Merge tag 'kvm-x86-vmx-6.4' of https://github.com/kvm-x86/linux into HEAD
[linux-block.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
188 node->parent = ma_parent_ptr(node);
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
243static inline bool mas_is_ptr(struct ma_state *mas)
244{
245 return mas->node == MAS_ROOT;
246}
247
248static inline bool mas_is_start(struct ma_state *mas)
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
428 * mas_parent_enum() - Return the maple_type of the parent from the stored
429 * parent type.
430 * @mas: The maple state
431 * @node: The maple_enode to extract the parent's enum
432 * Return: The node->parent maple_type
433 */
434static inline
435enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 struct maple_tree *mt)
437{
438 unsigned long p_type;
439
440 p_type = (unsigned long)p_enode;
441 if (p_type & MAPLE_PARENT_ROOT)
442 return 0; /* Validated in the caller. */
443
444 p_type &= MAPLE_NODE_MASK;
445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446
447 switch (p_type) {
448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 if (mt_is_alloc(mt))
450 return maple_arange_64;
451 return maple_range_64;
452 }
453
454 return 0;
455}
456
457static inline
458enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459{
460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461}
462
463/*
464 * mte_set_parent() - Set the parent node and encode the slot
465 * @enode: The encoded maple node.
466 * @parent: The encoded maple node that is the parent of @enode.
467 * @slot: The slot that @enode resides in @parent.
468 *
469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470 * parent type.
471 */
472static inline
473void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 unsigned char slot)
475{
831978e3 476 unsigned long val = (unsigned long)parent;
54a611b6
LH
477 unsigned long shift;
478 unsigned long type;
479 enum maple_type p_type = mte_node_type(parent);
480
481 BUG_ON(p_type == maple_dense);
482 BUG_ON(p_type == maple_leaf_64);
483
484 switch (p_type) {
485 case maple_range_64:
486 case maple_arange_64:
487 shift = MAPLE_PARENT_SLOT_SHIFT;
488 type = MAPLE_PARENT_RANGE64;
489 break;
490 default:
491 case maple_dense:
492 case maple_leaf_64:
493 shift = type = 0;
494 break;
495 }
496
497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 val |= (slot << shift) | type;
499 mte_to_node(enode)->parent = ma_parent_ptr(val);
500}
501
502/*
503 * mte_parent_slot() - get the parent slot of @enode.
504 * @enode: The encoded maple node.
505 *
506 * Return: The slot in the parent node where @enode resides.
507 */
508static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509{
831978e3 510 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 511
84fd3e1e 512 if (val & MA_ROOT_PARENT)
54a611b6
LH
513 return 0;
514
515 /*
516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 */
519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520}
521
522/*
523 * mte_parent() - Get the parent of @node.
524 * @node: The encoded maple node.
525 *
526 * Return: The parent maple node.
527 */
528static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529{
530 return (void *)((unsigned long)
531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532}
533
534/*
535 * ma_dead_node() - check if the @enode is dead.
536 * @enode: The encoded maple node
537 *
538 * Return: true if dead, false otherwise.
539 */
540static inline bool ma_dead_node(const struct maple_node *node)
541{
542 struct maple_node *parent = (void *)((unsigned long)
543 node->parent & ~MAPLE_NODE_MASK);
544
545 return (parent == node);
546}
547/*
548 * mte_dead_node() - check if the @enode is dead.
549 * @enode: The encoded maple node
550 *
551 * Return: true if dead, false otherwise.
552 */
553static inline bool mte_dead_node(const struct maple_enode *enode)
554{
555 struct maple_node *parent, *node;
556
557 node = mte_to_node(enode);
558 parent = mte_parent(enode);
559 return (parent == node);
560}
561
562/*
563 * mas_allocated() - Get the number of nodes allocated in a maple state.
564 * @mas: The maple state
565 *
566 * The ma_state alloc member is overloaded to hold a pointer to the first
567 * allocated node or to the number of requested nodes to allocate. If bit 0 is
568 * set, then the alloc contains the number of requested nodes. If there is an
569 * allocated node, then the total allocated nodes is in that node.
570 *
571 * Return: The total number of nodes allocated
572 */
573static inline unsigned long mas_allocated(const struct ma_state *mas)
574{
575 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
576 return 0;
577
578 return mas->alloc->total;
579}
580
581/*
582 * mas_set_alloc_req() - Set the requested number of allocations.
583 * @mas: the maple state
584 * @count: the number of allocations.
585 *
586 * The requested number of allocations is either in the first allocated node,
587 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
588 * no allocated node. Set the request either in the node or do the necessary
589 * encoding to store in @mas->alloc directly.
590 */
591static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
592{
593 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
594 if (!count)
595 mas->alloc = NULL;
596 else
597 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
598 return;
599 }
600
601 mas->alloc->request_count = count;
602}
603
604/*
605 * mas_alloc_req() - get the requested number of allocations.
606 * @mas: The maple state
607 *
608 * The alloc count is either stored directly in @mas, or in
609 * @mas->alloc->request_count if there is at least one node allocated. Decode
610 * the request count if it's stored directly in @mas->alloc.
611 *
612 * Return: The allocation request count.
613 */
614static inline unsigned int mas_alloc_req(const struct ma_state *mas)
615{
616 if ((unsigned long)mas->alloc & 0x1)
617 return (unsigned long)(mas->alloc) >> 1;
618 else if (mas->alloc)
619 return mas->alloc->request_count;
620 return 0;
621}
622
623/*
624 * ma_pivots() - Get a pointer to the maple node pivots.
625 * @node - the maple node
626 * @type - the node type
627 *
628 * Return: A pointer to the maple node pivots
629 */
630static inline unsigned long *ma_pivots(struct maple_node *node,
631 enum maple_type type)
632{
633 switch (type) {
634 case maple_arange_64:
635 return node->ma64.pivot;
636 case maple_range_64:
637 case maple_leaf_64:
638 return node->mr64.pivot;
639 case maple_dense:
640 return NULL;
641 }
642 return NULL;
643}
644
645/*
646 * ma_gaps() - Get a pointer to the maple node gaps.
647 * @node - the maple node
648 * @type - the node type
649 *
650 * Return: A pointer to the maple node gaps
651 */
652static inline unsigned long *ma_gaps(struct maple_node *node,
653 enum maple_type type)
654{
655 switch (type) {
656 case maple_arange_64:
657 return node->ma64.gap;
658 case maple_range_64:
659 case maple_leaf_64:
660 case maple_dense:
661 return NULL;
662 }
663 return NULL;
664}
665
666/*
667 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
668 * @mn: The maple encoded node.
669 * @piv: The pivot.
670 *
671 * Return: the pivot at @piv of @mn.
672 */
673static inline unsigned long mte_pivot(const struct maple_enode *mn,
674 unsigned char piv)
675{
676 struct maple_node *node = mte_to_node(mn);
ab6ef70a 677 enum maple_type type = mte_node_type(mn);
54a611b6 678
ab6ef70a 679 if (piv >= mt_pivots[type]) {
54a611b6
LH
680 WARN_ON(1);
681 return 0;
682 }
ab6ef70a 683 switch (type) {
54a611b6
LH
684 case maple_arange_64:
685 return node->ma64.pivot[piv];
686 case maple_range_64:
687 case maple_leaf_64:
688 return node->mr64.pivot[piv];
689 case maple_dense:
690 return 0;
691 }
692 return 0;
693}
694
695/*
696 * mas_safe_pivot() - get the pivot at @piv or mas->max.
697 * @mas: The maple state
698 * @pivots: The pointer to the maple node pivots
699 * @piv: The pivot to fetch
700 * @type: The maple node type
701 *
702 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
703 * otherwise.
704 */
705static inline unsigned long
706mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
707 unsigned char piv, enum maple_type type)
708{
709 if (piv >= mt_pivots[type])
710 return mas->max;
711
712 return pivots[piv];
713}
714
715/*
716 * mas_safe_min() - Return the minimum for a given offset.
717 * @mas: The maple state
718 * @pivots: The pointer to the maple node pivots
719 * @offset: The offset into the pivot array
720 *
721 * Return: The minimum range value that is contained in @offset.
722 */
723static inline unsigned long
724mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
725{
726 if (likely(offset))
727 return pivots[offset - 1] + 1;
728
729 return mas->min;
730}
731
732/*
733 * mas_logical_pivot() - Get the logical pivot of a given offset.
734 * @mas: The maple state
735 * @pivots: The pointer to the maple node pivots
736 * @offset: The offset into the pivot array
737 * @type: The maple node type
738 *
739 * When there is no value at a pivot (beyond the end of the data), then the
740 * pivot is actually @mas->max.
741 *
742 * Return: the logical pivot of a given @offset.
743 */
744static inline unsigned long
745mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
746 unsigned char offset, enum maple_type type)
747{
748 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
749
750 if (likely(lpiv))
751 return lpiv;
752
753 if (likely(offset))
754 return mas->max;
755
756 return lpiv;
757}
758
759/*
760 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
761 * @mn: The encoded maple node
762 * @piv: The pivot offset
763 * @val: The value of the pivot
764 */
765static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
766 unsigned long val)
767{
768 struct maple_node *node = mte_to_node(mn);
769 enum maple_type type = mte_node_type(mn);
770
771 BUG_ON(piv >= mt_pivots[type]);
772 switch (type) {
773 default:
774 case maple_range_64:
775 case maple_leaf_64:
776 node->mr64.pivot[piv] = val;
777 break;
778 case maple_arange_64:
779 node->ma64.pivot[piv] = val;
780 break;
781 case maple_dense:
782 break;
783 }
784
785}
786
787/*
788 * ma_slots() - Get a pointer to the maple node slots.
789 * @mn: The maple node
790 * @mt: The maple node type
791 *
792 * Return: A pointer to the maple node slots
793 */
794static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
795{
796 switch (mt) {
797 default:
798 case maple_arange_64:
799 return mn->ma64.slot;
800 case maple_range_64:
801 case maple_leaf_64:
802 return mn->mr64.slot;
803 case maple_dense:
804 return mn->slot;
805 }
806}
807
808static inline bool mt_locked(const struct maple_tree *mt)
809{
810 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
811 lockdep_is_held(&mt->ma_lock);
812}
813
814static inline void *mt_slot(const struct maple_tree *mt,
815 void __rcu **slots, unsigned char offset)
816{
817 return rcu_dereference_check(slots[offset], mt_locked(mt));
818}
819
820/*
821 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822 * @mas: The maple state
823 * @slots: The pointer to the slots
824 * @offset: The offset into the slots array to fetch
825 *
826 * Return: The entry stored in @slots at the @offset.
827 */
828static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 unsigned char offset)
830{
831 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
832}
833
834/*
835 * mas_slot() - Get the slot value when not holding the maple tree lock.
836 * @mas: The maple state
837 * @slots: The pointer to the slots
838 * @offset: The offset into the slots array to fetch
839 *
840 * Return: The entry stored in @slots at the @offset
841 */
842static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 unsigned char offset)
844{
845 return mt_slot(mas->tree, slots, offset);
846}
847
848/*
849 * mas_root() - Get the maple tree root.
850 * @mas: The maple state.
851 *
852 * Return: The pointer to the root of the tree
853 */
854static inline void *mas_root(struct ma_state *mas)
855{
856 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
857}
858
859static inline void *mt_root_locked(struct maple_tree *mt)
860{
861 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
862}
863
864/*
865 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866 * @mas: The maple state.
867 *
868 * Return: The pointer to the root of the tree
869 */
870static inline void *mas_root_locked(struct ma_state *mas)
871{
872 return mt_root_locked(mas->tree);
873}
874
875static inline struct maple_metadata *ma_meta(struct maple_node *mn,
876 enum maple_type mt)
877{
878 switch (mt) {
879 case maple_arange_64:
880 return &mn->ma64.meta;
881 default:
882 return &mn->mr64.meta;
883 }
884}
885
886/*
887 * ma_set_meta() - Set the metadata information of a node.
888 * @mn: The maple node
889 * @mt: The maple node type
890 * @offset: The offset of the highest sub-gap in this node.
891 * @end: The end of the data in this node.
892 */
893static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 unsigned char offset, unsigned char end)
895{
896 struct maple_metadata *meta = ma_meta(mn, mt);
897
898 meta->gap = offset;
899 meta->end = end;
900}
901
902/*
903 * ma_meta_end() - Get the data end of a node from the metadata
904 * @mn: The maple node
905 * @mt: The maple node type
906 */
907static inline unsigned char ma_meta_end(struct maple_node *mn,
908 enum maple_type mt)
909{
910 struct maple_metadata *meta = ma_meta(mn, mt);
911
912 return meta->end;
913}
914
915/*
916 * ma_meta_gap() - Get the largest gap location of a node from the metadata
917 * @mn: The maple node
918 * @mt: The maple node type
919 */
920static inline unsigned char ma_meta_gap(struct maple_node *mn,
921 enum maple_type mt)
922{
923 BUG_ON(mt != maple_arange_64);
924
925 return mn->ma64.meta.gap;
926}
927
928/*
929 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
930 * @mn: The maple node
931 * @mn: The maple node type
932 * @offset: The location of the largest gap.
933 */
934static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
935 unsigned char offset)
936{
937
938 struct maple_metadata *meta = ma_meta(mn, mt);
939
940 meta->gap = offset;
941}
942
943/*
944 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
945 * @mat - the ma_topiary, a linked list of dead nodes.
946 * @dead_enode - the node to be marked as dead and added to the tail of the list
947 *
948 * Add the @dead_enode to the linked list in @mat.
949 */
950static inline void mat_add(struct ma_topiary *mat,
951 struct maple_enode *dead_enode)
952{
953 mte_set_node_dead(dead_enode);
954 mte_to_mat(dead_enode)->next = NULL;
955 if (!mat->tail) {
956 mat->tail = mat->head = dead_enode;
957 return;
958 }
959
960 mte_to_mat(mat->tail)->next = dead_enode;
961 mat->tail = dead_enode;
962}
963
964static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
965static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
966
967/*
968 * mas_mat_free() - Free all nodes in a dead list.
969 * @mas - the maple state
970 * @mat - the ma_topiary linked list of dead nodes to free.
971 *
972 * Free walk a dead list.
973 */
974static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
975{
976 struct maple_enode *next;
977
978 while (mat->head) {
979 next = mte_to_mat(mat->head)->next;
980 mas_free(mas, mat->head);
981 mat->head = next;
982 }
983}
984
985/*
986 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
987 * @mas - the maple state
988 * @mat - the ma_topiary linked list of dead nodes to free.
989 *
990 * Destroy walk a dead list.
991 */
992static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
993{
994 struct maple_enode *next;
995
996 while (mat->head) {
997 next = mte_to_mat(mat->head)->next;
998 mte_destroy_walk(mat->head, mat->mtree);
999 mat->head = next;
1000 }
1001}
1002/*
1003 * mas_descend() - Descend into the slot stored in the ma_state.
1004 * @mas - the maple state.
1005 *
1006 * Note: Not RCU safe, only use in write side or debug code.
1007 */
1008static inline void mas_descend(struct ma_state *mas)
1009{
1010 enum maple_type type;
1011 unsigned long *pivots;
1012 struct maple_node *node;
1013 void __rcu **slots;
1014
1015 node = mas_mn(mas);
1016 type = mte_node_type(mas->node);
1017 pivots = ma_pivots(node, type);
1018 slots = ma_slots(node, type);
1019
1020 if (mas->offset)
1021 mas->min = pivots[mas->offset - 1] + 1;
1022 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1023 mas->node = mas_slot(mas, slots, mas->offset);
1024}
1025
1026/*
1027 * mte_set_gap() - Set a maple node gap.
1028 * @mn: The encoded maple node
1029 * @gap: The offset of the gap to set
1030 * @val: The gap value
1031 */
1032static inline void mte_set_gap(const struct maple_enode *mn,
1033 unsigned char gap, unsigned long val)
1034{
1035 switch (mte_node_type(mn)) {
1036 default:
1037 break;
1038 case maple_arange_64:
1039 mte_to_node(mn)->ma64.gap[gap] = val;
1040 break;
1041 }
1042}
1043
1044/*
1045 * mas_ascend() - Walk up a level of the tree.
1046 * @mas: The maple state
1047 *
1048 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1049 * may cause several levels of walking up to find the correct min and max.
1050 * May find a dead node which will cause a premature return.
1051 * Return: 1 on dead node, 0 otherwise
1052 */
1053static int mas_ascend(struct ma_state *mas)
1054{
1055 struct maple_enode *p_enode; /* parent enode. */
1056 struct maple_enode *a_enode; /* ancestor enode. */
1057 struct maple_node *a_node; /* ancestor node. */
1058 struct maple_node *p_node; /* parent node. */
1059 unsigned char a_slot;
1060 enum maple_type a_type;
1061 unsigned long min, max;
1062 unsigned long *pivots;
1063 unsigned char offset;
1064 bool set_max = false, set_min = false;
1065
1066 a_node = mas_mn(mas);
1067 if (ma_is_root(a_node)) {
1068 mas->offset = 0;
1069 return 0;
1070 }
1071
1072 p_node = mte_parent(mas->node);
1073 if (unlikely(a_node == p_node))
1074 return 1;
1075 a_type = mas_parent_enum(mas, mas->node);
1076 offset = mte_parent_slot(mas->node);
1077 a_enode = mt_mk_node(p_node, a_type);
1078
1079 /* Check to make sure all parent information is still accurate */
1080 if (p_node != mte_parent(mas->node))
1081 return 1;
1082
1083 mas->node = a_enode;
1084 mas->offset = offset;
1085
1086 if (mte_is_root(a_enode)) {
1087 mas->max = ULONG_MAX;
1088 mas->min = 0;
1089 return 0;
1090 }
1091
1092 min = 0;
1093 max = ULONG_MAX;
1094 do {
1095 p_enode = a_enode;
1096 a_type = mas_parent_enum(mas, p_enode);
1097 a_node = mte_parent(p_enode);
1098 a_slot = mte_parent_slot(p_enode);
1099 pivots = ma_pivots(a_node, a_type);
1100 a_enode = mt_mk_node(a_node, a_type);
1101
1102 if (!set_min && a_slot) {
1103 set_min = true;
1104 min = pivots[a_slot - 1] + 1;
1105 }
1106
1107 if (!set_max && a_slot < mt_pivots[a_type]) {
1108 set_max = true;
1109 max = pivots[a_slot];
1110 }
1111
1112 if (unlikely(ma_dead_node(a_node)))
1113 return 1;
1114
1115 if (unlikely(ma_is_root(a_node)))
1116 break;
1117
1118 } while (!set_min || !set_max);
1119
1120 mas->max = max;
1121 mas->min = min;
1122 return 0;
1123}
1124
1125/*
1126 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1127 * @mas: The maple state
1128 *
1129 * Return: A pointer to a maple node.
1130 */
1131static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1132{
1133 struct maple_alloc *ret, *node = mas->alloc;
1134 unsigned long total = mas_allocated(mas);
541e06b7 1135 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1136
1137 /* nothing or a request pending. */
541e06b7 1138 if (WARN_ON(!total))
54a611b6
LH
1139 return NULL;
1140
1141 if (total == 1) {
1142 /* single allocation in this ma_state */
1143 mas->alloc = NULL;
1144 ret = node;
1145 goto single_node;
1146 }
1147
541e06b7 1148 if (node->node_count == 1) {
54a611b6
LH
1149 /* Single allocation in this node. */
1150 mas->alloc = node->slot[0];
54a611b6
LH
1151 mas->alloc->total = node->total - 1;
1152 ret = node;
1153 goto new_head;
1154 }
54a611b6 1155 node->total--;
541e06b7
LH
1156 ret = node->slot[--node->node_count];
1157 node->slot[node->node_count] = NULL;
54a611b6
LH
1158
1159single_node:
1160new_head:
541e06b7
LH
1161 if (req) {
1162 req++;
1163 mas_set_alloc_req(mas, req);
54a611b6 1164 }
541e06b7
LH
1165
1166 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1167 return (struct maple_node *)ret;
1168}
1169
1170/*
1171 * mas_push_node() - Push a node back on the maple state allocation.
1172 * @mas: The maple state
1173 * @used: The used maple node
1174 *
1175 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1176 * requested node count as necessary.
1177 */
1178static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1179{
1180 struct maple_alloc *reuse = (struct maple_alloc *)used;
1181 struct maple_alloc *head = mas->alloc;
1182 unsigned long count;
1183 unsigned int requested = mas_alloc_req(mas);
1184
54a611b6
LH
1185 count = mas_allocated(mas);
1186
541e06b7
LH
1187 reuse->request_count = 0;
1188 reuse->node_count = 0;
1189 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1190 head->slot[head->node_count++] = reuse;
54a611b6
LH
1191 head->total++;
1192 goto done;
1193 }
1194
1195 reuse->total = 1;
1196 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1197 reuse->slot[0] = head;
541e06b7 1198 reuse->node_count = 1;
54a611b6
LH
1199 reuse->total += head->total;
1200 }
1201
1202 mas->alloc = reuse;
1203done:
1204 if (requested > 1)
1205 mas_set_alloc_req(mas, requested - 1);
1206}
1207
1208/*
1209 * mas_alloc_nodes() - Allocate nodes into a maple state
1210 * @mas: The maple state
1211 * @gfp: The GFP Flags
1212 */
1213static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1214{
1215 struct maple_alloc *node;
54a611b6 1216 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1217 unsigned int requested = mas_alloc_req(mas);
1218 unsigned int count;
1219 void **slots = NULL;
1220 unsigned int max_req = 0;
1221
1222 if (!requested)
1223 return;
1224
1225 mas_set_alloc_req(mas, 0);
1226 if (mas->mas_flags & MA_STATE_PREALLOC) {
1227 if (allocated)
1228 return;
1229 WARN_ON(!allocated);
1230 }
1231
541e06b7 1232 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1233 node = (struct maple_alloc *)mt_alloc_one(gfp);
1234 if (!node)
1235 goto nomem_one;
1236
541e06b7 1237 if (allocated) {
54a611b6 1238 node->slot[0] = mas->alloc;
541e06b7
LH
1239 node->node_count = 1;
1240 } else {
1241 node->node_count = 0;
1242 }
54a611b6 1243
54a611b6 1244 mas->alloc = node;
541e06b7 1245 node->total = ++allocated;
54a611b6
LH
1246 requested--;
1247 }
1248
1249 node = mas->alloc;
541e06b7 1250 node->request_count = 0;
54a611b6
LH
1251 while (requested) {
1252 max_req = MAPLE_ALLOC_SLOTS;
541e06b7
LH
1253 if (node->node_count) {
1254 unsigned int offset = node->node_count;
54a611b6
LH
1255
1256 slots = (void **)&node->slot[offset];
1257 max_req -= offset;
1258 } else {
1259 slots = (void **)&node->slot;
1260 }
1261
1262 max_req = min(requested, max_req);
1263 count = mt_alloc_bulk(gfp, max_req, slots);
1264 if (!count)
1265 goto nomem_bulk;
1266
1267 node->node_count += count;
541e06b7 1268 allocated += count;
c61b3a2b 1269 node = node->slot[0];
541e06b7
LH
1270 node->node_count = 0;
1271 node->request_count = 0;
54a611b6
LH
1272 requested -= count;
1273 }
541e06b7 1274 mas->alloc->total = allocated;
54a611b6
LH
1275 return;
1276
1277nomem_bulk:
1278 /* Clean up potential freed allocations on bulk failure */
1279 memset(slots, 0, max_req * sizeof(unsigned long));
1280nomem_one:
1281 mas_set_alloc_req(mas, requested);
1282 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1283 mas->alloc->total = allocated;
54a611b6 1284 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1285}
1286
1287/*
1288 * mas_free() - Free an encoded maple node
1289 * @mas: The maple state
1290 * @used: The encoded maple node to free.
1291 *
1292 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1293 * otherwise.
1294 */
1295static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1296{
1297 struct maple_node *tmp = mte_to_node(used);
1298
1299 if (mt_in_rcu(mas->tree))
1300 ma_free_rcu(tmp);
1301 else
1302 mas_push_node(mas, tmp);
1303}
1304
1305/*
1306 * mas_node_count() - Check if enough nodes are allocated and request more if
1307 * there is not enough nodes.
1308 * @mas: The maple state
1309 * @count: The number of nodes needed
1310 * @gfp: the gfp flags
1311 */
1312static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1313{
1314 unsigned long allocated = mas_allocated(mas);
1315
1316 if (allocated < count) {
1317 mas_set_alloc_req(mas, count - allocated);
1318 mas_alloc_nodes(mas, gfp);
1319 }
1320}
1321
1322/*
1323 * mas_node_count() - Check if enough nodes are allocated and request more if
1324 * there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1327 *
1328 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1329 */
1330static void mas_node_count(struct ma_state *mas, int count)
1331{
1332 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1333}
1334
1335/*
1336 * mas_start() - Sets up maple state for operations.
