lib: make bitmap_parselist_user() a wrapper on bitmap_parselist()
[linux-2.6-block.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
e52bc7c2 15#include <linux/kernel.h>
ce1091d4 16#include <linux/mm.h>
c42b65e3 17#include <linux/slab.h>
e52bc7c2 18#include <linux/string.h>
13d4ea09 19#include <linux/uaccess.h>
5aaba363
SH
20
21#include <asm/page.h>
1da177e4 22
7d7363e4
RD
23/**
24 * DOC: bitmap introduction
25 *
1da177e4
LT
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
1da177e4
LT
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
1da177e4 46int __bitmap_equal(const unsigned long *bitmap1,
5e068069 47 const unsigned long *bitmap2, unsigned int bits)
1da177e4 48{
5e068069 49 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59}
60EXPORT_SYMBOL(__bitmap_equal);
61
3d6684f4 62void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 63{
ca1250bb 64 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
65 for (k = 0; k < lim; ++k)
66 dst[k] = ~src[k];
1da177e4
LT
67}
68EXPORT_SYMBOL(__bitmap_complement);
69
72fd4a35 70/**
1da177e4 71 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
72 * @dst : destination bitmap
73 * @src : source bitmap
74 * @shift : shift by this many bits
2fbad299 75 * @nbits : bitmap size, in bits
1da177e4
LT
76 *
77 * Shifting right (dividing) means moving bits in the MS -> LS bit
78 * direction. Zeros are fed into the vacated MS positions and the
79 * LS bits shifted off the bottom are lost.
80 */
2fbad299
RV
81void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
82 unsigned shift, unsigned nbits)
1da177e4 83{
cfac1d08 84 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 85 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 86 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
87 for (k = 0; off + k < lim; ++k) {
88 unsigned long upper, lower;
89
90 /*
91 * If shift is not word aligned, take lower rem bits of
92 * word above and make them the top rem bits of result.
93 */
94 if (!rem || off + k + 1 >= lim)
95 upper = 0;
96 else {
97 upper = src[off + k + 1];
cfac1d08 98 if (off + k + 1 == lim - 1)
1da177e4 99 upper &= mask;
9d8a6b2a 100 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
101 }
102 lower = src[off + k];
cfac1d08 103 if (off + k == lim - 1)
1da177e4 104 lower &= mask;
9d8a6b2a
RV
105 lower >>= rem;
106 dst[k] = lower | upper;
1da177e4
LT
107 }
108 if (off)
109 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
110}
111EXPORT_SYMBOL(__bitmap_shift_right);
112
113
72fd4a35 114/**
1da177e4 115 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
116 * @dst : destination bitmap
117 * @src : source bitmap
118 * @shift : shift by this many bits
dba94c25 119 * @nbits : bitmap size, in bits
1da177e4
LT
120 *
121 * Shifting left (multiplying) means moving bits in the LS -> MS
122 * direction. Zeros are fed into the vacated LS bit positions
123 * and those MS bits shifted off the top are lost.
124 */
125
dba94c25
RV
126void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
127 unsigned int shift, unsigned int nbits)
1da177e4 128{
dba94c25 129 int k;
7f590657 130 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 131 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
132 for (k = lim - off - 1; k >= 0; --k) {
133 unsigned long upper, lower;
134
135 /*
136 * If shift is not word aligned, take upper rem bits of
137 * word below and make them the bottom rem bits of result.
