maple_tree: mtree_insert*: fix typo in kernel-doc description
[linux-block.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
c13af03d 188 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
5950ada9 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
54a611b6
LH
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
f0a1f866 243static inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6
LH
244{
245 return mas->node == MAS_ROOT;
246}
247
f0a1f866 248static inline bool mas_is_start(const struct ma_state *mas)
54a611b6
LH
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
afc754c6 428 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
429 * parent type.
430 * @mas: The maple state
afc754c6 431 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
432 * Return: The node->parent maple_type
433 */
434static inline
afc754c6 435enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
436{
437 unsigned long p_type;
438
afc754c6
LH
439 p_type = (unsigned long)mte_to_node(enode)->parent;
440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 return 0;
54a611b6
LH
442
443 p_type &= MAPLE_NODE_MASK;
afc754c6 444 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
445 switch (p_type) {
446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 447 if (mt_is_alloc(mas->tree))
54a611b6
LH
448 return maple_arange_64;
449 return maple_range_64;
450 }
451
452 return 0;
453}
454
54a611b6 455/*
bf96715e 456 * mas_set_parent() - Set the parent node and encode the slot
54a611b6
LH
457 * @enode: The encoded maple node.
458 * @parent: The encoded maple node that is the parent of @enode.
459 * @slot: The slot that @enode resides in @parent.
460 *
461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 * parent type.
463 */
464static inline
bf96715e
LH
465void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 const struct maple_enode *parent, unsigned char slot)
54a611b6 467{
831978e3 468 unsigned long val = (unsigned long)parent;
54a611b6
LH
469 unsigned long shift;
470 unsigned long type;
471 enum maple_type p_type = mte_node_type(parent);
472
bf96715e
LH
473 MAS_BUG_ON(mas, p_type == maple_dense);
474 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
475
476 switch (p_type) {
477 case maple_range_64:
478 case maple_arange_64:
479 shift = MAPLE_PARENT_SLOT_SHIFT;
480 type = MAPLE_PARENT_RANGE64;
481 break;
482 default:
483 case maple_dense:
484 case maple_leaf_64:
485 shift = type = 0;
486 break;
487 }
488
489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 val |= (slot << shift) | type;
491 mte_to_node(enode)->parent = ma_parent_ptr(val);
492}
493
494/*
495 * mte_parent_slot() - get the parent slot of @enode.
496 * @enode: The encoded maple node.
497 *
498 * Return: The slot in the parent node where @enode resides.
499 */
500static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501{
831978e3 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 503
84fd3e1e 504 if (val & MA_ROOT_PARENT)
54a611b6
LH
505 return 0;
506
507 /*
508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 */
511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512}
513
514/*
515 * mte_parent() - Get the parent of @node.
516 * @node: The encoded maple node.
517 *
518 * Return: The parent maple node.
519 */
520static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521{
522 return (void *)((unsigned long)
523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524}
525
526/*
527 * ma_dead_node() - check if the @enode is dead.
528 * @enode: The encoded maple node
529 *
530 * Return: true if dead, false otherwise.
531 */
532static inline bool ma_dead_node(const struct maple_node *node)
533{
0a2b18d9 534 struct maple_node *parent;
54a611b6 535
0a2b18d9
LH
536 /* Do not reorder reads from the node prior to the parent check */
537 smp_rmb();
538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
539 return (parent == node);
540}
39d0bd86 541
54a611b6
LH
542/*
543 * mte_dead_node() - check if the @enode is dead.
544 * @enode: The encoded maple node
545 *
546 * Return: true if dead, false otherwise.
547 */
548static inline bool mte_dead_node(const struct maple_enode *enode)
549{
550 struct maple_node *parent, *node;
551
552 node = mte_to_node(enode);
0a2b18d9
LH
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
54a611b6
LH
555 parent = mte_parent(enode);
556 return (parent == node);
557}
558
559/*
560 * mas_allocated() - Get the number of nodes allocated in a maple state.
561 * @mas: The maple state
562 *
563 * The ma_state alloc member is overloaded to hold a pointer to the first
564 * allocated node or to the number of requested nodes to allocate. If bit 0 is
565 * set, then the alloc contains the number of requested nodes. If there is an
566 * allocated node, then the total allocated nodes is in that node.
567 *
568 * Return: The total number of nodes allocated
569 */
570static inline unsigned long mas_allocated(const struct ma_state *mas)
571{
572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return 0;
574
575 return mas->alloc->total;
576}
577
578/*
579 * mas_set_alloc_req() - Set the requested number of allocations.
580 * @mas: the maple state
581 * @count: the number of allocations.
582 *
583 * The requested number of allocations is either in the first allocated node,
584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585 * no allocated node. Set the request either in the node or do the necessary
586 * encoding to store in @mas->alloc directly.
587 */
588static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589{
590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 if (!count)
592 mas->alloc = NULL;
593 else
594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 return;
596 }
597
598 mas->alloc->request_count = count;
599}
600
601/*
602 * mas_alloc_req() - get the requested number of allocations.
603 * @mas: The maple state
604 *
605 * The alloc count is either stored directly in @mas, or in
606 * @mas->alloc->request_count if there is at least one node allocated. Decode
607 * the request count if it's stored directly in @mas->alloc.
608 *
609 * Return: The allocation request count.
610 */
611static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612{
613 if ((unsigned long)mas->alloc & 0x1)
614 return (unsigned long)(mas->alloc) >> 1;
615 else if (mas->alloc)
616 return mas->alloc->request_count;
617 return 0;
618}
619
620/*
621 * ma_pivots() - Get a pointer to the maple node pivots.
622 * @node - the maple node
623 * @type - the node type
624 *
39d0bd86
LH
625 * In the event of a dead node, this array may be %NULL
626 *
54a611b6
LH
627 * Return: A pointer to the maple node pivots
628 */
629static inline unsigned long *ma_pivots(struct maple_node *node,
630 enum maple_type type)
631{
632 switch (type) {
633 case maple_arange_64:
634 return node->ma64.pivot;
635 case maple_range_64:
636 case maple_leaf_64:
637 return node->mr64.pivot;
638 case maple_dense:
639 return NULL;
640 }
641 return NULL;
642}
643
644/*
645 * ma_gaps() - Get a pointer to the maple node gaps.
646 * @node - the maple node
647 * @type - the node type
648 *
649 * Return: A pointer to the maple node gaps
650 */
651static inline unsigned long *ma_gaps(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.gap;
657 case maple_range_64:
658 case maple_leaf_64:
659 case maple_dense:
660 return NULL;
661 }
662 return NULL;
663}
664
665/*
acd4de60
LH
666 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
667 * @mas: The maple state.
54a611b6
LH
668 * @piv: The pivot.
669 *
670 * Return: the pivot at @piv of @mn.
671 */
acd4de60 672static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
54a611b6 673{
acd4de60
LH
674 struct maple_node *node = mas_mn(mas);
675 enum maple_type type = mte_node_type(mas->node);
54a611b6 676
acd4de60
LH
677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
678 mas_set_err(mas, -EIO);
54a611b6
LH
679 return 0;
680 }
acd4de60 681
ab6ef70a 682 switch (type) {
54a611b6
LH
683 case maple_arange_64:
684 return node->ma64.pivot[piv];
685 case maple_range_64:
686 case maple_leaf_64:
687 return node->mr64.pivot[piv];
688 case maple_dense:
689 return 0;
690 }
691 return 0;
692}
693
694/*
695 * mas_safe_pivot() - get the pivot at @piv or mas->max.
696 * @mas: The maple state
697 * @pivots: The pointer to the maple node pivots
698 * @piv: The pivot to fetch
699 * @type: The maple node type
700 *
701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 * otherwise.
703 */
704static inline unsigned long
705mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 unsigned char piv, enum maple_type type)
707{
708 if (piv >= mt_pivots[type])
709 return mas->max;
710
711 return pivots[piv];
712}
713
714/*
715 * mas_safe_min() - Return the minimum for a given offset.
716 * @mas: The maple state
717 * @pivots: The pointer to the maple node pivots
718 * @offset: The offset into the pivot array
719 *
720 * Return: The minimum range value that is contained in @offset.
721 */
722static inline unsigned long
723mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724{
725 if (likely(offset))
726 return pivots[offset - 1] + 1;
727
728 return mas->min;
729}
730
54a611b6
LH
731/*
732 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
733 * @mn: The encoded maple node
734 * @piv: The pivot offset
735 * @val: The value of the pivot
736 */
737static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
738 unsigned long val)
739{
740 struct maple_node *node = mte_to_node(mn);
741 enum maple_type type = mte_node_type(mn);
742
743 BUG_ON(piv >= mt_pivots[type]);
744 switch (type) {
745 default:
746 case maple_range_64:
747 case maple_leaf_64:
748 node->mr64.pivot[piv] = val;
749 break;
750 case maple_arange_64:
751 node->ma64.pivot[piv] = val;
752 break;
753 case maple_dense:
754 break;
755 }
756
757}
758
759/*
760 * ma_slots() - Get a pointer to the maple node slots.
761 * @mn: The maple node
762 * @mt: The maple node type
763 *
764 * Return: A pointer to the maple node slots
765 */
766static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
767{
768 switch (mt) {
769 default:
770 case maple_arange_64:
771 return mn->ma64.slot;
772 case maple_range_64:
773 case maple_leaf_64:
774 return mn->mr64.slot;
775 case maple_dense:
776 return mn->slot;
777 }
778}
779
780static inline bool mt_locked(const struct maple_tree *mt)
781{
782 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
783 lockdep_is_held(&mt->ma_lock);
784}
785
786static inline void *mt_slot(const struct maple_tree *mt,
787 void __rcu **slots, unsigned char offset)
788{
789 return rcu_dereference_check(slots[offset], mt_locked(mt));
790}
791
790e1fa8
LH
792static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
793 unsigned char offset)
794{
795 return rcu_dereference_protected(slots[offset], mt_locked(mt));
796}
54a611b6
LH
797/*
798 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
799 * @mas: The maple state
800 * @slots: The pointer to the slots
801 * @offset: The offset into the slots array to fetch
802 *
803 * Return: The entry stored in @slots at the @offset.
804 */
805static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
806 unsigned char offset)
807{
790e1fa8 808 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
809}
810
811/*
812 * mas_slot() - Get the slot value when not holding the maple tree lock.
813 * @mas: The maple state
814 * @slots: The pointer to the slots
815 * @offset: The offset into the slots array to fetch
816 *
817 * Return: The entry stored in @slots at the @offset
818 */
819static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
820 unsigned char offset)
821{
822 return mt_slot(mas->tree, slots, offset);
823}
824
825/*
826 * mas_root() - Get the maple tree root.
827 * @mas: The maple state.
828 *
829 * Return: The pointer to the root of the tree
830 */
831static inline void *mas_root(struct ma_state *mas)
832{
833 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
834}
835
836static inline void *mt_root_locked(struct maple_tree *mt)
837{
838 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
839}
840
841/*
842 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
843 * @mas: The maple state.
844 *
845 * Return: The pointer to the root of the tree
846 */
847static inline void *mas_root_locked(struct ma_state *mas)
848{
849 return mt_root_locked(mas->tree);
850}
851
852static inline struct maple_metadata *ma_meta(struct maple_node *mn,
853 enum maple_type mt)
854{
855 switch (mt) {
856 case maple_arange_64:
857 return &mn->ma64.meta;
858 default:
859 return &mn->mr64.meta;
860 }
861}
862
863/*
864 * ma_set_meta() - Set the metadata information of a node.
865 * @mn: The maple node
866 * @mt: The maple node type
867 * @offset: The offset of the highest sub-gap in this node.
868 * @end: The end of the data in this node.
869 */
870static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
871 unsigned char offset, unsigned char end)
872{
873 struct maple_metadata *meta = ma_meta(mn, mt);
874
875 meta->gap = offset;
876 meta->end = end;
877}
878
2e5b4921 879/*
790e1fa8
LH
880 * mt_clear_meta() - clear the metadata information of a node, if it exists
881 * @mt: The maple tree
2e5b4921 882 * @mn: The maple node
790e1fa8 883 * @type: The maple node type
2e5b4921
LH
884 * @offset: The offset of the highest sub-gap in this node.
885 * @end: The end of the data in this node.
886 */
790e1fa8
LH
887static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
888 enum maple_type type)
2e5b4921
LH
889{
890 struct maple_metadata *meta;
891 unsigned long *pivots;
892 void __rcu **slots;
893 void *next;
894
790e1fa8 895 switch (type) {
2e5b4921
LH
896 case maple_range_64:
897 pivots = mn->mr64.pivot;
898 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
899 slots = mn->mr64.slot;
790e1fa8
LH
900 next = mt_slot_locked(mt, slots,
901 MAPLE_RANGE64_SLOTS - 1);
902 if (unlikely((mte_to_node(next) &&
903 mte_node_type(next))))
904 return; /* no metadata, could be node */
2e5b4921
LH
905 }
906 fallthrough;
907 case maple_arange_64:
790e1fa8 908 meta = ma_meta(mn, type);
2e5b4921
LH
909 break;
910 default:
911 return;
912 }
913
914 meta->gap = 0;
915 meta->end = 0;
916}
917
54a611b6
LH
918/*
919 * ma_meta_end() - Get the data end of a node from the metadata
920 * @mn: The maple node
921 * @mt: The maple node type
922 */
923static inline unsigned char ma_meta_end(struct maple_node *mn,
924 enum maple_type mt)
925{
926 struct maple_metadata *meta = ma_meta(mn, mt);
927
928 return meta->end;
929}
930
931/*
932 * ma_meta_gap() - Get the largest gap location of a node from the metadata
933 * @mn: The maple node
934 * @mt: The maple node type
935 */
936static inline unsigned char ma_meta_gap(struct maple_node *mn,
937 enum maple_type mt)
938{
54a611b6
LH
939 return mn->ma64.meta.gap;
940}
941
942/*
943 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
944 * @mn: The maple node
945 * @mn: The maple node type
946 * @offset: The location of the largest gap.
947 */
948static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
949 unsigned char offset)
950{
951
952 struct maple_metadata *meta = ma_meta(mn, mt);
953
954 meta->gap = offset;
955}
956
957/*
958 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
959 * @mat - the ma_topiary, a linked list of dead nodes.
960 * @dead_enode - the node to be marked as dead and added to the tail of the list
961 *
962 * Add the @dead_enode to the linked list in @mat.
963 */
964static inline void mat_add(struct ma_topiary *mat,
965 struct maple_enode *dead_enode)
966{
967 mte_set_node_dead(dead_enode);
968 mte_to_mat(dead_enode)->next = NULL;
969 if (!mat->tail) {
970 mat->tail = mat->head = dead_enode;
971 return;
972 }
973
974 mte_to_mat(mat->tail)->next = dead_enode;
975 mat->tail = dead_enode;
976}
977
978static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
979static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
980
981/*
982 * mas_mat_free() - Free all nodes in a dead list.
983 * @mas - the maple state
984 * @mat - the ma_topiary linked list of dead nodes to free.
985 *
986 * Free walk a dead list.
987 */
988static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
989{
990 struct maple_enode *next;
991
992 while (mat->head) {
993 next = mte_to_mat(mat->head)->next;
994 mas_free(mas, mat->head);
995 mat->head = next;
996 }
997}
998
999/*
1000 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1001 * @mas - the maple state
1002 * @mat - the ma_topiary linked list of dead nodes to free.
1003 *
1004 * Destroy walk a dead list.
1005 */
1006static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1007{
1008 struct maple_enode *next;
1009
1010 while (mat->head) {
1011 next = mte_to_mat(mat->head)->next;
1012 mte_destroy_walk(mat->head, mat->mtree);
1013 mat->head = next;
1014 }
1015}
1016/*
1017 * mas_descend() - Descend into the slot stored in the ma_state.
1018 * @mas - the maple state.
1019 *
1020 * Note: Not RCU safe, only use in write side or debug code.
1021 */
1022static inline void mas_descend(struct ma_state *mas)
1023{
1024 enum maple_type type;
1025 unsigned long *pivots;
1026 struct maple_node *node;
1027 void __rcu **slots;
1028
1029 node = mas_mn(mas);
1030 type = mte_node_type(mas->node);
1031 pivots = ma_pivots(node, type);
1032 slots = ma_slots(node, type);
1033
1034 if (mas->offset)
1035 mas->min = pivots[mas->offset - 1] + 1;
1036 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1037 mas->node = mas_slot(mas, slots, mas->offset);
1038}
1039
1040/*
1041 * mte_set_gap() - Set a maple node gap.
1042 * @mn: The encoded maple node
1043 * @gap: The offset of the gap to set
1044 * @val: The gap value
1045 */
1046static inline void mte_set_gap(const struct maple_enode *mn,
1047 unsigned char gap, unsigned long val)
1048{
1049 switch (mte_node_type(mn)) {
1050 default:
1051 break;
1052 case maple_arange_64:
1053 mte_to_node(mn)->ma64.gap[gap] = val;
1054 break;
1055 }
1056}
1057
1058/*
1059 * mas_ascend() - Walk up a level of the tree.
1060 * @mas: The maple state
1061 *
1062 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1063 * may cause several levels of walking up to find the correct min and max.
1064 * May find a dead node which will cause a premature return.
1065 * Return: 1 on dead node, 0 otherwise
1066 */
1067static int mas_ascend(struct ma_state *mas)
1068{
1069 struct maple_enode *p_enode; /* parent enode. */
1070 struct maple_enode *a_enode; /* ancestor enode. */
1071 struct maple_node *a_node; /* ancestor node. */
1072 struct maple_node *p_node; /* parent node. */
1073 unsigned char a_slot;
1074 enum maple_type a_type;
1075 unsigned long min, max;
1076 unsigned long *pivots;
54a611b6
LH
1077 bool set_max = false, set_min = false;
1078
1079 a_node = mas_mn(mas);
1080 if (ma_is_root(a_node)) {
1081 mas->offset = 0;
1082 return 0;
1083 }
1084
1085 p_node = mte_parent(mas->node);
1086 if (unlikely(a_node == p_node))
1087 return 1;
633769c9 1088
afc754c6 1089 a_type = mas_parent_type(mas, mas->node);
633769c9 1090 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1091 a_enode = mt_mk_node(p_node, a_type);
1092
1093 /* Check to make sure all parent information is still accurate */
1094 if (p_node != mte_parent(mas->node))
1095 return 1;
1096
1097 mas->node = a_enode;
54a611b6
LH
1098
1099 if (mte_is_root(a_enode)) {
1100 mas->max = ULONG_MAX;
1101 mas->min = 0;
1102 return 0;
1103 }
1104
633769c9
LH
1105 if (!mas->min)
1106 set_min = true;
1107
1108 if (mas->max == ULONG_MAX)
1109 set_max = true;
1110
54a611b6
LH
1111 min = 0;
1112 max = ULONG_MAX;
1113 do {
1114 p_enode = a_enode;
afc754c6 1115 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1116 a_node = mte_parent(p_enode);
1117 a_slot = mte_parent_slot(p_enode);
54a611b6 1118 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1119 pivots = ma_pivots(a_node, a_type);
1120
1121 if (unlikely(ma_dead_node(a_node)))
1122 return 1;
54a611b6
LH
1123
1124 if (!set_min && a_slot) {
1125 set_min = true;
1126 min = pivots[a_slot - 1] + 1;
1127 }
1128
1129 if (!set_max && a_slot < mt_pivots[a_type]) {
1130 set_max = true;
1131 max = pivots[a_slot];
1132 }
1133
1134 if (unlikely(ma_dead_node(a_node)))
1135 return 1;
1136
1137 if (unlikely(ma_is_root(a_node)))
1138 break;
1139
1140 } while (!set_min || !set_max);
1141
1142 mas->max = max;
1143 mas->min = min;
1144 return 0;
1145}
1146
1147/*
1148 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1149 * @mas: The maple state
1150 *
1151 * Return: A pointer to a maple node.
1152 */
1153static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1154{
1155 struct maple_alloc *ret, *node = mas->alloc;
1156 unsigned long total = mas_allocated(mas);
541e06b7 1157 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1158
1159 /* nothing or a request pending. */
541e06b7 1160 if (WARN_ON(!total))
54a611b6
LH
1161 return NULL;
1162
1163 if (total == 1) {
1164 /* single allocation in this ma_state */
1165 mas->alloc = NULL;
1166 ret = node;
1167 goto single_node;
1168 }
1169
541e06b7 1170 if (node->node_count == 1) {
54a611b6
LH
1171 /* Single allocation in this node. */
1172 mas->alloc = node->slot[0];
54a611b6
LH
1173 mas->alloc->total = node->total - 1;
1174 ret = node;
1175 goto new_head;
1176 }
54a611b6 1177 node->total--;
541e06b7
LH
1178 ret = node->slot[--node->node_count];
1179 node->slot[node->node_count] = NULL;
54a611b6
LH
1180
1181single_node:
1182new_head:
541e06b7
LH
1183 if (req) {
1184 req++;
1185 mas_set_alloc_req(mas, req);
54a611b6 1186 }
541e06b7
LH
1187
1188 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1189 return (struct maple_node *)ret;
1190}
1191
1192/*
1193 * mas_push_node() - Push a node back on the maple state allocation.
1194 * @mas: The maple state
1195 * @used: The used maple node
1196 *
1197 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1198 * requested node count as necessary.
1199 */
1200static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1201{
1202 struct maple_alloc *reuse = (struct maple_alloc *)used;
1203 struct maple_alloc *head = mas->alloc;
1204 unsigned long count;
1205 unsigned int requested = mas_alloc_req(mas);
1206
54a611b6
LH
1207 count = mas_allocated(mas);
1208
541e06b7
LH
1209 reuse->request_count = 0;
1210 reuse->node_count = 0;
1211 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1212 head->slot[head->node_count++] = reuse;
54a611b6
LH
1213 head->total++;
1214 goto done;
1215 }
1216
1217 reuse->total = 1;
1218 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1219 reuse->slot[0] = head;
541e06b7 1220 reuse->node_count = 1;
54a611b6
LH
1221 reuse->total += head->total;
1222 }
1223
1224 mas->alloc = reuse;
1225done:
1226 if (requested > 1)
1227 mas_set_alloc_req(mas, requested - 1);
1228}
1229
1230/*
1231 * mas_alloc_nodes() - Allocate nodes into a maple state
1232 * @mas: The maple state
1233 * @gfp: The GFP Flags
1234 */
1235static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1236{
1237 struct maple_alloc *node;
54a611b6 1238 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1239 unsigned int requested = mas_alloc_req(mas);
1240 unsigned int count;
1241 void **slots = NULL;
1242 unsigned int max_req = 0;
1243
1244 if (!requested)
1245 return;
1246
1247 mas_set_alloc_req(mas, 0);
1248 if (mas->mas_flags & MA_STATE_PREALLOC) {
1249 if (allocated)
1250 return;
1251 WARN_ON(!allocated);
1252 }
1253
541e06b7 1254 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1255 node = (struct maple_alloc *)mt_alloc_one(gfp);
1256 if (!node)
1257 goto nomem_one;
1258
541e06b7 1259 if (allocated) {
54a611b6 1260 node->slot[0] = mas->alloc;
541e06b7
LH
1261 node->node_count = 1;
1262 } else {
1263 node->node_count = 0;
1264 }
54a611b6 1265
54a611b6 1266 mas->alloc = node;
541e06b7 1267 node->total = ++allocated;
54a611b6
LH
1268 requested--;
1269 }
1270
1271 node = mas->alloc;
541e06b7 1272 node->request_count = 0;
54a611b6 1273 while (requested) {
1f5f12ec
PZ
1274 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1275 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1276 max_req = min(requested, max_req);
1277 count = mt_alloc_bulk(gfp, max_req, slots);
1278 if (!count)
1279 goto nomem_bulk;
1280
1f5f12ec
PZ
1281 if (node->node_count == 0) {
1282 node->slot[0]->node_count = 0;
1283 node->slot[0]->request_count = 0;
1284 }
1285
54a611b6 1286 node->node_count += count;
541e06b7 1287 allocated += count;
c61b3a2b 1288 node = node->slot[0];
54a611b6
LH
1289 requested -= count;
1290 }
541e06b7 1291 mas->alloc->total = allocated;
54a611b6
LH
1292 return;
1293
1294nomem_bulk:
1295 /* Clean up potential freed allocations on bulk failure */
1296 memset(slots, 0, max_req * sizeof(unsigned long));
1297nomem_one:
1298 mas_set_alloc_req(mas, requested);
1299 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1300 mas->alloc->total = allocated;
54a611b6 1301 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1302}
1303
1304/*
1305 * mas_free() - Free an encoded maple node
1306 * @mas: The maple state
1307 * @used: The encoded maple node to free.
1308 *
1309 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310 * otherwise.
1311 */
1312static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313{
1314 struct maple_node *tmp = mte_to_node(used);
1315
1316 if (mt_in_rcu(mas->tree))
1317 ma_free_rcu(tmp);
1318 else
1319 mas_push_node(mas, tmp);
1320}
1321
1322/*
1323 * mas_node_count() - Check if enough nodes are allocated and request more if
1324 * there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1327 * @gfp: the gfp flags
1328 */
1329static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330{
1331 unsigned long allocated = mas_allocated(mas);
1332
1333 if (allocated < count) {
1334 mas_set_alloc_req(mas, count - allocated);
1335 mas_alloc_nodes(mas, gfp);
1336 }
1337}
1338
1339/*
1340 * mas_node_count() - Check if enough nodes are allocated and request more if
1341 * there is not enough nodes.
1342 * @mas: The maple state
1343 * @count: The number of nodes needed
1344 *
1345 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346 */
1347static void mas_node_count(struct ma_state *mas, int count)
1348{
1349 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350}
1351
1352/*
1353 * mas_start() - Sets up maple state for operations.
1354 * @mas: The maple state.
1355 *
46b34584 1356 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1357 * defaults.
1358 *
1359 * Return:
1360 * - If mas->node is an error or not MAS_START, return NULL.
1361 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1362 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1363 * - If it's a tree: NULL & mas->node == safe root node.
