Merge tag 'bitmap-6.0-rc1' of https://github.com/norov/linux
[linux-block.git] / lib / bitmap.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
1da177e4 5 */
c13656b9 6
1da177e4
LT
7#include <linux/bitmap.h>
8#include <linux/bitops.h>
50af5ead 9#include <linux/bug.h>
c13656b9 10#include <linux/ctype.h>
e829c2e4 11#include <linux/device.h>
c13656b9
BG
12#include <linux/errno.h>
13#include <linux/export.h>
e52bc7c2 14#include <linux/kernel.h>
ce1091d4 15#include <linux/mm.h>
c42b65e3 16#include <linux/slab.h>
e52bc7c2 17#include <linux/string.h>
c13656b9 18#include <linux/thread_info.h>
13d4ea09 19#include <linux/uaccess.h>
5aaba363
SH
20
21#include <asm/page.h>
1da177e4 22
e371c481
YN
23#include "kstrtox.h"
24
7d7363e4
RD
25/**
26 * DOC: bitmap introduction
27 *
197d6c1d 28 * bitmaps provide an array of bits, implemented using an
1da177e4
LT
29 * array of unsigned longs. The number of valid bits in a
30 * given bitmap does _not_ need to be an exact multiple of
31 * BITS_PER_LONG.
32 *
33 * The possible unused bits in the last, partially used word
34 * of a bitmap are 'don't care'. The implementation makes
35 * no particular effort to keep them zero. It ensures that
36 * their value will not affect the results of any operation.
37 * The bitmap operations that return Boolean (bitmap_empty,
38 * for example) or scalar (bitmap_weight, for example) results
39 * carefully filter out these unused bits from impacting their
40 * results.
41 *
1da177e4
LT
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
46 */
47
005f1700
KC
48bool __bitmap_equal(const unsigned long *bitmap1,
49 const unsigned long *bitmap2, unsigned int bits)
1da177e4 50{
5e068069 51 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
52 for (k = 0; k < lim; ++k)
53 if (bitmap1[k] != bitmap2[k])
005f1700 54 return false;
1da177e4
LT
55
56 if (bits % BITS_PER_LONG)
57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700 58 return false;
1da177e4 59
005f1700 60 return true;
1da177e4
LT
61}
62EXPORT_SYMBOL(__bitmap_equal);
63
b9fa6442
TG
64bool __bitmap_or_equal(const unsigned long *bitmap1,
65 const unsigned long *bitmap2,
66 const unsigned long *bitmap3,
67 unsigned int bits)
68{
69 unsigned int k, lim = bits / BITS_PER_LONG;
70 unsigned long tmp;
71
72 for (k = 0; k < lim; ++k) {
73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 return false;
75 }
76
77 if (!(bits % BITS_PER_LONG))
78 return true;
79
80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82}
83
3d6684f4 84void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 85{
ca1250bb 86 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
87 for (k = 0; k < lim; ++k)
88 dst[k] = ~src[k];
1da177e4
LT
89}
90EXPORT_SYMBOL(__bitmap_complement);
91
72fd4a35 92/**
1da177e4 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
94 * @dst : destination bitmap
95 * @src : source bitmap
96 * @shift : shift by this many bits
2fbad299 97 * @nbits : bitmap size, in bits
1da177e4
LT
98 *
99 * Shifting right (dividing) means moving bits in the MS -> LS bit
100 * direction. Zeros are fed into the vacated MS positions and the
101 * LS bits shifted off the bottom are lost.
102 */
2fbad299
RV
103void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 unsigned shift, unsigned nbits)
1da177e4 105{
cfac1d08 106 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
109 for (k = 0; off + k < lim; ++k) {
110 unsigned long upper, lower;
111
112 /*
113 * If shift is not word aligned, take lower rem bits of
114 * word above and make them the top rem bits of result.
115 */
116 if (!rem || off + k + 1 >= lim)
117 upper = 0;
118 else {
119 upper = src[off + k + 1];
cfac1d08 120 if (off + k + 1 == lim - 1)
1da177e4 121 upper &= mask;
9d8a6b2a 122 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
123 }
124 lower = src[off + k];
cfac1d08 125 if (off + k == lim - 1)
1da177e4 126 lower &= mask;
9d8a6b2a
RV
127 lower >>= rem;
128 dst[k] = lower | upper;
1da177e4
LT
129 }
130 if (off)
131 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132}
133EXPORT_SYMBOL(__bitmap_shift_right);
134
135
72fd4a35 136/**
1da177e4 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
138 * @dst : destination bitmap
139 * @src : source bitmap
140 * @shift : shift by this many bits
dba94c25 141 * @nbits : bitmap size, in bits
1da177e4
LT
142 *
143 * Shifting left (multiplying) means moving bits in the LS -> MS
144 * direction. Zeros are fed into the vacated LS bit positions
145 * and those MS bits shifted off the top are lost.
146 */
147
dba94c25
RV
148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 unsigned int shift, unsigned int nbits)
1da177e4 150{
dba94c25 151 int k;
7f590657 152 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
154 for (k = lim - off - 1; k >= 0; --k) {
155 unsigned long upper, lower;
156
157 /*
158 * If shift is not word aligned, take upper rem bits of
159 * word below and make them the bottom rem bits of result.
160 */
161 if (rem && k > 0)
6d874eca 162 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
163 else
164 lower = 0;
7f590657 165 upper = src[k] << rem;
6d874eca 166 dst[k + off] = lower | upper;
1da177e4
LT
167 }
168 if (off)
169 memset(dst, 0, off*sizeof(unsigned long));
170}
171EXPORT_SYMBOL(__bitmap_shift_left);
172
20927671
SB
173/**
174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175 * @dst: destination bitmap, might overlap with src
176 * @src: source bitmap
177 * @first: start bit of region to be removed
178 * @cut: number of bits to remove
179 * @nbits: bitmap size, in bits
180 *
181 * Set the n-th bit of @dst iff the n-th bit of @src is set and
182 * n is less than @first, or the m-th bit of @src is set for any
183 * m such that @first <= n < nbits, and m = n + @cut.
184 *
185 * In pictures, example for a big-endian 32-bit architecture:
186 *
4642289b 187 * The @src bitmap is::
20927671 188 *
4642289b
MCC
189 * 31 63
190 * | |
191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
192 * | | | |
193 * 16 14 0 32
20927671 194 *
4642289b
MCC
195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196 *
197 * 31 63
198 * | |
199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
200 * | | |
201 * 14 (bit 17 0 32
202 * from @src)
20927671
SB
203 *
204 * Note that @dst and @src might overlap partially or entirely.