138 */
139 if (rem && k > 0)
6d874eca 140 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
141 else
142 lower = 0;
7f590657 143 upper = src[k] << rem;
6d874eca 144 dst[k + off] = lower | upper;
1da177e4
LT
145 }
146 if (off)
147 memset(dst, 0, off*sizeof(unsigned long));
148}
149EXPORT_SYMBOL(__bitmap_shift_left);
150
f4b0373b 151int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 152 const unsigned long *bitmap2, unsigned int bits)
1da177e4 153{
2f9305eb 154 unsigned int k;
7e5f97d1 155 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 156 unsigned long result = 0;
1da177e4 157
7e5f97d1 158 for (k = 0; k < lim; k++)
f4b0373b 159 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
160 if (bits % BITS_PER_LONG)
161 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
162 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 163 return result != 0;
1da177e4
LT
164}
165EXPORT_SYMBOL(__bitmap_and);
166
167void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 168 const unsigned long *bitmap2, unsigned int bits)
1da177e4 169{
2f9305eb
RV
170 unsigned int k;
171 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
172
173 for (k = 0; k < nr; k++)
174 dst[k] = bitmap1[k] | bitmap2[k];
175}
176EXPORT_SYMBOL(__bitmap_or);
177
178void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 179 const unsigned long *bitmap2, unsigned int bits)
1da177e4 180{
2f9305eb
RV
181 unsigned int k;
182 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
183
184 for (k = 0; k < nr; k++)
185 dst[k] = bitmap1[k] ^ bitmap2[k];
186}
187EXPORT_SYMBOL(__bitmap_xor);
188
f4b0373b 189int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 190 const unsigned long *bitmap2, unsigned int bits)
1da177e4 191{
2f9305eb 192 unsigned int k;
74e76531 193 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 194 unsigned long result = 0;
1da177e4 195
74e76531 196 for (k = 0; k < lim; k++)
f4b0373b 197 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
198 if (bits % BITS_PER_LONG)
199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
200 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 201 return result != 0;
1da177e4
LT
202}
203EXPORT_SYMBOL(__bitmap_andnot);
204
205int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 206 const unsigned long *bitmap2, unsigned int bits)
1da177e4 207{
6dfe9799 208 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
209 for (k = 0; k < lim; ++k)
210 if (bitmap1[k] & bitmap2[k])
211 return 1;
212
213 if (bits % BITS_PER_LONG)
214 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
215 return 1;
216 return 0;
217}
218EXPORT_SYMBOL(__bitmap_intersects);
219
220int __bitmap_subset(const unsigned long *bitmap1,
5be20213 221 const unsigned long *bitmap2, unsigned int bits)
1da177e4 222{
5be20213 223 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
224 for (k = 0; k < lim; ++k)
225 if (bitmap1[k] & ~bitmap2[k])
226 return 0;
227
228 if (bits % BITS_PER_LONG)
229 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
230 return 0;
231 return 1;
232}
233EXPORT_SYMBOL(__bitmap_subset);
234
877d9f3b 235int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 236{
877d9f3b
RV
237 unsigned int k, lim = bits/BITS_PER_LONG;
238 int w = 0;
1da177e4
LT
239
240 for (k = 0; k < lim; k++)
37d54111 241 w += hweight_long(bitmap[k]);
1da177e4
LT
242
243 if (bits % BITS_PER_LONG)
37d54111 244 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
245
246 return w;
247}
1da177e4
LT
248EXPORT_SYMBOL(__bitmap_weight);
249
e5af323c 250void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
251{
252 unsigned long *p = map + BIT_WORD(start);
fb5ac542 253 const unsigned int size = start + len;
c1a2a962
AM
254 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
255 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
256
fb5ac542 257 while (len - bits_to_set >= 0) {
c1a2a962 258 *p |= mask_to_set;
fb5ac542 259 len -= bits_to_set;
c1a2a962
AM
260 bits_to_set = BITS_PER_LONG;
261 mask_to_set = ~0UL;
262 p++;
263 }
fb5ac542 264 if (len) {
c1a2a962
AM
265 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
266 *p |= mask_to_set;
267 }
268}
e5af323c 269EXPORT_SYMBOL(__bitmap_set);
c1a2a962 270
e5af323c 271void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
272{
273 unsigned long *p = map + BIT_WORD(start);
154f5e38 274 const unsigned int size = start + len;
c1a2a962
AM
275 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
276 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
277
154f5e38 278 while (len - bits_to_clear >= 0) {
c1a2a962 279 *p &= ~mask_to_clear;
154f5e38 280 len -= bits_to_clear;
c1a2a962
AM
281 bits_to_clear = BITS_PER_LONG;
282 mask_to_clear = ~0UL;
283 p++;
284 }
154f5e38 285 if (len) {
c1a2a962
AM
286 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
287 *p &= ~mask_to_clear;
288 }
289}
e5af323c 290EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 291
5e19b013
MN
292/**
293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
294 * @map: The address to base the search on
295 * @size: The bitmap size in bits
296 * @start: The bitnumber to start searching at
297 * @nr: The number of zeroed bits we're looking for
298 * @align_mask: Alignment mask for zero area
5e19b013 299 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
300 *
301 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
302 * the bit offset of all zero areas this function finds plus @align_offset
303 * is multiple of that power of 2.
c1a2a962 304 */
5e19b013
MN
305unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
306 unsigned long size,
307 unsigned long start,
308 unsigned int nr,
309 unsigned long align_mask,
310 unsigned long align_offset)
c1a2a962
AM
311{
312 unsigned long index, end, i;
313again:
314 index = find_next_zero_bit(map, size, start);
315
316 /* Align allocation */
5e19b013 317 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
318
319 end = index + nr;
320 if (end > size)
321 return end;
322 i = find_next_bit(map, end, index);
323 if (i < end) {
324 start = i + 1;
325 goto again;
326 }
327 return index;
328}
5e19b013 329EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 330
1da177e4 331/*
6d49e352 332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
333 * second version by Paul Jackson, third by Joe Korty.
