Merge tag 'drm-xe-fixes-2024-02-15' of https://gitlab.freedesktop.org/drm/xe/kernel...
[linux-block.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
fd32e4e9
PZ
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
54a611b6
LH
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
d5f6057c
RD
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
54a611b6
LH
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
67#define MA_ROOT_PARENT 1
68
69/*
70 * Maple state flags
71 * * MA_STATE_BULK - Bulk insert mode
72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
74 */
75#define MA_STATE_BULK 1
76#define MA_STATE_REBALANCE 2
77#define MA_STATE_PREALLOC 4
78
79#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
4ffc2ee2 80#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
54a611b6
LH
81#define ma_mnode_ptr(x) ((struct maple_node *)(x))
82#define ma_enode_ptr(x) ((struct maple_enode *)(x))
83static struct kmem_cache *maple_node_cache;
84
85#ifdef CONFIG_DEBUG_MAPLE_TREE
86static const unsigned long mt_max[] = {
87 [maple_dense] = MAPLE_NODE_SLOTS,
88 [maple_leaf_64] = ULONG_MAX,
89 [maple_range_64] = ULONG_MAX,
90 [maple_arange_64] = ULONG_MAX,
91};
92#define mt_node_max(x) mt_max[mte_node_type(x)]
93#endif
94
95static const unsigned char mt_slots[] = {
96 [maple_dense] = MAPLE_NODE_SLOTS,
97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
98 [maple_range_64] = MAPLE_RANGE64_SLOTS,
99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
100};
101#define mt_slot_count(x) mt_slots[mte_node_type(x)]
102
103static const unsigned char mt_pivots[] = {
104 [maple_dense] = 0,
105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
108};
109#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110
111static const unsigned char mt_min_slots[] = {
112 [maple_dense] = MAPLE_NODE_SLOTS / 2,
113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
116};
117#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118
119#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
120#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
121
122struct maple_big_node {
123 struct maple_pnode *parent;
124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 union {
126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 struct {
128 unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 };
131 };
132 unsigned char b_end;
133 enum maple_type type;
134};
135
136/*
137 * The maple_subtree_state is used to build a tree to replace a segment of an
138 * existing tree in a more atomic way. Any walkers of the older tree will hit a
139 * dead node and restart on updates.
140 */
141struct maple_subtree_state {
142 struct ma_state *orig_l; /* Original left side of subtree */
143 struct ma_state *orig_r; /* Original right side of subtree */
144 struct ma_state *l; /* New left side of subtree */
145 struct ma_state *m; /* New middle of subtree (rare) */
146 struct ma_state *r; /* New right side of subtree */
147 struct ma_topiary *free; /* nodes to be freed */
148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
149 struct maple_big_node *bn;
150};
151
44081c77
AB
152#ifdef CONFIG_KASAN_STACK
153/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154#define noinline_for_kasan noinline_for_stack
155#else
156#define noinline_for_kasan inline
157#endif
158
54a611b6
LH
159/* Functions */
160static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161{
541e06b7 162 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
163}
164
165static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166{
541e06b7 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
168}
169
4f2267b5
PZ
170static inline void mt_free_one(struct maple_node *node)
171{
172 kmem_cache_free(maple_node_cache, node);
173}
174
54a611b6
LH
175static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176{
177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178}
179
180static void mt_free_rcu(struct rcu_head *head)
181{
182 struct maple_node *node = container_of(head, struct maple_node, rcu);
183
184 kmem_cache_free(maple_node_cache, node);
185}
186
187/*
188 * ma_free_rcu() - Use rcu callback to free a maple node
189 * @node: The node to free
190 *
191 * The maple tree uses the parent pointer to indicate this node is no longer in
192 * use and will be freed.
193 */
194static void ma_free_rcu(struct maple_node *node)
195{
c13af03d 196 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
197 call_rcu(&node->rcu, mt_free_rcu);
198}
199
54a611b6
LH
200static void mas_set_height(struct ma_state *mas)
201{
202 unsigned int new_flags = mas->tree->ma_flags;
203
204 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
5950ada9 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
54a611b6
LH
206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 mas->tree->ma_flags = new_flags;
208}
209
210static unsigned int mas_mt_height(struct ma_state *mas)
211{
212 return mt_height(mas->tree);
213}
214
4f2267b5
PZ
215static inline unsigned int mt_attr(struct maple_tree *mt)
216{
217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218}
219
271f61a8
LH
220static __always_inline enum maple_type mte_node_type(
221 const struct maple_enode *entry)
54a611b6
LH
222{
223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 MAPLE_NODE_TYPE_MASK;
225}
226
271f61a8 227static __always_inline bool ma_is_dense(const enum maple_type type)
54a611b6
LH
228{
229 return type < maple_leaf_64;
230}
231
271f61a8 232static __always_inline bool ma_is_leaf(const enum maple_type type)
54a611b6
LH
233{
234 return type < maple_range_64;
235}
236
271f61a8 237static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
54a611b6
LH
238{
239 return ma_is_leaf(mte_node_type(entry));
240}
241
242/*
243 * We also reserve values with the bottom two bits set to '10' which are
244 * below 4096
245 */
271f61a8 246static __always_inline bool mt_is_reserved(const void *entry)
54a611b6
LH
247{
248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 xa_is_internal(entry);
250}
251
067311d3 252static __always_inline void mas_set_err(struct ma_state *mas, long err)
54a611b6
LH
253{
254 mas->node = MA_ERROR(err);
067311d3 255 mas->status = ma_error;
54a611b6
LH
256}
257
067311d3 258static __always_inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6 259{
067311d3 260 return mas->status == ma_root;
54a611b6
LH
261}
262
067311d3 263static __always_inline bool mas_is_start(const struct ma_state *mas)
54a611b6 264{
067311d3 265 return mas->status == ma_start;
54a611b6
LH
266}
267
067311d3 268static __always_inline bool mas_is_none(const struct ma_state *mas)
54a611b6 269{
067311d3 270 return mas->status == ma_none;
54a611b6
LH
271}
272
067311d3 273static __always_inline bool mas_is_paused(const struct ma_state *mas)
a8091f03 274{
067311d3 275 return mas->status == ma_pause;
a8091f03
LH
276}
277
067311d3 278static __always_inline bool mas_is_overflow(struct ma_state *mas)
a8091f03 279{
067311d3
LH
280 return mas->status == ma_overflow;
281}
a8091f03 282
067311d3
LH
283static inline bool mas_is_underflow(struct ma_state *mas)
284{
285 return mas->status == ma_underflow;
a8091f03
LH
286}
287
271f61a8
LH
288static __always_inline struct maple_node *mte_to_node(
289 const struct maple_enode *entry)
54a611b6
LH
290{
291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292}
293
294/*
295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296 * @entry: The maple encoded node
297 *
298 * Return: a maple topiary pointer
299 */
300static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301{
302 return (struct maple_topiary *)
303 ((unsigned long)entry & ~MAPLE_NODE_MASK);
304}
305
306/*
307 * mas_mn() - Get the maple state node.
308 * @mas: The maple state
309 *
310 * Return: the maple node (not encoded - bare pointer).
311 */
312static inline struct maple_node *mas_mn(const struct ma_state *mas)
313{
314 return mte_to_node(mas->node);
315}
316
317/*
318 * mte_set_node_dead() - Set a maple encoded node as dead.
319 * @mn: The maple encoded node.
320 */
321static inline void mte_set_node_dead(struct maple_enode *mn)
322{
323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 smp_wmb(); /* Needed for RCU */
325}
326
327/* Bit 1 indicates the root is a node */
328#define MAPLE_ROOT_NODE 0x02
329/* maple_type stored bit 3-6 */
330#define MAPLE_ENODE_TYPE_SHIFT 0x03
331/* Bit 2 means a NULL somewhere below */
332#define MAPLE_ENODE_NULL 0x04
333
334static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 enum maple_type type)
336{
337 return (void *)((unsigned long)node |
338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339}
340
341static inline void *mte_mk_root(const struct maple_enode *node)
342{
343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344}
345
346static inline void *mte_safe_root(const struct maple_enode *node)
347{
348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349}
350
6e7ba8b5 351static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 352{
6e7ba8b5 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
354}
355
6e7ba8b5 356static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 357{
6e7ba8b5
LH
358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359}
360
361static inline bool mte_has_null(const struct maple_enode *node)
362{
363 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
364}
365
271f61a8 366static __always_inline bool ma_is_root(struct maple_node *node)
54a611b6
LH
367{
368 return ((unsigned long)node->parent & MA_ROOT_PARENT);
369}
370
271f61a8 371static __always_inline bool mte_is_root(const struct maple_enode *node)
54a611b6
LH
372{
373 return ma_is_root(mte_to_node(node));
374}
375
376static inline bool mas_is_root_limits(const struct ma_state *mas)
377{
378 return !mas->min && mas->max == ULONG_MAX;
379}
380
271f61a8 381static __always_inline bool mt_is_alloc(struct maple_tree *mt)
54a611b6
LH
382{
383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384}
385
386/*
387 * The Parent Pointer
388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
390 * bit values need an extra bit to store the offset. This extra bit comes from
391 * a reuse of the last bit in the node type. This is possible by using bit 1 to
392 * indicate if bit 2 is part of the type or the slot.
393 *
394 * Note types:
395 * 0x??1 = Root
396 * 0x?00 = 16 bit nodes
397 * 0x010 = 32 bit nodes
398 * 0x110 = 64 bit nodes
399 *
400 * Slot size and alignment
401 * 0b??1 : Root
402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
405 */
406
407#define MAPLE_PARENT_ROOT 0x01
408
409#define MAPLE_PARENT_SLOT_SHIFT 0x03
410#define MAPLE_PARENT_SLOT_MASK 0xF8
411
412#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
413#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
414
415#define MAPLE_PARENT_RANGE64 0x06
416#define MAPLE_PARENT_RANGE32 0x04
417#define MAPLE_PARENT_NOT_RANGE16 0x02
418
419/*
420 * mte_parent_shift() - Get the parent shift for the slot storage.
421 * @parent: The parent pointer cast as an unsigned long
422 * Return: The shift into that pointer to the star to of the slot
423 */
424static inline unsigned long mte_parent_shift(unsigned long parent)
425{
426 /* Note bit 1 == 0 means 16B */
427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 return MAPLE_PARENT_SLOT_SHIFT;
429
430 return MAPLE_PARENT_16B_SLOT_SHIFT;
431}
432
433/*
434 * mte_parent_slot_mask() - Get the slot mask for the parent.
435 * @parent: The parent pointer cast as an unsigned long.
436 * Return: The slot mask for that parent.
437 */
438static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439{
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_MASK;
443
444 return MAPLE_PARENT_16B_SLOT_MASK;
445}
446
447/*
afc754c6 448 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
449 * parent type.
450 * @mas: The maple state
afc754c6 451 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
452 * Return: The node->parent maple_type
453 */
454static inline
afc754c6 455enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
456{
457 unsigned long p_type;
458
afc754c6
LH
459 p_type = (unsigned long)mte_to_node(enode)->parent;
460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 return 0;
54a611b6
LH
462
463 p_type &= MAPLE_NODE_MASK;
afc754c6 464 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
465 switch (p_type) {
466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 467 if (mt_is_alloc(mas->tree))
54a611b6
LH
468 return maple_arange_64;
469 return maple_range_64;
470 }
471
472 return 0;
473}
474
54a611b6 475/*
bf96715e 476 * mas_set_parent() - Set the parent node and encode the slot
54a611b6
LH
477 * @enode: The encoded maple node.
478 * @parent: The encoded maple node that is the parent of @enode.
479 * @slot: The slot that @enode resides in @parent.
480 *
481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
482 * parent type.
483 */
484static inline
bf96715e
LH
485void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
486 const struct maple_enode *parent, unsigned char slot)
54a611b6 487{
831978e3 488 unsigned long val = (unsigned long)parent;
54a611b6
LH
489 unsigned long shift;
490 unsigned long type;
491 enum maple_type p_type = mte_node_type(parent);
492
bf96715e
LH
493 MAS_BUG_ON(mas, p_type == maple_dense);
494 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
495
496 switch (p_type) {
497 case maple_range_64:
498 case maple_arange_64:
499 shift = MAPLE_PARENT_SLOT_SHIFT;
500 type = MAPLE_PARENT_RANGE64;
501 break;
502 default:
503 case maple_dense:
504 case maple_leaf_64:
505 shift = type = 0;
506 break;
507 }
508
509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
510 val |= (slot << shift) | type;
511 mte_to_node(enode)->parent = ma_parent_ptr(val);
512}
513
514/*
515 * mte_parent_slot() - get the parent slot of @enode.
516 * @enode: The encoded maple node.
517 *
518 * Return: The slot in the parent node where @enode resides.
519 */
271f61a8
LH
520static __always_inline
521unsigned int mte_parent_slot(const struct maple_enode *enode)
54a611b6 522{
831978e3 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 524
271f61a8 525 if (unlikely(val & MA_ROOT_PARENT))
54a611b6
LH
526 return 0;
527
528 /*
529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
531 */
532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
533}
534
535/*
536 * mte_parent() - Get the parent of @node.
537 * @node: The encoded maple node.
538 *
539 * Return: The parent maple node.
540 */
271f61a8
LH
541static __always_inline
542struct maple_node *mte_parent(const struct maple_enode *enode)
54a611b6
LH
543{
544 return (void *)((unsigned long)
545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
546}
547
548/*
549 * ma_dead_node() - check if the @enode is dead.
550 * @enode: The encoded maple node
551 *
552 * Return: true if dead, false otherwise.
553 */
271f61a8 554static __always_inline bool ma_dead_node(const struct maple_node *node)
54a611b6 555{
0a2b18d9 556 struct maple_node *parent;
54a611b6 557
0a2b18d9
LH
558 /* Do not reorder reads from the node prior to the parent check */
559 smp_rmb();
560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
561 return (parent == node);
562}
39d0bd86 563
54a611b6
LH
564/*
565 * mte_dead_node() - check if the @enode is dead.
566 * @enode: The encoded maple node
567 *
568 * Return: true if dead, false otherwise.
569 */
271f61a8 570static __always_inline bool mte_dead_node(const struct maple_enode *enode)
54a611b6
LH
571{
572 struct maple_node *parent, *node;
573
574 node = mte_to_node(enode);
0a2b18d9
LH
575 /* Do not reorder reads from the node prior to the parent check */
576 smp_rmb();
54a611b6
LH
577 parent = mte_parent(enode);
578 return (parent == node);
579}
580
581/*
582 * mas_allocated() - Get the number of nodes allocated in a maple state.
583 * @mas: The maple state
584 *
585 * The ma_state alloc member is overloaded to hold a pointer to the first
586 * allocated node or to the number of requested nodes to allocate. If bit 0 is
587 * set, then the alloc contains the number of requested nodes. If there is an
588 * allocated node, then the total allocated nodes is in that node.
589 *
590 * Return: The total number of nodes allocated
591 */
592static inline unsigned long mas_allocated(const struct ma_state *mas)
593{
594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
595 return 0;
596
597 return mas->alloc->total;
598}
599
600/*
601 * mas_set_alloc_req() - Set the requested number of allocations.
602 * @mas: the maple state
603 * @count: the number of allocations.
604 *
605 * The requested number of allocations is either in the first allocated node,
606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
607 * no allocated node. Set the request either in the node or do the necessary
608 * encoding to store in @mas->alloc directly.
609 */
610static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
611{
612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
613 if (!count)
614 mas->alloc = NULL;
615 else
616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
617 return;
618 }
619
620 mas->alloc->request_count = count;
621}
622
623/*
624 * mas_alloc_req() - get the requested number of allocations.
625 * @mas: The maple state
626 *
627 * The alloc count is either stored directly in @mas, or in
628 * @mas->alloc->request_count if there is at least one node allocated. Decode
629 * the request count if it's stored directly in @mas->alloc.
630 *
631 * Return: The allocation request count.
632 */
633static inline unsigned int mas_alloc_req(const struct ma_state *mas)
634{
635 if ((unsigned long)mas->alloc & 0x1)
636 return (unsigned long)(mas->alloc) >> 1;
637 else if (mas->alloc)
638 return mas->alloc->request_count;
639 return 0;
640}
641
642/*
643 * ma_pivots() - Get a pointer to the maple node pivots.
644 * @node - the maple node
645 * @type - the node type
646 *
39d0bd86
LH
647 * In the event of a dead node, this array may be %NULL
648 *
54a611b6
LH
649 * Return: A pointer to the maple node pivots
650 */
651static inline unsigned long *ma_pivots(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.pivot;
657 case maple_range_64:
658 case maple_leaf_64:
659 return node->mr64.pivot;
660 case maple_dense:
661 return NULL;
662 }
663 return NULL;
664}
665
666/*
667 * ma_gaps() - Get a pointer to the maple node gaps.
668 * @node - the maple node
669 * @type - the node type
670 *
671 * Return: A pointer to the maple node gaps
672 */
673static inline unsigned long *ma_gaps(struct maple_node *node,
674 enum maple_type type)
675{
676 switch (type) {
677 case maple_arange_64:
678 return node->ma64.gap;
679 case maple_range_64:
680 case maple_leaf_64:
681 case maple_dense:
682 return NULL;
683 }
684 return NULL;
685}
686
54a611b6
LH
687/*
688 * mas_safe_pivot() - get the pivot at @piv or mas->max.
689 * @mas: The maple state
690 * @pivots: The pointer to the maple node pivots
691 * @piv: The pivot to fetch
692 * @type: The maple node type
693 *
694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695 * otherwise.
696 */
271f61a8 697static __always_inline unsigned long
54a611b6
LH
698mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699 unsigned char piv, enum maple_type type)
700{
701 if (piv >= mt_pivots[type])
702 return mas->max;
703
704 return pivots[piv];
705}
706
707/*
708 * mas_safe_min() - Return the minimum for a given offset.
709 * @mas: The maple state
710 * @pivots: The pointer to the maple node pivots
711 * @offset: The offset into the pivot array
712 *
713 * Return: The minimum range value that is contained in @offset.
714 */
715static inline unsigned long
716mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717{
718 if (likely(offset))
719 return pivots[offset - 1] + 1;
720
721 return mas->min;
722}
723
54a611b6
LH
724/*
725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
726 * @mn: The encoded maple node
727 * @piv: The pivot offset
728 * @val: The value of the pivot
729 */
730static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
731 unsigned long val)
732{
733 struct maple_node *node = mte_to_node(mn);
734 enum maple_type type = mte_node_type(mn);
735
736 BUG_ON(piv >= mt_pivots[type]);
737 switch (type) {
54a611b6
LH
738 case maple_range_64:
739 case maple_leaf_64:
740 node->mr64.pivot[piv] = val;
741 break;
742 case maple_arange_64:
743 node->ma64.pivot[piv] = val;
744 break;
745 case maple_dense:
746 break;
747 }
748
749}
750
751/*
752 * ma_slots() - Get a pointer to the maple node slots.
753 * @mn: The maple node
754 * @mt: The maple node type
755 *
756 * Return: A pointer to the maple node slots
757 */
758static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
759{
760 switch (mt) {
54a611b6
LH
761 case maple_arange_64:
762 return mn->ma64.slot;
763 case maple_range_64:
764 case maple_leaf_64:
765 return mn->mr64.slot;
766 case maple_dense:
767 return mn->slot;
768 }
37a8ab24
LH
769
770 return NULL;
54a611b6
LH
771}
772
19a462f0
LH
773static inline bool mt_write_locked(const struct maple_tree *mt)
774{
775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
776 lockdep_is_held(&mt->ma_lock);
777}
778
271f61a8 779static __always_inline bool mt_locked(const struct maple_tree *mt)
54a611b6
LH
780{
781 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
782 lockdep_is_held(&mt->ma_lock);
783}
784
271f61a8 785static __always_inline void *mt_slot(const struct maple_tree *mt,
54a611b6
LH
786 void __rcu **slots, unsigned char offset)
787{
788 return rcu_dereference_check(slots[offset], mt_locked(mt));
789}
790
271f61a8
LH
791static __always_inline void *mt_slot_locked(struct maple_tree *mt,
792 void __rcu **slots, unsigned char offset)
790e1fa8 793{
19a462f0 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
790e1fa8 795}
54a611b6
LH
796/*
797 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
798 * @mas: The maple state
799 * @slots: The pointer to the slots
800 * @offset: The offset into the slots array to fetch
801 *
802 * Return: The entry stored in @slots at the @offset.
803 */
271f61a8
LH
804static __always_inline void *mas_slot_locked(struct ma_state *mas,
805 void __rcu **slots, unsigned char offset)
54a611b6 806{
790e1fa8 807 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
808}
809
810/*
811 * mas_slot() - Get the slot value when not holding the maple tree lock.
812 * @mas: The maple state
813 * @slots: The pointer to the slots
814 * @offset: The offset into the slots array to fetch
815 *
816 * Return: The entry stored in @slots at the @offset
817 */
271f61a8
LH
818static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
819 unsigned char offset)
54a611b6
LH
820{
821 return mt_slot(mas->tree, slots, offset);
822}
823
824/*
825 * mas_root() - Get the maple tree root.
826 * @mas: The maple state.
827 *
828 * Return: The pointer to the root of the tree
829 */
271f61a8 830static __always_inline void *mas_root(struct ma_state *mas)
54a611b6
LH
831{
832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
833}
834
835static inline void *mt_root_locked(struct maple_tree *mt)
836{
19a462f0 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
54a611b6
LH
838}
839
840/*
841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
842 * @mas: The maple state.
843 *
844 * Return: The pointer to the root of the tree
845 */
846static inline void *mas_root_locked(struct ma_state *mas)
847{
848 return mt_root_locked(mas->tree);
849}
850
851static inline struct maple_metadata *ma_meta(struct maple_node *mn,
852 enum maple_type mt)
853{
854 switch (mt) {
855 case maple_arange_64:
856 return &mn->ma64.meta;
857 default:
858 return &mn->mr64.meta;
859 }
860}
861
862/*
863 * ma_set_meta() - Set the metadata information of a node.
864 * @mn: The maple node
865 * @mt: The maple node type
866 * @offset: The offset of the highest sub-gap in this node.
867 * @end: The end of the data in this node.
868 */
869static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
870 unsigned char offset, unsigned char end)
871{
872 struct maple_metadata *meta = ma_meta(mn, mt);
873
874 meta->gap = offset;
875 meta->end = end;
876}
877
2e5b4921 878/*
790e1fa8
LH
879 * mt_clear_meta() - clear the metadata information of a node, if it exists
880 * @mt: The maple tree
2e5b4921 881 * @mn: The maple node
790e1fa8 882 * @type: The maple node type
2e5b4921
LH
883 * @offset: The offset of the highest sub-gap in this node.
884 * @end: The end of the data in this node.
885 */
790e1fa8
LH
886static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
887 enum maple_type type)
2e5b4921
LH
888{
889 struct maple_metadata *meta;
890 unsigned long *pivots;
891 void __rcu **slots;
892 void *next;
893
790e1fa8 894 switch (type) {
2e5b4921
LH
895 case maple_range_64:
896 pivots = mn->mr64.pivot;
897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
898 slots = mn->mr64.slot;
790e1fa8
LH
899 next = mt_slot_locked(mt, slots,
900 MAPLE_RANGE64_SLOTS - 1);
901 if (unlikely((mte_to_node(next) &&
902 mte_node_type(next))))
903 return; /* no metadata, could be node */
2e5b4921
LH
904 }
905 fallthrough;
906 case maple_arange_64:
790e1fa8 907 meta = ma_meta(mn, type);
2e5b4921
LH
908 break;
909 default:
910 return;
911 }
912
913 meta->gap = 0;
914 meta->end = 0;
915}
916
54a611b6
LH
917/*
918 * ma_meta_end() - Get the data end of a node from the metadata
919 * @mn: The maple node
920 * @mt: The maple node type
921 */
922static inline unsigned char ma_meta_end(struct maple_node *mn,
923 enum maple_type mt)
924{
925 struct maple_metadata *meta = ma_meta(mn, mt);
926
927 return meta->end;
928}
929
930/*
931 * ma_meta_gap() - Get the largest gap location of a node from the metadata
932 * @mn: The maple node
54a611b6 933 */
c5e94121 934static inline unsigned char ma_meta_gap(struct maple_node *mn)
54a611b6 935{
54a611b6
LH
936 return mn->ma64.meta.gap;
937}
938
939/*
940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
941 * @mn: The maple node
942 * @mn: The maple node type
943 * @offset: The location of the largest gap.
944 */
945static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
946 unsigned char offset)
947{
948
949 struct maple_metadata *meta = ma_meta(mn, mt);
950
951 meta->gap = offset;
952}
953
954/*
955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
956 * @mat - the ma_topiary, a linked list of dead nodes.
957 * @dead_enode - the node to be marked as dead and added to the tail of the list
958 *
959 * Add the @dead_enode to the linked list in @mat.
960 */
961static inline void mat_add(struct ma_topiary *mat,
962 struct maple_enode *dead_enode)
963{
964 mte_set_node_dead(dead_enode);
965 mte_to_mat(dead_enode)->next = NULL;
966 if (!mat->tail) {
967 mat->tail = mat->head = dead_enode;
968 return;
969 }
970
971 mte_to_mat(mat->tail)->next = dead_enode;
972 mat->tail = dead_enode;
973}
974
530f745c
LH
975static void mt_free_walk(struct rcu_head *head);
976static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
977 bool free);
54a611b6
LH
978/*
979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980 * @mas - the maple state
981 * @mat - the ma_topiary linked list of dead nodes to free.
982 *
983 * Destroy walk a dead list.
984 */
985static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
986{
987 struct maple_enode *next;
530f745c
LH
988 struct maple_node *node;
989 bool in_rcu = mt_in_rcu(mas->tree);
54a611b6
LH
990
991 while (mat->head) {
992 next = mte_to_mat(mat->head)->next;
530f745c
LH
993 node = mte_to_node(mat->head);
994 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
995 if (in_rcu)
996 call_rcu(&node->rcu, mt_free_walk);
54a611b6
LH
997 mat->head = next;
998 }
999}
1000/*
1001 * mas_descend() - Descend into the slot stored in the ma_state.
1002 * @mas - the maple state.
1003 *
1004 * Note: Not RCU safe, only use in write side or debug code.
1005 */
1006static inline void mas_descend(struct ma_state *mas)
1007{
1008 enum maple_type type;
1009 unsigned long *pivots;
1010 struct maple_node *node;
1011 void __rcu **slots;
1012
1013 node = mas_mn(mas);
1014 type = mte_node_type(mas->node);
1015 pivots = ma_pivots(node, type);
1016 slots = ma_slots(node, type);
1017
1018 if (mas->offset)
1019 mas->min = pivots[mas->offset - 1] + 1;
1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1021 mas->node = mas_slot(mas, slots, mas->offset);
1022}
1023
1024/*
1025 * mte_set_gap() - Set a maple node gap.
1026 * @mn: The encoded maple node
1027 * @gap: The offset of the gap to set
1028 * @val: The gap value
1029 */
1030static inline void mte_set_gap(const struct maple_enode *mn,
1031 unsigned char gap, unsigned long val)
1032{
1033 switch (mte_node_type(mn)) {
1034 default:
1035 break;
1036 case maple_arange_64:
1037 mte_to_node(mn)->ma64.gap[gap] = val;
1038 break;
1039 }
1040}
1041
1042/*
1043 * mas_ascend() - Walk up a level of the tree.
1044 * @mas: The maple state
1045 *
1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1047 * may cause several levels of walking up to find the correct min and max.
1048 * May find a dead node which will cause a premature return.
1049 * Return: 1 on dead node, 0 otherwise
1050 */
1051static int mas_ascend(struct ma_state *mas)
1052{
1053 struct maple_enode *p_enode; /* parent enode. */
1054 struct maple_enode *a_enode; /* ancestor enode. */
1055 struct maple_node *a_node; /* ancestor node. */
1056 struct maple_node *p_node; /* parent node. */
1057 unsigned char a_slot;
1058 enum maple_type a_type;
1059 unsigned long min, max;
1060 unsigned long *pivots;
54a611b6
LH
1061 bool set_max = false, set_min = false;
1062
1063 a_node = mas_mn(mas);
1064 if (ma_is_root(a_node)) {
1065 mas->offset = 0;
1066 return 0;
1067 }
1068
1069 p_node = mte_parent(mas->node);
1070 if (unlikely(a_node == p_node))
1071 return 1;
633769c9 1072
afc754c6 1073 a_type = mas_parent_type(mas, mas->node);
633769c9 1074 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1075 a_enode = mt_mk_node(p_node, a_type);
1076
1077 /* Check to make sure all parent information is still accurate */
1078 if (p_node != mte_parent(mas->node))
1079 return 1;
1080
1081 mas->node = a_enode;
54a611b6
LH
1082
1083 if (mte_is_root(a_enode)) {
1084 mas->max = ULONG_MAX;
1085 mas->min = 0;
1086 return 0;
1087 }
1088
3f05fcde
PZ
1089 min = 0;
1090 max = ULONG_MAX;
1091 if (!mas->offset) {
1092 min = mas->min;
633769c9 1093 set_min = true;
3f05fcde 1094 }
633769c9
LH
1095
1096 if (mas->max == ULONG_MAX)
1097 set_max = true;
1098
54a611b6
LH
1099 do {
1100 p_enode = a_enode;
afc754c6 1101 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1102 a_node = mte_parent(p_enode);
1103 a_slot = mte_parent_slot(p_enode);
54a611b6 1104 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1105 pivots = ma_pivots(a_node, a_type);
1106
1107 if (unlikely(ma_dead_node(a_node)))
1108 return 1;
54a611b6
LH
1109
1110 if (!set_min && a_slot) {
1111 set_min = true;
1112 min = pivots[a_slot - 1] + 1;
1113 }
1114
1115 if (!set_max && a_slot < mt_pivots[a_type]) {
1116 set_max = true;
1117 max = pivots[a_slot];
1118 }
1119
1120 if (unlikely(ma_dead_node(a_node)))
1121 return 1;
1122
1123 if (unlikely(ma_is_root(a_node)))
1124 break;
1125
1126 } while (!set_min || !set_max);
1127
1128 mas->max = max;
1129 mas->min = min;
1130 return 0;
1131}
1132
1133/*
1134 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1135 * @mas: The maple state
1136 *
1137 * Return: A pointer to a maple node.