205 *
206 * This is implemented in the obvious way, with a shift and carry
207 * step for each moved bit. Optimisation is left as an exercise
208 * for the compiler.
209 */
210void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 unsigned int first, unsigned int cut, unsigned int nbits)
212{
213 unsigned int len = BITS_TO_LONGS(nbits);
214 unsigned long keep = 0, carry;
215 int i;
216
20927671
SB
217 if (first % BITS_PER_LONG) {
218 keep = src[first / BITS_PER_LONG] &
219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 }
221
5959f829
SB
222 memmove(dst, src, len * sizeof(*dst));
223
20927671
SB
224 while (cut--) {
225 for (i = first / BITS_PER_LONG; i < len; i++) {
226 if (i < len - 1)
227 carry = dst[i + 1] & 1UL;
228 else
229 carry = 0;
230
231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 }
233 }
234
235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 dst[first / BITS_PER_LONG] |= keep;
237}
238EXPORT_SYMBOL(bitmap_cut);
239
e2863a78 240bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 241 const unsigned long *bitmap2, unsigned int bits)
1da177e4 242{
2f9305eb 243 unsigned int k;
7e5f97d1 244 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 245 unsigned long result = 0;
1da177e4 246
7e5f97d1 247 for (k = 0; k < lim; k++)
f4b0373b 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
249 if (bits % BITS_PER_LONG)
250 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 252 return result != 0;
1da177e4
LT
253}
254EXPORT_SYMBOL(__bitmap_and);
255
256void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 257 const unsigned long *bitmap2, unsigned int bits)
1da177e4 258{
2f9305eb
RV
259 unsigned int k;
260 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
261
262 for (k = 0; k < nr; k++)
263 dst[k] = bitmap1[k] | bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_or);
266
267void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 268 const unsigned long *bitmap2, unsigned int bits)
1da177e4 269{
2f9305eb
RV
270 unsigned int k;
271 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
272
273 for (k = 0; k < nr; k++)
274 dst[k] = bitmap1[k] ^ bitmap2[k];
275}
276EXPORT_SYMBOL(__bitmap_xor);
277
e2863a78 278bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 279 const unsigned long *bitmap2, unsigned int bits)
1da177e4 280{
2f9305eb 281 unsigned int k;
74e76531 282 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 283 unsigned long result = 0;
1da177e4 284
74e76531 285 for (k = 0; k < lim; k++)
f4b0373b 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
287 if (bits % BITS_PER_LONG)
288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 290 return result != 0;
1da177e4
LT
291}
292EXPORT_SYMBOL(__bitmap_andnot);
293
30544ed5
AS
294void __bitmap_replace(unsigned long *dst,
295 const unsigned long *old, const unsigned long *new,
296 const unsigned long *mask, unsigned int nbits)
297{
298 unsigned int k;
299 unsigned int nr = BITS_TO_LONGS(nbits);
300
301 for (k = 0; k < nr; k++)
302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303}
304EXPORT_SYMBOL(__bitmap_replace);
305
005f1700
KC
306bool __bitmap_intersects(const unsigned long *bitmap1,
307 const unsigned long *bitmap2, unsigned int bits)
1da177e4 308{
6dfe9799 309 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
310 for (k = 0; k < lim; ++k)
311 if (bitmap1[k] & bitmap2[k])
005f1700 312 return true;
1da177e4
LT
313
314 if (bits % BITS_PER_LONG)
315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700
KC
316 return true;
317 return false;
1da177e4
LT
318}
319EXPORT_SYMBOL(__bitmap_intersects);
320
005f1700
KC
321bool __bitmap_subset(const unsigned long *bitmap1,
322 const unsigned long *bitmap2, unsigned int bits)
1da177e4 323{
5be20213 324 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
325 for (k = 0; k < lim; ++k)
326 if (bitmap1[k] & ~bitmap2[k])
005f1700 327 return false;
1da177e4
LT
328
329 if (bits % BITS_PER_LONG)
330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
005f1700
KC
331 return false;
332 return true;
1da177e4
LT
333}
334EXPORT_SYMBOL(__bitmap_subset);
335
4e23eeeb 336unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 337{
4e23eeeb 338 unsigned int k, lim = bits/BITS_PER_LONG, w = 0;
1da177e4
LT
339
340 for (k = 0; k < lim; k++)
37d54111 341 w += hweight_long(bitmap[k]);
1da177e4
LT
342
343 if (bits % BITS_PER_LONG)
37d54111 344 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
345
346 return w;
347}
1da177e4
LT
348EXPORT_SYMBOL(__bitmap_weight);
349
e5af323c 350void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
351{
352 unsigned long *p = map + BIT_WORD(start);
fb5ac542 353 const unsigned int size = start + len;
c1a2a962
AM
354 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
355 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
356
fb5ac542 357 while (len - bits_to_set >= 0) {
c1a2a962 358 *p |= mask_to_set;
fb5ac542 359 len -= bits_to_set;
c1a2a962
AM
360 bits_to_set = BITS_PER_LONG;
361 mask_to_set = ~0UL;
362 p++;
363 }
fb5ac542 364 if (len) {
c1a2a962
AM
365 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
366 *p |= mask_to_set;
367 }
368}
e5af323c 369EXPORT_SYMBOL(__bitmap_set);
c1a2a962 370
e5af323c 371void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
372{
373 unsigned long *p = map + BIT_WORD(start);
154f5e38 374 const unsigned int size = start + len;
c1a2a962
AM
375 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
376 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
377
154f5e38 378 while (len - bits_to_clear >= 0) {
c1a2a962 379 *p &= ~mask_to_clear;
154f5e38 380 len -= bits_to_clear;
c1a2a962
AM
381 bits_to_clear = BITS_PER_LONG;
382 mask_to_clear = ~0UL;
383 p++;
384 }
154f5e38 385 if (len) {
c1a2a962
AM
386 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
387 *p &= ~mask_to_clear;
388 }
389}
e5af323c 390EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 391
5e19b013
MN
392/**
393 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
394 * @map: The address to base the search on
395 * @size: The bitmap size in bits
396 * @start: The bitnumber to start searching at
397 * @nr: The number of zeroed bits we're looking for
398 * @align_mask: Alignment mask for zero area
5e19b013 399 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
400 *
401 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
402 * the bit offset of all zero areas this function finds plus @align_offset
403 * is multiple of that power of 2.
c1a2a962 404 */
5e19b013
MN
405unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
406 unsigned long size,
407 unsigned long start,
408 unsigned int nr,
409 unsigned long align_mask,
410 unsigned long align_offset)
c1a2a962
AM
411{
412 unsigned long index, end, i;
413again:
414 index = find_next_zero_bit(map, size, start);
415
416 /* Align allocation */
5e19b013 417 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
418
419 end = index + nr;
420 if (end > size)
421 return end;
422 i = find_next_bit(map, end, index);
423 if (i < end) {
424 start = i + 1;
425 goto again;
426 }
427 return index;
428}
5e19b013 429EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 430
1da177e4 431/*
6d49e352 432 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
433 * second version by Paul Jackson, third by Joe Korty.