1364 */
1365static inline struct maple_enode *mas_start(struct ma_state *mas)
1366{
1367 if (likely(mas_is_start(mas))) {
1368 struct maple_enode *root;
1369
54a611b6
LH
1370 mas->min = 0;
1371 mas->max = ULONG_MAX;
54a611b6 1372
a7b92d59 1373retry:
d0411860 1374 mas->depth = 0;
54a611b6
LH
1375 root = mas_root(mas);
1376 /* Tree with nodes */
1377 if (likely(xa_is_node(root))) {
9bbba563 1378 mas->depth = 1;
54a611b6 1379 mas->node = mte_safe_root(root);
46b34584 1380 mas->offset = 0;
a7b92d59
LH
1381 if (mte_dead_node(mas->node))
1382 goto retry;
1383
54a611b6
LH
1384 return NULL;
1385 }
1386
1387 /* empty tree */
1388 if (unlikely(!root)) {
46b34584 1389 mas->node = MAS_NONE;
54a611b6
LH
1390 mas->offset = MAPLE_NODE_SLOTS;
1391 return NULL;
1392 }
1393
1394 /* Single entry tree */
1395 mas->node = MAS_ROOT;
1396 mas->offset = MAPLE_NODE_SLOTS;
1397
1398 /* Single entry tree. */
1399 if (mas->index > 0)
1400 return NULL;
1401
1402 return root;
1403 }
1404
1405 return NULL;
1406}
1407
1408/*
1409 * ma_data_end() - Find the end of the data in a node.
1410 * @node: The maple node
1411 * @type: The maple node type
1412 * @pivots: The array of pivots in the node
1413 * @max: The maximum value in the node
1414 *
1415 * Uses metadata to find the end of the data when possible.
1416 * Return: The zero indexed last slot with data (may be null).
1417 */
1418static inline unsigned char ma_data_end(struct maple_node *node,
1419 enum maple_type type,
1420 unsigned long *pivots,
1421 unsigned long max)
1422{
1423 unsigned char offset;
1424
39d0bd86
LH
1425 if (!pivots)
1426 return 0;
1427
54a611b6
LH
1428 if (type == maple_arange_64)
1429 return ma_meta_end(node, type);
1430
1431 offset = mt_pivots[type] - 1;
1432 if (likely(!pivots[offset]))
1433 return ma_meta_end(node, type);
1434
1435 if (likely(pivots[offset] == max))
1436 return offset;
1437
1438 return mt_pivots[type];
1439}
1440
1441/*
1442 * mas_data_end() - Find the end of the data (slot).
1443 * @mas: the maple state
1444 *
1445 * This method is optimized to check the metadata of a node if the node type
1446 * supports data end metadata.
1447 *
1448 * Return: The zero indexed last slot with data (may be null).
1449 */
1450static inline unsigned char mas_data_end(struct ma_state *mas)
1451{
1452 enum maple_type type;
1453 struct maple_node *node;
1454 unsigned char offset;
1455 unsigned long *pivots;
1456
1457 type = mte_node_type(mas->node);
1458 node = mas_mn(mas);
1459 if (type == maple_arange_64)
1460 return ma_meta_end(node, type);
1461
1462 pivots = ma_pivots(node, type);
39d0bd86
LH
1463 if (unlikely(ma_dead_node(node)))
1464 return 0;
1465
54a611b6
LH
1466 offset = mt_pivots[type] - 1;
1467 if (likely(!pivots[offset]))
1468 return ma_meta_end(node, type);
1469
1470 if (likely(pivots[offset] == mas->max))
1471 return offset;
1472
1473 return mt_pivots[type];
1474}
1475
1476/*
1477 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478 * @mas - the maple state
1479 *
1480 * Return: The maximum gap in the leaf.
1481 */
1482static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483{
1484 enum maple_type mt;
1485 unsigned long pstart, gap, max_gap;
1486 struct maple_node *mn;
1487 unsigned long *pivots;
1488 void __rcu **slots;
1489 unsigned char i;
1490 unsigned char max_piv;
1491
1492 mt = mte_node_type(mas->node);
1493 mn = mas_mn(mas);
1494 slots = ma_slots(mn, mt);
1495 max_gap = 0;
1496 if (unlikely(ma_is_dense(mt))) {
1497 gap = 0;
1498 for (i = 0; i < mt_slots[mt]; i++) {
1499 if (slots[i]) {
1500 if (gap > max_gap)
1501 max_gap = gap;
1502 gap = 0;
1503 } else {
1504 gap++;
1505 }
1506 }
1507 if (gap > max_gap)
1508 max_gap = gap;
1509 return max_gap;
1510 }
1511
1512 /*
1513 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 * be skipped if there is a gap in slot 0.
1515 */
1516 pivots = ma_pivots(mn, mt);
1517 if (likely(!slots[0])) {
1518 max_gap = pivots[0] - mas->min + 1;
1519 i = 2;
1520 } else {
1521 i = 1;
1522 }
1523
1524 /* reduce max_piv as the special case is checked before the loop */
1525 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 /*
1527 * Check end implied pivot which can only be a gap on the right most
1528 * node.
1529 */
1530 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 gap = ULONG_MAX - pivots[max_piv];
1532 if (gap > max_gap)
1533 max_gap = gap;
1534 }
1535
1536 for (; i <= max_piv; i++) {
1537 /* data == no gap. */
1538 if (likely(slots[i]))
1539 continue;
1540
1541 pstart = pivots[i - 1];
1542 gap = pivots[i] - pstart;
1543 if (gap > max_gap)
1544 max_gap = gap;
1545
1546 /* There cannot be two gaps in a row. */
1547 i++;
1548 }
1549 return max_gap;
1550}
1551
1552/*
1553 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1554 * @node: The maple node
1555 * @gaps: The pointer to the gaps
1556 * @mt: The maple node type
1557 * @*off: Pointer to store the offset location of the gap.
1558 *
1559 * Uses the metadata data end to scan backwards across set gaps.
1560 *
1561 * Return: The maximum gap value
1562 */
1563static inline unsigned long
1564ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1565 unsigned char *off)
1566{
1567 unsigned char offset, i;
1568 unsigned long max_gap = 0;
1569
1570 i = offset = ma_meta_end(node, mt);
1571 do {
1572 if (gaps[i] > max_gap) {
1573 max_gap = gaps[i];
1574 offset = i;
1575 }
1576 } while (i--);
1577
1578 *off = offset;
1579 return max_gap;
1580}
1581
1582/*
1583 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1584 * @mas: The maple state.
1585 *
54a611b6
LH
1586 * Return: The gap value.
1587 */
1588static inline unsigned long mas_max_gap(struct ma_state *mas)
1589{
1590 unsigned long *gaps;
1591 unsigned char offset;
1592 enum maple_type mt;
1593 struct maple_node *node;
1594
1595 mt = mte_node_type(mas->node);
1596 if (ma_is_leaf(mt))
1597 return mas_leaf_max_gap(mas);
1598
1599 node = mas_mn(mas);
bec1b51e 1600 MAS_BUG_ON(mas, mt != maple_arange_64);
54a611b6 1601 offset = ma_meta_gap(node, mt);
54a611b6
LH
1602 gaps = ma_gaps(node, mt);
1603 return gaps[offset];
1604}
1605
1606/*
1607 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1608 * @mas: The maple state
1609 * @offset: The gap offset in the parent to set
1610 * @new: The new gap value.
1611 *
1612 * Set the parent gap then continue to set the gap upwards, using the metadata
1613 * of the parent to see if it is necessary to check the node above.
1614 */
1615static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1616 unsigned long new)
1617{
1618 unsigned long meta_gap = 0;
1619 struct maple_node *pnode;
1620 struct maple_enode *penode;
1621 unsigned long *pgaps;
1622 unsigned char meta_offset;
1623 enum maple_type pmt;
1624
1625 pnode = mte_parent(mas->node);
afc754c6 1626 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1627 penode = mt_mk_node(pnode, pmt);
1628 pgaps = ma_gaps(pnode, pmt);
1629
1630ascend:
bec1b51e 1631 MAS_BUG_ON(mas, pmt != maple_arange_64);
54a611b6 1632 meta_offset = ma_meta_gap(pnode, pmt);
d695c30a 1633 meta_gap = pgaps[meta_offset];
54a611b6
LH
1634
1635 pgaps[offset] = new;
1636
1637 if (meta_gap == new)
1638 return;
1639
1640 if (offset != meta_offset) {
1641 if (meta_gap > new)
1642 return;
1643
1644 ma_set_meta_gap(pnode, pmt, offset);
1645 } else if (new < meta_gap) {
54a611b6
LH
1646 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1647 ma_set_meta_gap(pnode, pmt, meta_offset);
1648 }
1649
1650 if (ma_is_root(pnode))
1651 return;
1652
1653 /* Go to the parent node. */
1654 pnode = mte_parent(penode);
afc754c6 1655 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1656 pgaps = ma_gaps(pnode, pmt);
1657 offset = mte_parent_slot(penode);
1658 penode = mt_mk_node(pnode, pmt);
1659 goto ascend;
1660}
1661
1662/*
1663 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1664 * @mas - the maple state.
1665 */
1666static inline void mas_update_gap(struct ma_state *mas)
1667{
1668 unsigned char pslot;
1669 unsigned long p_gap;
1670 unsigned long max_gap;
1671
1672 if (!mt_is_alloc(mas->tree))
1673 return;
1674
1675 if (mte_is_root(mas->node))
1676 return;
1677
1678 max_gap = mas_max_gap(mas);
1679
1680 pslot = mte_parent_slot(mas->node);
1681 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1682 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1683
1684 if (p_gap != max_gap)
1685 mas_parent_gap(mas, pslot, max_gap);
1686}
1687
1688/*
1689 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1690 * @parent with the slot encoded.
1691 * @mas - the maple state (for the tree)
1692 * @parent - the maple encoded node containing the children.
1693 */
1694static inline void mas_adopt_children(struct ma_state *mas,
1695 struct maple_enode *parent)
1696{
1697 enum maple_type type = mte_node_type(parent);
1698 struct maple_node *node = mas_mn(mas);
1699 void __rcu **slots = ma_slots(node, type);
1700 unsigned long *pivots = ma_pivots(node, type);
1701 struct maple_enode *child;
1702 unsigned char offset;
1703
1704 offset = ma_data_end(node, type, pivots, mas->max);
1705 do {
1706 child = mas_slot_locked(mas, slots, offset);
bf96715e 1707 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1708 } while (offset--);
1709}
1710
1711/*
1712 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1713 * parent encoding to locate the maple node in the tree.
1714 * @mas - the ma_state to use for operations.
1715 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1716 * leave the node (true) and handle the adoption and free elsewhere.
1717 */
1718static inline void mas_replace(struct ma_state *mas, bool advanced)
14c4b5ab 1719 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1720{
1721 struct maple_node *mn = mas_mn(mas);
1722 struct maple_enode *old_enode;
1723 unsigned char offset = 0;
1724 void __rcu **slots = NULL;
1725
1726 if (ma_is_root(mn)) {
1727 old_enode = mas_root_locked(mas);
1728 } else {
1729 offset = mte_parent_slot(mas->node);
1730 slots = ma_slots(mte_parent(mas->node),
afc754c6 1731 mas_parent_type(mas, mas->node));
54a611b6
LH
1732 old_enode = mas_slot_locked(mas, slots, offset);
1733 }
1734
1735 if (!advanced && !mte_is_leaf(mas->node))
1736 mas_adopt_children(mas, mas->node);
1737
1738 if (mte_is_root(mas->node)) {
1739 mn->parent = ma_parent_ptr(
1740 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1741 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1742 mas_set_height(mas);
1743 } else {
1744 rcu_assign_pointer(slots[offset], mas->node);
1745 }
1746
c13af03d
LH
1747 if (!advanced) {
1748 mte_set_node_dead(old_enode);
54a611b6 1749 mas_free(mas, old_enode);
c13af03d 1750 }
54a611b6
LH
1751}
1752
1753/*
1754 * mas_new_child() - Find the new child of a node.
1755 * @mas: the maple state
1756 * @child: the maple state to store the child.
1757 */
1758static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
14c4b5ab 1759 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1760{
1761 enum maple_type mt;
1762 unsigned char offset;
1763 unsigned char end;
1764 unsigned long *pivots;
1765 struct maple_enode *entry;
1766 struct maple_node *node;
1767 void __rcu **slots;
1768
1769 mt = mte_node_type(mas->node);
1770 node = mas_mn(mas);
1771 slots = ma_slots(node, mt);
1772 pivots = ma_pivots(node, mt);
1773 end = ma_data_end(node, mt, pivots, mas->max);
1774 for (offset = mas->offset; offset <= end; offset++) {
1775 entry = mas_slot_locked(mas, slots, offset);
1776 if (mte_parent(entry) == node) {
1777 *child = *mas;
1778 mas->offset = offset + 1;
1779 child->offset = offset;
1780 mas_descend(child);
1781 child->offset = 0;
1782 return true;
1783 }
1784 }
1785 return false;
1786}
1787
1788/*
1789 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1790 * old data or set b_node->b_end.
1791 * @b_node: the maple_big_node
1792 * @shift: the shift count
1793 */
1794static inline void mab_shift_right(struct maple_big_node *b_node,
1795 unsigned char shift)
1796{
1797 unsigned long size = b_node->b_end * sizeof(unsigned long);
1798
1799 memmove(b_node->pivot + shift, b_node->pivot, size);
1800 memmove(b_node->slot + shift, b_node->slot, size);
1801 if (b_node->type == maple_arange_64)
1802 memmove(b_node->gap + shift, b_node->gap, size);
1803}
1804
1805/*
1806 * mab_middle_node() - Check if a middle node is needed (unlikely)
1807 * @b_node: the maple_big_node that contains the data.
1808 * @size: the amount of data in the b_node
1809 * @split: the potential split location
1810 * @slot_count: the size that can be stored in a single node being considered.
1811 *
1812 * Return: true if a middle node is required.
1813 */
1814static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1815 unsigned char slot_count)
1816{
1817 unsigned char size = b_node->b_end;
1818
1819 if (size >= 2 * slot_count)
1820 return true;
1821
1822 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1823 return true;
1824
1825 return false;
1826}
1827
1828/*
1829 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1830 * @b_node: the maple_big_node with the data
1831 * @split: the suggested split location
1832 * @slot_count: the number of slots in the node being considered.
1833 *
1834 * Return: the split location.
1835 */
1836static inline int mab_no_null_split(struct maple_big_node *b_node,
1837 unsigned char split, unsigned char slot_count)
1838{
1839 if (!b_node->slot[split]) {
1840 /*
1841 * If the split is less than the max slot && the right side will
1842 * still be sufficient, then increment the split on NULL.
1843 */
1844 if ((split < slot_count - 1) &&
1845 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1846 split++;
1847 else
1848 split--;
1849 }
1850 return split;
1851}
1852
1853/*
1854 * mab_calc_split() - Calculate the split location and if there needs to be two
1855 * splits.
1856 * @bn: The maple_big_node with the data
1857 * @mid_split: The second split, if required. 0 otherwise.
1858 *
1859 * Return: The first split location. The middle split is set in @mid_split.
1860 */
1861static inline int mab_calc_split(struct ma_state *mas,
1862 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1863{
1864 unsigned char b_end = bn->b_end;
1865 int split = b_end / 2; /* Assume equal split. */
1866 unsigned char slot_min, slot_count = mt_slots[bn->type];
1867
1868 /*
1869 * To support gap tracking, all NULL entries are kept together and a node cannot
1870 * end on a NULL entry, with the exception of the left-most leaf. The
1871 * limitation means that the split of a node must be checked for this condition
1872 * and be able to put more data in one direction or the other.
1873 */
1874 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1875 *mid_split = 0;
1876 split = b_end - mt_min_slots[bn->type];
1877
1878 if (!ma_is_leaf(bn->type))
1879 return split;
1880
1881 mas->mas_flags |= MA_STATE_REBALANCE;
1882 if (!bn->slot[split])
1883 split--;
1884 return split;
1885 }
1886
1887 /*
1888 * Although extremely rare, it is possible to enter what is known as the 3-way
1889 * split scenario. The 3-way split comes about by means of a store of a range
1890 * that overwrites the end and beginning of two full nodes. The result is a set
1891 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1892 * also be located in different parent nodes which are also full. This can
1893 * carry upwards all the way to the root in the worst case.
1894 */
1895 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1896 split = b_end / 3;
1897 *mid_split = split * 2;
1898 } else {
1899 slot_min = mt_min_slots[bn->type];
1900
1901 *mid_split = 0;
1902 /*
1903 * Avoid having a range less than the slot count unless it
1904 * causes one node to be deficient.
1905 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1906 */
5729e06c
LH
1907 while ((split < slot_count - 1) &&
1908 ((bn->pivot[split] - min) < slot_count - 1) &&
1909 (b_end - split > slot_min))
54a611b6
LH
1910 split++;
1911 }
1912
1913 /* Avoid ending a node on a NULL entry */
1914 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1915
e11cb683
VY
1916 if (unlikely(*mid_split))
1917 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1918
1919 return split;
1920}
1921
1922/*
1923 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1924 * and set @b_node->b_end to the next free slot.
1925 * @mas: The maple state
1926 * @mas_start: The starting slot to copy
1927 * @mas_end: The end slot to copy (inclusively)
1928 * @b_node: The maple_big_node to place the data
1929 * @mab_start: The starting location in maple_big_node to store the data.
1930 */
1931static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1932 unsigned char mas_end, struct maple_big_node *b_node,
1933 unsigned char mab_start)
1934{
1935 enum maple_type mt;
1936 struct maple_node *node;
1937 void __rcu **slots;
1938 unsigned long *pivots, *gaps;
1939 int i = mas_start, j = mab_start;
1940 unsigned char piv_end;
1941
1942 node = mas_mn(mas);
1943 mt = mte_node_type(mas->node);
1944 pivots = ma_pivots(node, mt);
1945 if (!i) {
1946 b_node->pivot[j] = pivots[i++];
1947 if (unlikely(i > mas_end))
1948 goto complete;
1949 j++;
1950 }
1951
1952 piv_end = min(mas_end, mt_pivots[mt]);
1953 for (; i < piv_end; i++, j++) {
1954 b_node->pivot[j] = pivots[i];
1955 if (unlikely(!b_node->pivot[j]))
1956 break;
1957
1958 if (unlikely(mas->max == b_node->pivot[j]))
1959 goto complete;
1960 }
1961
1962 if (likely(i <= mas_end))
1963 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1964
1965complete:
1966 b_node->b_end = ++j;
1967 j -= mab_start;
1968 slots = ma_slots(node, mt);
1969 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1970 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1971 gaps = ma_gaps(node, mt);
1972 memcpy(b_node->gap + mab_start, gaps + mas_start,
1973 sizeof(unsigned long) * j);
1974 }
1975}
1976
1977/*
1978 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1979 * @mas: The maple state
1980 * @node: The maple node
1981 * @pivots: pointer to the maple node pivots
1982 * @mt: The maple type
1983 * @end: The assumed end
1984 *
1985 * Note, end may be incremented within this function but not modified at the
1986 * source. This is fine since the metadata is the last thing to be stored in a
1987 * node during a write.
1988 */
1989static inline void mas_leaf_set_meta(struct ma_state *mas,
1990 struct maple_node *node, unsigned long *pivots,
1991 enum maple_type mt, unsigned char end)
1992{
1993 /* There is no room for metadata already */
1994 if (mt_pivots[mt] <= end)
1995 return;
1996
1997 if (pivots[end] && pivots[end] < mas->max)
1998 end++;
1999
2000 if (end < mt_slots[mt] - 1)
2001 ma_set_meta(node, mt, 0, end);
2002}
2003
2004/*
2005 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2006 * @b_node: the maple_big_node that has the data
2007 * @mab_start: the start location in @b_node.
2008 * @mab_end: The end location in @b_node (inclusively)
2009 * @mas: The maple state with the maple encoded node.
2010 */
2011static inline void mab_mas_cp(struct maple_big_node *b_node,
2012 unsigned char mab_start, unsigned char mab_end,
2013 struct ma_state *mas, bool new_max)
2014{
2015 int i, j = 0;
2016 enum maple_type mt = mte_node_type(mas->node);
2017 struct maple_node *node = mte_to_node(mas->node);
2018 void __rcu **slots = ma_slots(node, mt);
2019 unsigned long *pivots = ma_pivots(node, mt);
2020 unsigned long *gaps = NULL;
2021 unsigned char end;
2022
2023 if (mab_end - mab_start > mt_pivots[mt])
2024 mab_end--;
2025
2026 if (!pivots[mt_pivots[mt] - 1])
2027 slots[mt_pivots[mt]] = NULL;
2028
2029 i = mab_start;
2030 do {
2031 pivots[j++] = b_node->pivot[i++];
2032 } while (i <= mab_end && likely(b_node->pivot[i]));
2033
2034 memcpy(slots, b_node->slot + mab_start,
2035 sizeof(void *) * (i - mab_start));
2036
2037 if (new_max)
2038 mas->max = b_node->pivot[i - 1];
2039
2040 end = j - 1;
2041 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2042 unsigned long max_gap = 0;
d695c30a 2043 unsigned char offset = 0;
54a611b6
LH
2044
2045 gaps = ma_gaps(node, mt);
2046 do {
2047 gaps[--j] = b_node->gap[--i];
2048 if (gaps[j] > max_gap) {
2049 offset = j;
2050 max_gap = gaps[j];
2051 }
2052 } while (j);
2053
2054 ma_set_meta(node, mt, offset, end);
2055 } else {
2056 mas_leaf_set_meta(mas, node, pivots, mt, end);
2057 }
2058}
2059
2060/*
2061 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2062 * @mas: the maple state with the maple encoded node of the sub-tree.
2063 *
2064 * Descend through a sub-tree and adopt children who do not have the correct
2065 * parents set. Follow the parents which have the correct parents as they are
2066 * the new entries which need to be followed to find other incorrectly set
2067 * parents.
2068 */
2069static inline void mas_descend_adopt(struct ma_state *mas)
2070{
2071 struct ma_state list[3], next[3];
2072 int i, n;
2073
2074 /*
2075 * At each level there may be up to 3 correct parent pointers which indicates
2076 * the new nodes which need to be walked to find any new nodes at a lower level.
2077 */
2078
2079 for (i = 0; i < 3; i++) {
2080 list[i] = *mas;
2081 list[i].offset = 0;
2082 next[i].offset = 0;
2083 }
2084 next[0] = *mas;
2085
2086 while (!mte_is_leaf(list[0].node)) {
2087 n = 0;
2088 for (i = 0; i < 3; i++) {
2089 if (mas_is_none(&list[i]))
2090 continue;
2091
2092 if (i && list[i-1].node == list[i].node)
2093 continue;
2094
2095 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2096 n++;
2097
2098 mas_adopt_children(&list[i], list[i].node);
2099 }
2100
2101 while (n < 3)
2102 next[n++].node = MAS_NONE;
2103
2104 /* descend by setting the list to the children */
2105 for (i = 0; i < 3; i++)
2106 list[i] = next[i];
2107 }
2108}
2109
2110/*
2111 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2112 * @mas: The maple state
2113 * @end: The maple node end
2114 * @mt: The maple node type
2115 */
2116static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2117 enum maple_type mt)
2118{
2119 if (!(mas->mas_flags & MA_STATE_BULK))
2120 return;
2121
2122 if (mte_is_root(mas->node))
2123 return;
2124
2125 if (end > mt_min_slots[mt]) {
2126 mas->mas_flags &= ~MA_STATE_REBALANCE;
2127 return;
2128 }
2129}
2130
2131/*
2132 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2133 * data from a maple encoded node.
2134 * @wr_mas: the maple write state
2135 * @b_node: the maple_big_node to fill with data
2136 * @offset_end: the offset to end copying
2137 *
2138 * Return: The actual end of the data stored in @b_node
2139 */
44081c77 2140static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2141 struct maple_big_node *b_node, unsigned char offset_end)
2142{
2143 unsigned char slot;
2144 unsigned char b_end;
2145 /* Possible underflow of piv will wrap back to 0 before use. */
2146 unsigned long piv;
2147 struct ma_state *mas = wr_mas->mas;
2148
2149 b_node->type = wr_mas->type;
2150 b_end = 0;
2151 slot = mas->offset;
2152 if (slot) {
2153 /* Copy start data up to insert. */
2154 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2155 b_end = b_node->b_end;
2156 piv = b_node->pivot[b_end - 1];
2157 } else
2158 piv = mas->min - 1;
2159
2160 if (piv + 1 < mas->index) {
2161 /* Handle range starting after old range */
2162 b_node->slot[b_end] = wr_mas->content;
2163 if (!wr_mas->content)
2164 b_node->gap[b_end] = mas->index - 1 - piv;
2165 b_node->pivot[b_end++] = mas->index - 1;
2166 }
2167
2168 /* Store the new entry. */
2169 mas->offset = b_end;
2170 b_node->slot[b_end] = wr_mas->entry;
2171 b_node->pivot[b_end] = mas->last;
2172
2173 /* Appended. */
2174 if (mas->last >= mas->max)
2175 goto b_end;
2176
2177 /* Handle new range ending before old range ends */
29b2681f 2178 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
54a611b6
LH
2179 if (piv > mas->last) {
2180 if (piv == ULONG_MAX)
2181 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2182
2183 if (offset_end != slot)
2184 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2185 offset_end);
2186
2187 b_node->slot[++b_end] = wr_mas->content;
2188 if (!wr_mas->content)
2189 b_node->gap[b_end] = piv - mas->last + 1;
2190 b_node->pivot[b_end] = piv;
2191 }
2192
2193 slot = offset_end + 1;
2194 if (slot > wr_mas->node_end)
2195 goto b_end;
2196
2197 /* Copy end data to the end of the node. */
2198 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2199 b_node->b_end--;
2200 return;
2201
2202b_end:
2203 b_node->b_end = b_end;
2204}
2205
2206/*
2207 * mas_prev_sibling() - Find the previous node with the same parent.
2208 * @mas: the maple state
2209 *
2210 * Return: True if there is a previous sibling, false otherwise.
2211 */
2212static inline bool mas_prev_sibling(struct ma_state *mas)
2213{
2214 unsigned int p_slot = mte_parent_slot(mas->node);
2215
2216 if (mte_is_root(mas->node))
2217 return false;
2218
2219 if (!p_slot)
2220 return false;
2221
2222 mas_ascend(mas);
2223 mas->offset = p_slot - 1;
2224 mas_descend(mas);
2225 return true;
2226}
2227
2228/*
2229 * mas_next_sibling() - Find the next node with the same parent.