1138 */
1139static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1140{
1141 struct maple_alloc *ret, *node = mas->alloc;
1142 unsigned long total = mas_allocated(mas);
541e06b7 1143 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1144
1145 /* nothing or a request pending. */
541e06b7 1146 if (WARN_ON(!total))
54a611b6
LH
1147 return NULL;
1148
1149 if (total == 1) {
1150 /* single allocation in this ma_state */
1151 mas->alloc = NULL;
1152 ret = node;
1153 goto single_node;
1154 }
1155
541e06b7 1156 if (node->node_count == 1) {
54a611b6
LH
1157 /* Single allocation in this node. */
1158 mas->alloc = node->slot[0];
54a611b6
LH
1159 mas->alloc->total = node->total - 1;
1160 ret = node;
1161 goto new_head;
1162 }
54a611b6 1163 node->total--;
541e06b7
LH
1164 ret = node->slot[--node->node_count];
1165 node->slot[node->node_count] = NULL;
54a611b6
LH
1166
1167single_node:
1168new_head:
541e06b7
LH
1169 if (req) {
1170 req++;
1171 mas_set_alloc_req(mas, req);
54a611b6 1172 }
541e06b7
LH
1173
1174 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1175 return (struct maple_node *)ret;
1176}
1177
1178/*
1179 * mas_push_node() - Push a node back on the maple state allocation.
1180 * @mas: The maple state
1181 * @used: The used maple node
1182 *
1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1184 * requested node count as necessary.
1185 */
1186static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1187{
1188 struct maple_alloc *reuse = (struct maple_alloc *)used;
1189 struct maple_alloc *head = mas->alloc;
1190 unsigned long count;
1191 unsigned int requested = mas_alloc_req(mas);
1192
54a611b6
LH
1193 count = mas_allocated(mas);
1194
541e06b7
LH
1195 reuse->request_count = 0;
1196 reuse->node_count = 0;
1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1198 head->slot[head->node_count++] = reuse;
54a611b6
LH
1199 head->total++;
1200 goto done;
1201 }
1202
1203 reuse->total = 1;
1204 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1205 reuse->slot[0] = head;
541e06b7 1206 reuse->node_count = 1;
54a611b6
LH
1207 reuse->total += head->total;
1208 }
1209
1210 mas->alloc = reuse;
1211done:
1212 if (requested > 1)
1213 mas_set_alloc_req(mas, requested - 1);
1214}
1215
1216/*
1217 * mas_alloc_nodes() - Allocate nodes into a maple state
1218 * @mas: The maple state
1219 * @gfp: The GFP Flags
1220 */
1221static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1222{
1223 struct maple_alloc *node;
54a611b6 1224 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1225 unsigned int requested = mas_alloc_req(mas);
1226 unsigned int count;
1227 void **slots = NULL;
1228 unsigned int max_req = 0;
1229
1230 if (!requested)
1231 return;
1232
1233 mas_set_alloc_req(mas, 0);
1234 if (mas->mas_flags & MA_STATE_PREALLOC) {
1235 if (allocated)
1236 return;
067311d3 1237 BUG_ON(!allocated);
54a611b6
LH
1238 WARN_ON(!allocated);
1239 }
1240
541e06b7 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1242 node = (struct maple_alloc *)mt_alloc_one(gfp);
1243 if (!node)
1244 goto nomem_one;
1245
541e06b7 1246 if (allocated) {
54a611b6 1247 node->slot[0] = mas->alloc;
541e06b7
LH
1248 node->node_count = 1;
1249 } else {
1250 node->node_count = 0;
1251 }
54a611b6 1252
54a611b6 1253 mas->alloc = node;
541e06b7 1254 node->total = ++allocated;
54a611b6
LH
1255 requested--;
1256 }
1257
1258 node = mas->alloc;
541e06b7 1259 node->request_count = 0;
54a611b6 1260 while (requested) {
1f5f12ec
PZ
1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1262 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1263 max_req = min(requested, max_req);
1264 count = mt_alloc_bulk(gfp, max_req, slots);
1265 if (!count)
1266 goto nomem_bulk;
1267
1f5f12ec
PZ
1268 if (node->node_count == 0) {
1269 node->slot[0]->node_count = 0;
1270 node->slot[0]->request_count = 0;
1271 }
1272
54a611b6 1273 node->node_count += count;
541e06b7 1274 allocated += count;
c61b3a2b 1275 node = node->slot[0];
54a611b6
LH
1276 requested -= count;
1277 }
541e06b7 1278 mas->alloc->total = allocated;
54a611b6
LH
1279 return;
1280
1281nomem_bulk:
1282 /* Clean up potential freed allocations on bulk failure */
1283 memset(slots, 0, max_req * sizeof(unsigned long));
1284nomem_one:
1285 mas_set_alloc_req(mas, requested);
1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1287 mas->alloc->total = allocated;
54a611b6 1288 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1289}
1290
1291/*
1292 * mas_free() - Free an encoded maple node
1293 * @mas: The maple state
1294 * @used: The encoded maple node to free.
1295 *
1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1297 * otherwise.
1298 */
1299static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1300{
1301 struct maple_node *tmp = mte_to_node(used);
1302
1303 if (mt_in_rcu(mas->tree))
1304 ma_free_rcu(tmp);
1305 else
1306 mas_push_node(mas, tmp);
1307}
1308
1309/*
1310 * mas_node_count() - Check if enough nodes are allocated and request more if
1311 * there is not enough nodes.
1312 * @mas: The maple state
1313 * @count: The number of nodes needed
1314 * @gfp: the gfp flags
1315 */
1316static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1317{
1318 unsigned long allocated = mas_allocated(mas);
1319
1320 if (allocated < count) {
1321 mas_set_alloc_req(mas, count - allocated);
1322 mas_alloc_nodes(mas, gfp);
1323 }
1324}
1325
1326/*
1327 * mas_node_count() - Check if enough nodes are allocated and request more if
1328 * there is not enough nodes.
1329 * @mas: The maple state
1330 * @count: The number of nodes needed
1331 *
1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1333 */
1334static void mas_node_count(struct ma_state *mas, int count)
1335{
1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1337}
1338
1339/*
1340 * mas_start() - Sets up maple state for operations.
1341 * @mas: The maple state.
1342 *
067311d3 1343 * If mas->status == mas_start, then set the min, max and depth to
54a611b6
LH
1344 * defaults.
1345 *
1346 * Return:
067311d3
LH
1347 * - If mas->node is an error or not mas_start, return NULL.
1348 * - If it's an empty tree: NULL & mas->status == ma_none
1349 * - If it's a single entry: The entry & mas->status == mas_root
1350 * - If it's a tree: NULL & mas->status == safe root node.
54a611b6
LH
1351 */
1352static inline struct maple_enode *mas_start(struct ma_state *mas)
1353{
1354 if (likely(mas_is_start(mas))) {
1355 struct maple_enode *root;
1356
54a611b6
LH
1357 mas->min = 0;
1358 mas->max = ULONG_MAX;
54a611b6 1359
a7b92d59 1360retry:
d0411860 1361 mas->depth = 0;
54a611b6
LH
1362 root = mas_root(mas);
1363 /* Tree with nodes */
1364 if (likely(xa_is_node(root))) {
9bbba563 1365 mas->depth = 1;
067311d3 1366 mas->status = ma_active;
54a611b6 1367 mas->node = mte_safe_root(root);
46b34584 1368 mas->offset = 0;
a7b92d59
LH
1369 if (mte_dead_node(mas->node))
1370 goto retry;
1371
54a611b6
LH
1372 return NULL;
1373 }
1374
1375 /* empty tree */
1376 if (unlikely(!root)) {
067311d3
LH
1377 mas->node = NULL;
1378 mas->status = ma_none;
54a611b6
LH
1379 mas->offset = MAPLE_NODE_SLOTS;
1380 return NULL;
1381 }
1382
1383 /* Single entry tree */
067311d3 1384 mas->status = ma_root;
54a611b6
LH
1385 mas->offset = MAPLE_NODE_SLOTS;
1386
1387 /* Single entry tree. */
1388 if (mas->index > 0)
1389 return NULL;
1390
1391 return root;
1392 }
1393
1394 return NULL;
1395}
1396
1397/*
1398 * ma_data_end() - Find the end of the data in a node.
1399 * @node: The maple node
1400 * @type: The maple node type
1401 * @pivots: The array of pivots in the node
1402 * @max: The maximum value in the node
1403 *
1404 * Uses metadata to find the end of the data when possible.
1405 * Return: The zero indexed last slot with data (may be null).
1406 */
271f61a8
LH
1407static __always_inline unsigned char ma_data_end(struct maple_node *node,
1408 enum maple_type type, unsigned long *pivots, unsigned long max)
54a611b6
LH
1409{
1410 unsigned char offset;
1411
39d0bd86
LH
1412 if (!pivots)
1413 return 0;
1414
54a611b6
LH
1415 if (type == maple_arange_64)
1416 return ma_meta_end(node, type);
1417
1418 offset = mt_pivots[type] - 1;
1419 if (likely(!pivots[offset]))
1420 return ma_meta_end(node, type);
1421
1422 if (likely(pivots[offset] == max))
1423 return offset;
1424
1425 return mt_pivots[type];
1426}
1427
1428/*
1429 * mas_data_end() - Find the end of the data (slot).
1430 * @mas: the maple state
1431 *
1432 * This method is optimized to check the metadata of a node if the node type
1433 * supports data end metadata.
1434 *
1435 * Return: The zero indexed last slot with data (may be null).
1436 */
1437static inline unsigned char mas_data_end(struct ma_state *mas)
1438{
1439 enum maple_type type;
1440 struct maple_node *node;
1441 unsigned char offset;
1442 unsigned long *pivots;
1443
1444 type = mte_node_type(mas->node);
1445 node = mas_mn(mas);
1446 if (type == maple_arange_64)
1447 return ma_meta_end(node, type);
1448
1449 pivots = ma_pivots(node, type);
39d0bd86
LH
1450 if (unlikely(ma_dead_node(node)))
1451 return 0;
1452
54a611b6
LH
1453 offset = mt_pivots[type] - 1;
1454 if (likely(!pivots[offset]))
1455 return ma_meta_end(node, type);
1456
1457 if (likely(pivots[offset] == mas->max))
1458 return offset;
1459
1460 return mt_pivots[type];
1461}
1462
1463/*
1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1465 * @mas - the maple state
1466 *
1467 * Return: The maximum gap in the leaf.
1468 */
1469static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1470{
1471 enum maple_type mt;
1472 unsigned long pstart, gap, max_gap;
1473 struct maple_node *mn;
1474 unsigned long *pivots;
1475 void __rcu **slots;
1476 unsigned char i;
1477 unsigned char max_piv;
1478
1479 mt = mte_node_type(mas->node);
1480 mn = mas_mn(mas);
1481 slots = ma_slots(mn, mt);
1482 max_gap = 0;
1483 if (unlikely(ma_is_dense(mt))) {
1484 gap = 0;
1485 for (i = 0; i < mt_slots[mt]; i++) {
1486 if (slots[i]) {
1487 if (gap > max_gap)
1488 max_gap = gap;
1489 gap = 0;
1490 } else {
1491 gap++;
1492 }
1493 }
1494 if (gap > max_gap)
1495 max_gap = gap;
1496 return max_gap;
1497 }
1498
1499 /*
1500 * Check the first implied pivot optimizes the loop below and slot 1 may
1501 * be skipped if there is a gap in slot 0.
1502 */
1503 pivots = ma_pivots(mn, mt);
1504 if (likely(!slots[0])) {
1505 max_gap = pivots[0] - mas->min + 1;
1506 i = 2;
1507 } else {
1508 i = 1;
1509 }
1510
1511 /* reduce max_piv as the special case is checked before the loop */
1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1513 /*
1514 * Check end implied pivot which can only be a gap on the right most
1515 * node.
1516 */
1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1518 gap = ULONG_MAX - pivots[max_piv];
1519 if (gap > max_gap)
1520 max_gap = gap;
7e552dcd
PZ
1521
1522 if (max_gap > pivots[max_piv] - mas->min)
1523 return max_gap;
54a611b6
LH
1524 }
1525
1526 for (; i <= max_piv; i++) {
1527 /* data == no gap. */
1528 if (likely(slots[i]))
1529 continue;
1530
1531 pstart = pivots[i - 1];
1532 gap = pivots[i] - pstart;
1533 if (gap > max_gap)
1534 max_gap = gap;
1535
1536 /* There cannot be two gaps in a row. */
1537 i++;
1538 }
1539 return max_gap;
1540}
1541
1542/*
1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1544 * @node: The maple node
1545 * @gaps: The pointer to the gaps
1546 * @mt: The maple node type
1547 * @*off: Pointer to store the offset location of the gap.
1548 *
1549 * Uses the metadata data end to scan backwards across set gaps.
1550 *
1551 * Return: The maximum gap value
1552 */
1553static inline unsigned long
1554ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1555 unsigned char *off)
1556{
1557 unsigned char offset, i;
1558 unsigned long max_gap = 0;
1559
1560 i = offset = ma_meta_end(node, mt);
1561 do {
1562 if (gaps[i] > max_gap) {
1563 max_gap = gaps[i];
1564 offset = i;
1565 }
1566 } while (i--);
1567
1568 *off = offset;
1569 return max_gap;
1570}
1571
1572/*
1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1574 * @mas: The maple state.
1575 *
54a611b6
LH
1576 * Return: The gap value.
1577 */
1578static inline unsigned long mas_max_gap(struct ma_state *mas)
1579{
1580 unsigned long *gaps;
1581 unsigned char offset;
1582 enum maple_type mt;
1583 struct maple_node *node;
1584
1585 mt = mte_node_type(mas->node);
1586 if (ma_is_leaf(mt))
1587 return mas_leaf_max_gap(mas);
1588
1589 node = mas_mn(mas);
bec1b51e 1590 MAS_BUG_ON(mas, mt != maple_arange_64);
c5e94121 1591 offset = ma_meta_gap(node);
54a611b6
LH
1592 gaps = ma_gaps(node, mt);
1593 return gaps[offset];
1594}
1595
1596/*
1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1598 * @mas: The maple state
1599 * @offset: The gap offset in the parent to set
1600 * @new: The new gap value.
1601 *
1602 * Set the parent gap then continue to set the gap upwards, using the metadata
1603 * of the parent to see if it is necessary to check the node above.
1604 */
1605static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1606 unsigned long new)
1607{
1608 unsigned long meta_gap = 0;
1609 struct maple_node *pnode;
1610 struct maple_enode *penode;
1611 unsigned long *pgaps;
1612 unsigned char meta_offset;
1613 enum maple_type pmt;
1614
1615 pnode = mte_parent(mas->node);
afc754c6 1616 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1617 penode = mt_mk_node(pnode, pmt);
1618 pgaps = ma_gaps(pnode, pmt);
1619
1620ascend:
bec1b51e 1621 MAS_BUG_ON(mas, pmt != maple_arange_64);
c5e94121 1622 meta_offset = ma_meta_gap(pnode);
d695c30a 1623 meta_gap = pgaps[meta_offset];
54a611b6
LH
1624
1625 pgaps[offset] = new;
1626
1627 if (meta_gap == new)
1628 return;
1629
1630 if (offset != meta_offset) {
1631 if (meta_gap > new)
1632 return;
1633
1634 ma_set_meta_gap(pnode, pmt, offset);
1635 } else if (new < meta_gap) {
54a611b6
LH
1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1637 ma_set_meta_gap(pnode, pmt, meta_offset);
1638 }
1639
1640 if (ma_is_root(pnode))
1641 return;
1642
1643 /* Go to the parent node. */
1644 pnode = mte_parent(penode);
afc754c6 1645 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1646 pgaps = ma_gaps(pnode, pmt);
1647 offset = mte_parent_slot(penode);
1648 penode = mt_mk_node(pnode, pmt);
1649 goto ascend;
1650}
1651
1652/*
1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1654 * @mas - the maple state.
1655 */
1656static inline void mas_update_gap(struct ma_state *mas)
1657{
1658 unsigned char pslot;
1659 unsigned long p_gap;
1660 unsigned long max_gap;
1661
1662 if (!mt_is_alloc(mas->tree))
1663 return;
1664
1665 if (mte_is_root(mas->node))
1666 return;
1667
1668 max_gap = mas_max_gap(mas);
1669
1670 pslot = mte_parent_slot(mas->node);
1671 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1672 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1673
1674 if (p_gap != max_gap)
1675 mas_parent_gap(mas, pslot, max_gap);
1676}
1677
1678/*
1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1680 * @parent with the slot encoded.
1681 * @mas - the maple state (for the tree)
1682 * @parent - the maple encoded node containing the children.
1683 */
1684static inline void mas_adopt_children(struct ma_state *mas,
1685 struct maple_enode *parent)
1686{
1687 enum maple_type type = mte_node_type(parent);
068bafca 1688 struct maple_node *node = mte_to_node(parent);
54a611b6
LH
1689 void __rcu **slots = ma_slots(node, type);
1690 unsigned long *pivots = ma_pivots(node, type);
1691 struct maple_enode *child;
1692 unsigned char offset;
1693
1694 offset = ma_data_end(node, type, pivots, mas->max);
1695 do {
1696 child = mas_slot_locked(mas, slots, offset);
bf96715e 1697 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1698 } while (offset--);
1699}
1700
1701/*
1238f6a2
LH
1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1703 * node as dead.
1704 * @mas - the maple state with the new node
1705 * @old_enode - The old maple encoded node to replace.
54a611b6 1706 */
1238f6a2
LH
1707static inline void mas_put_in_tree(struct ma_state *mas,
1708 struct maple_enode *old_enode)
14c4b5ab 1709 __must_hold(mas->tree->ma_lock)
54a611b6 1710{
1238f6a2
LH
1711 unsigned char offset;
1712 void __rcu **slots;
54a611b6
LH
1713
1714 if (mte_is_root(mas->node)) {
4ffc2ee2 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6
LH
1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1717 mas_set_height(mas);
1718 } else {
1238f6a2
LH
1719
1720 offset = mte_parent_slot(mas->node);
1721 slots = ma_slots(mte_parent(mas->node),
1722 mas_parent_type(mas, mas->node));
54a611b6
LH
1723 rcu_assign_pointer(slots[offset], mas->node);
1724 }
1725
1238f6a2 1726 mte_set_node_dead(old_enode);
54a611b6
LH
1727}
1728
72bcf4aa
LH
1729/*
1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1731 * dead, and freeing it.
1732 * the parent encoding to locate the maple node in the tree.
1733 * @mas - the ma_state with @mas->node pointing to the new node.
1734 * @old_enode - The old maple encoded node.
1735 */
1736static inline void mas_replace_node(struct ma_state *mas,
1737 struct maple_enode *old_enode)
1738 __must_hold(mas->tree->ma_lock)
1739{
1238f6a2 1740 mas_put_in_tree(mas, old_enode);
72bcf4aa
LH
1741 mas_free(mas, old_enode);
1742}
1743
54a611b6 1744/*
530f745c
LH
1745 * mas_find_child() - Find a child who has the parent @mas->node.
1746 * @mas: the maple state with the parent.
54a611b6
LH
1747 * @child: the maple state to store the child.
1748 */
530f745c 1749static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
14c4b5ab 1750 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1751{
1752 enum maple_type mt;
1753 unsigned char offset;
1754 unsigned char end;
1755 unsigned long *pivots;
1756 struct maple_enode *entry;
1757 struct maple_node *node;
1758 void __rcu **slots;
1759
1760 mt = mte_node_type(mas->node);
1761 node = mas_mn(mas);
1762 slots = ma_slots(node, mt);
1763 pivots = ma_pivots(node, mt);
1764 end = ma_data_end(node, mt, pivots, mas->max);
1765 for (offset = mas->offset; offset <= end; offset++) {
1766 entry = mas_slot_locked(mas, slots, offset);
1767 if (mte_parent(entry) == node) {
1768 *child = *mas;
1769 mas->offset = offset + 1;
1770 child->offset = offset;
1771 mas_descend(child);
1772 child->offset = 0;
1773 return true;
1774 }
1775 }
1776 return false;
1777}
1778
1779/*
1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1781 * old data or set b_node->b_end.
1782 * @b_node: the maple_big_node
1783 * @shift: the shift count
1784 */
1785static inline void mab_shift_right(struct maple_big_node *b_node,
1786 unsigned char shift)
1787{
1788 unsigned long size = b_node->b_end * sizeof(unsigned long);
1789
1790 memmove(b_node->pivot + shift, b_node->pivot, size);
1791 memmove(b_node->slot + shift, b_node->slot, size);
1792 if (b_node->type == maple_arange_64)
1793 memmove(b_node->gap + shift, b_node->gap, size);
1794}
1795
1796/*
1797 * mab_middle_node() - Check if a middle node is needed (unlikely)
1798 * @b_node: the maple_big_node that contains the data.
1799 * @size: the amount of data in the b_node
1800 * @split: the potential split location
1801 * @slot_count: the size that can be stored in a single node being considered.
1802 *
1803 * Return: true if a middle node is required.
1804 */
1805static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1806 unsigned char slot_count)
1807{
1808 unsigned char size = b_node->b_end;
1809
1810 if (size >= 2 * slot_count)
1811 return true;
1812
1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1814 return true;
1815
1816 return false;
1817}
1818
1819/*
1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1821 * @b_node: the maple_big_node with the data
1822 * @split: the suggested split location
1823 * @slot_count: the number of slots in the node being considered.
1824 *
1825 * Return: the split location.
1826 */
1827static inline int mab_no_null_split(struct maple_big_node *b_node,
1828 unsigned char split, unsigned char slot_count)
1829{
1830 if (!b_node->slot[split]) {
1831 /*
1832 * If the split is less than the max slot && the right side will
1833 * still be sufficient, then increment the split on NULL.
1834 */
1835 if ((split < slot_count - 1) &&
1836 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1837 split++;
1838 else
1839 split--;
1840 }
1841 return split;
1842}
1843
1844/*
1845 * mab_calc_split() - Calculate the split location and if there needs to be two
1846 * splits.
1847 * @bn: The maple_big_node with the data
1848 * @mid_split: The second split, if required. 0 otherwise.
1849 *
1850 * Return: The first split location. The middle split is set in @mid_split.
1851 */
1852static inline int mab_calc_split(struct ma_state *mas,
1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1854{
1855 unsigned char b_end = bn->b_end;
1856 int split = b_end / 2; /* Assume equal split. */
1857 unsigned char slot_min, slot_count = mt_slots[bn->type];
1858
1859 /*
1860 * To support gap tracking, all NULL entries are kept together and a node cannot
1861 * end on a NULL entry, with the exception of the left-most leaf. The
1862 * limitation means that the split of a node must be checked for this condition
1863 * and be able to put more data in one direction or the other.
1864 */
1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1866 *mid_split = 0;
1867 split = b_end - mt_min_slots[bn->type];
1868
1869 if (!ma_is_leaf(bn->type))
1870 return split;
1871
1872 mas->mas_flags |= MA_STATE_REBALANCE;
1873 if (!bn->slot[split])
1874 split--;
1875 return split;
1876 }
1877
1878 /*
1879 * Although extremely rare, it is possible to enter what is known as the 3-way
1880 * split scenario. The 3-way split comes about by means of a store of a range
1881 * that overwrites the end and beginning of two full nodes. The result is a set
1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1883 * also be located in different parent nodes which are also full. This can
1884 * carry upwards all the way to the root in the worst case.
1885 */
1886 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1887 split = b_end / 3;
1888 *mid_split = split * 2;
1889 } else {
1890 slot_min = mt_min_slots[bn->type];
1891
1892 *mid_split = 0;
1893 /*
1894 * Avoid having a range less than the slot count unless it
1895 * causes one node to be deficient.
1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1897 */
5729e06c
LH
1898 while ((split < slot_count - 1) &&
1899 ((bn->pivot[split] - min) < slot_count - 1) &&
1900 (b_end - split > slot_min))
54a611b6
LH
1901 split++;
1902 }
1903
1904 /* Avoid ending a node on a NULL entry */
1905 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1906
e11cb683
VY
1907 if (unlikely(*mid_split))
1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1909
1910 return split;
1911}
1912
1913/*
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1921 */
1922static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 unsigned char mas_end, struct maple_big_node *b_node,
1924 unsigned char mab_start)
1925{
1926 enum maple_type mt;
1927 struct maple_node *node;
1928 void __rcu **slots;
1929 unsigned long *pivots, *gaps;
1930 int i = mas_start, j = mab_start;
1931 unsigned char piv_end;
1932
1933 node = mas_mn(mas);
1934 mt = mte_node_type(mas->node);
1935 pivots = ma_pivots(node, mt);
1936 if (!i) {
1937 b_node->pivot[j] = pivots[i++];
1938 if (unlikely(i > mas_end))
1939 goto complete;
1940 j++;
1941 }
1942
1943 piv_end = min(mas_end, mt_pivots[mt]);
1944 for (; i < piv_end; i++, j++) {
1945 b_node->pivot[j] = pivots[i];
1946 if (unlikely(!b_node->pivot[j]))
1947 break;
1948
1949 if (unlikely(mas->max == b_node->pivot[j]))
1950 goto complete;
1951 }
1952
1953 if (likely(i <= mas_end))
1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1955
1956complete:
1957 b_node->b_end = ++j;
1958 j -= mab_start;
1959 slots = ma_slots(node, mt);
1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1962 gaps = ma_gaps(node, mt);
1963 memcpy(b_node->gap + mab_start, gaps + mas_start,
1964 sizeof(unsigned long) * j);
1965 }
1966}
1967
1968/*
1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
54a611b6 1970 * @node: The maple node
54a611b6 1971 * @mt: The maple type
330018fe 1972 * @end: The node end
54a611b6 1973 */
330018fe 1974static inline void mas_leaf_set_meta(struct maple_node *node,
54a611b6
LH
1975 enum maple_type mt, unsigned char end)
1976{
54a611b6
LH
1977 if (end < mt_slots[mt] - 1)
1978 ma_set_meta(node, mt, 0, end);
1979}
1980
1981/*
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1987 */
1988static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 unsigned char mab_start, unsigned char mab_end,
1990 struct ma_state *mas, bool new_max)
1991{
1992 int i, j = 0;
1993 enum maple_type mt = mte_node_type(mas->node);
1994 struct maple_node *node = mte_to_node(mas->node);
1995 void __rcu **slots = ma_slots(node, mt);
1996 unsigned long *pivots = ma_pivots(node, mt);
1997 unsigned long *gaps = NULL;
1998 unsigned char end;
1999
2000 if (mab_end - mab_start > mt_pivots[mt])
2001 mab_end--;
2002
2003 if (!pivots[mt_pivots[mt] - 1])
2004 slots[mt_pivots[mt]] = NULL;
2005
2006 i = mab_start;
2007 do {
2008 pivots[j++] = b_node->pivot[i++];
2009 } while (i <= mab_end && likely(b_node->pivot[i]));
2010
2011 memcpy(slots, b_node->slot + mab_start,
2012 sizeof(void *) * (i - mab_start));
2013
2014 if (new_max)
2015 mas->max = b_node->pivot[i - 1];
2016
2017 end = j - 1;
2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 unsigned long max_gap = 0;
d695c30a 2020 unsigned char offset = 0;
54a611b6
LH
2021
2022 gaps = ma_gaps(node, mt);
2023 do {
2024 gaps[--j] = b_node->gap[--i];
2025 if (gaps[j] > max_gap) {
2026 offset = j;
2027 max_gap = gaps[j];
2028 }
2029 } while (j);
2030
2031 ma_set_meta(node, mt, offset, end);
2032 } else {
330018fe 2033 mas_leaf_set_meta(node, mt, end);
54a611b6
LH
2034 }
2035}
2036
54a611b6
LH
2037/*
2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2039 * @mas: The maple state
2040 * @end: The maple node end
2041 * @mt: The maple node type
2042 */
2043static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2044 enum maple_type mt)
2045{
2046 if (!(mas->mas_flags & MA_STATE_BULK))
2047 return;
2048
2049 if (mte_is_root(mas->node))
2050 return;
2051
2052 if (end > mt_min_slots[mt]) {
2053 mas->mas_flags &= ~MA_STATE_REBALANCE;
2054 return;
2055 }
2056}
2057
2058/*
2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2060 * data from a maple encoded node.
2061 * @wr_mas: the maple write state
2062 * @b_node: the maple_big_node to fill with data
2063 * @offset_end: the offset to end copying
2064 *
2065 * Return: The actual end of the data stored in @b_node
2066 */
44081c77 2067static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2068 struct maple_big_node *b_node, unsigned char offset_end)
2069{
2070 unsigned char slot;
2071 unsigned char b_end;
2072 /* Possible underflow of piv will wrap back to 0 before use. */
2073 unsigned long piv;
2074 struct ma_state *mas = wr_mas->mas;
2075
2076 b_node->type = wr_mas->type;
2077 b_end = 0;
2078 slot = mas->offset;
2079 if (slot) {
2080 /* Copy start data up to insert. */
2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2082 b_end = b_node->b_end;
2083 piv = b_node->pivot[b_end - 1];
2084 } else
2085 piv = mas->min - 1;
2086
2087 if (piv + 1 < mas->index) {
2088 /* Handle range starting after old range */
2089 b_node->slot[b_end] = wr_mas->content;
2090 if (!wr_mas->content)
2091 b_node->gap[b_end] = mas->index - 1 - piv;
2092 b_node->pivot[b_end++] = mas->index - 1;
2093 }
2094
2095 /* Store the new entry. */
2096 mas->offset = b_end;
2097 b_node->slot[b_end] = wr_mas->entry;
2098 b_node->pivot[b_end] = mas->last;
2099
2100 /* Appended. */
2101 if (mas->last >= mas->max)
2102 goto b_end;
2103
2104 /* Handle new range ending before old range ends */
29b2681f 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
54a611b6
LH
2106 if (piv > mas->last) {
2107 if (piv == ULONG_MAX)
2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2109
2110 if (offset_end != slot)
2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2112 offset_end);
2113
2114 b_node->slot[++b_end] = wr_mas->content;
2115 if (!wr_mas->content)
2116 b_node->gap[b_end] = piv - mas->last + 1;
2117 b_node->pivot[b_end] = piv;
2118 }
2119
2120 slot = offset_end + 1;
0de56e38 2121 if (slot > mas->end)
54a611b6
LH
2122 goto b_end;
2123
2124 /* Copy end data to the end of the node. */
0de56e38 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
54a611b6
LH
2126 b_node->b_end--;
2127 return;
2128
2129b_end:
2130 b_node->b_end = b_end;
2131}
2132
2133/*
2134 * mas_prev_sibling() - Find the previous node with the same parent.
