bitmap: replace _reg_op(REG_OP_RELEASE) with bitmap_clear()
[linux-block.git] / lib / bitmap.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
1da177e4 5 */
c13656b9 6
1da177e4
LT
7#include <linux/bitmap.h>
8#include <linux/bitops.h>
c13656b9 9#include <linux/ctype.h>
e829c2e4 10#include <linux/device.h>
c13656b9
BG
11#include <linux/errno.h>
12#include <linux/export.h>
c42b65e3 13#include <linux/slab.h>
e371c481 14
7d7363e4
RD
15/**
16 * DOC: bitmap introduction
17 *
197d6c1d 18 * bitmaps provide an array of bits, implemented using an
1da177e4
LT
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
1da177e4
LT
32 * The byte ordering of bitmaps is more natural on little
33 * endian architectures. See the big-endian headers
34 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
35 * for the best explanations of this ordering.
36 */
37
005f1700
KC
38bool __bitmap_equal(const unsigned long *bitmap1,
39 const unsigned long *bitmap2, unsigned int bits)
1da177e4 40{
5e068069 41 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
42 for (k = 0; k < lim; ++k)
43 if (bitmap1[k] != bitmap2[k])
005f1700 44 return false;
1da177e4
LT
45
46 if (bits % BITS_PER_LONG)
47 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700 48 return false;
1da177e4 49
005f1700 50 return true;
1da177e4
LT
51}
52EXPORT_SYMBOL(__bitmap_equal);
53
b9fa6442
TG
54bool __bitmap_or_equal(const unsigned long *bitmap1,
55 const unsigned long *bitmap2,
56 const unsigned long *bitmap3,
57 unsigned int bits)
58{
59 unsigned int k, lim = bits / BITS_PER_LONG;
60 unsigned long tmp;
61
62 for (k = 0; k < lim; ++k) {
63 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
64 return false;
65 }
66
67 if (!(bits % BITS_PER_LONG))
68 return true;
69
70 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
71 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
72}
73
3d6684f4 74void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 75{
ca1250bb 76 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
77 for (k = 0; k < lim; ++k)
78 dst[k] = ~src[k];
1da177e4
LT
79}
80EXPORT_SYMBOL(__bitmap_complement);
81
72fd4a35 82/**
1da177e4 83 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
84 * @dst : destination bitmap
85 * @src : source bitmap
86 * @shift : shift by this many bits
2fbad299 87 * @nbits : bitmap size, in bits
1da177e4
LT
88 *
89 * Shifting right (dividing) means moving bits in the MS -> LS bit
90 * direction. Zeros are fed into the vacated MS positions and the
91 * LS bits shifted off the bottom are lost.
92 */
2fbad299
RV
93void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
94 unsigned shift, unsigned nbits)
1da177e4 95{
cfac1d08 96 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 97 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 98 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
99 for (k = 0; off + k < lim; ++k) {
100 unsigned long upper, lower;
101
102 /*
103 * If shift is not word aligned, take lower rem bits of
104 * word above and make them the top rem bits of result.
105 */
106 if (!rem || off + k + 1 >= lim)
107 upper = 0;
108 else {
109 upper = src[off + k + 1];
cfac1d08 110 if (off + k + 1 == lim - 1)
1da177e4 111 upper &= mask;
9d8a6b2a 112 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
113 }
114 lower = src[off + k];
cfac1d08 115 if (off + k == lim - 1)
1da177e4 116 lower &= mask;
9d8a6b2a
RV
117 lower >>= rem;
118 dst[k] = lower | upper;
1da177e4
LT
119 }
120 if (off)
121 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
122}
123EXPORT_SYMBOL(__bitmap_shift_right);
124
125
72fd4a35 126/**
1da177e4 127 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
128 * @dst : destination bitmap
129 * @src : source bitmap
130 * @shift : shift by this many bits
dba94c25 131 * @nbits : bitmap size, in bits
1da177e4
LT
132 *
133 * Shifting left (multiplying) means moving bits in the LS -> MS
134 * direction. Zeros are fed into the vacated LS bit positions
135 * and those MS bits shifted off the top are lost.