1337 * @mas: The maple state.
1338 *
46b34584 1339 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1340 * defaults.
1341 *
1342 * Return:
1343 * - If mas->node is an error or not MAS_START, return NULL.
1344 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1345 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1346 * - If it's a tree: NULL & mas->node == safe root node.
1347 */
1348static inline struct maple_enode *mas_start(struct ma_state *mas)
1349{
1350 if (likely(mas_is_start(mas))) {
1351 struct maple_enode *root;
1352
54a611b6
LH
1353 mas->min = 0;
1354 mas->max = ULONG_MAX;
1355 mas->depth = 0;
54a611b6
LH
1356
1357 root = mas_root(mas);
1358 /* Tree with nodes */
1359 if (likely(xa_is_node(root))) {
9bbba563 1360 mas->depth = 1;
54a611b6 1361 mas->node = mte_safe_root(root);
46b34584 1362 mas->offset = 0;
54a611b6
LH
1363 return NULL;
1364 }
1365
1366 /* empty tree */
1367 if (unlikely(!root)) {
46b34584 1368 mas->node = MAS_NONE;
54a611b6
LH
1369 mas->offset = MAPLE_NODE_SLOTS;
1370 return NULL;
1371 }
1372
1373 /* Single entry tree */
1374 mas->node = MAS_ROOT;
1375 mas->offset = MAPLE_NODE_SLOTS;
1376
1377 /* Single entry tree. */
1378 if (mas->index > 0)
1379 return NULL;
1380
1381 return root;
1382 }
1383
1384 return NULL;
1385}
1386
1387/*
1388 * ma_data_end() - Find the end of the data in a node.
1389 * @node: The maple node
1390 * @type: The maple node type
1391 * @pivots: The array of pivots in the node
1392 * @max: The maximum value in the node
1393 *
1394 * Uses metadata to find the end of the data when possible.
1395 * Return: The zero indexed last slot with data (may be null).
1396 */
1397static inline unsigned char ma_data_end(struct maple_node *node,
1398 enum maple_type type,
1399 unsigned long *pivots,
1400 unsigned long max)
1401{
1402 unsigned char offset;
1403
1404 if (type == maple_arange_64)
1405 return ma_meta_end(node, type);
1406
1407 offset = mt_pivots[type] - 1;
1408 if (likely(!pivots[offset]))
1409 return ma_meta_end(node, type);
1410
1411 if (likely(pivots[offset] == max))
1412 return offset;
1413
1414 return mt_pivots[type];
1415}
1416
1417/*
1418 * mas_data_end() - Find the end of the data (slot).
1419 * @mas: the maple state
1420 *
1421 * This method is optimized to check the metadata of a node if the node type
1422 * supports data end metadata.
1423 *
1424 * Return: The zero indexed last slot with data (may be null).
1425 */
1426static inline unsigned char mas_data_end(struct ma_state *mas)
1427{
1428 enum maple_type type;
1429 struct maple_node *node;
1430 unsigned char offset;
1431 unsigned long *pivots;
1432
1433 type = mte_node_type(mas->node);
1434 node = mas_mn(mas);
1435 if (type == maple_arange_64)
1436 return ma_meta_end(node, type);
1437
1438 pivots = ma_pivots(node, type);
1439 offset = mt_pivots[type] - 1;
1440 if (likely(!pivots[offset]))
1441 return ma_meta_end(node, type);
1442
1443 if (likely(pivots[offset] == mas->max))
1444 return offset;
1445
1446 return mt_pivots[type];
1447}
1448
1449/*
1450 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1451 * @mas - the maple state
1452 *
1453 * Return: The maximum gap in the leaf.
1454 */
1455static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1456{
1457 enum maple_type mt;
1458 unsigned long pstart, gap, max_gap;
1459 struct maple_node *mn;
1460 unsigned long *pivots;
1461 void __rcu **slots;
1462 unsigned char i;
1463 unsigned char max_piv;
1464
1465 mt = mte_node_type(mas->node);
1466 mn = mas_mn(mas);
1467 slots = ma_slots(mn, mt);
1468 max_gap = 0;
1469 if (unlikely(ma_is_dense(mt))) {
1470 gap = 0;
1471 for (i = 0; i < mt_slots[mt]; i++) {
1472 if (slots[i]) {
1473 if (gap > max_gap)
1474 max_gap = gap;
1475 gap = 0;
1476 } else {
1477 gap++;
1478 }
1479 }
1480 if (gap > max_gap)
1481 max_gap = gap;
1482 return max_gap;
1483 }
1484
1485 /*
1486 * Check the first implied pivot optimizes the loop below and slot 1 may
1487 * be skipped if there is a gap in slot 0.
1488 */
1489 pivots = ma_pivots(mn, mt);
1490 if (likely(!slots[0])) {
1491 max_gap = pivots[0] - mas->min + 1;
1492 i = 2;
1493 } else {
1494 i = 1;
1495 }
1496
1497 /* reduce max_piv as the special case is checked before the loop */
1498 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1499 /*
1500 * Check end implied pivot which can only be a gap on the right most
1501 * node.
1502 */
1503 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1504 gap = ULONG_MAX - pivots[max_piv];
1505 if (gap > max_gap)
1506 max_gap = gap;
1507 }
1508
1509 for (; i <= max_piv; i++) {
1510 /* data == no gap. */
1511 if (likely(slots[i]))
1512 continue;
1513
1514 pstart = pivots[i - 1];
1515 gap = pivots[i] - pstart;
1516 if (gap > max_gap)
1517 max_gap = gap;
1518
1519 /* There cannot be two gaps in a row. */
1520 i++;
1521 }
1522 return max_gap;
1523}
1524
1525/*
1526 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1527 * @node: The maple node
1528 * @gaps: The pointer to the gaps
1529 * @mt: The maple node type
1530 * @*off: Pointer to store the offset location of the gap.
1531 *
1532 * Uses the metadata data end to scan backwards across set gaps.
1533 *
1534 * Return: The maximum gap value
1535 */
1536static inline unsigned long
1537ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1538 unsigned char *off)
1539{
1540 unsigned char offset, i;
1541 unsigned long max_gap = 0;
1542
1543 i = offset = ma_meta_end(node, mt);
1544 do {
1545 if (gaps[i] > max_gap) {
1546 max_gap = gaps[i];
1547 offset = i;
1548 }
1549 } while (i--);
1550
1551 *off = offset;
1552 return max_gap;
1553}
1554
1555/*
1556 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1557 * @mas: The maple state.
1558 *
1559 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1560 *
1561 * Return: The gap value.
1562 */
1563static inline unsigned long mas_max_gap(struct ma_state *mas)
1564{
1565 unsigned long *gaps;
1566 unsigned char offset;
1567 enum maple_type mt;
1568 struct maple_node *node;
1569
1570 mt = mte_node_type(mas->node);
1571 if (ma_is_leaf(mt))
1572 return mas_leaf_max_gap(mas);
1573
1574 node = mas_mn(mas);
1575 offset = ma_meta_gap(node, mt);
1576 if (offset == MAPLE_ARANGE64_META_MAX)
1577 return 0;
1578
1579 gaps = ma_gaps(node, mt);
1580 return gaps[offset];
1581}
1582
1583/*
1584 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1585 * @mas: The maple state
1586 * @offset: The gap offset in the parent to set
1587 * @new: The new gap value.
1588 *
1589 * Set the parent gap then continue to set the gap upwards, using the metadata
1590 * of the parent to see if it is necessary to check the node above.
1591 */
1592static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1593 unsigned long new)
1594{
1595 unsigned long meta_gap = 0;
1596 struct maple_node *pnode;
1597 struct maple_enode *penode;
1598 unsigned long *pgaps;
1599 unsigned char meta_offset;
1600 enum maple_type pmt;
1601
1602 pnode = mte_parent(mas->node);
1603 pmt = mas_parent_enum(mas, mas->node);
1604 penode = mt_mk_node(pnode, pmt);
1605 pgaps = ma_gaps(pnode, pmt);
1606
1607ascend:
1608 meta_offset = ma_meta_gap(pnode, pmt);
1609 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1610 meta_gap = 0;
1611 else
1612 meta_gap = pgaps[meta_offset];
1613
1614 pgaps[offset] = new;
1615
1616 if (meta_gap == new)
1617 return;
1618
1619 if (offset != meta_offset) {
1620 if (meta_gap > new)
1621 return;
1622
1623 ma_set_meta_gap(pnode, pmt, offset);
1624 } else if (new < meta_gap) {
1625 meta_offset = 15;
1626 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1627 ma_set_meta_gap(pnode, pmt, meta_offset);
1628 }
1629
1630 if (ma_is_root(pnode))
1631 return;
1632
1633 /* Go to the parent node. */
1634 pnode = mte_parent(penode);
1635 pmt = mas_parent_enum(mas, penode);
1636 pgaps = ma_gaps(pnode, pmt);
1637 offset = mte_parent_slot(penode);
1638 penode = mt_mk_node(pnode, pmt);
1639 goto ascend;
1640}
1641
1642/*
1643 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1644 * @mas - the maple state.
1645 */
1646static inline void mas_update_gap(struct ma_state *mas)
1647{
1648 unsigned char pslot;
1649 unsigned long p_gap;
1650 unsigned long max_gap;
1651
1652 if (!mt_is_alloc(mas->tree))
1653 return;
1654
1655 if (mte_is_root(mas->node))
1656 return;
1657
1658 max_gap = mas_max_gap(mas);
1659
1660 pslot = mte_parent_slot(mas->node);
1661 p_gap = ma_gaps(mte_parent(mas->node),
1662 mas_parent_enum(mas, mas->node))[pslot];
1663
1664 if (p_gap != max_gap)
1665 mas_parent_gap(mas, pslot, max_gap);
1666}
1667
1668/*
1669 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1670 * @parent with the slot encoded.
1671 * @mas - the maple state (for the tree)
1672 * @parent - the maple encoded node containing the children.
1673 */
1674static inline void mas_adopt_children(struct ma_state *mas,
1675 struct maple_enode *parent)
1676{
1677 enum maple_type type = mte_node_type(parent);
1678 struct maple_node *node = mas_mn(mas);
1679 void __rcu **slots = ma_slots(node, type);
1680 unsigned long *pivots = ma_pivots(node, type);
1681 struct maple_enode *child;
1682 unsigned char offset;
1683
1684 offset = ma_data_end(node, type, pivots, mas->max);
1685 do {
1686 child = mas_slot_locked(mas, slots, offset);
1687 mte_set_parent(child, parent, offset);
1688 } while (offset--);
1689}
1690
1691/*
1692 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1693 * parent encoding to locate the maple node in the tree.
1694 * @mas - the ma_state to use for operations.
1695 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1696 * leave the node (true) and handle the adoption and free elsewhere.
1697 */
1698static inline void mas_replace(struct ma_state *mas, bool advanced)
1699 __must_hold(mas->tree->lock)
1700{
1701 struct maple_node *mn = mas_mn(mas);
1702 struct maple_enode *old_enode;
1703 unsigned char offset = 0;
1704 void __rcu **slots = NULL;
1705
1706 if (ma_is_root(mn)) {
1707 old_enode = mas_root_locked(mas);
1708 } else {
1709 offset = mte_parent_slot(mas->node);
1710 slots = ma_slots(mte_parent(mas->node),
1711 mas_parent_enum(mas, mas->node));
1712 old_enode = mas_slot_locked(mas, slots, offset);
1713 }
1714
1715 if (!advanced && !mte_is_leaf(mas->node))
1716 mas_adopt_children(mas, mas->node);
1717
1718 if (mte_is_root(mas->node)) {
1719 mn->parent = ma_parent_ptr(
1720 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1721 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1722 mas_set_height(mas);
1723 } else {
1724 rcu_assign_pointer(slots[offset], mas->node);
1725 }
1726
1727 if (!advanced)
1728 mas_free(mas, old_enode);
1729}
1730
1731/*
1732 * mas_new_child() - Find the new child of a node.
1733 * @mas: the maple state
1734 * @child: the maple state to store the child.
1735 */
1736static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1737 __must_hold(mas->tree->lock)
1738{
1739 enum maple_type mt;
1740 unsigned char offset;
1741 unsigned char end;
1742 unsigned long *pivots;
1743 struct maple_enode *entry;
1744 struct maple_node *node;
1745 void __rcu **slots;
1746
1747 mt = mte_node_type(mas->node);
1748 node = mas_mn(mas);
1749 slots = ma_slots(node, mt);
1750 pivots = ma_pivots(node, mt);
1751 end = ma_data_end(node, mt, pivots, mas->max);
1752 for (offset = mas->offset; offset <= end; offset++) {
1753 entry = mas_slot_locked(mas, slots, offset);
1754 if (mte_parent(entry) == node) {
1755 *child = *mas;
1756 mas->offset = offset + 1;
1757 child->offset = offset;
1758 mas_descend(child);
1759 child->offset = 0;
1760 return true;
1761 }
1762 }
1763 return false;
1764}
1765
1766/*
1767 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1768 * old data or set b_node->b_end.
1769 * @b_node: the maple_big_node
1770 * @shift: the shift count
1771 */
1772static inline void mab_shift_right(struct maple_big_node *b_node,
1773 unsigned char shift)
1774{
1775 unsigned long size = b_node->b_end * sizeof(unsigned long);
1776
1777 memmove(b_node->pivot + shift, b_node->pivot, size);
1778 memmove(b_node->slot + shift, b_node->slot, size);
1779 if (b_node->type == maple_arange_64)
1780 memmove(b_node->gap + shift, b_node->gap, size);
1781}
1782
1783/*
1784 * mab_middle_node() - Check if a middle node is needed (unlikely)
1785 * @b_node: the maple_big_node that contains the data.
1786 * @size: the amount of data in the b_node
1787 * @split: the potential split location
1788 * @slot_count: the size that can be stored in a single node being considered.
1789 *
1790 * Return: true if a middle node is required.
1791 */
1792static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1793 unsigned char slot_count)
1794{
1795 unsigned char size = b_node->b_end;
1796
1797 if (size >= 2 * slot_count)
1798 return true;
1799
1800 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1801 return true;
1802
1803 return false;
1804}
1805
1806/*
1807 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1808 * @b_node: the maple_big_node with the data
1809 * @split: the suggested split location
1810 * @slot_count: the number of slots in the node being considered.
1811 *
1812 * Return: the split location.
1813 */
1814static inline int mab_no_null_split(struct maple_big_node *b_node,
1815 unsigned char split, unsigned char slot_count)
1816{
1817 if (!b_node->slot[split]) {
1818 /*
1819 * If the split is less than the max slot && the right side will
1820 * still be sufficient, then increment the split on NULL.
1821 */
1822 if ((split < slot_count - 1) &&
1823 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1824 split++;
1825 else
1826 split--;
1827 }
1828 return split;
1829}
1830
1831/*
1832 * mab_calc_split() - Calculate the split location and if there needs to be two
1833 * splits.
1834 * @bn: The maple_big_node with the data
1835 * @mid_split: The second split, if required. 0 otherwise.
1836 *
1837 * Return: The first split location. The middle split is set in @mid_split.
1838 */
1839static inline int mab_calc_split(struct ma_state *mas,
1840 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1841{
1842 unsigned char b_end = bn->b_end;
1843 int split = b_end / 2; /* Assume equal split. */
1844 unsigned char slot_min, slot_count = mt_slots[bn->type];
1845
1846 /*
1847 * To support gap tracking, all NULL entries are kept together and a node cannot
1848 * end on a NULL entry, with the exception of the left-most leaf. The
1849 * limitation means that the split of a node must be checked for this condition
1850 * and be able to put more data in one direction or the other.
1851 */
1852 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1853 *mid_split = 0;
1854 split = b_end - mt_min_slots[bn->type];
1855
1856 if (!ma_is_leaf(bn->type))
1857 return split;
1858
1859 mas->mas_flags |= MA_STATE_REBALANCE;
1860 if (!bn->slot[split])
1861 split--;
1862 return split;
1863 }
1864
1865 /*
1866 * Although extremely rare, it is possible to enter what is known as the 3-way
1867 * split scenario. The 3-way split comes about by means of a store of a range
1868 * that overwrites the end and beginning of two full nodes. The result is a set
1869 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1870 * also be located in different parent nodes which are also full. This can
1871 * carry upwards all the way to the root in the worst case.
1872 */
1873 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1874 split = b_end / 3;
1875 *mid_split = split * 2;
1876 } else {
1877 slot_min = mt_min_slots[bn->type];
1878
1879 *mid_split = 0;
1880 /*
1881 * Avoid having a range less than the slot count unless it
1882 * causes one node to be deficient.
1883 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1884 */
1885 while (((bn->pivot[split] - min) < slot_count - 1) &&
1886 (split < slot_count - 1) && (b_end - split > slot_min))
1887 split++;
1888 }
1889
1890 /* Avoid ending a node on a NULL entry */
1891 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1892
e11cb683
VY
1893 if (unlikely(*mid_split))
1894 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1895
1896 return split;
1897}
1898
1899/*
1900 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1901 * and set @b_node->b_end to the next free slot.
1902 * @mas: The maple state
1903 * @mas_start: The starting slot to copy
1904 * @mas_end: The end slot to copy (inclusively)
1905 * @b_node: The maple_big_node to place the data
1906 * @mab_start: The starting location in maple_big_node to store the data.
1907 */
1908static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1909 unsigned char mas_end, struct maple_big_node *b_node,
1910 unsigned char mab_start)
1911{
1912 enum maple_type mt;
1913 struct maple_node *node;
1914 void __rcu **slots;
1915 unsigned long *pivots, *gaps;
1916 int i = mas_start, j = mab_start;
1917 unsigned char piv_end;
1918
1919 node = mas_mn(mas);
1920 mt = mte_node_type(mas->node);
1921 pivots = ma_pivots(node, mt);
1922 if (!i) {
1923 b_node->pivot[j] = pivots[i++];
1924 if (unlikely(i > mas_end))
1925 goto complete;
1926 j++;
1927 }
1928
1929 piv_end = min(mas_end, mt_pivots[mt]);
1930 for (; i < piv_end; i++, j++) {
1931 b_node->pivot[j] = pivots[i];
1932 if (unlikely(!b_node->pivot[j]))
1933 break;
1934
1935 if (unlikely(mas->max == b_node->pivot[j]))
1936 goto complete;
1937 }
1938
1939 if (likely(i <= mas_end))
1940 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1941
1942complete:
1943 b_node->b_end = ++j;
1944 j -= mab_start;
1945 slots = ma_slots(node, mt);
1946 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1947 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1948 gaps = ma_gaps(node, mt);
1949 memcpy(b_node->gap + mab_start, gaps + mas_start,
1950 sizeof(unsigned long) * j);
1951 }
1952}
1953
1954/*
1955 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1956 * @mas: The maple state
1957 * @node: The maple node
1958 * @pivots: pointer to the maple node pivots
1959 * @mt: The maple type
1960 * @end: The assumed end
1961 *
1962 * Note, end may be incremented within this function but not modified at the
1963 * source. This is fine since the metadata is the last thing to be stored in a
1964 * node during a write.
1965 */
1966static inline void mas_leaf_set_meta(struct ma_state *mas,
1967 struct maple_node *node, unsigned long *pivots,
1968 enum maple_type mt, unsigned char end)
1969{
1970 /* There is no room for metadata already */
1971 if (mt_pivots[mt] <= end)
1972 return;
1973
1974 if (pivots[end] && pivots[end] < mas->max)
1975 end++;
1976
1977 if (end < mt_slots[mt] - 1)
1978 ma_set_meta(node, mt, 0, end);
1979}
1980
1981/*
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1987 */
1988static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 unsigned char mab_start, unsigned char mab_end,
1990 struct ma_state *mas, bool new_max)
1991{
1992 int i, j = 0;
1993 enum maple_type mt = mte_node_type(mas->node);
1994 struct maple_node *node = mte_to_node(mas->node);
1995 void __rcu **slots = ma_slots(node, mt);
1996 unsigned long *pivots = ma_pivots(node, mt);
1997 unsigned long *gaps = NULL;
1998 unsigned char end;
1999
2000 if (mab_end - mab_start > mt_pivots[mt])
2001 mab_end--;
2002
2003 if (!pivots[mt_pivots[mt] - 1])
2004 slots[mt_pivots[mt]] = NULL;
2005
2006 i = mab_start;
2007 do {
2008 pivots[j++] = b_node->pivot[i++];
2009 } while (i <= mab_end && likely(b_node->pivot[i]));
2010
2011 memcpy(slots, b_node->slot + mab_start,
2012 sizeof(void *) * (i - mab_start));
2013
2014 if (new_max)
2015 mas->max = b_node->pivot[i - 1];
2016
2017 end = j - 1;
2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 unsigned long max_gap = 0;
2020 unsigned char offset = 15;
2021
2022 gaps = ma_gaps(node, mt);
2023 do {
2024 gaps[--j] = b_node->gap[--i];
2025 if (gaps[j] > max_gap) {
2026 offset = j;
2027 max_gap = gaps[j];
2028 }
2029 } while (j);
2030
2031 ma_set_meta(node, mt, offset, end);
2032 } else {
2033 mas_leaf_set_meta(mas, node, pivots, mt, end);
2034 }
2035}
2036
2037/*
2038 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2039 * @mas: the maple state with the maple encoded node of the sub-tree.
2040 *
2041 * Descend through a sub-tree and adopt children who do not have the correct
2042 * parents set. Follow the parents which have the correct parents as they are
2043 * the new entries which need to be followed to find other incorrectly set
2044 * parents.
2045 */
2046static inline void mas_descend_adopt(struct ma_state *mas)
2047{
2048 struct ma_state list[3], next[3];
2049 int i, n;
2050
2051 /*
2052 * At each level there may be up to 3 correct parent pointers which indicates
2053 * the new nodes which need to be walked to find any new nodes at a lower level.
2054 */
2055
2056 for (i = 0; i < 3; i++) {
2057 list[i] = *mas;
2058 list[i].offset = 0;
2059 next[i].offset = 0;
2060 }
2061 next[0] = *mas;
2062
2063 while (!mte_is_leaf(list[0].node)) {
2064 n = 0;
2065 for (i = 0; i < 3; i++) {
2066 if (mas_is_none(&list[i]))
2067 continue;
2068
2069 if (i && list[i-1].node == list[i].node)
2070 continue;
2071
2072 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2073 n++;
2074
2075 mas_adopt_children(&list[i], list[i].node);
2076 }
2077
2078 while (n < 3)
2079 next[n++].node = MAS_NONE;
2080
2081 /* descend by setting the list to the children */
2082 for (i = 0; i < 3; i++)
2083 list[i] = next[i];
2084 }
2085}
2086
2087/*
2088 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2089 * @mas: The maple state
2090 * @end: The maple node end
2091 * @mt: The maple node type
2092 */
2093static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2094 enum maple_type mt)
2095{
2096 if (!(mas->mas_flags & MA_STATE_BULK))
2097 return;
2098
2099 if (mte_is_root(mas->node))
2100 return;
2101
2102 if (end > mt_min_slots[mt]) {
2103 mas->mas_flags &= ~MA_STATE_REBALANCE;
2104 return;
2105 }
2106}
2107
2108/*
2109 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2110 * data from a maple encoded node.
2111 * @wr_mas: the maple write state
2112 * @b_node: the maple_big_node to fill with data
2113 * @offset_end: the offset to end copying
2114 *
2115 * Return: The actual end of the data stored in @b_node
2116 */
44081c77 2117static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2118 struct maple_big_node *b_node, unsigned char offset_end)
2119{
2120 unsigned char slot;
2121 unsigned char b_end;
2122 /* Possible underflow of piv will wrap back to 0 before use. */
2123 unsigned long piv;
2124 struct ma_state *mas = wr_mas->mas;
2125
2126 b_node->type = wr_mas->type;
2127 b_end = 0;
2128 slot = mas->offset;
2129 if (slot) {
2130 /* Copy start data up to insert. */
2131 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2132 b_end = b_node->b_end;
2133 piv = b_node->pivot[b_end - 1];
2134 } else
2135 piv = mas->min - 1;
2136
2137 if (piv + 1 < mas->index) {
2138 /* Handle range starting after old range */
2139 b_node->slot[b_end] = wr_mas->content;
2140 if (!wr_mas->content)
2141 b_node->gap[b_end] = mas->index - 1 - piv;
2142 b_node->pivot[b_end++] = mas->index - 1;
2143 }
2144
2145 /* Store the new entry. */
2146 mas->offset = b_end;
2147 b_node->slot[b_end] = wr_mas->entry;
2148 b_node->pivot[b_end] = mas->last;
2149
2150 /* Appended. */
2151 if (mas->last >= mas->max)
2152 goto b_end;
2153
2154 /* Handle new range ending before old range ends */
2155 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2156 if (piv > mas->last) {
2157 if (piv == ULONG_MAX)
2158 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2159
2160 if (offset_end != slot)
2161 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2162 offset_end);
2163
2164 b_node->slot[++b_end] = wr_mas->content;
2165 if (!wr_mas->content)
2166 b_node->gap[b_end] = piv - mas->last + 1;
2167 b_node->pivot[b_end] = piv;
2168 }
2169
2170 slot = offset_end + 1;
2171 if (slot > wr_mas->node_end)
2172 goto b_end;
2173
2174 /* Copy end data to the end of the node. */
2175 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2176 b_node->b_end--;
2177 return;
2178
2179b_end:
2180 b_node->b_end = b_end;
2181}
2182
2183/*
2184 * mas_prev_sibling() - Find the previous node with the same parent.