2135 * @mas: the maple state
2136 *
2137 * Return: True if there is a previous sibling, false otherwise.
2138 */
2139static inline bool mas_prev_sibling(struct ma_state *mas)
2140{
2141 unsigned int p_slot = mte_parent_slot(mas->node);
2142
2143 if (mte_is_root(mas->node))
2144 return false;
2145
2146 if (!p_slot)
2147 return false;
2148
2149 mas_ascend(mas);
2150 mas->offset = p_slot - 1;
2151 mas_descend(mas);
2152 return true;
2153}
2154
2155/*
2156 * mas_next_sibling() - Find the next node with the same parent.
2157 * @mas: the maple state
2158 *
2159 * Return: true if there is a next sibling, false otherwise.
2160 */
2161static inline bool mas_next_sibling(struct ma_state *mas)
2162{
2163 MA_STATE(parent, mas->tree, mas->index, mas->last);
2164
2165 if (mte_is_root(mas->node))
2166 return false;
2167
2168 parent = *mas;
2169 mas_ascend(&parent);
2170 parent.offset = mte_parent_slot(mas->node) + 1;
2171 if (parent.offset > mas_data_end(&parent))
2172 return false;
2173
2174 *mas = parent;
2175 mas_descend(mas);
2176 return true;
2177}
2178
2179/*
067311d3 2180 * mte_node_or_none() - Set the enode and state.
54a611b6
LH
2181 * @enode: The encoded maple node.
2182 *
067311d3 2183 * Set the node to the enode and the status.
54a611b6 2184 */
067311d3
LH
2185static inline void mas_node_or_none(struct ma_state *mas,
2186 struct maple_enode *enode)
54a611b6 2187{
067311d3
LH
2188 if (enode) {
2189 mas->node = enode;
2190 mas->status = ma_active;
2191 } else {
2192 mas->node = NULL;
2193 mas->status = ma_none;
2194 }
54a611b6
LH
2195}
2196
2197/*
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
2203static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204{
2205 struct ma_state *mas = wr_mas->mas;
97f7e094 2206 unsigned char count, offset;
54a611b6
LH
2207
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2211 return;
2212 }
2213
2214 wr_mas->node = mas_mn(wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
0de56e38
LH
2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 wr_mas->pivots, mas->max);
54a611b6 2218 offset = mas->offset;
54a611b6 2219
97f7e094
PZ
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2221 offset++;
54a611b6 2222
97f7e094
PZ
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2225 wr_mas->offset_end = mas->offset = offset;
2226}
2227
54a611b6
LH
2228/*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 * @old_r: The encoded maple node to the right (next node).
2232 */
2233static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2234{
2235 unsigned char b_end = mast->bn->b_end;
2236
2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2238 mast->bn, b_end);
2239 mast->orig_r->last = mast->orig_r->max;
2240}
2241
2242/*
2243 * mast_rebalance_prev() - Rebalance against the previous node
2244 * @mast: The maple subtree state
2245 * @old_l: The encoded maple node to the left (previous node)
2246 */
2247static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2248{
2249 unsigned char end = mas_data_end(mast->orig_l) + 1;
2250 unsigned char b_end = mast->bn->b_end;
2251
2252 mab_shift_right(mast->bn, end);
2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2254 mast->l->min = mast->orig_l->min;
2255 mast->orig_l->index = mast->orig_l->min;
2256 mast->bn->b_end = end + b_end;
2257 mast->l->offset += end;
2258}
2259
2260/*
2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262 * the node to the right. Checking the nodes to the right then the left at each
530f745c 2263 * level upwards until root is reached.
54a611b6
LH
2264 * Data is copied into the @mast->bn.
2265 * @mast: The maple_subtree_state.
2266 */
2267static inline
2268bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2269{
2270 struct ma_state r_tmp = *mast->orig_r;
2271 struct ma_state l_tmp = *mast->orig_l;
54a611b6
LH
2272 unsigned char depth = 0;
2273
2274 r_tmp = *mast->orig_r;
2275 l_tmp = *mast->orig_l;
2276 do {
2277 mas_ascend(mast->orig_r);
2278 mas_ascend(mast->orig_l);
2279 depth++;
54a611b6 2280 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
54a611b6
LH
2281 mast->orig_r->offset++;
2282 do {
2283 mas_descend(mast->orig_r);
2284 mast->orig_r->offset = 0;
530f745c 2285 } while (--depth);
54a611b6
LH
2286
2287 mast_rebalance_next(mast);
54a611b6
LH
2288 *mast->orig_l = l_tmp;
2289 return true;
54a611b6 2290 } else if (mast->orig_l->offset != 0) {
54a611b6
LH
2291 mast->orig_l->offset--;
2292 do {
2293 mas_descend(mast->orig_l);
2294 mast->orig_l->offset =
2295 mas_data_end(mast->orig_l);
530f745c 2296 } while (--depth);
54a611b6
LH
2297
2298 mast_rebalance_prev(mast);
54a611b6
LH
2299 *mast->orig_r = r_tmp;
2300 return true;
2301 }
2302 } while (!mte_is_root(mast->orig_r->node));
2303
2304 *mast->orig_r = r_tmp;
2305 *mast->orig_l = l_tmp;
2306 return false;
2307}
2308
2309/*
530f745c 2310 * mast_ascend() - Ascend the original left and right maple states.
54a611b6
LH
2311 * @mast: the maple subtree state.
2312 *
530f745c
LH
2313 * Ascend the original left and right sides. Set the offsets to point to the
2314 * data already in the new tree (@mast->l and @mast->r).
54a611b6 2315 */
530f745c 2316static inline void mast_ascend(struct maple_subtree_state *mast)
54a611b6
LH
2317{
2318 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
54a611b6
LH
2319 mas_ascend(mast->orig_l);
2320 mas_ascend(mast->orig_r);
54a611b6
LH
2321
2322 mast->orig_r->offset = 0;
2323 mast->orig_r->index = mast->r->max;
2324 /* last should be larger than or equal to index */
2325 if (mast->orig_r->last < mast->orig_r->index)
2326 mast->orig_r->last = mast->orig_r->index;
530f745c 2327
54a611b6
LH
2328 wr_mas.type = mte_node_type(mast->orig_r->node);
2329 mas_wr_node_walk(&wr_mas);
2330 /* Set up the left side of things */
2331 mast->orig_l->offset = 0;
2332 mast->orig_l->index = mast->l->min;
2333 wr_mas.mas = mast->orig_l;
2334 wr_mas.type = mte_node_type(mast->orig_l->node);
2335 mas_wr_node_walk(&wr_mas);
2336
2337 mast->bn->type = wr_mas.type;
2338}
2339
2340/*
2341 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2342 * @mas: the maple state with the allocations.
2343 * @b_node: the maple_big_node with the type encoding.
2344 *
2345 * Use the node type from the maple_big_node to allocate a new node from the
2346 * ma_state. This function exists mainly for code readability.
2347 *
2348 * Return: A new maple encoded node
2349 */
2350static inline struct maple_enode
2351*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2352{
2353 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2354}
2355
2356/*
2357 * mas_mab_to_node() - Set up right and middle nodes
2358 *
2359 * @mas: the maple state that contains the allocations.
2360 * @b_node: the node which contains the data.
2361 * @left: The pointer which will have the left node
2362 * @right: The pointer which may have the right node
2363 * @middle: the pointer which may have the middle node (rare)
2364 * @mid_split: the split location for the middle node
2365 *
2366 * Return: the split of left.
2367 */
2368static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2369 struct maple_big_node *b_node, struct maple_enode **left,
2370 struct maple_enode **right, struct maple_enode **middle,
2371 unsigned char *mid_split, unsigned long min)
2372{
2373 unsigned char split = 0;
2374 unsigned char slot_count = mt_slots[b_node->type];
2375
2376 *left = mas_new_ma_node(mas, b_node);
2377 *right = NULL;
2378 *middle = NULL;
2379 *mid_split = 0;
2380
2381 if (b_node->b_end < slot_count) {
2382 split = b_node->b_end;
2383 } else {
2384 split = mab_calc_split(mas, b_node, mid_split, min);
2385 *right = mas_new_ma_node(mas, b_node);
2386 }
2387
2388 if (*mid_split)
2389 *middle = mas_new_ma_node(mas, b_node);
2390
2391 return split;
2392
2393}
2394
2395/*
2396 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2397 * pointer.
2398 * @b_node - the big node to add the entry
2399 * @mas - the maple state to get the pivot (mas->max)
2400 * @entry - the entry to add, if NULL nothing happens.
2401 */
2402static inline void mab_set_b_end(struct maple_big_node *b_node,
2403 struct ma_state *mas,
2404 void *entry)
2405{
2406 if (!entry)
2407 return;
2408
2409 b_node->slot[b_node->b_end] = entry;
2410 if (mt_is_alloc(mas->tree))
2411 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2412 b_node->pivot[b_node->b_end++] = mas->max;
2413}
2414
2415/*
2416 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2417 * of @mas->node to either @left or @right, depending on @slot and @split
2418 *
2419 * @mas - the maple state with the node that needs a parent
2420 * @left - possible parent 1
2421 * @right - possible parent 2
2422 * @slot - the slot the mas->node was placed
2423 * @split - the split location between @left and @right
2424 */
2425static inline void mas_set_split_parent(struct ma_state *mas,
2426 struct maple_enode *left,
2427 struct maple_enode *right,
2428 unsigned char *slot, unsigned char split)
2429{
2430 if (mas_is_none(mas))
2431 return;
2432
2433 if ((*slot) <= split)
bf96715e 2434 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2435 else if (right)
bf96715e 2436 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2437
2438 (*slot)++;
2439}
2440
2441/*
2442 * mte_mid_split_check() - Check if the next node passes the mid-split
2443 * @**l: Pointer to left encoded maple node.
2444 * @**m: Pointer to middle encoded maple node.
2445 * @**r: Pointer to right encoded maple node.
2446 * @slot: The offset
2447 * @*split: The split location.
2448 * @mid_split: The middle split.
2449 */
2450static inline void mte_mid_split_check(struct maple_enode **l,
2451 struct maple_enode **r,
2452 struct maple_enode *right,
2453 unsigned char slot,
2454 unsigned char *split,
2455 unsigned char mid_split)
2456{
2457 if (*r == right)
2458 return;
2459
2460 if (slot < mid_split)
2461 return;
2462
2463 *l = *r;
2464 *r = right;
2465 *split = mid_split;
2466}
2467
2468/*
2469 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2470 * is taken from @mast->l.
2471 * @mast - the maple subtree state
2472 * @left - the left node
2473 * @right - the right node
2474 * @split - the split location.
2475 */
2476static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2477 struct maple_enode *left,
2478 struct maple_enode *middle,
2479 struct maple_enode *right,
2480 unsigned char split,
2481 unsigned char mid_split)
2482{
2483 unsigned char slot;
2484 struct maple_enode *l = left;
2485 struct maple_enode *r = right;
2486
2487 if (mas_is_none(mast->l))
2488 return;
2489
2490 if (middle)
2491 r = middle;
2492
2493 slot = mast->l->offset;
2494
2495 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2496 mas_set_split_parent(mast->l, l, r, &slot, split);
2497
2498 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2499 mas_set_split_parent(mast->m, l, r, &slot, split);
2500
2501 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2502 mas_set_split_parent(mast->r, l, r, &slot, split);
2503}
2504
2505/*
d5f6057c 2506 * mas_topiary_node() - Dispose of a single node
530f745c
LH
2507 * @mas: The maple state for pushing nodes
2508 * @enode: The encoded maple node
2509 * @in_rcu: If the tree is in rcu mode
54a611b6 2510 *
530f745c 2511 * The node will either be RCU freed or pushed back on the maple state.
54a611b6 2512 */
530f745c 2513static inline void mas_topiary_node(struct ma_state *mas,
067311d3 2514 struct ma_state *tmp_mas, bool in_rcu)
54a611b6 2515{
530f745c 2516 struct maple_node *tmp;
067311d3 2517 struct maple_enode *enode;
1238f6a2 2518
067311d3 2519 if (mas_is_none(tmp_mas))
530f745c 2520 return;
1238f6a2 2521
067311d3 2522 enode = tmp_mas->node;
530f745c
LH
2523 tmp = mte_to_node(enode);
2524 mte_set_node_dead(enode);
2525 if (in_rcu)
2526 ma_free_rcu(tmp);
2527 else
2528 mas_push_node(mas, tmp);
2529}
54a611b6 2530
530f745c
LH
2531/*
2532 * mas_topiary_replace() - Replace the data with new data, then repair the
2533 * parent links within the new tree. Iterate over the dead sub-tree and collect
2534 * the dead subtrees and topiary the nodes that are no longer of use.
2535 *
2536 * The new tree will have up to three children with the correct parent. Keep
2537 * track of the new entries as they need to be followed to find the next level
2538 * of new entries.
2539 *
2540 * The old tree will have up to three children with the old parent. Keep track
2541 * of the old entries as they may have more nodes below replaced. Nodes within
2542 * [index, last] are dead subtrees, others need to be freed and followed.
2543 *
2544 * @mas: The maple state pointing at the new data
2545 * @old_enode: The maple encoded node being replaced
2546 *
2547 */
2548static inline void mas_topiary_replace(struct ma_state *mas,
2549 struct maple_enode *old_enode)
2550{
2551 struct ma_state tmp[3], tmp_next[3];
2552 MA_TOPIARY(subtrees, mas->tree);
2553 bool in_rcu;
2554 int i, n;
2555
2556 /* Place data in tree & then mark node as old */
1238f6a2 2557 mas_put_in_tree(mas, old_enode);
54a611b6 2558
530f745c
LH
2559 /* Update the parent pointers in the tree */
2560 tmp[0] = *mas;
2561 tmp[0].offset = 0;
067311d3
LH
2562 tmp[1].status = ma_none;
2563 tmp[2].status = ma_none;
530f745c
LH
2564 while (!mte_is_leaf(tmp[0].node)) {
2565 n = 0;
2566 for (i = 0; i < 3; i++) {
2567 if (mas_is_none(&tmp[i]))
2568 continue;
54a611b6 2569
530f745c
LH
2570 while (n < 3) {
2571 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2572 break;
2573 n++;
2574 }
54a611b6 2575
530f745c
LH
2576 mas_adopt_children(&tmp[i], tmp[i].node);
2577 }
54a611b6 2578
530f745c
LH
2579 if (MAS_WARN_ON(mas, n == 0))
2580 break;
54a611b6 2581
530f745c 2582 while (n < 3)
067311d3 2583 tmp_next[n++].status = ma_none;
530f745c
LH
2584
2585 for (i = 0; i < 3; i++)
2586 tmp[i] = tmp_next[i];
2587 }
2588
2589 /* Collect the old nodes that need to be discarded */
2590 if (mte_is_leaf(old_enode))
2591 return mas_free(mas, old_enode);
2592
2593 tmp[0] = *mas;
2594 tmp[0].offset = 0;
2595 tmp[0].node = old_enode;
067311d3
LH
2596 tmp[1].status = ma_none;
2597 tmp[2].status = ma_none;
530f745c
LH
2598 in_rcu = mt_in_rcu(mas->tree);
2599 do {
2600 n = 0;
2601 for (i = 0; i < 3; i++) {
2602 if (mas_is_none(&tmp[i]))
2603 continue;
2604
2605 while (n < 3) {
2606 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2607 break;
2608
2609 if ((tmp_next[n].min >= tmp_next->index) &&
2610 (tmp_next[n].max <= tmp_next->last)) {
2611 mat_add(&subtrees, tmp_next[n].node);
067311d3 2612 tmp_next[n].status = ma_none;
530f745c
LH
2613 } else {
2614 n++;
2615 }
2616 }
2617 }
2618
2619 if (MAS_WARN_ON(mas, n == 0))
2620 break;
2621
2622 while (n < 3)
067311d3 2623 tmp_next[n++].status = ma_none;
530f745c
LH
2624
2625 for (i = 0; i < 3; i++) {
067311d3 2626 mas_topiary_node(mas, &tmp[i], in_rcu);
530f745c
LH
2627 tmp[i] = tmp_next[i];
2628 }
2629 } while (!mte_is_leaf(tmp[0].node));
2630
2631 for (i = 0; i < 3; i++)
067311d3 2632 mas_topiary_node(mas, &tmp[i], in_rcu);
530f745c
LH
2633
2634 mas_mat_destroy(mas, &subtrees);
54a611b6
LH
2635}
2636
2637/*
530f745c 2638 * mas_wmb_replace() - Write memory barrier and replace
54a611b6 2639 * @mas: The maple state
530f745c
LH
2640 * @old: The old maple encoded node that is being replaced.
2641 *
2642 * Updates gap as necessary.
54a611b6 2643 */
530f745c
LH
2644static inline void mas_wmb_replace(struct ma_state *mas,
2645 struct maple_enode *old_enode)
54a611b6 2646{
530f745c
LH
2647 /* Insert the new data in the tree */
2648 mas_topiary_replace(mas, old_enode);
2649
2650 if (mte_is_leaf(mas->node))
2651 return;
2652
2653 mas_update_gap(mas);
54a611b6
LH
2654}
2655
2656/*
2657 * mast_cp_to_nodes() - Copy data out to nodes.
2658 * @mast: The maple subtree state
2659 * @left: The left encoded maple node
2660 * @middle: The middle encoded maple node
2661 * @right: The right encoded maple node
2662 * @split: The location to split between left and (middle ? middle : right)
2663 * @mid_split: The location to split between middle and right.
2664 */
2665static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2666 struct maple_enode *left, struct maple_enode *middle,
2667 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2668{
2669 bool new_lmax = true;
2670
067311d3
LH
2671 mas_node_or_none(mast->l, left);
2672 mas_node_or_none(mast->m, middle);
2673 mas_node_or_none(mast->r, right);
54a611b6
LH
2674
2675 mast->l->min = mast->orig_l->min;
2676 if (split == mast->bn->b_end) {
2677 mast->l->max = mast->orig_r->max;
2678 new_lmax = false;
2679 }
2680
2681 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2682
2683 if (middle) {
2684 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2685 mast->m->min = mast->bn->pivot[split] + 1;
2686 split = mid_split;
2687 }
2688
2689 mast->r->max = mast->orig_r->max;
2690 if (right) {
2691 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2692 mast->r->min = mast->bn->pivot[split] + 1;
2693 }
2694}
2695
2696/*
2697 * mast_combine_cp_left - Copy in the original left side of the tree into the
2698 * combined data set in the maple subtree state big node.
2699 * @mast: The maple subtree state
2700 */
2701static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2702{
2703 unsigned char l_slot = mast->orig_l->offset;
2704
2705 if (!l_slot)
2706 return;
2707
2708 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2709}
2710
2711/*
2712 * mast_combine_cp_right: Copy in the original right side of the tree into the
2713 * combined data set in the maple subtree state big node.
2714 * @mast: The maple subtree state
2715 */
2716static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2717{
2718 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2719 return;
2720
2721 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2722 mt_slot_count(mast->orig_r->node), mast->bn,
2723 mast->bn->b_end);
2724 mast->orig_r->last = mast->orig_r->max;
2725}
2726
2727/*
2728 * mast_sufficient: Check if the maple subtree state has enough data in the big
2729 * node to create at least one sufficient node
2730 * @mast: the maple subtree state
2731 */
2732static inline bool mast_sufficient(struct maple_subtree_state *mast)
2733{
2734 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2735 return true;
2736
2737 return false;
2738}
2739
2740/*
2741 * mast_overflow: Check if there is too much data in the subtree state for a
2742 * single node.
2743 * @mast: The maple subtree state
2744 */
2745static inline bool mast_overflow(struct maple_subtree_state *mast)
2746{
2747 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2748 return true;
2749
2750 return false;
2751}
2752
2753static inline void *mtree_range_walk(struct ma_state *mas)
2754{
2755 unsigned long *pivots;
2756 unsigned char offset;
2757 struct maple_node *node;
2758 struct maple_enode *next, *last;
2759 enum maple_type type;
2760 void __rcu **slots;
2761 unsigned char end;
2762 unsigned long max, min;
2763 unsigned long prev_max, prev_min;
2764
1b9c9183
LB
2765 next = mas->node;
2766 min = mas->min;
54a611b6
LH
2767 max = mas->max;
2768 do {
54a611b6
LH
2769 last = next;
2770 node = mte_to_node(next);
2771 type = mte_node_type(next);
2772 pivots = ma_pivots(node, type);
2773 end = ma_data_end(node, type, pivots, max);
a3c63c8c
LH
2774 prev_min = min;
2775 prev_max = max;
2776 if (pivots[0] >= mas->index) {
2777 offset = 0;
2778 max = pivots[0];
54a611b6
LH
2779 goto next;
2780 }
2781
a3c63c8c
LH
2782 offset = 1;
2783 while (offset < end) {
2784 if (pivots[offset] >= mas->index) {
2785 max = pivots[offset];
2786 break;
2787 }
54a611b6 2788 offset++;
a3c63c8c 2789 }
54a611b6 2790
54a611b6 2791 min = pivots[offset - 1] + 1;
54a611b6
LH
2792next:
2793 slots = ma_slots(node, type);
2794 next = mt_slot(mas->tree, slots, offset);
2795 if (unlikely(ma_dead_node(node)))
2796 goto dead_node;
2797 } while (!ma_is_leaf(type));
2798
31c532a8 2799 mas->end = end;
54a611b6
LH
2800 mas->offset = offset;
2801 mas->index = min;
2802 mas->last = max;
2803 mas->min = prev_min;
2804 mas->max = prev_max;
2805 mas->node = last;
831978e3 2806 return (void *)next;
54a611b6
LH
2807
2808dead_node:
2809 mas_reset(mas);
2810 return NULL;
2811}
2812
2813/*
2814 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2815 * @mas: The starting maple state
2816 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2817 * @count: The estimated count of iterations needed.
2818 *
2819 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2820 * is hit. First @b_node is split into two entries which are inserted into the
2821 * next iteration of the loop. @b_node is returned populated with the final
2822 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2823 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2824 * to account of what has been copied into the new sub-tree. The update of
2825 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2826 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2827 * the new sub-tree in case the sub-tree becomes the full tree.
2828 *
2829 * Return: the number of elements in b_node during the last loop.
2830 */
2831static int mas_spanning_rebalance(struct ma_state *mas,
2832 struct maple_subtree_state *mast, unsigned char count)
2833{
2834 unsigned char split, mid_split;
2835 unsigned char slot = 0;
2836 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
530f745c 2837 struct maple_enode *old_enode;
54a611b6
LH
2838
2839 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2840 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2841 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
54a611b6
LH
2842
2843 /*
2844 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2845 * Rebalancing is done by use of the ``struct maple_topiary``.
2846 */
2847 mast->l = &l_mas;
2848 mast->m = &m_mas;
2849 mast->r = &r_mas;
067311d3 2850 l_mas.status = r_mas.status = m_mas.status = ma_none;
0abb964a
LH
2851
2852 /* Check if this is not root and has sufficient data. */
2853 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
2854 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2855 mast_spanning_rebalance(mast);
2856
530f745c 2857 l_mas.depth = 0;
54a611b6
LH
2858
2859 /*
2860 * Each level of the tree is examined and balanced, pushing data to the left or
2861 * right, or rebalancing against left or right nodes is employed to avoid
2862 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2863 * the tree is created, there may be a mix of new and old nodes. The old nodes
2864 * will have the incorrect parent pointers and currently be in two trees: the
2865 * original tree and the partially new tree. To remedy the parent pointers in
2866 * the old tree, the new data is swapped into the active tree and a walk down
2867 * the tree is performed and the parent pointers are updated.
530f745c 2868 * See mas_topiary_replace() for more information.
54a611b6
LH
2869 */
2870 while (count--) {
2871 mast->bn->b_end--;
2872 mast->bn->type = mte_node_type(mast->orig_l->node);
2873 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2874 &mid_split, mast->orig_l->min);
2875 mast_set_split_parents(mast, left, middle, right, split,
2876 mid_split);
2877 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2878
2879 /*
2880 * Copy data from next level in the tree to mast->bn from next
2881 * iteration
2882 */
2883 memset(mast->bn, 0, sizeof(struct maple_big_node));
2884 mast->bn->type = mte_node_type(left);
530f745c 2885 l_mas.depth++;
54a611b6
LH
2886
2887 /* Root already stored in l->node. */
2888 if (mas_is_root_limits(mast->l))
2889 goto new_root;
2890
530f745c 2891 mast_ascend(mast);
54a611b6
LH
2892 mast_combine_cp_left(mast);
2893 l_mas.offset = mast->bn->b_end;
2894 mab_set_b_end(mast->bn, &l_mas, left);
2895 mab_set_b_end(mast->bn, &m_mas, middle);
2896 mab_set_b_end(mast->bn, &r_mas, right);
2897
2898 /* Copy anything necessary out of the right node. */
2899 mast_combine_cp_right(mast);
54a611b6
LH
2900 mast->orig_l->last = mast->orig_l->max;
2901
2902 if (mast_sufficient(mast))
2903 continue;
2904
2905 if (mast_overflow(mast))
2906 continue;
2907
2908 /* May be a new root stored in mast->bn */
2909 if (mas_is_root_limits(mast->orig_l))
2910 break;
2911
2912 mast_spanning_rebalance(mast);
2913
2914 /* rebalancing from other nodes may require another loop. */
2915 if (!count)
2916 count++;
2917 }
2918
2919 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2920 mte_node_type(mast->orig_l->node));
530f745c 2921 l_mas.depth++;
54a611b6 2922 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
bf96715e 2923 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 2924 if (middle)
bf96715e 2925 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
2926
2927 if (right)
bf96715e 2928 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
2929
2930 if (mas_is_root_limits(mast->l)) {
2931new_root:
530f745c
LH
2932 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2933 while (!mte_is_root(mast->orig_l->node))
2934 mast_ascend(mast);
54a611b6
LH
2935 } else {
2936 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2937 }
2938
530f745c
LH
2939 old_enode = mast->orig_l->node;
2940 mas->depth = l_mas.depth;
2941 mas->node = l_mas.node;
2942 mas->min = l_mas.min;
2943 mas->max = l_mas.max;
2944 mas->offset = l_mas.offset;
2945 mas_wmb_replace(mas, old_enode);
54a611b6
LH
2946 mtree_range_walk(mas);
2947 return mast->bn->b_end;
2948}
2949
2950/*
2951 * mas_rebalance() - Rebalance a given node.
2952 * @mas: The maple state
2953 * @b_node: The big maple node.
2954 *
2955 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2956 * Continue upwards until tree is sufficient.
2957 *
2958 * Return: the number of elements in b_node during the last loop.
2959 */
2960static inline int mas_rebalance(struct ma_state *mas,
2961 struct maple_big_node *b_node)
2962{
2963 char empty_count = mas_mt_height(mas);
2964 struct maple_subtree_state mast;
2965 unsigned char shift, b_end = ++b_node->b_end;
2966
2967 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2968 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2969
2970 trace_ma_op(__func__, mas);
2971
2972 /*
2973 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2974 * against the node to the right if it exists, otherwise the node to the
2975 * left of this node is rebalanced against this node. If rebalancing
2976 * causes just one node to be produced instead of two, then the parent
2977 * is also examined and rebalanced if it is insufficient. Every level
2978 * tries to combine the data in the same way. If one node contains the
2979 * entire range of the tree, then that node is used as a new root node.
2980 */
c108df76 2981 mas_node_count(mas, empty_count * 2 - 1);
54a611b6
LH
2982 if (mas_is_err(mas))
2983 return 0;
2984
2985 mast.orig_l = &l_mas;
2986 mast.orig_r = &r_mas;
2987 mast.bn = b_node;
2988 mast.bn->type = mte_node_type(mas->node);
2989
2990 l_mas = r_mas = *mas;
2991
2992 if (mas_next_sibling(&r_mas)) {
2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2994 r_mas.last = r_mas.index = r_mas.max;
2995 } else {
2996 mas_prev_sibling(&l_mas);
2997 shift = mas_data_end(&l_mas) + 1;
2998 mab_shift_right(b_node, shift);
2999 mas->offset += shift;
3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3001 b_node->b_end = shift + b_end;
3002 l_mas.index = l_mas.last = l_mas.min;
3003 }
3004
3005 return mas_spanning_rebalance(mas, &mast, empty_count);
3006}
3007
3008/*
3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3010 * state.
3011 * @mas: The maple state
3012 * @end: The end of the left-most node.
3013 *
3014 * During a mass-insert event (such as forking), it may be necessary to
3015 * rebalance the left-most node when it is not sufficient.
