
3478 return false;
3479
3480 end = mas_data_end(&tmp_mas);
3481 slot_total += end;
3482 space = 2 * mt_slot_count(mas->node) - 2;
3483 /* -2 instead of -1 to ensure there isn't a triple split */
3484 if (ma_is_leaf(mast->bn->type))
3485 space--;
3486
3487 if (mas->max == ULONG_MAX)
3488 space--;
3489
3490 if (slot_total >= space)
3491 return false;
3492
3493 /* Get the data; Fill mast->bn */
3494 mast->bn->b_end++;
3495 if (left) {
3496 mab_shift_right(mast->bn, end + 1);
3497 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3498 mast->bn->b_end = slot_total + 1;
3499 } else {
3500 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3501 }
3502
3503 /* Configure mast for splitting of mast->bn */
3504 split = mt_slots[mast->bn->type] - 2;
3505 if (left) {
3506 /* Switch mas to prev node */
3507 mat_add(mast->free, mas->node);
3508 *mas = tmp_mas;
3509 /* Start using mast->l for the left side. */
3510 tmp_mas.node = mast->l->node;
3511 *mast->l = tmp_mas;
3512 } else {
3513 mat_add(mast->free, tmp_mas.node);
3514 tmp_mas.node = mast->r->node;
3515 *mast->r = tmp_mas;
3516 split = slot_total - split;
3517 }
3518 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3519 /* Update parent slot for split calculation. */
3520 if (left)
3521 mast->orig_l->offset += end + 1;
3522
3523 mast_split_data(mast, mas, split);
3524 mast_fill_bnode(mast, mas, 2);
3525 mas_split_final_node(mast, mas, height + 1);
3526 return true;
3527}
3528
3529/*
3530 * mas_split() - Split data that is too big for one node into two.
3531 * @mas: The maple state
3532 * @b_node: The maple big node
3533 * Return: 1 on success, 0 on failure.
3534 */
3535static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3536{
54a611b6
LH
3537 struct maple_subtree_state mast;
3538 int height = 0;
3539 unsigned char mid_split, split = 0;
3540
3541 /*
3542 * Splitting is handled differently from any other B-tree; the Maple
3543 * Tree splits upwards. Splitting up means that the split operation
3544 * occurs when the walk of the tree hits the leaves and not on the way
3545 * down. The reason for splitting up is that it is impossible to know
3546 * how much space will be needed until the leaf is (or leaves are)
3547 * reached. Since overwriting data is allowed and a range could
3548 * overwrite more than one range or result in changing one entry into 3
3549 * entries, it is impossible to know if a split is required until the
3550 * data is examined.
3551 *
3552 * Splitting is a balancing act between keeping allocations to a minimum
3553 * and avoiding a 'jitter' event where a tree is expanded to make room
3554 * for an entry followed by a contraction when the entry is removed. To
3555 * accomplish the balance, there are empty slots remaining in both left
3556 * and right nodes after a split.
3557 */
3558 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3559 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3560 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3561 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3562 MA_TOPIARY(mat, mas->tree);
3563
3564 trace_ma_op(__func__, mas);
3565 mas->depth = mas_mt_height(mas);
3566 /* Allocation failures will happen early. */
3567 mas_node_count(mas, 1 + mas->depth * 2);
3568 if (mas_is_err(mas))
3569 return 0;
3570
3571 mast.l = &l_mas;
3572 mast.r = &r_mas;
3573 mast.orig_l = &prev_l_mas;
3574 mast.orig_r = &prev_r_mas;
3575 mast.free = &mat;
3576 mast.bn = b_node;
3577
3578 while (height++ <= mas->depth) {
3579 if (mt_slots[b_node->type] > b_node->b_end) {
3580 mas_split_final_node(&mast, mas, height);
3581 break;
3582 }
3583
3584 l_mas = r_mas = *mas;
3585 l_mas.node = mas_new_ma_node(mas, b_node);
3586 r_mas.node = mas_new_ma_node(mas, b_node);
3587 /*
3588 * Another way that 'jitter' is avoided is to terminate a split up early if the
3589 * left or right node has space to spare. This is referred to as "pushing left"
3590 * or "pushing right" and is similar to the B* tree, except the nodes left or
3591 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3592 * is a significant savings.
3593 */
3594 /* Try to push left. */
3595 if (mas_push_data(mas, height, &mast, true))
3596 break;
3597
3598 /* Try to push right. */
3599 if (mas_push_data(mas, height, &mast, false))
3600 break;
3601
3602 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3603 mast_split_data(&mast, mas, split);
3604 /*
3605 * Usually correct, mab_mas_cp in the above call overwrites
3606 * r->max.
3607 */
3608 mast.r->max = mas->max;
3609 mast_fill_bnode(&mast, mas, 1);
3610 prev_l_mas = *mast.l;
3611 prev_r_mas = *mast.r;
3612 }
3613
3614 /* Set the original node as dead */
3615 mat_add(mast.free, mas->node);
3616 mas->node = l_mas.node;
3617 mas_wmb_replace(mas, mast.free, NULL);
3618 mtree_range_walk(mas);
3619 return 1;
3620}
3621
3622/*
3623 * mas_reuse_node() - Reuse the node to store the data.
3624 * @wr_mas: The maple write state
3625 * @bn: The maple big node
3626 * @end: The end of the data.
3627 *
3628 * Will always return false in RCU mode.
3629 *
3630 * Return: True if node was reused, false otherwise.
3631 */
3632static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3633 struct maple_big_node *bn, unsigned char end)
3634{
3635 /* Need to be rcu safe. */
3636 if (mt_in_rcu(wr_mas->mas->tree))
3637 return false;
3638
3639 if (end > bn->b_end) {
3640 int clear = mt_slots[wr_mas->type] - bn->b_end;
3641
3642 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3643 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3644 }
3645 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3646 return true;
3647}
3648
3649/*
3650 * mas_commit_b_node() - Commit the big node into the tree.
3651 * @wr_mas: The maple write state
3652 * @b_node: The maple big node
3653 * @end: The end of the data.
3654 */
44081c77 3655static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3656 struct maple_big_node *b_node, unsigned char end)
3657{
3658 struct maple_node *node;
3659 unsigned char b_end = b_node->b_end;
3660 enum maple_type b_type = b_node->type;
3661
3662 if ((b_end < mt_min_slots[b_type]) &&
3663 (!mte_is_root(wr_mas->mas->node)) &&
3664 (mas_mt_height(wr_mas->mas) > 1))
3665 return mas_rebalance(wr_mas->mas, b_node);
3666
3667 if (b_end >= mt_slots[b_type])
3668 return mas_split(wr_mas->mas, b_node);
3669
3670 if (mas_reuse_node(wr_mas, b_node, end))
3671 goto reuse_node;
3672
3673 mas_node_count(wr_mas->mas, 1);
3674 if (mas_is_err(wr_mas->mas))
3675 return 0;
3676
3677 node = mas_pop_node(wr_mas->mas);
3678 node->parent = mas_mn(wr_mas->mas)->parent;
3679 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3680 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3681 mas_replace(wr_mas->mas, false);
3682reuse_node:
3683 mas_update_gap(wr_mas->mas);
3684 return 1;
3685}
3686
3687/*
3688 * mas_root_expand() - Expand a root to a node
3689 * @mas: The maple state
3690 * @entry: The entry to store into the tree
3691 */
3692static inline int mas_root_expand(struct ma_state *mas, void *entry)
3693{
3694 void *contents = mas_root_locked(mas);
3695 enum maple_type type = maple_leaf_64;
3696 struct maple_node *node;
3697 void __rcu **slots;
3698 unsigned long *pivots;
3699 int slot = 0;
3700
3701 mas_node_count(mas, 1);
3702 if (unlikely(mas_is_err(mas)))
3703 return 0;
3704
3705 node = mas_pop_node(mas);
3706 pivots = ma_pivots(node, type);
3707 slots = ma_slots(node, type);
3708 node->parent = ma_parent_ptr(
3709 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3710 mas->node = mt_mk_node(node, type);
3711
3712 if (mas->index) {
3713 if (contents) {
3714 rcu_assign_pointer(slots[slot], contents);
3715 if (likely(mas->index > 1))
3716 slot++;
3717 }
3718 pivots[slot++] = mas->index - 1;
3719 }
3720
3721 rcu_assign_pointer(slots[slot], entry);
3722 mas->offset = slot;
3723 pivots[slot] = mas->last;
3724 if (mas->last != ULONG_MAX)
3725 slot++;
3726 mas->depth = 1;
3727 mas_set_height(mas);
3728
3729 /* swap the new root into the tree */
3730 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3731 ma_set_meta(node, maple_leaf_64, 0, slot);
3732 return slot;
3733}
3734
3735static inline void mas_store_root(struct ma_state *mas, void *entry)
3736{
3737 if (likely((mas->last != 0) || (mas->index != 0)))
3738 mas_root_expand(mas, entry);
3739 else if (((unsigned long) (entry) & 3) == 2)
3740 mas_root_expand(mas, entry);
3741 else {
3742 rcu_assign_pointer(mas->tree->ma_root, entry);
3743 mas->node = MAS_START;
3744 }
3745}
3746
3747/*
3748 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3749 * spans the node.
3750 * @mas: The maple state
3751 * @piv: The pivot value being written
3752 * @type: The maple node type
3753 * @entry: The data to write
3754 *
3755 * Spanning writes are writes that start in one node and end in another OR if
3756 * the write of a %NULL will cause the node to end with a %NULL.
3757 *
3758 * Return: True if this is a spanning write, false otherwise.
3759 */
3760static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3761{
3762 unsigned long max;
3763 unsigned long last = wr_mas->mas->last;
3764 unsigned long piv = wr_mas->r_max;
3765 enum maple_type type = wr_mas->type;
3766 void *entry = wr_mas->entry;
3767
3768 /* Contained in this pivot */
3769 if (piv > last)
3770 return false;
3771
3772 max = wr_mas->mas->max;
3773 if (unlikely(ma_is_leaf(type))) {
3774 /* Fits in the node, but may span slots. */
3775 if (last < max)
3776 return false;
3777
3778 /* Writes to the end of the node but not null. */
3779 if ((last == max) && entry)
3780 return false;
3781
3782 /*
3783 * Writing ULONG_MAX is not a spanning write regardless of the
3784 * value being written as long as the range fits in the node.
3785 */
3786 if ((last == ULONG_MAX) && (last == max))
3787 return false;
3788 } else if (piv == last) {
3789 if (entry)
3790 return false;
3791
3792 /* Detect spanning store wr walk */
3793 if (last == ULONG_MAX)
3794 return false;
3795 }
3796
3797 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3798
3799 return true;
3800}
3801
3802static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3803{
54a611b6
LH
3804 wr_mas->type = mte_node_type(wr_mas->mas->node);
3805 mas_wr_node_walk(wr_mas);
3806 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3807}
3808
3809static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3810{
3811 wr_mas->mas->max = wr_mas->r_max;
3812 wr_mas->mas->min = wr_mas->r_min;
3813 wr_mas->mas->node = wr_mas->content;
3814 wr_mas->mas->offset = 0;
9bbba563 3815 wr_mas->mas->depth++;
54a611b6
LH
3816}
3817/*
3818 * mas_wr_walk() - Walk the tree for a write.
3819 * @wr_mas: The maple write state
3820 *
3821 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3822 *
3823 * Return: True if it's contained in a node, false on spanning write.
3824 */
3825static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3826{
3827 struct ma_state *mas = wr_mas->mas;
3828
3829 while (true) {
3830 mas_wr_walk_descend(wr_mas);
3831 if (unlikely(mas_is_span_wr(wr_mas)))
3832 return false;
3833
3834 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3835 mas->offset);
3836 if (ma_is_leaf(wr_mas->type))
3837 return true;
3838
3839 mas_wr_walk_traverse(wr_mas);
3840 }
3841
3842 return true;
3843}
3844
3845static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3846{
3847 struct ma_state *mas = wr_mas->mas;
3848
3849 while (true) {
3850 mas_wr_walk_descend(wr_mas);
3851 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3852 mas->offset);
3853 if (ma_is_leaf(wr_mas->type))
3854 return true;
3855 mas_wr_walk_traverse(wr_mas);
3856
3857 }
3858 return true;
3859}
3860/*
3861 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3862 * @l_wr_mas: The left maple write state
3863 * @r_wr_mas: The right maple write state
3864 */
3865static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3866 struct ma_wr_state *r_wr_mas)
3867{
3868 struct ma_state *r_mas = r_wr_mas->mas;
3869 struct ma_state *l_mas = l_wr_mas->mas;
3870 unsigned char l_slot;
3871
3872 l_slot = l_mas->offset;
3873 if (!l_wr_mas->content)
3874 l_mas->index = l_wr_mas->r_min;
3875
3876 if ((l_mas->index == l_wr_mas->r_min) &&
3877 (l_slot &&
3878 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3879 if (l_slot > 1)
3880 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3881 else
3882 l_mas->index = l_mas->min;
3883
3884 l_mas->offset = l_slot - 1;
3885 }
3886
3887 if (!r_wr_mas->content) {
3888 if (r_mas->last < r_wr_mas->r_max)
3889 r_mas->last = r_wr_mas->r_max;
3890 r_mas->offset++;
3891 } else if ((r_mas->last == r_wr_mas->r_max) &&
3892 (r_mas->last < r_mas->max) &&
3893 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3894 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3895 r_wr_mas->type, r_mas->offset + 1);
3896 r_mas->offset++;
3897 }
3898}
3899
3900static inline void *mas_state_walk(struct ma_state *mas)
3901{
3902 void *entry;
3903
3904 entry = mas_start(mas);
3905 if (mas_is_none(mas))
3906 return NULL;
3907
3908 if (mas_is_ptr(mas))
3909 return entry;
3910
3911 return mtree_range_walk(mas);
3912}
3913
3914/*
3915 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3916 * to date.
3917 *
3918 * @mas: The maple state.
3919 *
3920 * Note: Leaves mas in undesirable state.
3921 * Return: The entry for @mas->index or %NULL on dead node.