2185 * @mas: the maple state
2186 *
2187 * Return: True if there is a previous sibling, false otherwise.
2188 */
2189static inline bool mas_prev_sibling(struct ma_state *mas)
2190{
2191 unsigned int p_slot = mte_parent_slot(mas->node);
2192
2193 if (mte_is_root(mas->node))
2194 return false;
2195
2196 if (!p_slot)
2197 return false;
2198
2199 mas_ascend(mas);
2200 mas->offset = p_slot - 1;
2201 mas_descend(mas);
2202 return true;
2203}
2204
2205/*
2206 * mas_next_sibling() - Find the next node with the same parent.
2207 * @mas: the maple state
2208 *
2209 * Return: true if there is a next sibling, false otherwise.
2210 */
2211static inline bool mas_next_sibling(struct ma_state *mas)
2212{
2213 MA_STATE(parent, mas->tree, mas->index, mas->last);
2214
2215 if (mte_is_root(mas->node))
2216 return false;
2217
2218 parent = *mas;
2219 mas_ascend(&parent);
2220 parent.offset = mte_parent_slot(mas->node) + 1;
2221 if (parent.offset > mas_data_end(&parent))
2222 return false;
2223
2224 *mas = parent;
2225 mas_descend(mas);
2226 return true;
2227}
2228
2229/*
2230 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2231 * @enode: The encoded maple node.
2232 *
2233 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2234 *
2235 * Return: @enode or MAS_NONE
2236 */
2237static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2238{
2239 if (enode)
2240 return enode;
2241
2242 return ma_enode_ptr(MAS_NONE);
2243}
2244
2245/*
2246 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2247 * @wr_mas: The maple write state
2248 *
2249 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2250 */
2251static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2252{
2253 struct ma_state *mas = wr_mas->mas;
2254 unsigned char count;
2255 unsigned char offset;
2256 unsigned long index, min, max;
2257
2258 if (unlikely(ma_is_dense(wr_mas->type))) {
2259 wr_mas->r_max = wr_mas->r_min = mas->index;
2260 mas->offset = mas->index = mas->min;
2261 return;
2262 }
2263
2264 wr_mas->node = mas_mn(wr_mas->mas);
2265 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2266 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2267 wr_mas->pivots, mas->max);
2268 offset = mas->offset;
2269 min = mas_safe_min(mas, wr_mas->pivots, offset);
2270 if (unlikely(offset == count))
2271 goto max;
2272
2273 max = wr_mas->pivots[offset];
2274 index = mas->index;
2275 if (unlikely(index <= max))
2276 goto done;
2277
2278 if (unlikely(!max && offset))
2279 goto max;
2280
2281 min = max + 1;
2282 while (++offset < count) {
2283 max = wr_mas->pivots[offset];
2284 if (index <= max)
2285 goto done;
2286 else if (unlikely(!max))
2287 break;
2288
2289 min = max + 1;
2290 }
2291
2292max:
2293 max = mas->max;
2294done:
2295 wr_mas->r_max = max;
2296 wr_mas->r_min = min;
2297 wr_mas->offset_end = mas->offset = offset;
2298}
2299
2300/*
2301 * mas_topiary_range() - Add a range of slots to the topiary.
2302 * @mas: The maple state
2303 * @destroy: The topiary to add the slots (usually destroy)
2304 * @start: The starting slot inclusively
2305 * @end: The end slot inclusively
2306 */
2307static inline void mas_topiary_range(struct ma_state *mas,
2308 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2309{
2310 void __rcu **slots;
2311 unsigned char offset;
2312
2313 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2314 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2315 for (offset = start; offset <= end; offset++) {
2316 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2317
2318 if (mte_dead_node(enode))
2319 continue;
2320
2321 mat_add(destroy, enode);
2322 }
2323}
2324
2325/*
2326 * mast_topiary() - Add the portions of the tree to the removal list; either to
2327 * be freed or discarded (destroy walk).
2328 * @mast: The maple_subtree_state.
2329 */
2330static inline void mast_topiary(struct maple_subtree_state *mast)
2331{
2332 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2333 unsigned char r_start, r_end;
2334 unsigned char l_start, l_end;
2335 void __rcu **l_slots, **r_slots;
2336
2337 wr_mas.type = mte_node_type(mast->orig_l->node);
2338 mast->orig_l->index = mast->orig_l->last;
2339 mas_wr_node_walk(&wr_mas);
2340 l_start = mast->orig_l->offset + 1;
2341 l_end = mas_data_end(mast->orig_l);
2342 r_start = 0;
2343 r_end = mast->orig_r->offset;
2344
2345 if (r_end)
2346 r_end--;
2347
2348 l_slots = ma_slots(mas_mn(mast->orig_l),
2349 mte_node_type(mast->orig_l->node));
2350
2351 r_slots = ma_slots(mas_mn(mast->orig_r),
2352 mte_node_type(mast->orig_r->node));
2353
2354 if ((l_start < l_end) &&
2355 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2356 l_start++;
2357 }
2358
2359 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2360 if (r_end)
2361 r_end--;
2362 }
2363
2364 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2365 return;
2366
2367 /* At the node where left and right sides meet, add the parts between */
2368 if (mast->orig_l->node == mast->orig_r->node) {
2369 return mas_topiary_range(mast->orig_l, mast->destroy,
2370 l_start, r_end);
2371 }
2372
2373 /* mast->orig_r is different and consumed. */
2374 if (mte_is_leaf(mast->orig_r->node))
2375 return;
2376
2377 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2378 l_end--;
2379
2380
2381 if (l_start <= l_end)
2382 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2383
2384 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2385 r_start++;
2386
2387 if (r_start <= r_end)
2388 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2389}
2390
2391/*
2392 * mast_rebalance_next() - Rebalance against the next node
2393 * @mast: The maple subtree state
2394 * @old_r: The encoded maple node to the right (next node).
2395 */
2396static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2397{
2398 unsigned char b_end = mast->bn->b_end;
2399
2400 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2401 mast->bn, b_end);
2402 mast->orig_r->last = mast->orig_r->max;
2403}
2404
2405/*
2406 * mast_rebalance_prev() - Rebalance against the previous node
2407 * @mast: The maple subtree state
2408 * @old_l: The encoded maple node to the left (previous node)
2409 */
2410static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2411{
2412 unsigned char end = mas_data_end(mast->orig_l) + 1;
2413 unsigned char b_end = mast->bn->b_end;
2414
2415 mab_shift_right(mast->bn, end);
2416 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2417 mast->l->min = mast->orig_l->min;
2418 mast->orig_l->index = mast->orig_l->min;
2419 mast->bn->b_end = end + b_end;
2420 mast->l->offset += end;
2421}
2422
2423/*
2424 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2425 * the node to the right. Checking the nodes to the right then the left at each
2426 * level upwards until root is reached. Free and destroy as needed.
2427 * Data is copied into the @mast->bn.
2428 * @mast: The maple_subtree_state.
2429 */
2430static inline
2431bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2432{
2433 struct ma_state r_tmp = *mast->orig_r;
2434 struct ma_state l_tmp = *mast->orig_l;
2435 struct maple_enode *ancestor = NULL;
2436 unsigned char start, end;
2437 unsigned char depth = 0;
2438
2439 r_tmp = *mast->orig_r;
2440 l_tmp = *mast->orig_l;
2441 do {
2442 mas_ascend(mast->orig_r);
2443 mas_ascend(mast->orig_l);
2444 depth++;
2445 if (!ancestor &&
2446 (mast->orig_r->node == mast->orig_l->node)) {
2447 ancestor = mast->orig_r->node;
2448 end = mast->orig_r->offset - 1;
2449 start = mast->orig_l->offset + 1;
2450 }
2451
2452 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2453 if (!ancestor) {
2454 ancestor = mast->orig_r->node;
2455 start = 0;
2456 }
2457
2458 mast->orig_r->offset++;
2459 do {
2460 mas_descend(mast->orig_r);
2461 mast->orig_r->offset = 0;
2462 depth--;
2463 } while (depth);
2464
2465 mast_rebalance_next(mast);
2466 do {
2467 unsigned char l_off = 0;
2468 struct maple_enode *child = r_tmp.node;
2469
2470 mas_ascend(&r_tmp);
2471 if (ancestor == r_tmp.node)
2472 l_off = start;
2473
2474 if (r_tmp.offset)
2475 r_tmp.offset--;
2476
2477 if (l_off < r_tmp.offset)
2478 mas_topiary_range(&r_tmp, mast->destroy,
2479 l_off, r_tmp.offset);
2480
2481 if (l_tmp.node != child)
2482 mat_add(mast->free, child);
2483
2484 } while (r_tmp.node != ancestor);
2485
2486 *mast->orig_l = l_tmp;
2487 return true;
2488
2489 } else if (mast->orig_l->offset != 0) {
2490 if (!ancestor) {
2491 ancestor = mast->orig_l->node;
2492 end = mas_data_end(mast->orig_l);
2493 }
2494
2495 mast->orig_l->offset--;
2496 do {
2497 mas_descend(mast->orig_l);
2498 mast->orig_l->offset =
2499 mas_data_end(mast->orig_l);
2500 depth--;
2501 } while (depth);
2502
2503 mast_rebalance_prev(mast);
2504 do {
2505 unsigned char r_off;
2506 struct maple_enode *child = l_tmp.node;
2507
2508 mas_ascend(&l_tmp);
2509 if (ancestor == l_tmp.node)
2510 r_off = end;
2511 else
2512 r_off = mas_data_end(&l_tmp);
2513
2514 if (l_tmp.offset < r_off)
2515 l_tmp.offset++;
2516
2517 if (l_tmp.offset < r_off)
2518 mas_topiary_range(&l_tmp, mast->destroy,
2519 l_tmp.offset, r_off);
2520
2521 if (r_tmp.node != child)
2522 mat_add(mast->free, child);
2523
2524 } while (l_tmp.node != ancestor);
2525
2526 *mast->orig_r = r_tmp;
2527 return true;
2528 }
2529 } while (!mte_is_root(mast->orig_r->node));
2530
2531 *mast->orig_r = r_tmp;
2532 *mast->orig_l = l_tmp;
2533 return false;
2534}
2535
2536/*
2537 * mast_ascend_free() - Add current original maple state nodes to the free list
2538 * and ascend.
2539 * @mast: the maple subtree state.
2540 *
2541 * Ascend the original left and right sides and add the previous nodes to the
2542 * free list. Set the slots to point to the correct location in the new nodes.
2543 */
2544static inline void
2545mast_ascend_free(struct maple_subtree_state *mast)
2546{
2547 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2548 struct maple_enode *left = mast->orig_l->node;
2549 struct maple_enode *right = mast->orig_r->node;
2550
2551 mas_ascend(mast->orig_l);
2552 mas_ascend(mast->orig_r);
2553 mat_add(mast->free, left);
2554
2555 if (left != right)
2556 mat_add(mast->free, right);
2557
2558 mast->orig_r->offset = 0;
2559 mast->orig_r->index = mast->r->max;
2560 /* last should be larger than or equal to index */
2561 if (mast->orig_r->last < mast->orig_r->index)
2562 mast->orig_r->last = mast->orig_r->index;
2563 /*
2564 * The node may not contain the value so set slot to ensure all
2565 * of the nodes contents are freed or destroyed.
2566 */
2567 wr_mas.type = mte_node_type(mast->orig_r->node);
2568 mas_wr_node_walk(&wr_mas);
2569 /* Set up the left side of things */
2570 mast->orig_l->offset = 0;
2571 mast->orig_l->index = mast->l->min;
2572 wr_mas.mas = mast->orig_l;
2573 wr_mas.type = mte_node_type(mast->orig_l->node);
2574 mas_wr_node_walk(&wr_mas);
2575
2576 mast->bn->type = wr_mas.type;
2577}
2578
2579/*
2580 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2581 * @mas: the maple state with the allocations.
2582 * @b_node: the maple_big_node with the type encoding.
2583 *
2584 * Use the node type from the maple_big_node to allocate a new node from the
2585 * ma_state. This function exists mainly for code readability.
2586 *
2587 * Return: A new maple encoded node
2588 */
2589static inline struct maple_enode
2590*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2591{
2592 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2593}
2594
2595/*
2596 * mas_mab_to_node() - Set up right and middle nodes
2597 *
2598 * @mas: the maple state that contains the allocations.
2599 * @b_node: the node which contains the data.
2600 * @left: The pointer which will have the left node
2601 * @right: The pointer which may have the right node
2602 * @middle: the pointer which may have the middle node (rare)
2603 * @mid_split: the split location for the middle node
2604 *
2605 * Return: the split of left.
2606 */
2607static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2608 struct maple_big_node *b_node, struct maple_enode **left,
2609 struct maple_enode **right, struct maple_enode **middle,
2610 unsigned char *mid_split, unsigned long min)
2611{
2612 unsigned char split = 0;
2613 unsigned char slot_count = mt_slots[b_node->type];
2614
2615 *left = mas_new_ma_node(mas, b_node);
2616 *right = NULL;
2617 *middle = NULL;
2618 *mid_split = 0;
2619
2620 if (b_node->b_end < slot_count) {
2621 split = b_node->b_end;
2622 } else {
2623 split = mab_calc_split(mas, b_node, mid_split, min);
2624 *right = mas_new_ma_node(mas, b_node);
2625 }
2626
2627 if (*mid_split)
2628 *middle = mas_new_ma_node(mas, b_node);
2629
2630 return split;
2631
2632}
2633
2634/*
2635 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2636 * pointer.
2637 * @b_node - the big node to add the entry
2638 * @mas - the maple state to get the pivot (mas->max)
2639 * @entry - the entry to add, if NULL nothing happens.
2640 */
2641static inline void mab_set_b_end(struct maple_big_node *b_node,
2642 struct ma_state *mas,
2643 void *entry)
2644{
2645 if (!entry)
2646 return;
2647
2648 b_node->slot[b_node->b_end] = entry;
2649 if (mt_is_alloc(mas->tree))
2650 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2651 b_node->pivot[b_node->b_end++] = mas->max;
2652}
2653
2654/*
2655 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2656 * of @mas->node to either @left or @right, depending on @slot and @split
2657 *
2658 * @mas - the maple state with the node that needs a parent
2659 * @left - possible parent 1
2660 * @right - possible parent 2
2661 * @slot - the slot the mas->node was placed
2662 * @split - the split location between @left and @right
2663 */
2664static inline void mas_set_split_parent(struct ma_state *mas,
2665 struct maple_enode *left,
2666 struct maple_enode *right,
2667 unsigned char *slot, unsigned char split)
2668{
2669 if (mas_is_none(mas))
2670 return;
2671
2672 if ((*slot) <= split)
2673 mte_set_parent(mas->node, left, *slot);
2674 else if (right)
2675 mte_set_parent(mas->node, right, (*slot) - split - 1);
2676
2677 (*slot)++;
2678}
2679
2680/*
2681 * mte_mid_split_check() - Check if the next node passes the mid-split
2682 * @**l: Pointer to left encoded maple node.
2683 * @**m: Pointer to middle encoded maple node.
2684 * @**r: Pointer to right encoded maple node.
2685 * @slot: The offset
2686 * @*split: The split location.
2687 * @mid_split: The middle split.
2688 */
2689static inline void mte_mid_split_check(struct maple_enode **l,
2690 struct maple_enode **r,
2691 struct maple_enode *right,
2692 unsigned char slot,
2693 unsigned char *split,
2694 unsigned char mid_split)
2695{
2696 if (*r == right)
2697 return;
2698
2699 if (slot < mid_split)
2700 return;
2701
2702 *l = *r;
2703 *r = right;
2704 *split = mid_split;
2705}
2706
2707/*
2708 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2709 * is taken from @mast->l.
2710 * @mast - the maple subtree state
2711 * @left - the left node
2712 * @right - the right node
2713 * @split - the split location.
2714 */
2715static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2716 struct maple_enode *left,
2717 struct maple_enode *middle,
2718 struct maple_enode *right,
2719 unsigned char split,
2720 unsigned char mid_split)
2721{
2722 unsigned char slot;
2723 struct maple_enode *l = left;
2724 struct maple_enode *r = right;
2725
2726 if (mas_is_none(mast->l))
2727 return;
2728
2729 if (middle)
2730 r = middle;
2731
2732 slot = mast->l->offset;
2733
2734 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2735 mas_set_split_parent(mast->l, l, r, &slot, split);
2736
2737 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2738 mas_set_split_parent(mast->m, l, r, &slot, split);
2739
2740 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2741 mas_set_split_parent(mast->r, l, r, &slot, split);
2742}
2743
2744/*
2745 * mas_wmb_replace() - Write memory barrier and replace
2746 * @mas: The maple state
2747 * @free: the maple topiary list of nodes to free
2748 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2749 *
2750 * Updates gap as necessary.
2751 */
2752static inline void mas_wmb_replace(struct ma_state *mas,
2753 struct ma_topiary *free,
2754 struct ma_topiary *destroy)
2755{
2756 /* All nodes must see old data as dead prior to replacing that data */
2757 smp_wmb(); /* Needed for RCU */
2758
2759 /* Insert the new data in the tree */
2760 mas_replace(mas, true);
2761
2762 if (!mte_is_leaf(mas->node))
2763 mas_descend_adopt(mas);
2764
2765 mas_mat_free(mas, free);
2766
2767 if (destroy)
2768 mas_mat_destroy(mas, destroy);
2769
2770 if (mte_is_leaf(mas->node))
2771 return;
2772
2773 mas_update_gap(mas);
2774}
2775
2776/*
2777 * mast_new_root() - Set a new tree root during subtree creation
2778 * @mast: The maple subtree state
2779 * @mas: The maple state
2780 */
2781static inline void mast_new_root(struct maple_subtree_state *mast,
2782 struct ma_state *mas)
2783{
2784 mas_mn(mast->l)->parent =
2785 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2786 if (!mte_dead_node(mast->orig_l->node) &&
2787 !mte_is_root(mast->orig_l->node)) {
2788 do {
2789 mast_ascend_free(mast);
2790 mast_topiary(mast);
2791 } while (!mte_is_root(mast->orig_l->node));
2792 }
2793 if ((mast->orig_l->node != mas->node) &&
2794 (mast->l->depth > mas_mt_height(mas))) {
2795 mat_add(mast->free, mas->node);
2796 }
2797}
2798
2799/*
2800 * mast_cp_to_nodes() - Copy data out to nodes.
2801 * @mast: The maple subtree state
2802 * @left: The left encoded maple node
2803 * @middle: The middle encoded maple node
2804 * @right: The right encoded maple node
2805 * @split: The location to split between left and (middle ? middle : right)
2806 * @mid_split: The location to split between middle and right.
2807 */
2808static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2809 struct maple_enode *left, struct maple_enode *middle,
2810 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2811{
2812 bool new_lmax = true;
2813
2814 mast->l->node = mte_node_or_none(left);
2815 mast->m->node = mte_node_or_none(middle);
2816 mast->r->node = mte_node_or_none(right);
2817
2818 mast->l->min = mast->orig_l->min;
2819 if (split == mast->bn->b_end) {
2820 mast->l->max = mast->orig_r->max;
2821 new_lmax = false;
2822 }
2823
2824 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2825
2826 if (middle) {
2827 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2828 mast->m->min = mast->bn->pivot[split] + 1;
2829 split = mid_split;
2830 }
2831
2832 mast->r->max = mast->orig_r->max;
2833 if (right) {
2834 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2835 mast->r->min = mast->bn->pivot[split] + 1;
2836 }
2837}
2838
2839/*
2840 * mast_combine_cp_left - Copy in the original left side of the tree into the
2841 * combined data set in the maple subtree state big node.
2842 * @mast: The maple subtree state
2843 */
2844static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2845{
2846 unsigned char l_slot = mast->orig_l->offset;
2847
2848 if (!l_slot)
2849 return;
2850
2851 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2852}
2853
2854/*
2855 * mast_combine_cp_right: Copy in the original right side of the tree into the
2856 * combined data set in the maple subtree state big node.
2857 * @mast: The maple subtree state
2858 */
2859static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2860{
2861 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2862 return;
2863
2864 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2865 mt_slot_count(mast->orig_r->node), mast->bn,
2866 mast->bn->b_end);
2867 mast->orig_r->last = mast->orig_r->max;
2868}
2869
2870/*
2871 * mast_sufficient: Check if the maple subtree state has enough data in the big
2872 * node to create at least one sufficient node
2873 * @mast: the maple subtree state
2874 */
2875static inline bool mast_sufficient(struct maple_subtree_state *mast)
2876{
2877 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2878 return true;
2879
2880 return false;
2881}
2882
2883/*
2884 * mast_overflow: Check if there is too much data in the subtree state for a
2885 * single node.
2886 * @mast: The maple subtree state
2887 */
2888static inline bool mast_overflow(struct maple_subtree_state *mast)
2889{
2890 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2891 return true;
2892
2893 return false;
2894}
2895
2896static inline void *mtree_range_walk(struct ma_state *mas)
2897{
2898 unsigned long *pivots;
2899 unsigned char offset;
2900 struct maple_node *node;
2901 struct maple_enode *next, *last;
2902 enum maple_type type;
2903 void __rcu **slots;
2904 unsigned char end;
2905 unsigned long max, min;
2906 unsigned long prev_max, prev_min;
2907
1b9c9183
LB
2908 next = mas->node;
2909 min = mas->min;
54a611b6
LH
2910 max = mas->max;
2911 do {
2912 offset = 0;
2913 last = next;
2914 node = mte_to_node(next);
2915 type = mte_node_type(next);
2916 pivots = ma_pivots(node, type);
2917 end = ma_data_end(node, type, pivots, max);
2918 if (unlikely(ma_dead_node(node)))
2919 goto dead_node;
2920
2921 if (pivots[offset] >= mas->index) {
2922 prev_max = max;
2923 prev_min = min;
2924 max = pivots[offset];
2925 goto next;
2926 }
2927
2928 do {
2929 offset++;
2930 } while ((offset < end) && (pivots[offset] < mas->index));
2931
2932 prev_min = min;
2933 min = pivots[offset - 1] + 1;
2934 prev_max = max;
2935 if (likely(offset < end && pivots[offset]))
2936 max = pivots[offset];
2937
2938next:
2939 slots = ma_slots(node, type);
2940 next = mt_slot(mas->tree, slots, offset);
2941 if (unlikely(ma_dead_node(node)))
2942 goto dead_node;
2943 } while (!ma_is_leaf(type));
2944
2945 mas->offset = offset;
2946 mas->index = min;
2947 mas->last = max;
2948 mas->min = prev_min;
2949 mas->max = prev_max;
2950 mas->node = last;
831978e3 2951 return (void *)next;
54a611b6
LH
2952
2953dead_node:
2954 mas_reset(mas);
2955 return NULL;
2956}
2957
2958/*
2959 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2960 * @mas: The starting maple state
2961 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2962 * @count: The estimated count of iterations needed.
2963 *
2964 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2965 * is hit. First @b_node is split into two entries which are inserted into the
2966 * next iteration of the loop. @b_node is returned populated with the final
2967 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2968 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2969 * to account of what has been copied into the new sub-tree. The update of
2970 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2971 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2972 * the new sub-tree in case the sub-tree becomes the full tree.
2973 *
2974 * Return: the number of elements in b_node during the last loop.
2975 */
2976static int mas_spanning_rebalance(struct ma_state *mas,
2977 struct maple_subtree_state *mast, unsigned char count)
2978{
2979 unsigned char split, mid_split;
2980 unsigned char slot = 0;
2981 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2982
2983 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2984 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2985 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2986 MA_TOPIARY(free, mas->tree);
2987 MA_TOPIARY(destroy, mas->tree);
2988
2989 /*
2990 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2991 * Rebalancing is done by use of the ``struct maple_topiary``.