434 */
435
01a3ee2b 436/**
9a86e2ba 437 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
438 *
439 * @ubuf: pointer to user buffer containing string.
440 * @ulen: buffer size in bytes. If string is smaller than this
441 * then it must be terminated with a \0.
442 * @maskp: pointer to bitmap array that will contain result.
443 * @nmaskbits: size of bitmap, in bits.
01a3ee2b
RC
444 */
445int bitmap_parse_user(const char __user *ubuf,
446 unsigned int ulen, unsigned long *maskp,
447 int nmaskbits)
448{
e66eda06
YN
449 char *buf;
450 int ret;
451
452 buf = memdup_user_nul(ubuf, ulen);
453 if (IS_ERR(buf))
454 return PTR_ERR(buf);
455
2d626158 456 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
b9c321fd 457
e66eda06
YN
458 kfree(buf);
459 return ret;
01a3ee2b
RC
460}
461EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 462
5aaba363
SH
463/**
464 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
465 * @list: indicates whether the bitmap must be list
466 * @buf: page aligned buffer into which string is placed
467 * @maskp: pointer to bitmap to convert
468 * @nmaskbits: size of bitmap, in bits
469 *
470 * Output format is a comma-separated list of decimal numbers and
471 * ranges if list is specified or hex digits grouped into comma-separated
472 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 473 *
ce1091d4
RV
474 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
475 * area and that sufficient storage remains at @buf to accommodate the
476 * bitmap_print_to_pagebuf() output. Returns the number of characters
477 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
478 */
479int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
480 int nmaskbits)
481{
ce1091d4 482 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 483
8ec3d768
RV
484 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
485 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
486}
487EXPORT_SYMBOL(bitmap_print_to_pagebuf);
488
1fae5629
TT
489/**
490 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string
491 * @list: indicates whether the bitmap must be list
492 * true: print in decimal list format
493 * false: print in hexadecimal bitmask format
2699e514
RD
494 * @buf: buffer into which string is placed
495 * @maskp: pointer to bitmap to convert
496 * @nmaskbits: size of bitmap, in bits
497 * @off: in the string from which we are copying, We copy to @buf
498 * @count: the maximum number of bytes to print
1fae5629
TT
499 */
500static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
501 int nmaskbits, loff_t off, size_t count)
502{
503 const char *fmt = list ? "%*pbl\n" : "%*pb\n";
504 ssize_t size;
505 void *data;
506
507 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
508 if (!data)
509 return -ENOMEM;
510
511 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
512 kfree(data);
513
514 return size;
515}
516
517/**
518 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string
2699e514
RD
519 * @buf: buffer into which string is placed
520 * @maskp: pointer to bitmap to convert
521 * @nmaskbits: size of bitmap, in bits
522 * @off: in the string from which we are copying, We copy to @buf
523 * @count: the maximum number of bytes to print
1fae5629
TT
524 *
525 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
526 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
527 * bitmask and decimal list to userspace by sysfs ABI.
528 * Drivers might be using a normal attribute for this kind of ABIs. A
430cd4a2
MCC
529 * normal attribute typically has show entry as below::
530 *
531 * static ssize_t example_attribute_show(struct device *dev,
1fae5629 532 * struct device_attribute *attr, char *buf)
430cd4a2 533 * {
1fae5629
TT
534 * ...
535 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
430cd4a2
MCC
536 * }
537 *
1fae5629
TT
538 * show entry of attribute has no offset and count parameters and this
539 * means the file is limited to one page only.
540 * bitmap_print_to_pagebuf() API works terribly well for this kind of
430cd4a2
MCC
541 * normal attribute with buf parameter and without offset, count::
542 *
543 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
1fae5629 544 * int nmaskbits)
430cd4a2
MCC
545 * {
546 * }
547 *
1fae5629
TT
548 * The problem is once we have a large bitmap, we have a chance to get a
549 * bitmask or list more than one page. Especially for list, it could be
550 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
551 * It turns out bin_attribute is a way to break this limit. bin_attribute
430cd4a2
MCC
552 * has show entry as below::
553 *
554 * static ssize_t
555 * example_bin_attribute_show(struct file *filp, struct kobject *kobj,
1fae5629
TT
556 * struct bin_attribute *attr, char *buf,
557 * loff_t offset, size_t count)
430cd4a2 558 * {
1fae5629 559 * ...
430cd4a2
MCC
560 * }
561 *
1fae5629
TT
562 * With the new offset and count parameters, this makes sysfs ABI be able
563 * to support file size more than one page. For example, offset could be
564 * >= 4096.
565 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
566 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
567 * make those drivers be able to support large bitmask and list after they
568 * move to use bin_attribute. In result, we have to pass the corresponding
569 * parameters such as off, count from bin_attribute show entry to this API.
570 *
1fae5629
TT
571 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
572 * is similar with cpumap_print_to_pagebuf(), the difference is that
573 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
574 * the destination buffer is exactly one page and won't be more than one page.
575 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
576 * hand, mainly serves bin_attribute which doesn't work with exact one page,
577 * and it can break the size limit of converted decimal list and hexadecimal
578 * bitmask.
579 *
3b35f2a6
YN
580 * WARNING!
581 *
582 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
583 * It is intended to workaround sysfs limitations discussed above and should be
584 * used carefully in general case for the following reasons:
430cd4a2 585 *
3b35f2a6
YN
586 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
587 * - Memory complexity is O(nbits), comparing to O(1) for snprintf().
588 * - @off and @count are NOT offset and number of bits to print.
589 * - If printing part of bitmap as list, the resulting string is not a correct
590 * list representation of bitmap. Particularly, some bits within or out of
591 * related interval may be erroneously set or unset. The format of the string
592 * may be broken, so bitmap_parselist-like parser may fail parsing it.