3922 */
3923static inline void *mtree_lookup_walk(struct ma_state *mas)
3924{
3925 unsigned long *pivots;
3926 unsigned char offset;
3927 struct maple_node *node;
3928 struct maple_enode *next;
3929 enum maple_type type;
3930 void __rcu **slots;
3931 unsigned char end;
3932 unsigned long max;
3933
3934 next = mas->node;
3935 max = ULONG_MAX;
3936 do {
3937 offset = 0;
3938 node = mte_to_node(next);
3939 type = mte_node_type(next);
3940 pivots = ma_pivots(node, type);
3941 end = ma_data_end(node, type, pivots, max);
3942 if (unlikely(ma_dead_node(node)))
3943 goto dead_node;
54a611b6 3944 do {
ec07967d
PZ
3945 if (pivots[offset] >= mas->index) {
3946 max = pivots[offset];
3947 break;
3948 }
3949 } while (++offset < end);
54a611b6 3950
54a611b6
LH
3951 slots = ma_slots(node, type);
3952 next = mt_slot(mas->tree, slots, offset);
3953 if (unlikely(ma_dead_node(node)))
3954 goto dead_node;
3955 } while (!ma_is_leaf(type));
3956
831978e3 3957 return (void *)next;
54a611b6
LH
3958
3959dead_node:
3960 mas_reset(mas);
3961 return NULL;
3962}
3963
3964/*
3965 * mas_new_root() - Create a new root node that only contains the entry passed
3966 * in.
3967 * @mas: The maple state
3968 * @entry: The entry to store.
3969 *
3970 * Only valid when the index == 0 and the last == ULONG_MAX
3971 *
3972 * Return 0 on error, 1 on success.
3973 */
3974static inline int mas_new_root(struct ma_state *mas, void *entry)
3975{
3976 struct maple_enode *root = mas_root_locked(mas);
3977 enum maple_type type = maple_leaf_64;
3978 struct maple_node *node;
3979 void __rcu **slots;
3980 unsigned long *pivots;
3981
3982 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3983 mas->depth = 0;
3984 mas_set_height(mas);
3985 rcu_assign_pointer(mas->tree->ma_root, entry);
3986 mas->node = MAS_START;
3987 goto done;
3988 }
3989
3990 mas_node_count(mas, 1);
3991 if (mas_is_err(mas))
3992 return 0;
3993
3994 node = mas_pop_node(mas);
3995 pivots = ma_pivots(node, type);
3996 slots = ma_slots(node, type);
3997 node->parent = ma_parent_ptr(
3998 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3999 mas->node = mt_mk_node(node, type);
4000 rcu_assign_pointer(slots[0], entry);
4001 pivots[0] = mas->last;
4002 mas->depth = 1;
4003 mas_set_height(mas);
4004 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
4005
4006done:
4007 if (xa_is_node(root))
4008 mte_destroy_walk(root, mas->tree);
4009
4010 return 1;
4011}
4012/*
4013 * mas_wr_spanning_store() - Create a subtree with the store operation completed
4014 * and new nodes where necessary, then place the sub-tree in the actual tree.
4015 * Note that mas is expected to point to the node which caused the store to
4016 * span.
4017 * @wr_mas: The maple write state
4018 *
4019 * Return: 0 on error, positive on success.
4020 */
4021static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
4022{
4023 struct maple_subtree_state mast;
4024 struct maple_big_node b_node;
4025 struct ma_state *mas;
4026 unsigned char height;
4027
4028 /* Left and Right side of spanning store */
4029 MA_STATE(l_mas, NULL, 0, 0);
4030 MA_STATE(r_mas, NULL, 0, 0);
4031
4032 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4033 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4034
4035 /*
4036 * A store operation that spans multiple nodes is called a spanning
4037 * store and is handled early in the store call stack by the function
4038 * mas_is_span_wr(). When a spanning store is identified, the maple
4039 * state is duplicated. The first maple state walks the left tree path
4040 * to ``index``, the duplicate walks the right tree path to ``last``.
4041 * The data in the two nodes are combined into a single node, two nodes,
4042 * or possibly three nodes (see the 3-way split above). A ``NULL``
4043 * written to the last entry of a node is considered a spanning store as
4044 * a rebalance is required for the operation to complete and an overflow
4045 * of data may happen.
4046 */
4047 mas = wr_mas->mas;
4048 trace_ma_op(__func__, mas);
4049
4050 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4051 return mas_new_root(mas, wr_mas->entry);
4052 /*
4053 * Node rebalancing may occur due to this store, so there may be three new
4054 * entries per level plus a new root.
4055 */
4056 height = mas_mt_height(mas);
4057 mas_node_count(mas, 1 + height * 3);
4058 if (mas_is_err(mas))
4059 return 0;
4060
4061 /*
4062 * Set up right side. Need to get to the next offset after the spanning
4063 * store to ensure it's not NULL and to combine both the next node and
4064 * the node with the start together.
4065 */
4066 r_mas = *mas;
4067 /* Avoid overflow, walk to next slot in the tree. */
4068 if (r_mas.last + 1)
4069 r_mas.last++;
4070
4071 r_mas.index = r_mas.last;
4072 mas_wr_walk_index(&r_wr_mas);
4073 r_mas.last = r_mas.index = mas->last;
4074
4075 /* Set up left side. */
4076 l_mas = *mas;
4077 mas_wr_walk_index(&l_wr_mas);
4078
4079 if (!wr_mas->entry) {
4080 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4081 mas->offset = l_mas.offset;
4082 mas->index = l_mas.index;
4083 mas->last = l_mas.last = r_mas.last;
4084 }
4085
4086 /* expanding NULLs may make this cover the entire range */
4087 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4088 mas_set_range(mas, 0, ULONG_MAX);
4089 return mas_new_root(mas, wr_mas->entry);
4090 }
4091
4092 memset(&b_node, 0, sizeof(struct maple_big_node));
4093 /* Copy l_mas and store the value in b_node. */
4094 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4095 /* Copy r_mas into b_node. */
4096 if (r_mas.offset <= r_wr_mas.node_end)
4097 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4098 &b_node, b_node.b_end + 1);
4099 else
4100 b_node.b_end++;
4101
4102 /* Stop spanning searches by searching for just index. */
4103 l_mas.index = l_mas.last = mas->index;
4104
4105 mast.bn = &b_node;
4106 mast.orig_l = &l_mas;
4107 mast.orig_r = &r_mas;
4108 /* Combine l_mas and r_mas and split them up evenly again. */
4109 return mas_spanning_rebalance(mas, &mast, height + 1);
4110}
4111
4112/*
4113 * mas_wr_node_store() - Attempt to store the value in a node
4114 * @wr_mas: The maple write state
4115 *
4116 * Attempts to reuse the node, but may allocate.
4117 *
4118 * Return: True if stored, false otherwise
4119 */
4120static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4121{
4122 struct ma_state *mas = wr_mas->mas;
4123 void __rcu **dst_slots;
4124 unsigned long *dst_pivots;
4125 unsigned char dst_offset;
4126 unsigned char new_end = wr_mas->node_end;
4127 unsigned char offset;
4128 unsigned char node_slots = mt_slots[wr_mas->type];
4129 struct maple_node reuse, *newnode;
4130 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4131 bool in_rcu = mt_in_rcu(mas->tree);
4132
4133 offset = mas->offset;
4134 if (mas->last == wr_mas->r_max) {
4135 /* runs right to the end of the node */
4136 if (mas->last == mas->max)
4137 new_end = offset;
4138 /* don't copy this offset */
4139 wr_mas->offset_end++;
4140 } else if (mas->last < wr_mas->r_max) {
4141 /* new range ends in this range */
4142 if (unlikely(wr_mas->r_max == ULONG_MAX))
4143 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4144
4145 new_end++;
4146 } else {
4147 if (wr_mas->end_piv == mas->last)
4148 wr_mas->offset_end++;
4149
4150 new_end -= wr_mas->offset_end - offset - 1;
4151 }
4152
4153 /* new range starts within a range */
4154 if (wr_mas->r_min < mas->index)
4155 new_end++;
4156
4157 /* Not enough room */
4158 if (new_end >= node_slots)
4159 return false;
4160
4161 /* Not enough data. */
4162 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4163 !(mas->mas_flags & MA_STATE_BULK))
4164 return false;
4165
4166 /* set up node. */
4167 if (in_rcu) {
4168 mas_node_count(mas, 1);
4169 if (mas_is_err(mas))
4170 return false;
4171
4172 newnode = mas_pop_node(mas);
4173 } else {
4174 memset(&reuse, 0, sizeof(struct maple_node));
4175 newnode = &reuse;
4176 }
4177
4178 newnode->parent = mas_mn(mas)->parent;
4179 dst_pivots = ma_pivots(newnode, wr_mas->type);
4180 dst_slots = ma_slots(newnode, wr_mas->type);
4181 /* Copy from start to insert point */
4182 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4183 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4184 dst_offset = offset;
4185
4186 /* Handle insert of new range starting after old range */
4187 if (wr_mas->r_min < mas->index) {
4188 mas->offset++;
4189 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4190 dst_pivots[dst_offset++] = mas->index - 1;
4191 }
4192
4193 /* Store the new entry and range end. */
4194 if (dst_offset < max_piv)
4195 dst_pivots[dst_offset] = mas->last;
4196 mas->offset = dst_offset;
4197 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4198
4199 /*
4200 * this range wrote to the end of the node or it overwrote the rest of
4201 * the data
4202 */
4203 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4204 new_end = dst_offset;
4205 goto done;
4206 }
4207
4208 dst_offset++;
4209 /* Copy to the end of node if necessary. */
4210 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4211 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4212 sizeof(void *) * copy_size);
4213 if (dst_offset < max_piv) {
4214 if (copy_size > max_piv - dst_offset)
4215 copy_size = max_piv - dst_offset;
4216
4217 memcpy(dst_pivots + dst_offset,
4218 wr_mas->pivots + wr_mas->offset_end,
4219 sizeof(unsigned long) * copy_size);
4220 }
4221
4222 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4223 dst_pivots[new_end] = mas->max;
4224
4225done:
4226 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4227 if (in_rcu) {
c13af03d 4228 mte_set_node_dead(mas->node);
54a611b6
LH
4229 mas->node = mt_mk_node(newnode, wr_mas->type);
4230 mas_replace(mas, false);
4231 } else {
4232 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4233 }
4234 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4235 mas_update_gap(mas);
4236 return true;
4237}
4238
4239/*
4240 * mas_wr_slot_store: Attempt to store a value in a slot.
4241 * @wr_mas: the maple write state
4242 *
4243 * Return: True if stored, false otherwise
4244 */
4245static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4246{
4247 struct ma_state *mas = wr_mas->mas;
4248 unsigned long lmax; /* Logical max. */
4249 unsigned char offset = mas->offset;
4250
4251 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4252 (offset != wr_mas->node_end)))
4253 return false;
4254
4255 if (offset == wr_mas->node_end - 1)
4256 lmax = mas->max;
4257 else
4258 lmax = wr_mas->pivots[offset + 1];
4259
4260 /* going to overwrite too many slots. */
4261 if (lmax < mas->last)
4262 return false;
4263
4264 if (wr_mas->r_min == mas->index) {
4265 /* overwriting two or more ranges with one. */
4266 if (lmax == mas->last)
4267 return false;
4268
4269 /* Overwriting all of offset and a portion of offset + 1. */
4270 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4271 wr_mas->pivots[offset] = mas->last;
4272 goto done;
4273 }
4274
4275 /* Doesn't end on the next range end. */
4276 if (lmax != mas->last)
4277 return false;
4278
4279 /* Overwriting a portion of offset and all of offset + 1 */
4280 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4281 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4282 wr_mas->pivots[offset + 1] = mas->last;
4283
4284 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4285 wr_mas->pivots[offset] = mas->index - 1;
4286 mas->offset++; /* Keep mas accurate. */
4287
4288done:
4289 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4290 mas_update_gap(mas);
4291 return true;
4292}
4293
4294static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4295{
4296 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4297 (wr_mas->offset_end < wr_mas->node_end))
4298 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4299
4300 if (wr_mas->mas->last > wr_mas->end_piv)
4301 wr_mas->end_piv = wr_mas->mas->max;
4302}
4303
4304static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4305{
4306 struct ma_state *mas = wr_mas->mas;
4307
4308 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4309 mas->last = wr_mas->end_piv;
4310
4311 /* Check next slot(s) if we are overwriting the end */
4312 if ((mas->last == wr_mas->end_piv) &&
4313 (wr_mas->node_end != wr_mas->offset_end) &&
4314 !wr_mas->slots[wr_mas->offset_end + 1]) {
4315 wr_mas->offset_end++;
4316 if (wr_mas->offset_end == wr_mas->node_end)
4317 mas->last = mas->max;
4318 else
4319 mas->last = wr_mas->pivots[wr_mas->offset_end];
4320 wr_mas->end_piv = mas->last;
4321 }
4322
4323 if (!wr_mas->content) {
4324 /* If this one is null, the next and prev are not */
4325 mas->index = wr_mas->r_min;
4326 } else {
4327 /* Check prev slot if we are overwriting the start */
4328 if (mas->index == wr_mas->r_min && mas->offset &&
4329 !wr_mas->slots[mas->offset - 1]) {
4330 mas->offset--;
4331 wr_mas->r_min = mas->index =
4332 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4333 wr_mas->r_max = wr_mas->pivots[mas->offset];
4334 }
4335 }
4336}
4337
4338static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4339{
4340 unsigned char end = wr_mas->node_end;
4341 unsigned char new_end = end + 1;
4342 struct ma_state *mas = wr_mas->mas;
4343 unsigned char node_pivots = mt_pivots[wr_mas->type];
4344
4345 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4346 if (new_end < node_pivots)
4347 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4348
4349 if (new_end < node_pivots)
4350 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4351
4352 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4353 mas->offset = new_end;
4354 wr_mas->pivots[end] = mas->index - 1;
4355
4356 return true;
4357 }
4358
4359 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4360 if (new_end < node_pivots)
4361 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4362
4363 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4364 if (new_end < node_pivots)
4365 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4366
4367 wr_mas->pivots[end] = mas->last;
4368 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4369 return true;
4370 }
4371
4372 return false;
4373}
4374
4375/*
4376 * mas_wr_bnode() - Slow path for a modification.
4377 * @wr_mas: The write maple state
4378 *
4379 * This is where split, rebalance end up.