2992 */
2993 mast->l = &l_mas;
2994 mast->m = &m_mas;
2995 mast->r = &r_mas;
2996 mast->free = &free;
2997 mast->destroy = &destroy;
2998 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
2999
3000 /* Check if this is not root and has sufficient data. */
3001 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3002 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3003 mast_spanning_rebalance(mast);
3004
3005 mast->orig_l->depth = 0;
3006
3007 /*
3008 * Each level of the tree is examined and balanced, pushing data to the left or
3009 * right, or rebalancing against left or right nodes is employed to avoid
3010 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3011 * the tree is created, there may be a mix of new and old nodes. The old nodes
3012 * will have the incorrect parent pointers and currently be in two trees: the
3013 * original tree and the partially new tree. To remedy the parent pointers in
3014 * the old tree, the new data is swapped into the active tree and a walk down
3015 * the tree is performed and the parent pointers are updated.
3016 * See mas_descend_adopt() for more information..
3017 */
3018 while (count--) {
3019 mast->bn->b_end--;
3020 mast->bn->type = mte_node_type(mast->orig_l->node);
3021 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3022 &mid_split, mast->orig_l->min);
3023 mast_set_split_parents(mast, left, middle, right, split,
3024 mid_split);
3025 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3026
3027 /*
3028 * Copy data from next level in the tree to mast->bn from next
3029 * iteration
3030 */
3031 memset(mast->bn, 0, sizeof(struct maple_big_node));
3032 mast->bn->type = mte_node_type(left);
3033 mast->orig_l->depth++;
3034
3035 /* Root already stored in l->node. */
3036 if (mas_is_root_limits(mast->l))
3037 goto new_root;
3038
3039 mast_ascend_free(mast);
3040 mast_combine_cp_left(mast);
3041 l_mas.offset = mast->bn->b_end;
3042 mab_set_b_end(mast->bn, &l_mas, left);
3043 mab_set_b_end(mast->bn, &m_mas, middle);
3044 mab_set_b_end(mast->bn, &r_mas, right);
3045
3046 /* Copy anything necessary out of the right node. */
3047 mast_combine_cp_right(mast);
3048 mast_topiary(mast);
3049 mast->orig_l->last = mast->orig_l->max;
3050
3051 if (mast_sufficient(mast))
3052 continue;
3053
3054 if (mast_overflow(mast))
3055 continue;
3056
3057 /* May be a new root stored in mast->bn */
3058 if (mas_is_root_limits(mast->orig_l))
3059 break;
3060
3061 mast_spanning_rebalance(mast);
3062
3063 /* rebalancing from other nodes may require another loop. */
3064 if (!count)
3065 count++;
3066 }
3067
3068 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3069 mte_node_type(mast->orig_l->node));
3070 mast->orig_l->depth++;
3071 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3072 mte_set_parent(left, l_mas.node, slot);
3073 if (middle)
3074 mte_set_parent(middle, l_mas.node, ++slot);
3075
3076 if (right)
3077 mte_set_parent(right, l_mas.node, ++slot);
3078
3079 if (mas_is_root_limits(mast->l)) {
3080new_root:
3081 mast_new_root(mast, mas);
3082 } else {
3083 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3084 }
3085
3086 if (!mte_dead_node(mast->orig_l->node))
3087 mat_add(&free, mast->orig_l->node);
3088
3089 mas->depth = mast->orig_l->depth;
3090 *mast->orig_l = l_mas;
3091 mte_set_node_dead(mas->node);
3092
3093 /* Set up mas for insertion. */
3094 mast->orig_l->depth = mas->depth;
3095 mast->orig_l->alloc = mas->alloc;
3096 *mas = *mast->orig_l;
3097 mas_wmb_replace(mas, &free, &destroy);
3098 mtree_range_walk(mas);
3099 return mast->bn->b_end;
3100}
3101
3102/*
3103 * mas_rebalance() - Rebalance a given node.
3104 * @mas: The maple state
3105 * @b_node: The big maple node.
3106 *
3107 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3108 * Continue upwards until tree is sufficient.
3109 *
3110 * Return: the number of elements in b_node during the last loop.
3111 */
3112static inline int mas_rebalance(struct ma_state *mas,
3113 struct maple_big_node *b_node)
3114{
3115 char empty_count = mas_mt_height(mas);
3116 struct maple_subtree_state mast;
3117 unsigned char shift, b_end = ++b_node->b_end;
3118
3119 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3120 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3121
3122 trace_ma_op(__func__, mas);
3123
3124 /*
3125 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3126 * against the node to the right if it exists, otherwise the node to the
3127 * left of this node is rebalanced against this node. If rebalancing
3128 * causes just one node to be produced instead of two, then the parent
3129 * is also examined and rebalanced if it is insufficient. Every level
3130 * tries to combine the data in the same way. If one node contains the
3131 * entire range of the tree, then that node is used as a new root node.
3132 */
3133 mas_node_count(mas, 1 + empty_count * 3);
3134 if (mas_is_err(mas))
3135 return 0;
3136
3137 mast.orig_l = &l_mas;
3138 mast.orig_r = &r_mas;
3139 mast.bn = b_node;
3140 mast.bn->type = mte_node_type(mas->node);
3141
3142 l_mas = r_mas = *mas;
3143
3144 if (mas_next_sibling(&r_mas)) {
3145 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3146 r_mas.last = r_mas.index = r_mas.max;
3147 } else {
3148 mas_prev_sibling(&l_mas);
3149 shift = mas_data_end(&l_mas) + 1;
3150 mab_shift_right(b_node, shift);
3151 mas->offset += shift;
3152 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3153 b_node->b_end = shift + b_end;
3154 l_mas.index = l_mas.last = l_mas.min;
3155 }
3156
3157 return mas_spanning_rebalance(mas, &mast, empty_count);
3158}
3159
3160/*
3161 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3162 * state.
3163 * @mas: The maple state
3164 * @end: The end of the left-most node.
3165 *
3166 * During a mass-insert event (such as forking), it may be necessary to
3167 * rebalance the left-most node when it is not sufficient.
3168 */
3169static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3170{
3171 enum maple_type mt = mte_node_type(mas->node);
3172 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3173 struct maple_enode *eparent;
3174 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3175 void __rcu **l_slots, **slots;
3176 unsigned long *l_pivs, *pivs, gap;
3177 bool in_rcu = mt_in_rcu(mas->tree);
3178
3179 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3180
3181 l_mas = *mas;
3182 mas_prev_sibling(&l_mas);
3183
3184 /* set up node. */
3185 if (in_rcu) {
3186 /* Allocate for both left and right as well as parent. */
3187 mas_node_count(mas, 3);
3188 if (mas_is_err(mas))
3189 return;
3190
3191 newnode = mas_pop_node(mas);
3192 } else {
3193 newnode = &reuse;
3194 }
3195
3196 node = mas_mn(mas);
3197 newnode->parent = node->parent;
3198 slots = ma_slots(newnode, mt);
3199 pivs = ma_pivots(newnode, mt);
3200 left = mas_mn(&l_mas);
3201 l_slots = ma_slots(left, mt);
3202 l_pivs = ma_pivots(left, mt);
3203 if (!l_slots[split])
3204 split++;
3205 tmp = mas_data_end(&l_mas) - split;
3206
3207 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3208 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3209 pivs[tmp] = l_mas.max;
3210 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3211 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3212
3213 l_mas.max = l_pivs[split];
3214 mas->min = l_mas.max + 1;
3215 eparent = mt_mk_node(mte_parent(l_mas.node),
3216 mas_parent_enum(&l_mas, l_mas.node));
3217 tmp += end;
3218 if (!in_rcu) {
3219 unsigned char max_p = mt_pivots[mt];
3220 unsigned char max_s = mt_slots[mt];
3221
3222 if (tmp < max_p)
3223 memset(pivs + tmp, 0,
3224 sizeof(unsigned long *) * (max_p - tmp));
3225
3226 if (tmp < mt_slots[mt])
3227 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3228
3229 memcpy(node, newnode, sizeof(struct maple_node));
3230 ma_set_meta(node, mt, 0, tmp - 1);
3231 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3232 l_pivs[split]);
3233
3234 /* Remove data from l_pivs. */
3235 tmp = split + 1;
3236 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3237 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3238 ma_set_meta(left, mt, 0, split);
3239
3240 goto done;
3241 }
3242
3243 /* RCU requires replacing both l_mas, mas, and parent. */
3244 mas->node = mt_mk_node(newnode, mt);
3245 ma_set_meta(newnode, mt, 0, tmp);
3246
3247 new_left = mas_pop_node(mas);
3248 new_left->parent = left->parent;
3249 mt = mte_node_type(l_mas.node);
3250 slots = ma_slots(new_left, mt);
3251 pivs = ma_pivots(new_left, mt);
3252 memcpy(slots, l_slots, sizeof(void *) * split);
3253 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3254 ma_set_meta(new_left, mt, 0, split);
3255 l_mas.node = mt_mk_node(new_left, mt);
3256
3257 /* replace parent. */
3258 offset = mte_parent_slot(mas->node);
3259 mt = mas_parent_enum(&l_mas, l_mas.node);
3260 parent = mas_pop_node(mas);
3261 slots = ma_slots(parent, mt);
3262 pivs = ma_pivots(parent, mt);
3263 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3264 rcu_assign_pointer(slots[offset], mas->node);
3265 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3266 pivs[offset - 1] = l_mas.max;
3267 eparent = mt_mk_node(parent, mt);
3268done:
3269 gap = mas_leaf_max_gap(mas);
3270 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3271 gap = mas_leaf_max_gap(&l_mas);
3272 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3273 mas_ascend(mas);
3274
3275 if (in_rcu)
3276 mas_replace(mas, false);
3277
3278 mas_update_gap(mas);
3279}
3280
3281/*
3282 * mas_split_final_node() - Split the final node in a subtree operation.
3283 * @mast: the maple subtree state
3284 * @mas: The maple state
3285 * @height: The height of the tree in case it's a new root.
3286 */
3287static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3288 struct ma_state *mas, int height)
3289{
3290 struct maple_enode *ancestor;
3291
3292 if (mte_is_root(mas->node)) {
3293 if (mt_is_alloc(mas->tree))
3294 mast->bn->type = maple_arange_64;
3295 else
3296 mast->bn->type = maple_range_64;
3297 mas->depth = height;
3298 }
3299 /*
3300 * Only a single node is used here, could be root.
3301 * The Big_node data should just fit in a single node.
3302 */
3303 ancestor = mas_new_ma_node(mas, mast->bn);
3304 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3305 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3306 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3307
3308 mast->l->node = ancestor;
3309 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3310 mas->offset = mast->bn->b_end - 1;
3311 return true;
3312}
3313
3314/*
3315 * mast_fill_bnode() - Copy data into the big node in the subtree state
3316 * @mast: The maple subtree state
3317 * @mas: the maple state
3318 * @skip: The number of entries to skip for new nodes insertion.
3319 */
3320static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3321 struct ma_state *mas,
3322 unsigned char skip)
3323{
3324 bool cp = true;
3325 struct maple_enode *old = mas->node;
3326 unsigned char split;
3327
3328 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3329 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3330 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3331 mast->bn->b_end = 0;
3332
3333 if (mte_is_root(mas->node)) {
3334 cp = false;
3335 } else {
3336 mas_ascend(mas);
3337 mat_add(mast->free, old);
3338 mas->offset = mte_parent_slot(mas->node);
3339 }
3340
3341 if (cp && mast->l->offset)
3342 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3343
3344 split = mast->bn->b_end;
3345 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3346 mast->r->offset = mast->bn->b_end;
3347 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3348 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3349 cp = false;
3350
3351 if (cp)
3352 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3353 mast->bn, mast->bn->b_end);
3354
3355 mast->bn->b_end--;
3356 mast->bn->type = mte_node_type(mas->node);
3357}
3358
3359/*
3360 * mast_split_data() - Split the data in the subtree state big node into regular
3361 * nodes.
3362 * @mast: The maple subtree state
3363 * @mas: The maple state
3364 * @split: The location to split the big node
3365 */
3366static inline void mast_split_data(struct maple_subtree_state *mast,
3367 struct ma_state *mas, unsigned char split)
3368{
3369 unsigned char p_slot;
3370
3371 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3372 mte_set_pivot(mast->r->node, 0, mast->r->max);
3373 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3374 mast->l->offset = mte_parent_slot(mas->node);
3375 mast->l->max = mast->bn->pivot[split];
3376 mast->r->min = mast->l->max + 1;
3377 if (mte_is_leaf(mas->node))
3378 return;
3379
3380 p_slot = mast->orig_l->offset;
3381 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3382 &p_slot, split);
3383 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3384 &p_slot, split);
3385}
3386
3387/*
3388 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3389 * data to the right or left node if there is room.
3390 * @mas: The maple state
3391 * @height: The current height of the maple state
3392 * @mast: The maple subtree state
3393 * @left: Push left or not.
3394 *
3395 * Keeping the height of the tree low means faster lookups.
3396 *
3397 * Return: True if pushed, false otherwise.
3398 */
3399static inline bool mas_push_data(struct ma_state *mas, int height,
3400 struct maple_subtree_state *mast, bool left)
3401{
3402 unsigned char slot_total = mast->bn->b_end;
3403 unsigned char end, space, split;
3404
3405 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3406 tmp_mas = *mas;
3407 tmp_mas.depth = mast->l->depth;
3408
3409 if (left && !mas_prev_sibling(&tmp_mas))
3410 return false;
3411 else if (!left && !mas_next_sibling(&tmp_mas))
3412 return false;
3413
3414 end = mas_data_end(&tmp_mas);
3415 slot_total += end;
3416 space = 2 * mt_slot_count(mas->node) - 2;
3417 /* -2 instead of -1 to ensure there isn't a triple split */
3418 if (ma_is_leaf(mast->bn->type))
3419 space--;
3420
3421 if (mas->max == ULONG_MAX)
3422 space--;
3423
3424 if (slot_total >= space)
3425 return false;
3426
3427 /* Get the data; Fill mast->bn */
3428 mast->bn->b_end++;
3429 if (left) {
3430 mab_shift_right(mast->bn, end + 1);
3431 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3432 mast->bn->b_end = slot_total + 1;
3433 } else {
3434 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3435 }
3436
3437 /* Configure mast for splitting of mast->bn */
3438 split = mt_slots[mast->bn->type] - 2;
3439 if (left) {
3440 /* Switch mas to prev node */
3441 mat_add(mast->free, mas->node);
3442 *mas = tmp_mas;
3443 /* Start using mast->l for the left side. */
3444 tmp_mas.node = mast->l->node;
3445 *mast->l = tmp_mas;
3446 } else {
3447 mat_add(mast->free, tmp_mas.node);
3448 tmp_mas.node = mast->r->node;
3449 *mast->r = tmp_mas;
3450 split = slot_total - split;
3451 }
3452 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3453 /* Update parent slot for split calculation. */
3454 if (left)
3455 mast->orig_l->offset += end + 1;
3456
3457 mast_split_data(mast, mas, split);
3458 mast_fill_bnode(mast, mas, 2);
3459 mas_split_final_node(mast, mas, height + 1);
3460 return true;
3461}
3462
3463/*
3464 * mas_split() - Split data that is too big for one node into two.
3465 * @mas: The maple state
3466 * @b_node: The maple big node
3467 * Return: 1 on success, 0 on failure.
3468 */
3469static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3470{
54a611b6
LH
3471 struct maple_subtree_state mast;
3472 int height = 0;
3473 unsigned char mid_split, split = 0;
3474
3475 /*
3476 * Splitting is handled differently from any other B-tree; the Maple
3477 * Tree splits upwards. Splitting up means that the split operation
3478 * occurs when the walk of the tree hits the leaves and not on the way
3479 * down. The reason for splitting up is that it is impossible to know
3480 * how much space will be needed until the leaf is (or leaves are)
3481 * reached. Since overwriting data is allowed and a range could
3482 * overwrite more than one range or result in changing one entry into 3
3483 * entries, it is impossible to know if a split is required until the
3484 * data is examined.
3485 *
3486 * Splitting is a balancing act between keeping allocations to a minimum
3487 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 * for an entry followed by a contraction when the entry is removed. To
3489 * accomplish the balance, there are empty slots remaining in both left
3490 * and right nodes after a split.
3491 */
3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 MA_TOPIARY(mat, mas->tree);
3497
3498 trace_ma_op(__func__, mas);
3499 mas->depth = mas_mt_height(mas);
3500 /* Allocation failures will happen early. */
3501 mas_node_count(mas, 1 + mas->depth * 2);
3502 if (mas_is_err(mas))
3503 return 0;
3504
3505 mast.l = &l_mas;
3506 mast.r = &r_mas;
3507 mast.orig_l = &prev_l_mas;
3508 mast.orig_r = &prev_r_mas;
3509 mast.free = &mat;
3510 mast.bn = b_node;
3511
3512 while (height++ <= mas->depth) {
3513 if (mt_slots[b_node->type] > b_node->b_end) {
3514 mas_split_final_node(&mast, mas, height);
3515 break;
3516 }
3517
3518 l_mas = r_mas = *mas;
3519 l_mas.node = mas_new_ma_node(mas, b_node);
3520 r_mas.node = mas_new_ma_node(mas, b_node);
3521 /*
3522 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 * left or right node has space to spare. This is referred to as "pushing left"
3524 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 * is a significant savings.
3527 */
3528 /* Try to push left. */
3529 if (mas_push_data(mas, height, &mast, true))
3530 break;
3531
3532 /* Try to push right. */
3533 if (mas_push_data(mas, height, &mast, false))
3534 break;
3535
3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 mast_split_data(&mast, mas, split);
3538 /*
3539 * Usually correct, mab_mas_cp in the above call overwrites
3540 * r->max.
3541 */
3542 mast.r->max = mas->max;
3543 mast_fill_bnode(&mast, mas, 1);
3544 prev_l_mas = *mast.l;
3545 prev_r_mas = *mast.r;
3546 }
3547
3548 /* Set the original node as dead */
3549 mat_add(mast.free, mas->node);
3550 mas->node = l_mas.node;
3551 mas_wmb_replace(mas, mast.free, NULL);
3552 mtree_range_walk(mas);
3553 return 1;
3554}
3555
3556/*
3557 * mas_reuse_node() - Reuse the node to store the data.
3558 * @wr_mas: The maple write state
3559 * @bn: The maple big node
3560 * @end: The end of the data.
3561 *
3562 * Will always return false in RCU mode.
3563 *
3564 * Return: True if node was reused, false otherwise.
3565 */
3566static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 struct maple_big_node *bn, unsigned char end)
3568{
3569 /* Need to be rcu safe. */
3570 if (mt_in_rcu(wr_mas->mas->tree))
3571 return false;
3572
3573 if (end > bn->b_end) {
3574 int clear = mt_slots[wr_mas->type] - bn->b_end;
3575
3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3578 }
3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3580 return true;
3581}
3582
3583/*
3584 * mas_commit_b_node() - Commit the big node into the tree.
3585 * @wr_mas: The maple write state
3586 * @b_node: The maple big node
3587 * @end: The end of the data.
3588 */
44081c77 3589static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3590 struct maple_big_node *b_node, unsigned char end)
3591{
3592 struct maple_node *node;
3593 unsigned char b_end = b_node->b_end;
3594 enum maple_type b_type = b_node->type;
3595
3596 if ((b_end < mt_min_slots[b_type]) &&
3597 (!mte_is_root(wr_mas->mas->node)) &&
3598 (mas_mt_height(wr_mas->mas) > 1))
3599 return mas_rebalance(wr_mas->mas, b_node);
3600
3601 if (b_end >= mt_slots[b_type])
3602 return mas_split(wr_mas->mas, b_node);
3603
3604 if (mas_reuse_node(wr_mas, b_node, end))
3605 goto reuse_node;
3606
3607 mas_node_count(wr_mas->mas, 1);
3608 if (mas_is_err(wr_mas->mas))
3609 return 0;
3610
3611 node = mas_pop_node(wr_mas->mas);
3612 node->parent = mas_mn(wr_mas->mas)->parent;
3613 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3615 mas_replace(wr_mas->mas, false);
3616reuse_node:
3617 mas_update_gap(wr_mas->mas);
3618 return 1;
3619}
3620
3621/*
3622 * mas_root_expand() - Expand a root to a node
3623 * @mas: The maple state
3624 * @entry: The entry to store into the tree
3625 */
3626static inline int mas_root_expand(struct ma_state *mas, void *entry)
3627{
3628 void *contents = mas_root_locked(mas);
3629 enum maple_type type = maple_leaf_64;
3630 struct maple_node *node;
3631 void __rcu **slots;
3632 unsigned long *pivots;
3633 int slot = 0;
3634
3635 mas_node_count(mas, 1);
3636 if (unlikely(mas_is_err(mas)))
3637 return 0;
3638
3639 node = mas_pop_node(mas);
3640 pivots = ma_pivots(node, type);
3641 slots = ma_slots(node, type);
3642 node->parent = ma_parent_ptr(
3643 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 mas->node = mt_mk_node(node, type);
3645
3646 if (mas->index) {
3647 if (contents) {
3648 rcu_assign_pointer(slots[slot], contents);
3649 if (likely(mas->index > 1))
3650 slot++;
3651 }
3652 pivots[slot++] = mas->index - 1;
3653 }
3654
3655 rcu_assign_pointer(slots[slot], entry);
3656 mas->offset = slot;
3657 pivots[slot] = mas->last;
3658 if (mas->last != ULONG_MAX)
3659 slot++;
3660 mas->depth = 1;
3661 mas_set_height(mas);
3662
3663 /* swap the new root into the tree */
3664 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3665 ma_set_meta(node, maple_leaf_64, 0, slot);
3666 return slot;
3667}
3668
3669static inline void mas_store_root(struct ma_state *mas, void *entry)
3670{
3671 if (likely((mas->last != 0) || (mas->index != 0)))
3672 mas_root_expand(mas, entry);
3673 else if (((unsigned long) (entry) & 3) == 2)
3674 mas_root_expand(mas, entry);
3675 else {
3676 rcu_assign_pointer(mas->tree->ma_root, entry);
3677 mas->node = MAS_START;
3678 }
3679}
3680
3681/*
3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3683 * spans the node.
3684 * @mas: The maple state
3685 * @piv: The pivot value being written
3686 * @type: The maple node type
3687 * @entry: The data to write
3688 *
3689 * Spanning writes are writes that start in one node and end in another OR if
3690 * the write of a %NULL will cause the node to end with a %NULL.
3691 *
3692 * Return: True if this is a spanning write, false otherwise.
3693 */
3694static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3695{
3696 unsigned long max;
3697 unsigned long last = wr_mas->mas->last;
3698 unsigned long piv = wr_mas->r_max;
3699 enum maple_type type = wr_mas->type;
3700 void *entry = wr_mas->entry;
3701
3702 /* Contained in this pivot */
3703 if (piv > last)
3704 return false;
3705
3706 max = wr_mas->mas->max;
3707 if (unlikely(ma_is_leaf(type))) {
3708 /* Fits in the node, but may span slots. */
3709 if (last < max)
3710 return false;
3711
3712 /* Writes to the end of the node but not null. */
3713 if ((last == max) && entry)
3714 return false;
3715
3716 /*
3717 * Writing ULONG_MAX is not a spanning write regardless of the
3718 * value being written as long as the range fits in the node.
3719 */
3720 if ((last == ULONG_MAX) && (last == max))
3721 return false;
3722 } else if (piv == last) {
3723 if (entry)
3724 return false;
3725
3726 /* Detect spanning store wr walk */
3727 if (last == ULONG_MAX)
3728 return false;
3729 }
3730
3731 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3732
3733 return true;
3734}
3735
3736static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3737{
54a611b6
LH
3738 wr_mas->type = mte_node_type(wr_mas->mas->node);
3739 mas_wr_node_walk(wr_mas);
3740 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3741}
3742
3743static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3744{
3745 wr_mas->mas->max = wr_mas->r_max;
3746 wr_mas->mas->min = wr_mas->r_min;
3747 wr_mas->mas->node = wr_mas->content;
3748 wr_mas->mas->offset = 0;
9bbba563 3749 wr_mas->mas->depth++;
54a611b6
LH
3750}
3751/*
3752 * mas_wr_walk() - Walk the tree for a write.
3753 * @wr_mas: The maple write state
3754 *
3755 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3756 *
3757 * Return: True if it's contained in a node, false on spanning write.