136 */
137
dba94c25
RV
138void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
139 unsigned int shift, unsigned int nbits)
1da177e4 140{
dba94c25 141 int k;
7f590657 142 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 143 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
144 for (k = lim - off - 1; k >= 0; --k) {
145 unsigned long upper, lower;
146
147 /*
148 * If shift is not word aligned, take upper rem bits of
149 * word below and make them the bottom rem bits of result.
150 */
151 if (rem && k > 0)
6d874eca 152 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
153 else
154 lower = 0;
7f590657 155 upper = src[k] << rem;
6d874eca 156 dst[k + off] = lower | upper;
1da177e4
LT
157 }
158 if (off)
159 memset(dst, 0, off*sizeof(unsigned long));
160}
161EXPORT_SYMBOL(__bitmap_shift_left);
162
20927671
SB
163/**
164 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
165 * @dst: destination bitmap, might overlap with src
166 * @src: source bitmap
167 * @first: start bit of region to be removed
168 * @cut: number of bits to remove
169 * @nbits: bitmap size, in bits
170 *
171 * Set the n-th bit of @dst iff the n-th bit of @src is set and
172 * n is less than @first, or the m-th bit of @src is set for any
173 * m such that @first <= n < nbits, and m = n + @cut.
174 *
175 * In pictures, example for a big-endian 32-bit architecture:
176 *
4642289b 177 * The @src bitmap is::
20927671 178 *
4642289b
MCC
179 * 31 63
180 * | |
181 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
182 * | | | |
183 * 16 14 0 32
20927671 184 *
4642289b
MCC
185 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
186 *
187 * 31 63
188 * | |
189 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
190 * | | |
191 * 14 (bit 17 0 32
192 * from @src)
20927671
SB
193 *
194 * Note that @dst and @src might overlap partially or entirely.
195 *
196 * This is implemented in the obvious way, with a shift and carry
197 * step for each moved bit. Optimisation is left as an exercise
198 * for the compiler.
199 */
200void bitmap_cut(unsigned long *dst, const unsigned long *src,
201 unsigned int first, unsigned int cut, unsigned int nbits)
202{
203 unsigned int len = BITS_TO_LONGS(nbits);
204 unsigned long keep = 0, carry;
205 int i;
206
20927671
SB
207 if (first % BITS_PER_LONG) {
208 keep = src[first / BITS_PER_LONG] &
209 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
210 }
211
5959f829
SB
212 memmove(dst, src, len * sizeof(*dst));
213
20927671
SB
214 while (cut--) {
215 for (i = first / BITS_PER_LONG; i < len; i++) {
216 if (i < len - 1)
217 carry = dst[i + 1] & 1UL;
218 else
219 carry = 0;
220
221 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
222 }
223 }
224
225 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
226 dst[first / BITS_PER_LONG] |= keep;
227}
228EXPORT_SYMBOL(bitmap_cut);
229
e2863a78 230bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 231 const unsigned long *bitmap2, unsigned int bits)
1da177e4 232{
2f9305eb 233 unsigned int k;
7e5f97d1 234 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 235 unsigned long result = 0;
1da177e4 236
7e5f97d1 237 for (k = 0; k < lim; k++)
f4b0373b 238 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
239 if (bits % BITS_PER_LONG)
240 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
241 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 242 return result != 0;
1da177e4
LT
243}
244EXPORT_SYMBOL(__bitmap_and);
245
246void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 247 const unsigned long *bitmap2, unsigned int bits)
1da177e4 248{
2f9305eb
RV
249 unsigned int k;
250 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
251
252 for (k = 0; k < nr; k++)
253 dst[k] = bitmap1[k] | bitmap2[k];
254}
255EXPORT_SYMBOL(__bitmap_or);
256
257void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 258 const unsigned long *bitmap2, unsigned int bits)
1da177e4 259{
2f9305eb
RV
260 unsigned int k;
261 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
262
263 for (k = 0; k < nr; k++)
264 dst[k] = bitmap1[k] ^ bitmap2[k];
265}
266EXPORT_SYMBOL(__bitmap_xor);
267
e2863a78 268bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 269 const unsigned long *bitmap2, unsigned int bits)
1da177e4 270{
2f9305eb 271 unsigned int k;
74e76531 272 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 273 unsigned long result = 0;
1da177e4 274