593 * - If printing the whole bitmap as list by parts, user must ensure the order
594 * of calls of the function such that the offset is incremented linearly.
595 * - If printing the whole bitmap as list by parts, user must keep bitmap
596 * unchanged between the very first and very last call. Otherwise concatenated
597 * result may be incorrect, and format may be broken.
598 *
1fae5629
TT
599 * Returns the number of characters actually printed to @buf
600 */
601int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
602 int nmaskbits, loff_t off, size_t count)
603{
604 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
605}
606EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
607
608/**
609 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string
2699e514
RD
610 * @buf: buffer into which string is placed
611 * @maskp: pointer to bitmap to convert
612 * @nmaskbits: size of bitmap, in bits
613 * @off: in the string from which we are copying, We copy to @buf
614 * @count: the maximum number of bytes to print
1fae5629
TT
615 *
616 * Everything is same with the above bitmap_print_bitmask_to_buf() except
617 * the print format.
618 */
619int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
620 int nmaskbits, loff_t off, size_t count)
621{
622 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
623}
624EXPORT_SYMBOL(bitmap_print_list_to_buf);
625
e371c481
YN
626/*
627 * Region 9-38:4/10 describes the following bitmap structure:
9d7a3366
PG
628 * 0 9 12 18 38 N
629 * .........****......****......****..................
630 * ^ ^ ^ ^ ^
631 * start off group_len end nbits
e371c481
YN
632 */
633struct region {
634 unsigned int start;
635 unsigned int off;
636 unsigned int group_len;
637 unsigned int end;
9d7a3366 638 unsigned int nbits;
e371c481
YN
639};
640
f3c869ca 641static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
e371c481
YN
642{
643 unsigned int start;
644
e371c481
YN
645 for (start = r->start; start <= r->end; start += r->group_len)
646 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
e371c481
YN
647}
648
649static int bitmap_check_region(const struct region *r)
650{
651 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
652 return -EINVAL;
653
f3c869ca
PG
654 if (r->end >= r->nbits)
655 return -ERANGE;
656
e371c481
YN
657 return 0;
658}
659
2c4885d2
PG
660static const char *bitmap_getnum(const char *str, unsigned int *num,
661 unsigned int lastbit)
e371c481
YN
662{
663 unsigned long long n;
664 unsigned int len;
665
2c4885d2
PG
666 if (str[0] == 'N') {
667 *num = lastbit;
668 return str + 1;
669 }
670
e371c481
YN
671 len = _parse_integer(str, 10, &n);
672 if (!len)
673 return ERR_PTR(-EINVAL);
674 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
675 return ERR_PTR(-EOVERFLOW);
676
677 *num = n;
678 return str + len;
679}
680
681static inline bool end_of_str(char c)
682{
683 return c == '\0' || c == '\n';
684}
685
686static inline bool __end_of_region(char c)
687{
688 return isspace(c) || c == ',';
689}
690
691static inline bool end_of_region(char c)
692{
693 return __end_of_region(c) || end_of_str(c);
694}
695
696/*
20607434 697 * The format allows commas and whitespaces at the beginning
e371c481
YN
698 * of the region.
699 */
700static const char *bitmap_find_region(const char *str)
701{
702 while (__end_of_region(*str))
703 str++;
704
705 return end_of_str(*str) ? NULL : str;
706}
707
2d626158
YN
708static const char *bitmap_find_region_reverse(const char *start, const char *end)
709{
710 while (start <= end && __end_of_region(*end))
711 end--;
712
713 return end;
714}
715
e371c481
YN
716static const char *bitmap_parse_region(const char *str, struct region *r)
717{
2c4885d2
PG
718 unsigned int lastbit = r->nbits - 1;
719
b18def12
YN
720 if (!strncasecmp(str, "all", 3)) {
721 r->start = 0;
722 r->end = lastbit;
723 str += 3;
724
725 goto check_pattern;
726 }
727
2c4885d2 728 str = bitmap_getnum(str, &r->start, lastbit);
e371c481
YN
729 if (IS_ERR(str))
730 return str;
731
732 if (end_of_region(*str))
733 goto no_end;
734
735 if (*str != '-')
736 return ERR_PTR(-EINVAL);
737
2c4885d2 738 str = bitmap_getnum(str + 1, &r->end, lastbit);
e371c481
YN
739 if (IS_ERR(str))
740 return str;
741
b18def12 742check_pattern:
e371c481
YN
743 if (end_of_region(*str))
744 goto no_pattern;
745
746 if (*str != ':')
747 return ERR_PTR(-EINVAL);
748
2c4885d2 749 str = bitmap_getnum(str + 1, &r->off, lastbit);
e371c481
YN
750 if (IS_ERR(str))
751 return str;
752
753 if (*str != '/')
754 return ERR_PTR(-EINVAL);
755
2c4885d2 756 return bitmap_getnum(str + 1, &r->group_len, lastbit);
e371c481
YN
757
758no_end:
759 r->end = r->start;
760no_pattern:
761 r->off = r->end + 1;
762 r->group_len = r->end + 1;
763
764 return end_of_str(*str) ? NULL : str;
765}
766
1da177e4 767/**
e371c481
YN
768 * bitmap_parselist - convert list format ASCII string to bitmap
769 * @buf: read user string from this buffer; must be terminated
770 * with a \0 or \n.
6e1907ff 771 * @maskp: write resulting mask here
1da177e4
LT
772 * @nmaskbits: number of bits in mask to be written
773 *
774 * Input format is a comma-separated list of decimal numbers and
775 * ranges. Consecutively set bits are shown as two hyphen-separated
776 * decimal numbers, the smallest and largest bit numbers set in
777 * the range.
2d13e6ca
NC
778 * Optionally each range can be postfixed to denote that only parts of it
779 * should be set. The range will divided to groups of specific size.
780 * From each group will be used only defined amount of bits.
781 * Syntax: range:used_size/group_size
782 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
2c4885d2
PG
783 * The value 'N' can be used as a dynamically substituted token for the
784 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is
785 * dynamic, so if system changes cause the bitmap width to change, such
786 * as more cores in a CPU list, then any ranges using N will also change.