2230 * @mas: the maple state
2231 *
2232 * Return: true if there is a next sibling, false otherwise.
2233 */
2234static inline bool mas_next_sibling(struct ma_state *mas)
2235{
2236 MA_STATE(parent, mas->tree, mas->index, mas->last);
2237
2238 if (mte_is_root(mas->node))
2239 return false;
2240
2241 parent = *mas;
2242 mas_ascend(&parent);
2243 parent.offset = mte_parent_slot(mas->node) + 1;
2244 if (parent.offset > mas_data_end(&parent))
2245 return false;
2246
2247 *mas = parent;
2248 mas_descend(mas);
2249 return true;
2250}
2251
2252/*
2253 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2254 * @enode: The encoded maple node.
2255 *
2256 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2257 *
2258 * Return: @enode or MAS_NONE
2259 */
2260static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2261{
2262 if (enode)
2263 return enode;
2264
2265 return ma_enode_ptr(MAS_NONE);
2266}
2267
2268/*
2269 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2270 * @wr_mas: The maple write state
2271 *
2272 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2273 */
2274static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2275{
2276 struct ma_state *mas = wr_mas->mas;
97f7e094 2277 unsigned char count, offset;
54a611b6
LH
2278
2279 if (unlikely(ma_is_dense(wr_mas->type))) {
2280 wr_mas->r_max = wr_mas->r_min = mas->index;
2281 mas->offset = mas->index = mas->min;
2282 return;
2283 }
2284
2285 wr_mas->node = mas_mn(wr_mas->mas);
2286 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2287 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2288 wr_mas->pivots, mas->max);
2289 offset = mas->offset;
54a611b6 2290
97f7e094
PZ
2291 while (offset < count && mas->index > wr_mas->pivots[offset])
2292 offset++;
54a611b6 2293
97f7e094
PZ
2294 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2295 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2296 wr_mas->offset_end = mas->offset = offset;
2297}
2298
2299/*
2300 * mas_topiary_range() - Add a range of slots to the topiary.
2301 * @mas: The maple state
2302 * @destroy: The topiary to add the slots (usually destroy)
2303 * @start: The starting slot inclusively
2304 * @end: The end slot inclusively
2305 */
2306static inline void mas_topiary_range(struct ma_state *mas,
2307 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2308{
2309 void __rcu **slots;
2310 unsigned char offset;
2311
4bbd1748
LH
2312 MAS_BUG_ON(mas, mte_is_leaf(mas->node));
2313
54a611b6
LH
2314 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2315 for (offset = start; offset <= end; offset++) {
2316 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2317
2318 if (mte_dead_node(enode))
2319 continue;
2320
2321 mat_add(destroy, enode);
2322 }
2323}
2324
2325/*
2326 * mast_topiary() - Add the portions of the tree to the removal list; either to
2327 * be freed or discarded (destroy walk).
2328 * @mast: The maple_subtree_state.
2329 */
2330static inline void mast_topiary(struct maple_subtree_state *mast)
2331{
2332 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2333 unsigned char r_start, r_end;
2334 unsigned char l_start, l_end;
2335 void __rcu **l_slots, **r_slots;
2336
2337 wr_mas.type = mte_node_type(mast->orig_l->node);
2338 mast->orig_l->index = mast->orig_l->last;
2339 mas_wr_node_walk(&wr_mas);
2340 l_start = mast->orig_l->offset + 1;
2341 l_end = mas_data_end(mast->orig_l);
2342 r_start = 0;
2343 r_end = mast->orig_r->offset;
2344
2345 if (r_end)
2346 r_end--;
2347
2348 l_slots = ma_slots(mas_mn(mast->orig_l),
2349 mte_node_type(mast->orig_l->node));
2350
2351 r_slots = ma_slots(mas_mn(mast->orig_r),
2352 mte_node_type(mast->orig_r->node));
2353
2354 if ((l_start < l_end) &&
2355 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2356 l_start++;
2357 }
2358
2359 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2360 if (r_end)
2361 r_end--;
2362 }
2363
2364 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2365 return;
2366
2367 /* At the node where left and right sides meet, add the parts between */
2368 if (mast->orig_l->node == mast->orig_r->node) {
2369 return mas_topiary_range(mast->orig_l, mast->destroy,
2370 l_start, r_end);
2371 }
2372
2373 /* mast->orig_r is different and consumed. */
2374 if (mte_is_leaf(mast->orig_r->node))
2375 return;
2376
2377 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2378 l_end--;
2379
2380
2381 if (l_start <= l_end)
2382 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2383
2384 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2385 r_start++;
2386
2387 if (r_start <= r_end)
2388 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2389}
2390
2391/*
2392 * mast_rebalance_next() - Rebalance against the next node
2393 * @mast: The maple subtree state
2394 * @old_r: The encoded maple node to the right (next node).
2395 */
2396static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2397{
2398 unsigned char b_end = mast->bn->b_end;
2399
2400 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2401 mast->bn, b_end);
2402 mast->orig_r->last = mast->orig_r->max;
2403}
2404
2405/*
2406 * mast_rebalance_prev() - Rebalance against the previous node
2407 * @mast: The maple subtree state
2408 * @old_l: The encoded maple node to the left (previous node)
2409 */
2410static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2411{
2412 unsigned char end = mas_data_end(mast->orig_l) + 1;
2413 unsigned char b_end = mast->bn->b_end;
2414
2415 mab_shift_right(mast->bn, end);
2416 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2417 mast->l->min = mast->orig_l->min;
2418 mast->orig_l->index = mast->orig_l->min;
2419 mast->bn->b_end = end + b_end;
2420 mast->l->offset += end;
2421}
2422
2423/*
2424 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2425 * the node to the right. Checking the nodes to the right then the left at each
2426 * level upwards until root is reached. Free and destroy as needed.
2427 * Data is copied into the @mast->bn.
2428 * @mast: The maple_subtree_state.
2429 */
2430static inline
2431bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2432{
2433 struct ma_state r_tmp = *mast->orig_r;
2434 struct ma_state l_tmp = *mast->orig_l;
2435 struct maple_enode *ancestor = NULL;
2436 unsigned char start, end;
2437 unsigned char depth = 0;
2438
2439 r_tmp = *mast->orig_r;
2440 l_tmp = *mast->orig_l;
2441 do {
2442 mas_ascend(mast->orig_r);
2443 mas_ascend(mast->orig_l);
2444 depth++;
2445 if (!ancestor &&
2446 (mast->orig_r->node == mast->orig_l->node)) {
2447 ancestor = mast->orig_r->node;
2448 end = mast->orig_r->offset - 1;
2449 start = mast->orig_l->offset + 1;
2450 }
2451
2452 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2453 if (!ancestor) {
2454 ancestor = mast->orig_r->node;
2455 start = 0;
2456 }
2457
2458 mast->orig_r->offset++;
2459 do {
2460 mas_descend(mast->orig_r);
2461 mast->orig_r->offset = 0;
2462 depth--;
2463 } while (depth);
2464
2465 mast_rebalance_next(mast);
2466 do {
2467 unsigned char l_off = 0;
2468 struct maple_enode *child = r_tmp.node;
2469
2470 mas_ascend(&r_tmp);
2471 if (ancestor == r_tmp.node)
2472 l_off = start;
2473
2474 if (r_tmp.offset)
2475 r_tmp.offset--;
2476
2477 if (l_off < r_tmp.offset)
2478 mas_topiary_range(&r_tmp, mast->destroy,
2479 l_off, r_tmp.offset);
2480
2481 if (l_tmp.node != child)
2482 mat_add(mast->free, child);
2483
2484 } while (r_tmp.node != ancestor);
2485
2486 *mast->orig_l = l_tmp;
2487 return true;
2488
2489 } else if (mast->orig_l->offset != 0) {
2490 if (!ancestor) {
2491 ancestor = mast->orig_l->node;
2492 end = mas_data_end(mast->orig_l);
2493 }
2494
2495 mast->orig_l->offset--;
2496 do {
2497 mas_descend(mast->orig_l);
2498 mast->orig_l->offset =
2499 mas_data_end(mast->orig_l);
2500 depth--;
2501 } while (depth);
2502
2503 mast_rebalance_prev(mast);
2504 do {
2505 unsigned char r_off;
2506 struct maple_enode *child = l_tmp.node;
2507
2508 mas_ascend(&l_tmp);
2509 if (ancestor == l_tmp.node)
2510 r_off = end;
2511 else
2512 r_off = mas_data_end(&l_tmp);
2513
2514 if (l_tmp.offset < r_off)
2515 l_tmp.offset++;
2516
2517 if (l_tmp.offset < r_off)
2518 mas_topiary_range(&l_tmp, mast->destroy,
2519 l_tmp.offset, r_off);
2520
2521 if (r_tmp.node != child)
2522 mat_add(mast->free, child);
2523
2524 } while (l_tmp.node != ancestor);
2525
2526 *mast->orig_r = r_tmp;
2527 return true;
2528 }
2529 } while (!mte_is_root(mast->orig_r->node));
2530
2531 *mast->orig_r = r_tmp;
2532 *mast->orig_l = l_tmp;
2533 return false;
2534}
2535
2536/*
2537 * mast_ascend_free() - Add current original maple state nodes to the free list
2538 * and ascend.
2539 * @mast: the maple subtree state.
2540 *
2541 * Ascend the original left and right sides and add the previous nodes to the
2542 * free list. Set the slots to point to the correct location in the new nodes.
2543 */
2544static inline void
2545mast_ascend_free(struct maple_subtree_state *mast)
2546{
2547 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2548 struct maple_enode *left = mast->orig_l->node;
2549 struct maple_enode *right = mast->orig_r->node;
2550
2551 mas_ascend(mast->orig_l);
2552 mas_ascend(mast->orig_r);
2553 mat_add(mast->free, left);
2554
2555 if (left != right)
2556 mat_add(mast->free, right);
2557
2558 mast->orig_r->offset = 0;
2559 mast->orig_r->index = mast->r->max;
2560 /* last should be larger than or equal to index */
2561 if (mast->orig_r->last < mast->orig_r->index)
2562 mast->orig_r->last = mast->orig_r->index;
2563 /*
2564 * The node may not contain the value so set slot to ensure all
2565 * of the nodes contents are freed or destroyed.
2566 */
2567 wr_mas.type = mte_node_type(mast->orig_r->node);
2568 mas_wr_node_walk(&wr_mas);
2569 /* Set up the left side of things */
2570 mast->orig_l->offset = 0;
2571 mast->orig_l->index = mast->l->min;
2572 wr_mas.mas = mast->orig_l;
2573 wr_mas.type = mte_node_type(mast->orig_l->node);
2574 mas_wr_node_walk(&wr_mas);
2575
2576 mast->bn->type = wr_mas.type;
2577}
2578
2579/*
2580 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2581 * @mas: the maple state with the allocations.
2582 * @b_node: the maple_big_node with the type encoding.
2583 *
2584 * Use the node type from the maple_big_node to allocate a new node from the
2585 * ma_state. This function exists mainly for code readability.
2586 *
2587 * Return: A new maple encoded node
2588 */
2589static inline struct maple_enode
2590*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2591{
2592 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2593}
2594
2595/*
2596 * mas_mab_to_node() - Set up right and middle nodes
2597 *
2598 * @mas: the maple state that contains the allocations.
2599 * @b_node: the node which contains the data.
2600 * @left: The pointer which will have the left node
2601 * @right: The pointer which may have the right node
2602 * @middle: the pointer which may have the middle node (rare)
2603 * @mid_split: the split location for the middle node
2604 *
2605 * Return: the split of left.
2606 */
2607static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2608 struct maple_big_node *b_node, struct maple_enode **left,
2609 struct maple_enode **right, struct maple_enode **middle,
2610 unsigned char *mid_split, unsigned long min)
2611{
2612 unsigned char split = 0;
2613 unsigned char slot_count = mt_slots[b_node->type];
2614
2615 *left = mas_new_ma_node(mas, b_node);
2616 *right = NULL;
2617 *middle = NULL;
2618 *mid_split = 0;
2619
2620 if (b_node->b_end < slot_count) {
2621 split = b_node->b_end;
2622 } else {
2623 split = mab_calc_split(mas, b_node, mid_split, min);
2624 *right = mas_new_ma_node(mas, b_node);
2625 }
2626
2627 if (*mid_split)
2628 *middle = mas_new_ma_node(mas, b_node);
2629
2630 return split;
2631
2632}
2633
2634/*
2635 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2636 * pointer.
2637 * @b_node - the big node to add the entry
2638 * @mas - the maple state to get the pivot (mas->max)
2639 * @entry - the entry to add, if NULL nothing happens.
2640 */
2641static inline void mab_set_b_end(struct maple_big_node *b_node,
2642 struct ma_state *mas,
2643 void *entry)
2644{
2645 if (!entry)
2646 return;
2647
2648 b_node->slot[b_node->b_end] = entry;
2649 if (mt_is_alloc(mas->tree))
2650 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2651 b_node->pivot[b_node->b_end++] = mas->max;
2652}
2653
2654/*
2655 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2656 * of @mas->node to either @left or @right, depending on @slot and @split
2657 *
2658 * @mas - the maple state with the node that needs a parent
2659 * @left - possible parent 1
2660 * @right - possible parent 2
2661 * @slot - the slot the mas->node was placed
2662 * @split - the split location between @left and @right
2663 */
2664static inline void mas_set_split_parent(struct ma_state *mas,
2665 struct maple_enode *left,
2666 struct maple_enode *right,
2667 unsigned char *slot, unsigned char split)
2668{
2669 if (mas_is_none(mas))
2670 return;
2671
2672 if ((*slot) <= split)
bf96715e 2673 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2674 else if (right)
bf96715e 2675 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2676
2677 (*slot)++;
2678}
2679
2680/*
2681 * mte_mid_split_check() - Check if the next node passes the mid-split
2682 * @**l: Pointer to left encoded maple node.
2683 * @**m: Pointer to middle encoded maple node.
2684 * @**r: Pointer to right encoded maple node.
2685 * @slot: The offset
2686 * @*split: The split location.
2687 * @mid_split: The middle split.
2688 */
2689static inline void mte_mid_split_check(struct maple_enode **l,
2690 struct maple_enode **r,
2691 struct maple_enode *right,
2692 unsigned char slot,
2693 unsigned char *split,
2694 unsigned char mid_split)
2695{
2696 if (*r == right)
2697 return;
2698
2699 if (slot < mid_split)
2700 return;
2701
2702 *l = *r;
2703 *r = right;
2704 *split = mid_split;
2705}
2706
2707/*
2708 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2709 * is taken from @mast->l.
2710 * @mast - the maple subtree state
2711 * @left - the left node
2712 * @right - the right node
2713 * @split - the split location.
2714 */
2715static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2716 struct maple_enode *left,
2717 struct maple_enode *middle,
2718 struct maple_enode *right,
2719 unsigned char split,
2720 unsigned char mid_split)
2721{
2722 unsigned char slot;
2723 struct maple_enode *l = left;
2724 struct maple_enode *r = right;
2725
2726 if (mas_is_none(mast->l))
2727 return;
2728
2729 if (middle)
2730 r = middle;
2731
2732 slot = mast->l->offset;
2733
2734 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2735 mas_set_split_parent(mast->l, l, r, &slot, split);
2736
2737 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2738 mas_set_split_parent(mast->m, l, r, &slot, split);
2739
2740 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2741 mas_set_split_parent(mast->r, l, r, &slot, split);
2742}
2743
2744/*
2745 * mas_wmb_replace() - Write memory barrier and replace
2746 * @mas: The maple state
2747 * @free: the maple topiary list of nodes to free
2748 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2749 *
2750 * Updates gap as necessary.
2751 */
2752static inline void mas_wmb_replace(struct ma_state *mas,
2753 struct ma_topiary *free,
2754 struct ma_topiary *destroy)
2755{
2756 /* All nodes must see old data as dead prior to replacing that data */
2757 smp_wmb(); /* Needed for RCU */
2758
2759 /* Insert the new data in the tree */
2760 mas_replace(mas, true);
2761
2762 if (!mte_is_leaf(mas->node))
2763 mas_descend_adopt(mas);
2764
2765 mas_mat_free(mas, free);
2766
2767 if (destroy)
2768 mas_mat_destroy(mas, destroy);
2769
2770 if (mte_is_leaf(mas->node))
2771 return;
2772
2773 mas_update_gap(mas);
2774}
2775
2776/*
2777 * mast_new_root() - Set a new tree root during subtree creation
2778 * @mast: The maple subtree state
2779 * @mas: The maple state
2780 */
2781static inline void mast_new_root(struct maple_subtree_state *mast,
2782 struct ma_state *mas)
2783{
2784 mas_mn(mast->l)->parent =
2785 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2786 if (!mte_dead_node(mast->orig_l->node) &&
2787 !mte_is_root(mast->orig_l->node)) {
2788 do {
2789 mast_ascend_free(mast);
2790 mast_topiary(mast);
2791 } while (!mte_is_root(mast->orig_l->node));
2792 }
2793 if ((mast->orig_l->node != mas->node) &&
2794 (mast->l->depth > mas_mt_height(mas))) {
2795 mat_add(mast->free, mas->node);
2796 }
2797}
2798
2799/*
2800 * mast_cp_to_nodes() - Copy data out to nodes.
2801 * @mast: The maple subtree state
2802 * @left: The left encoded maple node
2803 * @middle: The middle encoded maple node
2804 * @right: The right encoded maple node
2805 * @split: The location to split between left and (middle ? middle : right)
2806 * @mid_split: The location to split between middle and right.
2807 */
2808static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2809 struct maple_enode *left, struct maple_enode *middle,
2810 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2811{
2812 bool new_lmax = true;
2813
2814 mast->l->node = mte_node_or_none(left);
2815 mast->m->node = mte_node_or_none(middle);
2816 mast->r->node = mte_node_or_none(right);
2817
2818 mast->l->min = mast->orig_l->min;
2819 if (split == mast->bn->b_end) {
2820 mast->l->max = mast->orig_r->max;
2821 new_lmax = false;
2822 }
2823
2824 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2825
2826 if (middle) {
2827 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2828 mast->m->min = mast->bn->pivot[split] + 1;
2829 split = mid_split;
2830 }
2831
2832 mast->r->max = mast->orig_r->max;
2833 if (right) {
2834 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2835 mast->r->min = mast->bn->pivot[split] + 1;
2836 }
2837}
2838
2839/*
2840 * mast_combine_cp_left - Copy in the original left side of the tree into the
2841 * combined data set in the maple subtree state big node.
2842 * @mast: The maple subtree state
2843 */
2844static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2845{
2846 unsigned char l_slot = mast->orig_l->offset;
2847
2848 if (!l_slot)
2849 return;
2850
2851 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2852}
2853
2854/*
2855 * mast_combine_cp_right: Copy in the original right side of the tree into the
2856 * combined data set in the maple subtree state big node.
2857 * @mast: The maple subtree state
2858 */
2859static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2860{
2861 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2862 return;
2863
2864 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2865 mt_slot_count(mast->orig_r->node), mast->bn,
2866 mast->bn->b_end);
2867 mast->orig_r->last = mast->orig_r->max;
2868}
2869
2870/*
2871 * mast_sufficient: Check if the maple subtree state has enough data in the big
2872 * node to create at least one sufficient node
2873 * @mast: the maple subtree state
2874 */
2875static inline bool mast_sufficient(struct maple_subtree_state *mast)
2876{
2877 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2878 return true;
2879
2880 return false;
2881}
2882
2883/*
2884 * mast_overflow: Check if there is too much data in the subtree state for a
2885 * single node.
2886 * @mast: The maple subtree state
2887 */
2888static inline bool mast_overflow(struct maple_subtree_state *mast)
2889{
2890 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2891 return true;
2892
2893 return false;
2894}
2895
2896static inline void *mtree_range_walk(struct ma_state *mas)
2897{
2898 unsigned long *pivots;
2899 unsigned char offset;
2900 struct maple_node *node;
2901 struct maple_enode *next, *last;
2902 enum maple_type type;
2903 void __rcu **slots;
2904 unsigned char end;
2905 unsigned long max, min;
2906 unsigned long prev_max, prev_min;
2907
1b9c9183
LB
2908 next = mas->node;
2909 min = mas->min;
54a611b6
LH
2910 max = mas->max;
2911 do {
2912 offset = 0;
2913 last = next;
2914 node = mte_to_node(next);
2915 type = mte_node_type(next);
2916 pivots = ma_pivots(node, type);
2917 end = ma_data_end(node, type, pivots, max);
2918 if (unlikely(ma_dead_node(node)))
2919 goto dead_node;
2920
2921 if (pivots[offset] >= mas->index) {
2922 prev_max = max;
2923 prev_min = min;
2924 max = pivots[offset];
2925 goto next;
2926 }
2927
2928 do {
2929 offset++;
2930 } while ((offset < end) && (pivots[offset] < mas->index));
2931
2932 prev_min = min;
2933 min = pivots[offset - 1] + 1;
2934 prev_max = max;
2935 if (likely(offset < end && pivots[offset]))
2936 max = pivots[offset];
2937
2938next:
2939 slots = ma_slots(node, type);
2940 next = mt_slot(mas->tree, slots, offset);
2941 if (unlikely(ma_dead_node(node)))
2942 goto dead_node;
2943 } while (!ma_is_leaf(type));
2944
2945 mas->offset = offset;
2946 mas->index = min;
2947 mas->last = max;
2948 mas->min = prev_min;
2949 mas->max = prev_max;
2950 mas->node = last;
831978e3 2951 return (void *)next;
54a611b6
LH
2952
2953dead_node:
2954 mas_reset(mas);
2955 return NULL;
2956}
2957
2958/*
2959 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2960 * @mas: The starting maple state
2961 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2962 * @count: The estimated count of iterations needed.
2963 *
2964 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2965 * is hit. First @b_node is split into two entries which are inserted into the
2966 * next iteration of the loop. @b_node is returned populated with the final
2967 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2968 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2969 * to account of what has been copied into the new sub-tree. The update of
2970 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2971 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2972 * the new sub-tree in case the sub-tree becomes the full tree.
2973 *
2974 * Return: the number of elements in b_node during the last loop.
2975 */
2976static int mas_spanning_rebalance(struct ma_state *mas,
2977 struct maple_subtree_state *mast, unsigned char count)
2978{
2979 unsigned char split, mid_split;
2980 unsigned char slot = 0;
2981 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2982
2983 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2984 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2985 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2986 MA_TOPIARY(free, mas->tree);
2987 MA_TOPIARY(destroy, mas->tree);
2988
2989 /*
2990 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2991 * Rebalancing is done by use of the ``struct maple_topiary``.
2992 */
2993 mast->l = &l_mas;
2994 mast->m = &m_mas;
2995 mast->r = &r_mas;
2996 mast->free = &free;
2997 mast->destroy = &destroy;
2998 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
2999
3000 /* Check if this is not root and has sufficient data. */
3001 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3002 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3003 mast_spanning_rebalance(mast);
3004
3005 mast->orig_l->depth = 0;
3006
3007 /*
3008 * Each level of the tree is examined and balanced, pushing data to the left or
3009 * right, or rebalancing against left or right nodes is employed to avoid
3010 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3011 * the tree is created, there may be a mix of new and old nodes. The old nodes
3012 * will have the incorrect parent pointers and currently be in two trees: the
3013 * original tree and the partially new tree. To remedy the parent pointers in
3014 * the old tree, the new data is swapped into the active tree and a walk down
3015 * the tree is performed and the parent pointers are updated.
3016 * See mas_descend_adopt() for more information..
3017 */
3018 while (count--) {
3019 mast->bn->b_end--;
3020 mast->bn->type = mte_node_type(mast->orig_l->node);
3021 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3022 &mid_split, mast->orig_l->min);
3023 mast_set_split_parents(mast, left, middle, right, split,
3024 mid_split);
3025 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3026
3027 /*
3028 * Copy data from next level in the tree to mast->bn from next
3029 * iteration
3030 */
3031 memset(mast->bn, 0, sizeof(struct maple_big_node));
3032 mast->bn->type = mte_node_type(left);
3033 mast->orig_l->depth++;
3034
3035 /* Root already stored in l->node. */
3036 if (mas_is_root_limits(mast->l))
3037 goto new_root;
3038
3039 mast_ascend_free(mast);
3040 mast_combine_cp_left(mast);
3041 l_mas.offset = mast->bn->b_end;
3042 mab_set_b_end(mast->bn, &l_mas, left);
3043 mab_set_b_end(mast->bn, &m_mas, middle);
3044 mab_set_b_end(mast->bn, &r_mas, right);
3045
3046 /* Copy anything necessary out of the right node. */
3047 mast_combine_cp_right(mast);
3048 mast_topiary(mast);
3049 mast->orig_l->last = mast->orig_l->max;
3050
3051 if (mast_sufficient(mast))
3052 continue;
3053
3054 if (mast_overflow(mast))
3055 continue;
3056
3057 /* May be a new root stored in mast->bn */
3058 if (mas_is_root_limits(mast->orig_l))
3059 break;
3060
3061 mast_spanning_rebalance(mast);
3062
3063 /* rebalancing from other nodes may require another loop. */
3064 if (!count)
3065 count++;
3066 }
3067
3068 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3069 mte_node_type(mast->orig_l->node));
3070 mast->orig_l->depth++;
3071 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
bf96715e 3072 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 3073 if (middle)
bf96715e 3074 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
3075
3076 if (right)
bf96715e 3077 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
3078
3079 if (mas_is_root_limits(mast->l)) {
3080new_root:
3081 mast_new_root(mast, mas);
3082 } else {
3083 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3084 }
3085
3086 if (!mte_dead_node(mast->orig_l->node))
3087 mat_add(&free, mast->orig_l->node);
3088
3089 mas->depth = mast->orig_l->depth;
3090 *mast->orig_l = l_mas;
3091 mte_set_node_dead(mas->node);
3092
3093 /* Set up mas for insertion. */
3094 mast->orig_l->depth = mas->depth;
3095 mast->orig_l->alloc = mas->alloc;
3096 *mas = *mast->orig_l;
3097 mas_wmb_replace(mas, &free, &destroy);
3098 mtree_range_walk(mas);
3099 return mast->bn->b_end;
3100}
3101
3102/*
3103 * mas_rebalance() - Rebalance a given node.