74e76531 275 for (k = 0; k < lim; k++)
f4b0373b 276 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
277 if (bits % BITS_PER_LONG)
278 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
279 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 280 return result != 0;
1da177e4
LT
281}
282EXPORT_SYMBOL(__bitmap_andnot);
283
30544ed5
AS
284void __bitmap_replace(unsigned long *dst,
285 const unsigned long *old, const unsigned long *new,
286 const unsigned long *mask, unsigned int nbits)
287{
288 unsigned int k;
289 unsigned int nr = BITS_TO_LONGS(nbits);
290
291 for (k = 0; k < nr; k++)
292 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
293}
294EXPORT_SYMBOL(__bitmap_replace);
295
005f1700
KC
296bool __bitmap_intersects(const unsigned long *bitmap1,
297 const unsigned long *bitmap2, unsigned int bits)
1da177e4 298{
6dfe9799 299 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
300 for (k = 0; k < lim; ++k)
301 if (bitmap1[k] & bitmap2[k])
005f1700 302 return true;
1da177e4
LT
303
304 if (bits % BITS_PER_LONG)
305 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700
KC
306 return true;
307 return false;
1da177e4
LT
308}
309EXPORT_SYMBOL(__bitmap_intersects);
310
005f1700
KC
311bool __bitmap_subset(const unsigned long *bitmap1,
312 const unsigned long *bitmap2, unsigned int bits)
1da177e4 313{
5be20213 314 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
315 for (k = 0; k < lim; ++k)
316 if (bitmap1[k] & ~bitmap2[k])
005f1700 317 return false;
1da177e4
LT
318
319 if (bits % BITS_PER_LONG)
320 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700
KC
321 return false;
322 return true;
1da177e4
LT
323}
324EXPORT_SYMBOL(__bitmap_subset);
325
24291caf
YN
326#define BITMAP_WEIGHT(FETCH, bits) \
327({ \
328 unsigned int __bits = (bits), idx, w = 0; \
329 \
330 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \
331 w += hweight_long(FETCH); \
332 \
333 if (__bits % BITS_PER_LONG) \
334 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \
335 \
336 w; \
337})
338
4e23eeeb 339unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 340{
24291caf 341 return BITMAP_WEIGHT(bitmap[idx], bits);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(__bitmap_weight);
344
24291caf
YN
345unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
346 const unsigned long *bitmap2, unsigned int bits)
347{
348 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
349}
350EXPORT_SYMBOL(__bitmap_weight_and);
351
e5af323c 352void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
353{
354 unsigned long *p = map + BIT_WORD(start);
fb5ac542 355 const unsigned int size = start + len;
c1a2a962
AM
356 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
357 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
358
fb5ac542 359 while (len - bits_to_set >= 0) {
c1a2a962 360 *p |= mask_to_set;
fb5ac542 361 len -= bits_to_set;
c1a2a962
AM
362 bits_to_set = BITS_PER_LONG;
363 mask_to_set = ~0UL;
364 p++;
365 }
fb5ac542 366 if (len) {
c1a2a962
AM
367 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
368 *p |= mask_to_set;
369 }
370}
e5af323c 371EXPORT_SYMBOL(__bitmap_set);
c1a2a962 372
e5af323c 373void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
374{
375 unsigned long *p = map + BIT_WORD(start);
154f5e38 376 const unsigned int size = start + len;
c1a2a962
AM
377 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
378 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
379
154f5e38 380 while (len - bits_to_clear >= 0) {
c1a2a962 381 *p &= ~mask_to_clear;
154f5e38 382 len -= bits_to_clear;
c1a2a962
AM
383 bits_to_clear = BITS_PER_LONG;
384 mask_to_clear = ~0UL;
385 p++;
386 }
154f5e38 387 if (len) {
c1a2a962
AM
388 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
389 *p &= ~mask_to_clear;
390 }
391}
e5af323c 392EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 393
5e19b013
MN
394/**
395 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
396 * @map: The address to base the search on
397 * @size: The bitmap size in bits
398 * @start: The bitnumber to start searching at
399 * @nr: The number of zeroed bits we're looking for
400 * @align_mask: Alignment mask for zero area
5e19b013 401 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
402 *
403 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
404 * the bit offset of all zero areas this function finds plus @align_offset
405 * is multiple of that power of 2.