4380 */
4381static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4382{
4383 struct maple_big_node b_node;
4384
4385 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4386 memset(&b_node, 0, sizeof(struct maple_big_node));
4387 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4388 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4389}
4390
4391static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4392{
4393 unsigned char node_slots;
4394 unsigned char node_size;
4395 struct ma_state *mas = wr_mas->mas;
4396
4397 /* Direct replacement */
4398 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4399 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4400 if (!!wr_mas->entry ^ !!wr_mas->content)
4401 mas_update_gap(mas);
4402 return;
4403 }
4404
4405 /* Attempt to append */
4406 node_slots = mt_slots[wr_mas->type];
4407 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4408 if (mas->max == ULONG_MAX)
4409 node_size++;
4410
4411 /* slot and node store will not fit, go to the slow path */
4412 if (unlikely(node_size >= node_slots))
4413 goto slow_path;
4414
4415 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4416 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4417 if (!wr_mas->content || !wr_mas->entry)
4418 mas_update_gap(mas);
4419 return;
4420 }
4421
4422 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4423 return;
4424 else if (mas_wr_node_store(wr_mas))
4425 return;
4426
4427 if (mas_is_err(mas))
4428 return;
4429
4430slow_path:
4431 mas_wr_bnode(wr_mas);
4432}
4433
4434/*
4435 * mas_wr_store_entry() - Internal call to store a value
4436 * @mas: The maple state
4437 * @entry: The entry to store.
4438 *
4439 * Return: The contents that was stored at the index.
4440 */
4441static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4442{
4443 struct ma_state *mas = wr_mas->mas;
4444
4445 wr_mas->content = mas_start(mas);
4446 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4447 mas_store_root(mas, wr_mas->entry);
4448 return wr_mas->content;
4449 }
4450
4451 if (unlikely(!mas_wr_walk(wr_mas))) {
4452 mas_wr_spanning_store(wr_mas);
4453 return wr_mas->content;
4454 }
4455
4456 /* At this point, we are at the leaf node that needs to be altered. */
4457 wr_mas->end_piv = wr_mas->r_max;
4458 mas_wr_end_piv(wr_mas);
4459
4460 if (!wr_mas->entry)
4461 mas_wr_extend_null(wr_mas);
4462
4463 /* New root for a single pointer */
4464 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4465 mas_new_root(mas, wr_mas->entry);
4466 return wr_mas->content;
4467 }
4468
4469 mas_wr_modify(wr_mas);
4470 return wr_mas->content;
4471}
4472
4473/**
4474 * mas_insert() - Internal call to insert a value
4475 * @mas: The maple state
4476 * @entry: The entry to store
4477 *
4478 * Return: %NULL or the contents that already exists at the requested index
4479 * otherwise. The maple state needs to be checked for error conditions.
4480 */
4481static inline void *mas_insert(struct ma_state *mas, void *entry)
4482{
4483 MA_WR_STATE(wr_mas, mas, entry);
4484
4485 /*
4486 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4487 * tree. If the insert fits exactly into an existing gap with a value
4488 * of NULL, then the slot only needs to be written with the new value.
4489 * If the range being inserted is adjacent to another range, then only a
4490 * single pivot needs to be inserted (as well as writing the entry). If
4491 * the new range is within a gap but does not touch any other ranges,
4492 * then two pivots need to be inserted: the start - 1, and the end. As
4493 * usual, the entry must be written. Most operations require a new node
4494 * to be allocated and replace an existing node to ensure RCU safety,
4495 * when in RCU mode. The exception to requiring a newly allocated node
4496 * is when inserting at the end of a node (appending). When done
4497 * carefully, appending can reuse the node in place.
4498 */
4499 wr_mas.content = mas_start(mas);
4500 if (wr_mas.content)
4501 goto exists;
4502
4503 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4504 mas_store_root(mas, entry);
4505 return NULL;
4506 }
4507
4508 /* spanning writes always overwrite something */
4509 if (!mas_wr_walk(&wr_mas))
4510 goto exists;
4511
4512 /* At this point, we are at the leaf node that needs to be altered. */
4513 wr_mas.offset_end = mas->offset;
4514 wr_mas.end_piv = wr_mas.r_max;
4515
4516 if (wr_mas.content || (mas->last > wr_mas.r_max))
4517 goto exists;
4518
4519 if (!entry)
4520 return NULL;
4521
4522 mas_wr_modify(&wr_mas);
4523 return wr_mas.content;
4524
4525exists:
4526 mas_set_err(mas, -EEXIST);
4527 return wr_mas.content;
4528
4529}
4530
4531/*
4532 * mas_prev_node() - Find the prev non-null entry at the same level in the
4533 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4534 * @mas: The maple state
4535 * @min: The lower limit to search
4536 *
4537 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4538 * Return: 1 if the node is dead, 0 otherwise.
4539 */
4540static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4541{
4542 enum maple_type mt;
4543 int offset, level;
4544 void __rcu **slots;
4545 struct maple_node *node;
4546 struct maple_enode *enode;
4547 unsigned long *pivots;
4548
4549 if (mas_is_none(mas))
4550 return 0;
4551
4552 level = 0;
4553 do {
4554 node = mas_mn(mas);
4555 if (ma_is_root(node))
4556 goto no_entry;
4557
4558 /* Walk up. */
4559 if (unlikely(mas_ascend(mas)))
4560 return 1;
4561 offset = mas->offset;
4562 level++;
4563 } while (!offset);
4564
4565 offset--;
4566 mt = mte_node_type(mas->node);
4567 node = mas_mn(mas);
4568 slots = ma_slots(node, mt);
4569 pivots = ma_pivots(node, mt);
39d0bd86
LH
4570 if (unlikely(ma_dead_node(node)))
4571 return 1;
4572
54a611b6
LH
4573 mas->max = pivots[offset];
4574 if (offset)
4575 mas->min = pivots[offset - 1] + 1;
4576 if (unlikely(ma_dead_node(node)))
4577 return 1;
4578
4579 if (mas->max < min)
4580 goto no_entry_min;
4581
4582 while (level > 1) {
4583 level--;
4584 enode = mas_slot(mas, slots, offset);
4585 if (unlikely(ma_dead_node(node)))
4586 return 1;
4587
4588 mas->node = enode;
4589 mt = mte_node_type(mas->node);
4590 node = mas_mn(mas);
4591 slots = ma_slots(node, mt);
4592 pivots = ma_pivots(node, mt);
4593 offset = ma_data_end(node, mt, pivots, mas->max);
39d0bd86
LH
4594 if (unlikely(ma_dead_node(node)))
4595 return 1;
4596
54a611b6
LH
4597 if (offset)
4598 mas->min = pivots[offset - 1] + 1;
4599
4600 if (offset < mt_pivots[mt])
4601 mas->max = pivots[offset];
4602
4603 if (mas->max < min)
4604 goto no_entry;
4605 }
4606
4607 mas->node = mas_slot(mas, slots, offset);
4608 if (unlikely(ma_dead_node(node)))
4609 return 1;
4610
4611 mas->offset = mas_data_end(mas);
4612 if (unlikely(mte_dead_node(mas->node)))
4613 return 1;
4614
4615 return 0;
4616
4617no_entry_min:
4618 mas->offset = offset;
4619 if (offset)
4620 mas->min = pivots[offset - 1] + 1;
4621no_entry:
4622 if (unlikely(ma_dead_node(node)))
4623 return 1;
4624
4625 mas->node = MAS_NONE;
4626 return 0;
4627}
4628
4629/*
4630 * mas_next_node() - Get the next node at the same level in the tree.
4631 * @mas: The maple state
4632 * @max: The maximum pivot value to check.
4633 *
4634 * The next value will be mas->node[mas->offset] or MAS_NONE.
4635 * Return: 1 on dead node, 0 otherwise.
4636 */
4637static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4638 unsigned long max)
4639{
4640 unsigned long min, pivot;
4641 unsigned long *pivots;
4642 struct maple_enode *enode;
4643 int level = 0;
4644 unsigned char offset;
39d0bd86 4645 unsigned char node_end;
54a611b6
LH
4646 enum maple_type mt;
4647 void __rcu **slots;
4648
4649 if (mas->max >= max)
4650 goto no_entry;
4651
4652 level = 0;
4653 do {
4654 if (ma_is_root(node))
4655 goto no_entry;
4656
4657 min = mas->max + 1;
4658 if (min > max)
4659 goto no_entry;
4660
4661 if (unlikely(mas_ascend(mas)))
4662 return 1;
4663
4664 offset = mas->offset;
4665 level++;
4666 node = mas_mn(mas);
4667 mt = mte_node_type(mas->node);
4668 pivots = ma_pivots(node, mt);
39d0bd86
LH
4669 node_end = ma_data_end(node, mt, pivots, mas->max);
4670 if (unlikely(ma_dead_node(node)))
4671 return 1;
4672
4673 } while (unlikely(offset == node_end));
54a611b6
LH
4674
4675 slots = ma_slots(node, mt);
4676 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4677 while (unlikely(level > 1)) {
4678 /* Descend, if necessary */
4679 enode = mas_slot(mas, slots, offset);
4680 if (unlikely(ma_dead_node(node)))
4681 return 1;
4682
4683 mas->node = enode;
4684 level--;
4685 node = mas_mn(mas);
4686 mt = mte_node_type(mas->node);
4687 slots = ma_slots(node, mt);
4688 pivots = ma_pivots(node, mt);
39d0bd86
LH
4689 if (unlikely(ma_dead_node(node)))
4690 return 1;
4691
54a611b6
LH
4692 offset = 0;
4693 pivot = pivots[0];
4694 }
4695
4696 enode = mas_slot(mas, slots, offset);
4697 if (unlikely(ma_dead_node(node)))
4698 return 1;
4699
4700 mas->node = enode;
4701 mas->min = min;
4702 mas->max = pivot;
4703 return 0;
4704
4705no_entry:
4706 if (unlikely(ma_dead_node(node)))
4707 return 1;
4708
4709 mas->node = MAS_NONE;
4710 return 0;
4711}
4712
4713/*
4714 * mas_next_nentry() - Get the next node entry
4715 * @mas: The maple state
4716 * @max: The maximum value to check
4717 * @*range_start: Pointer to store the start of the range.
4718 *
4719 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4720 * pivot of the entry.
4721 *
4722 * Return: The next entry, %NULL otherwise
4723 */
4724static inline void *mas_next_nentry(struct ma_state *mas,
4725 struct maple_node *node, unsigned long max, enum maple_type type)
4726{
4727 unsigned char count;
4728 unsigned long pivot;
4729 unsigned long *pivots;
4730 void __rcu **slots;
4731 void *entry;
4732
4733 if (mas->last == mas->max) {
4734 mas->index = mas->max;
4735 return NULL;
4736 }
4737
54a611b6 4738 slots = ma_slots(node, type);
39d0bd86 4739 pivots = ma_pivots(node, type);
65be6f05 4740 count = ma_data_end(node, type, pivots, mas->max);
39d0bd86
LH
4741 if (unlikely(ma_dead_node(node)))
4742 return NULL;
4743
4744 mas->index = mas_safe_min(mas, pivots, mas->offset);
4745 if (unlikely(ma_dead_node(node)))
54a611b6
LH
4746 return NULL;
4747
4748 if (mas->index > max)
4749 return NULL;
4750
54a611b6
LH
4751 if (mas->offset > count)
4752 return NULL;
4753
4754 while (mas->offset < count) {
4755 pivot = pivots[mas->offset];
4756 entry = mas_slot(mas, slots, mas->offset);
4757 if (ma_dead_node(node))
4758 return NULL;
4759
4760 if (entry)
4761 goto found;
4762
4763 if (pivot >= max)
4764 return NULL;
4765
4766 mas->index = pivot + 1;
4767 mas->offset++;
4768 }
4769
4770 if (mas->index > mas->max) {
4771 mas->index = mas->last;
4772 return NULL;
4773 }
4774
4775 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4776 entry = mas_slot(mas, slots, mas->offset);
4777 if (ma_dead_node(node))
4778 return NULL;
4779
4780 if (!pivot)
4781 return NULL;
4782
4783 if (!entry)
4784 return NULL;
4785
4786found:
4787 mas->last = pivot;
4788 return entry;
4789}
4790
4791static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4792{
54a611b6
LH
4793retry:
4794 mas_set(mas, index);
4795 mas_state_walk(mas);
4796 if (mas_is_start(mas))
4797 goto retry;
54a611b6
LH
4798}
4799
4800/*
4801 * mas_next_entry() - Internal function to get the next entry.
4802 * @mas: The maple state
4803 * @limit: The maximum range start.
4804 *
4805 * Set the @mas->node to the next entry and the range_start to
4806 * the beginning value for the entry. Does not check beyond @limit.
4807 * Sets @mas->index and @mas->last to the limit if it is hit.
4808 * Restarts on dead nodes.
4809 *
4810 * Return: the next entry or %NULL.
4811 */
4812static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4813{
4814 void *entry = NULL;
4815 struct maple_enode *prev_node;
4816 struct maple_node *node;
4817 unsigned char offset;
4818 unsigned long last;
4819 enum maple_type mt;
4820
50e81c82
LH
4821 if (mas->index > limit) {
4822 mas->index = mas->last = limit;
4823 mas_pause(mas);
4824 return NULL;
4825 }
54a611b6
LH
4826 last = mas->last;
4827retry:
4828 offset = mas->offset;
4829 prev_node = mas->node;
4830 node = mas_mn(mas);
4831 mt = mte_node_type(mas->node);
4832 mas->offset++;
4833 if (unlikely(mas->offset >= mt_slots[mt])) {
4834 mas->offset = mt_slots[mt] - 1;
4835 goto next_node;
4836 }
4837
4838 while (!mas_is_none(mas)) {
4839 entry = mas_next_nentry(mas, node, limit, mt);
4840 if (unlikely(ma_dead_node(node))) {
4841 mas_rewalk(mas, last);
4842 goto retry;
4843 }
4844
4845 if (likely(entry))
4846 return entry;
4847
4848 if (unlikely((mas->index > limit)))
4849 break;
4850
4851next_node:
4852 prev_node = mas->node;
4853 offset = mas->offset;
4854 if (unlikely(mas_next_node(mas, node, limit))) {
4855 mas_rewalk(mas, last);
4856 goto retry;
4857 }
4858 mas->offset = 0;
4859 node = mas_mn(mas);
4860 mt = mte_node_type(mas->node);
4861 }
4862
4863 mas->index = mas->last = limit;
4864 mas->offset = offset;
4865 mas->node = prev_node;
4866 return NULL;
4867}
4868
4869/*
4870 * mas_prev_nentry() - Get the previous node entry.