3104 * @mas: The maple state
3105 * @b_node: The big maple node.
3106 *
3107 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3108 * Continue upwards until tree is sufficient.
3109 *
3110 * Return: the number of elements in b_node during the last loop.
3111 */
3112static inline int mas_rebalance(struct ma_state *mas,
3113 struct maple_big_node *b_node)
3114{
3115 char empty_count = mas_mt_height(mas);
3116 struct maple_subtree_state mast;
3117 unsigned char shift, b_end = ++b_node->b_end;
3118
3119 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3120 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3121
3122 trace_ma_op(__func__, mas);
3123
3124 /*
3125 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3126 * against the node to the right if it exists, otherwise the node to the
3127 * left of this node is rebalanced against this node. If rebalancing
3128 * causes just one node to be produced instead of two, then the parent
3129 * is also examined and rebalanced if it is insufficient. Every level
3130 * tries to combine the data in the same way. If one node contains the
3131 * entire range of the tree, then that node is used as a new root node.
3132 */
3133 mas_node_count(mas, 1 + empty_count * 3);
3134 if (mas_is_err(mas))
3135 return 0;
3136
3137 mast.orig_l = &l_mas;
3138 mast.orig_r = &r_mas;
3139 mast.bn = b_node;
3140 mast.bn->type = mte_node_type(mas->node);
3141
3142 l_mas = r_mas = *mas;
3143
3144 if (mas_next_sibling(&r_mas)) {
3145 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3146 r_mas.last = r_mas.index = r_mas.max;
3147 } else {
3148 mas_prev_sibling(&l_mas);
3149 shift = mas_data_end(&l_mas) + 1;
3150 mab_shift_right(b_node, shift);
3151 mas->offset += shift;
3152 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3153 b_node->b_end = shift + b_end;
3154 l_mas.index = l_mas.last = l_mas.min;
3155 }
3156
3157 return mas_spanning_rebalance(mas, &mast, empty_count);
3158}
3159
3160/*
3161 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3162 * state.
3163 * @mas: The maple state
3164 * @end: The end of the left-most node.
3165 *
3166 * During a mass-insert event (such as forking), it may be necessary to
3167 * rebalance the left-most node when it is not sufficient.
3168 */
3169static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3170{
3171 enum maple_type mt = mte_node_type(mas->node);
3172 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3173 struct maple_enode *eparent;
3174 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3175 void __rcu **l_slots, **slots;
3176 unsigned long *l_pivs, *pivs, gap;
3177 bool in_rcu = mt_in_rcu(mas->tree);
3178
3179 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3180
3181 l_mas = *mas;
3182 mas_prev_sibling(&l_mas);
3183
3184 /* set up node. */
3185 if (in_rcu) {
3186 /* Allocate for both left and right as well as parent. */
3187 mas_node_count(mas, 3);
3188 if (mas_is_err(mas))
3189 return;
3190
3191 newnode = mas_pop_node(mas);
3192 } else {
3193 newnode = &reuse;
3194 }
3195
3196 node = mas_mn(mas);
3197 newnode->parent = node->parent;
3198 slots = ma_slots(newnode, mt);
3199 pivs = ma_pivots(newnode, mt);
3200 left = mas_mn(&l_mas);
3201 l_slots = ma_slots(left, mt);
3202 l_pivs = ma_pivots(left, mt);
3203 if (!l_slots[split])
3204 split++;
3205 tmp = mas_data_end(&l_mas) - split;
3206
3207 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3208 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3209 pivs[tmp] = l_mas.max;
3210 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3211 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3212
3213 l_mas.max = l_pivs[split];
3214 mas->min = l_mas.max + 1;
3215 eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3216 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3217 tmp += end;
3218 if (!in_rcu) {
3219 unsigned char max_p = mt_pivots[mt];
3220 unsigned char max_s = mt_slots[mt];
3221
3222 if (tmp < max_p)
3223 memset(pivs + tmp, 0,
fb20e99a 3224 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3225
3226 if (tmp < mt_slots[mt])
3227 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3228
3229 memcpy(node, newnode, sizeof(struct maple_node));
3230 ma_set_meta(node, mt, 0, tmp - 1);
3231 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3232 l_pivs[split]);
3233
3234 /* Remove data from l_pivs. */
3235 tmp = split + 1;
3236 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3237 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3238 ma_set_meta(left, mt, 0, split);
3239
3240 goto done;
3241 }
3242
3243 /* RCU requires replacing both l_mas, mas, and parent. */
3244 mas->node = mt_mk_node(newnode, mt);
3245 ma_set_meta(newnode, mt, 0, tmp);
3246
3247 new_left = mas_pop_node(mas);
3248 new_left->parent = left->parent;
3249 mt = mte_node_type(l_mas.node);
3250 slots = ma_slots(new_left, mt);
3251 pivs = ma_pivots(new_left, mt);
3252 memcpy(slots, l_slots, sizeof(void *) * split);
3253 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3254 ma_set_meta(new_left, mt, 0, split);
3255 l_mas.node = mt_mk_node(new_left, mt);
3256
3257 /* replace parent. */
3258 offset = mte_parent_slot(mas->node);
afc754c6 3259 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3260 parent = mas_pop_node(mas);
3261 slots = ma_slots(parent, mt);
3262 pivs = ma_pivots(parent, mt);
3263 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3264 rcu_assign_pointer(slots[offset], mas->node);
3265 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3266 pivs[offset - 1] = l_mas.max;
3267 eparent = mt_mk_node(parent, mt);
3268done:
3269 gap = mas_leaf_max_gap(mas);
3270 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3271 gap = mas_leaf_max_gap(&l_mas);
3272 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3273 mas_ascend(mas);
3274
3275 if (in_rcu)
3276 mas_replace(mas, false);
3277
3278 mas_update_gap(mas);
3279}
3280
3281/*
3282 * mas_split_final_node() - Split the final node in a subtree operation.
3283 * @mast: the maple subtree state
3284 * @mas: The maple state
3285 * @height: The height of the tree in case it's a new root.
3286 */
3287static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3288 struct ma_state *mas, int height)
3289{
3290 struct maple_enode *ancestor;
3291
3292 if (mte_is_root(mas->node)) {
3293 if (mt_is_alloc(mas->tree))
3294 mast->bn->type = maple_arange_64;
3295 else
3296 mast->bn->type = maple_range_64;
3297 mas->depth = height;
3298 }
3299 /*
3300 * Only a single node is used here, could be root.
3301 * The Big_node data should just fit in a single node.
3302 */
3303 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3304 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3305 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3306 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3307
3308 mast->l->node = ancestor;
3309 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3310 mas->offset = mast->bn->b_end - 1;
3311 return true;
3312}
3313
3314/*
3315 * mast_fill_bnode() - Copy data into the big node in the subtree state
3316 * @mast: The maple subtree state
3317 * @mas: the maple state
3318 * @skip: The number of entries to skip for new nodes insertion.
3319 */
3320static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3321 struct ma_state *mas,
3322 unsigned char skip)
3323{
3324 bool cp = true;
3325 struct maple_enode *old = mas->node;
3326 unsigned char split;
3327
3328 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3329 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3330 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3331 mast->bn->b_end = 0;
3332
3333 if (mte_is_root(mas->node)) {
3334 cp = false;
3335 } else {
3336 mas_ascend(mas);
3337 mat_add(mast->free, old);
3338 mas->offset = mte_parent_slot(mas->node);
3339 }
3340
3341 if (cp && mast->l->offset)
3342 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3343
3344 split = mast->bn->b_end;
3345 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3346 mast->r->offset = mast->bn->b_end;
3347 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3348 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3349 cp = false;
3350
3351 if (cp)
3352 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3353 mast->bn, mast->bn->b_end);
3354
3355 mast->bn->b_end--;
3356 mast->bn->type = mte_node_type(mas->node);
3357}
3358
3359/*
3360 * mast_split_data() - Split the data in the subtree state big node into regular
3361 * nodes.
3362 * @mast: The maple subtree state
3363 * @mas: The maple state
3364 * @split: The location to split the big node
3365 */
3366static inline void mast_split_data(struct maple_subtree_state *mast,
3367 struct ma_state *mas, unsigned char split)
3368{
3369 unsigned char p_slot;
3370
3371 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3372 mte_set_pivot(mast->r->node, 0, mast->r->max);
3373 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3374 mast->l->offset = mte_parent_slot(mas->node);
3375 mast->l->max = mast->bn->pivot[split];
3376 mast->r->min = mast->l->max + 1;
3377 if (mte_is_leaf(mas->node))
3378 return;
3379
3380 p_slot = mast->orig_l->offset;
3381 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3382 &p_slot, split);
3383 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3384 &p_slot, split);
3385}
3386
3387/*
3388 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3389 * data to the right or left node if there is room.
3390 * @mas: The maple state
3391 * @height: The current height of the maple state
3392 * @mast: The maple subtree state
3393 * @left: Push left or not.
3394 *
3395 * Keeping the height of the tree low means faster lookups.
3396 *
3397 * Return: True if pushed, false otherwise.
3398 */
3399static inline bool mas_push_data(struct ma_state *mas, int height,
3400 struct maple_subtree_state *mast, bool left)
3401{
3402 unsigned char slot_total = mast->bn->b_end;
3403 unsigned char end, space, split;
3404
3405 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3406 tmp_mas = *mas;
3407 tmp_mas.depth = mast->l->depth;
3408
3409 if (left && !mas_prev_sibling(&tmp_mas))
3410 return false;
3411 else if (!left && !mas_next_sibling(&tmp_mas))
3412 return false;
3413
3414 end = mas_data_end(&tmp_mas);
3415 slot_total += end;
3416 space = 2 * mt_slot_count(mas->node) - 2;
3417 /* -2 instead of -1 to ensure there isn't a triple split */
3418 if (ma_is_leaf(mast->bn->type))
3419 space--;
3420
3421 if (mas->max == ULONG_MAX)
3422 space--;
3423
3424 if (slot_total >= space)
3425 return false;
3426
3427 /* Get the data; Fill mast->bn */
3428 mast->bn->b_end++;
3429 if (left) {
3430 mab_shift_right(mast->bn, end + 1);
3431 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3432 mast->bn->b_end = slot_total + 1;
3433 } else {
3434 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3435 }
3436
3437 /* Configure mast for splitting of mast->bn */
3438 split = mt_slots[mast->bn->type] - 2;
3439 if (left) {
3440 /* Switch mas to prev node */
3441 mat_add(mast->free, mas->node);
3442 *mas = tmp_mas;
3443 /* Start using mast->l for the left side. */
3444 tmp_mas.node = mast->l->node;
3445 *mast->l = tmp_mas;
3446 } else {
3447 mat_add(mast->free, tmp_mas.node);
3448 tmp_mas.node = mast->r->node;
3449 *mast->r = tmp_mas;
3450 split = slot_total - split;
3451 }
3452 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3453 /* Update parent slot for split calculation. */
3454 if (left)
3455 mast->orig_l->offset += end + 1;
3456
3457 mast_split_data(mast, mas, split);
3458 mast_fill_bnode(mast, mas, 2);
3459 mas_split_final_node(mast, mas, height + 1);
3460 return true;
3461}
3462
3463/*
3464 * mas_split() - Split data that is too big for one node into two.
3465 * @mas: The maple state
3466 * @b_node: The maple big node
3467 * Return: 1 on success, 0 on failure.
3468 */
3469static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3470{
54a611b6
LH
3471 struct maple_subtree_state mast;
3472 int height = 0;
3473 unsigned char mid_split, split = 0;
3474
3475 /*
3476 * Splitting is handled differently from any other B-tree; the Maple
3477 * Tree splits upwards. Splitting up means that the split operation
3478 * occurs when the walk of the tree hits the leaves and not on the way
3479 * down. The reason for splitting up is that it is impossible to know
3480 * how much space will be needed until the leaf is (or leaves are)
3481 * reached. Since overwriting data is allowed and a range could
3482 * overwrite more than one range or result in changing one entry into 3
3483 * entries, it is impossible to know if a split is required until the
3484 * data is examined.
3485 *
3486 * Splitting is a balancing act between keeping allocations to a minimum
3487 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 * for an entry followed by a contraction when the entry is removed. To
3489 * accomplish the balance, there are empty slots remaining in both left
3490 * and right nodes after a split.
3491 */
3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 MA_TOPIARY(mat, mas->tree);
3497
3498 trace_ma_op(__func__, mas);
3499 mas->depth = mas_mt_height(mas);
3500 /* Allocation failures will happen early. */
3501 mas_node_count(mas, 1 + mas->depth * 2);
3502 if (mas_is_err(mas))
3503 return 0;
3504
3505 mast.l = &l_mas;
3506 mast.r = &r_mas;
3507 mast.orig_l = &prev_l_mas;
3508 mast.orig_r = &prev_r_mas;
3509 mast.free = &mat;
3510 mast.bn = b_node;
3511
3512 while (height++ <= mas->depth) {
3513 if (mt_slots[b_node->type] > b_node->b_end) {
3514 mas_split_final_node(&mast, mas, height);
3515 break;
3516 }
3517
3518 l_mas = r_mas = *mas;
3519 l_mas.node = mas_new_ma_node(mas, b_node);
3520 r_mas.node = mas_new_ma_node(mas, b_node);
3521 /*
3522 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 * left or right node has space to spare. This is referred to as "pushing left"
3524 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 * is a significant savings.
3527 */
3528 /* Try to push left. */
3529 if (mas_push_data(mas, height, &mast, true))
3530 break;
3531
3532 /* Try to push right. */
3533 if (mas_push_data(mas, height, &mast, false))
3534 break;
3535
3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 mast_split_data(&mast, mas, split);
3538 /*
3539 * Usually correct, mab_mas_cp in the above call overwrites
3540 * r->max.
3541 */
3542 mast.r->max = mas->max;
3543 mast_fill_bnode(&mast, mas, 1);
3544 prev_l_mas = *mast.l;
3545 prev_r_mas = *mast.r;
3546 }
3547
3548 /* Set the original node as dead */
3549 mat_add(mast.free, mas->node);
3550 mas->node = l_mas.node;
3551 mas_wmb_replace(mas, mast.free, NULL);
3552 mtree_range_walk(mas);
3553 return 1;
3554}
3555
3556/*
3557 * mas_reuse_node() - Reuse the node to store the data.
3558 * @wr_mas: The maple write state
3559 * @bn: The maple big node
3560 * @end: The end of the data.
3561 *
3562 * Will always return false in RCU mode.
3563 *
3564 * Return: True if node was reused, false otherwise.
3565 */
3566static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 struct maple_big_node *bn, unsigned char end)
3568{
3569 /* Need to be rcu safe. */
3570 if (mt_in_rcu(wr_mas->mas->tree))
3571 return false;
3572
3573 if (end > bn->b_end) {
3574 int clear = mt_slots[wr_mas->type] - bn->b_end;
3575
3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3578 }
3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3580 return true;
3581}
3582
3583/*
3584 * mas_commit_b_node() - Commit the big node into the tree.
3585 * @wr_mas: The maple write state
3586 * @b_node: The maple big node
3587 * @end: The end of the data.
3588 */
44081c77 3589static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3590 struct maple_big_node *b_node, unsigned char end)
3591{
3592 struct maple_node *node;
3593 unsigned char b_end = b_node->b_end;
3594 enum maple_type b_type = b_node->type;
3595
3596 if ((b_end < mt_min_slots[b_type]) &&
3597 (!mte_is_root(wr_mas->mas->node)) &&
3598 (mas_mt_height(wr_mas->mas) > 1))
3599 return mas_rebalance(wr_mas->mas, b_node);
3600
3601 if (b_end >= mt_slots[b_type])
3602 return mas_split(wr_mas->mas, b_node);
3603
3604 if (mas_reuse_node(wr_mas, b_node, end))
3605 goto reuse_node;
3606
3607 mas_node_count(wr_mas->mas, 1);
3608 if (mas_is_err(wr_mas->mas))
3609 return 0;
3610
3611 node = mas_pop_node(wr_mas->mas);
3612 node->parent = mas_mn(wr_mas->mas)->parent;
3613 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3615 mas_replace(wr_mas->mas, false);
3616reuse_node:
3617 mas_update_gap(wr_mas->mas);
3618 return 1;
3619}
3620
3621/*
3622 * mas_root_expand() - Expand a root to a node
3623 * @mas: The maple state
3624 * @entry: The entry to store into the tree
3625 */
3626static inline int mas_root_expand(struct ma_state *mas, void *entry)
3627{
3628 void *contents = mas_root_locked(mas);
3629 enum maple_type type = maple_leaf_64;
3630 struct maple_node *node;
3631 void __rcu **slots;
3632 unsigned long *pivots;
3633 int slot = 0;
3634
3635 mas_node_count(mas, 1);
3636 if (unlikely(mas_is_err(mas)))
3637 return 0;
3638
3639 node = mas_pop_node(mas);
3640 pivots = ma_pivots(node, type);
3641 slots = ma_slots(node, type);
3642 node->parent = ma_parent_ptr(
3643 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 mas->node = mt_mk_node(node, type);
3645
3646 if (mas->index) {
3647 if (contents) {
3648 rcu_assign_pointer(slots[slot], contents);
3649 if (likely(mas->index > 1))
3650 slot++;
3651 }
3652 pivots[slot++] = mas->index - 1;
3653 }
3654
3655 rcu_assign_pointer(slots[slot], entry);
3656 mas->offset = slot;
3657 pivots[slot] = mas->last;
3658 if (mas->last != ULONG_MAX)
3c769fd8
PZ
3659 pivots[++slot] = ULONG_MAX;
3660
54a611b6
LH
3661 mas->depth = 1;
3662 mas_set_height(mas);
c45ea315 3663 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3664 /* swap the new root into the tree */
3665 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
54a611b6
LH
3666 return slot;
3667}
3668
3669static inline void mas_store_root(struct ma_state *mas, void *entry)
3670{
3671 if (likely((mas->last != 0) || (mas->index != 0)))
3672 mas_root_expand(mas, entry);
3673 else if (((unsigned long) (entry) & 3) == 2)
3674 mas_root_expand(mas, entry);
3675 else {
3676 rcu_assign_pointer(mas->tree->ma_root, entry);
3677 mas->node = MAS_START;
3678 }
3679}
3680
3681/*
3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3683 * spans the node.
3684 * @mas: The maple state
3685 * @piv: The pivot value being written
3686 * @type: The maple node type
3687 * @entry: The data to write
3688 *
3689 * Spanning writes are writes that start in one node and end in another OR if
3690 * the write of a %NULL will cause the node to end with a %NULL.
3691 *
3692 * Return: True if this is a spanning write, false otherwise.
3693 */
3694static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3695{
bc147f0f 3696 unsigned long max = wr_mas->r_max;
54a611b6 3697 unsigned long last = wr_mas->mas->last;
54a611b6
LH
3698 enum maple_type type = wr_mas->type;
3699 void *entry = wr_mas->entry;
3700
bc147f0f
PZ
3701 /* Contained in this pivot, fast path */
3702 if (last < max)
54a611b6
LH
3703 return false;
3704
bc147f0f
PZ
3705 if (ma_is_leaf(type)) {
3706 max = wr_mas->mas->max;
54a611b6
LH
3707 if (last < max)
3708 return false;
bc147f0f 3709 }
54a611b6 3710
bc147f0f 3711 if (last == max) {
54a611b6 3712 /*
bc147f0f
PZ
3713 * The last entry of leaf node cannot be NULL unless it is the
3714 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
54a611b6 3715 */
bc147f0f 3716 if (entry || last == ULONG_MAX)
54a611b6
LH
3717 return false;
3718 }
3719
bc147f0f 3720 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
54a611b6
LH
3721 return true;
3722}
3723
3724static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3725{
54a611b6
LH
3726 wr_mas->type = mte_node_type(wr_mas->mas->node);
3727 mas_wr_node_walk(wr_mas);
3728 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3729}
3730
3731static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3732{
3733 wr_mas->mas->max = wr_mas->r_max;
3734 wr_mas->mas->min = wr_mas->r_min;
3735 wr_mas->mas->node = wr_mas->content;
3736 wr_mas->mas->offset = 0;
9bbba563 3737 wr_mas->mas->depth++;
54a611b6
LH
3738}
3739/*
3740 * mas_wr_walk() - Walk the tree for a write.
3741 * @wr_mas: The maple write state
3742 *
3743 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3744 *
3745 * Return: True if it's contained in a node, false on spanning write.
3746 */
3747static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3748{
3749 struct ma_state *mas = wr_mas->mas;
3750
3751 while (true) {
3752 mas_wr_walk_descend(wr_mas);
3753 if (unlikely(mas_is_span_wr(wr_mas)))
3754 return false;
3755
3756 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3757 mas->offset);
3758 if (ma_is_leaf(wr_mas->type))
3759 return true;
3760
3761 mas_wr_walk_traverse(wr_mas);
3762 }
3763
3764 return true;
3765}
3766
3767static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3768{
3769 struct ma_state *mas = wr_mas->mas;
3770
3771 while (true) {
3772 mas_wr_walk_descend(wr_mas);
3773 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3774 mas->offset);
3775 if (ma_is_leaf(wr_mas->type))
3776 return true;
3777 mas_wr_walk_traverse(wr_mas);
3778
3779 }
3780 return true;
3781}
3782/*
3783 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3784 * @l_wr_mas: The left maple write state
3785 * @r_wr_mas: The right maple write state
3786 */
3787static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3788 struct ma_wr_state *r_wr_mas)
3789{
3790 struct ma_state *r_mas = r_wr_mas->mas;
3791 struct ma_state *l_mas = l_wr_mas->mas;
3792 unsigned char l_slot;
3793
3794 l_slot = l_mas->offset;
3795 if (!l_wr_mas->content)
3796 l_mas->index = l_wr_mas->r_min;
3797
3798 if ((l_mas->index == l_wr_mas->r_min) &&
3799 (l_slot &&
3800 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3801 if (l_slot > 1)
3802 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3803 else
3804 l_mas->index = l_mas->min;
3805
3806 l_mas->offset = l_slot - 1;
3807 }
3808
3809 if (!r_wr_mas->content) {
3810 if (r_mas->last < r_wr_mas->r_max)
3811 r_mas->last = r_wr_mas->r_max;
3812 r_mas->offset++;
3813 } else if ((r_mas->last == r_wr_mas->r_max) &&
3814 (r_mas->last < r_mas->max) &&
3815 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3816 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3817 r_wr_mas->type, r_mas->offset + 1);
3818 r_mas->offset++;
3819 }
3820}
3821
3822static inline void *mas_state_walk(struct ma_state *mas)
3823{
3824 void *entry;
3825
3826 entry = mas_start(mas);
3827 if (mas_is_none(mas))
3828 return NULL;
3829
3830 if (mas_is_ptr(mas))
3831 return entry;
3832
3833 return mtree_range_walk(mas);
3834}
3835
3836/*
3837 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3838 * to date.
3839 *
3840 * @mas: The maple state.
3841 *
3842 * Note: Leaves mas in undesirable state.
3843 * Return: The entry for @mas->index or %NULL on dead node.
3844 */
3845static inline void *mtree_lookup_walk(struct ma_state *mas)
3846{
3847 unsigned long *pivots;
3848 unsigned char offset;
3849 struct maple_node *node;
3850 struct maple_enode *next;
3851 enum maple_type type;
3852 void __rcu **slots;
3853 unsigned char end;
3854 unsigned long max;
3855
3856 next = mas->node;
3857 max = ULONG_MAX;
3858 do {
3859 offset = 0;
3860 node = mte_to_node(next);
3861 type = mte_node_type(next);
3862 pivots = ma_pivots(node, type);
3863 end = ma_data_end(node, type, pivots, max);
3864 if (unlikely(ma_dead_node(node)))
3865 goto dead_node;
54a611b6 3866 do {
ec07967d
PZ
3867 if (pivots[offset] >= mas->index) {
3868 max = pivots[offset];
3869 break;
3870 }
3871 } while (++offset < end);
54a611b6 3872
54a611b6
LH
3873 slots = ma_slots(node, type);
3874 next = mt_slot(mas->tree, slots, offset);
3875 if (unlikely(ma_dead_node(node)))
3876 goto dead_node;
3877 } while (!ma_is_leaf(type));
3878
831978e3 3879 return (void *)next;
54a611b6
LH
3880
3881dead_node:
3882 mas_reset(mas);
3883 return NULL;
3884}
3885
3886/*
3887 * mas_new_root() - Create a new root node that only contains the entry passed
3888 * in.
3889 * @mas: The maple state
3890 * @entry: The entry to store.
3891 *
3892 * Only valid when the index == 0 and the last == ULONG_MAX
3893 *
3894 * Return 0 on error, 1 on success.
3895 */
3896static inline int mas_new_root(struct ma_state *mas, void *entry)
3897{
3898 struct maple_enode *root = mas_root_locked(mas);
3899 enum maple_type type = maple_leaf_64;
3900 struct maple_node *node;
3901 void __rcu **slots;
3902 unsigned long *pivots;
3903
3904 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3905 mas->depth = 0;
3906 mas_set_height(mas);
3907 rcu_assign_pointer(mas->tree->ma_root, entry);
3908 mas->node = MAS_START;
3909 goto done;
3910 }
3911
3912 mas_node_count(mas, 1);
3913 if (mas_is_err(mas))
3914 return 0;
3915
3916 node = mas_pop_node(mas);
3917 pivots = ma_pivots(node, type);
3918 slots = ma_slots(node, type);
3919 node->parent = ma_parent_ptr(
3920 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3921 mas->node = mt_mk_node(node, type);
3922 rcu_assign_pointer(slots[0], entry);
3923 pivots[0] = mas->last;
3924 mas->depth = 1;
3925 mas_set_height(mas);
3926 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3927
3928done:
3929 if (xa_is_node(root))
3930 mte_destroy_walk(root, mas->tree);
3931
3932 return 1;
3933}
3934/*
3935 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3936 * and new nodes where necessary, then place the sub-tree in the actual tree.
3937 * Note that mas is expected to point to the node which caused the store to
3938 * span.
3939 * @wr_mas: The maple write state
3940 *
3941 * Return: 0 on error, positive on success.