c1a2a962 406 */
5e19b013
MN
407unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
408 unsigned long size,
409 unsigned long start,
410 unsigned int nr,
411 unsigned long align_mask,
412 unsigned long align_offset)
c1a2a962
AM
413{
414 unsigned long index, end, i;
415again:
416 index = find_next_zero_bit(map, size, start);
417
418 /* Align allocation */
5e19b013 419 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
420
421 end = index + nr;
422 if (end > size)
423 return end;
424 i = find_next_bit(map, end, index);
425 if (i < end) {
426 start = i + 1;
427 goto again;
428 }
429 return index;
430}
5e19b013 431EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 432
72fd4a35 433/**
9a86e2ba 434 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 435 * @buf: pointer to a bitmap
df1d80a9
RV
436 * @pos: a bit position in @buf (0 <= @pos < @nbits)
437 * @nbits: number of valid bit positions in @buf
fb5eeeee 438 *
df1d80a9 439 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 440 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 441 * is not a valid bit position, map to -1.
fb5eeeee
PJ
442 *
443 * If for example, just bits 4 through 7 are set in @buf, then @pos
444 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 445 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
446 * gets mapped to (returns) @ord value 3 in this example, that means
447 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
448 *
449 * The bit positions 0 through @bits are valid positions in @buf.
450 */
df1d80a9 451static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 452{
df1d80a9 453 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 454 return -1;
fb5eeeee 455
70a1cb10 456 return bitmap_weight(buf, pos);
fb5eeeee
PJ
457}
458
fb5eeeee
PJ
459/**
460 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 461 * @dst: remapped result
96b7f341 462 * @src: subset to be remapped
fb5eeeee
PJ
463 * @old: defines domain of map
464 * @new: defines range of map
9814ec13 465 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
466 *
467 * Let @old and @new define a mapping of bit positions, such that
468 * whatever position is held by the n-th set bit in @old is mapped
469 * to the n-th set bit in @new. In the more general case, allowing
470 * for the possibility that the weight 'w' of @new is less than the
471 * weight of @old, map the position of the n-th set bit in @old to
472 * the position of the m-th set bit in @new, where m == n % w.
473 *
96b7f341
PJ
474 * If either of the @old and @new bitmaps are empty, or if @src and
475 * @dst point to the same location, then this routine copies @src
476 * to @dst.
fb5eeeee 477 *
96b7f341 478 * The positions of unset bits in @old are mapped to themselves
8ed13a76 479 * (the identity map).
fb5eeeee
PJ
480 *
481 * Apply the above specified mapping to @src, placing the result in
482 * @dst, clearing any bits previously set in @dst.
483 *
fb5eeeee
PJ
484 * For example, lets say that @old has bits 4 through 7 set, and
485 * @new has bits 12 through 15 set. This defines the mapping of bit
486 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
487 * bit positions unchanged. So if say @src comes into this routine
488 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
489 * 13 and 15 set.
fb5eeeee
PJ
490 */
491void bitmap_remap(unsigned long *dst, const unsigned long *src,
492 const unsigned long *old, const unsigned long *new,
9814ec13 493 unsigned int nbits)
fb5eeeee 494{
9814ec13 495 unsigned int oldbit, w;
fb5eeeee 496
fb5eeeee
PJ
497 if (dst == src) /* following doesn't handle inplace remaps */
498 return;
9814ec13 499 bitmap_zero(dst, nbits);
96b7f341 500
9814ec13
RV
501 w = bitmap_weight(new, nbits);
502 for_each_set_bit(oldbit, src, nbits) {
503 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 504
96b7f341
PJ
505 if (n < 0 || w == 0)
506 set_bit(oldbit, dst); /* identity map */
507 else
97848c10 508 set_bit(find_nth_bit(new, nbits, n % w), dst);
fb5eeeee
PJ
509 }
510}
cde3d0f8 511EXPORT_SYMBOL(bitmap_remap);
fb5eeeee
PJ
512
513/**
514 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
515 * @oldbit: bit position to be mapped
516 * @old: defines domain of map
517 * @new: defines range of map
518 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
519 *
520 * Let @old and @new define a mapping of bit positions, such that
521 * whatever position is held by the n-th set bit in @old is mapped
522 * to the n-th set bit in @new. In the more general case, allowing
523 * for the possibility that the weight 'w' of @new is less than the
524 * weight of @old, map the position of the n-th set bit in @old to
525 * the position of the m-th set bit in @new, where m == n % w.