3016 */
3017static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3018{
3019 enum maple_type mt = mte_node_type(mas->node);
3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
72bcf4aa 3021 struct maple_enode *eparent, *old_eparent;
54a611b6
LH
3022 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3023 void __rcu **l_slots, **slots;
3024 unsigned long *l_pivs, *pivs, gap;
3025 bool in_rcu = mt_in_rcu(mas->tree);
3026
3027 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3028
3029 l_mas = *mas;
3030 mas_prev_sibling(&l_mas);
3031
3032 /* set up node. */
3033 if (in_rcu) {
3034 /* Allocate for both left and right as well as parent. */
3035 mas_node_count(mas, 3);
3036 if (mas_is_err(mas))
3037 return;
3038
3039 newnode = mas_pop_node(mas);
3040 } else {
3041 newnode = &reuse;
3042 }
3043
3044 node = mas_mn(mas);
3045 newnode->parent = node->parent;
3046 slots = ma_slots(newnode, mt);
3047 pivs = ma_pivots(newnode, mt);
3048 left = mas_mn(&l_mas);
3049 l_slots = ma_slots(left, mt);
3050 l_pivs = ma_pivots(left, mt);
3051 if (!l_slots[split])
3052 split++;
3053 tmp = mas_data_end(&l_mas) - split;
3054
3055 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3056 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3057 pivs[tmp] = l_mas.max;
3058 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3059 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3060
3061 l_mas.max = l_pivs[split];
3062 mas->min = l_mas.max + 1;
72bcf4aa 3063 old_eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3064 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3065 tmp += end;
3066 if (!in_rcu) {
3067 unsigned char max_p = mt_pivots[mt];
3068 unsigned char max_s = mt_slots[mt];
3069
3070 if (tmp < max_p)
3071 memset(pivs + tmp, 0,
fb20e99a 3072 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3073
3074 if (tmp < mt_slots[mt])
3075 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3076
3077 memcpy(node, newnode, sizeof(struct maple_node));
3078 ma_set_meta(node, mt, 0, tmp - 1);
72bcf4aa 3079 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
54a611b6
LH
3080 l_pivs[split]);
3081
3082 /* Remove data from l_pivs. */
3083 tmp = split + 1;
3084 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3085 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3086 ma_set_meta(left, mt, 0, split);
72bcf4aa 3087 eparent = old_eparent;
54a611b6
LH
3088
3089 goto done;
3090 }
3091
3092 /* RCU requires replacing both l_mas, mas, and parent. */
3093 mas->node = mt_mk_node(newnode, mt);
3094 ma_set_meta(newnode, mt, 0, tmp);
3095
3096 new_left = mas_pop_node(mas);
3097 new_left->parent = left->parent;
3098 mt = mte_node_type(l_mas.node);
3099 slots = ma_slots(new_left, mt);
3100 pivs = ma_pivots(new_left, mt);
3101 memcpy(slots, l_slots, sizeof(void *) * split);
3102 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3103 ma_set_meta(new_left, mt, 0, split);
3104 l_mas.node = mt_mk_node(new_left, mt);
3105
3106 /* replace parent. */
3107 offset = mte_parent_slot(mas->node);
afc754c6 3108 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3109 parent = mas_pop_node(mas);
3110 slots = ma_slots(parent, mt);
3111 pivs = ma_pivots(parent, mt);
72bcf4aa 3112 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
54a611b6
LH
3113 rcu_assign_pointer(slots[offset], mas->node);
3114 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3115 pivs[offset - 1] = l_mas.max;
3116 eparent = mt_mk_node(parent, mt);
3117done:
3118 gap = mas_leaf_max_gap(mas);
3119 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3120 gap = mas_leaf_max_gap(&l_mas);
3121 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3122 mas_ascend(mas);
3123
72bcf4aa
LH
3124 if (in_rcu) {
3125 mas_replace_node(mas, old_eparent);
3126 mas_adopt_children(mas, mas->node);
3127 }
54a611b6
LH
3128
3129 mas_update_gap(mas);
3130}
3131
3132/*
3133 * mas_split_final_node() - Split the final node in a subtree operation.
3134 * @mast: the maple subtree state
3135 * @mas: The maple state
3136 * @height: The height of the tree in case it's a new root.
3137 */
d9d9bd97 3138static inline void mas_split_final_node(struct maple_subtree_state *mast,
54a611b6
LH
3139 struct ma_state *mas, int height)
3140{
3141 struct maple_enode *ancestor;
3142
3143 if (mte_is_root(mas->node)) {
3144 if (mt_is_alloc(mas->tree))
3145 mast->bn->type = maple_arange_64;
3146 else
3147 mast->bn->type = maple_range_64;
3148 mas->depth = height;
3149 }
3150 /*
3151 * Only a single node is used here, could be root.
3152 * The Big_node data should just fit in a single node.
3153 */
3154 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3155 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3156 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3157 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3158
3159 mast->l->node = ancestor;
3160 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3161 mas->offset = mast->bn->b_end - 1;
54a611b6
LH
3162}
3163
3164/*
3165 * mast_fill_bnode() - Copy data into the big node in the subtree state
3166 * @mast: The maple subtree state
3167 * @mas: the maple state
3168 * @skip: The number of entries to skip for new nodes insertion.
3169 */
3170static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3171 struct ma_state *mas,
3172 unsigned char skip)
3173{
3174 bool cp = true;
54a611b6
LH
3175 unsigned char split;
3176
3177 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3178 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3179 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3180 mast->bn->b_end = 0;
3181
3182 if (mte_is_root(mas->node)) {
3183 cp = false;
3184 } else {
3185 mas_ascend(mas);
54a611b6
LH
3186 mas->offset = mte_parent_slot(mas->node);
3187 }
3188
3189 if (cp && mast->l->offset)
3190 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3191
3192 split = mast->bn->b_end;
3193 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3194 mast->r->offset = mast->bn->b_end;
3195 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3196 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3197 cp = false;
3198
3199 if (cp)
3200 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3201 mast->bn, mast->bn->b_end);
3202
3203 mast->bn->b_end--;
3204 mast->bn->type = mte_node_type(mas->node);
3205}
3206
3207/*
3208 * mast_split_data() - Split the data in the subtree state big node into regular
3209 * nodes.
3210 * @mast: The maple subtree state
3211 * @mas: The maple state
3212 * @split: The location to split the big node
3213 */
3214static inline void mast_split_data(struct maple_subtree_state *mast,
3215 struct ma_state *mas, unsigned char split)
3216{
3217 unsigned char p_slot;
3218
3219 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3220 mte_set_pivot(mast->r->node, 0, mast->r->max);
3221 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3222 mast->l->offset = mte_parent_slot(mas->node);
3223 mast->l->max = mast->bn->pivot[split];
3224 mast->r->min = mast->l->max + 1;
3225 if (mte_is_leaf(mas->node))
3226 return;
3227
3228 p_slot = mast->orig_l->offset;
3229 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3230 &p_slot, split);
3231 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3232 &p_slot, split);
3233}
3234
3235/*
3236 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3237 * data to the right or left node if there is room.
3238 * @mas: The maple state
3239 * @height: The current height of the maple state
3240 * @mast: The maple subtree state
3241 * @left: Push left or not.
3242 *
3243 * Keeping the height of the tree low means faster lookups.
3244 *
3245 * Return: True if pushed, false otherwise.
3246 */
3247static inline bool mas_push_data(struct ma_state *mas, int height,
3248 struct maple_subtree_state *mast, bool left)
3249{
3250 unsigned char slot_total = mast->bn->b_end;
3251 unsigned char end, space, split;
3252
3253 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3254 tmp_mas = *mas;
3255 tmp_mas.depth = mast->l->depth;
3256
3257 if (left && !mas_prev_sibling(&tmp_mas))
3258 return false;
3259 else if (!left && !mas_next_sibling(&tmp_mas))
3260 return false;
3261
3262 end = mas_data_end(&tmp_mas);
3263 slot_total += end;
3264 space = 2 * mt_slot_count(mas->node) - 2;
3265 /* -2 instead of -1 to ensure there isn't a triple split */
3266 if (ma_is_leaf(mast->bn->type))
3267 space--;
3268
3269 if (mas->max == ULONG_MAX)
3270 space--;
3271
3272 if (slot_total >= space)
3273 return false;
3274
3275 /* Get the data; Fill mast->bn */
3276 mast->bn->b_end++;
3277 if (left) {
3278 mab_shift_right(mast->bn, end + 1);
3279 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3280 mast->bn->b_end = slot_total + 1;
3281 } else {
3282 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3283 }
3284
3285 /* Configure mast for splitting of mast->bn */
3286 split = mt_slots[mast->bn->type] - 2;
3287 if (left) {
3288 /* Switch mas to prev node */
54a611b6
LH
3289 *mas = tmp_mas;
3290 /* Start using mast->l for the left side. */
3291 tmp_mas.node = mast->l->node;
3292 *mast->l = tmp_mas;
3293 } else {
54a611b6
LH
3294 tmp_mas.node = mast->r->node;
3295 *mast->r = tmp_mas;
3296 split = slot_total - split;
3297 }
3298 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3299 /* Update parent slot for split calculation. */
3300 if (left)
3301 mast->orig_l->offset += end + 1;
3302
3303 mast_split_data(mast, mas, split);
3304 mast_fill_bnode(mast, mas, 2);
3305 mas_split_final_node(mast, mas, height + 1);
3306 return true;
3307}
3308
3309/*
3310 * mas_split() - Split data that is too big for one node into two.
3311 * @mas: The maple state
3312 * @b_node: The maple big node
3313 * Return: 1 on success, 0 on failure.
3314 */
3315static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3316{
54a611b6
LH
3317 struct maple_subtree_state mast;
3318 int height = 0;
3319 unsigned char mid_split, split = 0;
530f745c 3320 struct maple_enode *old;
54a611b6
LH
3321
3322 /*
3323 * Splitting is handled differently from any other B-tree; the Maple
3324 * Tree splits upwards. Splitting up means that the split operation
3325 * occurs when the walk of the tree hits the leaves and not on the way
3326 * down. The reason for splitting up is that it is impossible to know
3327 * how much space will be needed until the leaf is (or leaves are)
3328 * reached. Since overwriting data is allowed and a range could
3329 * overwrite more than one range or result in changing one entry into 3
3330 * entries, it is impossible to know if a split is required until the
3331 * data is examined.
3332 *
3333 * Splitting is a balancing act between keeping allocations to a minimum
3334 * and avoiding a 'jitter' event where a tree is expanded to make room
3335 * for an entry followed by a contraction when the entry is removed. To
3336 * accomplish the balance, there are empty slots remaining in both left
3337 * and right nodes after a split.
3338 */
3339 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3340 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3341 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3342 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
54a611b6
LH
3343
3344 trace_ma_op(__func__, mas);
3345 mas->depth = mas_mt_height(mas);
3346 /* Allocation failures will happen early. */
3347 mas_node_count(mas, 1 + mas->depth * 2);
3348 if (mas_is_err(mas))
3349 return 0;
3350
3351 mast.l = &l_mas;
3352 mast.r = &r_mas;
3353 mast.orig_l = &prev_l_mas;
3354 mast.orig_r = &prev_r_mas;
54a611b6
LH
3355 mast.bn = b_node;
3356
3357 while (height++ <= mas->depth) {
3358 if (mt_slots[b_node->type] > b_node->b_end) {
3359 mas_split_final_node(&mast, mas, height);
3360 break;
3361 }
3362
3363 l_mas = r_mas = *mas;
3364 l_mas.node = mas_new_ma_node(mas, b_node);
3365 r_mas.node = mas_new_ma_node(mas, b_node);
3366 /*
3367 * Another way that 'jitter' is avoided is to terminate a split up early if the
3368 * left or right node has space to spare. This is referred to as "pushing left"
3369 * or "pushing right" and is similar to the B* tree, except the nodes left or
3370 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3371 * is a significant savings.
3372 */
3373 /* Try to push left. */
3374 if (mas_push_data(mas, height, &mast, true))
3375 break;
54a611b6
LH
3376 /* Try to push right. */
3377 if (mas_push_data(mas, height, &mast, false))
3378 break;
3379
3380 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3381 mast_split_data(&mast, mas, split);
3382 /*
3383 * Usually correct, mab_mas_cp in the above call overwrites
3384 * r->max.
3385 */
3386 mast.r->max = mas->max;
3387 mast_fill_bnode(&mast, mas, 1);
3388 prev_l_mas = *mast.l;
3389 prev_r_mas = *mast.r;
3390 }
3391
3392 /* Set the original node as dead */
530f745c 3393 old = mas->node;
54a611b6 3394 mas->node = l_mas.node;
530f745c 3395 mas_wmb_replace(mas, old);
54a611b6
LH
3396 mtree_range_walk(mas);
3397 return 1;
3398}
3399
3400/*
3401 * mas_reuse_node() - Reuse the node to store the data.
3402 * @wr_mas: The maple write state
3403 * @bn: The maple big node
3404 * @end: The end of the data.
3405 *
3406 * Will always return false in RCU mode.
3407 *
3408 * Return: True if node was reused, false otherwise.
3409 */
3410static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3411 struct maple_big_node *bn, unsigned char end)
3412{
3413 /* Need to be rcu safe. */
3414 if (mt_in_rcu(wr_mas->mas->tree))
3415 return false;
3416
3417 if (end > bn->b_end) {
3418 int clear = mt_slots[wr_mas->type] - bn->b_end;
3419
3420 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3421 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3422 }
3423 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3424 return true;
3425}
3426
3427/*
3428 * mas_commit_b_node() - Commit the big node into the tree.
3429 * @wr_mas: The maple write state
3430 * @b_node: The maple big node
3431 * @end: The end of the data.
3432 */
44081c77 3433static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3434 struct maple_big_node *b_node, unsigned char end)
3435{
3436 struct maple_node *node;
72bcf4aa 3437 struct maple_enode *old_enode;
54a611b6
LH
3438 unsigned char b_end = b_node->b_end;
3439 enum maple_type b_type = b_node->type;
3440
72bcf4aa 3441 old_enode = wr_mas->mas->node;
54a611b6 3442 if ((b_end < mt_min_slots[b_type]) &&
72bcf4aa 3443 (!mte_is_root(old_enode)) &&
54a611b6
LH
3444 (mas_mt_height(wr_mas->mas) > 1))
3445 return mas_rebalance(wr_mas->mas, b_node);
3446
3447 if (b_end >= mt_slots[b_type])
3448 return mas_split(wr_mas->mas, b_node);
3449
3450 if (mas_reuse_node(wr_mas, b_node, end))
3451 goto reuse_node;
3452
3453 mas_node_count(wr_mas->mas, 1);
3454 if (mas_is_err(wr_mas->mas))
3455 return 0;
3456
3457 node = mas_pop_node(wr_mas->mas);
3458 node->parent = mas_mn(wr_mas->mas)->parent;
3459 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3460 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
72bcf4aa 3461 mas_replace_node(wr_mas->mas, old_enode);
54a611b6
LH
3462reuse_node:
3463 mas_update_gap(wr_mas->mas);
31c532a8 3464 wr_mas->mas->end = b_end;
54a611b6
LH
3465 return 1;
3466}
3467
3468/*
3469 * mas_root_expand() - Expand a root to a node
3470 * @mas: The maple state
3471 * @entry: The entry to store into the tree
3472 */
3473static inline int mas_root_expand(struct ma_state *mas, void *entry)
3474{
3475 void *contents = mas_root_locked(mas);
3476 enum maple_type type = maple_leaf_64;
3477 struct maple_node *node;
3478 void __rcu **slots;
3479 unsigned long *pivots;
3480 int slot = 0;
3481
3482 mas_node_count(mas, 1);
3483 if (unlikely(mas_is_err(mas)))
3484 return 0;
3485
3486 node = mas_pop_node(mas);
3487 pivots = ma_pivots(node, type);
3488 slots = ma_slots(node, type);
4ffc2ee2 3489 node->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6 3490 mas->node = mt_mk_node(node, type);
067311d3 3491 mas->status = ma_active;
54a611b6
LH
3492
3493 if (mas->index) {
3494 if (contents) {
3495 rcu_assign_pointer(slots[slot], contents);
3496 if (likely(mas->index > 1))
3497 slot++;
3498 }
3499 pivots[slot++] = mas->index - 1;
3500 }
3501
3502 rcu_assign_pointer(slots[slot], entry);
3503 mas->offset = slot;
3504 pivots[slot] = mas->last;
3505 if (mas->last != ULONG_MAX)
3c769fd8
PZ
3506 pivots[++slot] = ULONG_MAX;
3507
54a611b6
LH
3508 mas->depth = 1;
3509 mas_set_height(mas);
c45ea315 3510 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3511 /* swap the new root into the tree */
3512 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
54a611b6
LH
3513 return slot;
3514}
3515
3516static inline void mas_store_root(struct ma_state *mas, void *entry)
3517{
3518 if (likely((mas->last != 0) || (mas->index != 0)))
3519 mas_root_expand(mas, entry);
3520 else if (((unsigned long) (entry) & 3) == 2)
3521 mas_root_expand(mas, entry);
3522 else {
3523 rcu_assign_pointer(mas->tree->ma_root, entry);
067311d3 3524 mas->status = ma_start;
54a611b6
LH
3525 }
3526}
3527
3528/*
3529 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3530 * spans the node.
3531 * @mas: The maple state
3532 * @piv: The pivot value being written
3533 * @type: The maple node type
3534 * @entry: The data to write
3535 *
3536 * Spanning writes are writes that start in one node and end in another OR if
3537 * the write of a %NULL will cause the node to end with a %NULL.
3538 *
3539 * Return: True if this is a spanning write, false otherwise.
3540 */
3541static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3542{
bc147f0f 3543 unsigned long max = wr_mas->r_max;
54a611b6 3544 unsigned long last = wr_mas->mas->last;
54a611b6
LH
3545 enum maple_type type = wr_mas->type;
3546 void *entry = wr_mas->entry;
3547
bc147f0f
PZ
3548 /* Contained in this pivot, fast path */
3549 if (last < max)
54a611b6
LH
3550 return false;
3551
bc147f0f
PZ
3552 if (ma_is_leaf(type)) {
3553 max = wr_mas->mas->max;
54a611b6
LH
3554 if (last < max)
3555 return false;
bc147f0f 3556 }
54a611b6 3557
bc147f0f 3558 if (last == max) {
54a611b6 3559 /*
bc147f0f
PZ
3560 * The last entry of leaf node cannot be NULL unless it is the
3561 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
54a611b6 3562 */
bc147f0f 3563 if (entry || last == ULONG_MAX)
54a611b6
LH
3564 return false;
3565 }
3566
bc147f0f 3567 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
54a611b6
LH
3568 return true;
3569}
3570
3571static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3572{
54a611b6
LH
3573 wr_mas->type = mte_node_type(wr_mas->mas->node);
3574 mas_wr_node_walk(wr_mas);
3575 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3576}
3577
3578static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3579{
3580 wr_mas->mas->max = wr_mas->r_max;
3581 wr_mas->mas->min = wr_mas->r_min;
3582 wr_mas->mas->node = wr_mas->content;
3583 wr_mas->mas->offset = 0;
9bbba563 3584 wr_mas->mas->depth++;
54a611b6
LH
3585}
3586/*
3587 * mas_wr_walk() - Walk the tree for a write.
3588 * @wr_mas: The maple write state
3589 *
3590 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3591 *
3592 * Return: True if it's contained in a node, false on spanning write.
3593 */
3594static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3595{
3596 struct ma_state *mas = wr_mas->mas;
3597
3598 while (true) {
3599 mas_wr_walk_descend(wr_mas);
3600 if (unlikely(mas_is_span_wr(wr_mas)))
3601 return false;
3602
3603 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3604 mas->offset);
3605 if (ma_is_leaf(wr_mas->type))
3606 return true;
3607
3608 mas_wr_walk_traverse(wr_mas);
3609 }
3610
3611 return true;
3612}
3613
3614static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3615{
3616 struct ma_state *mas = wr_mas->mas;
3617
3618 while (true) {
3619 mas_wr_walk_descend(wr_mas);
3620 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3621 mas->offset);
3622 if (ma_is_leaf(wr_mas->type))
3623 return true;
3624 mas_wr_walk_traverse(wr_mas);
3625
3626 }
3627 return true;
3628}
3629/*
3630 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3631 * @l_wr_mas: The left maple write state
3632 * @r_wr_mas: The right maple write state
3633 */
3634static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3635 struct ma_wr_state *r_wr_mas)
3636{
3637 struct ma_state *r_mas = r_wr_mas->mas;
3638 struct ma_state *l_mas = l_wr_mas->mas;
3639 unsigned char l_slot;
3640
3641 l_slot = l_mas->offset;
3642 if (!l_wr_mas->content)
3643 l_mas->index = l_wr_mas->r_min;
3644
3645 if ((l_mas->index == l_wr_mas->r_min) &&
3646 (l_slot &&
3647 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3648 if (l_slot > 1)
3649 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3650 else
3651 l_mas->index = l_mas->min;
3652
3653 l_mas->offset = l_slot - 1;
3654 }
3655
3656 if (!r_wr_mas->content) {
3657 if (r_mas->last < r_wr_mas->r_max)
3658 r_mas->last = r_wr_mas->r_max;
3659 r_mas->offset++;
3660 } else if ((r_mas->last == r_wr_mas->r_max) &&
3661 (r_mas->last < r_mas->max) &&
3662 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3663 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3664 r_wr_mas->type, r_mas->offset + 1);
3665 r_mas->offset++;
3666 }
3667}
3668
3669static inline void *mas_state_walk(struct ma_state *mas)
3670{
3671 void *entry;
3672
3673 entry = mas_start(mas);
3674 if (mas_is_none(mas))
3675 return NULL;
3676
3677 if (mas_is_ptr(mas))
3678 return entry;
3679
3680 return mtree_range_walk(mas);
3681}
3682
3683/*
3684 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3685 * to date.
3686 *
3687 * @mas: The maple state.
3688 *
3689 * Note: Leaves mas in undesirable state.
3690 * Return: The entry for @mas->index or %NULL on dead node.
3691 */
3692static inline void *mtree_lookup_walk(struct ma_state *mas)
3693{
3694 unsigned long *pivots;
3695 unsigned char offset;
3696 struct maple_node *node;
3697 struct maple_enode *next;
3698 enum maple_type type;
3699 void __rcu **slots;
3700 unsigned char end;
54a611b6
LH
3701
3702 next = mas->node;
54a611b6 3703 do {
54a611b6
LH
3704 node = mte_to_node(next);
3705 type = mte_node_type(next);
3706 pivots = ma_pivots(node, type);
24662dec
LH
3707 end = mt_pivots[type];
3708 offset = 0;
54a611b6 3709 do {
24662dec 3710 if (pivots[offset] >= mas->index)
ec07967d 3711 break;
ec07967d 3712 } while (++offset < end);
54a611b6 3713
54a611b6
LH
3714 slots = ma_slots(node, type);
3715 next = mt_slot(mas->tree, slots, offset);
3716 if (unlikely(ma_dead_node(node)))
3717 goto dead_node;
3718 } while (!ma_is_leaf(type));
3719
831978e3 3720 return (void *)next;
54a611b6
LH
3721
3722dead_node:
3723 mas_reset(mas);
3724 return NULL;
3725}
3726
530f745c 3727static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
54a611b6
LH
3728/*
3729 * mas_new_root() - Create a new root node that only contains the entry passed
3730 * in.
3731 * @mas: The maple state
3732 * @entry: The entry to store.
3733 *
3734 * Only valid when the index == 0 and the last == ULONG_MAX
3735 *
3736 * Return 0 on error, 1 on success.
3737 */
3738static inline int mas_new_root(struct ma_state *mas, void *entry)
3739{
3740 struct maple_enode *root = mas_root_locked(mas);
3741 enum maple_type type = maple_leaf_64;
3742 struct maple_node *node;
3743 void __rcu **slots;
3744 unsigned long *pivots;
3745
3746 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3747 mas->depth = 0;
3748 mas_set_height(mas);
3749 rcu_assign_pointer(mas->tree->ma_root, entry);
067311d3 3750 mas->status = ma_start;
54a611b6
LH
3751 goto done;
3752 }
3753
3754 mas_node_count(mas, 1);
3755 if (mas_is_err(mas))
3756 return 0;
3757
3758 node = mas_pop_node(mas);
3759 pivots = ma_pivots(node, type);
3760 slots = ma_slots(node, type);
4ffc2ee2 3761 node->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6 3762 mas->node = mt_mk_node(node, type);
067311d3 3763 mas->status = ma_active;
54a611b6
LH
3764 rcu_assign_pointer(slots[0], entry);
3765 pivots[0] = mas->last;
3766 mas->depth = 1;
3767 mas_set_height(mas);
3768 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3769
3770done:
3771 if (xa_is_node(root))
3772 mte_destroy_walk(root, mas->tree);
3773
3774 return 1;
3775}
3776/*
3777 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3778 * and new nodes where necessary, then place the sub-tree in the actual tree.
3779 * Note that mas is expected to point to the node which caused the store to
3780 * span.
3781 * @wr_mas: The maple write state
3782 *
3783 * Return: 0 on error, positive on success.
3784 */
3785static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3786{
3787 struct maple_subtree_state mast;
3788 struct maple_big_node b_node;
3789 struct ma_state *mas;
3790 unsigned char height;
3791
3792 /* Left and Right side of spanning store */
3793 MA_STATE(l_mas, NULL, 0, 0);
3794 MA_STATE(r_mas, NULL, 0, 0);
54a611b6
LH
3795 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3796 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3797
3798 /*
3799 * A store operation that spans multiple nodes is called a spanning
3800 * store and is handled early in the store call stack by the function
3801 * mas_is_span_wr(). When a spanning store is identified, the maple
3802 * state is duplicated. The first maple state walks the left tree path
3803 * to ``index``, the duplicate walks the right tree path to ``last``.
3804 * The data in the two nodes are combined into a single node, two nodes,
3805 * or possibly three nodes (see the 3-way split above). A ``NULL``
3806 * written to the last entry of a node is considered a spanning store as
3807 * a rebalance is required for the operation to complete and an overflow
3808 * of data may happen.
3809 */
3810 mas = wr_mas->mas;
3811 trace_ma_op(__func__, mas);
3812
3813 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3814 return mas_new_root(mas, wr_mas->entry);
3815 /*
3816 * Node rebalancing may occur due to this store, so there may be three new
3817 * entries per level plus a new root.
3818 */
3819 height = mas_mt_height(mas);
3820 mas_node_count(mas, 1 + height * 3);
3821 if (mas_is_err(mas))
3822 return 0;
3823
3824 /*
3825 * Set up right side. Need to get to the next offset after the spanning
3826 * store to ensure it's not NULL and to combine both the next node and
3827 * the node with the start together.
3828 */
3829 r_mas = *mas;
3830 /* Avoid overflow, walk to next slot in the tree. */
3831 if (r_mas.last + 1)
3832 r_mas.last++;
3833
3834 r_mas.index = r_mas.last;
3835 mas_wr_walk_index(&r_wr_mas);
3836 r_mas.last = r_mas.index = mas->last;
3837
3838 /* Set up left side. */
3839 l_mas = *mas;
3840 mas_wr_walk_index(&l_wr_mas);
3841
3842 if (!wr_mas->entry) {
3843 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3844 mas->offset = l_mas.offset;
3845 mas->index = l_mas.index;
3846 mas->last = l_mas.last = r_mas.last;
3847 }
3848
3849 /* expanding NULLs may make this cover the entire range */
3850 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3851 mas_set_range(mas, 0, ULONG_MAX);
3852 return mas_new_root(mas, wr_mas->entry);
3853 }
3854
3855 memset(&b_node, 0, sizeof(struct maple_big_node));
3856 /* Copy l_mas and store the value in b_node. */
0de56e38 3857 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
54a611b6 3858 /* Copy r_mas into b_node. */
0de56e38
LH
3859 if (r_mas.offset <= r_mas.end)
3860 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
54a611b6
LH
3861 &b_node, b_node.b_end + 1);
3862 else
3863 b_node.b_end++;
3864
3865 /* Stop spanning searches by searching for just index. */
3866 l_mas.index = l_mas.last = mas->index;
3867
3868 mast.bn = &b_node;
3869 mast.orig_l = &l_mas;
3870 mast.orig_r = &r_mas;
3871 /* Combine l_mas and r_mas and split them up evenly again. */
3872 return mas_spanning_rebalance(mas, &mast, height + 1);
3873}
3874
3875/*
3876 * mas_wr_node_store() - Attempt to store the value in a node
3877 * @wr_mas: The maple write state
3878 *
3879 * Attempts to reuse the node, but may allocate.
3880 *
3881 * Return: True if stored, false otherwise
3882 */
7a03ae39
PZ
3883static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3884 unsigned char new_end)
54a611b6
LH
3885{
3886 struct ma_state *mas = wr_mas->mas;
3887 void __rcu **dst_slots;
3888 unsigned long *dst_pivots;
7a03ae39 3889 unsigned char dst_offset, offset_end = wr_mas->offset_end;
54a611b6 3890 struct maple_node reuse, *newnode;
7a03ae39 3891 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
54a611b6
LH
3892 bool in_rcu = mt_in_rcu(mas->tree);
3893
7a03ae39 3894 /* Check if there is enough data. The room is enough. */
54a611b6
LH
3895 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3896 !(mas->mas_flags & MA_STATE_BULK))
3897 return false;
3898
7a03ae39
PZ
3899 if (mas->last == wr_mas->end_piv)
3900 offset_end++; /* don't copy this offset */
3901 else if (unlikely(wr_mas->r_max == ULONG_MAX))
0de56e38 3902 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
7a03ae39 3903
54a611b6
LH
3904 /* set up node. */
3905 if (in_rcu) {
3906 mas_node_count(mas, 1);
3907 if (mas_is_err(mas))
3908 return false;
3909
3910 newnode = mas_pop_node(mas);
3911 } else {
3912 memset(&reuse, 0, sizeof(struct maple_node));
3913 newnode = &reuse;
3914 }
3915
3916 newnode->parent = mas_mn(mas)->parent;
3917 dst_pivots = ma_pivots(newnode, wr_mas->type);
3918 dst_slots = ma_slots(newnode, wr_mas->type);
3919 /* Copy from start to insert point */
7a03ae39
PZ
3920 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3921 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
54a611b6
LH
3922
3923 /* Handle insert of new range starting after old range */
3924 if (wr_mas->r_min < mas->index) {
7a03ae39
PZ
3925 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3926 dst_pivots[mas->offset++] = mas->index - 1;
54a611b6
LH
3927 }
3928
3929 /* Store the new entry and range end. */
7a03ae39
PZ
3930 if (mas->offset < node_pivots)
3931 dst_pivots[mas->offset] = mas->last;
3932 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
54a611b6
LH
3933
3934 /*
3935 * this range wrote to the end of the node or it overwrote the rest of
3936 * the data
3937 */
0de56e38 3938 if (offset_end > mas->end)
54a611b6 3939 goto done;
54a611b6 3940
7a03ae39 3941 dst_offset = mas->offset + 1;
54a611b6 3942 /* Copy to the end of node if necessary. */
0de56e38 3943 copy_size = mas->end - offset_end + 1;
7a03ae39 3944 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
54a611b6 3945 sizeof(void *) * copy_size);
7a03ae39
PZ
3946 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3947 sizeof(unsigned long) * (copy_size - 1));
54a611b6 3948
7a03ae39 3949 if (new_end < node_pivots)
54a611b6
LH
3950 dst_pivots[new_end] = mas->max;
3951
3952done:
330018fe 3953 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
54a611b6 3954 if (in_rcu) {
72bcf4aa
LH
3955 struct maple_enode *old_enode = mas->node;
3956
54a611b6 3957 mas->node = mt_mk_node(newnode, wr_mas->type);
72bcf4aa 3958 mas_replace_node(mas, old_enode);
54a611b6
LH
3959 } else {
3960 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3961 }
3962 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3963 mas_update_gap(mas);
31c532a8 3964 mas->end = new_end;
54a611b6
LH
3965 return true;
3966}
3967
3968/*
3969 * mas_wr_slot_store: Attempt to store a value in a slot.