334 */
335
336#define CHUNKSZ 32
337#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
338#define BASEDEC 10 /* fancier cpuset lists input in decimal */
339
1da177e4 340/**
01a3ee2b
RC
341 * __bitmap_parse - convert an ASCII hex string into a bitmap.
342 * @buf: pointer to buffer containing string.
343 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 344 * then it must be terminated with a \0.
01a3ee2b 345 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
346 * @maskp: pointer to bitmap array that will contain result.
347 * @nmaskbits: size of bitmap, in bits.
348 *
349 * Commas group hex digits into chunks. Each chunk defines exactly 32
350 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
352 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
353 * characters and for grouping errors such as "1,,5", ",44", "," and "".
354 * Leading and trailing whitespace accepted, but not embedded whitespace.
355 */
01a3ee2b
RC
356int __bitmap_parse(const char *buf, unsigned int buflen,
357 int is_user, unsigned long *maskp,
358 int nmaskbits)
1da177e4
LT
359{
360 int c, old_c, totaldigits, ndigits, nchunks, nbits;
361 u32 chunk;
b9c321fd 362 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
363
364 bitmap_zero(maskp, nmaskbits);
365
366 nchunks = nbits = totaldigits = c = 0;
367 do {
d21c3d4d
PX
368 chunk = 0;
369 ndigits = totaldigits;
1da177e4
LT
370
371 /* Get the next chunk of the bitmap */
01a3ee2b 372 while (buflen) {
1da177e4 373 old_c = c;
01a3ee2b
RC
374 if (is_user) {
375 if (__get_user(c, ubuf++))
376 return -EFAULT;
377 }
378 else
379 c = *buf++;
380 buflen--;
1da177e4
LT
381 if (isspace(c))
382 continue;
383
384 /*
385 * If the last character was a space and the current
386 * character isn't '\0', we've got embedded whitespace.
387 * This is a no-no, so throw an error.
388 */
389 if (totaldigits && c && isspace(old_c))
390 return -EINVAL;
391
392 /* A '\0' or a ',' signal the end of the chunk */
393 if (c == '\0' || c == ',')
394 break;
395
396 if (!isxdigit(c))
397 return -EINVAL;
398
399 /*
400 * Make sure there are at least 4 free bits in 'chunk'.
401 * If not, this hexdigit will overflow 'chunk', so
402 * throw an error.
403 */
404 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
405 return -EOVERFLOW;
406
66f1991b 407 chunk = (chunk << 4) | hex_to_bin(c);
d21c3d4d 408 totaldigits++;
1da177e4 409 }
d21c3d4d 410 if (ndigits == totaldigits)
1da177e4
LT
411 return -EINVAL;
412 if (nchunks == 0 && chunk == 0)
413 continue;
414
415 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
416 *maskp |= chunk;
417 nchunks++;
418 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
419 if (nbits > nmaskbits)
420 return -EOVERFLOW;
01a3ee2b 421 } while (buflen && c == ',');
1da177e4
LT
422
423 return 0;
424}
01a3ee2b
RC
425EXPORT_SYMBOL(__bitmap_parse);
426
427/**
9a86e2ba 428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
429 *
430 * @ubuf: pointer to user buffer containing string.
431 * @ulen: buffer size in bytes. If string is smaller than this
432 * then it must be terminated with a \0.
433 * @maskp: pointer to bitmap array that will contain result.
434 * @nmaskbits: size of bitmap, in bits.
435 *
436 * Wrapper for __bitmap_parse(), providing it with user buffer.
437 *
438 * We cannot have this as an inline function in bitmap.h because it needs
439 * linux/uaccess.h to get the access_ok() declaration and this causes
440 * cyclic dependencies.