1da177e4 787 *
40bf19a8 788 * Returns: 0 on success, -errno on invalid input strings. Error values:
789 *
e371c481 790 * - ``-EINVAL``: wrong region format
40bf19a8 791 * - ``-EINVAL``: invalid character in string
792 * - ``-ERANGE``: bit number specified too large for mask
e371c481 793 * - ``-EOVERFLOW``: integer overflow in the input parameters
1da177e4 794 */
e371c481 795int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
1da177e4 796{
e371c481
YN
797 struct region r;
798 long ret;
1da177e4 799
9d7a3366
PG
800 r.nbits = nmaskbits;
801 bitmap_zero(maskp, r.nbits);
4b060420 802
e371c481
YN
803 while (buf) {
804 buf = bitmap_find_region(buf);
805 if (buf == NULL)
806 return 0;
2d13e6ca 807
e371c481
YN
808 buf = bitmap_parse_region(buf, &r);
809 if (IS_ERR(buf))
810 return PTR_ERR(buf);
2d13e6ca 811
e371c481
YN
812 ret = bitmap_check_region(&r);
813 if (ret)
814 return ret;
4b060420 815
f3c869ca 816 bitmap_set_region(&r, maskp);
e371c481 817 }
4b060420 818
1da177e4
LT
819 return 0;
820}
821EXPORT_SYMBOL(bitmap_parselist);
822
4b060420
MT
823
824/**
2699e514
RD
825 * bitmap_parselist_user() - convert user buffer's list format ASCII
826 * string to bitmap
4b060420
MT
827 *
828 * @ubuf: pointer to user buffer containing string.
829 * @ulen: buffer size in bytes. If string is smaller than this
830 * then it must be terminated with a \0.
831 * @maskp: pointer to bitmap array that will contain result.
832 * @nmaskbits: size of bitmap, in bits.
833 *
834 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
835 */
836int bitmap_parselist_user(const char __user *ubuf,
837 unsigned int ulen, unsigned long *maskp,
838 int nmaskbits)
839{
281327c9
YN
840 char *buf;
841 int ret;
842
843 buf = memdup_user_nul(ubuf, ulen);
844 if (IS_ERR(buf))
845 return PTR_ERR(buf);
846
847 ret = bitmap_parselist(buf, maskp, nmaskbits);
848
849 kfree(buf);
850 return ret;
4b060420
MT
851}
852EXPORT_SYMBOL(bitmap_parselist_user);
853
2d626158
YN
854static const char *bitmap_get_x32_reverse(const char *start,
855 const char *end, u32 *num)
856{
857 u32 ret = 0;
858 int c, i;
859
860 for (i = 0; i < 32; i += 4) {
861 c = hex_to_bin(*end--);
862 if (c < 0)
863 return ERR_PTR(-EINVAL);
864
865 ret |= c << i;
866
867 if (start > end || __end_of_region(*end))
868 goto out;
869 }
870
871 if (hex_to_bin(*end--) >= 0)
872 return ERR_PTR(-EOVERFLOW);
873out:
874 *num = ret;
875 return end;
876}
877
878/**
879 * bitmap_parse - convert an ASCII hex string into a bitmap.
880 * @start: pointer to buffer containing string.
881 * @buflen: buffer size in bytes. If string is smaller than this
882 * then it must be terminated with a \0 or \n. In that case,
883 * UINT_MAX may be provided instead of string length.
884 * @maskp: pointer to bitmap array that will contain result.
885 * @nmaskbits: size of bitmap, in bits.
886 *
887 * Commas group hex digits into chunks. Each chunk defines exactly 32
888 * bits of the resultant bitmask. No chunk may specify a value larger
889 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
890 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
891 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
892 * Leading, embedded and trailing whitespace accepted.
893 */
894int bitmap_parse(const char *start, unsigned int buflen,
895 unsigned long *maskp, int nmaskbits)
896{
897 const char *end = strnchrnul(start, buflen, '\n') - 1;
898 int chunks = BITS_TO_U32(nmaskbits);
899 u32 *bitmap = (u32 *)maskp;
900 int unset_bit;
81c4f4d9 901 int chunk;
2d626158 902
81c4f4d9 903 for (chunk = 0; ; chunk++) {
2d626158
YN
904 end = bitmap_find_region_reverse(start, end);
905 if (start > end)
906 break;
907
908 if (!chunks--)
909 return -EOVERFLOW;
910
81c4f4d9
AG
911#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
912 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
913#else
914 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
915#endif
2d626158
YN
916 if (IS_ERR(end))
917 return PTR_ERR(end);
918 }
919
920 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
921 if (unset_bit < nmaskbits) {
922 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
923 return 0;
924 }
925
926 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
927 return -EOVERFLOW;
928
929 return 0;
930}
931EXPORT_SYMBOL(bitmap_parse);
932
72fd4a35 933/**
9a86e2ba 934 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 935 * @buf: pointer to a bitmap
df1d80a9
RV
936 * @pos: a bit position in @buf (0 <= @pos < @nbits)
937 * @nbits: number of valid bit positions in @buf
fb5eeeee 938 *
df1d80a9 939 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 940 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 941 * is not a valid bit position, map to -1.
fb5eeeee
PJ
942 *
943 * If for example, just bits 4 through 7 are set in @buf, then @pos
944 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 945 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
946 * gets mapped to (returns) @ord value 3 in this example, that means
947 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
948 *
949 * The bit positions 0 through @bits are valid positions in @buf.
950 */
df1d80a9 951static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 952{
df1d80a9 953 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 954 return -1;
fb5eeeee 955
df1d80a9 956 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
957}
958
959/**
9a86e2ba 960 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
961 * @buf: pointer to bitmap
962 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 963 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
964 *
965 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
966 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
967 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
968 *
969 * If for example, just bits 4 through 7 are set in @buf, then @ord
970 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 971 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
972 * gets mapped to (returns) @pos value 7 in this example, that means
973 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
974 *
f6a1f5db 975 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 976 */
f6a1f5db 977unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 978{
f6a1f5db 979 unsigned int pos;
fb5eeeee 980
f6a1f5db
RV
981 for (pos = find_first_bit(buf, nbits);
982 pos < nbits && ord;
983 pos = find_next_bit(buf, nbits, pos + 1))
984 ord--;
fb5eeeee
PJ
985
986 return pos;
987}
988
989/**
990 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 991 * @dst: remapped result
96b7f341 992 * @src: subset to be remapped
fb5eeeee
PJ
993 * @old: defines domain of map
994 * @new: defines range of map
9814ec13 995 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
996 *
997 * Let @old and @new define a mapping of bit positions, such that
998 * whatever position is held by the n-th set bit in @old is mapped
999 * to the n-th set bit in @new. In the more general case, allowing
1000 * for the possibility that the weight 'w' of @new is less than the
1001 * weight of @old, map the position of the n-th set bit in @old to
1002 * the position of the m-th set bit in @new, where m == n % w.