3758 */
3759static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3760{
3761 struct ma_state *mas = wr_mas->mas;
3762
3763 while (true) {
3764 mas_wr_walk_descend(wr_mas);
3765 if (unlikely(mas_is_span_wr(wr_mas)))
3766 return false;
3767
3768 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3769 mas->offset);
3770 if (ma_is_leaf(wr_mas->type))
3771 return true;
3772
3773 mas_wr_walk_traverse(wr_mas);
3774 }
3775
3776 return true;
3777}
3778
3779static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3780{
3781 struct ma_state *mas = wr_mas->mas;
3782
3783 while (true) {
3784 mas_wr_walk_descend(wr_mas);
3785 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3786 mas->offset);
3787 if (ma_is_leaf(wr_mas->type))
3788 return true;
3789 mas_wr_walk_traverse(wr_mas);
3790
3791 }
3792 return true;
3793}
3794/*
3795 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3796 * @l_wr_mas: The left maple write state
3797 * @r_wr_mas: The right maple write state
3798 */
3799static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3800 struct ma_wr_state *r_wr_mas)
3801{
3802 struct ma_state *r_mas = r_wr_mas->mas;
3803 struct ma_state *l_mas = l_wr_mas->mas;
3804 unsigned char l_slot;
3805
3806 l_slot = l_mas->offset;
3807 if (!l_wr_mas->content)
3808 l_mas->index = l_wr_mas->r_min;
3809
3810 if ((l_mas->index == l_wr_mas->r_min) &&
3811 (l_slot &&
3812 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3813 if (l_slot > 1)
3814 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3815 else
3816 l_mas->index = l_mas->min;
3817
3818 l_mas->offset = l_slot - 1;
3819 }
3820
3821 if (!r_wr_mas->content) {
3822 if (r_mas->last < r_wr_mas->r_max)
3823 r_mas->last = r_wr_mas->r_max;
3824 r_mas->offset++;
3825 } else if ((r_mas->last == r_wr_mas->r_max) &&
3826 (r_mas->last < r_mas->max) &&
3827 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3828 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3829 r_wr_mas->type, r_mas->offset + 1);
3830 r_mas->offset++;
3831 }
3832}
3833
3834static inline void *mas_state_walk(struct ma_state *mas)
3835{
3836 void *entry;
3837
3838 entry = mas_start(mas);
3839 if (mas_is_none(mas))
3840 return NULL;
3841
3842 if (mas_is_ptr(mas))
3843 return entry;
3844
3845 return mtree_range_walk(mas);
3846}
3847
3848/*
3849 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3850 * to date.
3851 *
3852 * @mas: The maple state.
3853 *
3854 * Note: Leaves mas in undesirable state.
3855 * Return: The entry for @mas->index or %NULL on dead node.
3856 */
3857static inline void *mtree_lookup_walk(struct ma_state *mas)
3858{
3859 unsigned long *pivots;
3860 unsigned char offset;
3861 struct maple_node *node;
3862 struct maple_enode *next;
3863 enum maple_type type;
3864 void __rcu **slots;
3865 unsigned char end;
3866 unsigned long max;
3867
3868 next = mas->node;
3869 max = ULONG_MAX;
3870 do {
3871 offset = 0;
3872 node = mte_to_node(next);
3873 type = mte_node_type(next);
3874 pivots = ma_pivots(node, type);
3875 end = ma_data_end(node, type, pivots, max);
3876 if (unlikely(ma_dead_node(node)))
3877 goto dead_node;
3878
3879 if (pivots[offset] >= mas->index)
3880 goto next;
3881
3882 do {
3883 offset++;
3884 } while ((offset < end) && (pivots[offset] < mas->index));
3885
3886 if (likely(offset > end))
3887 max = pivots[offset];
3888
3889next:
3890 slots = ma_slots(node, type);
3891 next = mt_slot(mas->tree, slots, offset);
3892 if (unlikely(ma_dead_node(node)))
3893 goto dead_node;
3894 } while (!ma_is_leaf(type));
3895
831978e3 3896 return (void *)next;
54a611b6
LH
3897
3898dead_node:
3899 mas_reset(mas);
3900 return NULL;
3901}
3902
3903/*
3904 * mas_new_root() - Create a new root node that only contains the entry passed
3905 * in.
3906 * @mas: The maple state
3907 * @entry: The entry to store.
3908 *
3909 * Only valid when the index == 0 and the last == ULONG_MAX
3910 *
3911 * Return 0 on error, 1 on success.
3912 */
3913static inline int mas_new_root(struct ma_state *mas, void *entry)
3914{
3915 struct maple_enode *root = mas_root_locked(mas);
3916 enum maple_type type = maple_leaf_64;
3917 struct maple_node *node;
3918 void __rcu **slots;
3919 unsigned long *pivots;
3920
3921 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3922 mas->depth = 0;
3923 mas_set_height(mas);
3924 rcu_assign_pointer(mas->tree->ma_root, entry);
3925 mas->node = MAS_START;
3926 goto done;
3927 }
3928
3929 mas_node_count(mas, 1);
3930 if (mas_is_err(mas))
3931 return 0;
3932
3933 node = mas_pop_node(mas);
3934 pivots = ma_pivots(node, type);
3935 slots = ma_slots(node, type);
3936 node->parent = ma_parent_ptr(
3937 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3938 mas->node = mt_mk_node(node, type);
3939 rcu_assign_pointer(slots[0], entry);
3940 pivots[0] = mas->last;
3941 mas->depth = 1;
3942 mas_set_height(mas);
3943 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3944
3945done:
3946 if (xa_is_node(root))
3947 mte_destroy_walk(root, mas->tree);
3948
3949 return 1;
3950}
3951/*
3952 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3953 * and new nodes where necessary, then place the sub-tree in the actual tree.
3954 * Note that mas is expected to point to the node which caused the store to
3955 * span.
3956 * @wr_mas: The maple write state
3957 *
3958 * Return: 0 on error, positive on success.
3959 */
3960static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3961{
3962 struct maple_subtree_state mast;
3963 struct maple_big_node b_node;
3964 struct ma_state *mas;
3965 unsigned char height;
3966
3967 /* Left and Right side of spanning store */
3968 MA_STATE(l_mas, NULL, 0, 0);
3969 MA_STATE(r_mas, NULL, 0, 0);
3970
3971 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3972 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3973
3974 /*
3975 * A store operation that spans multiple nodes is called a spanning
3976 * store and is handled early in the store call stack by the function
3977 * mas_is_span_wr(). When a spanning store is identified, the maple
3978 * state is duplicated. The first maple state walks the left tree path
3979 * to ``index``, the duplicate walks the right tree path to ``last``.
3980 * The data in the two nodes are combined into a single node, two nodes,
3981 * or possibly three nodes (see the 3-way split above). A ``NULL``
3982 * written to the last entry of a node is considered a spanning store as
3983 * a rebalance is required for the operation to complete and an overflow
3984 * of data may happen.
3985 */
3986 mas = wr_mas->mas;
3987 trace_ma_op(__func__, mas);
3988
3989 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3990 return mas_new_root(mas, wr_mas->entry);
3991 /*
3992 * Node rebalancing may occur due to this store, so there may be three new
3993 * entries per level plus a new root.
3994 */
3995 height = mas_mt_height(mas);
3996 mas_node_count(mas, 1 + height * 3);
3997 if (mas_is_err(mas))
3998 return 0;
3999
4000 /*
4001 * Set up right side. Need to get to the next offset after the spanning
4002 * store to ensure it's not NULL and to combine both the next node and
4003 * the node with the start together.
4004 */
4005 r_mas = *mas;
4006 /* Avoid overflow, walk to next slot in the tree. */
4007 if (r_mas.last + 1)
4008 r_mas.last++;
4009
4010 r_mas.index = r_mas.last;
4011 mas_wr_walk_index(&r_wr_mas);
4012 r_mas.last = r_mas.index = mas->last;
4013
4014 /* Set up left side. */
4015 l_mas = *mas;
4016 mas_wr_walk_index(&l_wr_mas);
4017
4018 if (!wr_mas->entry) {
4019 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4020 mas->offset = l_mas.offset;
4021 mas->index = l_mas.index;
4022 mas->last = l_mas.last = r_mas.last;
4023 }
4024
4025 /* expanding NULLs may make this cover the entire range */
4026 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4027 mas_set_range(mas, 0, ULONG_MAX);
4028 return mas_new_root(mas, wr_mas->entry);
4029 }
4030
4031 memset(&b_node, 0, sizeof(struct maple_big_node));
4032 /* Copy l_mas and store the value in b_node. */
4033 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4034 /* Copy r_mas into b_node. */
4035 if (r_mas.offset <= r_wr_mas.node_end)
4036 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4037 &b_node, b_node.b_end + 1);
4038 else
4039 b_node.b_end++;
4040
4041 /* Stop spanning searches by searching for just index. */
4042 l_mas.index = l_mas.last = mas->index;
4043
4044 mast.bn = &b_node;
4045 mast.orig_l = &l_mas;
4046 mast.orig_r = &r_mas;
4047 /* Combine l_mas and r_mas and split them up evenly again. */
4048 return mas_spanning_rebalance(mas, &mast, height + 1);
4049}
4050
4051/*
4052 * mas_wr_node_store() - Attempt to store the value in a node
4053 * @wr_mas: The maple write state
4054 *
4055 * Attempts to reuse the node, but may allocate.
4056 *
4057 * Return: True if stored, false otherwise
4058 */
4059static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4060{
4061 struct ma_state *mas = wr_mas->mas;
4062 void __rcu **dst_slots;
4063 unsigned long *dst_pivots;
4064 unsigned char dst_offset;
4065 unsigned char new_end = wr_mas->node_end;
4066 unsigned char offset;
4067 unsigned char node_slots = mt_slots[wr_mas->type];
4068 struct maple_node reuse, *newnode;
4069 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4070 bool in_rcu = mt_in_rcu(mas->tree);
4071
4072 offset = mas->offset;
4073 if (mas->last == wr_mas->r_max) {
4074 /* runs right to the end of the node */
4075 if (mas->last == mas->max)
4076 new_end = offset;
4077 /* don't copy this offset */
4078 wr_mas->offset_end++;
4079 } else if (mas->last < wr_mas->r_max) {
4080 /* new range ends in this range */
4081 if (unlikely(wr_mas->r_max == ULONG_MAX))
4082 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4083
4084 new_end++;
4085 } else {
4086 if (wr_mas->end_piv == mas->last)
4087 wr_mas->offset_end++;
4088
4089 new_end -= wr_mas->offset_end - offset - 1;
4090 }
4091
4092 /* new range starts within a range */
4093 if (wr_mas->r_min < mas->index)
4094 new_end++;
4095
4096 /* Not enough room */
4097 if (new_end >= node_slots)
4098 return false;
4099
4100 /* Not enough data. */
4101 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4102 !(mas->mas_flags & MA_STATE_BULK))
4103 return false;
4104
4105 /* set up node. */
4106 if (in_rcu) {
4107 mas_node_count(mas, 1);
4108 if (mas_is_err(mas))
4109 return false;
4110
4111 newnode = mas_pop_node(mas);
4112 } else {
4113 memset(&reuse, 0, sizeof(struct maple_node));
4114 newnode = &reuse;
4115 }
4116
4117 newnode->parent = mas_mn(mas)->parent;
4118 dst_pivots = ma_pivots(newnode, wr_mas->type);
4119 dst_slots = ma_slots(newnode, wr_mas->type);
4120 /* Copy from start to insert point */
4121 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4122 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4123 dst_offset = offset;
4124
4125 /* Handle insert of new range starting after old range */
4126 if (wr_mas->r_min < mas->index) {
4127 mas->offset++;
4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4129 dst_pivots[dst_offset++] = mas->index - 1;
4130 }
4131
4132 /* Store the new entry and range end. */
4133 if (dst_offset < max_piv)
4134 dst_pivots[dst_offset] = mas->last;
4135 mas->offset = dst_offset;
4136 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4137
4138 /*
4139 * this range wrote to the end of the node or it overwrote the rest of
4140 * the data
4141 */
4142 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4143 new_end = dst_offset;
4144 goto done;
4145 }
4146
4147 dst_offset++;
4148 /* Copy to the end of node if necessary. */
4149 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4150 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4151 sizeof(void *) * copy_size);
4152 if (dst_offset < max_piv) {
4153 if (copy_size > max_piv - dst_offset)
4154 copy_size = max_piv - dst_offset;
4155
4156 memcpy(dst_pivots + dst_offset,
4157 wr_mas->pivots + wr_mas->offset_end,
4158 sizeof(unsigned long) * copy_size);
4159 }
4160
4161 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4162 dst_pivots[new_end] = mas->max;
4163
4164done:
4165 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4166 if (in_rcu) {
4167 mas->node = mt_mk_node(newnode, wr_mas->type);
4168 mas_replace(mas, false);
4169 } else {
4170 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4171 }
4172 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4173 mas_update_gap(mas);
4174 return true;
4175}
4176
4177/*
4178 * mas_wr_slot_store: Attempt to store a value in a slot.
4179 * @wr_mas: the maple write state
4180 *
4181 * Return: True if stored, false otherwise
4182 */
4183static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4184{
4185 struct ma_state *mas = wr_mas->mas;
4186 unsigned long lmax; /* Logical max. */
4187 unsigned char offset = mas->offset;
4188
4189 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4190 (offset != wr_mas->node_end)))
4191 return false;
4192
4193 if (offset == wr_mas->node_end - 1)
4194 lmax = mas->max;
4195 else
4196 lmax = wr_mas->pivots[offset + 1];
4197
4198 /* going to overwrite too many slots. */
4199 if (lmax < mas->last)
4200 return false;
4201
4202 if (wr_mas->r_min == mas->index) {
4203 /* overwriting two or more ranges with one. */
4204 if (lmax == mas->last)
4205 return false;
4206
4207 /* Overwriting all of offset and a portion of offset + 1. */
4208 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4209 wr_mas->pivots[offset] = mas->last;
4210 goto done;
4211 }
4212
4213 /* Doesn't end on the next range end. */
4214 if (lmax != mas->last)
4215 return false;
4216
4217 /* Overwriting a portion of offset and all of offset + 1 */
4218 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4219 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4220 wr_mas->pivots[offset + 1] = mas->last;
4221
4222 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4223 wr_mas->pivots[offset] = mas->index - 1;
4224 mas->offset++; /* Keep mas accurate. */
4225
4226done:
4227 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4228 mas_update_gap(mas);
4229 return true;
4230}
4231
4232static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4233{
4234 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4235 (wr_mas->offset_end < wr_mas->node_end))
4236 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4237
4238 if (wr_mas->mas->last > wr_mas->end_piv)
4239 wr_mas->end_piv = wr_mas->mas->max;
4240}
4241
4242static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4243{
4244 struct ma_state *mas = wr_mas->mas;
4245
4246 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4247 mas->last = wr_mas->end_piv;
4248
4249 /* Check next slot(s) if we are overwriting the end */
4250 if ((mas->last == wr_mas->end_piv) &&
4251 (wr_mas->node_end != wr_mas->offset_end) &&
4252 !wr_mas->slots[wr_mas->offset_end + 1]) {
4253 wr_mas->offset_end++;
4254 if (wr_mas->offset_end == wr_mas->node_end)
4255 mas->last = mas->max;
4256 else
4257 mas->last = wr_mas->pivots[wr_mas->offset_end];
4258 wr_mas->end_piv = mas->last;
4259 }
4260
4261 if (!wr_mas->content) {
4262 /* If this one is null, the next and prev are not */
4263 mas->index = wr_mas->r_min;
4264 } else {
4265 /* Check prev slot if we are overwriting the start */
4266 if (mas->index == wr_mas->r_min && mas->offset &&
4267 !wr_mas->slots[mas->offset - 1]) {
4268 mas->offset--;
4269 wr_mas->r_min = mas->index =
4270 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4271 wr_mas->r_max = wr_mas->pivots[mas->offset];
4272 }
4273 }
4274}
4275
4276static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4277{
4278 unsigned char end = wr_mas->node_end;
4279 unsigned char new_end = end + 1;
4280 struct ma_state *mas = wr_mas->mas;
4281 unsigned char node_pivots = mt_pivots[wr_mas->type];
4282
4283 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4284 if (new_end < node_pivots)
4285 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4286
4287 if (new_end < node_pivots)
4288 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4289
4290 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4291 mas->offset = new_end;
4292 wr_mas->pivots[end] = mas->index - 1;
4293
4294 return true;
4295 }
4296
4297 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4298 if (new_end < node_pivots)
4299 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4300
4301 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4302 if (new_end < node_pivots)
4303 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4304
4305 wr_mas->pivots[end] = mas->last;
4306 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4307 return true;
4308 }
4309
4310 return false;
4311}
4312
4313/*
4314 * mas_wr_bnode() - Slow path for a modification.
4315 * @wr_mas: The write maple state
4316 *
4317 * This is where split, rebalance end up.
4318 */
4319static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4320{
4321 struct maple_big_node b_node;
4322
4323 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4324 memset(&b_node, 0, sizeof(struct maple_big_node));
4325 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4326 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4327}
4328
4329static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4330{
4331 unsigned char node_slots;
4332 unsigned char node_size;
4333 struct ma_state *mas = wr_mas->mas;
4334
4335 /* Direct replacement */
4336 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4337 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4338 if (!!wr_mas->entry ^ !!wr_mas->content)
4339 mas_update_gap(mas);
4340 return;
4341 }
4342
4343 /* Attempt to append */
4344 node_slots = mt_slots[wr_mas->type];
4345 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4346 if (mas->max == ULONG_MAX)
4347 node_size++;
4348
4349 /* slot and node store will not fit, go to the slow path */
4350 if (unlikely(node_size >= node_slots))
4351 goto slow_path;
4352
4353 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4354 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4355 if (!wr_mas->content || !wr_mas->entry)
4356 mas_update_gap(mas);
4357 return;
4358 }
4359
4360 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4361 return;
4362 else if (mas_wr_node_store(wr_mas))
4363 return;
4364
4365 if (mas_is_err(mas))
4366 return;
4367
4368slow_path:
4369 mas_wr_bnode(wr_mas);
4370}
4371
4372/*
4373 * mas_wr_store_entry() - Internal call to store a value
4374 * @mas: The maple state
4375 * @entry: The entry to store.
4376 *
4377 * Return: The contents that was stored at the index.
4378 */
4379static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4380{
4381 struct ma_state *mas = wr_mas->mas;
4382
4383 wr_mas->content = mas_start(mas);
4384 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4385 mas_store_root(mas, wr_mas->entry);
4386 return wr_mas->content;
4387 }
4388
4389 if (unlikely(!mas_wr_walk(wr_mas))) {
4390 mas_wr_spanning_store(wr_mas);
4391 return wr_mas->content;
4392 }
4393
4394 /* At this point, we are at the leaf node that needs to be altered. */
4395 wr_mas->end_piv = wr_mas->r_max;
4396 mas_wr_end_piv(wr_mas);
4397
4398 if (!wr_mas->entry)
4399 mas_wr_extend_null(wr_mas);
4400
4401 /* New root for a single pointer */
4402 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4403 mas_new_root(mas, wr_mas->entry);
4404 return wr_mas->content;
4405 }
4406
4407 mas_wr_modify(wr_mas);
4408 return wr_mas->content;
4409}
4410
4411/**
4412 * mas_insert() - Internal call to insert a value
4413 * @mas: The maple state
4414 * @entry: The entry to store
4415 *
4416 * Return: %NULL or the contents that already exists at the requested index
4417 * otherwise. The maple state needs to be checked for error conditions.
4418 */
4419static inline void *mas_insert(struct ma_state *mas, void *entry)
4420{
4421 MA_WR_STATE(wr_mas, mas, entry);
4422
4423 /*
4424 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4425 * tree. If the insert fits exactly into an existing gap with a value
4426 * of NULL, then the slot only needs to be written with the new value.
4427 * If the range being inserted is adjacent to another range, then only a
4428 * single pivot needs to be inserted (as well as writing the entry). If
4429 * the new range is within a gap but does not touch any other ranges,
4430 * then two pivots need to be inserted: the start - 1, and the end. As
4431 * usual, the entry must be written. Most operations require a new node
4432 * to be allocated and replace an existing node to ensure RCU safety,
4433 * when in RCU mode. The exception to requiring a newly allocated node
4434 * is when inserting at the end of a node (appending). When done
4435 * carefully, appending can reuse the node in place.
4436 */
4437 wr_mas.content = mas_start(mas);
4438 if (wr_mas.content)
4439 goto exists;
4440
4441 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4442 mas_store_root(mas, entry);
4443 return NULL;
4444 }
4445
4446 /* spanning writes always overwrite something */
4447 if (!mas_wr_walk(&wr_mas))
4448 goto exists;
4449
4450 /* At this point, we are at the leaf node that needs to be altered. */
4451 wr_mas.offset_end = mas->offset;
4452 wr_mas.end_piv = wr_mas.r_max;
4453
4454 if (wr_mas.content || (mas->last > wr_mas.r_max))
4455 goto exists;
4456
4457 if (!entry)
4458 return NULL;
4459
4460 mas_wr_modify(&wr_mas);
4461 return wr_mas.content;
4462
4463exists:
4464 mas_set_err(mas, -EEXIST);
4465 return wr_mas.content;
4466
4467}
4468
4469/*
4470 * mas_prev_node() - Find the prev non-null entry at the same level in the
4471 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4472 * @mas: The maple state
4473 * @min: The lower limit to search
4474 *
4475 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4476 * Return: 1 if the node is dead, 0 otherwise.
4477 */
4478static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4479{
4480 enum maple_type mt;
4481 int offset, level;
4482 void __rcu **slots;
4483 struct maple_node *node;
4484 struct maple_enode *enode;
4485 unsigned long *pivots;
4486
4487 if (mas_is_none(mas))
4488 return 0;
4489
4490 level = 0;
4491 do {
4492 node = mas_mn(mas);
4493 if (ma_is_root(node))
4494 goto no_entry;
4495
4496 /* Walk up. */
4497 if (unlikely(mas_ascend(mas)))
4498 return 1;
4499 offset = mas->offset;
4500 level++;
4501 } while (!offset);
4502
4503 offset--;
4504 mt = mte_node_type(mas->node);
4505 node = mas_mn(mas);
4506 slots = ma_slots(node, mt);
4507 pivots = ma_pivots(node, mt);
4508 mas->max = pivots[offset];
4509 if (offset)
4510 mas->min = pivots[offset - 1] + 1;
4511 if (unlikely(ma_dead_node(node)))
4512 return 1;
4513
4514 if (mas->max < min)
4515 goto no_entry_min;
4516
4517 while (level > 1) {
4518 level--;
4519 enode = mas_slot(mas, slots, offset);
4520 if (unlikely(ma_dead_node(node)))
4521 return 1;
4522
4523 mas->node = enode;
4524 mt = mte_node_type(mas->node);
4525 node = mas_mn(mas);
4526 slots = ma_slots(node, mt);
4527 pivots = ma_pivots(node, mt);
4528 offset = ma_data_end(node, mt, pivots, mas->max);
4529 if (offset)
4530 mas->min = pivots[offset - 1] + 1;
4531
4532 if (offset < mt_pivots[mt])
4533 mas->max = pivots[offset];
4534
4535 if (mas->max < min)
4536 goto no_entry;
4537 }
4538
4539 mas->node = mas_slot(mas, slots, offset);
4540 if (unlikely(ma_dead_node(node)))
4541 return 1;
4542
4543 mas->offset = mas_data_end(mas);
4544 if (unlikely(mte_dead_node(mas->node)))
4545 return 1;
4546
4547 return 0;
4548
4549no_entry_min:
4550 mas->offset = offset;
4551 if (offset)
4552 mas->min = pivots[offset - 1] + 1;
4553no_entry:
4554 if (unlikely(ma_dead_node(node)))
4555 return 1;
4556
4557 mas->node = MAS_NONE;
4558 return 0;
4559}
4560
4561/*
4562 * mas_next_node() - Get the next node at the same level in the tree.
4563 * @mas: The maple state
4564 * @max: The maximum pivot value to check.
4565 *
4566 * The next value will be mas->node[mas->offset] or MAS_NONE.
4567 * Return: 1 on dead node, 0 otherwise.
4568 */
4569static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4570 unsigned long max)
4571{
4572 unsigned long min, pivot;
4573 unsigned long *pivots;
4574 struct maple_enode *enode;
4575 int level = 0;
4576 unsigned char offset;
4577 enum maple_type mt;
4578 void __rcu **slots;
4579
4580 if (mas->max >= max)
4581 goto no_entry;
4582
4583 level = 0;
4584 do {
4585 if (ma_is_root(node))
4586 goto no_entry;
4587
4588 min = mas->max + 1;
4589 if (min > max)
4590 goto no_entry;
4591
4592 if (unlikely(mas_ascend(mas)))
4593 return 1;
4594
4595 offset = mas->offset;
4596 level++;
4597 node = mas_mn(mas);
4598 mt = mte_node_type(mas->node);
4599 pivots = ma_pivots(node, mt);
4600 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4601
4602 slots = ma_slots(node, mt);
4603 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4604 while (unlikely(level > 1)) {
4605 /* Descend, if necessary */
4606 enode = mas_slot(mas, slots, offset);
4607 if (unlikely(ma_dead_node(node)))
4608 return 1;
4609
4610 mas->node = enode;
4611 level--;
4612 node = mas_mn(mas);
4613 mt = mte_node_type(mas->node);
4614 slots = ma_slots(node, mt);
4615 pivots = ma_pivots(node, mt);
4616 offset = 0;
4617 pivot = pivots[0];
4618 }
4619
4620 enode = mas_slot(mas, slots, offset);
4621 if (unlikely(ma_dead_node(node)))
4622 return 1;
4623
4624 mas->node = enode;
4625 mas->min = min;
4626 mas->max = pivot;
4627 return 0;
4628
4629no_entry:
4630 if (unlikely(ma_dead_node(node)))
4631 return 1;
4632
4633 mas->node = MAS_NONE;
4634 return 0;
4635}
4636
4637/*
4638 * mas_next_nentry() - Get the next node entry
4639 * @mas: The maple state
4640 * @max: The maximum value to check
4641 * @*range_start: Pointer to store the start of the range.