441 */
442int bitmap_parse_user(const char __user *ubuf,
443 unsigned int ulen, unsigned long *maskp,
444 int nmaskbits)
445{
96d4f267 446 if (!access_ok(ubuf, ulen))
01a3ee2b 447 return -EFAULT;
b9c321fd
HS
448 return __bitmap_parse((const char __force *)ubuf,
449 ulen, 1, maskp, nmaskbits);
450
01a3ee2b
RC
451}
452EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 453
5aaba363
SH
454/**
455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
456 * @list: indicates whether the bitmap must be list
457 * @buf: page aligned buffer into which string is placed
458 * @maskp: pointer to bitmap to convert
459 * @nmaskbits: size of bitmap, in bits
460 *
461 * Output format is a comma-separated list of decimal numbers and
462 * ranges if list is specified or hex digits grouped into comma-separated
463 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 464 *
ce1091d4
RV
465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
466 * area and that sufficient storage remains at @buf to accommodate the
467 * bitmap_print_to_pagebuf() output. Returns the number of characters
468 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
469 */
470int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
471 int nmaskbits)
472{
ce1091d4 473 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 474
8ec3d768
RV
475 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
476 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
477}
478EXPORT_SYMBOL(bitmap_print_to_pagebuf);
479
1da177e4 480/**
4b060420 481 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 482 * @buf: read nul-terminated user string from this buffer
4b060420
MT
483 * @buflen: buffer size in bytes. If string is smaller than this
484 * then it must be terminated with a \0.
485 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 486 * @maskp: write resulting mask here
1da177e4
LT
487 * @nmaskbits: number of bits in mask to be written
488 *
489 * Input format is a comma-separated list of decimal numbers and
490 * ranges. Consecutively set bits are shown as two hyphen-separated
491 * decimal numbers, the smallest and largest bit numbers set in
492 * the range.
2d13e6ca
NC
493 * Optionally each range can be postfixed to denote that only parts of it
494 * should be set. The range will divided to groups of specific size.
495 * From each group will be used only defined amount of bits.
496 * Syntax: range:used_size/group_size
497 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 498 *
40bf19a8 499 * Returns: 0 on success, -errno on invalid input strings. Error values:
500 *
501 * - ``-EINVAL``: second number in range smaller than first
502 * - ``-EINVAL``: invalid character in string
503 * - ``-ERANGE``: bit number specified too large for mask
1da177e4 504 */
4b060420
MT
505static int __bitmap_parselist(const char *buf, unsigned int buflen,
506 int is_user, unsigned long *maskp,
507 int nmaskbits)
1da177e4 508{
2d13e6ca 509 unsigned int a, b, old_a, old_b;
0a5ce083 510 unsigned int group_size, used_size, off;
9bf98f16 511 int c, old_c, totaldigits, ndigits;
b9c321fd 512 const char __user __force *ubuf = (const char __user __force *)buf;
2d13e6ca 513 int at_start, in_range, in_partial_range;
1da177e4 514
4b060420 515 totaldigits = c = 0;
2d13e6ca
NC
516 old_a = old_b = 0;
517 group_size = used_size = 0;
1da177e4
LT
518 bitmap_zero(maskp, nmaskbits);
519 do {
2528a8b8 520 at_start = 1;
4b060420 521 in_range = 0;
2d13e6ca 522 in_partial_range = 0;
4b060420 523 a = b = 0;
9bf98f16 524 ndigits = totaldigits;
4b060420
MT
525
526 /* Get the next cpu# or a range of cpu#'s */
527 while (buflen) {
528 old_c = c;
529 if (is_user) {
530 if (__get_user(c, ubuf++))
531 return -EFAULT;
532 } else
533 c = *buf++;
534 buflen--;
535 if (isspace(c))
536 continue;
537
4b060420
MT
538 /* A '\0' or a ',' signal the end of a cpu# or range */
539 if (c == '\0' || c == ',')
540 break;
9bf98f16
PX
541 /*
542 * whitespaces between digits are not allowed,
543 * but it's ok if whitespaces are on head or tail.
544 * when old_c is whilespace,
545 * if totaldigits == ndigits, whitespace is on head.
546 * if whitespace is on tail, it should not run here.
547 * as c was ',' or '\0',
548 * the last code line has broken the current loop.