526 *
96b7f341 527 * The positions of unset bits in @old are mapped to themselves
8ed13a76 528 * (the identity map).
fb5eeeee
PJ
529 *
530 * Apply the above specified mapping to bit position @oldbit, returning
531 * the new bit position.
532 *
533 * For example, lets say that @old has bits 4 through 7 set, and
534 * @new has bits 12 through 15 set. This defines the mapping of bit
535 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
536 * bit positions unchanged. So if say @oldbit is 5, then this routine
537 * returns 13.
fb5eeeee
PJ
538 */
539int bitmap_bitremap(int oldbit, const unsigned long *old,
540 const unsigned long *new, int bits)
541{
96b7f341
PJ
542 int w = bitmap_weight(new, bits);
543 int n = bitmap_pos_to_ord(old, oldbit, bits);
544 if (n < 0 || w == 0)
545 return oldbit;
546 else
97848c10 547 return find_nth_bit(new, bits, n % w);
fb5eeeee 548}
cde3d0f8 549EXPORT_SYMBOL(bitmap_bitremap);
fb5eeeee 550
cde3d0f8 551#ifdef CONFIG_NUMA
7ea931c9
PJ
552/**
553 * bitmap_onto - translate one bitmap relative to another
554 * @dst: resulting translated bitmap
555 * @orig: original untranslated bitmap
556 * @relmap: bitmap relative to which translated
557 * @bits: number of bits in each of these bitmaps
558 *
559 * Set the n-th bit of @dst iff there exists some m such that the
560 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
561 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
562 * (If you understood the previous sentence the first time your
563 * read it, you're overqualified for your current job.)
564 *
565 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 566 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
567 * m-th set bit of @relmap }.
568 *
569 * Any set bits in @orig above bit number W, where W is the
570 * weight of (number of set bits in) @relmap are mapped nowhere.
571 * In particular, if for all bits m set in @orig, m >= W, then
572 * @dst will end up empty. In situations where the possibility
573 * of such an empty result is not desired, one way to avoid it is
574 * to use the bitmap_fold() operator, below, to first fold the
575 * @orig bitmap over itself so that all its set bits x are in the
576 * range 0 <= x < W. The bitmap_fold() operator does this by
577 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
578 *
579 * Example [1] for bitmap_onto():
580 * Let's say @relmap has bits 30-39 set, and @orig has bits
581 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
582 * @dst will have bits 31, 33, 35, 37 and 39 set.
583 *
584 * When bit 0 is set in @orig, it means turn on the bit in
585 * @dst corresponding to whatever is the first bit (if any)
586 * that is turned on in @relmap. Since bit 0 was off in the
587 * above example, we leave off that bit (bit 30) in @dst.
588 *
589 * When bit 1 is set in @orig (as in the above example), it
590 * means turn on the bit in @dst corresponding to whatever
591 * is the second bit that is turned on in @relmap. The second
592 * bit in @relmap that was turned on in the above example was
593 * bit 31, so we turned on bit 31 in @dst.
594 *
595 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
596 * because they were the 4th, 6th, 8th and 10th set bits
597 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
598 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
599 *
600 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 601 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
602 * turned on in @relmap. In the above example, there were
603 * only ten bits turned on in @relmap (30..39), so that bit
604 * 11 was set in @orig had no affect on @dst.
605 *
606 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8 607 * Let's say @relmap has these ten bits set::
608 *
7ea931c9 609 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 610 *
7ea931c9
PJ
611 * (for the curious, that's 40 plus the first ten terms of the
612 * Fibonacci sequence.)
613 *
614 * Further lets say we use the following code, invoking
615 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 616 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
617 *
618 * unsigned long *tmp; // a temporary bitmap's bits
619 *
620 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
621 * bitmap_onto(dst, tmp, relmap, bits);
622 *
623 * Then this table shows what various values of @dst would be, for
624 * various @orig's. I list the zero-based positions of each set bit.