4642 *
4643 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4644 * pivot of the entry.
4645 *
4646 * Return: The next entry, %NULL otherwise
4647 */
4648static inline void *mas_next_nentry(struct ma_state *mas,
4649 struct maple_node *node, unsigned long max, enum maple_type type)
4650{
4651 unsigned char count;
4652 unsigned long pivot;
4653 unsigned long *pivots;
4654 void __rcu **slots;
4655 void *entry;
4656
4657 if (mas->last == mas->max) {
4658 mas->index = mas->max;
4659 return NULL;
4660 }
4661
4662 pivots = ma_pivots(node, type);
4663 slots = ma_slots(node, type);
4664 mas->index = mas_safe_min(mas, pivots, mas->offset);
65be6f05 4665 count = ma_data_end(node, type, pivots, mas->max);
54a611b6
LH
4666 if (ma_dead_node(node))
4667 return NULL;
4668
4669 if (mas->index > max)
4670 return NULL;
4671
54a611b6
LH
4672 if (mas->offset > count)
4673 return NULL;
4674
4675 while (mas->offset < count) {
4676 pivot = pivots[mas->offset];
4677 entry = mas_slot(mas, slots, mas->offset);
4678 if (ma_dead_node(node))
4679 return NULL;
4680
4681 if (entry)
4682 goto found;
4683
4684 if (pivot >= max)
4685 return NULL;
4686
4687 mas->index = pivot + 1;
4688 mas->offset++;
4689 }
4690
4691 if (mas->index > mas->max) {
4692 mas->index = mas->last;
4693 return NULL;
4694 }
4695
4696 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4697 entry = mas_slot(mas, slots, mas->offset);
4698 if (ma_dead_node(node))
4699 return NULL;
4700
4701 if (!pivot)
4702 return NULL;
4703
4704 if (!entry)
4705 return NULL;
4706
4707found:
4708 mas->last = pivot;
4709 return entry;
4710}
4711
4712static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4713{
54a611b6
LH
4714retry:
4715 mas_set(mas, index);
4716 mas_state_walk(mas);
4717 if (mas_is_start(mas))
4718 goto retry;
54a611b6
LH
4719}
4720
4721/*
4722 * mas_next_entry() - Internal function to get the next entry.
4723 * @mas: The maple state
4724 * @limit: The maximum range start.
4725 *
4726 * Set the @mas->node to the next entry and the range_start to
4727 * the beginning value for the entry. Does not check beyond @limit.
4728 * Sets @mas->index and @mas->last to the limit if it is hit.
4729 * Restarts on dead nodes.
4730 *
4731 * Return: the next entry or %NULL.
4732 */
4733static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4734{
4735 void *entry = NULL;
4736 struct maple_enode *prev_node;
4737 struct maple_node *node;
4738 unsigned char offset;
4739 unsigned long last;
4740 enum maple_type mt;
4741
50e81c82
LH
4742 if (mas->index > limit) {
4743 mas->index = mas->last = limit;
4744 mas_pause(mas);
4745 return NULL;
4746 }
54a611b6
LH
4747 last = mas->last;
4748retry:
4749 offset = mas->offset;
4750 prev_node = mas->node;
4751 node = mas_mn(mas);
4752 mt = mte_node_type(mas->node);
4753 mas->offset++;
4754 if (unlikely(mas->offset >= mt_slots[mt])) {
4755 mas->offset = mt_slots[mt] - 1;
4756 goto next_node;
4757 }
4758
4759 while (!mas_is_none(mas)) {
4760 entry = mas_next_nentry(mas, node, limit, mt);
4761 if (unlikely(ma_dead_node(node))) {
4762 mas_rewalk(mas, last);
4763 goto retry;
4764 }
4765
4766 if (likely(entry))
4767 return entry;
4768
4769 if (unlikely((mas->index > limit)))
4770 break;
4771
4772next_node:
4773 prev_node = mas->node;
4774 offset = mas->offset;
4775 if (unlikely(mas_next_node(mas, node, limit))) {
4776 mas_rewalk(mas, last);
4777 goto retry;
4778 }
4779 mas->offset = 0;
4780 node = mas_mn(mas);
4781 mt = mte_node_type(mas->node);
4782 }
4783
4784 mas->index = mas->last = limit;
4785 mas->offset = offset;
4786 mas->node = prev_node;
4787 return NULL;
4788}
4789
4790/*
4791 * mas_prev_nentry() - Get the previous node entry.
4792 * @mas: The maple state.
4793 * @limit: The lower limit to check for a value.
4794 *
4795 * Return: the entry, %NULL otherwise.
4796 */
4797static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4798 unsigned long index)
4799{
4800 unsigned long pivot, min;
4801 unsigned char offset;
4802 struct maple_node *mn;
4803 enum maple_type mt;
4804 unsigned long *pivots;
4805 void __rcu **slots;
4806 void *entry;
4807
4808retry:
4809 if (!mas->offset)
4810 return NULL;
4811
4812 mn = mas_mn(mas);
4813 mt = mte_node_type(mas->node);
4814 offset = mas->offset - 1;
4815 if (offset >= mt_slots[mt])
4816 offset = mt_slots[mt] - 1;
4817
4818 slots = ma_slots(mn, mt);
4819 pivots = ma_pivots(mn, mt);
4820 if (offset == mt_pivots[mt])
4821 pivot = mas->max;
4822 else
4823 pivot = pivots[offset];
4824
4825 if (unlikely(ma_dead_node(mn))) {
4826 mas_rewalk(mas, index);
4827 goto retry;
4828 }
4829
4830 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4831 !pivot))
4832 pivot = pivots[--offset];
4833
4834 min = mas_safe_min(mas, pivots, offset);
4835 entry = mas_slot(mas, slots, offset);
4836 if (unlikely(ma_dead_node(mn))) {
4837 mas_rewalk(mas, index);
4838 goto retry;
4839 }
4840
4841 if (likely(entry)) {
4842 mas->offset = offset;
4843 mas->last = pivot;
4844 mas->index = min;
4845 }
4846 return entry;
4847}
4848
4849static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4850{
4851 void *entry;
4852
50e81c82
LH
4853 if (mas->index < min) {
4854 mas->index = mas->last = min;
17dc622c 4855 mas->node = MAS_NONE;
50e81c82
LH
4856 return NULL;
4857 }
54a611b6
LH
4858retry:
4859 while (likely(!mas_is_none(mas))) {
4860 entry = mas_prev_nentry(mas, min, mas->index);
4861 if (unlikely(mas->last < min))
4862 goto not_found;
4863
4864 if (likely(entry))
4865 return entry;
4866
4867 if (unlikely(mas_prev_node(mas, min))) {
4868 mas_rewalk(mas, mas->index);
4869 goto retry;
4870 }
4871
4872 mas->offset++;
4873 }
4874
4875 mas->offset--;
4876not_found:
4877 mas->index = mas->last = min;
4878 return NULL;
4879}
4880
4881/*
4882 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4883 * highest gap address of a given size in a given node and descend.
4884 * @mas: The maple state
4885 * @size: The needed size.
4886 *
4887 * Return: True if found in a leaf, false otherwise.
4888 *
4889 */
4890static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4891{
4892 enum maple_type type = mte_node_type(mas->node);
4893 struct maple_node *node = mas_mn(mas);
4894 unsigned long *pivots, *gaps;
4895 void __rcu **slots;
4896 unsigned long gap = 0;
7327e811 4897 unsigned long max, min;
54a611b6
LH
4898 unsigned char offset;
4899
4900 if (unlikely(mas_is_err(mas)))
4901 return true;
4902
4903 if (ma_is_dense(type)) {
4904 /* dense nodes. */
4905 mas->offset = (unsigned char)(mas->index - mas->min);
4906 return true;
4907 }
4908
4909 pivots = ma_pivots(node, type);
4910 slots = ma_slots(node, type);
4911 gaps = ma_gaps(node, type);
4912 offset = mas->offset;
4913 min = mas_safe_min(mas, pivots, offset);
4914 /* Skip out of bounds. */
4915 while (mas->last < min)
4916 min = mas_safe_min(mas, pivots, --offset);
4917
4918 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4919 while (mas->index <= max) {
54a611b6
LH
4920 gap = 0;
4921 if (gaps)
4922 gap = gaps[offset];
4923 else if (!mas_slot(mas, slots, offset))
4924 gap = max - min + 1;
4925
4926 if (gap) {
4927 if ((size <= gap) && (size <= mas->last - min + 1))
4928 break;
4929
4930 if (!gaps) {
4931 /* Skip the next slot, it cannot be a gap. */
4932 if (offset < 2)
4933 goto ascend;
4934
4935 offset -= 2;
4936 max = pivots[offset];
4937 min = mas_safe_min(mas, pivots, offset);
4938 continue;
4939 }
4940 }
4941
4942 if (!offset)
4943 goto ascend;
4944
4945 offset--;
4946 max = min - 1;
4947 min = mas_safe_min(mas, pivots, offset);
4948 }
4949
7327e811
LH
4950 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4951 goto no_space;
54a611b6
LH
4952
4953 if (unlikely(ma_is_leaf(type))) {
4954 mas->offset = offset;
4955 mas->min = min;
4956 mas->max = min + gap - 1;
4957 return true;
4958 }
4959
4960 /* descend, only happens under lock. */
4961 mas->node = mas_slot(mas, slots, offset);
4962 mas->min = min;
4963 mas->max = max;
4964 mas->offset = mas_data_end(mas);
4965 return false;
4966
4967ascend:
7327e811
LH
4968 if (!mte_is_root(mas->node))
4969 return false;
54a611b6 4970
7327e811
LH
4971no_space:
4972 mas_set_err(mas, -EBUSY);
54a611b6
LH
4973 return false;
4974}
4975
4976static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4977{
4978 enum maple_type type = mte_node_type(mas->node);
4979 unsigned long pivot, min, gap = 0;
9a887877
LH
4980 unsigned char offset;
4981 unsigned long *gaps;
4982 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
54a611b6
LH
4983 void __rcu **slots = ma_slots(mas_mn(mas), type);
4984 bool found = false;
4985
4986 if (ma_is_dense(type)) {
4987 mas->offset = (unsigned char)(mas->index - mas->min);
4988 return true;
4989 }
4990
4991 gaps = ma_gaps(mte_to_node(mas->node), type);
4992 offset = mas->offset;
54a611b6 4993 min = mas_safe_min(mas, pivots, offset);
9a887877 4994 for (; offset < mt_slots[type]; offset++) {
54a611b6
LH
4995 pivot = mas_safe_pivot(mas, pivots, offset, type);
4996 if (offset && !pivot)
4997 break;
4998
4999 /* Not within lower bounds */
5000 if (mas->index > pivot)
5001 goto next_slot;
5002
5003 if (gaps)
5004 gap = gaps[offset];
5005 else if (!mas_slot(mas, slots, offset))
5006 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5007 else
5008 goto next_slot;
5009
5010 if (gap >= size) {
5011 if (ma_is_leaf(type)) {
5012 found = true;
5013 goto done;
5014 }
5015 if (mas->index <= pivot) {
5016 mas->node = mas_slot(mas, slots, offset);
5017 mas->min = min;
5018 mas->max = pivot;
5019 offset = 0;
54a611b6
LH
5020 break;
5021 }
5022 }
5023next_slot:
5024 min = pivot + 1;
5025 if (mas->last <= pivot) {
5026 mas_set_err(mas, -EBUSY);
5027 return true;
5028 }
5029 }
5030
5031 if (mte_is_root(mas->node))
5032 found = true;
5033done:
5034 mas->offset = offset;
5035 return found;
5036}
5037
5038/**
5039 * mas_walk() - Search for @mas->index in the tree.
5040 * @mas: The maple state.
5041 *
5042 * mas->index and mas->last will be set to the range if there is a value. If
5043 * mas->node is MAS_NONE, reset to MAS_START.
5044 *
5045 * Return: the entry at the location or %NULL.
5046 */
5047void *mas_walk(struct ma_state *mas)
5048{
5049 void *entry;
5050
5051retry:
5052 entry = mas_state_walk(mas);
5053 if (mas_is_start(mas))
5054 goto retry;
5055
5056 if (mas_is_ptr(mas)) {
5057 if (!mas->index) {
5058 mas->last = 0;
5059 } else {
5060 mas->index = 1;
5061 mas->last = ULONG_MAX;
5062 }
5063 return entry;
5064 }
5065
5066 if (mas_is_none(mas)) {
5067 mas->index = 0;
5068 mas->last = ULONG_MAX;
5069 }
5070
5071 return entry;
5072}
120b1162 5073EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
5074
5075static inline bool mas_rewind_node(struct ma_state *mas)
5076{
5077 unsigned char slot;
5078
5079 do {
5080 if (mte_is_root(mas->node)) {
5081 slot = mas->offset;
5082 if (!slot)
5083 return false;
5084 } else {
5085 mas_ascend(mas);
5086 slot = mas->offset;
5087 }
5088 } while (!slot);
5089
5090 mas->offset = --slot;
5091 return true;
5092}
5093
5094/*
5095 * mas_skip_node() - Internal function. Skip over a node.
5096 * @mas: The maple state.
5097 *
5098 * Return: true if there is another node, false otherwise.
5099 */
5100static inline bool mas_skip_node(struct ma_state *mas)
5101{
0fa99fdf
LH
5102 if (mas_is_err(mas))
5103 return false;
54a611b6 5104
54a611b6
LH
5105 do {
5106 if (mte_is_root(mas->node)) {
0fa99fdf 5107 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5108 mas_set_err(mas, -EBUSY);
5109 return false;
5110 }
5111 } else {
5112 mas_ascend(mas);
54a611b6 5113 }
0fa99fdf 5114 } while (mas->offset >= mas_data_end(mas));
54a611b6 5115
0fa99fdf 5116 mas->offset++;
54a611b6
LH
5117 return true;
5118}
5119
5120/*
5121 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5122 * @size
5123 * @mas: The maple state
5124 * @size: The size of the gap required
5125 *
5126 * Search between @mas->index and @mas->last for a gap of @size.
5127 */
5128static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5129{
5130 struct maple_enode *last = NULL;
5131
5132 /*
5133 * There are 4 options:
5134 * go to child (descend)
5135 * go back to parent (ascend)
5136 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5137 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5138 */
5139 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5140 if (last == mas->node)
5141 mas_skip_node(mas);
5142 else
5143 last = mas->node;
5144 }
5145}
5146
5147/*
5148 * mas_fill_gap() - Fill a located gap with @entry.
5149 * @mas: The maple state
5150 * @entry: The value to store
5151 * @slot: The offset into the node to store the @entry
5152 * @size: The size of the entry
5153 * @index: The start location
5154 */
5155static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5156 unsigned char slot, unsigned long size, unsigned long *index)
5157{
5158 MA_WR_STATE(wr_mas, mas, entry);
5159 unsigned char pslot = mte_parent_slot(mas->node);
5160 struct maple_enode *mn = mas->node;
5161 unsigned long *pivots;
5162 enum maple_type ptype;
5163 /*
5164 * mas->index is the start address for the search
5165 * which may no longer be needed.
5166 * mas->last is the end address for the search
5167 */
5168
5169 *index = mas->index;
5170 mas->last = mas->index + size - 1;
5171
5172 /*
5173 * It is possible that using mas->max and mas->min to correctly
5174 * calculate the index and last will cause an issue in the gap
5175 * calculation, so fix the ma_state here
5176 */
5177 mas_ascend(mas);
5178 ptype = mte_node_type(mas->node);
5179 pivots = ma_pivots(mas_mn(mas), ptype);
5180 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5181 mas->min = mas_safe_min(mas, pivots, pslot);
5182 mas->node = mn;
5183 mas->offset = slot;
5184 mas_wr_store_entry(&wr_mas);
5185}
5186
5187/*
5188 * mas_sparse_area() - Internal function. Return upper or lower limit when
5189 * searching for a gap in an empty tree.
5190 * @mas: The maple state
5191 * @min: the minimum range
5192 * @max: The maximum range
5193 * @size: The size of the gap
5194 * @fwd: Searching forward or back
5195 */
5196static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5197 unsigned long max, unsigned long size, bool fwd)
5198{
5199 unsigned long start = 0;
5200
5201 if (!unlikely(mas_is_none(mas)))
5202 start++;
5203 /* mas_is_ptr */
5204
5205 if (start < min)
5206 start = min;
5207
5208 if (fwd) {
5209 mas->index = start;
5210 mas->last = start + size - 1;
5211 return;
5212 }
5213
5214 mas->index = max;
5215}
5216
5217/*
5218 * mas_empty_area() - Get the lowest address within the range that is
5219 * sufficient for the size requested.
5220 * @mas: The maple state
5221 * @min: The lowest value of the range
5222 * @max: The highest value of the range
5223 * @size: The size needed
5224 */
5225int mas_empty_area(struct ma_state *mas, unsigned long min,
5226 unsigned long max, unsigned long size)
5227{
5228 unsigned char offset;
5229 unsigned long *pivots;
5230 enum maple_type mt;
5231
5232 if (mas_is_start(mas))
5233 mas_start(mas);
5234 else if (mas->offset >= 2)
5235 mas->offset -= 2;
5236 else if (!mas_skip_node(mas))
5237 return -EBUSY;
5238
5239 /* Empty set */
5240 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5241 mas_sparse_area(mas, min, max, size, true);
5242 return 0;
5243 }
5244
5245 /* The start of the window can only be within these values */
5246 mas->index = min;
5247 mas->last = max;
5248 mas_awalk(mas, size);
5249
5250 if (unlikely(mas_is_err(mas)))
5251 return xa_err(mas->node);
5252
5253 offset = mas->offset;
5254 if (unlikely(offset == MAPLE_NODE_SLOTS))
5255 return -EBUSY;
5256
5257 mt = mte_node_type(mas->node);
5258 pivots = ma_pivots(mas_mn(mas), mt);
5259 if (offset)
5260 mas->min = pivots[offset - 1] + 1;
5261
5262 if (offset < mt_pivots[mt])
5263 mas->max = pivots[offset];
5264
5265 if (mas->index < mas->min)
5266 mas->index = mas->min;
5267
5268 mas->last = mas->index + size - 1;
5269 return 0;
5270}
120b1162 5271EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5272
5273/*
5274 * mas_empty_area_rev() - Get the highest address within the range that is
5275 * sufficient for the size requested.
5276 * @mas: The maple state
5277 * @min: The lowest value of the range
5278 * @max: The highest value of the range
5279 * @size: The size needed
5280 */
5281int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5282 unsigned long max, unsigned long size)
5283{
5284 struct maple_enode *last = mas->node;
5285
5286 if (mas_is_start(mas)) {
5287 mas_start(mas);
5288 mas->offset = mas_data_end(mas);
5289 } else if (mas->offset >= 2) {
5290 mas->offset -= 2;
5291 } else if (!mas_rewind_node(mas)) {
5292 return -EBUSY;
5293 }
5294
5295 /* Empty set. */
5296 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5297 mas_sparse_area(mas, min, max, size, false);
5298 return 0;
5299 }
5300
5301 /* The start of the window can only be within these values. */
5302 mas->index = min;
5303 mas->last = max;
5304
5305 while (!mas_rev_awalk(mas, size)) {
5306 if (last == mas->node) {
5307 if (!mas_rewind_node(mas))
5308 return -EBUSY;
5309 } else {
5310 last = mas->node;
5311 }
5312 }
5313
5314 if (mas_is_err(mas))
5315 return xa_err(mas->node);
5316
5317 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5318 return -EBUSY;
5319
5320 /*
5321 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5322 * the maximum is outside the window we are searching, then use the last
5323 * location in the search.
5324 * mas->max and mas->min is the range of the gap.
5325 * mas->index and mas->last are currently set to the search range.
5326 */
5327
5328 /* Trim the upper limit to the max. */
5329 if (mas->max <= mas->last)
5330 mas->last = mas->max;
5331
5332 mas->index = mas->last - size + 1;
5333 return 0;
5334}
120b1162 5335EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6
LH
5336
5337static inline int mas_alloc(struct ma_state *mas, void *entry,
5338 unsigned long size, unsigned long *index)
5339{
5340 unsigned long min;
5341
5342 mas_start(mas);
5343 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5344 mas_root_expand(mas, entry);
5345 if (mas_is_err(mas))
5346 return xa_err(mas->node);
5347
5348 if (!mas->index)
5349 return mte_pivot(mas->node, 0);
5350 return mte_pivot(mas->node, 1);
5351 }
5352
5353 /* Must be walking a tree. */
5354 mas_awalk(mas, size);
5355 if (mas_is_err(mas))
5356 return xa_err(mas->node);
5357
5358 if (mas->offset == MAPLE_NODE_SLOTS)
5359 goto no_gap;
5360
5361 /*
5362 * At this point, mas->node points to the right node and we have an
5363 * offset that has a sufficient gap.
5364 */
5365 min = mas->min;
5366 if (mas->offset)
5367 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5368
5369 if (mas->index < min)
5370 mas->index = min;
5371
5372 mas_fill_gap(mas, entry, mas->offset, size, index);
5373 return 0;
5374
5375no_gap:
5376 return -EBUSY;
5377}
5378
5379static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5380 unsigned long max, void *entry,
5381 unsigned long size, unsigned long *index)
5382{
5383 int ret = 0;
5384
5385 ret = mas_empty_area_rev(mas, min, max, size);
5386 if (ret)
5387 return ret;
5388
5389 if (mas_is_err(mas))
5390 return xa_err(mas->node);
5391
5392 if (mas->offset == MAPLE_NODE_SLOTS)
5393 goto no_gap;
5394
5395 mas_fill_gap(mas, entry, mas->offset, size, index);
5396 return 0;
5397
5398no_gap:
5399 return -EBUSY;
5400}
5401
5402/*
5403 * mas_dead_leaves() - Mark all leaves of a node as dead.
5404 * @mas: The maple state
5405 * @slots: Pointer to the slot array
5406 *
5407 * Must hold the write lock.
5408 *
5409 * Return: The number of leaves marked as dead.