549 */
550 if ((totaldigits != ndigits) && isspace(old_c))
551 return -EINVAL;
4b060420 552
2d13e6ca
NC
553 if (c == '/') {
554 used_size = a;
555 at_start = 1;
556 in_range = 0;
557 a = b = 0;
558 continue;
559 }
560
561 if (c == ':') {
562 old_a = a;
563 old_b = b;
564 at_start = 1;
565 in_range = 0;
566 in_partial_range = 1;
567 a = b = 0;
568 continue;
569 }
570
4b060420 571 if (c == '-') {
2528a8b8 572 if (at_start || in_range)
4b060420
MT
573 return -EINVAL;
574 b = 0;
575 in_range = 1;
d9282cb6 576 at_start = 1;
4b060420
MT
577 continue;
578 }
579
580 if (!isdigit(c))
1da177e4 581 return -EINVAL;
4b060420
MT
582
583 b = b * 10 + (c - '0');
584 if (!in_range)
585 a = b;
2528a8b8 586 at_start = 0;
4b060420 587 totaldigits++;
1da177e4 588 }
9bf98f16
PX
589 if (ndigits == totaldigits)
590 continue;
2d13e6ca
NC
591 if (in_partial_range) {
592 group_size = a;
593 a = old_a;
594 b = old_b;
595 old_a = old_b = 0;
0a5ce083
YN
596 } else {
597 used_size = group_size = b - a + 1;
2d13e6ca 598 }
d9282cb6
PX
599 /* if no digit is after '-', it's wrong*/
600 if (at_start && in_range)
601 return -EINVAL;
8351760f 602 if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
1da177e4
LT
603 return -EINVAL;
604 if (b >= nmaskbits)
605 return -ERANGE;
9bf98f16 606 while (a <= b) {
0a5ce083
YN
607 off = min(b - a + 1, used_size);
608 bitmap_set(maskp, a, off);
609 a += group_size;
1da177e4 610 }
4b060420 611 } while (buflen && c == ',');
1da177e4
LT
612 return 0;
613}
4b060420
MT
614
615int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
616{
bc5be182
RV
617 char *nl = strchrnul(bp, '\n');
618 int len = nl - bp;
4b060420
MT
619
620 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
621}
1da177e4
LT
622EXPORT_SYMBOL(bitmap_parselist);
623
4b060420
MT
624
625/**
626 * bitmap_parselist_user()
627 *
628 * @ubuf: pointer to user buffer containing string.
629 * @ulen: buffer size in bytes. If string is smaller than this
630 * then it must be terminated with a \0.
631 * @maskp: pointer to bitmap array that will contain result.
632 * @nmaskbits: size of bitmap, in bits.
633 *
634 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
635 */
636int bitmap_parselist_user(const char __user *ubuf,
637 unsigned int ulen, unsigned long *maskp,
638 int nmaskbits)
639{
281327c9
YN
640 char *buf;
641 int ret;
642
643 buf = memdup_user_nul(ubuf, ulen);
644 if (IS_ERR(buf))
645 return PTR_ERR(buf);
646
647 ret = bitmap_parselist(buf, maskp, nmaskbits);
648
649 kfree(buf);
650 return ret;
4b060420
MT
651}
652EXPORT_SYMBOL(bitmap_parselist_user);
653
654
cdc90a18 655#ifdef CONFIG_NUMA
72fd4a35 656/**
9a86e2ba 657 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 658 * @buf: pointer to a bitmap
df1d80a9
RV
659 * @pos: a bit position in @buf (0 <= @pos < @nbits)
660 * @nbits: number of valid bit positions in @buf
fb5eeeee 661 *
df1d80a9 662 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 663 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 664 * is not a valid bit position, map to -1.
fb5eeeee
PJ
665 *
666 * If for example, just bits 4 through 7 are set in @buf, then @pos
667 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 668 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
669 * gets mapped to (returns) @ord value 3 in this example, that means
670 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
671 *
672 * The bit positions 0 through @bits are valid positions in @buf.
673 */
df1d80a9 674static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 675{
df1d80a9 676 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 677 return -1;
fb5eeeee 678
df1d80a9 679 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
680}
681
682/**
9a86e2ba 683 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
684 * @buf: pointer to bitmap
685 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 686 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
687 *
688 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
689 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
690 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
691 *
692 * If for example, just bits 4 through 7 are set in @buf, then @ord
693 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 694 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
695 * gets mapped to (returns) @pos value 7 in this example, that means
696 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
697 *
f6a1f5db 698 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 699 */
f6a1f5db 700unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 701{
f6a1f5db 702 unsigned int pos;
fb5eeeee 703
f6a1f5db
RV
704 for (pos = find_first_bit(buf, nbits);
705 pos < nbits && ord;
706 pos = find_next_bit(buf, nbits, pos + 1))
707 ord--;
fb5eeeee
PJ
708
709 return pos;
710}
711
712/**
713 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 714 * @dst: remapped result
96b7f341 715 * @src: subset to be remapped
fb5eeeee
PJ
716 * @old: defines domain of map
717 * @new: defines range of map
9814ec13 718 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
719 *
720 * Let @old and @new define a mapping of bit positions, such that
721 * whatever position is held by the n-th set bit in @old is mapped
722 * to the n-th set bit in @new. In the more general case, allowing
723 * for the possibility that the weight 'w' of @new is less than the
724 * weight of @old, map the position of the n-th set bit in @old to
725 * the position of the m-th set bit in @new, where m == n % w.