625 * The tmp column shows the intermediate result, as computed by
626 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 627 * (the weight of @relmap):
7ea931c9 628 *
40bf19a8 629 * =============== ============== =================
7ea931c9
PJ
630 * @orig tmp @dst
631 * 0 0 40
632 * 1 1 41
633 * 9 9 95
40bf19a8 634 * 10 0 40 [#f1]_
7ea931c9
PJ
635 * 1 3 5 7 1 3 5 7 41 43 48 61
636 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
637 * 0 9 18 27 0 9 8 7 40 61 74 95
638 * 0 10 20 30 0 40
639 * 0 11 22 33 0 1 2 3 40 41 42 43
640 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8 641 * 78 102 211 1 2 8 41 42 74 [#f1]_
642 * =============== ============== =================
643 *
644 * .. [#f1]
7ea931c9 645 *
40bf19a8 646 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
647 * into tmp, then the @dst result would have been empty.
648 *
649 * If either of @orig or @relmap is empty (no set bits), then @dst
650 * will be returned empty.
651 *
652 * If (as explained above) the only set bits in @orig are in positions
653 * m where m >= W, (where W is the weight of @relmap) then @dst will
654 * once again be returned empty.
655 *
656 * All bits in @dst not set by the above rule are cleared.
657 */
658void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 659 const unsigned long *relmap, unsigned int bits)
7ea931c9 660{
eb569883 661 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
662
663 if (dst == orig) /* following doesn't handle inplace mappings */
664 return;
665 bitmap_zero(dst, bits);
666
667 /*
668 * The following code is a more efficient, but less
669 * obvious, equivalent to the loop:
670 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
97848c10 671 * n = find_nth_bit(orig, bits, m);
7ea931c9
PJ
672 * if (test_bit(m, orig))
673 * set_bit(n, dst);
674 * }
675 */
676
677 m = 0;
08564fb7 678 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
679 /* m == bitmap_pos_to_ord(relmap, n, bits) */
680 if (test_bit(m, orig))
681 set_bit(n, dst);
682 m++;
683 }
684}
7ea931c9
PJ
685
686/**
687 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
688 * @dst: resulting smaller bitmap
689 * @orig: original larger bitmap
690 * @sz: specified size
b26ad583 691 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
692 *
693 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
694 * Clear all other bits in @dst. See further the comment and
695 * Example [2] for bitmap_onto() for why and how to use this.
696 */
697void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 698 unsigned int sz, unsigned int nbits)
7ea931c9 699{
b26ad583 700 unsigned int oldbit;
7ea931c9
PJ
701
702 if (dst == orig) /* following doesn't handle inplace mappings */
703 return;
b26ad583 704 bitmap_zero(dst, nbits);
7ea931c9 705
b26ad583 706 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
707 set_bit(oldbit % sz, dst);
708}
cdc90a18 709#endif /* CONFIG_NUMA */
7ea931c9 710
3cf64b93
PJ
711/*
712 * Common code for bitmap_*_region() routines.
713 * bitmap: array of unsigned longs corresponding to the bitmap
714 * pos: the beginning of the region
715 * order: region size (log base 2 of number of bits)
716 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 717 *
3cf64b93
PJ
718 * Can set, verify and/or release a region of bits in a bitmap,
719 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 720 *
3cf64b93
PJ
721 * A region of a bitmap is a sequence of bits in the bitmap, of
722 * some size '1 << order' (a power of two), aligned to that same
723 * '1 << order' power of two.
724 *
82bf9bdf
YN
725 * Return: 1 if REG_OP_ISFREE succeeds (region is all zero bits).
726 * 0 in all other cases and reg_ops.