5410 */
5411static inline
5412unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5413{
5414 struct maple_node *node;
5415 enum maple_type type;
5416 void *entry;
5417 int offset;
5418
5419 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5420 entry = mas_slot_locked(mas, slots, offset);
5421 type = mte_node_type(entry);
5422 node = mte_to_node(entry);
5423 /* Use both node and type to catch LE & BE metadata */
5424 if (!node || !type)
5425 break;
5426
5427 mte_set_node_dead(entry);
5428 smp_wmb(); /* Needed for RCU */
5429 node->type = type;
5430 rcu_assign_pointer(slots[offset], node);
5431 }
5432
5433 return offset;
5434}
5435
5436static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5437{
5438 struct maple_node *node, *next;
5439 void __rcu **slots = NULL;
5440
5441 next = mas_mn(mas);
5442 do {
5443 mas->node = ma_enode_ptr(next);
5444 node = mas_mn(mas);
5445 slots = ma_slots(node, node->type);
5446 next = mas_slot_locked(mas, slots, offset);
5447 offset = 0;
5448 } while (!ma_is_leaf(next->type));
5449
5450 return slots;
5451}
5452
5453static void mt_free_walk(struct rcu_head *head)
5454{
5455 void __rcu **slots;
5456 struct maple_node *node, *start;
5457 struct maple_tree mt;
5458 unsigned char offset;
5459 enum maple_type type;
5460 MA_STATE(mas, &mt, 0, 0);
5461
5462 node = container_of(head, struct maple_node, rcu);
5463
5464 if (ma_is_leaf(node->type))
5465 goto free_leaf;
5466
5467 mt_init_flags(&mt, node->ma_flags);
5468 mas_lock(&mas);
5469 start = node;
5470 mas.node = mt_mk_node(node, node->type);
5471 slots = mas_dead_walk(&mas, 0);
5472 node = mas_mn(&mas);
5473 do {
5474 mt_free_bulk(node->slot_len, slots);
5475 offset = node->parent_slot + 1;
5476 mas.node = node->piv_parent;
5477 if (mas_mn(&mas) == node)
5478 goto start_slots_free;
5479
5480 type = mte_node_type(mas.node);
5481 slots = ma_slots(mte_to_node(mas.node), type);
5482 if ((offset < mt_slots[type]) && (slots[offset]))
5483 slots = mas_dead_walk(&mas, offset);
5484
5485 node = mas_mn(&mas);
5486 } while ((node != start) || (node->slot_len < offset));
5487
5488 slots = ma_slots(node, node->type);
5489 mt_free_bulk(node->slot_len, slots);
5490
5491start_slots_free:
5492 mas_unlock(&mas);
5493free_leaf:
5494 mt_free_rcu(&node->rcu);
5495}
5496
5497static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5498 struct maple_enode *prev, unsigned char offset)
5499{
5500 struct maple_node *node;
5501 struct maple_enode *next = mas->node;
5502 void __rcu **slots = NULL;
5503
5504 do {
5505 mas->node = next;
5506 node = mas_mn(mas);
5507 slots = ma_slots(node, mte_node_type(mas->node));
5508 next = mas_slot_locked(mas, slots, 0);
5509 if ((mte_dead_node(next)))
5510 next = mas_slot_locked(mas, slots, 1);
5511
5512 mte_set_node_dead(mas->node);
5513 node->type = mte_node_type(mas->node);
5514 node->piv_parent = prev;
5515 node->parent_slot = offset;
5516 offset = 0;
5517 prev = mas->node;
5518 } while (!mte_is_leaf(next));
5519
5520 return slots;
5521}
5522
5523static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5524 bool free)
5525{
5526 void __rcu **slots;
5527 struct maple_node *node = mte_to_node(enode);
5528 struct maple_enode *start;
5529 struct maple_tree mt;
5530
5531 MA_STATE(mas, &mt, 0, 0);
5532
5533 if (mte_is_leaf(enode))
5534 goto free_leaf;
5535
5536 mt_init_flags(&mt, ma_flags);
5537 mas_lock(&mas);
5538
5539 mas.node = start = enode;
5540 slots = mas_destroy_descend(&mas, start, 0);
5541 node = mas_mn(&mas);
5542 do {
5543 enum maple_type type;
5544 unsigned char offset;
5545 struct maple_enode *parent, *tmp;
5546
5547 node->slot_len = mas_dead_leaves(&mas, slots);
5548 if (free)
5549 mt_free_bulk(node->slot_len, slots);
5550 offset = node->parent_slot + 1;
5551 mas.node = node->piv_parent;
5552 if (mas_mn(&mas) == node)
5553 goto start_slots_free;
5554
5555 type = mte_node_type(mas.node);
5556 slots = ma_slots(mte_to_node(mas.node), type);
5557 if (offset >= mt_slots[type])
5558 goto next;
5559
5560 tmp = mas_slot_locked(&mas, slots, offset);
5561 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5562 parent = mas.node;
5563 mas.node = tmp;
5564 slots = mas_destroy_descend(&mas, parent, offset);
5565 }
5566next:
5567 node = mas_mn(&mas);
5568 } while (start != mas.node);
5569
5570 node = mas_mn(&mas);
5571 node->slot_len = mas_dead_leaves(&mas, slots);
5572 if (free)
5573 mt_free_bulk(node->slot_len, slots);
5574
5575start_slots_free:
5576 mas_unlock(&mas);
5577
5578free_leaf:
5579 if (free)
5580 mt_free_rcu(&node->rcu);
5581}
5582
5583/*
5584 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5585 * @enode: the encoded maple node (maple_enode) to start
5586 * @mt: the tree to free - needed for node types.
54a611b6
LH
5587 *
5588 * Must hold the write lock.
5589 */
5590static inline void mte_destroy_walk(struct maple_enode *enode,
5591 struct maple_tree *mt)
5592{
5593 struct maple_node *node = mte_to_node(enode);
5594
5595 if (mt_in_rcu(mt)) {
5596 mt_destroy_walk(enode, mt->ma_flags, false);
5597 call_rcu(&node->rcu, mt_free_walk);
5598 } else {
5599 mt_destroy_walk(enode, mt->ma_flags, true);
5600 }
5601}
5602
5603static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5604{
1202700c
LH
5605 if (unlikely(mas_is_paused(wr_mas->mas)))
5606 mas_reset(wr_mas->mas);
5607
54a611b6
LH
5608 if (!mas_is_start(wr_mas->mas)) {
5609 if (mas_is_none(wr_mas->mas)) {
5610 mas_reset(wr_mas->mas);
5611 } else {
5612 wr_mas->r_max = wr_mas->mas->max;
5613 wr_mas->type = mte_node_type(wr_mas->mas->node);
5614 if (mas_is_span_wr(wr_mas))
5615 mas_reset(wr_mas->mas);
5616 }
5617 }
54a611b6
LH
5618}
5619
5620/* Interface */
5621
5622/**
5623 * mas_store() - Store an @entry.
5624 * @mas: The maple state.
5625 * @entry: The entry to store.
5626 *
5627 * The @mas->index and @mas->last is used to set the range for the @entry.
5628 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5629 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5630 *
5631 * Return: the first entry between mas->index and mas->last or %NULL.
5632 */
5633void *mas_store(struct ma_state *mas, void *entry)
5634{
5635 MA_WR_STATE(wr_mas, mas, entry);
5636
5637 trace_ma_write(__func__, mas, 0, entry);
5638#ifdef CONFIG_DEBUG_MAPLE_TREE
5639 if (mas->index > mas->last)
5640 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5641 MT_BUG_ON(mas->tree, mas->index > mas->last);
5642 if (mas->index > mas->last) {
5643 mas_set_err(mas, -EINVAL);
5644 return NULL;
5645 }
5646
5647#endif
5648
5649 /*
5650 * Storing is the same operation as insert with the added caveat that it
5651 * can overwrite entries. Although this seems simple enough, one may
5652 * want to examine what happens if a single store operation was to
5653 * overwrite multiple entries within a self-balancing B-Tree.
5654 */
5655 mas_wr_store_setup(&wr_mas);
5656 mas_wr_store_entry(&wr_mas);
5657 return wr_mas.content;
5658}
120b1162 5659EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5660
5661/**
5662 * mas_store_gfp() - Store a value into the tree.
5663 * @mas: The maple state
5664 * @entry: The entry to store
5665 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5666 *
5667 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5668 * be allocated.
5669 */
5670int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5671{
5672 MA_WR_STATE(wr_mas, mas, entry);
5673
5674 mas_wr_store_setup(&wr_mas);
5675 trace_ma_write(__func__, mas, 0, entry);
5676retry:
5677 mas_wr_store_entry(&wr_mas);
5678 if (unlikely(mas_nomem(mas, gfp)))
5679 goto retry;
5680
5681 if (unlikely(mas_is_err(mas)))
5682 return xa_err(mas->node);
5683
5684 return 0;
5685}
120b1162 5686EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5687
5688/**
5689 * mas_store_prealloc() - Store a value into the tree using memory
5690 * preallocated in the maple state.
5691 * @mas: The maple state
5692 * @entry: The entry to store.
5693 */
5694void mas_store_prealloc(struct ma_state *mas, void *entry)
5695{
5696 MA_WR_STATE(wr_mas, mas, entry);
5697
5698 mas_wr_store_setup(&wr_mas);
5699 trace_ma_write(__func__, mas, 0, entry);
5700 mas_wr_store_entry(&wr_mas);
5701 BUG_ON(mas_is_err(mas));
5702 mas_destroy(mas);
5703}
120b1162 5704EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5705
5706/**
5707 * mas_preallocate() - Preallocate enough nodes for a store operation
5708 * @mas: The maple state
54a611b6
LH
5709 * @gfp: The GFP_FLAGS to use for allocations.
5710 *
5711 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5712 */
c5d5546e 5713int mas_preallocate(struct ma_state *mas, gfp_t gfp)
54a611b6
LH
5714{
5715 int ret;
5716
5717 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5718 mas->mas_flags |= MA_STATE_PREALLOC;
5719 if (likely(!mas_is_err(mas)))
5720 return 0;
5721
5722 mas_set_alloc_req(mas, 0);
5723 ret = xa_err(mas->node);
5724 mas_reset(mas);
5725 mas_destroy(mas);
5726 mas_reset(mas);
5727 return ret;
5728}
5729
5730/*
5731 * mas_destroy() - destroy a maple state.
5732 * @mas: The maple state
5733 *
5734 * Upon completion, check the left-most node and rebalance against the node to
5735 * the right if necessary. Frees any allocated nodes associated with this maple
5736 * state.
5737 */
5738void mas_destroy(struct ma_state *mas)
5739{
5740 struct maple_alloc *node;
541e06b7 5741 unsigned long total;
54a611b6
LH
5742
5743 /*
5744 * When using mas_for_each() to insert an expected number of elements,
5745 * it is possible that the number inserted is less than the expected
5746 * number. To fix an invalid final node, a check is performed here to
5747 * rebalance the previous node with the final node.
5748 */
5749 if (mas->mas_flags & MA_STATE_REBALANCE) {
5750 unsigned char end;
5751
5752 if (mas_is_start(mas))
5753 mas_start(mas);
5754
5755 mtree_range_walk(mas);
5756 end = mas_data_end(mas) + 1;
5757 if (end < mt_min_slot_count(mas->node) - 1)
5758 mas_destroy_rebalance(mas, end);
5759
5760 mas->mas_flags &= ~MA_STATE_REBALANCE;
5761 }
5762 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5763
541e06b7
LH
5764 total = mas_allocated(mas);
5765 while (total) {
54a611b6
LH
5766 node = mas->alloc;
5767 mas->alloc = node->slot[0];
541e06b7
LH
5768 if (node->node_count > 1) {
5769 size_t count = node->node_count - 1;
5770
5771 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5772 total -= count;
5773 }
54a611b6 5774 kmem_cache_free(maple_node_cache, node);
541e06b7 5775 total--;
54a611b6 5776 }
541e06b7 5777
54a611b6
LH
5778 mas->alloc = NULL;
5779}
120b1162 5780EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5781
5782/*
5783 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5784 * @mas: The maple state
5785 * @nr_entries: The number of expected entries.
5786 *
5787 * This will attempt to pre-allocate enough nodes to store the expected number
5788 * of entries. The allocations will occur using the bulk allocator interface
5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5790 * to ensure any unused nodes are freed.
5791 *
5792 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5793 */
5794int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5795{
5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5797 struct maple_enode *enode = mas->node;
5798 int nr_nodes;
5799 int ret;
5800
5801 /*
5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5803 * forking a process and duplicating the VMAs from one tree to a new
5804 * tree. When such a situation arises, it is known that the new tree is
5805 * not going to be used until the entire tree is populated. For
5806 * performance reasons, it is best to use a bulk load with RCU disabled.
5807 * This allows for optimistic splitting that favours the left and reuse
5808 * of nodes during the operation.
5809 */
5810
5811 /* Optimize splitting for bulk insert in-order */
5812 mas->mas_flags |= MA_STATE_BULK;
5813
5814 /*
5815 * Avoid overflow, assume a gap between each entry and a trailing null.
5816 * If this is wrong, it just means allocation can happen during
5817 * insertion of entries.
5818 */
5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5820 if (!mt_is_alloc(mas->tree))
5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5822
5823 /* Leaves; reduce slots to keep space for expansion */
5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5825 /* Internal nodes */
5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5827 /* Add working room for split (2 nodes) + new parents */
5828 mas_node_count(mas, nr_nodes + 3);
5829
5830 /* Detect if allocations run out */
5831 mas->mas_flags |= MA_STATE_PREALLOC;
5832
5833 if (!mas_is_err(mas))
5834 return 0;
5835
5836 ret = xa_err(mas->node);
5837 mas->node = enode;
5838 mas_destroy(mas);
5839 return ret;
5840
5841}
120b1162 5842EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6
LH
5843
5844/**
5845 * mas_next() - Get the next entry.
5846 * @mas: The maple state
5847 * @max: The maximum index to check.
5848 *
5849 * Returns the next entry after @mas->index.
5850 * Must hold rcu_read_lock or the write lock.
5851 * Can return the zero entry.
5852 *
5853 * Return: The next entry or %NULL
5854 */
5855void *mas_next(struct ma_state *mas, unsigned long max)
5856{
5857 if (mas_is_none(mas) || mas_is_paused(mas))
5858 mas->node = MAS_START;
5859
5860 if (mas_is_start(mas))
5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5862
5863 if (mas_is_ptr(mas)) {
5864 if (!mas->index) {
5865 mas->index = 1;
5866 mas->last = ULONG_MAX;
5867 }
5868 return NULL;
5869 }
5870
5871 if (mas->last == ULONG_MAX)
5872 return NULL;
5873
5874 /* Retries on dead nodes handled by mas_next_entry */
5875 return mas_next_entry(mas, max);
5876}
5877EXPORT_SYMBOL_GPL(mas_next);
5878
5879/**
5880 * mt_next() - get the next value in the maple tree
5881 * @mt: The maple tree
5882 * @index: The start index
5883 * @max: The maximum index to check
5884 *
5885 * Return: The entry at @index or higher, or %NULL if nothing is found.
5886 */
5887void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5888{
5889 void *entry = NULL;
5890 MA_STATE(mas, mt, index, index);
5891
5892 rcu_read_lock();
5893 entry = mas_next(&mas, max);
5894 rcu_read_unlock();
5895 return entry;
5896}
5897EXPORT_SYMBOL_GPL(mt_next);
5898
5899/**
5900 * mas_prev() - Get the previous entry
5901 * @mas: The maple state
5902 * @min: The minimum value to check.
5903 *
5904 * Must hold rcu_read_lock or the write lock.
5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5906 * searchable nodes.
5907 *
5908 * Return: the previous value or %NULL.
5909 */
5910void *mas_prev(struct ma_state *mas, unsigned long min)
5911{
5912 if (!mas->index) {
5913 /* Nothing comes before 0 */
5914 mas->last = 0;
17dc622c 5915 mas->node = MAS_NONE;
54a611b6
LH
5916 return NULL;
5917 }
5918
5919 if (unlikely(mas_is_ptr(mas)))
5920 return NULL;
5921
5922 if (mas_is_none(mas) || mas_is_paused(mas))
5923 mas->node = MAS_START;
5924
5925 if (mas_is_start(mas)) {
5926 mas_walk(mas);
5927 if (!mas->index)
5928 return NULL;
5929 }
5930
5931 if (mas_is_ptr(mas)) {
5932 if (!mas->index) {
5933 mas->last = 0;
5934 return NULL;
5935 }
5936
5937 mas->index = mas->last = 0;
5938 return mas_root_locked(mas);
5939 }
5940 return mas_prev_entry(mas, min);
5941}
5942EXPORT_SYMBOL_GPL(mas_prev);
5943
5944/**
5945 * mt_prev() - get the previous value in the maple tree
5946 * @mt: The maple tree
5947 * @index: The start index
5948 * @min: The minimum index to check
5949 *
5950 * Return: The entry at @index or lower, or %NULL if nothing is found.
5951 */
5952void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5953{
5954 void *entry = NULL;
5955 MA_STATE(mas, mt, index, index);
5956
5957 rcu_read_lock();
5958 entry = mas_prev(&mas, min);
5959 rcu_read_unlock();
5960 return entry;
5961}
5962EXPORT_SYMBOL_GPL(mt_prev);
5963
5964/**
5965 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5966 * @mas: The maple state to pause
5967 *
5968 * Some users need to pause a walk and drop the lock they're holding in
5969 * order to yield to a higher priority thread or carry out an operation
5970 * on an entry. Those users should call this function before they drop
5971 * the lock. It resets the @mas to be suitable for the next iteration
5972 * of the loop after the user has reacquired the lock. If most entries
5973 * found during a walk require you to call mas_pause(), the mt_for_each()
5974 * iterator may be more appropriate.
5975 *
5976 */
5977void mas_pause(struct ma_state *mas)
5978{
5979 mas->node = MAS_PAUSE;
5980}
5981EXPORT_SYMBOL_GPL(mas_pause);
5982
5983/**
5984 * mas_find() - On the first call, find the entry at or after mas->index up to
5985 * %max. Otherwise, find the entry after mas->index.
5986 * @mas: The maple state
5987 * @max: The maximum value to check.
5988 *
5989 * Must hold rcu_read_lock or the write lock.
5990 * If an entry exists, last and index are updated accordingly.
5991 * May set @mas->node to MAS_NONE.
5992 *
5993 * Return: The entry or %NULL.
5994 */
5995void *mas_find(struct ma_state *mas, unsigned long max)
5996{
5997 if (unlikely(mas_is_paused(mas))) {
5998 if (unlikely(mas->last == ULONG_MAX)) {
5999 mas->node = MAS_NONE;
6000 return NULL;
6001 }
6002 mas->node = MAS_START;
6003 mas->index = ++mas->last;
6004 }
6005
17dc622c
LH
6006 if (unlikely(mas_is_none(mas)))
6007 mas->node = MAS_START;
6008
54a611b6
LH
6009 if (unlikely(mas_is_start(mas))) {
6010 /* First run or continue */
6011 void *entry;
6012
6013 if (mas->index > max)
6014 return NULL;
6015
6016 entry = mas_walk(mas);
6017 if (entry)
6018 return entry;
6019 }
6020
6021 if (unlikely(!mas_searchable(mas)))
6022 return NULL;
6023
6024 /* Retries on dead nodes handled by mas_next_entry */
6025 return mas_next_entry(mas, max);
6026}
120b1162 6027EXPORT_SYMBOL_GPL(mas_find);
54a611b6
LH
6028
6029/**
6030 * mas_find_rev: On the first call, find the first non-null entry at or below
6031 * mas->index down to %min. Otherwise find the first non-null entry below
6032 * mas->index down to %min.
6033 * @mas: The maple state
6034 * @min: The minimum value to check.
6035 *
6036 * Must hold rcu_read_lock or the write lock.
6037 * If an entry exists, last and index are updated accordingly.
6038 * May set @mas->node to MAS_NONE.
6039 *
6040 * Return: The entry or %NULL.
6041 */
6042void *mas_find_rev(struct ma_state *mas, unsigned long min)
6043{
6044 if (unlikely(mas_is_paused(mas))) {
6045 if (unlikely(mas->last == ULONG_MAX)) {
6046 mas->node = MAS_NONE;
6047 return NULL;
6048 }
6049 mas->node = MAS_START;
6050 mas->last = --mas->index;
6051 }
6052
6053 if (unlikely(mas_is_start(mas))) {
6054 /* First run or continue */
6055 void *entry;
6056
6057 if (mas->index < min)
6058 return NULL;
6059
6060 entry = mas_walk(mas);
6061 if (entry)
6062 return entry;
6063 }
6064
6065 if (unlikely(!mas_searchable(mas)))
6066 return NULL;
6067
6068 if (mas->index < min)
6069 return NULL;
6070
d98c86b9 6071 /* Retries on dead nodes handled by mas_prev_entry */
54a611b6
LH
6072 return mas_prev_entry(mas, min);
6073}
120b1162 6074EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6
LH
6075
6076/**
6077 * mas_erase() - Find the range in which index resides and erase the entire
6078 * range.
6079 * @mas: The maple state
6080 *
6081 * Must hold the write lock.
6082 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6083 * erases that range.
6084 *
6085 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6086 */
6087void *mas_erase(struct ma_state *mas)
6088{
6089 void *entry;
6090 MA_WR_STATE(wr_mas, mas, NULL);
6091
6092 if (mas_is_none(mas) || mas_is_paused(mas))
6093 mas->node = MAS_START;
6094
6095 /* Retry unnecessary when holding the write lock. */
6096 entry = mas_state_walk(mas);
6097 if (!entry)
6098 return NULL;
6099
6100write_retry:
6101 /* Must reset to ensure spanning writes of last slot are detected */
6102 mas_reset(mas);
6103 mas_wr_store_setup(&wr_mas);
6104 mas_wr_store_entry(&wr_mas);
6105 if (mas_nomem(mas, GFP_KERNEL))
6106 goto write_retry;
6107
6108 return entry;
6109}
6110EXPORT_SYMBOL_GPL(mas_erase);
6111
6112/**
6113 * mas_nomem() - Check if there was an error allocating and do the allocation
6114 * if necessary If there are allocations, then free them.
6115 * @mas: The maple state
6116 * @gfp: The GFP_FLAGS to use for allocations
6117 * Return: true on allocation, false otherwise.
6118 */
6119bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6120 __must_hold(mas->tree->lock)
6121{
6122 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6123 mas_destroy(mas);
6124 return false;
6125 }
6126
6127 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6128 mtree_unlock(mas->tree);
6129 mas_alloc_nodes(mas, gfp);
6130 mtree_lock(mas->tree);
6131 } else {
6132 mas_alloc_nodes(mas, gfp);
6133 }
6134
6135 if (!mas_allocated(mas))
6136 return false;
6137
6138 mas->node = MAS_START;
6139 return true;
6140}
6141
6142void __init maple_tree_init(void)
6143{
6144 maple_node_cache = kmem_cache_create("maple_node",
6145 sizeof(struct maple_node), sizeof(struct maple_node),
6146 SLAB_PANIC, NULL);
6147}
6148
6149/**
6150 * mtree_load() - Load a value stored in a maple tree
6151 * @mt: The maple tree
6152 * @index: The index to load
6153 *
6154 * Return: the entry or %NULL
6155 */
6156void *mtree_load(struct maple_tree *mt, unsigned long index)
6157{
6158 MA_STATE(mas, mt, index, index);
6159 void *entry;
6160
6161 trace_ma_read(__func__, &mas);
6162 rcu_read_lock();
6163retry:
6164 entry = mas_start(&mas);
6165 if (unlikely(mas_is_none(&mas)))
6166 goto unlock;
6167
6168 if (unlikely(mas_is_ptr(&mas))) {
6169 if (index)
6170 entry = NULL;
6171
6172 goto unlock;
6173 }
6174
6175 entry = mtree_lookup_walk(&mas);
6176 if (!entry && unlikely(mas_is_start(&mas)))
6177 goto retry;
6178unlock:
6179 rcu_read_unlock();
6180 if (xa_is_zero(entry))
6181 return NULL;
6182
6183 return entry;
6184}
6185EXPORT_SYMBOL(mtree_load);
6186
6187/**
6188 * mtree_store_range() - Store an entry at a given range.
6189 * @mt: The maple tree
6190 * @index: The start of the range
6191 * @last: The end of the range
6192 * @entry: The entry to store
6193 * @gfp: The GFP_FLAGS to use for allocations
6194 *
6195 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6196 * be allocated.
6197 */
6198int mtree_store_range(struct maple_tree *mt, unsigned long index,
6199 unsigned long last, void *entry, gfp_t gfp)
6200{
6201 MA_STATE(mas, mt, index, last);
6202 MA_WR_STATE(wr_mas, &mas, entry);
6203
6204 trace_ma_write(__func__, &mas, 0, entry);
6205 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6206 return -EINVAL;
6207
6208 if (index > last)
6209 return -EINVAL;
6210
6211 mtree_lock(mt);
6212retry:
6213 mas_wr_store_entry(&wr_mas);
6214 if (mas_nomem(&mas, gfp))
6215 goto retry;
6216
6217 mtree_unlock(mt);
6218 if (mas_is_err(&mas))
6219 return xa_err(mas.node);
6220
6221 return 0;
6222}
6223EXPORT_SYMBOL(mtree_store_range);
6224
6225/**
6226 * mtree_store() - Store an entry at a given index.
6227 * @mt: The maple tree
6228 * @index: The index to store the value
6229 * @entry: The entry to store
6230 * @gfp: The GFP_FLAGS to use for allocations
6231 *
6232 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6233 * be allocated.
6234 */
6235int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6236 gfp_t gfp)
6237{
6238 return mtree_store_range(mt, index, index, entry, gfp);
6239}
6240EXPORT_SYMBOL(mtree_store);
6241
6242/**
6243 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6244 * @mt: The maple tree
6245 * @first: The start of the range
6246 * @last: The end of the range
6247 * @entry: The entry to store
6248 * @gfp: The GFP_FLAGS to use for allocations.
6249 *
6250 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6251 * request, -ENOMEM if memory could not be allocated.
6252 */
6253int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6254 unsigned long last, void *entry, gfp_t gfp)
6255{
6256 MA_STATE(ms, mt, first, last);
6257
6258 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6259 return -EINVAL;
6260
6261 if (first > last)
6262 return -EINVAL;
6263
6264 mtree_lock(mt);
6265retry:
6266 mas_insert(&ms, entry);
6267 if (mas_nomem(&ms, gfp))
6268 goto retry;
6269
6270 mtree_unlock(mt);
6271 if (mas_is_err(&ms))
6272 return xa_err(ms.node);
6273
6274 return 0;
6275}
6276EXPORT_SYMBOL(mtree_insert_range);
6277
6278/**
6279 * mtree_insert() - Insert an entry at a give index if there is no value.
6280 * @mt: The maple tree
6281 * @index : The index to store the value
6282 * @entry: The entry to store
6283 * @gfp: The FGP_FLAGS to use for allocations.