3942 */
3943static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3944{
3945 struct maple_subtree_state mast;
3946 struct maple_big_node b_node;
3947 struct ma_state *mas;
3948 unsigned char height;
3949
3950 /* Left and Right side of spanning store */
3951 MA_STATE(l_mas, NULL, 0, 0);
3952 MA_STATE(r_mas, NULL, 0, 0);
3953
3954 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3955 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3956
3957 /*
3958 * A store operation that spans multiple nodes is called a spanning
3959 * store and is handled early in the store call stack by the function
3960 * mas_is_span_wr(). When a spanning store is identified, the maple
3961 * state is duplicated. The first maple state walks the left tree path
3962 * to ``index``, the duplicate walks the right tree path to ``last``.
3963 * The data in the two nodes are combined into a single node, two nodes,
3964 * or possibly three nodes (see the 3-way split above). A ``NULL``
3965 * written to the last entry of a node is considered a spanning store as
3966 * a rebalance is required for the operation to complete and an overflow
3967 * of data may happen.
3968 */
3969 mas = wr_mas->mas;
3970 trace_ma_op(__func__, mas);
3971
3972 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3973 return mas_new_root(mas, wr_mas->entry);
3974 /*
3975 * Node rebalancing may occur due to this store, so there may be three new
3976 * entries per level plus a new root.
3977 */
3978 height = mas_mt_height(mas);
3979 mas_node_count(mas, 1 + height * 3);
3980 if (mas_is_err(mas))
3981 return 0;
3982
3983 /*
3984 * Set up right side. Need to get to the next offset after the spanning
3985 * store to ensure it's not NULL and to combine both the next node and
3986 * the node with the start together.
3987 */
3988 r_mas = *mas;
3989 /* Avoid overflow, walk to next slot in the tree. */
3990 if (r_mas.last + 1)
3991 r_mas.last++;
3992
3993 r_mas.index = r_mas.last;
3994 mas_wr_walk_index(&r_wr_mas);
3995 r_mas.last = r_mas.index = mas->last;
3996
3997 /* Set up left side. */
3998 l_mas = *mas;
3999 mas_wr_walk_index(&l_wr_mas);
4000
4001 if (!wr_mas->entry) {
4002 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4003 mas->offset = l_mas.offset;
4004 mas->index = l_mas.index;
4005 mas->last = l_mas.last = r_mas.last;
4006 }
4007
4008 /* expanding NULLs may make this cover the entire range */
4009 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4010 mas_set_range(mas, 0, ULONG_MAX);
4011 return mas_new_root(mas, wr_mas->entry);
4012 }
4013
4014 memset(&b_node, 0, sizeof(struct maple_big_node));
4015 /* Copy l_mas and store the value in b_node. */
4016 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4017 /* Copy r_mas into b_node. */
4018 if (r_mas.offset <= r_wr_mas.node_end)
4019 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4020 &b_node, b_node.b_end + 1);
4021 else
4022 b_node.b_end++;
4023
4024 /* Stop spanning searches by searching for just index. */
4025 l_mas.index = l_mas.last = mas->index;
4026
4027 mast.bn = &b_node;
4028 mast.orig_l = &l_mas;
4029 mast.orig_r = &r_mas;
4030 /* Combine l_mas and r_mas and split them up evenly again. */
4031 return mas_spanning_rebalance(mas, &mast, height + 1);
4032}
4033
4034/*
4035 * mas_wr_node_store() - Attempt to store the value in a node
4036 * @wr_mas: The maple write state
4037 *
4038 * Attempts to reuse the node, but may allocate.
4039 *
4040 * Return: True if stored, false otherwise
4041 */
7a03ae39
PZ
4042static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
4043 unsigned char new_end)
54a611b6
LH
4044{
4045 struct ma_state *mas = wr_mas->mas;
4046 void __rcu **dst_slots;
4047 unsigned long *dst_pivots;
7a03ae39 4048 unsigned char dst_offset, offset_end = wr_mas->offset_end;
54a611b6 4049 struct maple_node reuse, *newnode;
7a03ae39 4050 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
54a611b6
LH
4051 bool in_rcu = mt_in_rcu(mas->tree);
4052
7a03ae39 4053 /* Check if there is enough data. The room is enough. */
54a611b6
LH
4054 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4055 !(mas->mas_flags & MA_STATE_BULK))
4056 return false;
4057
7a03ae39
PZ
4058 if (mas->last == wr_mas->end_piv)
4059 offset_end++; /* don't copy this offset */
4060 else if (unlikely(wr_mas->r_max == ULONG_MAX))
4061 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4062
54a611b6
LH
4063 /* set up node. */
4064 if (in_rcu) {
4065 mas_node_count(mas, 1);
4066 if (mas_is_err(mas))
4067 return false;
4068
4069 newnode = mas_pop_node(mas);
4070 } else {
4071 memset(&reuse, 0, sizeof(struct maple_node));
4072 newnode = &reuse;
4073 }
4074
4075 newnode->parent = mas_mn(mas)->parent;
4076 dst_pivots = ma_pivots(newnode, wr_mas->type);
4077 dst_slots = ma_slots(newnode, wr_mas->type);
4078 /* Copy from start to insert point */
7a03ae39
PZ
4079 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
4080 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
54a611b6
LH
4081
4082 /* Handle insert of new range starting after old range */
4083 if (wr_mas->r_min < mas->index) {
7a03ae39
PZ
4084 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
4085 dst_pivots[mas->offset++] = mas->index - 1;
54a611b6
LH
4086 }
4087
4088 /* Store the new entry and range end. */
7a03ae39
PZ
4089 if (mas->offset < node_pivots)
4090 dst_pivots[mas->offset] = mas->last;
4091 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
54a611b6
LH
4092
4093 /*
4094 * this range wrote to the end of the node or it overwrote the rest of
4095 * the data
4096 */
7a03ae39 4097 if (offset_end > wr_mas->node_end)
54a611b6 4098 goto done;
54a611b6 4099
7a03ae39 4100 dst_offset = mas->offset + 1;
54a611b6 4101 /* Copy to the end of node if necessary. */
7a03ae39
PZ
4102 copy_size = wr_mas->node_end - offset_end + 1;
4103 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
54a611b6 4104 sizeof(void *) * copy_size);
7a03ae39
PZ
4105 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
4106 sizeof(unsigned long) * (copy_size - 1));
54a611b6 4107
7a03ae39 4108 if (new_end < node_pivots)
54a611b6
LH
4109 dst_pivots[new_end] = mas->max;
4110
4111done:
4112 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4113 if (in_rcu) {
c13af03d 4114 mte_set_node_dead(mas->node);
54a611b6
LH
4115 mas->node = mt_mk_node(newnode, wr_mas->type);
4116 mas_replace(mas, false);
4117 } else {
4118 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4119 }
4120 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4121 mas_update_gap(mas);
4122 return true;
4123}
4124
4125/*
4126 * mas_wr_slot_store: Attempt to store a value in a slot.
4127 * @wr_mas: the maple write state
4128 *
4129 * Return: True if stored, false otherwise
4130 */
4131static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4132{
4133 struct ma_state *mas = wr_mas->mas;
54a611b6 4134 unsigned char offset = mas->offset;
64891ba3 4135 void __rcu **slots = wr_mas->slots;
e6d1ffd6 4136 bool gap = false;
54a611b6 4137
64891ba3
PZ
4138 gap |= !mt_slot_locked(mas->tree, slots, offset);
4139 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
54a611b6 4140
64891ba3
PZ
4141 if (wr_mas->offset_end - offset == 1) {
4142 if (mas->index == wr_mas->r_min) {
4143 /* Overwriting the range and a part of the next one */
4144 rcu_assign_pointer(slots[offset], wr_mas->entry);
4145 wr_mas->pivots[offset] = mas->last;
4146 } else {
4147 /* Overwriting a part of the range and the next one */
4148 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4149 wr_mas->pivots[offset] = mas->index - 1;
4150 mas->offset++; /* Keep mas accurate. */
4151 }
4152 } else if (!mt_in_rcu(mas->tree)) {
4153 /*
4154 * Expand the range, only partially overwriting the previous and
4155 * next ranges
4156 */
4157 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4158 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
e6d1ffd6 4159 wr_mas->pivots[offset] = mas->index - 1;
64891ba3 4160 wr_mas->pivots[offset + 1] = mas->last;
e6d1ffd6 4161 mas->offset++; /* Keep mas accurate. */
64891ba3
PZ
4162 } else {
4163 return false;
54a611b6
LH
4164 }
4165
54a611b6 4166 trace_ma_write(__func__, mas, 0, wr_mas->entry);
e6d1ffd6
PZ
4167 /*
4168 * Only update gap when the new entry is empty or there is an empty
4169 * entry in the original two ranges.
4170 */
4171 if (!wr_mas->entry || gap)
4172 mas_update_gap(mas);
4173
54a611b6
LH
4174 return true;
4175}
4176
4177static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4178{
cd00dd25
PZ
4179 while ((wr_mas->offset_end < wr_mas->node_end) &&
4180 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4181 wr_mas->offset_end++;
54a611b6 4182
cd00dd25
PZ
4183 if (wr_mas->offset_end < wr_mas->node_end)
4184 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4185 else
54a611b6
LH
4186 wr_mas->end_piv = wr_mas->mas->max;
4187}
4188
4189static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4190{
4191 struct ma_state *mas = wr_mas->mas;
4192
8c995a63
PZ
4193 if (!wr_mas->slots[wr_mas->offset_end]) {
4194 /* If this one is null, the next and prev are not */
54a611b6 4195 mas->last = wr_mas->end_piv;
8c995a63
PZ
4196 } else {
4197 /* Check next slot(s) if we are overwriting the end */
4198 if ((mas->last == wr_mas->end_piv) &&
4199 (wr_mas->node_end != wr_mas->offset_end) &&
4200 !wr_mas->slots[wr_mas->offset_end + 1]) {
4201 wr_mas->offset_end++;
4202 if (wr_mas->offset_end == wr_mas->node_end)
4203 mas->last = mas->max;
4204 else
4205 mas->last = wr_mas->pivots[wr_mas->offset_end];
4206 wr_mas->end_piv = mas->last;
4207 }
54a611b6
LH
4208 }
4209
4210 if (!wr_mas->content) {
4211 /* If this one is null, the next and prev are not */
4212 mas->index = wr_mas->r_min;
4213 } else {
4214 /* Check prev slot if we are overwriting the start */
4215 if (mas->index == wr_mas->r_min && mas->offset &&
4216 !wr_mas->slots[mas->offset - 1]) {
4217 mas->offset--;
4218 wr_mas->r_min = mas->index =
4219 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4220 wr_mas->r_max = wr_mas->pivots[mas->offset];
4221 }
4222 }
4223}
4224
c6fc9e4a
PZ
4225static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4226{
4227 struct ma_state *mas = wr_mas->mas;
4228 unsigned char new_end = wr_mas->node_end + 2;
4229
4230 new_end -= wr_mas->offset_end - mas->offset;
4231 if (wr_mas->r_min == mas->index)
4232 new_end--;
4233
4234 if (wr_mas->end_piv == mas->last)
4235 new_end--;
4236
4237 return new_end;
4238}
4239
2e1da329
PZ
4240/*
4241 * mas_wr_append: Attempt to append
4242 * @wr_mas: the maple write state
4243 *
4244 * Return: True if appended, false otherwise
4245 */
23e9dde0
PZ
4246static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4247 unsigned char new_end)
54a611b6
LH
4248{
4249 unsigned char end = wr_mas->node_end;
54a611b6
LH
4250 struct ma_state *mas = wr_mas->mas;
4251 unsigned char node_pivots = mt_pivots[wr_mas->type];
4252
2e1da329
PZ
4253 if (mas->offset != wr_mas->node_end)
4254 return false;
54a611b6 4255
2e1da329
PZ
4256 if (new_end < node_pivots) {
4257 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4258 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4259 }
54a611b6 4260
23e9dde0
PZ
4261 if (new_end == wr_mas->node_end + 1) {
4262 if (mas->last == wr_mas->r_max) {
4263 /* Append to end of range */
4264 rcu_assign_pointer(wr_mas->slots[new_end],
4265 wr_mas->entry);
4266 wr_mas->pivots[end] = mas->index - 1;
4267 mas->offset = new_end;
4268 } else {
4269 /* Append to start of range */
4270 rcu_assign_pointer(wr_mas->slots[new_end],
4271 wr_mas->content);
4272 wr_mas->pivots[end] = mas->last;
4273 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4274 }
2e1da329 4275 } else {
23e9dde0 4276 /* Append to the range without touching any boundaries. */
54a611b6 4277 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
23e9dde0
PZ
4278 wr_mas->pivots[end + 1] = mas->last;
4279 rcu_assign_pointer(wr_mas->slots[end + 1], wr_mas->entry);
4280 wr_mas->pivots[end] = mas->index - 1;
4281 mas->offset = end + 1;
54a611b6
LH
4282 }
4283
2e1da329
PZ
4284 if (!wr_mas->content || !wr_mas->entry)
4285 mas_update_gap(mas);
4286
4287 return true;
54a611b6
LH
4288}
4289
4290/*
4291 * mas_wr_bnode() - Slow path for a modification.
4292 * @wr_mas: The write maple state
4293 *
4294 * This is where split, rebalance end up.
4295 */
4296static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4297{
4298 struct maple_big_node b_node;
4299
4300 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4301 memset(&b_node, 0, sizeof(struct maple_big_node));
4302 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4303 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4304}
4305
4306static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4307{
54a611b6 4308 struct ma_state *mas = wr_mas->mas;
c6fc9e4a 4309 unsigned char new_end;
54a611b6
LH
4310
4311 /* Direct replacement */
4312 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4313 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4314 if (!!wr_mas->entry ^ !!wr_mas->content)
4315 mas_update_gap(mas);
4316 return;
4317 }
4318
c6fc9e4a
PZ
4319 /*
4320 * new_end exceeds the size of the maple node and cannot enter the fast
4321 * path.
4322 */
4323 new_end = mas_wr_new_end(wr_mas);
4324 if (new_end >= mt_slots[wr_mas->type])
54a611b6
LH
4325 goto slow_path;
4326
2e1da329 4327 /* Attempt to append */
23e9dde0 4328 if (mas_wr_append(wr_mas, new_end))
54a611b6 4329 return;
54a611b6 4330
e6d1ffd6 4331 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
54a611b6 4332 return;
7a03ae39
PZ
4333
4334 if (mas_wr_node_store(wr_mas, new_end))
54a611b6
LH
4335 return;
4336
4337 if (mas_is_err(mas))
4338 return;
4339
4340slow_path:
4341 mas_wr_bnode(wr_mas);
4342}
4343
4344/*
4345 * mas_wr_store_entry() - Internal call to store a value
4346 * @mas: The maple state
4347 * @entry: The entry to store.
4348 *
4349 * Return: The contents that was stored at the index.
4350 */
4351static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4352{
4353 struct ma_state *mas = wr_mas->mas;
4354
4355 wr_mas->content = mas_start(mas);
4356 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4357 mas_store_root(mas, wr_mas->entry);
4358 return wr_mas->content;
4359 }
4360
4361 if (unlikely(!mas_wr_walk(wr_mas))) {
4362 mas_wr_spanning_store(wr_mas);
4363 return wr_mas->content;
4364 }
4365
4366 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6
LH
4367 mas_wr_end_piv(wr_mas);
4368
4369 if (!wr_mas->entry)
4370 mas_wr_extend_null(wr_mas);
4371
4372 /* New root for a single pointer */
4373 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4374 mas_new_root(mas, wr_mas->entry);
4375 return wr_mas->content;
4376 }
4377
4378 mas_wr_modify(wr_mas);
4379 return wr_mas->content;
4380}
4381
4382/**
4383 * mas_insert() - Internal call to insert a value
4384 * @mas: The maple state
4385 * @entry: The entry to store
4386 *
4387 * Return: %NULL or the contents that already exists at the requested index
4388 * otherwise. The maple state needs to be checked for error conditions.
4389 */
4390static inline void *mas_insert(struct ma_state *mas, void *entry)
4391{
4392 MA_WR_STATE(wr_mas, mas, entry);
4393
4394 /*
4395 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4396 * tree. If the insert fits exactly into an existing gap with a value
4397 * of NULL, then the slot only needs to be written with the new value.
4398 * If the range being inserted is adjacent to another range, then only a
4399 * single pivot needs to be inserted (as well as writing the entry). If
4400 * the new range is within a gap but does not touch any other ranges,
4401 * then two pivots need to be inserted: the start - 1, and the end. As
4402 * usual, the entry must be written. Most operations require a new node
4403 * to be allocated and replace an existing node to ensure RCU safety,
4404 * when in RCU mode. The exception to requiring a newly allocated node
4405 * is when inserting at the end of a node (appending). When done
4406 * carefully, appending can reuse the node in place.
4407 */
4408 wr_mas.content = mas_start(mas);
4409 if (wr_mas.content)
4410 goto exists;
4411
4412 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4413 mas_store_root(mas, entry);
4414 return NULL;
4415 }
4416
4417 /* spanning writes always overwrite something */
4418 if (!mas_wr_walk(&wr_mas))
4419 goto exists;
4420
4421 /* At this point, we are at the leaf node that needs to be altered. */
4422 wr_mas.offset_end = mas->offset;
4423 wr_mas.end_piv = wr_mas.r_max;
4424
4425 if (wr_mas.content || (mas->last > wr_mas.r_max))
4426 goto exists;
4427
4428 if (!entry)
4429 return NULL;
4430
4431 mas_wr_modify(&wr_mas);
4432 return wr_mas.content;
4433
4434exists:
4435 mas_set_err(mas, -EEXIST);
4436 return wr_mas.content;
4437
4438}
4439
de6e386c
LH
4440static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4441{
4442retry:
4443 mas_set(mas, index);
4444 mas_state_walk(mas);
4445 if (mas_is_start(mas))
4446 goto retry;
4447}
4448
4449static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4450 struct maple_node *node, const unsigned long index)
4451{
4452 if (unlikely(ma_dead_node(node))) {
4453 mas_rewalk(mas, index);
4454 return true;
4455 }
4456 return false;
4457}
4458
54a611b6
LH
4459/*
4460 * mas_prev_node() - Find the prev non-null entry at the same level in the
4461 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4462 * @mas: The maple state
4463 * @min: The lower limit to search
4464 *
4465 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4466 * Return: 1 if the node is dead, 0 otherwise.
4467 */
4468static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4469{
4470 enum maple_type mt;
4471 int offset, level;
4472 void __rcu **slots;
4473 struct maple_node *node;
54a611b6 4474 unsigned long *pivots;
dd9a8513 4475 unsigned long max;
54a611b6 4476
dd9a8513
LH
4477 node = mas_mn(mas);
4478 if (!mas->min)
4479 goto no_entry;
4480
4481 max = mas->min - 1;
4482 if (max < min)
4483 goto no_entry;
54a611b6
LH
4484
4485 level = 0;
4486 do {
54a611b6
LH
4487 if (ma_is_root(node))
4488 goto no_entry;
4489
4490 /* Walk up. */
4491 if (unlikely(mas_ascend(mas)))
4492 return 1;
4493 offset = mas->offset;
4494 level++;
dd9a8513 4495 node = mas_mn(mas);
54a611b6
LH
4496 } while (!offset);
4497
4498 offset--;
4499 mt = mte_node_type(mas->node);
54a611b6
LH
4500 while (level > 1) {
4501 level--;
dd9a8513
LH
4502 slots = ma_slots(node, mt);
4503 mas->node = mas_slot(mas, slots, offset);
54a611b6
LH
4504 if (unlikely(ma_dead_node(node)))
4505 return 1;
4506
54a611b6
LH
4507 mt = mte_node_type(mas->node);
4508 node = mas_mn(mas);
54a611b6 4509 pivots = ma_pivots(node, mt);
dd9a8513 4510 offset = ma_data_end(node, mt, pivots, max);
39d0bd86
LH
4511 if (unlikely(ma_dead_node(node)))
4512 return 1;
54a611b6
LH
4513 }
4514
dd9a8513 4515 slots = ma_slots(node, mt);
54a611b6 4516 mas->node = mas_slot(mas, slots, offset);
dd9a8513 4517 pivots = ma_pivots(node, mt);
54a611b6
LH
4518 if (unlikely(ma_dead_node(node)))
4519 return 1;
4520
dd9a8513
LH
4521 if (likely(offset))
4522 mas->min = pivots[offset - 1] + 1;
4523 mas->max = max;
54a611b6
LH
4524 mas->offset = mas_data_end(mas);
4525 if (unlikely(mte_dead_node(mas->node)))
4526 return 1;
4527
4528 return 0;
4529
54a611b6
LH
4530no_entry:
4531 if (unlikely(ma_dead_node(node)))
4532 return 1;
4533
4534 mas->node = MAS_NONE;
4535 return 0;
4536}
4537
dd9a8513
LH
4538/*
4539 * mas_prev_slot() - Get the entry in the previous slot
4540 *
4541 * @mas: The maple state
4542 * @max: The minimum starting range
4543 *
4544 * Return: The entry in the previous slot which is possibly NULL
4545 */
4546static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4547{
4548 void *entry;
4549 void __rcu **slots;
4550 unsigned long pivot;
4551 enum maple_type type;
4552 unsigned long *pivots;
4553 struct maple_node *node;
4554 unsigned long save_point = mas->index;
4555
4556retry:
4557 node = mas_mn(mas);
4558 type = mte_node_type(mas->node);
4559 pivots = ma_pivots(node, type);
4560 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4561 goto retry;
4562
4563again:
4564 if (mas->min <= min) {
4565 pivot = mas_safe_min(mas, pivots, mas->offset);
4566
4567 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4568 goto retry;
4569
4570 if (pivot <= min)
4571 return NULL;
4572 }
4573
4574 if (likely(mas->offset)) {
4575 mas->offset--;
4576 mas->last = mas->index - 1;
4577 mas->index = mas_safe_min(mas, pivots, mas->offset);
4578 } else {
4579 if (mas_prev_node(mas, min)) {
4580 mas_rewalk(mas, save_point);
4581 goto retry;
4582 }
4583
4584 if (mas_is_none(mas))
4585 return NULL;
4586
4587 mas->last = mas->max;
4588 node = mas_mn(mas);
4589 type = mte_node_type(mas->node);
4590 pivots = ma_pivots(node, type);
4591 mas->index = pivots[mas->offset - 1] + 1;
4592 }
4593
4594 slots = ma_slots(node, type);
4595 entry = mas_slot(mas, slots, mas->offset);
4596 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4597 goto retry;
4598
4599 if (likely(entry))
4600 return entry;
4601
4602 if (!empty)
4603 goto again;
4604
4605 return entry;
4606}
4607
54a611b6
LH
4608/*
4609 * mas_next_node() - Get the next node at the same level in the tree.
4610 * @mas: The maple state
4611 * @max: The maximum pivot value to check.
4612 *
4613 * The next value will be mas->node[mas->offset] or MAS_NONE.
4614 * Return: 1 on dead node, 0 otherwise.
4615 */
4616static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4617 unsigned long max)
4618{
fff4a58c 4619 unsigned long min;
54a611b6
LH
4620 unsigned long *pivots;
4621 struct maple_enode *enode;
4622 int level = 0;
39d0bd86 4623 unsigned char node_end;
54a611b6
LH
4624 enum maple_type mt;
4625 void __rcu **slots;
4626
4627 if (mas->max >= max)
4628 goto no_entry;
4629
fff4a58c 4630 min = mas->max + 1;
54a611b6
LH
4631 level = 0;
4632 do {
4633 if (ma_is_root(node))
4634 goto no_entry;
4635
fff4a58c 4636 /* Walk up. */
54a611b6
LH
4637 if (unlikely(mas_ascend(mas)))
4638 return 1;
4639
54a611b6
LH
4640 level++;
4641 node = mas_mn(mas);
4642 mt = mte_node_type(mas->node);
4643 pivots = ma_pivots(node, mt);
39d0bd86
LH
4644 node_end = ma_data_end(node, mt, pivots, mas->max);
4645 if (unlikely(ma_dead_node(node)))
4646 return 1;
4647
fff4a58c 4648 } while (unlikely(mas->offset == node_end));
54a611b6
LH
4649
4650 slots = ma_slots(node, mt);
fff4a58c
LH
4651 mas->offset++;
4652 enode = mas_slot(mas, slots, mas->offset);
4653 if (unlikely(ma_dead_node(node)))
4654 return 1;
54a611b6 4655
fff4a58c
LH
4656 if (level > 1)
4657 mas->offset = 0;
4658
4659 while (unlikely(level > 1)) {
54a611b6 4660 level--;
fff4a58c 4661 mas->node = enode;
54a611b6
LH
4662 node = mas_mn(mas);
4663 mt = mte_node_type(mas->node);
4664 slots = ma_slots(node, mt);
fff4a58c 4665 enode = mas_slot(mas, slots, 0);
39d0bd86
LH
4666 if (unlikely(ma_dead_node(node)))
4667 return 1;
54a611b6
LH
4668 }
4669
fff4a58c
LH
4670 if (!mas->offset)
4671 pivots = ma_pivots(node, mt);
4672
4673 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
54a611b6
LH
4674 if (unlikely(ma_dead_node(node)))
4675 return 1;
4676
4677 mas->node = enode;
4678 mas->min = min;
54a611b6
LH
4679 return 0;
4680
4681no_entry:
4682 if (unlikely(ma_dead_node(node)))
4683 return 1;
4684
4685 mas->node = MAS_NONE;
4686 return 0;
4687}
4688
4689/*
fff4a58c 4690 * mas_next_slot() - Get the entry in the next slot
54a611b6 4691 *
fff4a58c
LH
4692 * @mas: The maple state
4693 * @max: The maximum starting range
4694 * @empty: Can be empty
54a611b6 4695 *
fff4a58c 4696 * Return: The entry in the next slot which is possibly NULL
54a611b6 4697 */
fff4a58c 4698static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
54a611b6 4699{
54a611b6 4700 void __rcu **slots;
fff4a58c
LH
4701 unsigned long *pivots;
4702 unsigned long pivot;
4703 enum maple_type type;
4704 struct maple_node *node;
4705 unsigned char data_end;
4706 unsigned long save_point = mas->last;
54a611b6
LH
4707 void *entry;
4708
fff4a58c
LH
4709retry:
4710 node = mas_mn(mas);
4711 type = mte_node_type(mas->node);
39d0bd86 4712 pivots = ma_pivots(node, type);
fff4a58c
LH
4713 data_end = ma_data_end(node, type, pivots, mas->max);
4714 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4715 goto retry;
54a611b6 4716
fff4a58c
LH
4717again:
4718 if (mas->max >= max) {
4719 if (likely(mas->offset < data_end))
4720 pivot = pivots[mas->offset];
4721 else
4722 return NULL; /* must be mas->max */
54a611b6 4723
fff4a58c
LH
4724 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4725 goto retry;
54a611b6
LH
4726
4727 if (pivot >= max)
4728 return NULL;
fff4a58c 4729 }
54a611b6 4730
fff4a58c
LH
4731 if (likely(mas->offset < data_end)) {
4732 mas->index = pivots[mas->offset] + 1;
4733 mas->offset++;
4734 if (likely(mas->offset < data_end))
4735 mas->last = pivots[mas->offset];
4736 else
4737 mas->last = mas->max;
4738 } else {
4739 if (mas_next_node(mas, node, max)) {
4740 mas_rewalk(mas, save_point);
4741 goto retry;
4742 }
4743
4744 if (mas_is_none(mas))
ca80f610
LH
4745 return NULL;
4746
fff4a58c
LH
4747 mas->offset = 0;
4748 mas->index = mas->min;
4749 node = mas_mn(mas);
4750 type = mte_node_type(mas->node);
4751 pivots = ma_pivots(node, type);
4752 mas->last = pivots[0];
54a611b6
LH
4753 }
4754
fff4a58c
LH
4755 slots = ma_slots(node, type);
4756 entry = mt_slot(mas->tree, slots, mas->offset);
4757 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4758 goto retry;
54a611b6 4759
fff4a58c
LH
4760 if (entry)
4761 return entry;
54a611b6 4762
fff4a58c
LH
4763 if (!empty) {
4764 if (!mas->offset)
4765 data_end = 2;
4766 goto again;
4767 }
4768
4769 return entry;
54a611b6
LH
4770}
4771
4772/*
4773 * mas_next_entry() - Internal function to get the next entry.