1da177e4 727 */
3cf64b93
PJ
728
729enum {
730 REG_OP_ISFREE, /* true if region is all zero bits */
731 REG_OP_ALLOC, /* set all bits in region */
732 REG_OP_RELEASE, /* clear all bits in region */
733};
734
9279d328 735static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 736{
3cf64b93
PJ
737 int nbits_reg; /* number of bits in region */
738 int index; /* index first long of region in bitmap */
739 int offset; /* bit offset region in bitmap[index] */
740 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 741 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 742 unsigned long mask; /* bitmask for one long of region */
74373c6a 743 int i; /* scans bitmap by longs */
3cf64b93 744 int ret = 0; /* return value */
74373c6a 745
3cf64b93
PJ
746 /*
747 * Either nlongs_reg == 1 (for small orders that fit in one long)
748 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
749 */
750 nbits_reg = 1 << order;
751 index = pos / BITS_PER_LONG;
752 offset = pos - (index * BITS_PER_LONG);
753 nlongs_reg = BITS_TO_LONGS(nbits_reg);
754 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 755
3cf64b93
PJ
756 /*
757 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
758 * overflows if nbitsinlong == BITS_PER_LONG.
759 */
74373c6a 760 mask = (1UL << (nbitsinlong - 1));
1da177e4 761 mask += mask - 1;
3cf64b93 762 mask <<= offset;
1da177e4 763
3cf64b93
PJ
764 switch (reg_op) {
765 case REG_OP_ISFREE:
766 for (i = 0; i < nlongs_reg; i++) {
767 if (bitmap[index + i] & mask)
768 goto done;
769 }
770 ret = 1; /* all bits in region free (zero) */
771 break;
772
773 case REG_OP_ALLOC:
774 for (i = 0; i < nlongs_reg; i++)
775 bitmap[index + i] |= mask;
776 break;
777
778 case REG_OP_RELEASE:
779 for (i = 0; i < nlongs_reg; i++)
780 bitmap[index + i] &= ~mask;
781 break;
1da177e4 782 }
3cf64b93
PJ
783done:
784 return ret;
785}
786
787/**
788 * bitmap_find_free_region - find a contiguous aligned mem region
789 * @bitmap: array of unsigned longs corresponding to the bitmap
790 * @bits: number of bits in the bitmap
791 * @order: region size (log base 2 of number of bits) to find
792 *
793 * Find a region of free (zero) bits in a @bitmap of @bits bits and
794 * allocate them (set them to one). Only consider regions of length
795 * a power (@order) of two, aligned to that power of two, which
796 * makes the search algorithm much faster.
797 *
82bf9bdf 798 * Return: the bit offset in bitmap of the allocated region,
3cf64b93
PJ
799 * or -errno on failure.
800 */
9279d328 801int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 802{
9279d328 803 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 804
82bf9bdf 805 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
b085f969
YN
806 if (!bitmap_allocate_region(bitmap, pos, order))
807 return pos;
aa8e4fc6
LT
808 }
809 return -ENOMEM;
1da177e4
LT
810}
811EXPORT_SYMBOL(bitmap_find_free_region);
812
813/**
87e24802 814 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
815 * @bitmap: array of unsigned longs corresponding to the bitmap
816 * @pos: beginning of bit region to release
817 * @order: region size (log base 2 of number of bits) to release
1da177e4 818 *
72fd4a35 819 * This is the complement to __bitmap_find_free_region() and releases
1da177e4
LT
820 * the found region (by clearing it in the bitmap).
821 */
9279d328 822void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 823{
add00c76 824 bitmap_clear(bitmap, pos, BIT(order));
1da177e4
LT
825}
826EXPORT_SYMBOL(bitmap_release_region);
827
87e24802
PJ
828/**
829 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
830 * @bitmap: array of unsigned longs corresponding to the bitmap
831 * @pos: beginning of bit region to allocate
832 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
833 *
834 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 835 *
82bf9bdf 836 * Return: 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
837 * free (not all bits were zero).