726 *
96b7f341
PJ
727 * If either of the @old and @new bitmaps are empty, or if @src and
728 * @dst point to the same location, then this routine copies @src
729 * to @dst.
fb5eeeee 730 *
96b7f341
PJ
731 * The positions of unset bits in @old are mapped to themselves
732 * (the identify map).
fb5eeeee
PJ
733 *
734 * Apply the above specified mapping to @src, placing the result in
735 * @dst, clearing any bits previously set in @dst.
736 *
fb5eeeee
PJ
737 * For example, lets say that @old has bits 4 through 7 set, and
738 * @new has bits 12 through 15 set. This defines the mapping of bit
739 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
740 * bit positions unchanged. So if say @src comes into this routine
741 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
742 * 13 and 15 set.
fb5eeeee
PJ
743 */
744void bitmap_remap(unsigned long *dst, const unsigned long *src,
745 const unsigned long *old, const unsigned long *new,
9814ec13 746 unsigned int nbits)
fb5eeeee 747{
9814ec13 748 unsigned int oldbit, w;
fb5eeeee 749
fb5eeeee
PJ
750 if (dst == src) /* following doesn't handle inplace remaps */
751 return;
9814ec13 752 bitmap_zero(dst, nbits);
96b7f341 753
9814ec13
RV
754 w = bitmap_weight(new, nbits);
755 for_each_set_bit(oldbit, src, nbits) {
756 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 757
96b7f341
PJ
758 if (n < 0 || w == 0)
759 set_bit(oldbit, dst); /* identity map */
760 else
9814ec13 761 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
762 }
763}
fb5eeeee
PJ
764
765/**
766 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
767 * @oldbit: bit position to be mapped
768 * @old: defines domain of map
769 * @new: defines range of map
770 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
771 *
772 * Let @old and @new define a mapping of bit positions, such that
773 * whatever position is held by the n-th set bit in @old is mapped
774 * to the n-th set bit in @new. In the more general case, allowing
775 * for the possibility that the weight 'w' of @new is less than the
776 * weight of @old, map the position of the n-th set bit in @old to
777 * the position of the m-th set bit in @new, where m == n % w.
778 *
96b7f341
PJ
779 * The positions of unset bits in @old are mapped to themselves
780 * (the identify map).
fb5eeeee
PJ
781 *
782 * Apply the above specified mapping to bit position @oldbit, returning
783 * the new bit position.
784 *
785 * For example, lets say that @old has bits 4 through 7 set, and
786 * @new has bits 12 through 15 set. This defines the mapping of bit
787 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
788 * bit positions unchanged. So if say @oldbit is 5, then this routine
789 * returns 13.
fb5eeeee
PJ
790 */
791int bitmap_bitremap(int oldbit, const unsigned long *old,
792 const unsigned long *new, int bits)
793{
96b7f341
PJ
794 int w = bitmap_weight(new, bits);
795 int n = bitmap_pos_to_ord(old, oldbit, bits);
796 if (n < 0 || w == 0)
797 return oldbit;
798 else
799 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 800}
fb5eeeee 801
7ea931c9
PJ
802/**
803 * bitmap_onto - translate one bitmap relative to another
804 * @dst: resulting translated bitmap
805 * @orig: original untranslated bitmap
806 * @relmap: bitmap relative to which translated
807 * @bits: number of bits in each of these bitmaps
808 *
809 * Set the n-th bit of @dst iff there exists some m such that the
810 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
811 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
812 * (If you understood the previous sentence the first time your
813 * read it, you're overqualified for your current job.)
814 *
815 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 816 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
817 * m-th set bit of @relmap }.
818 *
819 * Any set bits in @orig above bit number W, where W is the
820 * weight of (number of set bits in) @relmap are mapped nowhere.
821 * In particular, if for all bits m set in @orig, m >= W, then
822 * @dst will end up empty. In situations where the possibility
823 * of such an empty result is not desired, one way to avoid it is
824 * to use the bitmap_fold() operator, below, to first fold the
825 * @orig bitmap over itself so that all its set bits x are in the
826 * range 0 <= x < W. The bitmap_fold() operator does this by
827 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
828 *
829 * Example [1] for bitmap_onto():
830 * Let's say @relmap has bits 30-39 set, and @orig has bits
831 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
832 * @dst will have bits 31, 33, 35, 37 and 39 set.