1003 *
96b7f341
PJ
1004 * If either of the @old and @new bitmaps are empty, or if @src and
1005 * @dst point to the same location, then this routine copies @src
1006 * to @dst.
fb5eeeee 1007 *
96b7f341
PJ
1008 * The positions of unset bits in @old are mapped to themselves
1009 * (the identify map).
fb5eeeee
PJ
1010 *
1011 * Apply the above specified mapping to @src, placing the result in
1012 * @dst, clearing any bits previously set in @dst.
1013 *
fb5eeeee
PJ
1014 * For example, lets say that @old has bits 4 through 7 set, and
1015 * @new has bits 12 through 15 set. This defines the mapping of bit
1016 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
1017 * bit positions unchanged. So if say @src comes into this routine
1018 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1019 * 13 and 15 set.
fb5eeeee
PJ
1020 */
1021void bitmap_remap(unsigned long *dst, const unsigned long *src,
1022 const unsigned long *old, const unsigned long *new,
9814ec13 1023 unsigned int nbits)
fb5eeeee 1024{
9814ec13 1025 unsigned int oldbit, w;
fb5eeeee 1026
fb5eeeee
PJ
1027 if (dst == src) /* following doesn't handle inplace remaps */
1028 return;
9814ec13 1029 bitmap_zero(dst, nbits);
96b7f341 1030
9814ec13
RV
1031 w = bitmap_weight(new, nbits);
1032 for_each_set_bit(oldbit, src, nbits) {
1033 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 1034
96b7f341
PJ
1035 if (n < 0 || w == 0)
1036 set_bit(oldbit, dst); /* identity map */
1037 else
9814ec13 1038 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
1039 }
1040}
cde3d0f8 1041EXPORT_SYMBOL(bitmap_remap);
fb5eeeee
PJ
1042
1043/**
1044 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
1045 * @oldbit: bit position to be mapped
1046 * @old: defines domain of map
1047 * @new: defines range of map
1048 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
1049 *
1050 * Let @old and @new define a mapping of bit positions, such that
1051 * whatever position is held by the n-th set bit in @old is mapped
1052 * to the n-th set bit in @new. In the more general case, allowing
1053 * for the possibility that the weight 'w' of @new is less than the
1054 * weight of @old, map the position of the n-th set bit in @old to
1055 * the position of the m-th set bit in @new, where m == n % w.
1056 *
96b7f341
PJ
1057 * The positions of unset bits in @old are mapped to themselves
1058 * (the identify map).
fb5eeeee
PJ
1059 *
1060 * Apply the above specified mapping to bit position @oldbit, returning
1061 * the new bit position.
1062 *
1063 * For example, lets say that @old has bits 4 through 7 set, and
1064 * @new has bits 12 through 15 set. This defines the mapping of bit
1065 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
1066 * bit positions unchanged. So if say @oldbit is 5, then this routine
1067 * returns 13.
fb5eeeee
PJ
1068 */
1069int bitmap_bitremap(int oldbit, const unsigned long *old,
1070 const unsigned long *new, int bits)
1071{
96b7f341
PJ
1072 int w = bitmap_weight(new, bits);
1073 int n = bitmap_pos_to_ord(old, oldbit, bits);
1074 if (n < 0 || w == 0)
1075 return oldbit;
1076 else
1077 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 1078}
cde3d0f8 1079EXPORT_SYMBOL(bitmap_bitremap);
fb5eeeee 1080
cde3d0f8 1081#ifdef CONFIG_NUMA
7ea931c9
PJ
1082/**
1083 * bitmap_onto - translate one bitmap relative to another
1084 * @dst: resulting translated bitmap
1085 * @orig: original untranslated bitmap
1086 * @relmap: bitmap relative to which translated
1087 * @bits: number of bits in each of these bitmaps
1088 *
1089 * Set the n-th bit of @dst iff there exists some m such that the
1090 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1091 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1092 * (If you understood the previous sentence the first time your
1093 * read it, you're overqualified for your current job.)
1094 *
1095 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 1096 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
1097 * m-th set bit of @relmap }.
1098 *
1099 * Any set bits in @orig above bit number W, where W is the
1100 * weight of (number of set bits in) @relmap are mapped nowhere.
1101 * In particular, if for all bits m set in @orig, m >= W, then
1102 * @dst will end up empty. In situations where the possibility
1103 * of such an empty result is not desired, one way to avoid it is
1104 * to use the bitmap_fold() operator, below, to first fold the
1105 * @orig bitmap over itself so that all its set bits x are in the
1106 * range 0 <= x < W. The bitmap_fold() operator does this by
1107 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1108 *
1109 * Example [1] for bitmap_onto():
1110 * Let's say @relmap has bits 30-39 set, and @orig has bits
1111 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
1112 * @dst will have bits 31, 33, 35, 37 and 39 set.
1113 *
1114 * When bit 0 is set in @orig, it means turn on the bit in
1115 * @dst corresponding to whatever is the first bit (if any)
1116 * that is turned on in @relmap. Since bit 0 was off in the
1117 * above example, we leave off that bit (bit 30) in @dst.
1118 *
1119 * When bit 1 is set in @orig (as in the above example), it
1120 * means turn on the bit in @dst corresponding to whatever
1121 * is the second bit that is turned on in @relmap. The second
1122 * bit in @relmap that was turned on in the above example was
1123 * bit 31, so we turned on bit 31 in @dst.
1124 *
1125 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1126 * because they were the 4th, 6th, 8th and 10th set bits
1127 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
1128 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
1129 *
1130 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 1131 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
1132 * turned on in @relmap. In the above example, there were
1133 * only ten bits turned on in @relmap (30..39), so that bit
1134 * 11 was set in @orig had no affect on @dst.
1135 *
1136 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8 1137 * Let's say @relmap has these ten bits set::
1138 *
7ea931c9 1139 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 1140 *
7ea931c9
PJ
1141 * (for the curious, that's 40 plus the first ten terms of the
1142 * Fibonacci sequence.)
1143 *
1144 * Further lets say we use the following code, invoking
1145 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 1146 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
1147 *
1148 * unsigned long *tmp; // a temporary bitmap's bits
1149 *
1150 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1151 * bitmap_onto(dst, tmp, relmap, bits);
1152 *
1153 * Then this table shows what various values of @dst would be, for
1154 * various @orig's. I list the zero-based positions of each set bit.