3970 * @wr_mas: the maple write state
3971 *
3972 * Return: True if stored, false otherwise
3973 */
3974static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
3975{
3976 struct ma_state *mas = wr_mas->mas;
54a611b6 3977 unsigned char offset = mas->offset;
64891ba3 3978 void __rcu **slots = wr_mas->slots;
e6d1ffd6 3979 bool gap = false;
54a611b6 3980
64891ba3
PZ
3981 gap |= !mt_slot_locked(mas->tree, slots, offset);
3982 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
54a611b6 3983
64891ba3
PZ
3984 if (wr_mas->offset_end - offset == 1) {
3985 if (mas->index == wr_mas->r_min) {
3986 /* Overwriting the range and a part of the next one */
3987 rcu_assign_pointer(slots[offset], wr_mas->entry);
3988 wr_mas->pivots[offset] = mas->last;
3989 } else {
3990 /* Overwriting a part of the range and the next one */
3991 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3992 wr_mas->pivots[offset] = mas->index - 1;
3993 mas->offset++; /* Keep mas accurate. */
3994 }
3995 } else if (!mt_in_rcu(mas->tree)) {
3996 /*
3997 * Expand the range, only partially overwriting the previous and
3998 * next ranges
3999 */
4000 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4001 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
e6d1ffd6 4002 wr_mas->pivots[offset] = mas->index - 1;
64891ba3 4003 wr_mas->pivots[offset + 1] = mas->last;
e6d1ffd6 4004 mas->offset++; /* Keep mas accurate. */
64891ba3
PZ
4005 } else {
4006 return false;
54a611b6
LH
4007 }
4008
54a611b6 4009 trace_ma_write(__func__, mas, 0, wr_mas->entry);
e6d1ffd6
PZ
4010 /*
4011 * Only update gap when the new entry is empty or there is an empty
4012 * entry in the original two ranges.
4013 */
4014 if (!wr_mas->entry || gap)
4015 mas_update_gap(mas);
4016
54a611b6
LH
4017 return true;
4018}
4019
54a611b6
LH
4020static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4021{
4022 struct ma_state *mas = wr_mas->mas;
4023
8c995a63
PZ
4024 if (!wr_mas->slots[wr_mas->offset_end]) {
4025 /* If this one is null, the next and prev are not */
54a611b6 4026 mas->last = wr_mas->end_piv;
8c995a63
PZ
4027 } else {
4028 /* Check next slot(s) if we are overwriting the end */
4029 if ((mas->last == wr_mas->end_piv) &&
0de56e38 4030 (mas->end != wr_mas->offset_end) &&
8c995a63
PZ
4031 !wr_mas->slots[wr_mas->offset_end + 1]) {
4032 wr_mas->offset_end++;
0de56e38 4033 if (wr_mas->offset_end == mas->end)
8c995a63
PZ
4034 mas->last = mas->max;
4035 else
4036 mas->last = wr_mas->pivots[wr_mas->offset_end];
4037 wr_mas->end_piv = mas->last;
4038 }
54a611b6
LH
4039 }
4040
4041 if (!wr_mas->content) {
4042 /* If this one is null, the next and prev are not */
4043 mas->index = wr_mas->r_min;
4044 } else {
4045 /* Check prev slot if we are overwriting the start */
4046 if (mas->index == wr_mas->r_min && mas->offset &&
4047 !wr_mas->slots[mas->offset - 1]) {
4048 mas->offset--;
4049 wr_mas->r_min = mas->index =
4050 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4051 wr_mas->r_max = wr_mas->pivots[mas->offset];
4052 }
4053 }
4054}
4055
a7496ad5
LH
4056static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4057{
0de56e38 4058 while ((wr_mas->offset_end < wr_mas->mas->end) &&
a7496ad5
LH
4059 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4060 wr_mas->offset_end++;
4061
0de56e38 4062 if (wr_mas->offset_end < wr_mas->mas->end)
a7496ad5
LH
4063 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4064 else
4065 wr_mas->end_piv = wr_mas->mas->max;
4066
4067 if (!wr_mas->entry)
4068 mas_wr_extend_null(wr_mas);
4069}
4070
c6fc9e4a
PZ
4071static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4072{
4073 struct ma_state *mas = wr_mas->mas;
0de56e38 4074 unsigned char new_end = mas->end + 2;
c6fc9e4a
PZ
4075
4076 new_end -= wr_mas->offset_end - mas->offset;
4077 if (wr_mas->r_min == mas->index)
4078 new_end--;
4079
4080 if (wr_mas->end_piv == mas->last)
4081 new_end--;
4082
4083 return new_end;
4084}
4085
2e1da329
PZ
4086/*
4087 * mas_wr_append: Attempt to append
4088 * @wr_mas: the maple write state
432af5c9 4089 * @new_end: The end of the node after the modification
2e1da329 4090 *
cfeb6ae8
LH
4091 * This is currently unsafe in rcu mode since the end of the node may be cached
4092 * by readers while the node contents may be updated which could result in
4093 * inaccurate information.
4094 *
2e1da329
PZ
4095 * Return: True if appended, false otherwise
4096 */
23e9dde0 4097static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
432af5c9 4098 unsigned char new_end)
54a611b6 4099{
432af5c9
LH
4100 struct ma_state *mas;
4101 void __rcu **slots;
4102 unsigned char end;
54a611b6 4103
432af5c9 4104 mas = wr_mas->mas;
cfeb6ae8
LH
4105 if (mt_in_rcu(mas->tree))
4106 return false;
4107
0de56e38 4108 end = mas->end;
432af5c9
LH
4109 if (mas->offset != end)
4110 return false;
4111
4112 if (new_end < mt_pivots[wr_mas->type]) {
2e1da329 4113 wr_mas->pivots[new_end] = wr_mas->pivots[end];
432af5c9 4114 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
2e1da329 4115 }
54a611b6 4116
432af5c9
LH
4117 slots = wr_mas->slots;
4118 if (new_end == end + 1) {
23e9dde0
PZ
4119 if (mas->last == wr_mas->r_max) {
4120 /* Append to end of range */
432af5c9 4121 rcu_assign_pointer(slots[new_end], wr_mas->entry);
23e9dde0
PZ
4122 wr_mas->pivots[end] = mas->index - 1;
4123 mas->offset = new_end;
4124 } else {
4125 /* Append to start of range */
432af5c9 4126 rcu_assign_pointer(slots[new_end], wr_mas->content);
23e9dde0 4127 wr_mas->pivots[end] = mas->last;
432af5c9 4128 rcu_assign_pointer(slots[end], wr_mas->entry);
23e9dde0 4129 }
2e1da329 4130 } else {
23e9dde0 4131 /* Append to the range without touching any boundaries. */
432af5c9 4132 rcu_assign_pointer(slots[new_end], wr_mas->content);
23e9dde0 4133 wr_mas->pivots[end + 1] = mas->last;
432af5c9 4134 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
23e9dde0
PZ
4135 wr_mas->pivots[end] = mas->index - 1;
4136 mas->offset = end + 1;
54a611b6
LH
4137 }
4138
2e1da329
PZ
4139 if (!wr_mas->content || !wr_mas->entry)
4140 mas_update_gap(mas);
4141
31c532a8 4142 mas->end = new_end;
432af5c9 4143 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
2e1da329 4144 return true;
54a611b6
LH
4145}
4146
4147/*
4148 * mas_wr_bnode() - Slow path for a modification.
4149 * @wr_mas: The write maple state
4150 *
4151 * This is where split, rebalance end up.
4152 */
4153static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4154{
4155 struct maple_big_node b_node;
4156
4157 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4158 memset(&b_node, 0, sizeof(struct maple_big_node));
4159 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
0de56e38 4160 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end);
54a611b6
LH
4161}
4162
4163static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4164{
54a611b6 4165 struct ma_state *mas = wr_mas->mas;
c6fc9e4a 4166 unsigned char new_end;
54a611b6
LH
4167
4168 /* Direct replacement */
4169 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4170 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4171 if (!!wr_mas->entry ^ !!wr_mas->content)
4172 mas_update_gap(mas);
4173 return;
4174 }
4175
c6fc9e4a
PZ
4176 /*
4177 * new_end exceeds the size of the maple node and cannot enter the fast
4178 * path.
4179 */
4180 new_end = mas_wr_new_end(wr_mas);
4181 if (new_end >= mt_slots[wr_mas->type])
54a611b6
LH
4182 goto slow_path;
4183
2e1da329 4184 /* Attempt to append */
23e9dde0 4185 if (mas_wr_append(wr_mas, new_end))
54a611b6 4186 return;
54a611b6 4187
0de56e38 4188 if (new_end == mas->end && mas_wr_slot_store(wr_mas))
54a611b6 4189 return;
7a03ae39
PZ
4190
4191 if (mas_wr_node_store(wr_mas, new_end))
54a611b6
LH
4192 return;
4193
4194 if (mas_is_err(mas))
4195 return;
4196
4197slow_path:
4198 mas_wr_bnode(wr_mas);
4199}
4200
4201/*
4202 * mas_wr_store_entry() - Internal call to store a value
4203 * @mas: The maple state
4204 * @entry: The entry to store.
4205 *
4206 * Return: The contents that was stored at the index.
4207 */
4208static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4209{
4210 struct ma_state *mas = wr_mas->mas;
4211
4212 wr_mas->content = mas_start(mas);
4213 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4214 mas_store_root(mas, wr_mas->entry);
4215 return wr_mas->content;
4216 }
4217
4218 if (unlikely(!mas_wr_walk(wr_mas))) {
4219 mas_wr_spanning_store(wr_mas);
4220 return wr_mas->content;
4221 }
4222
4223 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6 4224 mas_wr_end_piv(wr_mas);
54a611b6
LH
4225 /* New root for a single pointer */
4226 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4227 mas_new_root(mas, wr_mas->entry);
4228 return wr_mas->content;
4229 }
4230
4231 mas_wr_modify(wr_mas);
4232 return wr_mas->content;
4233}
4234
4235/**
4236 * mas_insert() - Internal call to insert a value
4237 * @mas: The maple state
4238 * @entry: The entry to store
4239 *
4240 * Return: %NULL or the contents that already exists at the requested index
4241 * otherwise. The maple state needs to be checked for error conditions.
4242 */
4243static inline void *mas_insert(struct ma_state *mas, void *entry)
4244{
4245 MA_WR_STATE(wr_mas, mas, entry);
4246
4247 /*
4248 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4249 * tree. If the insert fits exactly into an existing gap with a value
4250 * of NULL, then the slot only needs to be written with the new value.
4251 * If the range being inserted is adjacent to another range, then only a
4252 * single pivot needs to be inserted (as well as writing the entry). If
4253 * the new range is within a gap but does not touch any other ranges,
4254 * then two pivots need to be inserted: the start - 1, and the end. As
4255 * usual, the entry must be written. Most operations require a new node
4256 * to be allocated and replace an existing node to ensure RCU safety,
4257 * when in RCU mode. The exception to requiring a newly allocated node
4258 * is when inserting at the end of a node (appending). When done
4259 * carefully, appending can reuse the node in place.
4260 */
4261 wr_mas.content = mas_start(mas);
4262 if (wr_mas.content)
4263 goto exists;
4264
4265 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4266 mas_store_root(mas, entry);
4267 return NULL;
4268 }
4269
4270 /* spanning writes always overwrite something */
4271 if (!mas_wr_walk(&wr_mas))
4272 goto exists;
4273
4274 /* At this point, we are at the leaf node that needs to be altered. */
4275 wr_mas.offset_end = mas->offset;
4276 wr_mas.end_piv = wr_mas.r_max;
4277
4278 if (wr_mas.content || (mas->last > wr_mas.r_max))
4279 goto exists;
4280
4281 if (!entry)
4282 return NULL;
4283
4284 mas_wr_modify(&wr_mas);
4285 return wr_mas.content;
4286
4287exists:
4288 mas_set_err(mas, -EEXIST);
4289 return wr_mas.content;
4290
4291}
4292
271f61a8 4293static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
de6e386c
LH
4294{
4295retry:
4296 mas_set(mas, index);
4297 mas_state_walk(mas);
4298 if (mas_is_start(mas))
4299 goto retry;
4300}
4301
271f61a8 4302static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
de6e386c
LH
4303 struct maple_node *node, const unsigned long index)
4304{
4305 if (unlikely(ma_dead_node(node))) {
4306 mas_rewalk(mas, index);
4307 return true;
4308 }
4309 return false;
4310}
4311
54a611b6
LH
4312/*
4313 * mas_prev_node() - Find the prev non-null entry at the same level in the
067311d3
LH
4314 * tree. The prev value will be mas->node[mas->offset] or the status will be
4315 * ma_none.
54a611b6
LH
4316 * @mas: The maple state
4317 * @min: The lower limit to search
4318 *
067311d3
LH
4319 * The prev node value will be mas->node[mas->offset] or the status will be
4320 * ma_none.
54a611b6
LH
4321 * Return: 1 if the node is dead, 0 otherwise.
4322 */
271f61a8 4323static int mas_prev_node(struct ma_state *mas, unsigned long min)
54a611b6
LH
4324{
4325 enum maple_type mt;
4326 int offset, level;
4327 void __rcu **slots;
4328 struct maple_node *node;
54a611b6 4329 unsigned long *pivots;
dd9a8513 4330 unsigned long max;
54a611b6 4331
dd9a8513
LH
4332 node = mas_mn(mas);
4333 if (!mas->min)
4334 goto no_entry;
4335
4336 max = mas->min - 1;
4337 if (max < min)
4338 goto no_entry;
54a611b6
LH
4339
4340 level = 0;
4341 do {
54a611b6
LH
4342 if (ma_is_root(node))
4343 goto no_entry;
4344
4345 /* Walk up. */
4346 if (unlikely(mas_ascend(mas)))
4347 return 1;
4348 offset = mas->offset;
4349 level++;
dd9a8513 4350 node = mas_mn(mas);
54a611b6
LH
4351 } while (!offset);
4352
4353 offset--;
4354 mt = mte_node_type(mas->node);
54a611b6
LH
4355 while (level > 1) {
4356 level--;
dd9a8513
LH
4357 slots = ma_slots(node, mt);
4358 mas->node = mas_slot(mas, slots, offset);
54a611b6
LH
4359 if (unlikely(ma_dead_node(node)))
4360 return 1;
4361
54a611b6
LH
4362 mt = mte_node_type(mas->node);
4363 node = mas_mn(mas);
54a611b6 4364 pivots = ma_pivots(node, mt);
dd9a8513 4365 offset = ma_data_end(node, mt, pivots, max);
39d0bd86
LH
4366 if (unlikely(ma_dead_node(node)))
4367 return 1;
54a611b6
LH
4368 }
4369
dd9a8513 4370 slots = ma_slots(node, mt);
54a611b6 4371 mas->node = mas_slot(mas, slots, offset);
dd9a8513 4372 pivots = ma_pivots(node, mt);
54a611b6
LH
4373 if (unlikely(ma_dead_node(node)))
4374 return 1;
4375
dd9a8513
LH
4376 if (likely(offset))
4377 mas->min = pivots[offset - 1] + 1;
4378 mas->max = max;
54a611b6
LH
4379 mas->offset = mas_data_end(mas);
4380 if (unlikely(mte_dead_node(mas->node)))
4381 return 1;
4382
31c532a8 4383 mas->end = mas->offset;
54a611b6
LH
4384 return 0;
4385
54a611b6
LH
4386no_entry:
4387 if (unlikely(ma_dead_node(node)))
4388 return 1;
4389
067311d3 4390 mas->status = ma_underflow;
54a611b6
LH
4391 return 0;
4392}
4393
dd9a8513
LH
4394/*
4395 * mas_prev_slot() - Get the entry in the previous slot
4396 *
4397 * @mas: The maple state
4398 * @max: The minimum starting range
a8091f03
LH
4399 * @empty: Can be empty
4400 * @set_underflow: Set the @mas->node to underflow state on limit.
dd9a8513
LH
4401 *
4402 * Return: The entry in the previous slot which is possibly NULL
4403 */
067311d3 4404static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
dd9a8513
LH
4405{
4406 void *entry;
4407 void __rcu **slots;
4408 unsigned long pivot;
4409 enum maple_type type;
4410 unsigned long *pivots;
4411 struct maple_node *node;
4412 unsigned long save_point = mas->index;
4413
4414retry:
4415 node = mas_mn(mas);
4416 type = mte_node_type(mas->node);
4417 pivots = ma_pivots(node, type);
4418 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4419 goto retry;
4420
dd9a8513
LH
4421 if (mas->min <= min) {
4422 pivot = mas_safe_min(mas, pivots, mas->offset);
4423
4424 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4425 goto retry;
4426
4427 if (pivot <= min)
a8091f03 4428 goto underflow;
dd9a8513
LH
4429 }
4430
a8091f03 4431again:
dd9a8513
LH
4432 if (likely(mas->offset)) {
4433 mas->offset--;
4434 mas->last = mas->index - 1;
4435 mas->index = mas_safe_min(mas, pivots, mas->offset);
4436 } else {
067311d3
LH
4437 if (mas->index <= min)
4438 goto underflow;
4439
dd9a8513
LH
4440 if (mas_prev_node(mas, min)) {
4441 mas_rewalk(mas, save_point);
4442 goto retry;
4443 }
4444
067311d3
LH
4445 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4446 return NULL;
dd9a8513
LH
4447
4448 mas->last = mas->max;
4449 node = mas_mn(mas);
4450 type = mte_node_type(mas->node);
4451 pivots = ma_pivots(node, type);
4452 mas->index = pivots[mas->offset - 1] + 1;
4453 }
4454
4455 slots = ma_slots(node, type);
4456 entry = mas_slot(mas, slots, mas->offset);
4457 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4458 goto retry;
4459
067311d3 4460
dd9a8513
LH
4461 if (likely(entry))
4462 return entry;
4463
a8091f03 4464 if (!empty) {
067311d3
LH
4465 if (mas->index <= min) {
4466 mas->status = ma_underflow;
4467 return NULL;
4468 }
a8091f03 4469
dd9a8513 4470 goto again;
a8091f03 4471 }
dd9a8513
LH
4472
4473 return entry;
a8091f03
LH
4474
4475underflow:
067311d3 4476 mas->status = ma_underflow;
a8091f03 4477 return NULL;
dd9a8513
LH
4478}
4479
54a611b6
LH
4480/*
4481 * mas_next_node() - Get the next node at the same level in the tree.
4482 * @mas: The maple state
4483 * @max: The maximum pivot value to check.
4484 *
067311d3
LH
4485 * The next value will be mas->node[mas->offset] or the status will have
4486 * overflowed.
54a611b6
LH
4487 * Return: 1 on dead node, 0 otherwise.
4488 */
271f61a8
LH
4489static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4490 unsigned long max)
54a611b6 4491{
fff4a58c 4492 unsigned long min;
54a611b6
LH
4493 unsigned long *pivots;
4494 struct maple_enode *enode;
e9c52d89 4495 struct maple_node *tmp;
54a611b6 4496 int level = 0;
39d0bd86 4497 unsigned char node_end;
54a611b6
LH
4498 enum maple_type mt;
4499 void __rcu **slots;
4500
4501 if (mas->max >= max)
067311d3 4502 goto overflow;
54a611b6 4503
fff4a58c 4504 min = mas->max + 1;
54a611b6
LH
4505 level = 0;
4506 do {
4507 if (ma_is_root(node))
067311d3 4508 goto overflow;
54a611b6 4509
fff4a58c 4510 /* Walk up. */
54a611b6
LH
4511 if (unlikely(mas_ascend(mas)))
4512 return 1;
4513
54a611b6
LH
4514 level++;
4515 node = mas_mn(mas);
4516 mt = mte_node_type(mas->node);
4517 pivots = ma_pivots(node, mt);
39d0bd86
LH
4518 node_end = ma_data_end(node, mt, pivots, mas->max);
4519 if (unlikely(ma_dead_node(node)))
4520 return 1;
4521
fff4a58c 4522 } while (unlikely(mas->offset == node_end));
54a611b6
LH
4523
4524 slots = ma_slots(node, mt);
fff4a58c
LH
4525 mas->offset++;
4526 enode = mas_slot(mas, slots, mas->offset);
4527 if (unlikely(ma_dead_node(node)))
4528 return 1;
54a611b6 4529
fff4a58c
LH
4530 if (level > 1)
4531 mas->offset = 0;
4532
4533 while (unlikely(level > 1)) {
54a611b6 4534 level--;
fff4a58c 4535 mas->node = enode;
54a611b6
LH
4536 node = mas_mn(mas);
4537 mt = mte_node_type(mas->node);
4538 slots = ma_slots(node, mt);
fff4a58c 4539 enode = mas_slot(mas, slots, 0);
39d0bd86
LH
4540 if (unlikely(ma_dead_node(node)))
4541 return 1;
54a611b6
LH
4542 }
4543
fff4a58c
LH
4544 if (!mas->offset)
4545 pivots = ma_pivots(node, mt);
4546
4547 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
e9c52d89
LH
4548 tmp = mte_to_node(enode);
4549 mt = mte_node_type(enode);
4550 pivots = ma_pivots(tmp, mt);
4551 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
54a611b6
LH
4552 if (unlikely(ma_dead_node(node)))
4553 return 1;
4554
4555 mas->node = enode;
4556 mas->min = min;
54a611b6
LH
4557 return 0;
4558
067311d3 4559overflow:
54a611b6
LH
4560 if (unlikely(ma_dead_node(node)))
4561 return 1;
4562
067311d3 4563 mas->status = ma_overflow;
54a611b6
LH
4564 return 0;
4565}
4566
4567/*
fff4a58c 4568 * mas_next_slot() - Get the entry in the next slot
54a611b6 4569 *
fff4a58c
LH
4570 * @mas: The maple state
4571 * @max: The maximum starting range
4572 * @empty: Can be empty
a8091f03
LH
4573 * @set_overflow: Should @mas->node be set to overflow when the limit is
4574 * reached.
54a611b6 4575 *
fff4a58c 4576 * Return: The entry in the next slot which is possibly NULL
54a611b6 4577 */
067311d3 4578static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
54a611b6 4579{
54a611b6 4580 void __rcu **slots;
fff4a58c
LH
4581 unsigned long *pivots;
4582 unsigned long pivot;
4583 enum maple_type type;
4584 struct maple_node *node;
fff4a58c 4585 unsigned long save_point = mas->last;
54a611b6
LH
4586 void *entry;
4587
fff4a58c
LH
4588retry:
4589 node = mas_mn(mas);
4590 type = mte_node_type(mas->node);
39d0bd86 4591 pivots = ma_pivots(node, type);
fff4a58c
LH
4592 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4593 goto retry;
54a611b6 4594
fff4a58c 4595 if (mas->max >= max) {
e9c52d89 4596 if (likely(mas->offset < mas->end))
fff4a58c
LH
4597 pivot = pivots[mas->offset];
4598 else
067311d3 4599 pivot = mas->max;
54a611b6 4600
fff4a58c
LH
4601 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4602 goto retry;
54a611b6 4603
067311d3
LH
4604 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4605 mas->status = ma_overflow;
4606 return NULL;
4607 }
fff4a58c 4608 }
54a611b6 4609
e9c52d89 4610 if (likely(mas->offset < mas->end)) {
fff4a58c 4611 mas->index = pivots[mas->offset] + 1;
a8091f03 4612again:
fff4a58c 4613 mas->offset++;
e9c52d89 4614 if (likely(mas->offset < mas->end))
fff4a58c
LH
4615 mas->last = pivots[mas->offset];
4616 else
4617 mas->last = mas->max;
4618 } else {
067311d3
LH
4619 if (mas->last >= max) {
4620 mas->status = ma_overflow;
4621 return NULL;
4622 }
4623
fff4a58c
LH
4624 if (mas_next_node(mas, node, max)) {
4625 mas_rewalk(mas, save_point);
4626 goto retry;
4627 }
4628
067311d3 4629 if (WARN_ON_ONCE(mas_is_overflow(mas)))
ca80f610
LH
4630 return NULL;
4631
fff4a58c
LH
4632 mas->offset = 0;
4633 mas->index = mas->min;
4634 node = mas_mn(mas);
4635 type = mte_node_type(mas->node);
4636 pivots = ma_pivots(node, type);
4637 mas->last = pivots[0];
54a611b6
LH
4638 }
4639
fff4a58c
LH
4640 slots = ma_slots(node, type);
4641 entry = mt_slot(mas->tree, slots, mas->offset);
4642 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4643 goto retry;
54a611b6 4644
fff4a58c
LH
4645 if (entry)
4646 return entry;
54a611b6 4647
067311d3 4648
fff4a58c 4649 if (!empty) {
067311d3
LH
4650 if (mas->last >= max) {
4651 mas->status = ma_overflow;
4652 return NULL;
4653 }
a8091f03
LH
4654
4655 mas->index = mas->last + 1;
fff4a58c
LH
4656 goto again;
4657 }
4658
4659 return entry;
54a611b6
LH
4660}
4661
4662/*
4663 * mas_next_entry() - Internal function to get the next entry.
4664 * @mas: The maple state
4665 * @limit: The maximum range start.
4666 *
4667 * Set the @mas->node to the next entry and the range_start to
4668 * the beginning value for the entry. Does not check beyond @limit.
a8091f03
LH
4669 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4670 * @mas->last on overflow.
54a611b6
LH
4671 * Restarts on dead nodes.
4672 *
4673 * Return: the next entry or %NULL.
4674 */
4675static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4676{
a8091f03 4677 if (mas->last >= limit) {
067311d3 4678 mas->status = ma_overflow;
50e81c82 4679 return NULL;
a8091f03 4680 }
ca80f610 4681
067311d3 4682 return mas_next_slot(mas, limit, false);
54a611b6
LH
4683}
4684
54a611b6
LH
4685/*
4686 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4687 * highest gap address of a given size in a given node and descend.
4688 * @mas: The maple state
4689 * @size: The needed size.
4690 *
4691 * Return: True if found in a leaf, false otherwise.
4692 *
4693 */
fad8e429
LH
4694static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4695 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4696{
4697 enum maple_type type = mte_node_type(mas->node);
4698 struct maple_node *node = mas_mn(mas);
4699 unsigned long *pivots, *gaps;
4700 void __rcu **slots;
4701 unsigned long gap = 0;
7327e811 4702 unsigned long max, min;
54a611b6
LH
4703 unsigned char offset;
4704
4705 if (unlikely(mas_is_err(mas)))
4706 return true;
4707
4708 if (ma_is_dense(type)) {
4709 /* dense nodes. */
4710 mas->offset = (unsigned char)(mas->index - mas->min);
4711 return true;
4712 }
4713
4714 pivots = ma_pivots(node, type);
4715 slots = ma_slots(node, type);
4716 gaps = ma_gaps(node, type);
4717 offset = mas->offset;
4718 min = mas_safe_min(mas, pivots, offset);
4719 /* Skip out of bounds. */
4720 while (mas->last < min)
4721 min = mas_safe_min(mas, pivots, --offset);
4722
4723 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4724 while (mas->index <= max) {
54a611b6
LH
4725 gap = 0;
4726 if (gaps)
4727 gap = gaps[offset];
4728 else if (!mas_slot(mas, slots, offset))
4729 gap = max - min + 1;
4730
4731 if (gap) {
4732 if ((size <= gap) && (size <= mas->last - min + 1))
4733 break;
4734
4735 if (!gaps) {
4736 /* Skip the next slot, it cannot be a gap. */
4737 if (offset < 2)
4738 goto ascend;
4739
4740 offset -= 2;
4741 max = pivots[offset];
4742 min = mas_safe_min(mas, pivots, offset);
4743 continue;
4744 }
4745 }
4746
4747 if (!offset)
4748 goto ascend;
4749
4750 offset--;
4751 max = min - 1;
4752 min = mas_safe_min(mas, pivots, offset);
4753 }
4754
7327e811
LH
4755 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4756 goto no_space;
54a611b6
LH
4757
4758 if (unlikely(ma_is_leaf(type))) {
4759 mas->offset = offset;
fad8e429
LH
4760 *gap_min = min;
4761 *gap_max = min + gap - 1;
54a611b6
LH
4762 return true;
4763 }
4764
4765 /* descend, only happens under lock. */
4766 mas->node = mas_slot(mas, slots, offset);
4767 mas->min = min;
4768 mas->max = max;
4769 mas->offset = mas_data_end(mas);
4770 return false;
4771
4772ascend:
7327e811
LH
4773 if (!mte_is_root(mas->node))
4774 return false;
54a611b6 4775
7327e811
LH
4776no_space:
4777 mas_set_err(mas, -EBUSY);
54a611b6
LH
4778 return false;
4779}
4780
4781static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4782{
4783 enum maple_type type = mte_node_type(mas->node);
4784 unsigned long pivot, min, gap = 0;
06e8fd99
LH
4785 unsigned char offset, data_end;
4786 unsigned long *gaps, *pivots;
4787 void __rcu **slots;
4788 struct maple_node *node;
54a611b6
LH
4789 bool found = false;
4790
4791 if (ma_is_dense(type)) {
4792 mas->offset = (unsigned char)(mas->index - mas->min);
4793 return true;
4794 }
4795
06e8fd99
LH
4796 node = mas_mn(mas);
4797 pivots = ma_pivots(node, type);
4798 slots = ma_slots(node, type);
4799 gaps = ma_gaps(node, type);
54a611b6 4800 offset = mas->offset;
54a611b6 4801 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
4802 data_end = ma_data_end(node, type, pivots, mas->max);
4803 for (; offset <= data_end; offset++) {
29b2681f 4804 pivot = mas_safe_pivot(mas, pivots, offset, type);
54a611b6
LH
4805
4806 /* Not within lower bounds */
4807 if (mas->index > pivot)
4808 goto next_slot;
4809
4810 if (gaps)
4811 gap = gaps[offset];
4812 else if (!mas_slot(mas, slots, offset))
4813 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4814 else
4815 goto next_slot;
4816
4817 if (gap >= size) {
4818 if (ma_is_leaf(type)) {
4819 found = true;
4820 goto done;
4821 }
4822 if (mas->index <= pivot) {
4823 mas->node = mas_slot(mas, slots, offset);
4824 mas->min = min;
4825 mas->max = pivot;
4826 offset = 0;
54a611b6
LH
4827 break;
4828 }
4829 }
4830next_slot:
4831 min = pivot + 1;
4832 if (mas->last <= pivot) {
4833 mas_set_err(mas, -EBUSY);
4834 return true;
4835 }
4836 }
4837
4838 if (mte_is_root(mas->node))
4839 found = true;
4840done:
4841 mas->offset = offset;
4842 return found;
4843}
4844
4845/**
4846 * mas_walk() - Search for @mas->index in the tree.