838 */
9279d328 839int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 840{
eae5acbd
YN
841 unsigned int len = BIT(order);
842
3cf64b93
PJ
843 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
844 return -EBUSY;
eae5acbd
YN
845 bitmap_set(bitmap, pos, len);
846 return 0;
1da177e4
LT
847}
848EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b 849
c42b65e3
AS
850unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
851{
852 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
853 flags);
854}
855EXPORT_SYMBOL(bitmap_alloc);
856
857unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
858{
859 return bitmap_alloc(nbits, flags | __GFP_ZERO);
860}
861EXPORT_SYMBOL(bitmap_zalloc);
862
7529cc7f
TT
863unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
864{
865 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
866 flags, node);
867}
868EXPORT_SYMBOL(bitmap_alloc_node);
869
870unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
871{
872 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
873}
874EXPORT_SYMBOL(bitmap_zalloc_node);
875
c42b65e3
AS
876void bitmap_free(const unsigned long *bitmap)
877{
878 kfree(bitmap);
879}
880EXPORT_SYMBOL(bitmap_free);
881
e829c2e4
BG
882static void devm_bitmap_free(void *data)
883{
884 unsigned long *bitmap = data;
885
886 bitmap_free(bitmap);
887}
888
889unsigned long *devm_bitmap_alloc(struct device *dev,
890 unsigned int nbits, gfp_t flags)
891{
892 unsigned long *bitmap;
893 int ret;
894
895 bitmap = bitmap_alloc(nbits, flags);
896 if (!bitmap)
897 return NULL;
898
899 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
900 if (ret)
901 return NULL;
902
903 return bitmap;
904}
905EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
906
907unsigned long *devm_bitmap_zalloc(struct device *dev,
908 unsigned int nbits, gfp_t flags)
909{
910 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
911}
912EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
913
c724f193
YN
914#if BITS_PER_LONG == 64
915/**
916 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
917 * @bitmap: array of unsigned longs, the destination bitmap
918 * @buf: array of u32 (in host byte order), the source bitmap
919 * @nbits: number of bits in @bitmap
920 */
ccf7a6d4 921void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
922{
923 unsigned int i, halfwords;
924
c724f193
YN
925 halfwords = DIV_ROUND_UP(nbits, 32);
926 for (i = 0; i < halfwords; i++) {
927 bitmap[i/2] = (unsigned long) buf[i];
928 if (++i < halfwords)
929 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
930 }
931
932 /* Clear tail bits in last word beyond nbits. */
933 if (nbits % BITS_PER_LONG)
934 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
935}
936EXPORT_SYMBOL(bitmap_from_arr32);
937
938/**
939 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
940 * @buf: array of u32 (in host byte order), the dest bitmap
941 * @bitmap: array of unsigned longs, the source bitmap
942 * @nbits: number of bits in @bitmap
943 */
944void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
945{
946 unsigned int i, halfwords;
947
c724f193
YN
948 halfwords = DIV_ROUND_UP(nbits, 32);
949 for (i = 0; i < halfwords; i++) {
950 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
951 if (++i < halfwords)
952 buf[i] = (u32) (bitmap[i/2] >> 32);
953 }
954
955 /* Clear tail bits in last element of array beyond nbits. */
956 if (nbits % BITS_PER_LONG)
957 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
958}
959EXPORT_SYMBOL(bitmap_to_arr32);
0a97953f
YN
960#endif
961
c1d2ba10 962#if BITS_PER_LONG == 32
0a97953f
YN
963/**
964 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
965 * @bitmap: array of unsigned longs, the destination bitmap
966 * @buf: array of u64 (in host byte order), the source bitmap
967 * @nbits: number of bits in @bitmap
968 */
969void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
970{
971 int n;
972
973 for (n = nbits; n > 0; n -= 64) {
974 u64 val = *buf++;
975
976 *bitmap++ = val;
977 if (n > 32)
978 *bitmap++ = val >> 32;
979 }
980
981 /*
982 * Clear tail bits in the last word beyond nbits.
983 *
984 * Negative index is OK because here we point to the word next
985 * to the last word of the bitmap, except for nbits == 0, which
986 * is tested implicitly.
987 */
988 if (nbits % BITS_PER_LONG)
989 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
990}
991EXPORT_SYMBOL(bitmap_from_arr64);
992
993/**
994 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
995 * @buf: array of u64 (in host byte order), the dest bitmap
996 * @bitmap: array of unsigned longs, the source bitmap
997 * @nbits: number of bits in @bitmap
998 */
999void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1000{
1001 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
c724f193 1002
0a97953f
YN
1003 while (bitmap < end) {
1004 *buf = *bitmap++;
1005 if (bitmap < end)
1006 *buf |= (u64)(*bitmap++) << 32;
1007 buf++;
1008 }
1009
1010 /* Clear tail bits in the last element of array beyond nbits. */
1011 if (nbits % 64)
428bc098 1012 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
0a97953f
YN
1013}
1014EXPORT_SYMBOL(bitmap_to_arr64);
c724f193 1015#endif