4871 * @mas: The maple state.
4872 * @limit: The lower limit to check for a value.
4873 *
4874 * Return: the entry, %NULL otherwise.
4875 */
4876static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4877 unsigned long index)
4878{
4879 unsigned long pivot, min;
4880 unsigned char offset;
4881 struct maple_node *mn;
4882 enum maple_type mt;
4883 unsigned long *pivots;
4884 void __rcu **slots;
4885 void *entry;
4886
4887retry:
4888 if (!mas->offset)
4889 return NULL;
4890
4891 mn = mas_mn(mas);
4892 mt = mte_node_type(mas->node);
4893 offset = mas->offset - 1;
4894 if (offset >= mt_slots[mt])
4895 offset = mt_slots[mt] - 1;
4896
4897 slots = ma_slots(mn, mt);
4898 pivots = ma_pivots(mn, mt);
39d0bd86
LH
4899 if (unlikely(ma_dead_node(mn))) {
4900 mas_rewalk(mas, index);
4901 goto retry;
4902 }
4903
54a611b6
LH
4904 if (offset == mt_pivots[mt])
4905 pivot = mas->max;
4906 else
4907 pivot = pivots[offset];
4908
4909 if (unlikely(ma_dead_node(mn))) {
4910 mas_rewalk(mas, index);
4911 goto retry;
4912 }
4913
4914 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4915 !pivot))
4916 pivot = pivots[--offset];
4917
4918 min = mas_safe_min(mas, pivots, offset);
4919 entry = mas_slot(mas, slots, offset);
4920 if (unlikely(ma_dead_node(mn))) {
4921 mas_rewalk(mas, index);
4922 goto retry;
4923 }
4924
4925 if (likely(entry)) {
4926 mas->offset = offset;
4927 mas->last = pivot;
4928 mas->index = min;
4929 }
4930 return entry;
4931}
4932
4933static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4934{
4935 void *entry;
4936
50e81c82
LH
4937 if (mas->index < min) {
4938 mas->index = mas->last = min;
17dc622c 4939 mas->node = MAS_NONE;
50e81c82
LH
4940 return NULL;
4941 }
54a611b6
LH
4942retry:
4943 while (likely(!mas_is_none(mas))) {
4944 entry = mas_prev_nentry(mas, min, mas->index);
4945 if (unlikely(mas->last < min))
4946 goto not_found;
4947
4948 if (likely(entry))
4949 return entry;
4950
4951 if (unlikely(mas_prev_node(mas, min))) {
4952 mas_rewalk(mas, mas->index);
4953 goto retry;
4954 }
4955
4956 mas->offset++;
4957 }
4958
4959 mas->offset--;
4960not_found:
4961 mas->index = mas->last = min;
4962 return NULL;
4963}
4964
4965/*
4966 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4967 * highest gap address of a given size in a given node and descend.
4968 * @mas: The maple state
4969 * @size: The needed size.
4970 *
4971 * Return: True if found in a leaf, false otherwise.
4972 *
4973 */
4974static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4975{
4976 enum maple_type type = mte_node_type(mas->node);
4977 struct maple_node *node = mas_mn(mas);
4978 unsigned long *pivots, *gaps;
4979 void __rcu **slots;
4980 unsigned long gap = 0;
7327e811 4981 unsigned long max, min;
54a611b6
LH
4982 unsigned char offset;
4983
4984 if (unlikely(mas_is_err(mas)))
4985 return true;
4986
4987 if (ma_is_dense(type)) {
4988 /* dense nodes. */
4989 mas->offset = (unsigned char)(mas->index - mas->min);
4990 return true;
4991 }
4992
4993 pivots = ma_pivots(node, type);
4994 slots = ma_slots(node, type);
4995 gaps = ma_gaps(node, type);
4996 offset = mas->offset;
4997 min = mas_safe_min(mas, pivots, offset);
4998 /* Skip out of bounds. */
4999 while (mas->last < min)
5000 min = mas_safe_min(mas, pivots, --offset);
5001
5002 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 5003 while (mas->index <= max) {
54a611b6
LH
5004 gap = 0;
5005 if (gaps)
5006 gap = gaps[offset];
5007 else if (!mas_slot(mas, slots, offset))
5008 gap = max - min + 1;
5009
5010 if (gap) {
5011 if ((size <= gap) && (size <= mas->last - min + 1))
5012 break;
5013
5014 if (!gaps) {
5015 /* Skip the next slot, it cannot be a gap. */
5016 if (offset < 2)
5017 goto ascend;
5018
5019 offset -= 2;
5020 max = pivots[offset];
5021 min = mas_safe_min(mas, pivots, offset);
5022 continue;
5023 }
5024 }
5025
5026 if (!offset)
5027 goto ascend;
5028
5029 offset--;
5030 max = min - 1;
5031 min = mas_safe_min(mas, pivots, offset);
5032 }
5033
7327e811
LH
5034 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5035 goto no_space;
54a611b6
LH
5036
5037 if (unlikely(ma_is_leaf(type))) {
5038 mas->offset = offset;
5039 mas->min = min;
5040 mas->max = min + gap - 1;
5041 return true;
5042 }
5043
5044 /* descend, only happens under lock. */
5045 mas->node = mas_slot(mas, slots, offset);
5046 mas->min = min;
5047 mas->max = max;
5048 mas->offset = mas_data_end(mas);
5049 return false;
5050
5051ascend:
7327e811
LH
5052 if (!mte_is_root(mas->node))
5053 return false;
54a611b6 5054
7327e811
LH
5055no_space:
5056 mas_set_err(mas, -EBUSY);
54a611b6
LH
5057 return false;
5058}
5059
5060static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5061{
5062 enum maple_type type = mte_node_type(mas->node);
5063 unsigned long pivot, min, gap = 0;
9a887877
LH
5064 unsigned char offset;
5065 unsigned long *gaps;
5066 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
54a611b6
LH
5067 void __rcu **slots = ma_slots(mas_mn(mas), type);
5068 bool found = false;
5069
5070 if (ma_is_dense(type)) {
5071 mas->offset = (unsigned char)(mas->index - mas->min);
5072 return true;
5073 }
5074
5075 gaps = ma_gaps(mte_to_node(mas->node), type);
5076 offset = mas->offset;
54a611b6 5077 min = mas_safe_min(mas, pivots, offset);
9a887877 5078 for (; offset < mt_slots[type]; offset++) {
54a611b6
LH
5079 pivot = mas_safe_pivot(mas, pivots, offset, type);
5080 if (offset && !pivot)
5081 break;
5082
5083 /* Not within lower bounds */
5084 if (mas->index > pivot)
5085 goto next_slot;
5086
5087 if (gaps)
5088 gap = gaps[offset];
5089 else if (!mas_slot(mas, slots, offset))
5090 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5091 else
5092 goto next_slot;
5093
5094 if (gap >= size) {
5095 if (ma_is_leaf(type)) {
5096 found = true;
5097 goto done;
5098 }
5099 if (mas->index <= pivot) {
5100 mas->node = mas_slot(mas, slots, offset);
5101 mas->min = min;
5102 mas->max = pivot;
5103 offset = 0;
54a611b6
LH
5104 break;
5105 }
5106 }
5107next_slot:
5108 min = pivot + 1;
5109 if (mas->last <= pivot) {
5110 mas_set_err(mas, -EBUSY);
5111 return true;
5112 }
5113 }
5114
5115 if (mte_is_root(mas->node))
5116 found = true;
5117done:
5118 mas->offset = offset;
5119 return found;
5120}
5121
5122/**
5123 * mas_walk() - Search for @mas->index in the tree.
5124 * @mas: The maple state.
5125 *
5126 * mas->index and mas->last will be set to the range if there is a value. If
5127 * mas->node is MAS_NONE, reset to MAS_START.
5128 *
5129 * Return: the entry at the location or %NULL.
5130 */
5131void *mas_walk(struct ma_state *mas)
5132{
5133 void *entry;
5134
5135retry:
5136 entry = mas_state_walk(mas);
5137 if (mas_is_start(mas))
5138 goto retry;
5139
5140 if (mas_is_ptr(mas)) {
5141 if (!mas->index) {
5142 mas->last = 0;
5143 } else {
5144 mas->index = 1;
5145 mas->last = ULONG_MAX;
5146 }
5147 return entry;
5148 }
5149
5150 if (mas_is_none(mas)) {
5151 mas->index = 0;
5152 mas->last = ULONG_MAX;
5153 }
5154
5155 return entry;
5156}
120b1162 5157EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
5158
5159static inline bool mas_rewind_node(struct ma_state *mas)
5160{
5161 unsigned char slot;
5162
5163 do {
5164 if (mte_is_root(mas->node)) {
5165 slot = mas->offset;
5166 if (!slot)
5167 return false;
5168 } else {
5169 mas_ascend(mas);
5170 slot = mas->offset;
5171 }
5172 } while (!slot);
5173
5174 mas->offset = --slot;
5175 return true;
5176}
5177
5178/*
5179 * mas_skip_node() - Internal function. Skip over a node.
5180 * @mas: The maple state.
5181 *
5182 * Return: true if there is another node, false otherwise.
5183 */
5184static inline bool mas_skip_node(struct ma_state *mas)
5185{
0fa99fdf
LH
5186 if (mas_is_err(mas))
5187 return false;
54a611b6 5188
54a611b6
LH
5189 do {
5190 if (mte_is_root(mas->node)) {
0fa99fdf 5191 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5192 mas_set_err(mas, -EBUSY);
5193 return false;
5194 }
5195 } else {
5196 mas_ascend(mas);
54a611b6 5197 }
0fa99fdf 5198 } while (mas->offset >= mas_data_end(mas));
54a611b6 5199
0fa99fdf 5200 mas->offset++;
54a611b6
LH
5201 return true;
5202}
5203
5204/*
5205 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5206 * @size
5207 * @mas: The maple state
5208 * @size: The size of the gap required
5209 *
5210 * Search between @mas->index and @mas->last for a gap of @size.
5211 */
5212static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5213{
5214 struct maple_enode *last = NULL;
5215
5216 /*
5217 * There are 4 options:
5218 * go to child (descend)
5219 * go back to parent (ascend)
5220 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5221 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5222 */
5223 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5224 if (last == mas->node)
5225 mas_skip_node(mas);
5226 else
5227 last = mas->node;
5228 }
5229}
5230
5231/*
5232 * mas_fill_gap() - Fill a located gap with @entry.
5233 * @mas: The maple state
5234 * @entry: The value to store
5235 * @slot: The offset into the node to store the @entry
5236 * @size: The size of the entry
5237 * @index: The start location
5238 */
5239static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5240 unsigned char slot, unsigned long size, unsigned long *index)
5241{
5242 MA_WR_STATE(wr_mas, mas, entry);
5243 unsigned char pslot = mte_parent_slot(mas->node);
5244 struct maple_enode *mn = mas->node;
5245 unsigned long *pivots;
5246 enum maple_type ptype;
5247 /*
5248 * mas->index is the start address for the search
5249 * which may no longer be needed.
5250 * mas->last is the end address for the search
5251 */
5252
5253 *index = mas->index;
5254 mas->last = mas->index + size - 1;
5255
5256 /*
5257 * It is possible that using mas->max and mas->min to correctly
5258 * calculate the index and last will cause an issue in the gap
5259 * calculation, so fix the ma_state here
5260 */
5261 mas_ascend(mas);
5262 ptype = mte_node_type(mas->node);
5263 pivots = ma_pivots(mas_mn(mas), ptype);
5264 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5265 mas->min = mas_safe_min(mas, pivots, pslot);
5266 mas->node = mn;
5267 mas->offset = slot;
5268 mas_wr_store_entry(&wr_mas);
5269}
5270
5271/*
5272 * mas_sparse_area() - Internal function. Return upper or lower limit when
5273 * searching for a gap in an empty tree.
5274 * @mas: The maple state
5275 * @min: the minimum range
5276 * @max: The maximum range
5277 * @size: The size of the gap
5278 * @fwd: Searching forward or back
5279 */
5280static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5281 unsigned long max, unsigned long size, bool fwd)
5282{
5283 unsigned long start = 0;
5284
5285 if (!unlikely(mas_is_none(mas)))
5286 start++;
5287 /* mas_is_ptr */
5288
5289 if (start < min)
5290 start = min;
5291
5292 if (fwd) {
5293 mas->index = start;
5294 mas->last = start + size - 1;
5295 return;
5296 }
5297
5298 mas->index = max;
5299}
5300
5301/*
5302 * mas_empty_area() - Get the lowest address within the range that is
5303 * sufficient for the size requested.
5304 * @mas: The maple state
5305 * @min: The lowest value of the range
5306 * @max: The highest value of the range
5307 * @size: The size needed
5308 */
5309int mas_empty_area(struct ma_state *mas, unsigned long min,
5310 unsigned long max, unsigned long size)
5311{
5312 unsigned char offset;
5313 unsigned long *pivots;
5314 enum maple_type mt;
5315
5316 if (mas_is_start(mas))
5317 mas_start(mas);
5318 else if (mas->offset >= 2)
5319 mas->offset -= 2;
5320 else if (!mas_skip_node(mas))
5321 return -EBUSY;
5322
5323 /* Empty set */
5324 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5325 mas_sparse_area(mas, min, max, size, true);
5326 return 0;
5327 }
5328
5329 /* The start of the window can only be within these values */
5330 mas->index = min;
5331 mas->last = max;
5332 mas_awalk(mas, size);
5333
5334 if (unlikely(mas_is_err(mas)))
5335 return xa_err(mas->node);
5336
5337 offset = mas->offset;
5338 if (unlikely(offset == MAPLE_NODE_SLOTS))
5339 return -EBUSY;
5340
5341 mt = mte_node_type(mas->node);
5342 pivots = ma_pivots(mas_mn(mas), mt);
5343 if (offset)
5344 mas->min = pivots[offset - 1] + 1;
5345
5346 if (offset < mt_pivots[mt])
5347 mas->max = pivots[offset];
5348
5349 if (mas->index < mas->min)
5350 mas->index = mas->min;
5351
5352 mas->last = mas->index + size - 1;
5353 return 0;
5354}
120b1162 5355EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5356
5357/*
5358 * mas_empty_area_rev() - Get the highest address within the range that is
5359 * sufficient for the size requested.