4774 * @mas: The maple state
4775 * @limit: The maximum range start.
4776 *
4777 * Set the @mas->node to the next entry and the range_start to
4778 * the beginning value for the entry. Does not check beyond @limit.
4779 * Sets @mas->index and @mas->last to the limit if it is hit.
4780 * Restarts on dead nodes.
4781 *
4782 * Return: the next entry or %NULL.
4783 */
4784static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4785{
ca80f610 4786 if (mas->last >= limit)
50e81c82 4787 return NULL;
ca80f610 4788
6169b553 4789 return mas_next_slot(mas, limit, false);
54a611b6
LH
4790}
4791
54a611b6
LH
4792/*
4793 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4794 * highest gap address of a given size in a given node and descend.
4795 * @mas: The maple state
4796 * @size: The needed size.
4797 *
4798 * Return: True if found in a leaf, false otherwise.
4799 *
4800 */
fad8e429
LH
4801static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4802 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4803{
4804 enum maple_type type = mte_node_type(mas->node);
4805 struct maple_node *node = mas_mn(mas);
4806 unsigned long *pivots, *gaps;
4807 void __rcu **slots;
4808 unsigned long gap = 0;
7327e811 4809 unsigned long max, min;
54a611b6
LH
4810 unsigned char offset;
4811
4812 if (unlikely(mas_is_err(mas)))
4813 return true;
4814
4815 if (ma_is_dense(type)) {
4816 /* dense nodes. */
4817 mas->offset = (unsigned char)(mas->index - mas->min);
4818 return true;
4819 }
4820
4821 pivots = ma_pivots(node, type);
4822 slots = ma_slots(node, type);
4823 gaps = ma_gaps(node, type);
4824 offset = mas->offset;
4825 min = mas_safe_min(mas, pivots, offset);
4826 /* Skip out of bounds. */
4827 while (mas->last < min)
4828 min = mas_safe_min(mas, pivots, --offset);
4829
4830 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4831 while (mas->index <= max) {
54a611b6
LH
4832 gap = 0;
4833 if (gaps)
4834 gap = gaps[offset];
4835 else if (!mas_slot(mas, slots, offset))
4836 gap = max - min + 1;
4837
4838 if (gap) {
4839 if ((size <= gap) && (size <= mas->last - min + 1))
4840 break;
4841
4842 if (!gaps) {
4843 /* Skip the next slot, it cannot be a gap. */
4844 if (offset < 2)
4845 goto ascend;
4846
4847 offset -= 2;
4848 max = pivots[offset];
4849 min = mas_safe_min(mas, pivots, offset);
4850 continue;
4851 }
4852 }
4853
4854 if (!offset)
4855 goto ascend;
4856
4857 offset--;
4858 max = min - 1;
4859 min = mas_safe_min(mas, pivots, offset);
4860 }
4861
7327e811
LH
4862 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4863 goto no_space;
54a611b6
LH
4864
4865 if (unlikely(ma_is_leaf(type))) {
4866 mas->offset = offset;
fad8e429
LH
4867 *gap_min = min;
4868 *gap_max = min + gap - 1;
54a611b6
LH
4869 return true;
4870 }
4871
4872 /* descend, only happens under lock. */
4873 mas->node = mas_slot(mas, slots, offset);
4874 mas->min = min;
4875 mas->max = max;
4876 mas->offset = mas_data_end(mas);
4877 return false;
4878
4879ascend:
7327e811
LH
4880 if (!mte_is_root(mas->node))
4881 return false;
54a611b6 4882
7327e811
LH
4883no_space:
4884 mas_set_err(mas, -EBUSY);
54a611b6
LH
4885 return false;
4886}
4887
4888static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4889{
4890 enum maple_type type = mte_node_type(mas->node);
4891 unsigned long pivot, min, gap = 0;
06e8fd99
LH
4892 unsigned char offset, data_end;
4893 unsigned long *gaps, *pivots;
4894 void __rcu **slots;
4895 struct maple_node *node;
54a611b6
LH
4896 bool found = false;
4897
4898 if (ma_is_dense(type)) {
4899 mas->offset = (unsigned char)(mas->index - mas->min);
4900 return true;
4901 }
4902
06e8fd99
LH
4903 node = mas_mn(mas);
4904 pivots = ma_pivots(node, type);
4905 slots = ma_slots(node, type);
4906 gaps = ma_gaps(node, type);
54a611b6 4907 offset = mas->offset;
54a611b6 4908 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
4909 data_end = ma_data_end(node, type, pivots, mas->max);
4910 for (; offset <= data_end; offset++) {
29b2681f 4911 pivot = mas_safe_pivot(mas, pivots, offset, type);
54a611b6
LH
4912
4913 /* Not within lower bounds */
4914 if (mas->index > pivot)
4915 goto next_slot;
4916
4917 if (gaps)
4918 gap = gaps[offset];
4919 else if (!mas_slot(mas, slots, offset))
4920 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4921 else
4922 goto next_slot;
4923
4924 if (gap >= size) {
4925 if (ma_is_leaf(type)) {
4926 found = true;
4927 goto done;
4928 }
4929 if (mas->index <= pivot) {
4930 mas->node = mas_slot(mas, slots, offset);
4931 mas->min = min;
4932 mas->max = pivot;
4933 offset = 0;
54a611b6
LH
4934 break;
4935 }
4936 }
4937next_slot:
4938 min = pivot + 1;
4939 if (mas->last <= pivot) {
4940 mas_set_err(mas, -EBUSY);
4941 return true;
4942 }
4943 }
4944
4945 if (mte_is_root(mas->node))
4946 found = true;
4947done:
4948 mas->offset = offset;
4949 return found;
4950}
4951
4952/**
4953 * mas_walk() - Search for @mas->index in the tree.
4954 * @mas: The maple state.
4955 *
4956 * mas->index and mas->last will be set to the range if there is a value. If
4957 * mas->node is MAS_NONE, reset to MAS_START.
4958 *
4959 * Return: the entry at the location or %NULL.
4960 */
4961void *mas_walk(struct ma_state *mas)
4962{
4963 void *entry;
4964
6b23a290
LH
4965 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas))
4966 mas->node = MAS_START;
54a611b6
LH
4967retry:
4968 entry = mas_state_walk(mas);
6b23a290 4969 if (mas_is_start(mas)) {
54a611b6 4970 goto retry;
6b23a290
LH
4971 } else if (mas_is_none(mas)) {
4972 mas->index = 0;
4973 mas->last = ULONG_MAX;
4974 } else if (mas_is_ptr(mas)) {
54a611b6
LH
4975 if (!mas->index) {
4976 mas->last = 0;
6b23a290 4977 return entry;
54a611b6 4978 }
54a611b6 4979
6b23a290 4980 mas->index = 1;
54a611b6 4981 mas->last = ULONG_MAX;
6b23a290
LH
4982 mas->node = MAS_NONE;
4983 return NULL;
54a611b6
LH
4984 }
4985
4986 return entry;
4987}
120b1162 4988EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
4989
4990static inline bool mas_rewind_node(struct ma_state *mas)
4991{
4992 unsigned char slot;
4993
4994 do {
4995 if (mte_is_root(mas->node)) {
4996 slot = mas->offset;
4997 if (!slot)
4998 return false;
4999 } else {
5000 mas_ascend(mas);
5001 slot = mas->offset;
5002 }
5003 } while (!slot);
5004
5005 mas->offset = --slot;
5006 return true;
5007}
5008
5009/*
5010 * mas_skip_node() - Internal function. Skip over a node.
5011 * @mas: The maple state.
5012 *
5013 * Return: true if there is another node, false otherwise.
5014 */
5015static inline bool mas_skip_node(struct ma_state *mas)
5016{
0fa99fdf
LH
5017 if (mas_is_err(mas))
5018 return false;
54a611b6 5019
54a611b6
LH
5020 do {
5021 if (mte_is_root(mas->node)) {
0fa99fdf 5022 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5023 mas_set_err(mas, -EBUSY);
5024 return false;
5025 }
5026 } else {
5027 mas_ascend(mas);
54a611b6 5028 }
0fa99fdf 5029 } while (mas->offset >= mas_data_end(mas));
54a611b6 5030
0fa99fdf 5031 mas->offset++;
54a611b6
LH
5032 return true;
5033}
5034
5035/*
5036 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5037 * @size
5038 * @mas: The maple state
5039 * @size: The size of the gap required
5040 *
5041 * Search between @mas->index and @mas->last for a gap of @size.
5042 */
5043static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5044{
5045 struct maple_enode *last = NULL;
5046
5047 /*
5048 * There are 4 options:
5049 * go to child (descend)
5050 * go back to parent (ascend)
5051 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5052 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5053 */
5054 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5055 if (last == mas->node)
5056 mas_skip_node(mas);
5057 else
5058 last = mas->node;
5059 }
5060}
5061
54a611b6
LH
5062/*
5063 * mas_sparse_area() - Internal function. Return upper or lower limit when
5064 * searching for a gap in an empty tree.
5065 * @mas: The maple state
5066 * @min: the minimum range
5067 * @max: The maximum range
5068 * @size: The size of the gap
5069 * @fwd: Searching forward or back
5070 */
29ad6bb3 5071static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
5072 unsigned long max, unsigned long size, bool fwd)
5073{
29ad6bb3
PZ
5074 if (!unlikely(mas_is_none(mas)) && min == 0) {
5075 min++;
5076 /*
5077 * At this time, min is increased, we need to recheck whether
5078 * the size is satisfied.
5079 */
5080 if (min > max || max - min + 1 < size)
5081 return -EBUSY;
5082 }
54a611b6
LH
5083 /* mas_is_ptr */
5084
54a611b6 5085 if (fwd) {
29ad6bb3
PZ
5086 mas->index = min;
5087 mas->last = min + size - 1;
5088 } else {
5089 mas->last = max;
5090 mas->index = max - size + 1;
54a611b6 5091 }
29ad6bb3 5092 return 0;
54a611b6
LH
5093}
5094
5095/*
5096 * mas_empty_area() - Get the lowest address within the range that is
5097 * sufficient for the size requested.
5098 * @mas: The maple state
5099 * @min: The lowest value of the range
5100 * @max: The highest value of the range
5101 * @size: The size needed
5102 */
5103int mas_empty_area(struct ma_state *mas, unsigned long min,
5104 unsigned long max, unsigned long size)
5105{
5106 unsigned char offset;
5107 unsigned long *pivots;
5108 enum maple_type mt;
5109
ba997212
LH
5110 if (min > max)
5111 return -EINVAL;
5112
5113 if (size == 0 || max - min < size - 1)
fad8e429
LH
5114 return -EINVAL;
5115
54a611b6
LH
5116 if (mas_is_start(mas))
5117 mas_start(mas);
5118 else if (mas->offset >= 2)
5119 mas->offset -= 2;
5120 else if (!mas_skip_node(mas))
5121 return -EBUSY;
5122
5123 /* Empty set */
29ad6bb3
PZ
5124 if (mas_is_none(mas) || mas_is_ptr(mas))
5125 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5126
5127 /* The start of the window can only be within these values */
5128 mas->index = min;
5129 mas->last = max;
5130 mas_awalk(mas, size);
5131
5132 if (unlikely(mas_is_err(mas)))
5133 return xa_err(mas->node);
5134
5135 offset = mas->offset;
5136 if (unlikely(offset == MAPLE_NODE_SLOTS))
5137 return -EBUSY;
5138
5139 mt = mte_node_type(mas->node);
5140 pivots = ma_pivots(mas_mn(mas), mt);
0257d990
PZ
5141 min = mas_safe_min(mas, pivots, offset);
5142 if (mas->index < min)
5143 mas->index = min;
54a611b6
LH
5144 mas->last = mas->index + size - 1;
5145 return 0;
5146}
120b1162 5147EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5148
5149/*
5150 * mas_empty_area_rev() - Get the highest address within the range that is
5151 * sufficient for the size requested.
5152 * @mas: The maple state
5153 * @min: The lowest value of the range
5154 * @max: The highest value of the range
5155 * @size: The size needed
5156 */
5157int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5158 unsigned long max, unsigned long size)
5159{
5160 struct maple_enode *last = mas->node;
5161
ba997212
LH
5162 if (min > max)
5163 return -EINVAL;
5164
5165 if (size == 0 || max - min < size - 1)
fad8e429
LH
5166 return -EINVAL;
5167
54a611b6
LH
5168 if (mas_is_start(mas)) {
5169 mas_start(mas);
5170 mas->offset = mas_data_end(mas);
5171 } else if (mas->offset >= 2) {
5172 mas->offset -= 2;
5173 } else if (!mas_rewind_node(mas)) {
5174 return -EBUSY;
5175 }
5176
5177 /* Empty set. */
29ad6bb3
PZ
5178 if (mas_is_none(mas) || mas_is_ptr(mas))
5179 return mas_sparse_area(mas, min, max, size, false);
54a611b6
LH
5180
5181 /* The start of the window can only be within these values. */
5182 mas->index = min;
5183 mas->last = max;
5184
fad8e429 5185 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5186 if (last == mas->node) {
5187 if (!mas_rewind_node(mas))
5188 return -EBUSY;
5189 } else {
5190 last = mas->node;
5191 }
5192 }
5193
5194 if (mas_is_err(mas))
5195 return xa_err(mas->node);
5196
5197 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5198 return -EBUSY;
5199
54a611b6 5200 /* Trim the upper limit to the max. */
ba997212 5201 if (max < mas->last)
fad8e429 5202 mas->last = max;
54a611b6
LH
5203
5204 mas->index = mas->last - size + 1;
5205 return 0;
5206}
120b1162 5207EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6 5208
54a611b6 5209/*
790e1fa8 5210 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5211 * @mas: The maple state
5212 * @slots: Pointer to the slot array
2e5b4921 5213 * @type: The maple node type
54a611b6
LH
5214 *
5215 * Must hold the write lock.
5216 *
5217 * Return: The number of leaves marked as dead.
5218 */
5219static inline
790e1fa8
LH
5220unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5221 void __rcu **slots)
54a611b6
LH
5222{
5223 struct maple_node *node;
5224 enum maple_type type;
5225 void *entry;
5226 int offset;
5227
790e1fa8
LH
5228 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5229 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5230 type = mte_node_type(entry);
5231 node = mte_to_node(entry);
5232 /* Use both node and type to catch LE & BE metadata */
5233 if (!node || !type)
5234 break;
5235
5236 mte_set_node_dead(entry);
54a611b6
LH
5237 node->type = type;
5238 rcu_assign_pointer(slots[offset], node);
5239 }
5240
5241 return offset;
5242}
5243
790e1fa8
LH
5244/**
5245 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5246 * @enode: The maple encoded node
5247 * @offset: The starting offset
5248 *
5249 * Note: This can only be used from the RCU callback context.
5250 */
5251static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5252{
5253 struct maple_node *node, *next;
5254 void __rcu **slots = NULL;
5255
790e1fa8 5256 next = mte_to_node(*enode);
54a611b6 5257 do {
790e1fa8
LH
5258 *enode = ma_enode_ptr(next);
5259 node = mte_to_node(*enode);
54a611b6 5260 slots = ma_slots(node, node->type);
790e1fa8
LH
5261 next = rcu_dereference_protected(slots[offset],
5262 lock_is_held(&rcu_callback_map));
54a611b6
LH
5263 offset = 0;
5264 } while (!ma_is_leaf(next->type));
5265
5266 return slots;
5267}
5268
790e1fa8
LH
5269/**
5270 * mt_free_walk() - Walk & free a tree in the RCU callback context
5271 * @head: The RCU head that's within the node.
5272 *
5273 * Note: This can only be used from the RCU callback context.
5274 */
54a611b6
LH
5275static void mt_free_walk(struct rcu_head *head)
5276{
5277 void __rcu **slots;
5278 struct maple_node *node, *start;
790e1fa8 5279 struct maple_enode *enode;
54a611b6
LH
5280 unsigned char offset;
5281 enum maple_type type;
54a611b6
LH
5282
5283 node = container_of(head, struct maple_node, rcu);
5284
5285 if (ma_is_leaf(node->type))
5286 goto free_leaf;
5287
54a611b6 5288 start = node;
790e1fa8
LH
5289 enode = mt_mk_node(node, node->type);
5290 slots = mte_dead_walk(&enode, 0);
5291 node = mte_to_node(enode);
54a611b6
LH
5292 do {
5293 mt_free_bulk(node->slot_len, slots);
5294 offset = node->parent_slot + 1;
790e1fa8
LH
5295 enode = node->piv_parent;
5296 if (mte_to_node(enode) == node)
5297 goto free_leaf;
5298
5299 type = mte_node_type(enode);
5300 slots = ma_slots(mte_to_node(enode), type);
5301 if ((offset < mt_slots[type]) &&
5302 rcu_dereference_protected(slots[offset],
5303 lock_is_held(&rcu_callback_map)))
5304 slots = mte_dead_walk(&enode, offset);
5305 node = mte_to_node(enode);
54a611b6
LH
5306 } while ((node != start) || (node->slot_len < offset));
5307
5308 slots = ma_slots(node, node->type);
5309 mt_free_bulk(node->slot_len, slots);
5310
54a611b6
LH
5311free_leaf:
5312 mt_free_rcu(&node->rcu);
5313}
5314
790e1fa8
LH
5315static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5316 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5317{
5318 struct maple_node *node;
790e1fa8 5319 struct maple_enode *next = *enode;
54a611b6 5320 void __rcu **slots = NULL;
790e1fa8
LH
5321 enum maple_type type;
5322 unsigned char next_offset = 0;
54a611b6
LH
5323
5324 do {
790e1fa8
LH
5325 *enode = next;
5326 node = mte_to_node(*enode);
5327 type = mte_node_type(*enode);
5328 slots = ma_slots(node, type);
5329 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5330 if ((mte_dead_node(next)))
790e1fa8 5331 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5332
790e1fa8
LH
5333 mte_set_node_dead(*enode);
5334 node->type = type;
54a611b6
LH
5335 node->piv_parent = prev;
5336 node->parent_slot = offset;
790e1fa8
LH
5337 offset = next_offset;
5338 next_offset = 0;
5339 prev = *enode;
54a611b6
LH
5340 } while (!mte_is_leaf(next));
5341
5342 return slots;
5343}
5344
790e1fa8 5345static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5346 bool free)
5347{
5348 void __rcu **slots;
5349 struct maple_node *node = mte_to_node(enode);
5350 struct maple_enode *start;
54a611b6 5351
2e5b4921
LH
5352 if (mte_is_leaf(enode)) {
5353 node->type = mte_node_type(enode);
54a611b6 5354 goto free_leaf;
2e5b4921 5355 }
54a611b6 5356
2e5b4921 5357 start = enode;
790e1fa8
LH
5358 slots = mte_destroy_descend(&enode, mt, start, 0);
5359 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5360 do {
5361 enum maple_type type;
5362 unsigned char offset;
5363 struct maple_enode *parent, *tmp;
5364
790e1fa8 5365 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5366 if (free)
5367 mt_free_bulk(node->slot_len, slots);
5368 offset = node->parent_slot + 1;
790e1fa8
LH
5369 enode = node->piv_parent;
5370 if (mte_to_node(enode) == node)
5371 goto free_leaf;
54a611b6 5372
790e1fa8
LH
5373 type = mte_node_type(enode);
5374 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5375 if (offset >= mt_slots[type])
5376 goto next;
5377
790e1fa8 5378 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5379 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5380 parent = enode;
5381 enode = tmp;
5382 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5383 }
5384next:
790e1fa8
LH
5385 node = mte_to_node(enode);
5386 } while (start != enode);
54a611b6 5387
790e1fa8
LH
5388 node = mte_to_node(enode);
5389 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5390 if (free)
5391 mt_free_bulk(node->slot_len, slots);
5392
54a611b6
LH
5393free_leaf:
5394 if (free)
5395 mt_free_rcu(&node->rcu);
2e5b4921 5396 else
790e1fa8 5397 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5398}
5399
5400/*
5401 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5402 * @enode: the encoded maple node (maple_enode) to start
5403 * @mt: the tree to free - needed for node types.
54a611b6
LH
5404 *
5405 * Must hold the write lock.
5406 */
5407static inline void mte_destroy_walk(struct maple_enode *enode,
5408 struct maple_tree *mt)
5409{
5410 struct maple_node *node = mte_to_node(enode);
5411
5412 if (mt_in_rcu(mt)) {
790e1fa8 5413 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5414 call_rcu(&node->rcu, mt_free_walk);
5415 } else {
790e1fa8 5416 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5417 }
5418}
5419
5420static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5421{
1202700c
LH
5422 if (unlikely(mas_is_paused(wr_mas->mas)))
5423 mas_reset(wr_mas->mas);
5424
54a611b6
LH
5425 if (!mas_is_start(wr_mas->mas)) {
5426 if (mas_is_none(wr_mas->mas)) {
5427 mas_reset(wr_mas->mas);
5428 } else {
5429 wr_mas->r_max = wr_mas->mas->max;
5430 wr_mas->type = mte_node_type(wr_mas->mas->node);
5431 if (mas_is_span_wr(wr_mas))
5432 mas_reset(wr_mas->mas);
5433 }
5434 }
54a611b6
LH
5435}
5436
5437/* Interface */
5438
5439/**
5440 * mas_store() - Store an @entry.
5441 * @mas: The maple state.
5442 * @entry: The entry to store.
5443 *
5444 * The @mas->index and @mas->last is used to set the range for the @entry.
5445 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5446 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5447 *
5448 * Return: the first entry between mas->index and mas->last or %NULL.
5449 */
5450void *mas_store(struct ma_state *mas, void *entry)
5451{
5452 MA_WR_STATE(wr_mas, mas, entry);
5453
5454 trace_ma_write(__func__, mas, 0, entry);
5455#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5456 if (MAS_WARN_ON(mas, mas->index > mas->last))
89f499f3 5457 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
e6d6792a 5458
54a611b6
LH
5459 if (mas->index > mas->last) {
5460 mas_set_err(mas, -EINVAL);
5461 return NULL;
5462 }
5463
5464#endif
5465
5466 /*
5467 * Storing is the same operation as insert with the added caveat that it
5468 * can overwrite entries. Although this seems simple enough, one may
5469 * want to examine what happens if a single store operation was to
5470 * overwrite multiple entries within a self-balancing B-Tree.
5471 */
5472 mas_wr_store_setup(&wr_mas);
5473 mas_wr_store_entry(&wr_mas);
5474 return wr_mas.content;
5475}
120b1162 5476EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5477
5478/**
5479 * mas_store_gfp() - Store a value into the tree.
5480 * @mas: The maple state
5481 * @entry: The entry to store
5482 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5483 *
5484 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5485 * be allocated.
5486 */
5487int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5488{
5489 MA_WR_STATE(wr_mas, mas, entry);
5490
5491 mas_wr_store_setup(&wr_mas);
5492 trace_ma_write(__func__, mas, 0, entry);
5493retry:
5494 mas_wr_store_entry(&wr_mas);
5495 if (unlikely(mas_nomem(mas, gfp)))
5496 goto retry;
5497
5498 if (unlikely(mas_is_err(mas)))
5499 return xa_err(mas->node);
5500
5501 return 0;
5502}
120b1162 5503EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5504
5505/**
5506 * mas_store_prealloc() - Store a value into the tree using memory
5507 * preallocated in the maple state.
5508 * @mas: The maple state
5509 * @entry: The entry to store.
5510 */
5511void mas_store_prealloc(struct ma_state *mas, void *entry)
5512{
5513 MA_WR_STATE(wr_mas, mas, entry);
5514
5515 mas_wr_store_setup(&wr_mas);
5516 trace_ma_write(__func__, mas, 0, entry);
5517 mas_wr_store_entry(&wr_mas);
1c414c6a 5518 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
54a611b6
LH
5519 mas_destroy(mas);
5520}
120b1162 5521EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5522
5523/**
5524 * mas_preallocate() - Preallocate enough nodes for a store operation
5525 * @mas: The maple state
54a611b6
LH
5526 * @gfp: The GFP_FLAGS to use for allocations.