1155 * The tmp column shows the intermediate result, as computed by
1156 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 1157 * (the weight of @relmap):
7ea931c9 1158 *
40bf19a8 1159 * =============== ============== =================
7ea931c9
PJ
1160 * @orig tmp @dst
1161 * 0 0 40
1162 * 1 1 41
1163 * 9 9 95
40bf19a8 1164 * 10 0 40 [#f1]_
7ea931c9
PJ
1165 * 1 3 5 7 1 3 5 7 41 43 48 61
1166 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1167 * 0 9 18 27 0 9 8 7 40 61 74 95
1168 * 0 10 20 30 0 40
1169 * 0 11 22 33 0 1 2 3 40 41 42 43
1170 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8 1171 * 78 102 211 1 2 8 41 42 74 [#f1]_
1172 * =============== ============== =================
1173 *
1174 * .. [#f1]
7ea931c9 1175 *
40bf19a8 1176 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
1177 * into tmp, then the @dst result would have been empty.
1178 *
1179 * If either of @orig or @relmap is empty (no set bits), then @dst
1180 * will be returned empty.
1181 *
1182 * If (as explained above) the only set bits in @orig are in positions
1183 * m where m >= W, (where W is the weight of @relmap) then @dst will
1184 * once again be returned empty.
1185 *
1186 * All bits in @dst not set by the above rule are cleared.
1187 */
1188void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 1189 const unsigned long *relmap, unsigned int bits)
7ea931c9 1190{
eb569883 1191 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
1192
1193 if (dst == orig) /* following doesn't handle inplace mappings */
1194 return;
1195 bitmap_zero(dst, bits);
1196
1197 /*
1198 * The following code is a more efficient, but less
1199 * obvious, equivalent to the loop:
1200 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1201 * n = bitmap_ord_to_pos(orig, m, bits);
1202 * if (test_bit(m, orig))
1203 * set_bit(n, dst);
1204 * }
1205 */
1206
1207 m = 0;
08564fb7 1208 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1209 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1210 if (test_bit(m, orig))
1211 set_bit(n, dst);
1212 m++;
1213 }
1214}
7ea931c9
PJ
1215
1216/**
1217 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1218 * @dst: resulting smaller bitmap
1219 * @orig: original larger bitmap
1220 * @sz: specified size
b26ad583 1221 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1222 *
1223 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1224 * Clear all other bits in @dst. See further the comment and
1225 * Example [2] for bitmap_onto() for why and how to use this.
1226 */
1227void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1228 unsigned int sz, unsigned int nbits)
7ea931c9 1229{
b26ad583 1230 unsigned int oldbit;
7ea931c9
PJ
1231
1232 if (dst == orig) /* following doesn't handle inplace mappings */
1233 return;
b26ad583 1234 bitmap_zero(dst, nbits);
7ea931c9 1235
b26ad583 1236 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1237 set_bit(oldbit % sz, dst);
1238}
cdc90a18 1239#endif /* CONFIG_NUMA */
7ea931c9 1240
3cf64b93
PJ
1241/*
1242 * Common code for bitmap_*_region() routines.
1243 * bitmap: array of unsigned longs corresponding to the bitmap
1244 * pos: the beginning of the region
1245 * order: region size (log base 2 of number of bits)
1246 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1247 *
3cf64b93
PJ
1248 * Can set, verify and/or release a region of bits in a bitmap,
1249 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1250 *
3cf64b93
PJ
1251 * A region of a bitmap is a sequence of bits in the bitmap, of
1252 * some size '1 << order' (a power of two), aligned to that same
1253 * '1 << order' power of two.
1254 *
1255 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1256 * Returns 0 in all other cases and reg_ops.
1da177e4 1257 */
3cf64b93
PJ
1258
1259enum {
1260 REG_OP_ISFREE, /* true if region is all zero bits */
1261 REG_OP_ALLOC, /* set all bits in region */
1262 REG_OP_RELEASE, /* clear all bits in region */
1263};
1264
9279d328 1265static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1266{
3cf64b93
PJ
1267 int nbits_reg; /* number of bits in region */
1268 int index; /* index first long of region in bitmap */
1269 int offset; /* bit offset region in bitmap[index] */
1270 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1271 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1272 unsigned long mask; /* bitmask for one long of region */
74373c6a 1273 int i; /* scans bitmap by longs */
3cf64b93 1274 int ret = 0; /* return value */
74373c6a 1275
3cf64b93
PJ
1276 /*
1277 * Either nlongs_reg == 1 (for small orders that fit in one long)
1278 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1279 */
1280 nbits_reg = 1 << order;
1281 index = pos / BITS_PER_LONG;
1282 offset = pos - (index * BITS_PER_LONG);
1283 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1284 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1285
3cf64b93
PJ
1286 /*
1287 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1288 * overflows if nbitsinlong == BITS_PER_LONG.
1289 */
74373c6a 1290 mask = (1UL << (nbitsinlong - 1));
1da177e4 1291 mask += mask - 1;
3cf64b93 1292 mask <<= offset;
1da177e4 1293
3cf64b93
PJ
1294 switch (reg_op) {
1295 case REG_OP_ISFREE:
1296 for (i = 0; i < nlongs_reg; i++) {
1297 if (bitmap[index + i] & mask)
1298 goto done;
1299 }
1300 ret = 1; /* all bits in region free (zero) */
1301 break;
1302
1303 case REG_OP_ALLOC:
1304 for (i = 0; i < nlongs_reg; i++)
1305 bitmap[index + i] |= mask;
1306 break;
1307
1308 case REG_OP_RELEASE:
1309 for (i = 0; i < nlongs_reg; i++)
1310 bitmap[index + i] &= ~mask;
1311 break;
1da177e4 1312 }
3cf64b93
PJ
1313done:
1314 return ret;
1315}
1316
1317/**
1318 * bitmap_find_free_region - find a contiguous aligned mem region
1319 * @bitmap: array of unsigned longs corresponding to the bitmap
1320 * @bits: number of bits in the bitmap
1321 * @order: region size (log base 2 of number of bits) to find
1322 *
1323 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1324 * allocate them (set them to one). Only consider regions of length
1325 * a power (@order) of two, aligned to that power of two, which
1326 * makes the search algorithm much faster.
1327 *
1328 * Return the bit offset in bitmap of the allocated region,
1329 * or -errno on failure.