5360 * @mas: The maple state
5361 * @min: The lowest value of the range
5362 * @max: The highest value of the range
5363 * @size: The size needed
5364 */
5365int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5366 unsigned long max, unsigned long size)
5367{
5368 struct maple_enode *last = mas->node;
5369
5370 if (mas_is_start(mas)) {
5371 mas_start(mas);
5372 mas->offset = mas_data_end(mas);
5373 } else if (mas->offset >= 2) {
5374 mas->offset -= 2;
5375 } else if (!mas_rewind_node(mas)) {
5376 return -EBUSY;
5377 }
5378
5379 /* Empty set. */
5380 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5381 mas_sparse_area(mas, min, max, size, false);
5382 return 0;
5383 }
5384
5385 /* The start of the window can only be within these values. */
5386 mas->index = min;
5387 mas->last = max;
5388
5389 while (!mas_rev_awalk(mas, size)) {
5390 if (last == mas->node) {
5391 if (!mas_rewind_node(mas))
5392 return -EBUSY;
5393 } else {
5394 last = mas->node;
5395 }
5396 }
5397
5398 if (mas_is_err(mas))
5399 return xa_err(mas->node);
5400
5401 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5402 return -EBUSY;
5403
5404 /*
5405 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5406 * the maximum is outside the window we are searching, then use the last
5407 * location in the search.
5408 * mas->max and mas->min is the range of the gap.
5409 * mas->index and mas->last are currently set to the search range.
5410 */
5411
5412 /* Trim the upper limit to the max. */
5413 if (mas->max <= mas->last)
5414 mas->last = mas->max;
5415
5416 mas->index = mas->last - size + 1;
5417 return 0;
5418}
120b1162 5419EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6
LH
5420
5421static inline int mas_alloc(struct ma_state *mas, void *entry,
5422 unsigned long size, unsigned long *index)
5423{
5424 unsigned long min;
5425
5426 mas_start(mas);
5427 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5428 mas_root_expand(mas, entry);
5429 if (mas_is_err(mas))
5430 return xa_err(mas->node);
5431
5432 if (!mas->index)
5433 return mte_pivot(mas->node, 0);
5434 return mte_pivot(mas->node, 1);
5435 }
5436
5437 /* Must be walking a tree. */
5438 mas_awalk(mas, size);
5439 if (mas_is_err(mas))
5440 return xa_err(mas->node);
5441
5442 if (mas->offset == MAPLE_NODE_SLOTS)
5443 goto no_gap;
5444
5445 /*
5446 * At this point, mas->node points to the right node and we have an
5447 * offset that has a sufficient gap.
5448 */
5449 min = mas->min;
5450 if (mas->offset)
5451 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5452
5453 if (mas->index < min)
5454 mas->index = min;
5455
5456 mas_fill_gap(mas, entry, mas->offset, size, index);
5457 return 0;
5458
5459no_gap:
5460 return -EBUSY;
5461}
5462
5463static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5464 unsigned long max, void *entry,
5465 unsigned long size, unsigned long *index)
5466{
5467 int ret = 0;
5468
5469 ret = mas_empty_area_rev(mas, min, max, size);
5470 if (ret)
5471 return ret;
5472
5473 if (mas_is_err(mas))
5474 return xa_err(mas->node);
5475
5476 if (mas->offset == MAPLE_NODE_SLOTS)
5477 goto no_gap;
5478
5479 mas_fill_gap(mas, entry, mas->offset, size, index);
5480 return 0;
5481
5482no_gap:
5483 return -EBUSY;
5484}
5485
5486/*
790e1fa8 5487 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5488 * @mas: The maple state
5489 * @slots: Pointer to the slot array
2e5b4921 5490 * @type: The maple node type
54a611b6
LH
5491 *
5492 * Must hold the write lock.
5493 *
5494 * Return: The number of leaves marked as dead.
5495 */
5496static inline
790e1fa8
LH
5497unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5498 void __rcu **slots)
54a611b6
LH
5499{
5500 struct maple_node *node;
5501 enum maple_type type;
5502 void *entry;
5503 int offset;
5504
790e1fa8
LH
5505 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5506 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5507 type = mte_node_type(entry);
5508 node = mte_to_node(entry);
5509 /* Use both node and type to catch LE & BE metadata */
5510 if (!node || !type)
5511 break;
5512
5513 mte_set_node_dead(entry);
54a611b6
LH
5514 node->type = type;
5515 rcu_assign_pointer(slots[offset], node);
5516 }
5517
5518 return offset;
5519}
5520
790e1fa8
LH
5521/**
5522 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5523 * @enode: The maple encoded node
5524 * @offset: The starting offset
5525 *
5526 * Note: This can only be used from the RCU callback context.
5527 */
5528static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6 5529{
790e1fa8 5530 struct maple_node *node, *next;
54a611b6
LH
5531 void __rcu **slots = NULL;
5532
790e1fa8 5533 next = mte_to_node(*enode);
54a611b6 5534 do {
790e1fa8
LH
5535 *enode = ma_enode_ptr(next);
5536 node = mte_to_node(*enode);
5537 slots = ma_slots(node, node->type);
5538 next = rcu_dereference_protected(slots[offset],
5539 lock_is_held(&rcu_callback_map));
54a611b6
LH
5540 offset = 0;
5541 } while (!ma_is_leaf(next->type));
5542
5543 return slots;
5544}
5545
790e1fa8
LH
5546/**
5547 * mt_free_walk() - Walk & free a tree in the RCU callback context
5548 * @head: The RCU head that's within the node.
5549 *
5550 * Note: This can only be used from the RCU callback context.
5551 */
54a611b6
LH
5552static void mt_free_walk(struct rcu_head *head)
5553{
5554 void __rcu **slots;
5555 struct maple_node *node, *start;
790e1fa8 5556 struct maple_enode *enode;
54a611b6
LH
5557 unsigned char offset;
5558 enum maple_type type;
54a611b6
LH
5559
5560 node = container_of(head, struct maple_node, rcu);
5561
5562 if (ma_is_leaf(node->type))
5563 goto free_leaf;
5564
54a611b6 5565 start = node;
790e1fa8
LH
5566 enode = mt_mk_node(node, node->type);
5567 slots = mte_dead_walk(&enode, 0);
5568 node = mte_to_node(enode);
54a611b6
LH
5569 do {
5570 mt_free_bulk(node->slot_len, slots);
5571 offset = node->parent_slot + 1;
790e1fa8
LH
5572 enode = node->piv_parent;
5573 if (mte_to_node(enode) == node)
5574 goto free_leaf;
5575
5576 type = mte_node_type(enode);
5577 slots = ma_slots(mte_to_node(enode), type);
5578 if ((offset < mt_slots[type]) &&
5579 rcu_dereference_protected(slots[offset],
5580 lock_is_held(&rcu_callback_map)))
5581 slots = mte_dead_walk(&enode, offset);
5582 node = mte_to_node(enode);
54a611b6
LH
5583 } while ((node != start) || (node->slot_len < offset));
5584
5585 slots = ma_slots(node, node->type);
5586 mt_free_bulk(node->slot_len, slots);
5587
54a611b6
LH
5588free_leaf:
5589 mt_free_rcu(&node->rcu);
5590}
5591
790e1fa8
LH
5592static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5593 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5594{
5595 struct maple_node *node;
790e1fa8 5596 struct maple_enode *next = *enode;
54a611b6 5597 void __rcu **slots = NULL;
790e1fa8
LH
5598 enum maple_type type;
5599 unsigned char next_offset = 0;
54a611b6
LH
5600
5601 do {
790e1fa8
LH
5602 *enode = next;
5603 node = mte_to_node(*enode);
5604 type = mte_node_type(*enode);
5605 slots = ma_slots(node, type);
5606 next = mt_slot_locked(mt, slots, next_offset);
5607 if ((mte_dead_node(next)))
5608 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5609
790e1fa8
LH
5610 mte_set_node_dead(*enode);
5611 node->type = type;
54a611b6
LH
5612 node->piv_parent = prev;
5613 node->parent_slot = offset;
790e1fa8
LH
5614 offset = next_offset;
5615 next_offset = 0;
5616 prev = *enode;
54a611b6
LH
5617 } while (!mte_is_leaf(next));
5618
5619 return slots;
5620}
5621
790e1fa8 5622static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5623 bool free)
5624{
5625 void __rcu **slots;
5626 struct maple_node *node = mte_to_node(enode);
5627 struct maple_enode *start;
54a611b6 5628
2e5b4921
LH
5629 if (mte_is_leaf(enode)) {
5630 node->type = mte_node_type(enode);
54a611b6 5631 goto free_leaf;
2e5b4921 5632 }
54a611b6 5633
2e5b4921 5634 start = enode;
790e1fa8
LH
5635 slots = mte_destroy_descend(&enode, mt, start, 0);
5636 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5637 do {
5638 enum maple_type type;
5639 unsigned char offset;
5640 struct maple_enode *parent, *tmp;
5641
790e1fa8 5642 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5643 if (free)
5644 mt_free_bulk(node->slot_len, slots);
5645 offset = node->parent_slot + 1;
790e1fa8
LH
5646 enode = node->piv_parent;
5647 if (mte_to_node(enode) == node)
5648 goto free_leaf;
54a611b6 5649
790e1fa8
LH
5650 type = mte_node_type(enode);
5651 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5652 if (offset >= mt_slots[type])
5653 goto next;
5654
790e1fa8 5655 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5656 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5657 parent = enode;
5658 enode = tmp;
5659 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5660 }
5661next:
790e1fa8
LH
5662 node = mte_to_node(enode);
5663 } while (start != enode);
54a611b6 5664
790e1fa8
LH
5665 node = mte_to_node(enode);
5666 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5667 if (free)
5668 mt_free_bulk(node->slot_len, slots);
5669
54a611b6
LH
5670free_leaf:
5671 if (free)
5672 mt_free_rcu(&node->rcu);
2e5b4921 5673 else
790e1fa8 5674 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5675}
5676
5677/*
5678 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5679 * @enode: the encoded maple node (maple_enode) to start
5680 * @mt: the tree to free - needed for node types.
54a611b6
LH
5681 *
5682 * Must hold the write lock.
5683 */
5684static inline void mte_destroy_walk(struct maple_enode *enode,
5685 struct maple_tree *mt)
5686{
5687 struct maple_node *node = mte_to_node(enode);
5688
5689 if (mt_in_rcu(mt)) {
790e1fa8 5690 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5691 call_rcu(&node->rcu, mt_free_walk);
5692 } else {
790e1fa8 5693 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5694 }
5695}
5696
5697static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5698{
1202700c
LH
5699 if (unlikely(mas_is_paused(wr_mas->mas)))
5700 mas_reset(wr_mas->mas);
5701
54a611b6
LH
5702 if (!mas_is_start(wr_mas->mas)) {
5703 if (mas_is_none(wr_mas->mas)) {
5704 mas_reset(wr_mas->mas);
5705 } else {
5706 wr_mas->r_max = wr_mas->mas->max;
5707 wr_mas->type = mte_node_type(wr_mas->mas->node);
5708 if (mas_is_span_wr(wr_mas))
5709 mas_reset(wr_mas->mas);
5710 }
5711 }
54a611b6
LH
5712}
5713
5714/* Interface */
5715
5716/**
5717 * mas_store() - Store an @entry.
5718 * @mas: The maple state.
5719 * @entry: The entry to store.
5720 *
5721 * The @mas->index and @mas->last is used to set the range for the @entry.
5722 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5723 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5724 *
5725 * Return: the first entry between mas->index and mas->last or %NULL.
5726 */
5727void *mas_store(struct ma_state *mas, void *entry)
5728{
5729 MA_WR_STATE(wr_mas, mas, entry);
5730
5731 trace_ma_write(__func__, mas, 0, entry);
5732#ifdef CONFIG_DEBUG_MAPLE_TREE
5733 if (mas->index > mas->last)
5734 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5735 MT_BUG_ON(mas->tree, mas->index > mas->last);
5736 if (mas->index > mas->last) {
5737 mas_set_err(mas, -EINVAL);
5738 return NULL;
5739 }
5740
5741#endif
5742
5743 /*
5744 * Storing is the same operation as insert with the added caveat that it
5745 * can overwrite entries. Although this seems simple enough, one may
5746 * want to examine what happens if a single store operation was to
5747 * overwrite multiple entries within a self-balancing B-Tree.
5748 */
5749 mas_wr_store_setup(&wr_mas);
5750 mas_wr_store_entry(&wr_mas);
5751 return wr_mas.content;
5752}
120b1162 5753EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5754
5755/**
5756 * mas_store_gfp() - Store a value into the tree.
5757 * @mas: The maple state
5758 * @entry: The entry to store
5759 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5760 *
5761 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5762 * be allocated.
5763 */
5764int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5765{
5766 MA_WR_STATE(wr_mas, mas, entry);
5767
5768 mas_wr_store_setup(&wr_mas);
5769 trace_ma_write(__func__, mas, 0, entry);
5770retry:
5771 mas_wr_store_entry(&wr_mas);
5772 if (unlikely(mas_nomem(mas, gfp)))
5773 goto retry;
5774
5775 if (unlikely(mas_is_err(mas)))
5776 return xa_err(mas->node);
5777
5778 return 0;
5779}
120b1162 5780EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5781
5782/**
5783 * mas_store_prealloc() - Store a value into the tree using memory
5784 * preallocated in the maple state.
5785 * @mas: The maple state
5786 * @entry: The entry to store.
5787 */
5788void mas_store_prealloc(struct ma_state *mas, void *entry)
5789{
5790 MA_WR_STATE(wr_mas, mas, entry);
5791
5792 mas_wr_store_setup(&wr_mas);
5793 trace_ma_write(__func__, mas, 0, entry);
5794 mas_wr_store_entry(&wr_mas);
5795 BUG_ON(mas_is_err(mas));
5796 mas_destroy(mas);
5797}
120b1162 5798EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5799
5800/**
5801 * mas_preallocate() - Preallocate enough nodes for a store operation
5802 * @mas: The maple state
54a611b6
LH
5803 * @gfp: The GFP_FLAGS to use for allocations.