5527 *
5528 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5529 */
c5d5546e 5530int mas_preallocate(struct ma_state *mas, gfp_t gfp)
54a611b6
LH
5531{
5532 int ret;
5533
5534 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5535 mas->mas_flags |= MA_STATE_PREALLOC;
5536 if (likely(!mas_is_err(mas)))
5537 return 0;
5538
5539 mas_set_alloc_req(mas, 0);
5540 ret = xa_err(mas->node);
5541 mas_reset(mas);
5542 mas_destroy(mas);
5543 mas_reset(mas);
5544 return ret;
5545}
5c63a7c3 5546EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5547
5548/*
5549 * mas_destroy() - destroy a maple state.
5550 * @mas: The maple state
5551 *
5552 * Upon completion, check the left-most node and rebalance against the node to
5553 * the right if necessary. Frees any allocated nodes associated with this maple
5554 * state.
5555 */
5556void mas_destroy(struct ma_state *mas)
5557{
5558 struct maple_alloc *node;
541e06b7 5559 unsigned long total;
54a611b6
LH
5560
5561 /*
5562 * When using mas_for_each() to insert an expected number of elements,
5563 * it is possible that the number inserted is less than the expected
5564 * number. To fix an invalid final node, a check is performed here to
5565 * rebalance the previous node with the final node.
5566 */
5567 if (mas->mas_flags & MA_STATE_REBALANCE) {
5568 unsigned char end;
5569
23e734ec 5570 mas_start(mas);
54a611b6
LH
5571 mtree_range_walk(mas);
5572 end = mas_data_end(mas) + 1;
5573 if (end < mt_min_slot_count(mas->node) - 1)
5574 mas_destroy_rebalance(mas, end);
5575
5576 mas->mas_flags &= ~MA_STATE_REBALANCE;
5577 }
5578 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5579
541e06b7
LH
5580 total = mas_allocated(mas);
5581 while (total) {
54a611b6
LH
5582 node = mas->alloc;
5583 mas->alloc = node->slot[0];
541e06b7
LH
5584 if (node->node_count > 1) {
5585 size_t count = node->node_count - 1;
5586
5587 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5588 total -= count;
5589 }
54a611b6 5590 kmem_cache_free(maple_node_cache, node);
541e06b7 5591 total--;
54a611b6 5592 }
541e06b7 5593
54a611b6
LH
5594 mas->alloc = NULL;
5595}
120b1162 5596EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5597
5598/*
5599 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5600 * @mas: The maple state
5601 * @nr_entries: The number of expected entries.
5602 *
5603 * This will attempt to pre-allocate enough nodes to store the expected number
5604 * of entries. The allocations will occur using the bulk allocator interface
5605 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5606 * to ensure any unused nodes are freed.
5607 *
5608 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5609 */
5610int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5611{
5612 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5613 struct maple_enode *enode = mas->node;
5614 int nr_nodes;
5615 int ret;
5616
5617 /*
5618 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5619 * forking a process and duplicating the VMAs from one tree to a new
5620 * tree. When such a situation arises, it is known that the new tree is
5621 * not going to be used until the entire tree is populated. For
5622 * performance reasons, it is best to use a bulk load with RCU disabled.
5623 * This allows for optimistic splitting that favours the left and reuse
5624 * of nodes during the operation.
5625 */
5626
5627 /* Optimize splitting for bulk insert in-order */
5628 mas->mas_flags |= MA_STATE_BULK;
5629
5630 /*
5631 * Avoid overflow, assume a gap between each entry and a trailing null.
5632 * If this is wrong, it just means allocation can happen during
5633 * insertion of entries.
5634 */
5635 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5636 if (!mt_is_alloc(mas->tree))
5637 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5638
5639 /* Leaves; reduce slots to keep space for expansion */
5640 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5641 /* Internal nodes */
5642 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5643 /* Add working room for split (2 nodes) + new parents */
5644 mas_node_count(mas, nr_nodes + 3);
5645
5646 /* Detect if allocations run out */
5647 mas->mas_flags |= MA_STATE_PREALLOC;
5648
5649 if (!mas_is_err(mas))
5650 return 0;
5651
5652 ret = xa_err(mas->node);
5653 mas->node = enode;
5654 mas_destroy(mas);
5655 return ret;
5656
5657}
120b1162 5658EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6 5659
6169b553
LH
5660static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5661 void **entry)
54a611b6 5662{
ca80f610
LH
5663 bool was_none = mas_is_none(mas);
5664
54a611b6
LH
5665 if (mas_is_none(mas) || mas_is_paused(mas))
5666 mas->node = MAS_START;
5667
5668 if (mas_is_start(mas))
6169b553 5669 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
54a611b6
LH
5670
5671 if (mas_is_ptr(mas)) {
6169b553 5672 *entry = NULL;
ca80f610
LH
5673 if (was_none && mas->index == 0) {
5674 mas->index = mas->last = 0;
6169b553 5675 return true;
54a611b6 5676 }
ca80f610
LH
5677 mas->index = 1;
5678 mas->last = ULONG_MAX;
5679 mas->node = MAS_NONE;
6169b553 5680 return true;
54a611b6
LH
5681 }
5682
6169b553
LH
5683 if (mas_is_none(mas))
5684 return true;
5685 return false;
5686}
5687
5688/**
5689 * mas_next() - Get the next entry.
5690 * @mas: The maple state
5691 * @max: The maximum index to check.
5692 *
5693 * Returns the next entry after @mas->index.
5694 * Must hold rcu_read_lock or the write lock.
5695 * Can return the zero entry.
5696 *
5697 * Return: The next entry or %NULL
5698 */
5699void *mas_next(struct ma_state *mas, unsigned long max)
5700{
5701 void *entry = NULL;
5702
5703 if (mas_next_setup(mas, max, &entry))
5704 return entry;
5705
5706 /* Retries on dead nodes handled by mas_next_slot */
5707 return mas_next_slot(mas, max, false);
54a611b6
LH
5708}
5709EXPORT_SYMBOL_GPL(mas_next);
5710
6169b553
LH
5711/**
5712 * mas_next_range() - Advance the maple state to the next range
5713 * @mas: The maple state
5714 * @max: The maximum index to check.
5715 *
5716 * Sets @mas->index and @mas->last to the range.
5717 * Must hold rcu_read_lock or the write lock.
5718 * Can return the zero entry.
5719 *
5720 * Return: The next entry or %NULL
5721 */
5722void *mas_next_range(struct ma_state *mas, unsigned long max)
5723{
5724 void *entry = NULL;
5725
5726 if (mas_next_setup(mas, max, &entry))
5727 return entry;
5728
5729 /* Retries on dead nodes handled by mas_next_slot */
5730 return mas_next_slot(mas, max, true);
5731}
5732EXPORT_SYMBOL_GPL(mas_next_range);
5733
54a611b6
LH
5734/**
5735 * mt_next() - get the next value in the maple tree
5736 * @mt: The maple tree
5737 * @index: The start index
5738 * @max: The maximum index to check
5739 *
fad9c80e
TG
5740 * Takes RCU read lock internally to protect the search, which does not
5741 * protect the returned pointer after dropping RCU read lock.
5742 * See also: Documentation/core-api/maple_tree.rst
5743 *
5744 * Return: The entry higher than @index or %NULL if nothing is found.
54a611b6
LH
5745 */
5746void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5747{
5748 void *entry = NULL;
5749 MA_STATE(mas, mt, index, index);
5750
5751 rcu_read_lock();
5752 entry = mas_next(&mas, max);
5753 rcu_read_unlock();
5754 return entry;
5755}
5756EXPORT_SYMBOL_GPL(mt_next);
5757
6b9e93e0
LH
5758static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5759 void **entry)
54a611b6 5760{
39193685
LH
5761 if (mas->index <= min)
5762 goto none;
54a611b6
LH
5763
5764 if (mas_is_none(mas) || mas_is_paused(mas))
5765 mas->node = MAS_START;
5766
5767 if (mas_is_start(mas)) {
5768 mas_walk(mas);
5769 if (!mas->index)
39193685 5770 goto none;
54a611b6
LH
5771 }
5772
39193685
LH
5773 if (unlikely(mas_is_ptr(mas))) {
5774 if (!mas->index)
5775 goto none;
54a611b6 5776 mas->index = mas->last = 0;
6b9e93e0
LH
5777 *entry = mas_root(mas);
5778 return true;
39193685
LH
5779 }
5780
5781 if (mas_is_none(mas)) {
5782 if (mas->index) {
5783 /* Walked to out-of-range pointer? */
5784 mas->index = mas->last = 0;
5785 mas->node = MAS_ROOT;
6b9e93e0
LH
5786 *entry = mas_root(mas);
5787 return true;
39193685 5788 }
6b9e93e0 5789 return true;
54a611b6 5790 }
6b9e93e0
LH
5791
5792 return false;
39193685
LH
5793
5794none:
5795 mas->node = MAS_NONE;
6b9e93e0
LH
5796 return true;
5797}
5798
5799/**
5800 * mas_prev() - Get the previous entry
5801 * @mas: The maple state
5802 * @min: The minimum value to check.
5803 *
5804 * Must hold rcu_read_lock or the write lock.
5805 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5806 * searchable nodes.
5807 *
5808 * Return: the previous value or %NULL.
5809 */
5810void *mas_prev(struct ma_state *mas, unsigned long min)
5811{
5812 void *entry = NULL;
5813
5814 if (mas_prev_setup(mas, min, &entry))
5815 return entry;
5816
5817 return mas_prev_slot(mas, min, false);
54a611b6
LH
5818}
5819EXPORT_SYMBOL_GPL(mas_prev);
5820
6b9e93e0
LH
5821/**
5822 * mas_prev_range() - Advance to the previous range
5823 * @mas: The maple state
5824 * @min: The minimum value to check.
5825 *
5826 * Sets @mas->index and @mas->last to the range.
5827 * Must hold rcu_read_lock or the write lock.
5828 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5829 * searchable nodes.
5830 *
5831 * Return: the previous value or %NULL.
5832 */
5833void *mas_prev_range(struct ma_state *mas, unsigned long min)
5834{
5835 void *entry = NULL;
5836
5837 if (mas_prev_setup(mas, min, &entry))
5838 return entry;
5839
5840 return mas_prev_slot(mas, min, true);
5841}
5842EXPORT_SYMBOL_GPL(mas_prev_range);
5843
54a611b6
LH
5844/**
5845 * mt_prev() - get the previous value in the maple tree
5846 * @mt: The maple tree
5847 * @index: The start index
5848 * @min: The minimum index to check
5849 *
fad9c80e
TG
5850 * Takes RCU read lock internally to protect the search, which does not
5851 * protect the returned pointer after dropping RCU read lock.
5852 * See also: Documentation/core-api/maple_tree.rst
5853 *
5854 * Return: The entry before @index or %NULL if nothing is found.
54a611b6
LH
5855 */
5856void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5857{
5858 void *entry = NULL;
5859 MA_STATE(mas, mt, index, index);
5860
5861 rcu_read_lock();
5862 entry = mas_prev(&mas, min);
5863 rcu_read_unlock();
5864 return entry;
5865}
5866EXPORT_SYMBOL_GPL(mt_prev);
5867
5868/**
5869 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5870 * @mas: The maple state to pause
5871 *
5872 * Some users need to pause a walk and drop the lock they're holding in
5873 * order to yield to a higher priority thread or carry out an operation
5874 * on an entry. Those users should call this function before they drop
5875 * the lock. It resets the @mas to be suitable for the next iteration
5876 * of the loop after the user has reacquired the lock. If most entries
5877 * found during a walk require you to call mas_pause(), the mt_for_each()
5878 * iterator may be more appropriate.
5879 *
5880 */
5881void mas_pause(struct ma_state *mas)
5882{
5883 mas->node = MAS_PAUSE;
5884}
5885EXPORT_SYMBOL_GPL(mas_pause);
5886
5887/**
6169b553 5888 * mas_find_setup() - Internal function to set up mas_find*().
54a611b6 5889 * @mas: The maple state
6169b553
LH
5890 * @max: The maximum index
5891 * @entry: Pointer to the entry
54a611b6 5892 *
6169b553 5893 * Returns: True if entry is the answer, false otherwise.
54a611b6 5894 */
6169b553
LH
5895static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5896 void **entry)
54a611b6 5897{
6169b553
LH
5898 *entry = NULL;
5899
ca80f610
LH
5900 if (unlikely(mas_is_none(mas))) {
5901 if (unlikely(mas->last >= max))
6169b553 5902 return true;
ca80f610
LH
5903
5904 mas->index = mas->last;
5905 mas->node = MAS_START;
6169b553 5906 } else if (unlikely(mas_is_paused(mas))) {
ca80f610 5907 if (unlikely(mas->last >= max))
6169b553 5908 return true;
ca80f610 5909
54a611b6
LH
5910 mas->node = MAS_START;
5911 mas->index = ++mas->last;
6169b553 5912 } else if (unlikely(mas_is_ptr(mas)))
ca80f610 5913 goto ptr_out_of_range;
17dc622c 5914
54a611b6
LH
5915 if (unlikely(mas_is_start(mas))) {
5916 /* First run or continue */
54a611b6 5917 if (mas->index > max)
6169b553 5918 return true;
54a611b6 5919
6169b553
LH
5920 *entry = mas_walk(mas);
5921 if (*entry)
5922 return true;
ca80f610 5923
54a611b6
LH
5924 }
5925
ca80f610
LH
5926 if (unlikely(!mas_searchable(mas))) {
5927 if (unlikely(mas_is_ptr(mas)))
5928 goto ptr_out_of_range;
5929
6169b553 5930 return true;
ca80f610
LH
5931 }
5932
5933 if (mas->index == max)
6169b553 5934 return true;
54a611b6 5935
6169b553 5936 return false;
ca80f610
LH
5937
5938ptr_out_of_range:
5939 mas->node = MAS_NONE;
5940 mas->index = 1;
5941 mas->last = ULONG_MAX;
6169b553
LH
5942 return true;
5943}
5944
5945/**
5946 * mas_find() - On the first call, find the entry at or after mas->index up to
5947 * %max. Otherwise, find the entry after mas->index.
5948 * @mas: The maple state
5949 * @max: The maximum value to check.
5950 *
5951 * Must hold rcu_read_lock or the write lock.
5952 * If an entry exists, last and index are updated accordingly.
5953 * May set @mas->node to MAS_NONE.
5954 *
5955 * Return: The entry or %NULL.
5956 */
5957void *mas_find(struct ma_state *mas, unsigned long max)
5958{
5959 void *entry = NULL;
5960
5961 if (mas_find_setup(mas, max, &entry))
5962 return entry;
5963
5964 /* Retries on dead nodes handled by mas_next_slot */
5965 return mas_next_slot(mas, max, false);
54a611b6 5966}
120b1162 5967EXPORT_SYMBOL_GPL(mas_find);
54a611b6 5968
6169b553
LH
5969/**
5970 * mas_find_range() - On the first call, find the entry at or after
5971 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
5972 * @mas: The maple state
5973 * @max: The maximum value to check.
5974 *
5975 * Must hold rcu_read_lock or the write lock.
5976 * If an entry exists, last and index are updated accordingly.
5977 * May set @mas->node to MAS_NONE.
5978 *
5979 * Return: The entry or %NULL.
5980 */
5981void *mas_find_range(struct ma_state *mas, unsigned long max)
5982{
5983 void *entry;
5984
5985 if (mas_find_setup(mas, max, &entry))
5986 return entry;
5987
5988 /* Retries on dead nodes handled by mas_next_slot */
5989 return mas_next_slot(mas, max, true);
5990}
5991EXPORT_SYMBOL_GPL(mas_find_range);
5992
54a611b6 5993/**
6b9e93e0 5994 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
54a611b6 5995 * @mas: The maple state
6b9e93e0
LH
5996 * @min: The minimum index
5997 * @entry: Pointer to the entry
54a611b6 5998 *
6b9e93e0 5999 * Returns: True if entry is the answer, false otherwise.
54a611b6 6000 */
6b9e93e0
LH
6001static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6002 void **entry)
54a611b6 6003{
6b9e93e0
LH
6004 *entry = NULL;
6005
39193685
LH
6006 if (unlikely(mas_is_none(mas))) {
6007 if (mas->index <= min)
6008 goto none;
6009
6010 mas->last = mas->index;
6011 mas->node = MAS_START;
6012 }
6013
54a611b6 6014 if (unlikely(mas_is_paused(mas))) {
39193685 6015 if (unlikely(mas->index <= min)) {
54a611b6 6016 mas->node = MAS_NONE;
6b9e93e0 6017 return true;
54a611b6
LH
6018 }
6019 mas->node = MAS_START;
6020 mas->last = --mas->index;
6021 }
6022
6023 if (unlikely(mas_is_start(mas))) {
6024 /* First run or continue */
54a611b6 6025 if (mas->index < min)
6b9e93e0 6026 return true;
54a611b6 6027
6b9e93e0
LH
6028 *entry = mas_walk(mas);
6029 if (*entry)
6030 return true;
54a611b6
LH
6031 }
6032
39193685
LH
6033 if (unlikely(!mas_searchable(mas))) {
6034 if (mas_is_ptr(mas))
6035 goto none;
6036
6037 if (mas_is_none(mas)) {
6038 /*
6039 * Walked to the location, and there was nothing so the
6040 * previous location is 0.
6041 */
6042 mas->last = mas->index = 0;
6043 mas->node = MAS_ROOT;
6b9e93e0
LH
6044 *entry = mas_root(mas);
6045 return true;
39193685
LH
6046 }
6047 }
54a611b6
LH
6048
6049 if (mas->index < min)
6b9e93e0 6050 return true;
54a611b6 6051
6b9e93e0 6052 return false;
39193685
LH
6053
6054none:
6055 mas->node = MAS_NONE;
6b9e93e0
LH
6056 return true;
6057}
6058
6059/**
6060 * mas_find_rev: On the first call, find the first non-null entry at or below
6061 * mas->index down to %min. Otherwise find the first non-null entry below
6062 * mas->index down to %min.
6063 * @mas: The maple state
6064 * @min: The minimum value to check.
6065 *
6066 * Must hold rcu_read_lock or the write lock.
6067 * If an entry exists, last and index are updated accordingly.
6068 * May set @mas->node to MAS_NONE.
6069 *
6070 * Return: The entry or %NULL.
6071 */
6072void *mas_find_rev(struct ma_state *mas, unsigned long min)
6073{
6074 void *entry;
6075
6076 if (mas_find_rev_setup(mas, min, &entry))
6077 return entry;
6078
6079 /* Retries on dead nodes handled by mas_prev_slot */
6080 return mas_prev_slot(mas, min, false);
6081
54a611b6 6082}
120b1162 6083EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6 6084
6b9e93e0
LH
6085/**
6086 * mas_find_range_rev: On the first call, find the first non-null entry at or
6087 * below mas->index down to %min. Otherwise advance to the previous slot after
6088 * mas->index down to %min.
6089 * @mas: The maple state
6090 * @min: The minimum value to check.
6091 *
6092 * Must hold rcu_read_lock or the write lock.
6093 * If an entry exists, last and index are updated accordingly.
6094 * May set @mas->node to MAS_NONE.
6095 *
6096 * Return: The entry or %NULL.
6097 */
6098void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6099{
6100 void *entry;
6101
6102 if (mas_find_rev_setup(mas, min, &entry))
6103 return entry;
6104
6105 /* Retries on dead nodes handled by mas_prev_slot */
6106 return mas_prev_slot(mas, min, true);
6107}
6108EXPORT_SYMBOL_GPL(mas_find_range_rev);
6109
54a611b6
LH
6110/**
6111 * mas_erase() - Find the range in which index resides and erase the entire
6112 * range.
6113 * @mas: The maple state
6114 *
6115 * Must hold the write lock.
6116 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6117 * erases that range.
6118 *
6119 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6120 */
6121void *mas_erase(struct ma_state *mas)
6122{
6123 void *entry;
6124 MA_WR_STATE(wr_mas, mas, NULL);
6125
6126 if (mas_is_none(mas) || mas_is_paused(mas))
6127 mas->node = MAS_START;
6128
6129 /* Retry unnecessary when holding the write lock. */
6130 entry = mas_state_walk(mas);
6131 if (!entry)
6132 return NULL;
6133
6134write_retry:
6135 /* Must reset to ensure spanning writes of last slot are detected */
6136 mas_reset(mas);
6137 mas_wr_store_setup(&wr_mas);
6138 mas_wr_store_entry(&wr_mas);
6139 if (mas_nomem(mas, GFP_KERNEL))
6140 goto write_retry;
6141
6142 return entry;
6143}
6144EXPORT_SYMBOL_GPL(mas_erase);
6145
6146/**
6147 * mas_nomem() - Check if there was an error allocating and do the allocation
6148 * if necessary If there are allocations, then free them.
6149 * @mas: The maple state
6150 * @gfp: The GFP_FLAGS to use for allocations
6151 * Return: true on allocation, false otherwise.
6152 */
6153bool mas_nomem(struct ma_state *mas, gfp_t gfp)
14c4b5ab 6154 __must_hold(mas->tree->ma_lock)
54a611b6
LH
6155{
6156 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6157 mas_destroy(mas);
6158 return false;
6159 }
6160
6161 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6162 mtree_unlock(mas->tree);
6163 mas_alloc_nodes(mas, gfp);
6164 mtree_lock(mas->tree);
6165 } else {
6166 mas_alloc_nodes(mas, gfp);
6167 }
6168
6169 if (!mas_allocated(mas))
6170 return false;
6171
6172 mas->node = MAS_START;
6173 return true;
6174}
6175
6176void __init maple_tree_init(void)
6177{
6178 maple_node_cache = kmem_cache_create("maple_node",
6179 sizeof(struct maple_node), sizeof(struct maple_node),
6180 SLAB_PANIC, NULL);
6181}
6182
6183/**
6184 * mtree_load() - Load a value stored in a maple tree
6185 * @mt: The maple tree
6186 * @index: The index to load
6187 *
6188 * Return: the entry or %NULL
6189 */
6190void *mtree_load(struct maple_tree *mt, unsigned long index)
6191{
6192 MA_STATE(mas, mt, index, index);
6193 void *entry;
6194
6195 trace_ma_read(__func__, &mas);
6196 rcu_read_lock();
6197retry:
6198 entry = mas_start(&mas);
6199 if (unlikely(mas_is_none(&mas)))
6200 goto unlock;
6201
6202 if (unlikely(mas_is_ptr(&mas))) {
6203 if (index)
6204 entry = NULL;
6205
6206 goto unlock;
6207 }
6208
6209 entry = mtree_lookup_walk(&mas);
6210 if (!entry && unlikely(mas_is_start(&mas)))
6211 goto retry;
6212unlock:
6213 rcu_read_unlock();
6214 if (xa_is_zero(entry))
6215 return NULL;
6216
6217 return entry;
6218}
6219EXPORT_SYMBOL(mtree_load);
6220
6221/**
6222 * mtree_store_range() - Store an entry at a given range.
6223 * @mt: The maple tree
6224 * @index: The start of the range
6225 * @last: The end of the range
6226 * @entry: The entry to store
6227 * @gfp: The GFP_FLAGS to use for allocations
6228 *
6229 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6230 * be allocated.
6231 */
6232int mtree_store_range(struct maple_tree *mt, unsigned long index,
6233 unsigned long last, void *entry, gfp_t gfp)
6234{
6235 MA_STATE(mas, mt, index, last);
6236 MA_WR_STATE(wr_mas, &mas, entry);
6237
6238 trace_ma_write(__func__, &mas, 0, entry);
6239 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6240 return -EINVAL;
6241
6242 if (index > last)
6243 return -EINVAL;
6244
6245 mtree_lock(mt);
6246retry:
6247 mas_wr_store_entry(&wr_mas);
6248 if (mas_nomem(&mas, gfp))
6249 goto retry;
6250
6251 mtree_unlock(mt);
6252 if (mas_is_err(&mas))
6253 return xa_err(mas.node);
6254
6255 return 0;
6256}
6257EXPORT_SYMBOL(mtree_store_range);
6258
6259/**
6260 * mtree_store() - Store an entry at a given index.
6261 * @mt: The maple tree
6262 * @index: The index to store the value
6263 * @entry: The entry to store
6264 * @gfp: The GFP_FLAGS to use for allocations
6265 *
6266 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6267 * be allocated.
6268 */
6269int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6270 gfp_t gfp)
6271{
6272 return mtree_store_range(mt, index, index, entry, gfp);
6273}
6274EXPORT_SYMBOL(mtree_store);
6275
6276/**
4445e582 6277 * mtree_insert_range() - Insert an entry at a given range if there is no value.
54a611b6
LH
6278 * @mt: The maple tree
6279 * @first: The start of the range
6280 * @last: The end of the range
6281 * @entry: The entry to store
6282 * @gfp: The GFP_FLAGS to use for allocations.
6283 *
6284 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6285 * request, -ENOMEM if memory could not be allocated.
6286 */
6287int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6288 unsigned long last, void *entry, gfp_t gfp)
6289{
6290 MA_STATE(ms, mt, first, last);
6291
6292 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6293 return -EINVAL;
6294
6295 if (first > last)
6296 return -EINVAL;
6297
6298 mtree_lock(mt);
6299retry:
6300 mas_insert(&ms, entry);
6301 if (mas_nomem(&ms, gfp))
6302 goto retry;
6303
6304 mtree_unlock(mt);
6305 if (mas_is_err(&ms))
6306 return xa_err(ms.node);
6307
6308 return 0;
6309}
6310EXPORT_SYMBOL(mtree_insert_range);
6311
6312/**
4445e582 6313 * mtree_insert() - Insert an entry at a given index if there is no value.
54a611b6
LH
6314 * @mt: The maple tree
6315 * @index : The index to store the value
6316 * @entry: The entry to store
6317 * @gfp: The FGP_FLAGS to use for allocations.
6318 *
6319 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6320 * request, -ENOMEM if memory could not be allocated.
6321 */
6322int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6323 gfp_t gfp)
6324{
6325 return mtree_insert_range(mt, index, index, entry, gfp);
6326}
6327EXPORT_SYMBOL(mtree_insert);
6328
6329int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6330 void *entry, unsigned long size, unsigned long min,
6331 unsigned long max, gfp_t gfp)
6332{
6333 int ret = 0;
6334
52371677 6335 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6336 if (!mt_is_alloc(mt))
6337 return -EINVAL;
6338
6339 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6340 return -EINVAL;
6341
54a611b6
LH
6342 mtree_lock(mt);
6343retry:
52371677
PZ
6344 ret = mas_empty_area(&mas, min, max, size);
6345 if (ret)
6346 goto unlock;
6347
6348 mas_insert(&mas, entry);
6349 /*
6350 * mas_nomem() may release the lock, causing the allocated area
6351 * to be unavailable, so try to allocate a free area again.