1330 */
9279d328 1331int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1332{
9279d328 1333 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1334
9279d328 1335 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1336 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1337 continue;
1338 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1339 return pos;
1340 }
1341 return -ENOMEM;
1da177e4
LT
1342}
1343EXPORT_SYMBOL(bitmap_find_free_region);
1344
1345/**
87e24802 1346 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1347 * @bitmap: array of unsigned longs corresponding to the bitmap
1348 * @pos: beginning of bit region to release
1349 * @order: region size (log base 2 of number of bits) to release
1da177e4 1350 *
72fd4a35 1351 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1352 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1353 *
1354 * No return value.
1da177e4 1355 */
9279d328 1356void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1357{
3cf64b93 1358 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1359}
1360EXPORT_SYMBOL(bitmap_release_region);
1361
87e24802
PJ
1362/**
1363 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1364 * @bitmap: array of unsigned longs corresponding to the bitmap
1365 * @pos: beginning of bit region to allocate
1366 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1367 *
1368 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1369 *
6e1907ff 1370 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1371 * free (not all bits were zero).
1372 */
9279d328 1373int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1374{
3cf64b93
PJ
1375 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1376 return -EBUSY;
2ac521d3 1377 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1378}
1379EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1380
1381/**
1382 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1383 * @dst: destination buffer
1384 * @src: bitmap to copy
1385 * @nbits: number of bits in the bitmap
1386 *
1387 * Require nbits % BITS_PER_LONG == 0.
1388 */
e8f24278 1389#ifdef __BIG_ENDIAN
9b6c2d2e 1390void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1391{
9b6c2d2e 1392 unsigned int i;
ccbe329b
DV
1393
1394 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1395 if (BITS_PER_LONG == 64)
9b6c2d2e 1396 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1397 else
9b6c2d2e 1398 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1399 }
1400}
1401EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1402#endif
c724f193 1403
c42b65e3
AS
1404unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1405{
1406 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1407 flags);
1408}
1409EXPORT_SYMBOL(bitmap_alloc);
1410
1411unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1412{
1413 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1414}
1415EXPORT_SYMBOL(bitmap_zalloc);
1416
7529cc7f
TT
1417unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
1418{
1419 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1420 flags, node);
1421}
1422EXPORT_SYMBOL(bitmap_alloc_node);
1423
1424unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
1425{
1426 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
1427}
1428EXPORT_SYMBOL(bitmap_zalloc_node);
1429
c42b65e3
AS
1430void bitmap_free(const unsigned long *bitmap)
1431{
1432 kfree(bitmap);
1433}
1434EXPORT_SYMBOL(bitmap_free);
1435
e829c2e4
BG
1436static void devm_bitmap_free(void *data)
1437{
1438 unsigned long *bitmap = data;
1439
1440 bitmap_free(bitmap);
1441}
1442
1443unsigned long *devm_bitmap_alloc(struct device *dev,
1444 unsigned int nbits, gfp_t flags)
1445{
1446 unsigned long *bitmap;
1447 int ret;
1448
1449 bitmap = bitmap_alloc(nbits, flags);
1450 if (!bitmap)
1451 return NULL;
1452
1453 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1454 if (ret)
1455 return NULL;
1456
1457 return bitmap;
1458}
1459EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1460
1461unsigned long *devm_bitmap_zalloc(struct device *dev,
1462 unsigned int nbits, gfp_t flags)
1463{
1464 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1465}
1466EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1467
c724f193
YN
1468#if BITS_PER_LONG == 64
1469/**
1470 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1471 * @bitmap: array of unsigned longs, the destination bitmap
1472 * @buf: array of u32 (in host byte order), the source bitmap
1473 * @nbits: number of bits in @bitmap
1474 */
ccf7a6d4 1475void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1476{
1477 unsigned int i, halfwords;
1478
c724f193
YN
1479 halfwords = DIV_ROUND_UP(nbits, 32);
1480 for (i = 0; i < halfwords; i++) {
1481 bitmap[i/2] = (unsigned long) buf[i];
1482 if (++i < halfwords)
1483 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1484 }
1485
1486 /* Clear tail bits in last word beyond nbits. */
1487 if (nbits % BITS_PER_LONG)
1488 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1489}
1490EXPORT_SYMBOL(bitmap_from_arr32);
1491
1492/**
1493 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1494 * @buf: array of u32 (in host byte order), the dest bitmap
1495 * @bitmap: array of unsigned longs, the source bitmap
1496 * @nbits: number of bits in @bitmap
1497 */
1498void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1499{
1500 unsigned int i, halfwords;
1501
c724f193
YN
1502 halfwords = DIV_ROUND_UP(nbits, 32);
1503 for (i = 0; i < halfwords; i++) {
1504 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1505 if (++i < halfwords)
1506 buf[i] = (u32) (bitmap[i/2] >> 32);
1507 }
1508
1509 /* Clear tail bits in last element of array beyond nbits. */
1510 if (nbits % BITS_PER_LONG)
1511 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1512}
1513EXPORT_SYMBOL(bitmap_to_arr32);
0a97953f
YN
1514#endif
1515
1516#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
1517/**
1518 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
1519 * @bitmap: array of unsigned longs, the destination bitmap
1520 * @buf: array of u64 (in host byte order), the source bitmap
1521 * @nbits: number of bits in @bitmap
1522 */
1523void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
1524{
1525 int n;
1526
1527 for (n = nbits; n > 0; n -= 64) {
1528 u64 val = *buf++;
1529
1530 *bitmap++ = val;
1531 if (n > 32)
1532 *bitmap++ = val >> 32;
1533 }
1534
1535 /*
1536 * Clear tail bits in the last word beyond nbits.
1537 *
1538 * Negative index is OK because here we point to the word next
1539 * to the last word of the bitmap, except for nbits == 0, which
1540 * is tested implicitly.
1541 */
1542 if (nbits % BITS_PER_LONG)
1543 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
1544}
1545EXPORT_SYMBOL(bitmap_from_arr64);
1546
1547/**
1548 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
1549 * @buf: array of u64 (in host byte order), the dest bitmap
1550 * @bitmap: array of unsigned longs, the source bitmap
1551 * @nbits: number of bits in @bitmap
1552 */
1553void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1554{
1555 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
c724f193 1556
0a97953f
YN
1557 while (bitmap < end) {
1558 *buf = *bitmap++;
1559 if (bitmap < end)
1560 *buf |= (u64)(*bitmap++) << 32;
1561 buf++;
1562 }
1563
1564 /* Clear tail bits in the last element of array beyond nbits. */
1565 if (nbits % 64)
428bc098 1566 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
0a97953f
YN
1567}
1568EXPORT_SYMBOL(bitmap_to_arr64);
c724f193 1569#endif