5804 *
5805 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5806 */
c5d5546e 5807int mas_preallocate(struct ma_state *mas, gfp_t gfp)
54a611b6
LH
5808{
5809 int ret;
5810
5811 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5812 mas->mas_flags |= MA_STATE_PREALLOC;
5813 if (likely(!mas_is_err(mas)))
5814 return 0;
5815
5816 mas_set_alloc_req(mas, 0);
5817 ret = xa_err(mas->node);
5818 mas_reset(mas);
5819 mas_destroy(mas);
5820 mas_reset(mas);
5821 return ret;
5822}
5823
5824/*
5825 * mas_destroy() - destroy a maple state.
5826 * @mas: The maple state
5827 *
5828 * Upon completion, check the left-most node and rebalance against the node to
5829 * the right if necessary. Frees any allocated nodes associated with this maple
5830 * state.
5831 */
5832void mas_destroy(struct ma_state *mas)
5833{
5834 struct maple_alloc *node;
541e06b7 5835 unsigned long total;
54a611b6
LH
5836
5837 /*
5838 * When using mas_for_each() to insert an expected number of elements,
5839 * it is possible that the number inserted is less than the expected
5840 * number. To fix an invalid final node, a check is performed here to
5841 * rebalance the previous node with the final node.
5842 */
5843 if (mas->mas_flags & MA_STATE_REBALANCE) {
5844 unsigned char end;
5845
5846 if (mas_is_start(mas))
5847 mas_start(mas);
5848
5849 mtree_range_walk(mas);
5850 end = mas_data_end(mas) + 1;
5851 if (end < mt_min_slot_count(mas->node) - 1)
5852 mas_destroy_rebalance(mas, end);
5853
5854 mas->mas_flags &= ~MA_STATE_REBALANCE;
5855 }
5856 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5857
541e06b7
LH
5858 total = mas_allocated(mas);
5859 while (total) {
54a611b6
LH
5860 node = mas->alloc;
5861 mas->alloc = node->slot[0];
541e06b7
LH
5862 if (node->node_count > 1) {
5863 size_t count = node->node_count - 1;
5864
5865 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5866 total -= count;
5867 }
54a611b6 5868 kmem_cache_free(maple_node_cache, node);
541e06b7 5869 total--;
54a611b6 5870 }
541e06b7 5871
54a611b6
LH
5872 mas->alloc = NULL;
5873}
120b1162 5874EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5875
5876/*
5877 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5878 * @mas: The maple state
5879 * @nr_entries: The number of expected entries.
5880 *
5881 * This will attempt to pre-allocate enough nodes to store the expected number
5882 * of entries. The allocations will occur using the bulk allocator interface
5883 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5884 * to ensure any unused nodes are freed.
5885 *
5886 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5887 */
5888int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5889{
5890 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5891 struct maple_enode *enode = mas->node;
5892 int nr_nodes;
5893 int ret;
5894
5895 /*
5896 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5897 * forking a process and duplicating the VMAs from one tree to a new
5898 * tree. When such a situation arises, it is known that the new tree is
5899 * not going to be used until the entire tree is populated. For
5900 * performance reasons, it is best to use a bulk load with RCU disabled.
5901 * This allows for optimistic splitting that favours the left and reuse
5902 * of nodes during the operation.
5903 */
5904
5905 /* Optimize splitting for bulk insert in-order */
5906 mas->mas_flags |= MA_STATE_BULK;
5907
5908 /*
5909 * Avoid overflow, assume a gap between each entry and a trailing null.
5910 * If this is wrong, it just means allocation can happen during
5911 * insertion of entries.
5912 */
5913 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5914 if (!mt_is_alloc(mas->tree))
5915 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5916
5917 /* Leaves; reduce slots to keep space for expansion */
5918 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5919 /* Internal nodes */
5920 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5921 /* Add working room for split (2 nodes) + new parents */
5922 mas_node_count(mas, nr_nodes + 3);
5923
5924 /* Detect if allocations run out */
5925 mas->mas_flags |= MA_STATE_PREALLOC;
5926
5927 if (!mas_is_err(mas))
5928 return 0;
5929
5930 ret = xa_err(mas->node);
5931 mas->node = enode;
5932 mas_destroy(mas);
5933 return ret;
5934
5935}
120b1162 5936EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6
LH
5937
5938/**
5939 * mas_next() - Get the next entry.
5940 * @mas: The maple state
5941 * @max: The maximum index to check.
5942 *
5943 * Returns the next entry after @mas->index.
5944 * Must hold rcu_read_lock or the write lock.
5945 * Can return the zero entry.
5946 *
5947 * Return: The next entry or %NULL
5948 */
5949void *mas_next(struct ma_state *mas, unsigned long max)
5950{
5951 if (mas_is_none(mas) || mas_is_paused(mas))
5952 mas->node = MAS_START;
5953
5954 if (mas_is_start(mas))
5955 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5956
5957 if (mas_is_ptr(mas)) {
5958 if (!mas->index) {
5959 mas->index = 1;
5960 mas->last = ULONG_MAX;
5961 }
5962 return NULL;
5963 }
5964
5965 if (mas->last == ULONG_MAX)
5966 return NULL;
5967
5968 /* Retries on dead nodes handled by mas_next_entry */
5969 return mas_next_entry(mas, max);
5970}
5971EXPORT_SYMBOL_GPL(mas_next);
5972
5973/**
5974 * mt_next() - get the next value in the maple tree
5975 * @mt: The maple tree
5976 * @index: The start index
5977 * @max: The maximum index to check
5978 *
5979 * Return: The entry at @index or higher, or %NULL if nothing is found.
5980 */
5981void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5982{
5983 void *entry = NULL;
5984 MA_STATE(mas, mt, index, index);
5985
5986 rcu_read_lock();
5987 entry = mas_next(&mas, max);
5988 rcu_read_unlock();
5989 return entry;
5990}
5991EXPORT_SYMBOL_GPL(mt_next);
5992
5993/**
5994 * mas_prev() - Get the previous entry
5995 * @mas: The maple state
5996 * @min: The minimum value to check.
5997 *
5998 * Must hold rcu_read_lock or the write lock.
5999 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
6000 * searchable nodes.
6001 *
6002 * Return: the previous value or %NULL.
6003 */
6004void *mas_prev(struct ma_state *mas, unsigned long min)
6005{
6006 if (!mas->index) {
6007 /* Nothing comes before 0 */
6008 mas->last = 0;
17dc622c 6009 mas->node = MAS_NONE;
54a611b6
LH
6010 return NULL;
6011 }
6012
6013 if (unlikely(mas_is_ptr(mas)))
6014 return NULL;
6015
6016 if (mas_is_none(mas) || mas_is_paused(mas))
6017 mas->node = MAS_START;
6018
6019 if (mas_is_start(mas)) {
6020 mas_walk(mas);
6021 if (!mas->index)
6022 return NULL;
6023 }
6024
6025 if (mas_is_ptr(mas)) {
6026 if (!mas->index) {
6027 mas->last = 0;
6028 return NULL;
6029 }
6030
6031 mas->index = mas->last = 0;
6032 return mas_root_locked(mas);
6033 }
6034 return mas_prev_entry(mas, min);
6035}
6036EXPORT_SYMBOL_GPL(mas_prev);
6037
6038/**
6039 * mt_prev() - get the previous value in the maple tree
6040 * @mt: The maple tree
6041 * @index: The start index
6042 * @min: The minimum index to check
6043 *
6044 * Return: The entry at @index or lower, or %NULL if nothing is found.
6045 */
6046void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6047{
6048 void *entry = NULL;
6049 MA_STATE(mas, mt, index, index);
6050
6051 rcu_read_lock();
6052 entry = mas_prev(&mas, min);
6053 rcu_read_unlock();
6054 return entry;
6055}
6056EXPORT_SYMBOL_GPL(mt_prev);
6057
6058/**
6059 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6060 * @mas: The maple state to pause
6061 *
6062 * Some users need to pause a walk and drop the lock they're holding in
6063 * order to yield to a higher priority thread or carry out an operation
6064 * on an entry. Those users should call this function before they drop
6065 * the lock. It resets the @mas to be suitable for the next iteration
6066 * of the loop after the user has reacquired the lock. If most entries
6067 * found during a walk require you to call mas_pause(), the mt_for_each()
6068 * iterator may be more appropriate.
6069 *
6070 */
6071void mas_pause(struct ma_state *mas)
6072{
6073 mas->node = MAS_PAUSE;
6074}
6075EXPORT_SYMBOL_GPL(mas_pause);
6076
6077/**
6078 * mas_find() - On the first call, find the entry at or after mas->index up to
6079 * %max. Otherwise, find the entry after mas->index.
6080 * @mas: The maple state
6081 * @max: The maximum value to check.
6082 *
6083 * Must hold rcu_read_lock or the write lock.
6084 * If an entry exists, last and index are updated accordingly.
6085 * May set @mas->node to MAS_NONE.
6086 *
6087 * Return: The entry or %NULL.
6088 */
6089void *mas_find(struct ma_state *mas, unsigned long max)
6090{
6091 if (unlikely(mas_is_paused(mas))) {
6092 if (unlikely(mas->last == ULONG_MAX)) {
6093 mas->node = MAS_NONE;
6094 return NULL;
6095 }
6096 mas->node = MAS_START;
6097 mas->index = ++mas->last;
6098 }
6099
17dc622c
LH
6100 if (unlikely(mas_is_none(mas)))
6101 mas->node = MAS_START;
6102
54a611b6
LH
6103 if (unlikely(mas_is_start(mas))) {
6104 /* First run or continue */
6105 void *entry;
6106
6107 if (mas->index > max)
6108 return NULL;
6109
6110 entry = mas_walk(mas);
6111 if (entry)
6112 return entry;
6113 }
6114
6115 if (unlikely(!mas_searchable(mas)))
6116 return NULL;
6117
6118 /* Retries on dead nodes handled by mas_next_entry */
6119 return mas_next_entry(mas, max);
6120}
120b1162 6121EXPORT_SYMBOL_GPL(mas_find);
54a611b6
LH
6122
6123/**
6124 * mas_find_rev: On the first call, find the first non-null entry at or below
6125 * mas->index down to %min. Otherwise find the first non-null entry below
6126 * mas->index down to %min.
6127 * @mas: The maple state
6128 * @min: The minimum value to check.
6129 *
6130 * Must hold rcu_read_lock or the write lock.
6131 * If an entry exists, last and index are updated accordingly.
6132 * May set @mas->node to MAS_NONE.
6133 *
6134 * Return: The entry or %NULL.
6135 */
6136void *mas_find_rev(struct ma_state *mas, unsigned long min)
6137{
6138 if (unlikely(mas_is_paused(mas))) {
6139 if (unlikely(mas->last == ULONG_MAX)) {
6140 mas->node = MAS_NONE;
6141 return NULL;
6142 }
6143 mas->node = MAS_START;
6144 mas->last = --mas->index;
6145 }
6146
6147 if (unlikely(mas_is_start(mas))) {
6148 /* First run or continue */
6149 void *entry;
6150
6151 if (mas->index < min)
6152 return NULL;
6153
6154 entry = mas_walk(mas);
6155 if (entry)
6156 return entry;
6157 }
6158
6159 if (unlikely(!mas_searchable(mas)))
6160 return NULL;
6161
6162 if (mas->index < min)
6163 return NULL;
6164
d98c86b9 6165 /* Retries on dead nodes handled by mas_prev_entry */
54a611b6
LH
6166 return mas_prev_entry(mas, min);
6167}
120b1162 6168EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6
LH
6169
6170/**
6171 * mas_erase() - Find the range in which index resides and erase the entire
6172 * range.
6173 * @mas: The maple state
6174 *
6175 * Must hold the write lock.
6176 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6177 * erases that range.
6178 *
6179 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6180 */
6181void *mas_erase(struct ma_state *mas)
6182{
6183 void *entry;
6184 MA_WR_STATE(wr_mas, mas, NULL);
6185
6186 if (mas_is_none(mas) || mas_is_paused(mas))
6187 mas->node = MAS_START;
6188
6189 /* Retry unnecessary when holding the write lock. */
6190 entry = mas_state_walk(mas);
6191 if (!entry)
6192 return NULL;
6193
6194write_retry:
6195 /* Must reset to ensure spanning writes of last slot are detected */
6196 mas_reset(mas);
6197 mas_wr_store_setup(&wr_mas);
6198 mas_wr_store_entry(&wr_mas);
6199 if (mas_nomem(mas, GFP_KERNEL))
6200 goto write_retry;
6201
6202 return entry;
6203}
6204EXPORT_SYMBOL_GPL(mas_erase);
6205
6206/**
6207 * mas_nomem() - Check if there was an error allocating and do the allocation
6208 * if necessary If there are allocations, then free them.
6209 * @mas: The maple state
6210 * @gfp: The GFP_FLAGS to use for allocations
6211 * Return: true on allocation, false otherwise.
6212 */
6213bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6214 __must_hold(mas->tree->lock)
6215{
6216 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6217 mas_destroy(mas);
6218 return false;
6219 }
6220
6221 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6222 mtree_unlock(mas->tree);
6223 mas_alloc_nodes(mas, gfp);
6224 mtree_lock(mas->tree);
6225 } else {
6226 mas_alloc_nodes(mas, gfp);
6227 }
6228
6229 if (!mas_allocated(mas))
6230 return false;
6231
6232 mas->node = MAS_START;
6233 return true;
6234}
6235
6236void __init maple_tree_init(void)
6237{
6238 maple_node_cache = kmem_cache_create("maple_node",
6239 sizeof(struct maple_node), sizeof(struct maple_node),
6240 SLAB_PANIC, NULL);
6241}
6242
6243/**
6244 * mtree_load() - Load a value stored in a maple tree
6245 * @mt: The maple tree
6246 * @index: The index to load
6247 *
6248 * Return: the entry or %NULL
6249 */
6250void *mtree_load(struct maple_tree *mt, unsigned long index)
6251{
6252 MA_STATE(mas, mt, index, index);
6253 void *entry;
6254
6255 trace_ma_read(__func__, &mas);
6256 rcu_read_lock();
6257retry:
6258 entry = mas_start(&mas);
6259 if (unlikely(mas_is_none(&mas)))
6260 goto unlock;
6261
6262 if (unlikely(mas_is_ptr(&mas))) {
6263 if (index)
6264 entry = NULL;
6265
6266 goto unlock;
6267 }
6268
6269 entry = mtree_lookup_walk(&mas);
6270 if (!entry && unlikely(mas_is_start(&mas)))
6271 goto retry;
6272unlock:
6273 rcu_read_unlock();
6274 if (xa_is_zero(entry))
6275 return NULL;
6276
6277 return entry;
6278}
6279EXPORT_SYMBOL(mtree_load);
6280
6281/**
6282 * mtree_store_range() - Store an entry at a given range.