4847 * @mas: The maple state.
4848 *
4849 * mas->index and mas->last will be set to the range if there is a value. If
067311d3 4850 * mas->status is ma_none, reset to ma_start
54a611b6
LH
4851 *
4852 * Return: the entry at the location or %NULL.
4853 */
4854void *mas_walk(struct ma_state *mas)
4855{
4856 void *entry;
4857
a8091f03 4858 if (!mas_is_active(mas) || !mas_is_start(mas))
067311d3 4859 mas->status = ma_start;
54a611b6
LH
4860retry:
4861 entry = mas_state_walk(mas);
6b23a290 4862 if (mas_is_start(mas)) {
54a611b6 4863 goto retry;
6b23a290
LH
4864 } else if (mas_is_none(mas)) {
4865 mas->index = 0;
4866 mas->last = ULONG_MAX;
4867 } else if (mas_is_ptr(mas)) {
54a611b6
LH
4868 if (!mas->index) {
4869 mas->last = 0;
6b23a290 4870 return entry;
54a611b6 4871 }
54a611b6 4872
6b23a290 4873 mas->index = 1;
54a611b6 4874 mas->last = ULONG_MAX;
067311d3 4875 mas->status = ma_none;
6b23a290 4876 return NULL;
54a611b6
LH
4877 }
4878
4879 return entry;
4880}
120b1162 4881EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
4882
4883static inline bool mas_rewind_node(struct ma_state *mas)
4884{
4885 unsigned char slot;
4886
4887 do {
4888 if (mte_is_root(mas->node)) {
4889 slot = mas->offset;
4890 if (!slot)
4891 return false;
4892 } else {
4893 mas_ascend(mas);
4894 slot = mas->offset;
4895 }
4896 } while (!slot);
4897
4898 mas->offset = --slot;
4899 return true;
4900}
4901
4902/*
4903 * mas_skip_node() - Internal function. Skip over a node.
4904 * @mas: The maple state.
4905 *
4906 * Return: true if there is another node, false otherwise.
4907 */
4908static inline bool mas_skip_node(struct ma_state *mas)
4909{
0fa99fdf
LH
4910 if (mas_is_err(mas))
4911 return false;
54a611b6 4912
54a611b6
LH
4913 do {
4914 if (mte_is_root(mas->node)) {
0fa99fdf 4915 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
4916 mas_set_err(mas, -EBUSY);
4917 return false;
4918 }
4919 } else {
4920 mas_ascend(mas);
54a611b6 4921 }
0fa99fdf 4922 } while (mas->offset >= mas_data_end(mas));
54a611b6 4923
0fa99fdf 4924 mas->offset++;
54a611b6
LH
4925 return true;
4926}
4927
4928/*
4929 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4930 * @size
4931 * @mas: The maple state
4932 * @size: The size of the gap required
4933 *
4934 * Search between @mas->index and @mas->last for a gap of @size.
4935 */
4936static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4937{
4938 struct maple_enode *last = NULL;
4939
4940 /*
4941 * There are 4 options:
4942 * go to child (descend)
4943 * go back to parent (ascend)
4944 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4945 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4946 */
4947 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4948 if (last == mas->node)
4949 mas_skip_node(mas);
4950 else
4951 last = mas->node;
4952 }
4953}
4954
54a611b6
LH
4955/*
4956 * mas_sparse_area() - Internal function. Return upper or lower limit when
4957 * searching for a gap in an empty tree.
4958 * @mas: The maple state
4959 * @min: the minimum range
4960 * @max: The maximum range
4961 * @size: The size of the gap
4962 * @fwd: Searching forward or back
4963 */
29ad6bb3 4964static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
4965 unsigned long max, unsigned long size, bool fwd)
4966{
29ad6bb3
PZ
4967 if (!unlikely(mas_is_none(mas)) && min == 0) {
4968 min++;
4969 /*
4970 * At this time, min is increased, we need to recheck whether
4971 * the size is satisfied.
4972 */
4973 if (min > max || max - min + 1 < size)
4974 return -EBUSY;
4975 }
54a611b6
LH
4976 /* mas_is_ptr */
4977
54a611b6 4978 if (fwd) {
29ad6bb3
PZ
4979 mas->index = min;
4980 mas->last = min + size - 1;
4981 } else {
4982 mas->last = max;
4983 mas->index = max - size + 1;
54a611b6 4984 }
29ad6bb3 4985 return 0;
54a611b6
LH
4986}
4987
4988/*
4989 * mas_empty_area() - Get the lowest address within the range that is
4990 * sufficient for the size requested.
4991 * @mas: The maple state
4992 * @min: The lowest value of the range
4993 * @max: The highest value of the range
4994 * @size: The size needed
4995 */
4996int mas_empty_area(struct ma_state *mas, unsigned long min,
4997 unsigned long max, unsigned long size)
4998{
4999 unsigned char offset;
5000 unsigned long *pivots;
5001 enum maple_type mt;
0de56e38 5002 struct maple_node *node;
54a611b6 5003
ba997212
LH
5004 if (min > max)
5005 return -EINVAL;
5006
5007 if (size == 0 || max - min < size - 1)
fad8e429
LH
5008 return -EINVAL;
5009
54a611b6
LH
5010 if (mas_is_start(mas))
5011 mas_start(mas);
5012 else if (mas->offset >= 2)
5013 mas->offset -= 2;
5014 else if (!mas_skip_node(mas))
5015 return -EBUSY;
5016
5017 /* Empty set */
29ad6bb3
PZ
5018 if (mas_is_none(mas) || mas_is_ptr(mas))
5019 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5020
5021 /* The start of the window can only be within these values */
5022 mas->index = min;
5023 mas->last = max;
5024 mas_awalk(mas, size);
5025
5026 if (unlikely(mas_is_err(mas)))
5027 return xa_err(mas->node);
5028
5029 offset = mas->offset;
5030 if (unlikely(offset == MAPLE_NODE_SLOTS))
5031 return -EBUSY;
5032
0de56e38 5033 node = mas_mn(mas);
54a611b6 5034 mt = mte_node_type(mas->node);
0de56e38 5035 pivots = ma_pivots(node, mt);
0257d990
PZ
5036 min = mas_safe_min(mas, pivots, offset);
5037 if (mas->index < min)
5038 mas->index = min;
54a611b6 5039 mas->last = mas->index + size - 1;
0de56e38 5040 mas->end = ma_data_end(node, mt, pivots, mas->max);
54a611b6
LH
5041 return 0;
5042}
120b1162 5043EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5044
5045/*
5046 * mas_empty_area_rev() - Get the highest address within the range that is
5047 * sufficient for the size requested.
5048 * @mas: The maple state
5049 * @min: The lowest value of the range
5050 * @max: The highest value of the range
5051 * @size: The size needed
5052 */
5053int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5054 unsigned long max, unsigned long size)
5055{
5056 struct maple_enode *last = mas->node;
5057
ba997212
LH
5058 if (min > max)
5059 return -EINVAL;
5060
5061 if (size == 0 || max - min < size - 1)
fad8e429
LH
5062 return -EINVAL;
5063
54a611b6
LH
5064 if (mas_is_start(mas)) {
5065 mas_start(mas);
5066 mas->offset = mas_data_end(mas);
5067 } else if (mas->offset >= 2) {
5068 mas->offset -= 2;
5069 } else if (!mas_rewind_node(mas)) {
5070 return -EBUSY;
5071 }
5072
5073 /* Empty set. */
29ad6bb3
PZ
5074 if (mas_is_none(mas) || mas_is_ptr(mas))
5075 return mas_sparse_area(mas, min, max, size, false);
54a611b6
LH
5076
5077 /* The start of the window can only be within these values. */
5078 mas->index = min;
5079 mas->last = max;
5080
fad8e429 5081 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5082 if (last == mas->node) {
5083 if (!mas_rewind_node(mas))
5084 return -EBUSY;
5085 } else {
5086 last = mas->node;
5087 }
5088 }
5089
5090 if (mas_is_err(mas))
5091 return xa_err(mas->node);
5092
5093 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5094 return -EBUSY;
5095
54a611b6 5096 /* Trim the upper limit to the max. */
ba997212 5097 if (max < mas->last)
fad8e429 5098 mas->last = max;
54a611b6
LH
5099
5100 mas->index = mas->last - size + 1;
31c532a8 5101 mas->end = mas_data_end(mas);
54a611b6
LH
5102 return 0;
5103}
120b1162 5104EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6 5105
54a611b6 5106/*
790e1fa8 5107 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5108 * @mas: The maple state
5109 * @slots: Pointer to the slot array
2e5b4921 5110 * @type: The maple node type
54a611b6
LH
5111 *
5112 * Must hold the write lock.
5113 *
5114 * Return: The number of leaves marked as dead.
5115 */
5116static inline
790e1fa8
LH
5117unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5118 void __rcu **slots)
54a611b6
LH
5119{
5120 struct maple_node *node;
5121 enum maple_type type;
5122 void *entry;
5123 int offset;
5124
790e1fa8
LH
5125 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5126 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5127 type = mte_node_type(entry);
5128 node = mte_to_node(entry);
5129 /* Use both node and type to catch LE & BE metadata */
5130 if (!node || !type)
5131 break;
5132
5133 mte_set_node_dead(entry);
54a611b6
LH
5134 node->type = type;
5135 rcu_assign_pointer(slots[offset], node);
5136 }
5137
5138 return offset;
5139}
5140
790e1fa8
LH
5141/**
5142 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5143 * @enode: The maple encoded node
5144 * @offset: The starting offset
5145 *
5146 * Note: This can only be used from the RCU callback context.
5147 */
5148static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5149{
5150 struct maple_node *node, *next;
5151 void __rcu **slots = NULL;
5152
790e1fa8 5153 next = mte_to_node(*enode);
54a611b6 5154 do {
790e1fa8
LH
5155 *enode = ma_enode_ptr(next);
5156 node = mte_to_node(*enode);
54a611b6 5157 slots = ma_slots(node, node->type);
790e1fa8
LH
5158 next = rcu_dereference_protected(slots[offset],
5159 lock_is_held(&rcu_callback_map));
54a611b6
LH
5160 offset = 0;
5161 } while (!ma_is_leaf(next->type));
5162
5163 return slots;
5164}
5165
790e1fa8
LH
5166/**
5167 * mt_free_walk() - Walk & free a tree in the RCU callback context
5168 * @head: The RCU head that's within the node.
5169 *
5170 * Note: This can only be used from the RCU callback context.
5171 */
54a611b6
LH
5172static void mt_free_walk(struct rcu_head *head)
5173{
5174 void __rcu **slots;
5175 struct maple_node *node, *start;
790e1fa8 5176 struct maple_enode *enode;
54a611b6
LH
5177 unsigned char offset;
5178 enum maple_type type;
54a611b6
LH
5179
5180 node = container_of(head, struct maple_node, rcu);
5181
5182 if (ma_is_leaf(node->type))
5183 goto free_leaf;
5184
54a611b6 5185 start = node;
790e1fa8
LH
5186 enode = mt_mk_node(node, node->type);
5187 slots = mte_dead_walk(&enode, 0);
5188 node = mte_to_node(enode);
54a611b6
LH
5189 do {
5190 mt_free_bulk(node->slot_len, slots);
5191 offset = node->parent_slot + 1;
790e1fa8
LH
5192 enode = node->piv_parent;
5193 if (mte_to_node(enode) == node)
5194 goto free_leaf;
5195
5196 type = mte_node_type(enode);
5197 slots = ma_slots(mte_to_node(enode), type);
5198 if ((offset < mt_slots[type]) &&
5199 rcu_dereference_protected(slots[offset],
5200 lock_is_held(&rcu_callback_map)))
5201 slots = mte_dead_walk(&enode, offset);
5202 node = mte_to_node(enode);
54a611b6
LH
5203 } while ((node != start) || (node->slot_len < offset));
5204
5205 slots = ma_slots(node, node->type);
5206 mt_free_bulk(node->slot_len, slots);
5207
54a611b6
LH
5208free_leaf:
5209 mt_free_rcu(&node->rcu);
5210}
5211
790e1fa8
LH
5212static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5213 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5214{
5215 struct maple_node *node;
790e1fa8 5216 struct maple_enode *next = *enode;
54a611b6 5217 void __rcu **slots = NULL;
790e1fa8
LH
5218 enum maple_type type;
5219 unsigned char next_offset = 0;
54a611b6
LH
5220
5221 do {
790e1fa8
LH
5222 *enode = next;
5223 node = mte_to_node(*enode);
5224 type = mte_node_type(*enode);
5225 slots = ma_slots(node, type);
5226 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5227 if ((mte_dead_node(next)))
790e1fa8 5228 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5229
790e1fa8
LH
5230 mte_set_node_dead(*enode);
5231 node->type = type;
54a611b6
LH
5232 node->piv_parent = prev;
5233 node->parent_slot = offset;
790e1fa8
LH
5234 offset = next_offset;
5235 next_offset = 0;
5236 prev = *enode;
54a611b6
LH
5237 } while (!mte_is_leaf(next));
5238
5239 return slots;
5240}
5241
790e1fa8 5242static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5243 bool free)
5244{
5245 void __rcu **slots;
5246 struct maple_node *node = mte_to_node(enode);
5247 struct maple_enode *start;
54a611b6 5248
2e5b4921
LH
5249 if (mte_is_leaf(enode)) {
5250 node->type = mte_node_type(enode);
54a611b6 5251 goto free_leaf;
2e5b4921 5252 }
54a611b6 5253
2e5b4921 5254 start = enode;
790e1fa8
LH
5255 slots = mte_destroy_descend(&enode, mt, start, 0);
5256 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5257 do {
5258 enum maple_type type;
5259 unsigned char offset;
5260 struct maple_enode *parent, *tmp;
5261
790e1fa8 5262 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5263 if (free)
5264 mt_free_bulk(node->slot_len, slots);
5265 offset = node->parent_slot + 1;
790e1fa8
LH
5266 enode = node->piv_parent;
5267 if (mte_to_node(enode) == node)
5268 goto free_leaf;
54a611b6 5269
790e1fa8
LH
5270 type = mte_node_type(enode);
5271 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5272 if (offset >= mt_slots[type])
5273 goto next;
5274
790e1fa8 5275 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5276 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5277 parent = enode;
5278 enode = tmp;
5279 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5280 }
5281next:
790e1fa8
LH
5282 node = mte_to_node(enode);
5283 } while (start != enode);
54a611b6 5284
790e1fa8
LH
5285 node = mte_to_node(enode);
5286 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5287 if (free)
5288 mt_free_bulk(node->slot_len, slots);
5289
54a611b6
LH
5290free_leaf:
5291 if (free)
5292 mt_free_rcu(&node->rcu);
2e5b4921 5293 else
790e1fa8 5294 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5295}
5296
5297/*
5298 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5299 * @enode: the encoded maple node (maple_enode) to start
5300 * @mt: the tree to free - needed for node types.
54a611b6
LH
5301 *
5302 * Must hold the write lock.
5303 */
5304static inline void mte_destroy_walk(struct maple_enode *enode,
5305 struct maple_tree *mt)
5306{
5307 struct maple_node *node = mte_to_node(enode);
5308
5309 if (mt_in_rcu(mt)) {
790e1fa8 5310 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5311 call_rcu(&node->rcu, mt_free_walk);
5312 } else {
790e1fa8 5313 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5314 }
5315}
5316
5317static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5318{
a8091f03
LH
5319 if (!mas_is_active(wr_mas->mas)) {
5320 if (mas_is_start(wr_mas->mas))
5321 return;
fec29364 5322
a8091f03
LH
5323 if (unlikely(mas_is_paused(wr_mas->mas)))
5324 goto reset;
1202700c 5325
a8091f03
LH
5326 if (unlikely(mas_is_none(wr_mas->mas)))
5327 goto reset;
5328
5329 if (unlikely(mas_is_overflow(wr_mas->mas)))
5330 goto reset;
5331
5332 if (unlikely(mas_is_underflow(wr_mas->mas)))
5333 goto reset;
5334 }
fec29364
LH
5335
5336 /*
5337 * A less strict version of mas_is_span_wr() where we allow spanning
5338 * writes within this node. This is to stop partial walks in
5339 * mas_prealloc() from being reset.
5340 */
5341 if (wr_mas->mas->last > wr_mas->mas->max)
5342 goto reset;
5343
5344 if (wr_mas->entry)
5345 return;
5346
5347 if (mte_is_leaf(wr_mas->mas->node) &&
5348 wr_mas->mas->last == wr_mas->mas->max)
5349 goto reset;
5350
5351 return;
5352
5353reset:
5354 mas_reset(wr_mas->mas);
54a611b6
LH
5355}
5356
5357/* Interface */
5358
5359/**
5360 * mas_store() - Store an @entry.
5361 * @mas: The maple state.
5362 * @entry: The entry to store.
5363 *
5364 * The @mas->index and @mas->last is used to set the range for the @entry.
5365 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5366 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5367 *
5368 * Return: the first entry between mas->index and mas->last or %NULL.
5369 */
5370void *mas_store(struct ma_state *mas, void *entry)
5371{
5372 MA_WR_STATE(wr_mas, mas, entry);
5373
5374 trace_ma_write(__func__, mas, 0, entry);
5375#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5376 if (MAS_WARN_ON(mas, mas->index > mas->last))
89f499f3 5377 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
e6d6792a 5378
54a611b6
LH
5379 if (mas->index > mas->last) {
5380 mas_set_err(mas, -EINVAL);
5381 return NULL;
5382 }
5383
5384#endif
5385
5386 /*
5387 * Storing is the same operation as insert with the added caveat that it
5388 * can overwrite entries. Although this seems simple enough, one may
5389 * want to examine what happens if a single store operation was to
5390 * overwrite multiple entries within a self-balancing B-Tree.
5391 */
5392 mas_wr_store_setup(&wr_mas);
5393 mas_wr_store_entry(&wr_mas);
5394 return wr_mas.content;
5395}
120b1162 5396EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5397
5398/**
5399 * mas_store_gfp() - Store a value into the tree.
5400 * @mas: The maple state
5401 * @entry: The entry to store
5402 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5403 *
5404 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5405 * be allocated.
5406 */
5407int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5408{
5409 MA_WR_STATE(wr_mas, mas, entry);
5410
5411 mas_wr_store_setup(&wr_mas);
5412 trace_ma_write(__func__, mas, 0, entry);
5413retry:
5414 mas_wr_store_entry(&wr_mas);
5415 if (unlikely(mas_nomem(mas, gfp)))
5416 goto retry;
5417
5418 if (unlikely(mas_is_err(mas)))
5419 return xa_err(mas->node);
5420
5421 return 0;
5422}
120b1162 5423EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5424
5425/**
5426 * mas_store_prealloc() - Store a value into the tree using memory
5427 * preallocated in the maple state.
5428 * @mas: The maple state
5429 * @entry: The entry to store.
5430 */
5431void mas_store_prealloc(struct ma_state *mas, void *entry)
5432{
5433 MA_WR_STATE(wr_mas, mas, entry);
5434
5435 mas_wr_store_setup(&wr_mas);
5436 trace_ma_write(__func__, mas, 0, entry);
5437 mas_wr_store_entry(&wr_mas);
1c414c6a 5438 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
54a611b6
LH
5439 mas_destroy(mas);
5440}
120b1162 5441EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5442
5443/**
5444 * mas_preallocate() - Preallocate enough nodes for a store operation
5445 * @mas: The maple state
da089254 5446 * @entry: The entry that will be stored
54a611b6
LH
5447 * @gfp: The GFP_FLAGS to use for allocations.
5448 *
5449 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5450 */
da089254 5451int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
54a611b6 5452{
17983dc6
LH
5453 MA_WR_STATE(wr_mas, mas, entry);
5454 unsigned char node_size;
5455 int request = 1;
54a611b6
LH
5456 int ret;
5457
17983dc6
LH
5458
5459 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5460 goto ask_now;
5461
5462 mas_wr_store_setup(&wr_mas);
5463 wr_mas.content = mas_start(mas);
5464 /* Root expand */
5465 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5466 goto ask_now;
5467
5468 if (unlikely(!mas_wr_walk(&wr_mas))) {
5469 /* Spanning store, use worst case for now */
5470 request = 1 + mas_mt_height(mas) * 3;
5471 goto ask_now;
5472 }
5473
5474 /* At this point, we are at the leaf node that needs to be altered. */
5475 /* Exact fit, no nodes needed. */
5476 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5477 return 0;
5478
5479 mas_wr_end_piv(&wr_mas);
5480 node_size = mas_wr_new_end(&wr_mas);
4249f13c
SK
5481
5482 /* Slot store, does not require additional nodes */
5143eecd 5483 if (node_size == mas->end) {
4249f13c
SK
5484 /* reuse node */
5485 if (!mt_in_rcu(mas->tree))
5486 return 0;
5487 /* shifting boundary */
5488 if (wr_mas.offset_end - mas->offset == 1)
5489 return 0;
5490 }
5491
17983dc6
LH
5492 if (node_size >= mt_slots[wr_mas.type]) {
5493 /* Split, worst case for now. */
5494 request = 1 + mas_mt_height(mas) * 2;
5495 goto ask_now;
5496 }
5497
d5f6057c 5498 /* New root needs a single node */
17983dc6
LH
5499 if (unlikely(mte_is_root(mas->node)))
5500 goto ask_now;
5501
5502 /* Potential spanning rebalance collapsing a node, use worst-case */
5503 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5504 request = mas_mt_height(mas) * 2 - 1;
5505
5506 /* node store, slot store needs one node */
5507ask_now:
5508 mas_node_count_gfp(mas, request, gfp);
54a611b6
LH
5509 mas->mas_flags |= MA_STATE_PREALLOC;
5510 if (likely(!mas_is_err(mas)))
5511 return 0;
5512
5513 mas_set_alloc_req(mas, 0);
5514 ret = xa_err(mas->node);
5515 mas_reset(mas);
5516 mas_destroy(mas);
5517 mas_reset(mas);
5518 return ret;
5519}
5c63a7c3 5520EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5521
5522/*
5523 * mas_destroy() - destroy a maple state.
5524 * @mas: The maple state
5525 *
5526 * Upon completion, check the left-most node and rebalance against the node to
5527 * the right if necessary. Frees any allocated nodes associated with this maple
5528 * state.
5529 */
5530void mas_destroy(struct ma_state *mas)
5531{
5532 struct maple_alloc *node;
541e06b7 5533 unsigned long total;
54a611b6
LH
5534
5535 /*
5536 * When using mas_for_each() to insert an expected number of elements,
5537 * it is possible that the number inserted is less than the expected
5538 * number. To fix an invalid final node, a check is performed here to
5539 * rebalance the previous node with the final node.
5540 */
5541 if (mas->mas_flags & MA_STATE_REBALANCE) {
5542 unsigned char end;
5543
23e734ec 5544 mas_start(mas);
54a611b6 5545 mtree_range_walk(mas);
1f41ef12 5546 end = mas->end + 1;
54a611b6
LH
5547 if (end < mt_min_slot_count(mas->node) - 1)
5548 mas_destroy_rebalance(mas, end);
5549
5550 mas->mas_flags &= ~MA_STATE_REBALANCE;
5551 }
5552 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5553
541e06b7
LH
5554 total = mas_allocated(mas);
5555 while (total) {
54a611b6
LH
5556 node = mas->alloc;
5557 mas->alloc = node->slot[0];
541e06b7
LH
5558 if (node->node_count > 1) {
5559 size_t count = node->node_count - 1;
5560
5561 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5562 total -= count;
5563 }
4f2267b5 5564 mt_free_one(ma_mnode_ptr(node));
541e06b7 5565 total--;
54a611b6 5566 }
541e06b7 5567
54a611b6
LH
5568 mas->alloc = NULL;
5569}
120b1162 5570EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5571
5572/*
5573 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5574 * @mas: The maple state
5575 * @nr_entries: The number of expected entries.
5576 *
5577 * This will attempt to pre-allocate enough nodes to store the expected number
5578 * of entries. The allocations will occur using the bulk allocator interface
5579 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5580 * to ensure any unused nodes are freed.
5581 *
5582 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5583 */
5584int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5585{
5586 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5587 struct maple_enode *enode = mas->node;
5588 int nr_nodes;
5589 int ret;
5590
5591 /*
5592 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5593 * forking a process and duplicating the VMAs from one tree to a new
5594 * tree. When such a situation arises, it is known that the new tree is
5595 * not going to be used until the entire tree is populated. For
5596 * performance reasons, it is best to use a bulk load with RCU disabled.
5597 * This allows for optimistic splitting that favours the left and reuse
5598 * of nodes during the operation.
5599 */
5600
5601 /* Optimize splitting for bulk insert in-order */
5602 mas->mas_flags |= MA_STATE_BULK;
5603
5604 /*
5605 * Avoid overflow, assume a gap between each entry and a trailing null.
5606 * If this is wrong, it just means allocation can happen during
5607 * insertion of entries.
5608 */
5609 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5610 if (!mt_is_alloc(mas->tree))
5611 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5612
5613 /* Leaves; reduce slots to keep space for expansion */
5614 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5615 /* Internal nodes */
5616 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5617 /* Add working room for split (2 nodes) + new parents */
099d7439 5618 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
54a611b6
LH
5619
5620 /* Detect if allocations run out */
5621 mas->mas_flags |= MA_STATE_PREALLOC;
5622
5623 if (!mas_is_err(mas))
5624 return 0;
5625
5626 ret = xa_err(mas->node);
5627 mas->node = enode;
5628 mas_destroy(mas);
5629 return ret;
5630
5631}
120b1162 5632EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6 5633
271f61a8 5634static bool mas_next_setup(struct ma_state *mas, unsigned long max,
6169b553 5635 void **entry)
54a611b6 5636{
ca80f610
LH
5637 bool was_none = mas_is_none(mas);
5638
a8091f03 5639 if (unlikely(mas->last >= max)) {
067311d3 5640 mas->status = ma_overflow;
a8091f03
LH
5641 return true;
5642 }
5643
067311d3
LH
5644 switch (mas->status) {
5645 case ma_active:
a8091f03 5646 return false;
067311d3
LH
5647 case ma_none:
5648 fallthrough;
5649 case ma_pause:
5650 mas->status = ma_start;
5651 fallthrough;
5652 case ma_start:
5653 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5654 break;
5655 case ma_overflow:
a8091f03 5656 /* Overflowed before, but the max changed */
067311d3
LH
5657 mas->status = ma_active;
5658 break;
5659 case ma_underflow:
5660 /* The user expects the mas to be one before where it is */
5661 mas->status = ma_active;
a8091f03
LH
5662 *entry = mas_walk(mas);
5663 if (*entry)
5664 return true;
067311d3
LH
5665 break;
5666 case ma_root:
5667 break;
5668 case ma_error:
5669 return true;
a8091f03 5670 }
54a611b6 5671
067311d3
LH
5672 if (likely(mas_is_active(mas))) /* Fast path */
5673 return false;
54a611b6
LH
5674
5675 if (mas_is_ptr(mas)) {
6169b553 5676 *entry = NULL;
ca80f610
LH
5677 if (was_none && mas->index == 0) {
5678 mas->index = mas->last = 0;
6169b553 5679 return true;
54a611b6 5680 }
ca80f610
LH
5681 mas->index = 1;
5682 mas->last = ULONG_MAX;
067311d3 5683 mas->status = ma_none;
6169b553 5684 return true;
54a611b6
LH
5685 }
5686
6169b553
LH
5687 if (mas_is_none(mas))
5688 return true;
a8091f03 5689
6169b553
LH
5690 return false;
5691}
5692
5693/**
5694 * mas_next() - Get the next entry.
5695 * @mas: The maple state
5696 * @max: The maximum index to check.
5697 *
5698 * Returns the next entry after @mas->index.
5699 * Must hold rcu_read_lock or the write lock.
5700 * Can return the zero entry.