833 *
834 * When bit 0 is set in @orig, it means turn on the bit in
835 * @dst corresponding to whatever is the first bit (if any)
836 * that is turned on in @relmap. Since bit 0 was off in the
837 * above example, we leave off that bit (bit 30) in @dst.
838 *
839 * When bit 1 is set in @orig (as in the above example), it
840 * means turn on the bit in @dst corresponding to whatever
841 * is the second bit that is turned on in @relmap. The second
842 * bit in @relmap that was turned on in the above example was
843 * bit 31, so we turned on bit 31 in @dst.
844 *
845 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
846 * because they were the 4th, 6th, 8th and 10th set bits
847 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
848 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
849 *
850 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 851 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
852 * turned on in @relmap. In the above example, there were
853 * only ten bits turned on in @relmap (30..39), so that bit
854 * 11 was set in @orig had no affect on @dst.
855 *
856 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8 857 * Let's say @relmap has these ten bits set::
858 *
7ea931c9 859 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 860 *
7ea931c9
PJ
861 * (for the curious, that's 40 plus the first ten terms of the
862 * Fibonacci sequence.)
863 *
864 * Further lets say we use the following code, invoking
865 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 866 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
867 *
868 * unsigned long *tmp; // a temporary bitmap's bits
869 *
870 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
871 * bitmap_onto(dst, tmp, relmap, bits);
872 *
873 * Then this table shows what various values of @dst would be, for
874 * various @orig's. I list the zero-based positions of each set bit.
875 * The tmp column shows the intermediate result, as computed by
876 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 877 * (the weight of @relmap):
7ea931c9 878 *
40bf19a8 879 * =============== ============== =================
7ea931c9
PJ
880 * @orig tmp @dst
881 * 0 0 40
882 * 1 1 41
883 * 9 9 95
40bf19a8 884 * 10 0 40 [#f1]_
7ea931c9
PJ
885 * 1 3 5 7 1 3 5 7 41 43 48 61
886 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
887 * 0 9 18 27 0 9 8 7 40 61 74 95
888 * 0 10 20 30 0 40
889 * 0 11 22 33 0 1 2 3 40 41 42 43
890 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8 891 * 78 102 211 1 2 8 41 42 74 [#f1]_
892 * =============== ============== =================
893 *
894 * .. [#f1]
7ea931c9 895 *
40bf19a8 896 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
897 * into tmp, then the @dst result would have been empty.
898 *
899 * If either of @orig or @relmap is empty (no set bits), then @dst
900 * will be returned empty.
901 *
902 * If (as explained above) the only set bits in @orig are in positions
903 * m where m >= W, (where W is the weight of @relmap) then @dst will
904 * once again be returned empty.
905 *
906 * All bits in @dst not set by the above rule are cleared.
907 */
908void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 909 const unsigned long *relmap, unsigned int bits)
7ea931c9 910{
eb569883 911 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
912
913 if (dst == orig) /* following doesn't handle inplace mappings */
914 return;
915 bitmap_zero(dst, bits);
916
917 /*
918 * The following code is a more efficient, but less
919 * obvious, equivalent to the loop:
920 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
921 * n = bitmap_ord_to_pos(orig, m, bits);
922 * if (test_bit(m, orig))
923 * set_bit(n, dst);
924 * }
925 */
926
927 m = 0;
08564fb7 928 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
929 /* m == bitmap_pos_to_ord(relmap, n, bits) */
930 if (test_bit(m, orig))
931 set_bit(n, dst);
932 m++;
933 }
934}
7ea931c9
PJ
935
936/**
937 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
938 * @dst: resulting smaller bitmap
939 * @orig: original larger bitmap
940 * @sz: specified size
b26ad583 941 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
942 *
943 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
944 * Clear all other bits in @dst. See further the comment and
945 * Example [2] for bitmap_onto() for why and how to use this.
946 */
947void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 948 unsigned int sz, unsigned int nbits)
7ea931c9 949{
b26ad583 950 unsigned int oldbit;
7ea931c9
PJ
951
952 if (dst == orig) /* following doesn't handle inplace mappings */
953 return;
b26ad583 954 bitmap_zero(dst, nbits);
7ea931c9 955
b26ad583 956 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
957 set_bit(oldbit % sz, dst);
958}
cdc90a18 959#endif /* CONFIG_NUMA */
7ea931c9 960
3cf64b93
PJ
961/*
962 * Common code for bitmap_*_region() routines.