6283 * @mt: The maple tree
6284 * @index: The start of the range
6285 * @last: The end of the range
6286 * @entry: The entry to store
6287 * @gfp: The GFP_FLAGS to use for allocations
6288 *
6289 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6290 * be allocated.
6291 */
6292int mtree_store_range(struct maple_tree *mt, unsigned long index,
6293 unsigned long last, void *entry, gfp_t gfp)
6294{
6295 MA_STATE(mas, mt, index, last);
6296 MA_WR_STATE(wr_mas, &mas, entry);
6297
6298 trace_ma_write(__func__, &mas, 0, entry);
6299 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6300 return -EINVAL;
6301
6302 if (index > last)
6303 return -EINVAL;
6304
6305 mtree_lock(mt);
6306retry:
6307 mas_wr_store_entry(&wr_mas);
6308 if (mas_nomem(&mas, gfp))
6309 goto retry;
6310
6311 mtree_unlock(mt);
6312 if (mas_is_err(&mas))
6313 return xa_err(mas.node);
6314
6315 return 0;
6316}
6317EXPORT_SYMBOL(mtree_store_range);
6318
6319/**
6320 * mtree_store() - Store an entry at a given index.
6321 * @mt: The maple tree
6322 * @index: The index to store the value
6323 * @entry: The entry to store
6324 * @gfp: The GFP_FLAGS to use for allocations
6325 *
6326 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6327 * be allocated.
6328 */
6329int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6330 gfp_t gfp)
6331{
6332 return mtree_store_range(mt, index, index, entry, gfp);
6333}
6334EXPORT_SYMBOL(mtree_store);
6335
6336/**
6337 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6338 * @mt: The maple tree
6339 * @first: The start of the range
6340 * @last: The end of the range
6341 * @entry: The entry to store
6342 * @gfp: The GFP_FLAGS to use for allocations.
6343 *
6344 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6345 * request, -ENOMEM if memory could not be allocated.
6346 */
6347int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6348 unsigned long last, void *entry, gfp_t gfp)
6349{
6350 MA_STATE(ms, mt, first, last);
6351
6352 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6353 return -EINVAL;
6354
6355 if (first > last)
6356 return -EINVAL;
6357
6358 mtree_lock(mt);
6359retry:
6360 mas_insert(&ms, entry);
6361 if (mas_nomem(&ms, gfp))
6362 goto retry;
6363
6364 mtree_unlock(mt);
6365 if (mas_is_err(&ms))
6366 return xa_err(ms.node);
6367
6368 return 0;
6369}
6370EXPORT_SYMBOL(mtree_insert_range);
6371
6372/**
6373 * mtree_insert() - Insert an entry at a give index if there is no value.
6374 * @mt: The maple tree
6375 * @index : The index to store the value
6376 * @entry: The entry to store
6377 * @gfp: The FGP_FLAGS to use for allocations.
6378 *
6379 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6380 * request, -ENOMEM if memory could not be allocated.
6381 */
6382int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6383 gfp_t gfp)
6384{
6385 return mtree_insert_range(mt, index, index, entry, gfp);
6386}
6387EXPORT_SYMBOL(mtree_insert);
6388
6389int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6390 void *entry, unsigned long size, unsigned long min,
6391 unsigned long max, gfp_t gfp)
6392{
6393 int ret = 0;
6394
6395 MA_STATE(mas, mt, min, max - size);
6396 if (!mt_is_alloc(mt))
6397 return -EINVAL;
6398
6399 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6400 return -EINVAL;
6401
6402 if (min > max)
6403 return -EINVAL;
6404
6405 if (max < size)
6406 return -EINVAL;
6407
6408 if (!size)
6409 return -EINVAL;
6410
6411 mtree_lock(mt);
6412retry:
6413 mas.offset = 0;
6414 mas.index = min;
6415 mas.last = max - size;
6416 ret = mas_alloc(&mas, entry, size, startp);
6417 if (mas_nomem(&mas, gfp))
6418 goto retry;
6419
6420 mtree_unlock(mt);
6421 return ret;
6422}
6423EXPORT_SYMBOL(mtree_alloc_range);
6424
6425int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6426 void *entry, unsigned long size, unsigned long min,
6427 unsigned long max, gfp_t gfp)
6428{
6429 int ret = 0;
6430
6431 MA_STATE(mas, mt, min, max - size);
6432 if (!mt_is_alloc(mt))
6433 return -EINVAL;
6434
6435 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6436 return -EINVAL;
6437
6438 if (min >= max)
6439 return -EINVAL;
6440
6441 if (max < size - 1)
6442 return -EINVAL;
6443
6444 if (!size)
6445 return -EINVAL;
6446
6447 mtree_lock(mt);
6448retry:
6449 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6450 if (mas_nomem(&mas, gfp))
6451 goto retry;
6452
6453 mtree_unlock(mt);
6454 return ret;
6455}
6456EXPORT_SYMBOL(mtree_alloc_rrange);
6457
6458/**
6459 * mtree_erase() - Find an index and erase the entire range.
6460 * @mt: The maple tree
6461 * @index: The index to erase
6462 *
6463 * Erasing is the same as a walk to an entry then a store of a NULL to that
6464 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6465 *
6466 * Return: The entry stored at the @index or %NULL
6467 */
6468void *mtree_erase(struct maple_tree *mt, unsigned long index)
6469{
6470 void *entry = NULL;
6471
6472 MA_STATE(mas, mt, index, index);
6473 trace_ma_op(__func__, &mas);
6474
6475 mtree_lock(mt);
6476 entry = mas_erase(&mas);
6477 mtree_unlock(mt);
6478
6479 return entry;
6480}
6481EXPORT_SYMBOL(mtree_erase);
6482
6483/**
6484 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6485 * @mt: The maple tree
6486 *
6487 * Note: Does not handle locking.
6488 */
6489void __mt_destroy(struct maple_tree *mt)
6490{
6491 void *root = mt_root_locked(mt);
6492
6493 rcu_assign_pointer(mt->ma_root, NULL);
6494 if (xa_is_node(root))
6495 mte_destroy_walk(root, mt);
6496
6497 mt->ma_flags = 0;
6498}
6499EXPORT_SYMBOL_GPL(__mt_destroy);
6500
6501/**
6502 * mtree_destroy() - Destroy a maple tree
6503 * @mt: The maple tree
6504 *
6505 * Frees all resources used by the tree. Handles locking.
6506 */
6507void mtree_destroy(struct maple_tree *mt)
6508{
6509 mtree_lock(mt);
6510 __mt_destroy(mt);
6511 mtree_unlock(mt);
6512}
6513EXPORT_SYMBOL(mtree_destroy);
6514
6515/**
6516 * mt_find() - Search from the start up until an entry is found.
6517 * @mt: The maple tree
6518 * @index: Pointer which contains the start location of the search
6519 * @max: The maximum value to check
6520 *
6521 * Handles locking. @index will be incremented to one beyond the range.
6522 *
6523 * Return: The entry at or after the @index or %NULL
6524 */
6525void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6526{
6527 MA_STATE(mas, mt, *index, *index);
6528 void *entry;
6529#ifdef CONFIG_DEBUG_MAPLE_TREE
6530 unsigned long copy = *index;
6531#endif
6532
6533 trace_ma_read(__func__, &mas);
6534
6535 if ((*index) > max)
6536 return NULL;
6537
6538 rcu_read_lock();
6539retry:
6540 entry = mas_state_walk(&mas);
6541 if (mas_is_start(&mas))
6542 goto retry;
6543
6544 if (unlikely(xa_is_zero(entry)))
6545 entry = NULL;
6546
6547 if (entry)
6548 goto unlock;
6549
6550 while (mas_searchable(&mas) && (mas.index < max)) {
6551 entry = mas_next_entry(&mas, max);
6552 if (likely(entry && !xa_is_zero(entry)))
6553 break;
6554 }
6555
6556 if (unlikely(xa_is_zero(entry)))
6557 entry = NULL;
6558unlock:
6559 rcu_read_unlock();
6560 if (likely(entry)) {
6561 *index = mas.last + 1;
6562#ifdef CONFIG_DEBUG_MAPLE_TREE
6563 if ((*index) && (*index) <= copy)
6564 pr_err("index not increased! %lx <= %lx\n",
6565 *index, copy);
6566 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6567#endif
6568 }
6569
6570 return entry;
6571}
6572EXPORT_SYMBOL(mt_find);
6573
6574/**
6575 * mt_find_after() - Search from the start up until an entry is found.
6576 * @mt: The maple tree
6577 * @index: Pointer which contains the start location of the search
6578 * @max: The maximum value to check
6579 *
6580 * Handles locking, detects wrapping on index == 0
6581 *
6582 * Return: The entry at or after the @index or %NULL
6583 */
6584void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6585 unsigned long max)
6586{
6587 if (!(*index))
6588 return NULL;
6589
6590 return mt_find(mt, index, max);
6591}
6592EXPORT_SYMBOL(mt_find_after);
6593
6594#ifdef CONFIG_DEBUG_MAPLE_TREE
6595atomic_t maple_tree_tests_run;
6596EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6597atomic_t maple_tree_tests_passed;
6598EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6599
6600#ifndef __KERNEL__
6601extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6602void mt_set_non_kernel(unsigned int val)
6603{
6604 kmem_cache_set_non_kernel(maple_node_cache, val);
6605}
6606
6607extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6608unsigned long mt_get_alloc_size(void)
6609{
6610 return kmem_cache_get_alloc(maple_node_cache);
6611}
6612
6613extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6614void mt_zero_nr_tallocated(void)
6615{
6616 kmem_cache_zero_nr_tallocated(maple_node_cache);
6617}
6618
6619extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6620unsigned int mt_nr_tallocated(void)
6621{
6622 return kmem_cache_nr_tallocated(maple_node_cache);
6623}
6624
6625extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6626unsigned int mt_nr_allocated(void)
6627{
6628 return kmem_cache_nr_allocated(maple_node_cache);
6629}
6630
6631/*
6632 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6633 * @mas: The maple state
6634 * @index: The index to restore in @mas.
6635 *
6636 * Used in test code.
6637 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6638 */
6639static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6640{
6641 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6642 return 0;
6643
6644 if (likely(!mte_dead_node(mas->node)))
6645 return 0;
6646
6647 mas_rewalk(mas, index);
6648 return 1;
6649}
54a611b6 6650
120b1162
LH
6651void mt_cache_shrink(void)
6652{
6653}
6654#else
6655/*
6656 * mt_cache_shrink() - For testing, don't use this.
6657 *
6658 * Certain testcases can trigger an OOM when combined with other memory
6659 * debugging configuration options. This function is used to reduce the
6660 * possibility of an out of memory even due to kmem_cache objects remaining
6661 * around for longer than usual.
6662 */
6663void mt_cache_shrink(void)
6664{
6665 kmem_cache_shrink(maple_node_cache);
6666
6667}
6668EXPORT_SYMBOL_GPL(mt_cache_shrink);
6669
6670#endif /* not defined __KERNEL__ */
54a611b6
LH
6671/*
6672 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6673 * @mas: The maple state
6674 * @offset: The offset into the slot array to fetch.
6675 *
6676 * Return: The entry stored at @offset.
6677 */
6678static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6679 unsigned char offset)
6680{
6681 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6682 offset);
6683}
6684
6685
6686/*
6687 * mas_first_entry() - Go the first leaf and find the first entry.
6688 * @mas: the maple state.
6689 * @limit: the maximum index to check.
6690 * @*r_start: Pointer to set to the range start.
6691 *
6692 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6693 *
6694 * Return: The first entry or MAS_NONE.