5701 *
5702 * Return: The next entry or %NULL
5703 */
5704void *mas_next(struct ma_state *mas, unsigned long max)
5705{
5706 void *entry = NULL;
5707
5708 if (mas_next_setup(mas, max, &entry))
5709 return entry;
5710
5711 /* Retries on dead nodes handled by mas_next_slot */
067311d3 5712 return mas_next_slot(mas, max, false);
54a611b6
LH
5713}
5714EXPORT_SYMBOL_GPL(mas_next);
5715
6169b553
LH
5716/**
5717 * mas_next_range() - Advance the maple state to the next range
5718 * @mas: The maple state
5719 * @max: The maximum index to check.
5720 *
5721 * Sets @mas->index and @mas->last to the range.
5722 * Must hold rcu_read_lock or the write lock.
5723 * Can return the zero entry.
5724 *
5725 * Return: The next entry or %NULL
5726 */
5727void *mas_next_range(struct ma_state *mas, unsigned long max)
5728{
5729 void *entry = NULL;
5730
5731 if (mas_next_setup(mas, max, &entry))
5732 return entry;
5733
5734 /* Retries on dead nodes handled by mas_next_slot */
067311d3 5735 return mas_next_slot(mas, max, true);
6169b553
LH
5736}
5737EXPORT_SYMBOL_GPL(mas_next_range);
5738
54a611b6
LH
5739/**
5740 * mt_next() - get the next value in the maple tree
5741 * @mt: The maple tree
5742 * @index: The start index
5743 * @max: The maximum index to check
5744 *
fad9c80e
TG
5745 * Takes RCU read lock internally to protect the search, which does not
5746 * protect the returned pointer after dropping RCU read lock.
5747 * See also: Documentation/core-api/maple_tree.rst
5748 *
5749 * Return: The entry higher than @index or %NULL if nothing is found.
54a611b6
LH
5750 */
5751void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5752{
5753 void *entry = NULL;
5754 MA_STATE(mas, mt, index, index);
5755
5756 rcu_read_lock();
5757 entry = mas_next(&mas, max);
5758 rcu_read_unlock();
5759 return entry;
5760}
5761EXPORT_SYMBOL_GPL(mt_next);
5762
271f61a8 5763static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
54a611b6 5764{
a8091f03 5765 if (unlikely(mas->index <= min)) {
067311d3 5766 mas->status = ma_underflow;
a8091f03
LH
5767 return true;
5768 }
54a611b6 5769
067311d3
LH
5770 switch (mas->status) {
5771 case ma_active:
a8091f03 5772 return false;
067311d3
LH
5773 case ma_start:
5774 break;
5775 case ma_none:
5776 fallthrough;
5777 case ma_pause:
5778 mas->status = ma_start;
5779 break;
5780 case ma_underflow:
5781 /* underflowed before but the min changed */
5782 mas->status = ma_active;
5783 break;
5784 case ma_overflow:
5785 /* User expects mas to be one after where it is */
5786 mas->status = ma_active;
a8091f03
LH
5787 *entry = mas_walk(mas);
5788 if (*entry)
5789 return true;
067311d3
LH
5790 break;
5791 case ma_root:
5792 break;
5793 case ma_error:
5794 return true;
54a611b6
LH
5795 }
5796
a8091f03
LH
5797 if (mas_is_start(mas))
5798 mas_walk(mas);
5799
39193685 5800 if (unlikely(mas_is_ptr(mas))) {
067311d3
LH
5801 if (!mas->index) {
5802 mas->status = ma_none;
5803 return true;
5804 }
54a611b6 5805 mas->index = mas->last = 0;
6b9e93e0
LH
5806 *entry = mas_root(mas);
5807 return true;
39193685
LH
5808 }
5809
5810 if (mas_is_none(mas)) {
5811 if (mas->index) {
5812 /* Walked to out-of-range pointer? */
5813 mas->index = mas->last = 0;
067311d3 5814 mas->status = ma_root;
6b9e93e0
LH
5815 *entry = mas_root(mas);
5816 return true;
39193685 5817 }
6b9e93e0 5818 return true;
54a611b6 5819 }
6b9e93e0
LH
5820
5821 return false;
6b9e93e0
LH
5822}
5823
5824/**
5825 * mas_prev() - Get the previous entry
5826 * @mas: The maple state
5827 * @min: The minimum value to check.
5828 *
5829 * Must hold rcu_read_lock or the write lock.
067311d3 5830 * Will reset mas to ma_start if the status is ma_none. Will stop on not
6b9e93e0
LH
5831 * searchable nodes.
5832 *
5833 * Return: the previous value or %NULL.
5834 */
5835void *mas_prev(struct ma_state *mas, unsigned long min)
5836{
5837 void *entry = NULL;
5838
5839 if (mas_prev_setup(mas, min, &entry))
5840 return entry;
5841
067311d3 5842 return mas_prev_slot(mas, min, false);
54a611b6
LH
5843}
5844EXPORT_SYMBOL_GPL(mas_prev);
5845
6b9e93e0
LH
5846/**
5847 * mas_prev_range() - Advance to the previous range
5848 * @mas: The maple state
5849 * @min: The minimum value to check.
5850 *
5851 * Sets @mas->index and @mas->last to the range.
5852 * Must hold rcu_read_lock or the write lock.
067311d3 5853 * Will reset mas to ma_start if the node is ma_none. Will stop on not
6b9e93e0
LH
5854 * searchable nodes.
5855 *
5856 * Return: the previous value or %NULL.
5857 */
5858void *mas_prev_range(struct ma_state *mas, unsigned long min)
5859{
5860 void *entry = NULL;
5861
5862 if (mas_prev_setup(mas, min, &entry))
5863 return entry;
5864
067311d3 5865 return mas_prev_slot(mas, min, true);
6b9e93e0
LH
5866}
5867EXPORT_SYMBOL_GPL(mas_prev_range);
5868
54a611b6
LH
5869/**
5870 * mt_prev() - get the previous value in the maple tree
5871 * @mt: The maple tree
5872 * @index: The start index
5873 * @min: The minimum index to check
5874 *
fad9c80e
TG
5875 * Takes RCU read lock internally to protect the search, which does not
5876 * protect the returned pointer after dropping RCU read lock.
5877 * See also: Documentation/core-api/maple_tree.rst
5878 *
5879 * Return: The entry before @index or %NULL if nothing is found.
54a611b6
LH
5880 */
5881void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5882{
5883 void *entry = NULL;
5884 MA_STATE(mas, mt, index, index);
5885
5886 rcu_read_lock();
5887 entry = mas_prev(&mas, min);
5888 rcu_read_unlock();
5889 return entry;
5890}
5891EXPORT_SYMBOL_GPL(mt_prev);
5892
5893/**
5894 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5895 * @mas: The maple state to pause
5896 *
5897 * Some users need to pause a walk and drop the lock they're holding in
5898 * order to yield to a higher priority thread or carry out an operation
5899 * on an entry. Those users should call this function before they drop
5900 * the lock. It resets the @mas to be suitable for the next iteration
5901 * of the loop after the user has reacquired the lock. If most entries
5902 * found during a walk require you to call mas_pause(), the mt_for_each()
5903 * iterator may be more appropriate.
5904 *
5905 */
5906void mas_pause(struct ma_state *mas)
5907{
067311d3
LH
5908 mas->status = ma_pause;
5909 mas->node = NULL;
54a611b6
LH
5910}
5911EXPORT_SYMBOL_GPL(mas_pause);
5912
5913/**
6169b553 5914 * mas_find_setup() - Internal function to set up mas_find*().
54a611b6 5915 * @mas: The maple state
6169b553
LH
5916 * @max: The maximum index
5917 * @entry: Pointer to the entry
54a611b6 5918 *
6169b553 5919 * Returns: True if entry is the answer, false otherwise.
54a611b6 5920 */
271f61a8 5921static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
54a611b6 5922{
067311d3
LH
5923 switch (mas->status) {
5924 case ma_active:
a8091f03
LH
5925 if (mas->last < max)
5926 return false;
a8091f03 5927 return true;
067311d3
LH
5928 case ma_start:
5929 break;
5930 case ma_pause:
ca80f610 5931 if (unlikely(mas->last >= max))
6169b553 5932 return true;
ca80f610 5933
a8091f03 5934 mas->index = ++mas->last;
067311d3
LH
5935 mas->status = ma_start;
5936 break;
5937 case ma_none:
ca80f610 5938 if (unlikely(mas->last >= max))
6169b553 5939 return true;
ca80f610 5940
a8091f03 5941 mas->index = mas->last;
067311d3
LH
5942 mas->status = ma_start;
5943 break;
5944 case ma_underflow:
5945 /* mas is pointing at entry before unable to go lower */
5946 if (unlikely(mas->index >= max)) {
5947 mas->status = ma_overflow;
a8091f03
LH
5948 return true;
5949 }
17dc622c 5950
067311d3
LH
5951 mas->status = ma_active;
5952 *entry = mas_walk(mas);
5953 if (*entry)
5954 return true;
5955 break;
5956 case ma_overflow:
5957 if (unlikely(mas->last >= max))
5958 return true;
5959
5960 mas->status = ma_active;
5961 *entry = mas_walk(mas);
5962 if (*entry)
5963 return true;
5964 break;
5965 case ma_root:
5966 break;
5967 case ma_error:
5968 return true;
a8091f03
LH
5969 }
5970
5971 if (mas_is_start(mas)) {
54a611b6 5972 /* First run or continue */
54a611b6 5973 if (mas->index > max)
6169b553 5974 return true;
54a611b6 5975
6169b553
LH
5976 *entry = mas_walk(mas);
5977 if (*entry)
5978 return true;
ca80f610 5979
54a611b6
LH
5980 }
5981
9a40d45c
LH
5982 if (unlikely(mas_is_ptr(mas)))
5983 goto ptr_out_of_range;
ca80f610 5984
9a40d45c 5985 if (unlikely(mas_is_none(mas)))
6169b553 5986 return true;
ca80f610
LH
5987
5988 if (mas->index == max)
6169b553 5989 return true;
54a611b6 5990
6169b553 5991 return false;
ca80f610
LH
5992
5993ptr_out_of_range:
067311d3 5994 mas->status = ma_none;
ca80f610
LH
5995 mas->index = 1;
5996 mas->last = ULONG_MAX;
6169b553
LH
5997 return true;
5998}
5999
6000/**
6001 * mas_find() - On the first call, find the entry at or after mas->index up to
6002 * %max. Otherwise, find the entry after mas->index.
6003 * @mas: The maple state
6004 * @max: The maximum value to check.
6005 *
6006 * Must hold rcu_read_lock or the write lock.
6007 * If an entry exists, last and index are updated accordingly.
067311d3 6008 * May set @mas->status to ma_overflow.
6169b553
LH
6009 *
6010 * Return: The entry or %NULL.
6011 */
6012void *mas_find(struct ma_state *mas, unsigned long max)
6013{
6014 void *entry = NULL;
6015
6016 if (mas_find_setup(mas, max, &entry))
6017 return entry;
6018
6019 /* Retries on dead nodes handled by mas_next_slot */
067311d3
LH
6020 entry = mas_next_slot(mas, max, false);
6021 /* Ignore overflow */
6022 mas->status = ma_active;
6023 return entry;
54a611b6 6024}
120b1162 6025EXPORT_SYMBOL_GPL(mas_find);
54a611b6 6026
6169b553
LH
6027/**
6028 * mas_find_range() - On the first call, find the entry at or after
6029 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6030 * @mas: The maple state
6031 * @max: The maximum value to check.
6032 *
6033 * Must hold rcu_read_lock or the write lock.
6034 * If an entry exists, last and index are updated accordingly.
067311d3 6035 * May set @mas->status to ma_overflow.
6169b553
LH
6036 *
6037 * Return: The entry or %NULL.
6038 */
6039void *mas_find_range(struct ma_state *mas, unsigned long max)
6040{
a8091f03 6041 void *entry = NULL;
6169b553
LH
6042
6043 if (mas_find_setup(mas, max, &entry))
6044 return entry;
6045
6046 /* Retries on dead nodes handled by mas_next_slot */
067311d3 6047 return mas_next_slot(mas, max, true);
6169b553
LH
6048}
6049EXPORT_SYMBOL_GPL(mas_find_range);
6050
54a611b6 6051/**
6b9e93e0 6052 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
54a611b6 6053 * @mas: The maple state
6b9e93e0
LH
6054 * @min: The minimum index
6055 * @entry: Pointer to the entry
54a611b6 6056 *
6b9e93e0 6057 * Returns: True if entry is the answer, false otherwise.
54a611b6 6058 */
271f61a8 6059static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6b9e93e0 6060 void **entry)
54a611b6 6061{
39193685 6062
067311d3
LH
6063 switch (mas->status) {
6064 case ma_active:
6065 goto active;
6066 case ma_start:
6067 break;
6068 case ma_pause:
39193685 6069 if (unlikely(mas->index <= min)) {
067311d3 6070 mas->status = ma_underflow;
6b9e93e0 6071 return true;
54a611b6 6072 }
54a611b6 6073 mas->last = --mas->index;
067311d3
LH
6074 mas->status = ma_start;
6075 break;
6076 case ma_none:
a8091f03
LH
6077 if (mas->index <= min)
6078 goto none;
6079
6080 mas->last = mas->index;
067311d3
LH
6081 mas->status = ma_start;
6082 break;
6083 case ma_overflow: /* user expects the mas to be one after where it is */
6084 if (unlikely(mas->index <= min)) {
6085 mas->status = ma_underflow;
a8091f03
LH
6086 return true;
6087 }
6088
067311d3
LH
6089 mas->status = ma_active;
6090 break;
6091 case ma_underflow: /* user expects the mas to be one before where it is */
6092 if (unlikely(mas->index <= min))
6093 return true;
6094
6095 mas->status = ma_active;
6096 break;
6097 case ma_root:
6098 break;
6099 case ma_error:
6100 return true;
54a611b6
LH
6101 }
6102
a8091f03 6103 if (mas_is_start(mas)) {
54a611b6 6104 /* First run or continue */
54a611b6 6105 if (mas->index < min)
6b9e93e0 6106 return true;
54a611b6 6107
6b9e93e0
LH
6108 *entry = mas_walk(mas);
6109 if (*entry)
6110 return true;
54a611b6
LH
6111 }
6112
9a40d45c
LH
6113 if (unlikely(mas_is_ptr(mas)))
6114 goto none;
39193685 6115
9a40d45c
LH
6116 if (unlikely(mas_is_none(mas))) {
6117 /*
6118 * Walked to the location, and there was nothing so the previous
6119 * location is 0.
6120 */
6121 mas->last = mas->index = 0;
6122 mas->status = ma_root;
6123 *entry = mas_root(mas);
6124 return true;
39193685 6125 }
54a611b6 6126
067311d3 6127active:
54a611b6 6128 if (mas->index < min)
6b9e93e0 6129 return true;
54a611b6 6130
6b9e93e0 6131 return false;
39193685
LH
6132
6133none:
067311d3 6134 mas->status = ma_none;
6b9e93e0
LH
6135 return true;
6136}
6137
6138/**
6139 * mas_find_rev: On the first call, find the first non-null entry at or below
6140 * mas->index down to %min. Otherwise find the first non-null entry below
6141 * mas->index down to %min.
6142 * @mas: The maple state
6143 * @min: The minimum value to check.
6144 *
6145 * Must hold rcu_read_lock or the write lock.
6146 * If an entry exists, last and index are updated accordingly.
067311d3 6147 * May set @mas->status to ma_underflow.
6b9e93e0
LH
6148 *
6149 * Return: The entry or %NULL.
6150 */
6151void *mas_find_rev(struct ma_state *mas, unsigned long min)
6152{
a8091f03 6153 void *entry = NULL;
6b9e93e0
LH
6154
6155 if (mas_find_rev_setup(mas, min, &entry))
6156 return entry;
6157
6158 /* Retries on dead nodes handled by mas_prev_slot */
067311d3 6159 return mas_prev_slot(mas, min, false);
6b9e93e0 6160
54a611b6 6161}
120b1162 6162EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6 6163
6b9e93e0
LH
6164/**
6165 * mas_find_range_rev: On the first call, find the first non-null entry at or
6166 * below mas->index down to %min. Otherwise advance to the previous slot after
6167 * mas->index down to %min.
6168 * @mas: The maple state
6169 * @min: The minimum value to check.
6170 *
6171 * Must hold rcu_read_lock or the write lock.
6172 * If an entry exists, last and index are updated accordingly.
067311d3 6173 * May set @mas->status to ma_underflow.
6b9e93e0
LH
6174 *
6175 * Return: The entry or %NULL.
6176 */
6177void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6178{
a8091f03 6179 void *entry = NULL;
6b9e93e0
LH
6180
6181 if (mas_find_rev_setup(mas, min, &entry))
6182 return entry;
6183
6184 /* Retries on dead nodes handled by mas_prev_slot */
067311d3 6185 return mas_prev_slot(mas, min, true);
6b9e93e0
LH
6186}
6187EXPORT_SYMBOL_GPL(mas_find_range_rev);
6188
54a611b6
LH
6189/**
6190 * mas_erase() - Find the range in which index resides and erase the entire
6191 * range.
6192 * @mas: The maple state
6193 *
6194 * Must hold the write lock.
6195 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6196 * erases that range.
6197 *
6198 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6199 */
6200void *mas_erase(struct ma_state *mas)
6201{
6202 void *entry;
6203 MA_WR_STATE(wr_mas, mas, NULL);
6204
f7a59018 6205 if (!mas_is_active(mas) || !mas_is_start(mas))
067311d3 6206 mas->status = ma_start;
54a611b6
LH
6207
6208 /* Retry unnecessary when holding the write lock. */
6209 entry = mas_state_walk(mas);
6210 if (!entry)
6211 return NULL;
6212
6213write_retry:
6214 /* Must reset to ensure spanning writes of last slot are detected */
6215 mas_reset(mas);
6216 mas_wr_store_setup(&wr_mas);
6217 mas_wr_store_entry(&wr_mas);
6218 if (mas_nomem(mas, GFP_KERNEL))
6219 goto write_retry;
6220
6221 return entry;
6222}
6223EXPORT_SYMBOL_GPL(mas_erase);
6224
6225/**
6226 * mas_nomem() - Check if there was an error allocating and do the allocation
6227 * if necessary If there are allocations, then free them.
6228 * @mas: The maple state
6229 * @gfp: The GFP_FLAGS to use for allocations
6230 * Return: true on allocation, false otherwise.
6231 */
6232bool mas_nomem(struct ma_state *mas, gfp_t gfp)
14c4b5ab 6233 __must_hold(mas->tree->ma_lock)
54a611b6
LH
6234{
6235 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6236 mas_destroy(mas);
6237 return false;
6238 }
6239
6240 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6241 mtree_unlock(mas->tree);
6242 mas_alloc_nodes(mas, gfp);
6243 mtree_lock(mas->tree);
6244 } else {
6245 mas_alloc_nodes(mas, gfp);
6246 }
6247
6248 if (!mas_allocated(mas))
6249 return false;
6250
067311d3 6251 mas->status = ma_start;
54a611b6
LH
6252 return true;
6253}
6254
6255void __init maple_tree_init(void)
6256{
6257 maple_node_cache = kmem_cache_create("maple_node",
6258 sizeof(struct maple_node), sizeof(struct maple_node),
6259 SLAB_PANIC, NULL);
6260}
6261
6262/**
6263 * mtree_load() - Load a value stored in a maple tree
6264 * @mt: The maple tree
6265 * @index: The index to load
6266 *
6267 * Return: the entry or %NULL
6268 */
6269void *mtree_load(struct maple_tree *mt, unsigned long index)
6270{
6271 MA_STATE(mas, mt, index, index);
6272 void *entry;
6273
6274 trace_ma_read(__func__, &mas);
6275 rcu_read_lock();
6276retry:
6277 entry = mas_start(&mas);
6278 if (unlikely(mas_is_none(&mas)))
6279 goto unlock;
6280
6281 if (unlikely(mas_is_ptr(&mas))) {
6282 if (index)
6283 entry = NULL;
6284
6285 goto unlock;
6286 }
6287
6288 entry = mtree_lookup_walk(&mas);
6289 if (!entry && unlikely(mas_is_start(&mas)))
6290 goto retry;
6291unlock:
6292 rcu_read_unlock();
6293 if (xa_is_zero(entry))
6294 return NULL;
6295
6296 return entry;
6297}
6298EXPORT_SYMBOL(mtree_load);
6299
6300/**
6301 * mtree_store_range() - Store an entry at a given range.
6302 * @mt: The maple tree
6303 * @index: The start of the range
6304 * @last: The end of the range
6305 * @entry: The entry to store
6306 * @gfp: The GFP_FLAGS to use for allocations
6307 *
6308 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6309 * be allocated.
6310 */
6311int mtree_store_range(struct maple_tree *mt, unsigned long index,
6312 unsigned long last, void *entry, gfp_t gfp)
6313{
6314 MA_STATE(mas, mt, index, last);
6315 MA_WR_STATE(wr_mas, &mas, entry);
6316
6317 trace_ma_write(__func__, &mas, 0, entry);
6318 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6319 return -EINVAL;
6320
6321 if (index > last)
6322 return -EINVAL;
6323
6324 mtree_lock(mt);
6325retry:
6326 mas_wr_store_entry(&wr_mas);
6327 if (mas_nomem(&mas, gfp))
6328 goto retry;
6329
6330 mtree_unlock(mt);
6331 if (mas_is_err(&mas))
6332 return xa_err(mas.node);
6333
6334 return 0;
6335}
6336EXPORT_SYMBOL(mtree_store_range);
6337
6338/**
6339 * mtree_store() - Store an entry at a given index.
6340 * @mt: The maple tree
6341 * @index: The index to store the value
6342 * @entry: The entry to store
6343 * @gfp: The GFP_FLAGS to use for allocations
6344 *
6345 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6346 * be allocated.
6347 */
6348int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6349 gfp_t gfp)
6350{
6351 return mtree_store_range(mt, index, index, entry, gfp);
6352}
6353EXPORT_SYMBOL(mtree_store);
6354
6355/**
4445e582 6356 * mtree_insert_range() - Insert an entry at a given range if there is no value.
54a611b6
LH
6357 * @mt: The maple tree
6358 * @first: The start of the range
6359 * @last: The end of the range
6360 * @entry: The entry to store
6361 * @gfp: The GFP_FLAGS to use for allocations.
6362 *
6363 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6364 * request, -ENOMEM if memory could not be allocated.
6365 */
6366int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6367 unsigned long last, void *entry, gfp_t gfp)
6368{
6369 MA_STATE(ms, mt, first, last);
6370
6371 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6372 return -EINVAL;
6373
6374 if (first > last)
6375 return -EINVAL;
6376
6377 mtree_lock(mt);
6378retry:
6379 mas_insert(&ms, entry);
6380 if (mas_nomem(&ms, gfp))
6381 goto retry;
6382
6383 mtree_unlock(mt);
6384 if (mas_is_err(&ms))
6385 return xa_err(ms.node);
6386
6387 return 0;
6388}
6389EXPORT_SYMBOL(mtree_insert_range);
6390
6391/**
4445e582 6392 * mtree_insert() - Insert an entry at a given index if there is no value.
54a611b6
LH
6393 * @mt: The maple tree
6394 * @index : The index to store the value
6395 * @entry: The entry to store
4ae6944d 6396 * @gfp: The GFP_FLAGS to use for allocations.
54a611b6
LH
6397 *
6398 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6399 * request, -ENOMEM if memory could not be allocated.
6400 */
6401int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6402 gfp_t gfp)
6403{
6404 return mtree_insert_range(mt, index, index, entry, gfp);
6405}
6406EXPORT_SYMBOL(mtree_insert);
6407
6408int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6409 void *entry, unsigned long size, unsigned long min,
6410 unsigned long max, gfp_t gfp)
6411{
6412 int ret = 0;
6413
52371677 6414 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6415 if (!mt_is_alloc(mt))
6416 return -EINVAL;
6417
6418 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6419 return -EINVAL;
6420
54a611b6
LH
6421 mtree_lock(mt);
6422retry:
52371677
PZ
6423 ret = mas_empty_area(&mas, min, max, size);
6424 if (ret)
6425 goto unlock;
6426
6427 mas_insert(&mas, entry);
6428 /*
6429 * mas_nomem() may release the lock, causing the allocated area
6430 * to be unavailable, so try to allocate a free area again.
6431 */
54a611b6
LH
6432 if (mas_nomem(&mas, gfp))
6433 goto retry;
6434
52371677
PZ
6435 if (mas_is_err(&mas))
6436 ret = xa_err(mas.node);
6437 else
6438 *startp = mas.index;
6439
6440unlock:
54a611b6
LH
6441 mtree_unlock(mt);
6442 return ret;
6443}
6444EXPORT_SYMBOL(mtree_alloc_range);
6445
6446int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6447 void *entry, unsigned long size, unsigned long min,
6448 unsigned long max, gfp_t gfp)
6449{
6450 int ret = 0;
6451
52371677 6452 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6453 if (!mt_is_alloc(mt))
6454 return -EINVAL;
6455
6456 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6457 return -EINVAL;
6458
54a611b6
LH
6459 mtree_lock(mt);
6460retry:
52371677
PZ
6461 ret = mas_empty_area_rev(&mas, min, max, size);
6462 if (ret)
6463 goto unlock;
6464
6465 mas_insert(&mas, entry);
6466 /*
6467 * mas_nomem() may release the lock, causing the allocated area
6468 * to be unavailable, so try to allocate a free area again.
6469 */
54a611b6
LH
6470 if (mas_nomem(&mas, gfp))
6471 goto retry;
6472
52371677
PZ
6473 if (mas_is_err(&mas))
6474 ret = xa_err(mas.node);
6475 else
6476 *startp = mas.index;
6477
6478unlock:
54a611b6
LH
6479 mtree_unlock(mt);
6480 return ret;
6481}
6482EXPORT_SYMBOL(mtree_alloc_rrange);
6483
6484/**
6485 * mtree_erase() - Find an index and erase the entire range.
6486 * @mt: The maple tree
6487 * @index: The index to erase
6488 *
6489 * Erasing is the same as a walk to an entry then a store of a NULL to that
6490 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6491 *
6492 * Return: The entry stored at the @index or %NULL
6493 */
6494void *mtree_erase(struct maple_tree *mt, unsigned long index)
6495{
6496 void *entry = NULL;
6497
6498 MA_STATE(mas, mt, index, index);
6499 trace_ma_op(__func__, &mas);
6500
6501 mtree_lock(mt);
6502 entry = mas_erase(&mas);
6503 mtree_unlock(mt);
6504
6505 return entry;
6506}
6507EXPORT_SYMBOL(mtree_erase);
6508
fd32e4e9
PZ
6509/*
6510 * mas_dup_free() - Free an incomplete duplication of a tree.
6511 * @mas: The maple state of a incomplete tree.
6512 *
6513 * The parameter @mas->node passed in indicates that the allocation failed on
6514 * this node. This function frees all nodes starting from @mas->node in the
6515 * reverse order of mas_dup_build(). There is no need to hold the source tree
6516 * lock at this time.
6517 */
6518static void mas_dup_free(struct ma_state *mas)
6519{
6520 struct maple_node *node;
6521 enum maple_type type;
6522 void __rcu **slots;
6523 unsigned char count, i;
6524
6525 /* Maybe the first node allocation failed. */
6526 if (mas_is_none(mas))
6527 return;
6528
6529 while (!mte_is_root(mas->node)) {
6530 mas_ascend(mas);
6531 if (mas->offset) {
6532 mas->offset--;
6533 do {
6534 mas_descend(mas);
6535 mas->offset = mas_data_end(mas);
6536 } while (!mte_is_leaf(mas->node));
6537
6538 mas_ascend(mas);
6539 }
6540
6541 node = mte_to_node(mas->node);
6542 type = mte_node_type(mas->node);
6543 slots = ma_slots(node, type);
6544 count = mas_data_end(mas) + 1;
6545 for (i = 0; i < count; i++)
6546 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6547 mt_free_bulk(count, slots);
6548 }
6549
6550 node = mte_to_node(mas->node);
6551 mt_free_one(node);
6552}
6553
6554/*
6555 * mas_copy_node() - Copy a maple node and replace the parent.
6556 * @mas: The maple state of source tree.
6557 * @new_mas: The maple state of new tree.
6558 * @parent: The parent of the new node.
6559 *
6560 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6561 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6562 */
6563static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6564 struct maple_pnode *parent)
6565{
6566 struct maple_node *node = mte_to_node(mas->node);
6567 struct maple_node *new_node = mte_to_node(new_mas->node);
6568 unsigned long val;
6569
6570 /* Copy the node completely. */
6571 memcpy(new_node, node, sizeof(struct maple_node));
6572 /* Update the parent node pointer. */
6573 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6574 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6575}
6576
6577/*
6578 * mas_dup_alloc() - Allocate child nodes for a maple node.
6579 * @mas: The maple state of source tree.
6580 * @new_mas: The maple state of new tree.
6581 * @gfp: The GFP_FLAGS to use for allocations.
6582 *
6583 * This function allocates child nodes for @new_mas->node during the duplication
6584 * process. If memory allocation fails, @mas is set to -ENOMEM.
6585 */
6586static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6587 gfp_t gfp)
6588{
6589 struct maple_node *node = mte_to_node(mas->node);
6590 struct maple_node *new_node = mte_to_node(new_mas->node);
6591 enum maple_type type;
6592 unsigned char request, count, i;
6593 void __rcu **slots;
6594 void __rcu **new_slots;
6595 unsigned long val;
6596
6597 /* Allocate memory for child nodes. */
6598 type = mte_node_type(mas->node);
6599 new_slots = ma_slots(new_node, type);
6600 request = mas_data_end(mas) + 1;
6601 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6602 if (unlikely(count < request)) {
6603 memset(new_slots, 0, request * sizeof(void *));
6604 mas_set_err(mas, -ENOMEM);
6605 return;
6606 }
6607
6608 /* Restore node type information in slots. */
6609 slots = ma_slots(node, type);
6610 for (i = 0; i < count; i++) {
6611 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6612 val &= MAPLE_NODE_MASK;
6613 ((unsigned long *)new_slots)[i] |= val;
6614 }
6615}
6616
6617/*
6618 * mas_dup_build() - Build a new maple tree from a source tree
6619 * @mas: The maple state of source tree, need to be in MAS_START state.