6284 *
6285 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6286 * request, -ENOMEM if memory could not be allocated.
6287 */
6288int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6289 gfp_t gfp)
6290{
6291 return mtree_insert_range(mt, index, index, entry, gfp);
6292}
6293EXPORT_SYMBOL(mtree_insert);
6294
6295int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6296 void *entry, unsigned long size, unsigned long min,
6297 unsigned long max, gfp_t gfp)
6298{
6299 int ret = 0;
6300
6301 MA_STATE(mas, mt, min, max - size);
6302 if (!mt_is_alloc(mt))
6303 return -EINVAL;
6304
6305 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6306 return -EINVAL;
6307
6308 if (min > max)
6309 return -EINVAL;
6310
6311 if (max < size)
6312 return -EINVAL;
6313
6314 if (!size)
6315 return -EINVAL;
6316
6317 mtree_lock(mt);
6318retry:
6319 mas.offset = 0;
6320 mas.index = min;
6321 mas.last = max - size;
6322 ret = mas_alloc(&mas, entry, size, startp);
6323 if (mas_nomem(&mas, gfp))
6324 goto retry;
6325
6326 mtree_unlock(mt);
6327 return ret;
6328}
6329EXPORT_SYMBOL(mtree_alloc_range);
6330
6331int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6332 void *entry, unsigned long size, unsigned long min,
6333 unsigned long max, gfp_t gfp)
6334{
6335 int ret = 0;
6336
6337 MA_STATE(mas, mt, min, max - size);
6338 if (!mt_is_alloc(mt))
6339 return -EINVAL;
6340
6341 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6342 return -EINVAL;
6343
6344 if (min >= max)
6345 return -EINVAL;
6346
6347 if (max < size - 1)
6348 return -EINVAL;
6349
6350 if (!size)
6351 return -EINVAL;
6352
6353 mtree_lock(mt);
6354retry:
6355 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6356 if (mas_nomem(&mas, gfp))
6357 goto retry;
6358
6359 mtree_unlock(mt);
6360 return ret;
6361}
6362EXPORT_SYMBOL(mtree_alloc_rrange);
6363
6364/**
6365 * mtree_erase() - Find an index and erase the entire range.
6366 * @mt: The maple tree
6367 * @index: The index to erase
6368 *
6369 * Erasing is the same as a walk to an entry then a store of a NULL to that
6370 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6371 *
6372 * Return: The entry stored at the @index or %NULL
6373 */
6374void *mtree_erase(struct maple_tree *mt, unsigned long index)
6375{
6376 void *entry = NULL;
6377
6378 MA_STATE(mas, mt, index, index);
6379 trace_ma_op(__func__, &mas);
6380
6381 mtree_lock(mt);
6382 entry = mas_erase(&mas);
6383 mtree_unlock(mt);
6384
6385 return entry;
6386}
6387EXPORT_SYMBOL(mtree_erase);
6388
6389/**
6390 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6391 * @mt: The maple tree
6392 *
6393 * Note: Does not handle locking.
6394 */
6395void __mt_destroy(struct maple_tree *mt)
6396{
6397 void *root = mt_root_locked(mt);
6398
6399 rcu_assign_pointer(mt->ma_root, NULL);
6400 if (xa_is_node(root))
6401 mte_destroy_walk(root, mt);
6402
6403 mt->ma_flags = 0;
6404}
6405EXPORT_SYMBOL_GPL(__mt_destroy);
6406
6407/**
6408 * mtree_destroy() - Destroy a maple tree
6409 * @mt: The maple tree
6410 *
6411 * Frees all resources used by the tree. Handles locking.
6412 */
6413void mtree_destroy(struct maple_tree *mt)
6414{
6415 mtree_lock(mt);
6416 __mt_destroy(mt);
6417 mtree_unlock(mt);
6418}
6419EXPORT_SYMBOL(mtree_destroy);
6420
6421/**
6422 * mt_find() - Search from the start up until an entry is found.
6423 * @mt: The maple tree
6424 * @index: Pointer which contains the start location of the search
6425 * @max: The maximum value to check
6426 *
6427 * Handles locking. @index will be incremented to one beyond the range.
6428 *
6429 * Return: The entry at or after the @index or %NULL
6430 */
6431void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6432{
6433 MA_STATE(mas, mt, *index, *index);
6434 void *entry;
6435#ifdef CONFIG_DEBUG_MAPLE_TREE
6436 unsigned long copy = *index;
6437#endif
6438
6439 trace_ma_read(__func__, &mas);
6440
6441 if ((*index) > max)
6442 return NULL;
6443
6444 rcu_read_lock();
6445retry:
6446 entry = mas_state_walk(&mas);
6447 if (mas_is_start(&mas))
6448 goto retry;
6449
6450 if (unlikely(xa_is_zero(entry)))
6451 entry = NULL;
6452
6453 if (entry)
6454 goto unlock;
6455
6456 while (mas_searchable(&mas) && (mas.index < max)) {
6457 entry = mas_next_entry(&mas, max);
6458 if (likely(entry && !xa_is_zero(entry)))
6459 break;
6460 }
6461
6462 if (unlikely(xa_is_zero(entry)))
6463 entry = NULL;
6464unlock:
6465 rcu_read_unlock();
6466 if (likely(entry)) {
6467 *index = mas.last + 1;
6468#ifdef CONFIG_DEBUG_MAPLE_TREE
6469 if ((*index) && (*index) <= copy)
6470 pr_err("index not increased! %lx <= %lx\n",
6471 *index, copy);
6472 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6473#endif
6474 }
6475
6476 return entry;
6477}
6478EXPORT_SYMBOL(mt_find);
6479
6480/**
6481 * mt_find_after() - Search from the start up until an entry is found.
6482 * @mt: The maple tree
6483 * @index: Pointer which contains the start location of the search
6484 * @max: The maximum value to check
6485 *
6486 * Handles locking, detects wrapping on index == 0
6487 *
6488 * Return: The entry at or after the @index or %NULL
6489 */
6490void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6491 unsigned long max)
6492{
6493 if (!(*index))
6494 return NULL;
6495
6496 return mt_find(mt, index, max);
6497}
6498EXPORT_SYMBOL(mt_find_after);
6499
6500#ifdef CONFIG_DEBUG_MAPLE_TREE
6501atomic_t maple_tree_tests_run;
6502EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6503atomic_t maple_tree_tests_passed;
6504EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6505
6506#ifndef __KERNEL__
6507extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6508void mt_set_non_kernel(unsigned int val)
6509{
6510 kmem_cache_set_non_kernel(maple_node_cache, val);
6511}
6512
6513extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6514unsigned long mt_get_alloc_size(void)
6515{
6516 return kmem_cache_get_alloc(maple_node_cache);
6517}
6518
6519extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6520void mt_zero_nr_tallocated(void)
6521{
6522 kmem_cache_zero_nr_tallocated(maple_node_cache);
6523}
6524
6525extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6526unsigned int mt_nr_tallocated(void)
6527{
6528 return kmem_cache_nr_tallocated(maple_node_cache);
6529}
6530
6531extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6532unsigned int mt_nr_allocated(void)
6533{
6534 return kmem_cache_nr_allocated(maple_node_cache);
6535}
6536
6537/*
6538 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6539 * @mas: The maple state
6540 * @index: The index to restore in @mas.
6541 *
6542 * Used in test code.
6543 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6544 */
6545static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6546{
6547 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6548 return 0;
6549
6550 if (likely(!mte_dead_node(mas->node)))
6551 return 0;
6552
6553 mas_rewalk(mas, index);
6554 return 1;
6555}
54a611b6 6556
120b1162
LH
6557void mt_cache_shrink(void)
6558{
6559}
6560#else
6561/*
6562 * mt_cache_shrink() - For testing, don't use this.
6563 *
6564 * Certain testcases can trigger an OOM when combined with other memory
6565 * debugging configuration options. This function is used to reduce the
6566 * possibility of an out of memory even due to kmem_cache objects remaining
6567 * around for longer than usual.
6568 */
6569void mt_cache_shrink(void)
6570{
6571 kmem_cache_shrink(maple_node_cache);
6572
6573}
6574EXPORT_SYMBOL_GPL(mt_cache_shrink);
6575
6576#endif /* not defined __KERNEL__ */
54a611b6
LH
6577/*
6578 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6579 * @mas: The maple state
6580 * @offset: The offset into the slot array to fetch.
6581 *
6582 * Return: The entry stored at @offset.
6583 */
6584static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6585 unsigned char offset)
6586{
6587 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6588 offset);
6589}
6590
6591
6592/*
6593 * mas_first_entry() - Go the first leaf and find the first entry.
6594 * @mas: the maple state.
6595 * @limit: the maximum index to check.
6596 * @*r_start: Pointer to set to the range start.
6597 *
6598 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6599 *
6600 * Return: The first entry or MAS_NONE.
6601 */
6602static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6603 unsigned long limit, enum maple_type mt)
6604
6605{
6606 unsigned long max;
6607 unsigned long *pivots;
6608 void __rcu **slots;
6609 void *entry = NULL;
6610
6611 mas->index = mas->min;
6612 if (mas->index > limit)
6613 goto none;
6614
6615 max = mas->max;
6616 mas->offset = 0;
6617 while (likely(!ma_is_leaf(mt))) {
6618 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6619 slots = ma_slots(mn, mt);
6620 pivots = ma_pivots(mn, mt);
6621 max = pivots[0];
6622 entry = mas_slot(mas, slots, 0);
6623 if (unlikely(ma_dead_node(mn)))
6624 return NULL;
6625 mas->node = entry;
6626 mn = mas_mn(mas);
6627 mt = mte_node_type(mas->node);
6628 }
6629 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6630
6631 mas->max = max;
6632 slots = ma_slots(mn, mt);
6633 entry = mas_slot(mas, slots, 0);
6634 if (unlikely(ma_dead_node(mn)))
6635 return NULL;
6636
6637 /* Slot 0 or 1 must be set */
6638 if (mas->index > limit)
6639 goto none;
6640
6641 if (likely(entry))
6642 return entry;
6643
6644 pivots = ma_pivots(mn, mt);
6645 mas->index = pivots[0] + 1;
6646 mas->offset = 1;
6647 entry = mas_slot(mas, slots, 1);
6648 if (unlikely(ma_dead_node(mn)))
6649 return NULL;
6650
6651 if (mas->index > limit)
6652 goto none;
6653
6654 if (likely(entry))
6655 return entry;
6656
6657none:
6658 if (likely(!ma_dead_node(mn)))
6659 mas->node = MAS_NONE;
6660 return NULL;
6661}
6662
6663/* Depth first search, post-order */
6664static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6665{
6666
6667 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6668 unsigned long p_min, p_max;
6669
6670 mas_next_node(mas, mas_mn(mas), max);
6671 if (!mas_is_none(mas))
6672 return;
6673
6674 if (mte_is_root(mn))
6675 return;
6676
6677 mas->node = mn;
6678 mas_ascend(mas);
6679 while (mas->node != MAS_NONE) {
6680 p = mas->node;
6681 p_min = mas->min;
6682 p_max = mas->max;
6683 mas_prev_node(mas, 0);
6684 }
6685
6686 if (p == MAS_NONE)
6687 return;
6688
6689 mas->node = p;
6690 mas->max = p_max;
6691 mas->min = p_min;
6692}
6693
6694/* Tree validations */
6695static void mt_dump_node(const struct maple_tree *mt, void *entry,
6696 unsigned long min, unsigned long max, unsigned int depth);
6697static void mt_dump_range(unsigned long min, unsigned long max,
6698 unsigned int depth)
6699{
6700 static const char spaces[] = " ";
6701
6702 if (min == max)
6703 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6704 else
6705 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6706}
6707
6708static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6709 unsigned int depth)
6710{
6711 mt_dump_range(min, max, depth);
6712
6713 if (xa_is_value(entry))
6714 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6715 xa_to_value(entry), entry);
6716 else if (xa_is_zero(entry))
6717 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6718 else if (mt_is_reserved(entry))
6719 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6720 else
6721 pr_cont("%p\n", entry);
6722}
6723
6724static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6725 unsigned long min, unsigned long max, unsigned int depth)
6726{
6727 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6728 bool leaf = mte_is_leaf(entry);
6729 unsigned long first = min;
6730 int i;
6731
6732 pr_cont(" contents: ");
6733 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6734 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6735 pr_cont("%p\n", node->slot[i]);
6736 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6737 unsigned long last = max;
6738
6739 if (i < (MAPLE_RANGE64_SLOTS - 1))
6740 last = node->pivot[i];
bd592703 6741 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6742 break;
6743 if (last == 0 && i > 0)
6744 break;
6745 if (leaf)
6746 mt_dump_entry(mt_slot(mt, node->slot, i),
6747 first, last, depth + 1);
6748 else if (node->slot[i])
6749 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6750 first, last, depth + 1);
6751
6752 if (last == max)
6753 break;
6754 if (last > max) {
6755 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6756 node, last, max, i);
6757 break;
6758 }
6759 first = last + 1;
6760 }
6761}
6762
6763static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6764 unsigned long min, unsigned long max, unsigned int depth)
6765{
6766 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6767 bool leaf = mte_is_leaf(entry);
6768 unsigned long first = min;
6769 int i;
6770
6771 pr_cont(" contents: ");
6772 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6773 pr_cont("%lu ", node->gap[i]);
6774 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6775 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6776 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6777 pr_cont("%p\n", node->slot[i]);
6778 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6779 unsigned long last = max;
6780
6781 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6782 last = node->pivot[i];
6783 else if (!node->slot[i])
6784 break;
6785 if (last == 0 && i > 0)
6786 break;
6787 if (leaf)
6788 mt_dump_entry(mt_slot(mt, node->slot, i),
6789 first, last, depth + 1);
6790 else if (node->slot[i])
6791 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6792 first, last, depth + 1);
6793
6794 if (last == max)
6795 break;
6796 if (last > max) {
6797 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6798 node, last, max, i);
6799 break;
6800 }
6801 first = last + 1;
6802 }
6803}
6804
6805static void mt_dump_node(const struct maple_tree *mt, void *entry,
6806 unsigned long min, unsigned long max, unsigned int depth)
6807{
6808 struct maple_node *node = mte_to_node(entry);
6809 unsigned int type = mte_node_type(entry);
6810 unsigned int i;
6811
6812 mt_dump_range(min, max, depth);
6813
6814 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6815 node ? node->parent : NULL);
6816 switch (type) {
6817 case maple_dense:
6818 pr_cont("\n");
6819 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6820 if (min + i > max)
6821 pr_cont("OUT OF RANGE: ");
6822 mt_dump_entry(mt_slot(mt, node->slot, i),
6823 min + i, min + i, depth);
6824 }
6825 break;
6826 case maple_leaf_64:
6827 case maple_range_64:
6828 mt_dump_range64(mt, entry, min, max, depth);
6829 break;
6830 case maple_arange_64:
6831 mt_dump_arange64(mt, entry, min, max, depth);
6832 break;
6833
6834 default:
6835 pr_cont(" UNKNOWN TYPE\n");
6836 }
6837}
6838
6839void mt_dump(const struct maple_tree *mt)
6840{
6841 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6842
6843 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6844 mt, mt->ma_flags, mt_height(mt), entry);
6845 if (!xa_is_node(entry))
6846 mt_dump_entry(entry, 0, 0, 0);
6847 else if (entry)
bd592703 6848 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
54a611b6 6849}
120b1162 6850EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6851
6852/*
6853 * Calculate the maximum gap in a node and check if that's what is reported in
6854 * the parent (unless root).
6855 */
6856static void mas_validate_gaps(struct ma_state *mas)
6857{
6858 struct maple_enode *mte = mas->node;
6859 struct maple_node *p_mn;
6860 unsigned long gap = 0, max_gap = 0;
6861 unsigned long p_end, p_start = mas->min;
6862 unsigned char p_slot;
6863 unsigned long *gaps = NULL;
6864 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6865 int i;
6866
6867 if (ma_is_dense(mte_node_type(mte))) {
6868 for (i = 0; i < mt_slot_count(mte); i++) {
6869 if (mas_get_slot(mas, i)) {
6870 if (gap > max_gap)
6871 max_gap = gap;
6872 gap = 0;
6873 continue;
6874 }
6875 gap++;
6876 }
6877 goto counted;
6878 }
6879
6880 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6881 for (i = 0; i < mt_slot_count(mte); i++) {
6882 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6883
6884 if (!gaps) {
6885 if (mas_get_slot(mas, i)) {
6886 gap = 0;
6887 goto not_empty;
6888 }
6889
6890 gap += p_end - p_start + 1;
6891 } else {
6892 void *entry = mas_get_slot(mas, i);
6893
6894 gap = gaps[i];
6895 if (!entry) {
6896 if (gap != p_end - p_start + 1) {
6897 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6898 mas_mn(mas), i,
6899 mas_get_slot(mas, i), gap,
6900 p_end, p_start);
6901 mt_dump(mas->tree);
6902
6903 MT_BUG_ON(mas->tree,
6904 gap != p_end - p_start + 1);
6905 }
6906 } else {
6907 if (gap > p_end - p_start + 1) {
6908 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6909 mas_mn(mas), i, gap, p_end, p_start,
6910 p_end - p_start + 1);
6911 MT_BUG_ON(mas->tree,
6912 gap > p_end - p_start + 1);
6913 }
6914 }
6915 }
6916
6917 if (gap > max_gap)
6918 max_gap = gap;
6919not_empty:
6920 p_start = p_end + 1;
6921 if (p_end >= mas->max)
6922 break;
6923 }
6924
6925counted:
6926 if (mte_is_root(mte))
6927 return;
6928
6929 p_slot = mte_parent_slot(mas->node);
6930 p_mn = mte_parent(mte);
6931 MT_BUG_ON(mas->tree, max_gap > mas->max);
6932 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6933 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6934 mt_dump(mas->tree);
6935 }
6936
6937 MT_BUG_ON(mas->tree,
6938 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6939}
6940
6941static void mas_validate_parent_slot(struct ma_state *mas)
6942{
6943 struct maple_node *parent;
6944 struct maple_enode *node;
6945 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6946 unsigned char p_slot = mte_parent_slot(mas->node);
6947 void __rcu **slots;
6948 int i;
6949
6950 if (mte_is_root(mas->node))
6951 return;
6952
6953 parent = mte_parent(mas->node);
6954 slots = ma_slots(parent, p_type);
6955 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6956
6957 /* Check prev/next parent slot for duplicate node entry */
6958
6959 for (i = 0; i < mt_slots[p_type]; i++) {
6960 node = mas_slot(mas, slots, i);
6961 if (i == p_slot) {
6962 if (node != mas->node)
6963 pr_err("parent %p[%u] does not have %p\n",
6964 parent, i, mas_mn(mas));
6965 MT_BUG_ON(mas->tree, node != mas->node);
6966 } else if (node == mas->node) {
6967 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6968 mas_mn(mas), parent, i, p_slot);
6969 MT_BUG_ON(mas->tree, node == mas->node);
6970 }
6971 }
6972}
6973
6974static void mas_validate_child_slot(struct ma_state *mas)
6975{
6976 enum maple_type type = mte_node_type(mas->node);
6977 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6978 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6979 struct maple_enode *child;
6980 unsigned char i;
6981
6982 if (mte_is_leaf(mas->node))
6983 return;
6984
6985 for (i = 0; i < mt_slots[type]; i++) {
6986 child = mas_slot(mas, slots, i);
6987 if (!pivots[i] || pivots[i] == mas->max)
6988 break;
6989
6990 if (!child)
6991 break;
6992
6993 if (mte_parent_slot(child) != i) {
6994 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6995 mas_mn(mas), i, mte_to_node(child),
6996 mte_parent_slot(child));
6997 MT_BUG_ON(mas->tree, 1);
6998 }
6999
7000 if (mte_parent(child) != mte_to_node(mas->node)) {
7001 pr_err("child %p has parent %p not %p\n",
7002 mte_to_node(child), mte_parent(child),
7003 mte_to_node(mas->node));
7004 MT_BUG_ON(mas->tree, 1);
7005 }
7006 }
7007}
7008
7009/*
7010 * Validate all pivots are within mas->min and mas->max.
7011 */
7012static void mas_validate_limits(struct ma_state *mas)
7013{
7014 int i;
7015 unsigned long prev_piv = 0;
7016 enum maple_type type = mte_node_type(mas->node);
7017 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7018 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7019
7020 /* all limits are fine here. */
7021 if (mte_is_root(mas->node))
7022 return;
7023
7024 for (i = 0; i < mt_slots[type]; i++) {
7025 unsigned long piv;
7026
7027 piv = mas_safe_pivot(mas, pivots, i, type);
7028
7029 if (!piv && (i != 0))
7030 break;
7031
7032 if (!mte_is_leaf(mas->node)) {
7033 void *entry = mas_slot(mas, slots, i);
7034
7035 if (!entry)
7036 pr_err("%p[%u] cannot be null\n",
7037 mas_mn(mas), i);
7038
7039 MT_BUG_ON(mas->tree, !entry);
7040 }
7041
7042 if (prev_piv > piv) {
7043 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7044 mas_mn(mas), i, piv, prev_piv);
7045 MT_BUG_ON(mas->tree, piv < prev_piv);
7046 }
7047
7048 if (piv < mas->min) {
7049 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7050 piv, mas->min);
7051 MT_BUG_ON(mas->tree, piv < mas->min);
7052 }
7053 if (piv > mas->max) {
7054 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7055 piv, mas->max);
7056 MT_BUG_ON(mas->tree, piv > mas->max);
7057 }
7058 prev_piv = piv;
7059 if (piv == mas->max)
7060 break;
7061 }
7062 for (i += 1; i < mt_slots[type]; i++) {
7063 void *entry = mas_slot(mas, slots, i);
7064
7065 if (entry && (i != mt_slots[type] - 1)) {
7066 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7067 i, entry);
7068 MT_BUG_ON(mas->tree, entry != NULL);
7069 }
7070
7071 if (i < mt_pivots[type]) {
7072 unsigned long piv = pivots[i];
7073
7074 if (!piv)
7075 continue;
7076
7077 pr_err("%p[%u] should not have piv %lu\n",
7078 mas_mn(mas), i, piv);
7079 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7080 }
7081 }
7082}
7083
7084static void mt_validate_nulls(struct maple_tree *mt)
7085{
7086 void *entry, *last = (void *)1;
7087 unsigned char offset = 0;
7088 void __rcu **slots;
7089 MA_STATE(mas, mt, 0, 0);
7090
7091 mas_start(&mas);
7092 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7093 return;
7094
7095 while (!mte_is_leaf(mas.node))
7096 mas_descend(&mas);
7097
7098 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7099 do {
7100 entry = mas_slot(&mas, slots, offset);
7101 if (!last && !entry) {
7102 pr_err("Sequential nulls end at %p[%u]\n",
7103 mas_mn(&mas), offset);
7104 }
7105 MT_BUG_ON(mt, !last && !entry);
7106 last = entry;
7107 if (offset == mas_data_end(&mas)) {
7108 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7109 if (mas_is_none(&mas))
7110 return;
7111 offset = 0;
7112 slots = ma_slots(mte_to_node(mas.node),
7113 mte_node_type(mas.node));
7114 } else {
7115 offset++;
7116 }
7117
7118 } while (!mas_is_none(&mas));
7119}
7120
7121/*
7122 * validate a maple tree by checking:
7123 * 1. The limits (pivots are within mas->min to mas->max)
7124 * 2. The gap is correctly set in the parents
7125 */
7126void mt_validate(struct maple_tree *mt)
7127{
7128 unsigned char end;
7129
7130 MA_STATE(mas, mt, 0, 0);
7131 rcu_read_lock();
7132 mas_start(&mas);
7133 if (!mas_searchable(&mas))
7134 goto done;
7135
7136 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7137 while (!mas_is_none(&mas)) {
7138 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7139 if (!mte_is_root(mas.node)) {
7140 end = mas_data_end(&mas);
7141 if ((end < mt_min_slot_count(mas.node)) &&
7142 (mas.max != ULONG_MAX)) {
7143 pr_err("Invalid size %u of %p\n", end,
7144 mas_mn(&mas));
7145 MT_BUG_ON(mas.tree, 1);
7146 }
7147
7148 }
7149 mas_validate_parent_slot(&mas);
7150 mas_validate_child_slot(&mas);
7151 mas_validate_limits(&mas);
7152 if (mt_is_alloc(mt))
7153 mas_validate_gaps(&mas);
7154 mas_dfs_postorder(&mas, ULONG_MAX);
7155 }
7156 mt_validate_nulls(mt);
7157done:
7158 rcu_read_unlock();
7159
7160}
120b1162 7161EXPORT_SYMBOL_GPL(mt_validate);
54a611b6
LH
7162
7163#endif /* CONFIG_DEBUG_MAPLE_TREE */