6695 */
6696static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6697 unsigned long limit, enum maple_type mt)
6698
6699{
6700 unsigned long max;
6701 unsigned long *pivots;
6702 void __rcu **slots;
6703 void *entry = NULL;
6704
6705 mas->index = mas->min;
6706 if (mas->index > limit)
6707 goto none;
6708
6709 max = mas->max;
6710 mas->offset = 0;
6711 while (likely(!ma_is_leaf(mt))) {
6712 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6713 slots = ma_slots(mn, mt);
54a611b6 6714 entry = mas_slot(mas, slots, 0);
39d0bd86 6715 pivots = ma_pivots(mn, mt);
54a611b6
LH
6716 if (unlikely(ma_dead_node(mn)))
6717 return NULL;
39d0bd86 6718 max = pivots[0];
54a611b6
LH
6719 mas->node = entry;
6720 mn = mas_mn(mas);
6721 mt = mte_node_type(mas->node);
6722 }
6723 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6724
6725 mas->max = max;
6726 slots = ma_slots(mn, mt);
6727 entry = mas_slot(mas, slots, 0);
6728 if (unlikely(ma_dead_node(mn)))
6729 return NULL;
6730
6731 /* Slot 0 or 1 must be set */
6732 if (mas->index > limit)
6733 goto none;
6734
6735 if (likely(entry))
6736 return entry;
6737
54a611b6
LH
6738 mas->offset = 1;
6739 entry = mas_slot(mas, slots, 1);
39d0bd86 6740 pivots = ma_pivots(mn, mt);
54a611b6
LH
6741 if (unlikely(ma_dead_node(mn)))
6742 return NULL;
6743
39d0bd86 6744 mas->index = pivots[0] + 1;
54a611b6
LH
6745 if (mas->index > limit)
6746 goto none;
6747
6748 if (likely(entry))
6749 return entry;
6750
6751none:
6752 if (likely(!ma_dead_node(mn)))
6753 mas->node = MAS_NONE;
6754 return NULL;
6755}
6756
6757/* Depth first search, post-order */
6758static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6759{
6760
6761 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6762 unsigned long p_min, p_max;
6763
6764 mas_next_node(mas, mas_mn(mas), max);
6765 if (!mas_is_none(mas))
6766 return;
6767
6768 if (mte_is_root(mn))
6769 return;
6770
6771 mas->node = mn;
6772 mas_ascend(mas);
6773 while (mas->node != MAS_NONE) {
6774 p = mas->node;
6775 p_min = mas->min;
6776 p_max = mas->max;
6777 mas_prev_node(mas, 0);
6778 }
6779
6780 if (p == MAS_NONE)
6781 return;
6782
6783 mas->node = p;
6784 mas->max = p_max;
6785 mas->min = p_min;
6786}
6787
6788/* Tree validations */
6789static void mt_dump_node(const struct maple_tree *mt, void *entry,
6790 unsigned long min, unsigned long max, unsigned int depth);
6791static void mt_dump_range(unsigned long min, unsigned long max,
6792 unsigned int depth)
6793{
6794 static const char spaces[] = " ";
6795
6796 if (min == max)
6797 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6798 else
6799 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6800}
6801
6802static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6803 unsigned int depth)
6804{
6805 mt_dump_range(min, max, depth);
6806
6807 if (xa_is_value(entry))
6808 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6809 xa_to_value(entry), entry);
6810 else if (xa_is_zero(entry))
6811 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6812 else if (mt_is_reserved(entry))
6813 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6814 else
6815 pr_cont("%p\n", entry);
6816}
6817
6818static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6819 unsigned long min, unsigned long max, unsigned int depth)
6820{
6821 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6822 bool leaf = mte_is_leaf(entry);
6823 unsigned long first = min;
6824 int i;
6825
6826 pr_cont(" contents: ");
6827 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6828 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6829 pr_cont("%p\n", node->slot[i]);
6830 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6831 unsigned long last = max;
6832
6833 if (i < (MAPLE_RANGE64_SLOTS - 1))
6834 last = node->pivot[i];
bd592703 6835 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6836 break;
6837 if (last == 0 && i > 0)
6838 break;
6839 if (leaf)
6840 mt_dump_entry(mt_slot(mt, node->slot, i),
6841 first, last, depth + 1);
6842 else if (node->slot[i])
6843 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6844 first, last, depth + 1);
6845
6846 if (last == max)
6847 break;
6848 if (last > max) {
6849 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6850 node, last, max, i);
6851 break;
6852 }
6853 first = last + 1;
6854 }
6855}
6856
6857static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6858 unsigned long min, unsigned long max, unsigned int depth)
6859{
6860 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6861 bool leaf = mte_is_leaf(entry);
6862 unsigned long first = min;
6863 int i;
6864
6865 pr_cont(" contents: ");
6866 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6867 pr_cont("%lu ", node->gap[i]);
6868 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6869 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6870 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6871 pr_cont("%p\n", node->slot[i]);
6872 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6873 unsigned long last = max;
6874
6875 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6876 last = node->pivot[i];
6877 else if (!node->slot[i])
6878 break;
6879 if (last == 0 && i > 0)
6880 break;
6881 if (leaf)
6882 mt_dump_entry(mt_slot(mt, node->slot, i),
6883 first, last, depth + 1);
6884 else if (node->slot[i])
6885 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6886 first, last, depth + 1);
6887
6888 if (last == max)
6889 break;
6890 if (last > max) {
6891 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6892 node, last, max, i);
6893 break;
6894 }
6895 first = last + 1;
6896 }
6897}
6898
6899static void mt_dump_node(const struct maple_tree *mt, void *entry,
6900 unsigned long min, unsigned long max, unsigned int depth)
6901{
6902 struct maple_node *node = mte_to_node(entry);
6903 unsigned int type = mte_node_type(entry);
6904 unsigned int i;
6905
6906 mt_dump_range(min, max, depth);
6907
6908 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6909 node ? node->parent : NULL);
6910 switch (type) {
6911 case maple_dense:
6912 pr_cont("\n");
6913 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6914 if (min + i > max)
6915 pr_cont("OUT OF RANGE: ");
6916 mt_dump_entry(mt_slot(mt, node->slot, i),
6917 min + i, min + i, depth);
6918 }
6919 break;
6920 case maple_leaf_64:
6921 case maple_range_64:
6922 mt_dump_range64(mt, entry, min, max, depth);
6923 break;
6924 case maple_arange_64:
6925 mt_dump_arange64(mt, entry, min, max, depth);
6926 break;
6927
6928 default:
6929 pr_cont(" UNKNOWN TYPE\n");
6930 }
6931}
6932
6933void mt_dump(const struct maple_tree *mt)
6934{
6935 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6936
6937 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6938 mt, mt->ma_flags, mt_height(mt), entry);
6939 if (!xa_is_node(entry))
6940 mt_dump_entry(entry, 0, 0, 0);
6941 else if (entry)
bd592703 6942 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
54a611b6 6943}
120b1162 6944EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6945
6946/*
6947 * Calculate the maximum gap in a node and check if that's what is reported in
6948 * the parent (unless root).
6949 */
6950static void mas_validate_gaps(struct ma_state *mas)
6951{
6952 struct maple_enode *mte = mas->node;
6953 struct maple_node *p_mn;
6954 unsigned long gap = 0, max_gap = 0;
6955 unsigned long p_end, p_start = mas->min;
6956 unsigned char p_slot;
6957 unsigned long *gaps = NULL;
6958 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6959 int i;
6960
6961 if (ma_is_dense(mte_node_type(mte))) {
6962 for (i = 0; i < mt_slot_count(mte); i++) {
6963 if (mas_get_slot(mas, i)) {
6964 if (gap > max_gap)
6965 max_gap = gap;
6966 gap = 0;
6967 continue;
6968 }
6969 gap++;
6970 }
6971 goto counted;
6972 }
6973
6974 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6975 for (i = 0; i < mt_slot_count(mte); i++) {
6976 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6977
6978 if (!gaps) {
6979 if (mas_get_slot(mas, i)) {
6980 gap = 0;
6981 goto not_empty;
6982 }
6983
6984 gap += p_end - p_start + 1;
6985 } else {
6986 void *entry = mas_get_slot(mas, i);
6987
6988 gap = gaps[i];
6989 if (!entry) {
6990 if (gap != p_end - p_start + 1) {
6991 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6992 mas_mn(mas), i,
6993 mas_get_slot(mas, i), gap,
6994 p_end, p_start);
6995 mt_dump(mas->tree);
6996
6997 MT_BUG_ON(mas->tree,
6998 gap != p_end - p_start + 1);
6999 }
7000 } else {
7001 if (gap > p_end - p_start + 1) {
7002 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7003 mas_mn(mas), i, gap, p_end, p_start,
7004 p_end - p_start + 1);
7005 MT_BUG_ON(mas->tree,
7006 gap > p_end - p_start + 1);
7007 }
7008 }
7009 }
7010
7011 if (gap > max_gap)
7012 max_gap = gap;
7013not_empty:
7014 p_start = p_end + 1;
7015 if (p_end >= mas->max)
7016 break;
7017 }
7018
7019counted:
7020 if (mte_is_root(mte))
7021 return;
7022
7023 p_slot = mte_parent_slot(mas->node);
7024 p_mn = mte_parent(mte);
7025 MT_BUG_ON(mas->tree, max_gap > mas->max);
7026 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
7027 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7028 mt_dump(mas->tree);
7029 }
7030
7031 MT_BUG_ON(mas->tree,
7032 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
7033}
7034
7035static void mas_validate_parent_slot(struct ma_state *mas)
7036{
7037 struct maple_node *parent;
7038 struct maple_enode *node;
7039 enum maple_type p_type = mas_parent_enum(mas, mas->node);
7040 unsigned char p_slot = mte_parent_slot(mas->node);
7041 void __rcu **slots;
7042 int i;
7043
7044 if (mte_is_root(mas->node))
7045 return;
7046
7047 parent = mte_parent(mas->node);
7048 slots = ma_slots(parent, p_type);
7049 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7050
7051 /* Check prev/next parent slot for duplicate node entry */
7052
7053 for (i = 0; i < mt_slots[p_type]; i++) {
7054 node = mas_slot(mas, slots, i);
7055 if (i == p_slot) {
7056 if (node != mas->node)
7057 pr_err("parent %p[%u] does not have %p\n",
7058 parent, i, mas_mn(mas));
7059 MT_BUG_ON(mas->tree, node != mas->node);
7060 } else if (node == mas->node) {
7061 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7062 mas_mn(mas), parent, i, p_slot);
7063 MT_BUG_ON(mas->tree, node == mas->node);
7064 }
7065 }
7066}
7067
7068static void mas_validate_child_slot(struct ma_state *mas)
7069{
7070 enum maple_type type = mte_node_type(mas->node);
7071 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7072 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7073 struct maple_enode *child;
7074 unsigned char i;
7075
7076 if (mte_is_leaf(mas->node))
7077 return;
7078
7079 for (i = 0; i < mt_slots[type]; i++) {
7080 child = mas_slot(mas, slots, i);
7081 if (!pivots[i] || pivots[i] == mas->max)
7082 break;
7083
7084 if (!child)
7085 break;
7086
7087 if (mte_parent_slot(child) != i) {
7088 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7089 mas_mn(mas), i, mte_to_node(child),
7090 mte_parent_slot(child));
7091 MT_BUG_ON(mas->tree, 1);
7092 }
7093
7094 if (mte_parent(child) != mte_to_node(mas->node)) {
7095 pr_err("child %p has parent %p not %p\n",
7096 mte_to_node(child), mte_parent(child),
7097 mte_to_node(mas->node));
7098 MT_BUG_ON(mas->tree, 1);
7099 }
7100 }
7101}
7102
7103/*
7104 * Validate all pivots are within mas->min and mas->max.
7105 */
7106static void mas_validate_limits(struct ma_state *mas)
7107{
7108 int i;
7109 unsigned long prev_piv = 0;
7110 enum maple_type type = mte_node_type(mas->node);
7111 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7112 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7113
7114 /* all limits are fine here. */
7115 if (mte_is_root(mas->node))
7116 return;
7117
7118 for (i = 0; i < mt_slots[type]; i++) {
7119 unsigned long piv;
7120
7121 piv = mas_safe_pivot(mas, pivots, i, type);
7122
7123 if (!piv && (i != 0))
7124 break;
7125
7126 if (!mte_is_leaf(mas->node)) {
7127 void *entry = mas_slot(mas, slots, i);
7128
7129 if (!entry)
7130 pr_err("%p[%u] cannot be null\n",
7131 mas_mn(mas), i);
7132
7133 MT_BUG_ON(mas->tree, !entry);
7134 }
7135
7136 if (prev_piv > piv) {
7137 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7138 mas_mn(mas), i, piv, prev_piv);
7139 MT_BUG_ON(mas->tree, piv < prev_piv);
7140 }
7141
7142 if (piv < mas->min) {
7143 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7144 piv, mas->min);
7145 MT_BUG_ON(mas->tree, piv < mas->min);
7146 }
7147 if (piv > mas->max) {
7148 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7149 piv, mas->max);
7150 MT_BUG_ON(mas->tree, piv > mas->max);
7151 }
7152 prev_piv = piv;
7153 if (piv == mas->max)
7154 break;
7155 }
7156 for (i += 1; i < mt_slots[type]; i++) {
7157 void *entry = mas_slot(mas, slots, i);
7158
7159 if (entry && (i != mt_slots[type] - 1)) {
7160 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7161 i, entry);
7162 MT_BUG_ON(mas->tree, entry != NULL);
7163 }
7164
7165 if (i < mt_pivots[type]) {
7166 unsigned long piv = pivots[i];
7167
7168 if (!piv)
7169 continue;
7170
7171 pr_err("%p[%u] should not have piv %lu\n",
7172 mas_mn(mas), i, piv);
7173 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7174 }
7175 }
7176}
7177
7178static void mt_validate_nulls(struct maple_tree *mt)
7179{
7180 void *entry, *last = (void *)1;
7181 unsigned char offset = 0;
7182 void __rcu **slots;
7183 MA_STATE(mas, mt, 0, 0);
7184
7185 mas_start(&mas);
7186 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7187 return;
7188
7189 while (!mte_is_leaf(mas.node))
7190 mas_descend(&mas);
7191
7192 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7193 do {
7194 entry = mas_slot(&mas, slots, offset);
7195 if (!last && !entry) {
7196 pr_err("Sequential nulls end at %p[%u]\n",
7197 mas_mn(&mas), offset);
7198 }
7199 MT_BUG_ON(mt, !last && !entry);
7200 last = entry;
7201 if (offset == mas_data_end(&mas)) {
7202 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7203 if (mas_is_none(&mas))
7204 return;
7205 offset = 0;
7206 slots = ma_slots(mte_to_node(mas.node),
7207 mte_node_type(mas.node));
7208 } else {
7209 offset++;
7210 }
7211
7212 } while (!mas_is_none(&mas));
7213}
7214
7215/*
7216 * validate a maple tree by checking:
7217 * 1. The limits (pivots are within mas->min to mas->max)
7218 * 2. The gap is correctly set in the parents
7219 */
7220void mt_validate(struct maple_tree *mt)
7221{
7222 unsigned char end;
7223
7224 MA_STATE(mas, mt, 0, 0);
7225 rcu_read_lock();
7226 mas_start(&mas);
7227 if (!mas_searchable(&mas))
7228 goto done;
7229
7230 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7231 while (!mas_is_none(&mas)) {
7232 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7233 if (!mte_is_root(mas.node)) {
7234 end = mas_data_end(&mas);
7235 if ((end < mt_min_slot_count(mas.node)) &&
7236 (mas.max != ULONG_MAX)) {
7237 pr_err("Invalid size %u of %p\n", end,
7238 mas_mn(&mas));
7239 MT_BUG_ON(mas.tree, 1);
7240 }
7241
7242 }
7243 mas_validate_parent_slot(&mas);
7244 mas_validate_child_slot(&mas);
7245 mas_validate_limits(&mas);
7246 if (mt_is_alloc(mt))
7247 mas_validate_gaps(&mas);
7248 mas_dfs_postorder(&mas, ULONG_MAX);
7249 }
7250 mt_validate_nulls(mt);
7251done:
7252 rcu_read_unlock();
7253
7254}
120b1162 7255EXPORT_SYMBOL_GPL(mt_validate);
54a611b6
LH
7256
7257#endif /* CONFIG_DEBUG_MAPLE_TREE */