6620 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6621 * @gfp: The GFP_FLAGS to use for allocations.
6622 *
6623 * This function builds a new tree in DFS preorder. If the memory allocation
6624 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6625 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6626 *
6627 * Note that the attributes of the two trees need to be exactly the same, and the
6628 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6629 */
6630static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6631 gfp_t gfp)
6632{
6633 struct maple_node *node;
6634 struct maple_pnode *parent = NULL;
6635 struct maple_enode *root;
6636 enum maple_type type;
6637
6638 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6639 unlikely(!mtree_empty(new_mas->tree))) {
6640 mas_set_err(mas, -EINVAL);
6641 return;
6642 }
6643
6644 root = mas_start(mas);
6645 if (mas_is_ptr(mas) || mas_is_none(mas))
6646 goto set_new_tree;
6647
6648 node = mt_alloc_one(gfp);
6649 if (!node) {
067311d3 6650 new_mas->status = ma_none;
fd32e4e9
PZ
6651 mas_set_err(mas, -ENOMEM);
6652 return;
6653 }
6654
6655 type = mte_node_type(mas->node);
6656 root = mt_mk_node(node, type);
6657 new_mas->node = root;
6658 new_mas->min = 0;
6659 new_mas->max = ULONG_MAX;
6660 root = mte_mk_root(root);
6661 while (1) {
6662 mas_copy_node(mas, new_mas, parent);
6663 if (!mte_is_leaf(mas->node)) {
6664 /* Only allocate child nodes for non-leaf nodes. */
6665 mas_dup_alloc(mas, new_mas, gfp);
6666 if (unlikely(mas_is_err(mas)))
6667 return;
6668 } else {
6669 /*
6670 * This is the last leaf node and duplication is
6671 * completed.
6672 */
6673 if (mas->max == ULONG_MAX)
6674 goto done;
6675
6676 /* This is not the last leaf node and needs to go up. */
6677 do {
6678 mas_ascend(mas);
6679 mas_ascend(new_mas);
6680 } while (mas->offset == mas_data_end(mas));
6681
6682 /* Move to the next subtree. */
6683 mas->offset++;
6684 new_mas->offset++;
6685 }
6686
6687 mas_descend(mas);
6688 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6689 mas_descend(new_mas);
6690 mas->offset = 0;
6691 new_mas->offset = 0;
6692 }
6693done:
6694 /* Specially handle the parent of the root node. */
6695 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6696set_new_tree:
6697 /* Make them the same height */
6698 new_mas->tree->ma_flags = mas->tree->ma_flags;
6699 rcu_assign_pointer(new_mas->tree->ma_root, root);
6700}
6701
6702/**
6703 * __mt_dup(): Duplicate an entire maple tree
6704 * @mt: The source maple tree
6705 * @new: The new maple tree
6706 * @gfp: The GFP_FLAGS to use for allocations
6707 *
6708 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6709 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6710 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6711 * source node except for all the addresses stored in it. It will be faster than
6712 * traversing all elements in the source tree and inserting them one by one into
6713 * the new tree.
6714 * The user needs to ensure that the attributes of the source tree and the new
6715 * tree are the same, and the new tree needs to be an empty tree, otherwise
6716 * -EINVAL will be returned.
6717 * Note that the user needs to manually lock the source tree and the new tree.
6718 *
6719 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6720 * the attributes of the two trees are different or the new tree is not an empty
6721 * tree.
6722 */
6723int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6724{
6725 int ret = 0;
6726 MA_STATE(mas, mt, 0, 0);
6727 MA_STATE(new_mas, new, 0, 0);
6728
6729 mas_dup_build(&mas, &new_mas, gfp);
6730 if (unlikely(mas_is_err(&mas))) {
6731 ret = xa_err(mas.node);
6732 if (ret == -ENOMEM)
6733 mas_dup_free(&new_mas);
6734 }
6735
6736 return ret;
6737}
6738EXPORT_SYMBOL(__mt_dup);
6739
6740/**
6741 * mtree_dup(): Duplicate an entire maple tree
6742 * @mt: The source maple tree
6743 * @new: The new maple tree
6744 * @gfp: The GFP_FLAGS to use for allocations
6745 *
6746 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6747 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6748 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6749 * source node except for all the addresses stored in it. It will be faster than
6750 * traversing all elements in the source tree and inserting them one by one into
6751 * the new tree.
6752 * The user needs to ensure that the attributes of the source tree and the new
6753 * tree are the same, and the new tree needs to be an empty tree, otherwise
6754 * -EINVAL will be returned.
6755 *
6756 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6757 * the attributes of the two trees are different or the new tree is not an empty
6758 * tree.
6759 */
6760int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6761{
6762 int ret = 0;
6763 MA_STATE(mas, mt, 0, 0);
6764 MA_STATE(new_mas, new, 0, 0);
6765
6766 mas_lock(&new_mas);
6767 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6768 mas_dup_build(&mas, &new_mas, gfp);
6769 mas_unlock(&mas);
6770 if (unlikely(mas_is_err(&mas))) {
6771 ret = xa_err(mas.node);
6772 if (ret == -ENOMEM)
6773 mas_dup_free(&new_mas);
6774 }
6775
6776 mas_unlock(&new_mas);
6777 return ret;
6778}
6779EXPORT_SYMBOL(mtree_dup);
6780
54a611b6
LH
6781/**
6782 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6783 * @mt: The maple tree
6784 *
6785 * Note: Does not handle locking.
6786 */
6787void __mt_destroy(struct maple_tree *mt)
6788{
6789 void *root = mt_root_locked(mt);
6790
6791 rcu_assign_pointer(mt->ma_root, NULL);
6792 if (xa_is_node(root))
6793 mte_destroy_walk(root, mt);
6794
8e50d32c 6795 mt->ma_flags = mt_attr(mt);
54a611b6
LH
6796}
6797EXPORT_SYMBOL_GPL(__mt_destroy);
6798
6799/**
6800 * mtree_destroy() - Destroy a maple tree
6801 * @mt: The maple tree
6802 *
6803 * Frees all resources used by the tree. Handles locking.
6804 */
6805void mtree_destroy(struct maple_tree *mt)
6806{
6807 mtree_lock(mt);
6808 __mt_destroy(mt);
6809 mtree_unlock(mt);
6810}
6811EXPORT_SYMBOL(mtree_destroy);
6812
6813/**
6814 * mt_find() - Search from the start up until an entry is found.
6815 * @mt: The maple tree
6816 * @index: Pointer which contains the start location of the search
fad9c80e
TG
6817 * @max: The maximum value of the search range
6818 *
6819 * Takes RCU read lock internally to protect the search, which does not
6820 * protect the returned pointer after dropping RCU read lock.
6821 * See also: Documentation/core-api/maple_tree.rst
54a611b6 6822 *
fad9c80e
TG
6823 * In case that an entry is found @index is updated to point to the next
6824 * possible entry independent whether the found entry is occupying a
6825 * single index or a range if indices.
54a611b6
LH
6826 *
6827 * Return: The entry at or after the @index or %NULL
6828 */
6829void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6830{
6831 MA_STATE(mas, mt, *index, *index);
6832 void *entry;
6833#ifdef CONFIG_DEBUG_MAPLE_TREE
6834 unsigned long copy = *index;
6835#endif
6836
6837 trace_ma_read(__func__, &mas);
6838
6839 if ((*index) > max)
6840 return NULL;
6841
6842 rcu_read_lock();
6843retry:
6844 entry = mas_state_walk(&mas);
6845 if (mas_is_start(&mas))
6846 goto retry;
6847
6848 if (unlikely(xa_is_zero(entry)))
6849 entry = NULL;
6850
6851 if (entry)
6852 goto unlock;
6853
9a40d45c 6854 while (mas_is_active(&mas) && (mas.last < max)) {
54a611b6
LH
6855 entry = mas_next_entry(&mas, max);
6856 if (likely(entry && !xa_is_zero(entry)))
6857 break;
6858 }
6859
6860 if (unlikely(xa_is_zero(entry)))
6861 entry = NULL;
6862unlock:
6863 rcu_read_unlock();
6864 if (likely(entry)) {
6865 *index = mas.last + 1;
6866#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6867 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6868 pr_err("index not increased! %lx <= %lx\n",
6869 *index, copy);
54a611b6
LH
6870#endif
6871 }
6872
6873 return entry;
6874}
6875EXPORT_SYMBOL(mt_find);
6876
6877/**
6878 * mt_find_after() - Search from the start up until an entry is found.
6879 * @mt: The maple tree
6880 * @index: Pointer which contains the start location of the search
6881 * @max: The maximum value to check
6882 *
fad9c80e
TG
6883 * Same as mt_find() except that it checks @index for 0 before
6884 * searching. If @index == 0, the search is aborted. This covers a wrap
6885 * around of @index to 0 in an iterator loop.
54a611b6
LH
6886 *
6887 * Return: The entry at or after the @index or %NULL
6888 */
6889void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6890 unsigned long max)
6891{
6892 if (!(*index))
6893 return NULL;
6894
6895 return mt_find(mt, index, max);
6896}
6897EXPORT_SYMBOL(mt_find_after);
6898
6899#ifdef CONFIG_DEBUG_MAPLE_TREE
6900atomic_t maple_tree_tests_run;
6901EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6902atomic_t maple_tree_tests_passed;
6903EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6904
6905#ifndef __KERNEL__
6906extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6907void mt_set_non_kernel(unsigned int val)
6908{
6909 kmem_cache_set_non_kernel(maple_node_cache, val);
6910}
6911
6912extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6913unsigned long mt_get_alloc_size(void)
6914{
6915 return kmem_cache_get_alloc(maple_node_cache);
6916}
6917
6918extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6919void mt_zero_nr_tallocated(void)
6920{
6921 kmem_cache_zero_nr_tallocated(maple_node_cache);
6922}
6923
6924extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6925unsigned int mt_nr_tallocated(void)
6926{
6927 return kmem_cache_nr_tallocated(maple_node_cache);
6928}
6929
6930extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6931unsigned int mt_nr_allocated(void)
6932{
6933 return kmem_cache_nr_allocated(maple_node_cache);
6934}
6935
120b1162
LH
6936void mt_cache_shrink(void)
6937{
6938}
6939#else
6940/*
6941 * mt_cache_shrink() - For testing, don't use this.
6942 *
6943 * Certain testcases can trigger an OOM when combined with other memory
6944 * debugging configuration options. This function is used to reduce the
6945 * possibility of an out of memory even due to kmem_cache objects remaining
6946 * around for longer than usual.
6947 */
6948void mt_cache_shrink(void)
6949{
6950 kmem_cache_shrink(maple_node_cache);
6951
6952}
6953EXPORT_SYMBOL_GPL(mt_cache_shrink);
6954
6955#endif /* not defined __KERNEL__ */
54a611b6
LH
6956/*
6957 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6958 * @mas: The maple state
6959 * @offset: The offset into the slot array to fetch.
6960 *
6961 * Return: The entry stored at @offset.
6962 */
6963static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6964 unsigned char offset)
6965{
6966 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6967 offset);
6968}
6969
54a611b6
LH
6970/* Depth first search, post-order */
6971static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6972{
6973
067311d3 6974 struct maple_enode *p, *mn = mas->node;
54a611b6
LH
6975 unsigned long p_min, p_max;
6976
6977 mas_next_node(mas, mas_mn(mas), max);
067311d3 6978 if (!mas_is_overflow(mas))
54a611b6
LH
6979 return;
6980
6981 if (mte_is_root(mn))
6982 return;
6983
6984 mas->node = mn;
6985 mas_ascend(mas);
c3eb787e 6986 do {
54a611b6
LH
6987 p = mas->node;
6988 p_min = mas->min;
6989 p_max = mas->max;
6990 mas_prev_node(mas, 0);
067311d3 6991 } while (!mas_is_underflow(mas));
54a611b6
LH
6992
6993 mas->node = p;
6994 mas->max = p_max;
6995 mas->min = p_min;
6996}
6997
6998/* Tree validations */
6999static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
7000 unsigned long min, unsigned long max, unsigned int depth,
7001 enum mt_dump_format format);
54a611b6 7002static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 7003 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
7004{
7005 static const char spaces[] = " ";
7006
89f499f3
LH
7007 switch(format) {
7008 case mt_dump_hex:
7009 if (min == max)
7010 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7011 else
7012 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7013 break;
89f499f3
LH
7014 case mt_dump_dec:
7015 if (min == max)
7016 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7017 else
7018 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7019 }
54a611b6
LH
7020}
7021
7022static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 7023 unsigned int depth, enum mt_dump_format format)
54a611b6 7024{
89f499f3 7025 mt_dump_range(min, max, depth, format);
54a611b6
LH
7026
7027 if (xa_is_value(entry))
7028 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7029 xa_to_value(entry), entry);
7030 else if (xa_is_zero(entry))
7031 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7032 else if (mt_is_reserved(entry))
7033 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7034 else
7035 pr_cont("%p\n", entry);
7036}
7037
7038static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
7039 unsigned long min, unsigned long max, unsigned int depth,
7040 enum mt_dump_format format)
54a611b6
LH
7041{
7042 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7043 bool leaf = mte_is_leaf(entry);
7044 unsigned long first = min;
7045 int i;
7046
7047 pr_cont(" contents: ");
89f499f3
LH
7048 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7049 switch(format) {
7050 case mt_dump_hex:
7051 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7052 break;
89f499f3
LH
7053 case mt_dump_dec:
7054 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7055 }
7056 }
54a611b6
LH
7057 pr_cont("%p\n", node->slot[i]);
7058 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7059 unsigned long last = max;
7060
7061 if (i < (MAPLE_RANGE64_SLOTS - 1))
7062 last = node->pivot[i];
bd592703 7063 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
7064 break;
7065 if (last == 0 && i > 0)
7066 break;
7067 if (leaf)
7068 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 7069 first, last, depth + 1, format);
54a611b6
LH
7070 else if (node->slot[i])
7071 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 7072 first, last, depth + 1, format);
54a611b6
LH
7073
7074 if (last == max)
7075 break;
7076 if (last > max) {
89f499f3
LH
7077 switch(format) {
7078 case mt_dump_hex:
7079 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 7080 node, last, max, i);
89f499f3 7081 break;
89f499f3
LH
7082 case mt_dump_dec:
7083 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7084 node, last, max, i);
7085 }
54a611b6
LH
7086 }
7087 first = last + 1;
7088 }
7089}
7090
7091static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
7092 unsigned long min, unsigned long max, unsigned int depth,
7093 enum mt_dump_format format)
54a611b6
LH
7094{
7095 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7096 bool leaf = mte_is_leaf(entry);
7097 unsigned long first = min;
7098 int i;
7099
7100 pr_cont(" contents: ");
83d97f62
LH
7101 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7102 switch (format) {
7103 case mt_dump_hex:
7104 pr_cont("%lx ", node->gap[i]);
7105 break;
83d97f62
LH
7106 case mt_dump_dec:
7107 pr_cont("%lu ", node->gap[i]);
7108 }
7109 }
54a611b6 7110 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
83d97f62
LH
7111 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7112 switch (format) {
7113 case mt_dump_hex:
7114 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7115 break;
83d97f62
LH
7116 case mt_dump_dec:
7117 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7118 }
7119 }
54a611b6
LH
7120 pr_cont("%p\n", node->slot[i]);
7121 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7122 unsigned long last = max;
7123
7124 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7125 last = node->pivot[i];
7126 else if (!node->slot[i])
7127 break;
7128 if (last == 0 && i > 0)
7129 break;
7130 if (leaf)
7131 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 7132 first, last, depth + 1, format);
54a611b6
LH
7133 else if (node->slot[i])
7134 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 7135 first, last, depth + 1, format);
54a611b6
LH
7136
7137 if (last == max)
7138 break;
7139 if (last > max) {
7140 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7141 node, last, max, i);
7142 break;
7143 }
7144 first = last + 1;
7145 }
7146}
7147
7148static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
7149 unsigned long min, unsigned long max, unsigned int depth,
7150 enum mt_dump_format format)
54a611b6
LH
7151{
7152 struct maple_node *node = mte_to_node(entry);
7153 unsigned int type = mte_node_type(entry);
7154 unsigned int i;
7155
89f499f3 7156 mt_dump_range(min, max, depth, format);
54a611b6
LH
7157
7158 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7159 node ? node->parent : NULL);
7160 switch (type) {
7161 case maple_dense:
7162 pr_cont("\n");
7163 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7164 if (min + i > max)
7165 pr_cont("OUT OF RANGE: ");
7166 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 7167 min + i, min + i, depth, format);
54a611b6
LH
7168 }
7169 break;
7170 case maple_leaf_64:
7171 case maple_range_64:
89f499f3 7172 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
7173 break;
7174 case maple_arange_64:
89f499f3 7175 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
7176 break;
7177
7178 default:
7179 pr_cont(" UNKNOWN TYPE\n");
7180 }
7181}
7182
89f499f3 7183void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
7184{
7185 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7186
7187 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7188 mt, mt->ma_flags, mt_height(mt), entry);
7189 if (!xa_is_node(entry))
89f499f3 7190 mt_dump_entry(entry, 0, 0, 0, format);
54a611b6 7191 else if (entry)
89f499f3 7192 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
54a611b6 7193}
120b1162 7194EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
7195
7196/*
7197 * Calculate the maximum gap in a node and check if that's what is reported in
7198 * the parent (unless root).
7199 */
7200static void mas_validate_gaps(struct ma_state *mas)
7201{
7202 struct maple_enode *mte = mas->node;
f8e5eac8
PZ
7203 struct maple_node *p_mn, *node = mte_to_node(mte);
7204 enum maple_type mt = mte_node_type(mas->node);
54a611b6
LH
7205 unsigned long gap = 0, max_gap = 0;
7206 unsigned long p_end, p_start = mas->min;
f8e5eac8 7207 unsigned char p_slot, offset;
54a611b6 7208 unsigned long *gaps = NULL;
f8e5eac8
PZ
7209 unsigned long *pivots = ma_pivots(node, mt);
7210 unsigned int i;
54a611b6 7211
f8e5eac8 7212 if (ma_is_dense(mt)) {
54a611b6
LH
7213 for (i = 0; i < mt_slot_count(mte); i++) {
7214 if (mas_get_slot(mas, i)) {
7215 if (gap > max_gap)
7216 max_gap = gap;
7217 gap = 0;
7218 continue;
7219 }
7220 gap++;
7221 }
7222 goto counted;
7223 }
7224
f8e5eac8 7225 gaps = ma_gaps(node, mt);
54a611b6 7226 for (i = 0; i < mt_slot_count(mte); i++) {
29b2681f 7227 p_end = mas_safe_pivot(mas, pivots, i, mt);
54a611b6
LH
7228
7229 if (!gaps) {
f8e5eac8
PZ
7230 if (!mas_get_slot(mas, i))
7231 gap = p_end - p_start + 1;
54a611b6
LH
7232 } else {
7233 void *entry = mas_get_slot(mas, i);
7234
7235 gap = gaps[i];
f8e5eac8
PZ
7236 MT_BUG_ON(mas->tree, !entry);
7237
7238 if (gap > p_end - p_start + 1) {
7239 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7240 mas_mn(mas), i, gap, p_end, p_start,
7241 p_end - p_start + 1);
7242 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
54a611b6
LH
7243 }
7244 }
7245
7246 if (gap > max_gap)
7247 max_gap = gap;
f8e5eac8 7248
54a611b6
LH
7249 p_start = p_end + 1;
7250 if (p_end >= mas->max)
7251 break;
7252 }
7253
7254counted:
f8e5eac8 7255 if (mt == maple_arange_64) {
2e783f0c 7256 MT_BUG_ON(mas->tree, !gaps);
c5e94121 7257 offset = ma_meta_gap(node);
f8e5eac8
PZ
7258 if (offset > i) {
7259 pr_err("gap offset %p[%u] is invalid\n", node, offset);
7260 MT_BUG_ON(mas->tree, 1);
7261 }
7262
7263 if (gaps[offset] != max_gap) {
7264 pr_err("gap %p[%u] is not the largest gap %lu\n",
7265 node, offset, max_gap);
7266 MT_BUG_ON(mas->tree, 1);
7267 }
7268
f8e5eac8
PZ
7269 for (i++ ; i < mt_slot_count(mte); i++) {
7270 if (gaps[i] != 0) {
7271 pr_err("gap %p[%u] beyond node limit != 0\n",
7272 node, i);
7273 MT_BUG_ON(mas->tree, 1);
7274 }
7275 }
7276 }
7277
54a611b6
LH
7278 if (mte_is_root(mte))
7279 return;
7280
7281 p_slot = mte_parent_slot(mas->node);
7282 p_mn = mte_parent(mte);
7283 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 7284 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
54a611b6 7285 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 7286 mt_dump(mas->tree, mt_dump_hex);
f8e5eac8 7287 MT_BUG_ON(mas->tree, 1);
54a611b6 7288 }
54a611b6
LH
7289}
7290
7291static void mas_validate_parent_slot(struct ma_state *mas)
7292{
7293 struct maple_node *parent;
7294 struct maple_enode *node;
afc754c6
LH
7295 enum maple_type p_type;
7296 unsigned char p_slot;
54a611b6
LH
7297 void __rcu **slots;
7298 int i;
7299
7300 if (mte_is_root(mas->node))
7301 return;
7302
afc754c6
LH
7303 p_slot = mte_parent_slot(mas->node);
7304 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
7305 parent = mte_parent(mas->node);
7306 slots = ma_slots(parent, p_type);
7307 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7308
7309 /* Check prev/next parent slot for duplicate node entry */
7310
7311 for (i = 0; i < mt_slots[p_type]; i++) {
7312 node = mas_slot(mas, slots, i);
7313 if (i == p_slot) {
7314 if (node != mas->node)
7315 pr_err("parent %p[%u] does not have %p\n",
7316 parent, i, mas_mn(mas));
7317 MT_BUG_ON(mas->tree, node != mas->node);
7318 } else if (node == mas->node) {
7319 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7320 mas_mn(mas), parent, i, p_slot);
7321 MT_BUG_ON(mas->tree, node == mas->node);
7322 }
7323 }
7324}
7325
7326static void mas_validate_child_slot(struct ma_state *mas)
7327{
7328 enum maple_type type = mte_node_type(mas->node);
7329 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7330 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7331 struct maple_enode *child;
7332 unsigned char i;
7333
7334 if (mte_is_leaf(mas->node))
7335 return;
7336
7337 for (i = 0; i < mt_slots[type]; i++) {
7338 child = mas_slot(mas, slots, i);
54a611b6 7339
e93fda5a
PZ
7340 if (!child) {
7341 pr_err("Non-leaf node lacks child at %p[%u]\n",
7342 mas_mn(mas), i);
7343 MT_BUG_ON(mas->tree, 1);
7344 }
54a611b6
LH
7345
7346 if (mte_parent_slot(child) != i) {
7347 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7348 mas_mn(mas), i, mte_to_node(child),
7349 mte_parent_slot(child));
7350 MT_BUG_ON(mas->tree, 1);
7351 }
7352
7353 if (mte_parent(child) != mte_to_node(mas->node)) {
7354 pr_err("child %p has parent %p not %p\n",
7355 mte_to_node(child), mte_parent(child),
7356 mte_to_node(mas->node));
7357 MT_BUG_ON(mas->tree, 1);
7358 }
e93fda5a
PZ
7359
7360 if (i < mt_pivots[type] && pivots[i] == mas->max)
7361 break;
54a611b6
LH
7362 }
7363}
7364
7365/*
33af39d0
PZ
7366 * Validate all pivots are within mas->min and mas->max, check metadata ends
7367 * where the maximum ends and ensure there is no slots or pivots set outside of
7368 * the end of the data.
54a611b6
LH
7369 */
7370static void mas_validate_limits(struct ma_state *mas)
7371{
7372 int i;
7373 unsigned long prev_piv = 0;
7374 enum maple_type type = mte_node_type(mas->node);
7375 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7376 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7377
54a611b6
LH
7378 for (i = 0; i < mt_slots[type]; i++) {
7379 unsigned long piv;
7380
7381 piv = mas_safe_pivot(mas, pivots, i, type);
7382
33af39d0
PZ
7383 if (!piv && (i != 0)) {
7384 pr_err("Missing node limit pivot at %p[%u]",
7385 mas_mn(mas), i);
7386 MAS_WARN_ON(mas, 1);
54a611b6
LH
7387 }
7388
7389 if (prev_piv > piv) {
7390 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7391 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7392 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7393 }
7394
7395 if (piv < mas->min) {
7396 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7397 piv, mas->min);
e6d6792a 7398 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7399 }
7400 if (piv > mas->max) {
7401 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7402 piv, mas->max);
e6d6792a 7403 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7404 }
7405 prev_piv = piv;
7406 if (piv == mas->max)
7407 break;
7408 }
33af39d0
PZ
7409
7410 if (mas_data_end(mas) != i) {
7411 pr_err("node%p: data_end %u != the last slot offset %u\n",
7412 mas_mn(mas), mas_data_end(mas), i);
7413 MT_BUG_ON(mas->tree, 1);
7414 }
7415
54a611b6
LH
7416 for (i += 1; i < mt_slots[type]; i++) {
7417 void *entry = mas_slot(mas, slots, i);
7418
7419 if (entry && (i != mt_slots[type] - 1)) {
7420 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7421 i, entry);
7422 MT_BUG_ON(mas->tree, entry != NULL);
7423 }
7424
7425 if (i < mt_pivots[type]) {
7426 unsigned long piv = pivots[i];
7427
7428 if (!piv)
7429 continue;
7430
7431 pr_err("%p[%u] should not have piv %lu\n",
7432 mas_mn(mas), i, piv);
e6d6792a 7433 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7434 }
7435 }
7436}
7437
7438static void mt_validate_nulls(struct maple_tree *mt)
7439{
7440 void *entry, *last = (void *)1;
7441 unsigned char offset = 0;
7442 void __rcu **slots;
7443 MA_STATE(mas, mt, 0, 0);
7444
7445 mas_start(&mas);
067311d3 7446 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
54a611b6
LH
7447 return;
7448
7449 while (!mte_is_leaf(mas.node))
7450 mas_descend(&mas);
7451
7452 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7453 do {
7454 entry = mas_slot(&mas, slots, offset);
7455 if (!last && !entry) {
7456 pr_err("Sequential nulls end at %p[%u]\n",
7457 mas_mn(&mas), offset);
7458 }
7459 MT_BUG_ON(mt, !last && !entry);
7460 last = entry;
7461 if (offset == mas_data_end(&mas)) {
7462 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
067311d3 7463 if (mas_is_overflow(&mas))
54a611b6
LH
7464 return;
7465 offset = 0;
7466 slots = ma_slots(mte_to_node(mas.node),
7467 mte_node_type(mas.node));
7468 } else {
7469 offset++;
7470 }
7471
067311d3 7472 } while (!mas_is_overflow(&mas));
54a611b6
LH
7473}
7474
7475/*
7476 * validate a maple tree by checking:
7477 * 1. The limits (pivots are within mas->min to mas->max)
7478 * 2. The gap is correctly set in the parents
7479 */
7480void mt_validate(struct maple_tree *mt)
7481{
7482 unsigned char end;
7483
7484 MA_STATE(mas, mt, 0, 0);
7485 rcu_read_lock();
7486 mas_start(&mas);
9a40d45c 7487 if (!mas_is_active(&mas))
54a611b6
LH
7488 goto done;
7489
a489539e
PZ
7490 while (!mte_is_leaf(mas.node))
7491 mas_descend(&mas);
7492
067311d3 7493 while (!mas_is_overflow(&mas)) {
e6d6792a 7494 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
a489539e
PZ
7495 end = mas_data_end(&mas);
7496 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7497 (mas.max != ULONG_MAX))) {
7498 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
54a611b6 7499 }
a489539e 7500
54a611b6 7501 mas_validate_parent_slot(&mas);
54a611b6 7502 mas_validate_limits(&mas);
a489539e 7503 mas_validate_child_slot(&mas);
54a611b6
LH
7504 if (mt_is_alloc(mt))
7505 mas_validate_gaps(&mas);
7506 mas_dfs_postorder(&mas, ULONG_MAX);
7507 }
7508 mt_validate_nulls(mt);
7509done:
7510 rcu_read_unlock();
7511
7512}
120b1162 7513EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7514
f0a1f866
LH
7515void mas_dump(const struct ma_state *mas)
7516{
7517 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
067311d3
LH
7518 switch (mas->status) {
7519 case ma_active:
7520 pr_err("(ma_active)");
7521 break;
7522 case ma_none:
7523 pr_err("(ma_none)");
7524 break;
7525 case ma_root:
7526 pr_err("(ma_root)");
7527 break;
7528 case ma_start:
7529 pr_err("(ma_start) ");
7530 break;
7531 case ma_pause:
7532 pr_err("(ma_pause) ");
7533 break;
7534 case ma_overflow:
7535 pr_err("(ma_overflow) ");
7536 break;
7537 case ma_underflow:
7538 pr_err("(ma_underflow) ");
7539 break;
7540 case ma_error:
7541 pr_err("(ma_error) ");
7542 break;
7543 }
7544
7545 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7546 mas->index, mas->last);
f0a1f866
LH
7547 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7548 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7549 if (mas->index > mas->last)
7550 pr_err("Check index & last\n");
7551}
7552EXPORT_SYMBOL_GPL(mas_dump);
7553
7554void mas_wr_dump(const struct ma_wr_state *wr_mas)
7555{
7556 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7557 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7558 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
0de56e38 7559 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
f0a1f866
LH
7560 wr_mas->end_piv);
7561}
7562EXPORT_SYMBOL_GPL(mas_wr_dump);
7563
54a611b6 7564#endif /* CONFIG_DEBUG_MAPLE_TREE */