6352 */
54a611b6
LH
6353 if (mas_nomem(&mas, gfp))
6354 goto retry;
6355
52371677
PZ
6356 if (mas_is_err(&mas))
6357 ret = xa_err(mas.node);
6358 else
6359 *startp = mas.index;
6360
6361unlock:
54a611b6
LH
6362 mtree_unlock(mt);
6363 return ret;
6364}
6365EXPORT_SYMBOL(mtree_alloc_range);
6366
6367int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6368 void *entry, unsigned long size, unsigned long min,
6369 unsigned long max, gfp_t gfp)
6370{
6371 int ret = 0;
6372
52371677 6373 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6374 if (!mt_is_alloc(mt))
6375 return -EINVAL;
6376
6377 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6378 return -EINVAL;
6379
54a611b6
LH
6380 mtree_lock(mt);
6381retry:
52371677
PZ
6382 ret = mas_empty_area_rev(&mas, min, max, size);
6383 if (ret)
6384 goto unlock;
6385
6386 mas_insert(&mas, entry);
6387 /*
6388 * mas_nomem() may release the lock, causing the allocated area
6389 * to be unavailable, so try to allocate a free area again.
6390 */
54a611b6
LH
6391 if (mas_nomem(&mas, gfp))
6392 goto retry;
6393
52371677
PZ
6394 if (mas_is_err(&mas))
6395 ret = xa_err(mas.node);
6396 else
6397 *startp = mas.index;
6398
6399unlock:
54a611b6
LH
6400 mtree_unlock(mt);
6401 return ret;
6402}
6403EXPORT_SYMBOL(mtree_alloc_rrange);
6404
6405/**
6406 * mtree_erase() - Find an index and erase the entire range.
6407 * @mt: The maple tree
6408 * @index: The index to erase
6409 *
6410 * Erasing is the same as a walk to an entry then a store of a NULL to that
6411 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6412 *
6413 * Return: The entry stored at the @index or %NULL
6414 */
6415void *mtree_erase(struct maple_tree *mt, unsigned long index)
6416{
6417 void *entry = NULL;
6418
6419 MA_STATE(mas, mt, index, index);
6420 trace_ma_op(__func__, &mas);
6421
6422 mtree_lock(mt);
6423 entry = mas_erase(&mas);
6424 mtree_unlock(mt);
6425
6426 return entry;
6427}
6428EXPORT_SYMBOL(mtree_erase);
6429
6430/**
6431 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6432 * @mt: The maple tree
6433 *
6434 * Note: Does not handle locking.
6435 */
6436void __mt_destroy(struct maple_tree *mt)
6437{
6438 void *root = mt_root_locked(mt);
6439
6440 rcu_assign_pointer(mt->ma_root, NULL);
6441 if (xa_is_node(root))
6442 mte_destroy_walk(root, mt);
6443
6444 mt->ma_flags = 0;
6445}
6446EXPORT_SYMBOL_GPL(__mt_destroy);
6447
6448/**
6449 * mtree_destroy() - Destroy a maple tree
6450 * @mt: The maple tree
6451 *
6452 * Frees all resources used by the tree. Handles locking.
6453 */
6454void mtree_destroy(struct maple_tree *mt)
6455{
6456 mtree_lock(mt);
6457 __mt_destroy(mt);
6458 mtree_unlock(mt);
6459}
6460EXPORT_SYMBOL(mtree_destroy);
6461
6462/**
6463 * mt_find() - Search from the start up until an entry is found.
6464 * @mt: The maple tree
6465 * @index: Pointer which contains the start location of the search
fad9c80e
TG
6466 * @max: The maximum value of the search range
6467 *
6468 * Takes RCU read lock internally to protect the search, which does not
6469 * protect the returned pointer after dropping RCU read lock.
6470 * See also: Documentation/core-api/maple_tree.rst
54a611b6 6471 *
fad9c80e
TG
6472 * In case that an entry is found @index is updated to point to the next
6473 * possible entry independent whether the found entry is occupying a
6474 * single index or a range if indices.
54a611b6
LH
6475 *
6476 * Return: The entry at or after the @index or %NULL
6477 */
6478void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6479{
6480 MA_STATE(mas, mt, *index, *index);
6481 void *entry;
6482#ifdef CONFIG_DEBUG_MAPLE_TREE
6483 unsigned long copy = *index;
6484#endif
6485
6486 trace_ma_read(__func__, &mas);
6487
6488 if ((*index) > max)
6489 return NULL;
6490
6491 rcu_read_lock();
6492retry:
6493 entry = mas_state_walk(&mas);
6494 if (mas_is_start(&mas))
6495 goto retry;
6496
6497 if (unlikely(xa_is_zero(entry)))
6498 entry = NULL;
6499
6500 if (entry)
6501 goto unlock;
6502
ca80f610 6503 while (mas_searchable(&mas) && (mas.last < max)) {
54a611b6
LH
6504 entry = mas_next_entry(&mas, max);
6505 if (likely(entry && !xa_is_zero(entry)))
6506 break;
6507 }
6508
6509 if (unlikely(xa_is_zero(entry)))
6510 entry = NULL;
6511unlock:
6512 rcu_read_unlock();
6513 if (likely(entry)) {
6514 *index = mas.last + 1;
6515#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6516 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6517 pr_err("index not increased! %lx <= %lx\n",
6518 *index, copy);
54a611b6
LH
6519#endif
6520 }
6521
6522 return entry;
6523}
6524EXPORT_SYMBOL(mt_find);
6525
6526/**
6527 * mt_find_after() - Search from the start up until an entry is found.
6528 * @mt: The maple tree
6529 * @index: Pointer which contains the start location of the search
6530 * @max: The maximum value to check
6531 *
fad9c80e
TG
6532 * Same as mt_find() except that it checks @index for 0 before
6533 * searching. If @index == 0, the search is aborted. This covers a wrap
6534 * around of @index to 0 in an iterator loop.
54a611b6
LH
6535 *
6536 * Return: The entry at or after the @index or %NULL
6537 */
6538void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6539 unsigned long max)
6540{
6541 if (!(*index))
6542 return NULL;
6543
6544 return mt_find(mt, index, max);
6545}
6546EXPORT_SYMBOL(mt_find_after);
6547
6548#ifdef CONFIG_DEBUG_MAPLE_TREE
6549atomic_t maple_tree_tests_run;
6550EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6551atomic_t maple_tree_tests_passed;
6552EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6553
6554#ifndef __KERNEL__
6555extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6556void mt_set_non_kernel(unsigned int val)
6557{
6558 kmem_cache_set_non_kernel(maple_node_cache, val);
6559}
6560
6561extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6562unsigned long mt_get_alloc_size(void)
6563{
6564 return kmem_cache_get_alloc(maple_node_cache);
6565}
6566
6567extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6568void mt_zero_nr_tallocated(void)
6569{
6570 kmem_cache_zero_nr_tallocated(maple_node_cache);
6571}
6572
6573extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6574unsigned int mt_nr_tallocated(void)
6575{
6576 return kmem_cache_nr_tallocated(maple_node_cache);
6577}
6578
6579extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6580unsigned int mt_nr_allocated(void)
6581{
6582 return kmem_cache_nr_allocated(maple_node_cache);
6583}
6584
6585/*
6586 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6587 * @mas: The maple state
6588 * @index: The index to restore in @mas.
6589 *
6590 * Used in test code.
6591 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6592 */
6593static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6594{
6595 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6596 return 0;
6597
6598 if (likely(!mte_dead_node(mas->node)))
6599 return 0;
6600
6601 mas_rewalk(mas, index);
6602 return 1;
6603}
54a611b6 6604
120b1162
LH
6605void mt_cache_shrink(void)
6606{
6607}
6608#else
6609/*
6610 * mt_cache_shrink() - For testing, don't use this.
6611 *
6612 * Certain testcases can trigger an OOM when combined with other memory
6613 * debugging configuration options. This function is used to reduce the
6614 * possibility of an out of memory even due to kmem_cache objects remaining
6615 * around for longer than usual.
6616 */
6617void mt_cache_shrink(void)
6618{
6619 kmem_cache_shrink(maple_node_cache);
6620
6621}
6622EXPORT_SYMBOL_GPL(mt_cache_shrink);
6623
6624#endif /* not defined __KERNEL__ */
54a611b6
LH
6625/*
6626 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6627 * @mas: The maple state
6628 * @offset: The offset into the slot array to fetch.
6629 *
6630 * Return: The entry stored at @offset.
6631 */
6632static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6633 unsigned char offset)
6634{
6635 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6636 offset);
6637}
6638
54a611b6
LH
6639/* Depth first search, post-order */
6640static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6641{
6642
6643 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6644 unsigned long p_min, p_max;
6645
6646 mas_next_node(mas, mas_mn(mas), max);
6647 if (!mas_is_none(mas))
6648 return;
6649
6650 if (mte_is_root(mn))
6651 return;
6652
6653 mas->node = mn;
6654 mas_ascend(mas);
c3eb787e 6655 do {
54a611b6
LH
6656 p = mas->node;
6657 p_min = mas->min;
6658 p_max = mas->max;
6659 mas_prev_node(mas, 0);
c3eb787e 6660 } while (!mas_is_none(mas));
54a611b6
LH
6661
6662 mas->node = p;
6663 mas->max = p_max;
6664 mas->min = p_min;
6665}
6666
6667/* Tree validations */
6668static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6669 unsigned long min, unsigned long max, unsigned int depth,
6670 enum mt_dump_format format);
54a611b6 6671static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 6672 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
6673{
6674 static const char spaces[] = " ";
6675
89f499f3
LH
6676 switch(format) {
6677 case mt_dump_hex:
6678 if (min == max)
6679 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6680 else
6681 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6682 break;
6683 default:
6684 case mt_dump_dec:
6685 if (min == max)
6686 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6687 else
6688 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6689 }
54a611b6
LH
6690}
6691
6692static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 6693 unsigned int depth, enum mt_dump_format format)
54a611b6 6694{
89f499f3 6695 mt_dump_range(min, max, depth, format);
54a611b6
LH
6696
6697 if (xa_is_value(entry))
6698 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6699 xa_to_value(entry), entry);
6700 else if (xa_is_zero(entry))
6701 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6702 else if (mt_is_reserved(entry))
6703 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6704 else
6705 pr_cont("%p\n", entry);
6706}
6707
6708static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6709 unsigned long min, unsigned long max, unsigned int depth,
6710 enum mt_dump_format format)
54a611b6
LH
6711{
6712 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6713 bool leaf = mte_is_leaf(entry);
6714 unsigned long first = min;
6715 int i;
6716
6717 pr_cont(" contents: ");
89f499f3
LH
6718 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6719 switch(format) {
6720 case mt_dump_hex:
6721 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6722 break;
6723 default:
6724 case mt_dump_dec:
6725 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6726 }
6727 }
54a611b6
LH
6728 pr_cont("%p\n", node->slot[i]);
6729 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6730 unsigned long last = max;
6731
6732 if (i < (MAPLE_RANGE64_SLOTS - 1))
6733 last = node->pivot[i];
bd592703 6734 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6735 break;
6736 if (last == 0 && i > 0)
6737 break;
6738 if (leaf)
6739 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6740 first, last, depth + 1, format);
54a611b6
LH
6741 else if (node->slot[i])
6742 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6743 first, last, depth + 1, format);
54a611b6
LH
6744
6745 if (last == max)
6746 break;
6747 if (last > max) {
89f499f3
LH
6748 switch(format) {
6749 case mt_dump_hex:
6750 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 6751 node, last, max, i);
89f499f3
LH
6752 break;
6753 default:
6754 case mt_dump_dec:
6755 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6756 node, last, max, i);
6757 }
54a611b6
LH
6758 }
6759 first = last + 1;
6760 }
6761}
6762
6763static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6764 unsigned long min, unsigned long max, unsigned int depth,
6765 enum mt_dump_format format)
54a611b6
LH
6766{
6767 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6768 bool leaf = mte_is_leaf(entry);
6769 unsigned long first = min;
6770 int i;
6771
6772 pr_cont(" contents: ");
6773 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6774 pr_cont("%lu ", node->gap[i]);
6775 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6776 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6777 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6778 pr_cont("%p\n", node->slot[i]);
6779 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6780 unsigned long last = max;
6781
6782 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6783 last = node->pivot[i];
6784 else if (!node->slot[i])
6785 break;
6786 if (last == 0 && i > 0)
6787 break;
6788 if (leaf)
6789 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6790 first, last, depth + 1, format);
54a611b6
LH
6791 else if (node->slot[i])
6792 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6793 first, last, depth + 1, format);
54a611b6
LH
6794
6795 if (last == max)
6796 break;
6797 if (last > max) {
6798 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6799 node, last, max, i);
6800 break;
6801 }
6802 first = last + 1;
6803 }
6804}
6805
6806static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6807 unsigned long min, unsigned long max, unsigned int depth,
6808 enum mt_dump_format format)
54a611b6
LH
6809{
6810 struct maple_node *node = mte_to_node(entry);
6811 unsigned int type = mte_node_type(entry);
6812 unsigned int i;
6813
89f499f3 6814 mt_dump_range(min, max, depth, format);
54a611b6
LH
6815
6816 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6817 node ? node->parent : NULL);
6818 switch (type) {
6819 case maple_dense:
6820 pr_cont("\n");
6821 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6822 if (min + i > max)
6823 pr_cont("OUT OF RANGE: ");
6824 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6825 min + i, min + i, depth, format);
54a611b6
LH
6826 }
6827 break;
6828 case maple_leaf_64:
6829 case maple_range_64:
89f499f3 6830 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
6831 break;
6832 case maple_arange_64:
89f499f3 6833 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
6834 break;
6835
6836 default:
6837 pr_cont(" UNKNOWN TYPE\n");
6838 }
6839}
6840
89f499f3 6841void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
6842{
6843 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6844
6845 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6846 mt, mt->ma_flags, mt_height(mt), entry);
6847 if (!xa_is_node(entry))
89f499f3 6848 mt_dump_entry(entry, 0, 0, 0, format);
54a611b6 6849 else if (entry)
89f499f3 6850 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
54a611b6 6851}
120b1162 6852EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6853
6854/*
6855 * Calculate the maximum gap in a node and check if that's what is reported in
6856 * the parent (unless root).
6857 */
6858static void mas_validate_gaps(struct ma_state *mas)
6859{
6860 struct maple_enode *mte = mas->node;
f8e5eac8
PZ
6861 struct maple_node *p_mn, *node = mte_to_node(mte);
6862 enum maple_type mt = mte_node_type(mas->node);
54a611b6
LH
6863 unsigned long gap = 0, max_gap = 0;
6864 unsigned long p_end, p_start = mas->min;
f8e5eac8 6865 unsigned char p_slot, offset;
54a611b6 6866 unsigned long *gaps = NULL;
f8e5eac8
PZ
6867 unsigned long *pivots = ma_pivots(node, mt);
6868 unsigned int i;
54a611b6 6869
f8e5eac8 6870 if (ma_is_dense(mt)) {
54a611b6
LH
6871 for (i = 0; i < mt_slot_count(mte); i++) {
6872 if (mas_get_slot(mas, i)) {
6873 if (gap > max_gap)
6874 max_gap = gap;
6875 gap = 0;
6876 continue;
6877 }
6878 gap++;
6879 }
6880 goto counted;
6881 }
6882
f8e5eac8 6883 gaps = ma_gaps(node, mt);
54a611b6 6884 for (i = 0; i < mt_slot_count(mte); i++) {
29b2681f 6885 p_end = mas_safe_pivot(mas, pivots, i, mt);
54a611b6
LH
6886
6887 if (!gaps) {
f8e5eac8
PZ
6888 if (!mas_get_slot(mas, i))
6889 gap = p_end - p_start + 1;
54a611b6
LH
6890 } else {
6891 void *entry = mas_get_slot(mas, i);
6892
6893 gap = gaps[i];
f8e5eac8
PZ
6894 MT_BUG_ON(mas->tree, !entry);
6895
6896 if (gap > p_end - p_start + 1) {
6897 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6898 mas_mn(mas), i, gap, p_end, p_start,
6899 p_end - p_start + 1);
6900 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
54a611b6
LH
6901 }
6902 }
6903
6904 if (gap > max_gap)
6905 max_gap = gap;
f8e5eac8 6906
54a611b6
LH
6907 p_start = p_end + 1;
6908 if (p_end >= mas->max)
6909 break;
6910 }
6911
6912counted:
f8e5eac8
PZ
6913 if (mt == maple_arange_64) {
6914 offset = ma_meta_gap(node, mt);
6915 if (offset > i) {
6916 pr_err("gap offset %p[%u] is invalid\n", node, offset);
6917 MT_BUG_ON(mas->tree, 1);
6918 }
6919
6920 if (gaps[offset] != max_gap) {
6921 pr_err("gap %p[%u] is not the largest gap %lu\n",
6922 node, offset, max_gap);
6923 MT_BUG_ON(mas->tree, 1);
6924 }
6925
6926 MT_BUG_ON(mas->tree, !gaps);
6927 for (i++ ; i < mt_slot_count(mte); i++) {
6928 if (gaps[i] != 0) {
6929 pr_err("gap %p[%u] beyond node limit != 0\n",
6930 node, i);
6931 MT_BUG_ON(mas->tree, 1);
6932 }
6933 }
6934 }
6935
54a611b6
LH
6936 if (mte_is_root(mte))
6937 return;
6938
6939 p_slot = mte_parent_slot(mas->node);
6940 p_mn = mte_parent(mte);
6941 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 6942 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
54a611b6 6943 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 6944 mt_dump(mas->tree, mt_dump_hex);
f8e5eac8 6945 MT_BUG_ON(mas->tree, 1);
54a611b6 6946 }
54a611b6
LH
6947}
6948
6949static void mas_validate_parent_slot(struct ma_state *mas)
6950{
6951 struct maple_node *parent;
6952 struct maple_enode *node;
afc754c6
LH
6953 enum maple_type p_type;
6954 unsigned char p_slot;
54a611b6
LH
6955 void __rcu **slots;
6956 int i;
6957
6958 if (mte_is_root(mas->node))
6959 return;
6960
afc754c6
LH
6961 p_slot = mte_parent_slot(mas->node);
6962 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
6963 parent = mte_parent(mas->node);
6964 slots = ma_slots(parent, p_type);
6965 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6966
6967 /* Check prev/next parent slot for duplicate node entry */
6968
6969 for (i = 0; i < mt_slots[p_type]; i++) {
6970 node = mas_slot(mas, slots, i);
6971 if (i == p_slot) {
6972 if (node != mas->node)
6973 pr_err("parent %p[%u] does not have %p\n",
6974 parent, i, mas_mn(mas));
6975 MT_BUG_ON(mas->tree, node != mas->node);
6976 } else if (node == mas->node) {
6977 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6978 mas_mn(mas), parent, i, p_slot);
6979 MT_BUG_ON(mas->tree, node == mas->node);
6980 }
6981 }
6982}
6983
6984static void mas_validate_child_slot(struct ma_state *mas)
6985{
6986 enum maple_type type = mte_node_type(mas->node);
6987 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6988 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6989 struct maple_enode *child;
6990 unsigned char i;
6991
6992 if (mte_is_leaf(mas->node))
6993 return;
6994
6995 for (i = 0; i < mt_slots[type]; i++) {
6996 child = mas_slot(mas, slots, i);
54a611b6 6997
e93fda5a
PZ
6998 if (!child) {
6999 pr_err("Non-leaf node lacks child at %p[%u]\n",
7000 mas_mn(mas), i);
7001 MT_BUG_ON(mas->tree, 1);
7002 }
54a611b6
LH
7003
7004 if (mte_parent_slot(child) != i) {
7005 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7006 mas_mn(mas), i, mte_to_node(child),
7007 mte_parent_slot(child));
7008 MT_BUG_ON(mas->tree, 1);
7009 }
7010
7011 if (mte_parent(child) != mte_to_node(mas->node)) {
7012 pr_err("child %p has parent %p not %p\n",
7013 mte_to_node(child), mte_parent(child),
7014 mte_to_node(mas->node));
7015 MT_BUG_ON(mas->tree, 1);
7016 }
e93fda5a
PZ
7017
7018 if (i < mt_pivots[type] && pivots[i] == mas->max)
7019 break;
54a611b6
LH
7020 }
7021}
7022
7023/*
33af39d0
PZ
7024 * Validate all pivots are within mas->min and mas->max, check metadata ends
7025 * where the maximum ends and ensure there is no slots or pivots set outside of
7026 * the end of the data.
54a611b6
LH
7027 */
7028static void mas_validate_limits(struct ma_state *mas)
7029{
7030 int i;
7031 unsigned long prev_piv = 0;
7032 enum maple_type type = mte_node_type(mas->node);
7033 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7034 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7035
54a611b6
LH
7036 for (i = 0; i < mt_slots[type]; i++) {
7037 unsigned long piv;
7038
7039 piv = mas_safe_pivot(mas, pivots, i, type);
7040
33af39d0
PZ
7041 if (!piv && (i != 0)) {
7042 pr_err("Missing node limit pivot at %p[%u]",
7043 mas_mn(mas), i);
7044 MAS_WARN_ON(mas, 1);
54a611b6
LH
7045 }
7046
7047 if (prev_piv > piv) {
7048 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7049 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7050 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7051 }
7052
7053 if (piv < mas->min) {
7054 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7055 piv, mas->min);
e6d6792a 7056 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7057 }
7058 if (piv > mas->max) {
7059 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7060 piv, mas->max);
e6d6792a 7061 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7062 }
7063 prev_piv = piv;
7064 if (piv == mas->max)
7065 break;
7066 }
33af39d0
PZ
7067
7068 if (mas_data_end(mas) != i) {
7069 pr_err("node%p: data_end %u != the last slot offset %u\n",
7070 mas_mn(mas), mas_data_end(mas), i);
7071 MT_BUG_ON(mas->tree, 1);
7072 }
7073
54a611b6
LH
7074 for (i += 1; i < mt_slots[type]; i++) {
7075 void *entry = mas_slot(mas, slots, i);
7076
7077 if (entry && (i != mt_slots[type] - 1)) {
7078 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7079 i, entry);
7080 MT_BUG_ON(mas->tree, entry != NULL);
7081 }
7082
7083 if (i < mt_pivots[type]) {
7084 unsigned long piv = pivots[i];
7085
7086 if (!piv)
7087 continue;
7088
7089 pr_err("%p[%u] should not have piv %lu\n",
7090 mas_mn(mas), i, piv);
e6d6792a 7091 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7092 }
7093 }
7094}
7095
7096static void mt_validate_nulls(struct maple_tree *mt)
7097{
7098 void *entry, *last = (void *)1;
7099 unsigned char offset = 0;
7100 void __rcu **slots;
7101 MA_STATE(mas, mt, 0, 0);
7102
7103 mas_start(&mas);
7104 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7105 return;
7106
7107 while (!mte_is_leaf(mas.node))
7108 mas_descend(&mas);
7109
7110 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7111 do {
7112 entry = mas_slot(&mas, slots, offset);
7113 if (!last && !entry) {
7114 pr_err("Sequential nulls end at %p[%u]\n",
7115 mas_mn(&mas), offset);
7116 }
7117 MT_BUG_ON(mt, !last && !entry);
7118 last = entry;
7119 if (offset == mas_data_end(&mas)) {
7120 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7121 if (mas_is_none(&mas))
7122 return;
7123 offset = 0;
7124 slots = ma_slots(mte_to_node(mas.node),
7125 mte_node_type(mas.node));
7126 } else {
7127 offset++;
7128 }
7129
7130 } while (!mas_is_none(&mas));
7131}
7132
7133/*
7134 * validate a maple tree by checking:
7135 * 1. The limits (pivots are within mas->min to mas->max)
7136 * 2. The gap is correctly set in the parents
7137 */
7138void mt_validate(struct maple_tree *mt)
7139{
7140 unsigned char end;
7141
7142 MA_STATE(mas, mt, 0, 0);
7143 rcu_read_lock();
7144 mas_start(&mas);
7145 if (!mas_searchable(&mas))
7146 goto done;
7147
a489539e
PZ
7148 while (!mte_is_leaf(mas.node))
7149 mas_descend(&mas);
7150
54a611b6 7151 while (!mas_is_none(&mas)) {
e6d6792a 7152 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
a489539e
PZ
7153 end = mas_data_end(&mas);
7154 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7155 (mas.max != ULONG_MAX))) {
7156 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
54a611b6 7157 }
a489539e 7158
54a611b6 7159 mas_validate_parent_slot(&mas);
54a611b6 7160 mas_validate_limits(&mas);
a489539e 7161 mas_validate_child_slot(&mas);
54a611b6
LH
7162 if (mt_is_alloc(mt))
7163 mas_validate_gaps(&mas);
7164 mas_dfs_postorder(&mas, ULONG_MAX);
7165 }
7166 mt_validate_nulls(mt);
7167done:
7168 rcu_read_unlock();
7169
7170}
120b1162 7171EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7172
f0a1f866
LH
7173void mas_dump(const struct ma_state *mas)
7174{
7175 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7176 if (mas_is_none(mas))
7177 pr_err("(MAS_NONE) ");
7178 else if (mas_is_ptr(mas))
7179 pr_err("(MAS_ROOT) ");
7180 else if (mas_is_start(mas))
7181 pr_err("(MAS_START) ");
7182 else if (mas_is_paused(mas))
7183 pr_err("(MAS_PAUSED) ");
7184
7185 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7186 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7187 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7188 if (mas->index > mas->last)
7189 pr_err("Check index & last\n");
7190}
7191EXPORT_SYMBOL_GPL(mas_dump);
7192
7193void mas_wr_dump(const struct ma_wr_state *wr_mas)
7194{
7195 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7196 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7197 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7198 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7199 wr_mas->end_piv);
7200}
7201EXPORT_SYMBOL_GPL(mas_wr_dump);
7202
54a611b6 7203#endif /* CONFIG_DEBUG_MAPLE_TREE */