963 * bitmap: array of unsigned longs corresponding to the bitmap
964 * pos: the beginning of the region
965 * order: region size (log base 2 of number of bits)
966 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 967 *
3cf64b93
PJ
968 * Can set, verify and/or release a region of bits in a bitmap,
969 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 970 *
3cf64b93
PJ
971 * A region of a bitmap is a sequence of bits in the bitmap, of
972 * some size '1 << order' (a power of two), aligned to that same
973 * '1 << order' power of two.
974 *
975 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
976 * Returns 0 in all other cases and reg_ops.
1da177e4 977 */
3cf64b93
PJ
978
979enum {
980 REG_OP_ISFREE, /* true if region is all zero bits */
981 REG_OP_ALLOC, /* set all bits in region */
982 REG_OP_RELEASE, /* clear all bits in region */
983};
984
9279d328 985static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 986{
3cf64b93
PJ
987 int nbits_reg; /* number of bits in region */
988 int index; /* index first long of region in bitmap */
989 int offset; /* bit offset region in bitmap[index] */
990 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 991 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 992 unsigned long mask; /* bitmask for one long of region */
74373c6a 993 int i; /* scans bitmap by longs */
3cf64b93 994 int ret = 0; /* return value */
74373c6a 995
3cf64b93
PJ
996 /*
997 * Either nlongs_reg == 1 (for small orders that fit in one long)
998 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
999 */
1000 nbits_reg = 1 << order;
1001 index = pos / BITS_PER_LONG;
1002 offset = pos - (index * BITS_PER_LONG);
1003 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1004 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1005
3cf64b93
PJ
1006 /*
1007 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1008 * overflows if nbitsinlong == BITS_PER_LONG.
1009 */
74373c6a 1010 mask = (1UL << (nbitsinlong - 1));
1da177e4 1011 mask += mask - 1;
3cf64b93 1012 mask <<= offset;
1da177e4 1013
3cf64b93
PJ
1014 switch (reg_op) {
1015 case REG_OP_ISFREE:
1016 for (i = 0; i < nlongs_reg; i++) {
1017 if (bitmap[index + i] & mask)
1018 goto done;
1019 }
1020 ret = 1; /* all bits in region free (zero) */
1021 break;
1022
1023 case REG_OP_ALLOC:
1024 for (i = 0; i < nlongs_reg; i++)
1025 bitmap[index + i] |= mask;
1026 break;
1027
1028 case REG_OP_RELEASE:
1029 for (i = 0; i < nlongs_reg; i++)
1030 bitmap[index + i] &= ~mask;
1031 break;
1da177e4 1032 }
3cf64b93
PJ
1033done:
1034 return ret;
1035}
1036
1037/**
1038 * bitmap_find_free_region - find a contiguous aligned mem region
1039 * @bitmap: array of unsigned longs corresponding to the bitmap
1040 * @bits: number of bits in the bitmap
1041 * @order: region size (log base 2 of number of bits) to find
1042 *
1043 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1044 * allocate them (set them to one). Only consider regions of length
1045 * a power (@order) of two, aligned to that power of two, which
1046 * makes the search algorithm much faster.
1047 *
1048 * Return the bit offset in bitmap of the allocated region,
1049 * or -errno on failure.
1050 */
9279d328 1051int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1052{
9279d328 1053 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1054
9279d328 1055 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1056 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1057 continue;
1058 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1059 return pos;
1060 }
1061 return -ENOMEM;
1da177e4
LT
1062}
1063EXPORT_SYMBOL(bitmap_find_free_region);
1064
1065/**
87e24802 1066 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1067 * @bitmap: array of unsigned longs corresponding to the bitmap
1068 * @pos: beginning of bit region to release
1069 * @order: region size (log base 2 of number of bits) to release
1da177e4 1070 *
72fd4a35 1071 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1072 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1073 *
1074 * No return value.
1da177e4 1075 */
9279d328 1076void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1077{
3cf64b93 1078 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1079}
1080EXPORT_SYMBOL(bitmap_release_region);
1081
87e24802
PJ
1082/**
1083 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1084 * @bitmap: array of unsigned longs corresponding to the bitmap
1085 * @pos: beginning of bit region to allocate
1086 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1087 *
1088 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1089 *
6e1907ff 1090 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1091 * free (not all bits were zero).
1092 */
9279d328 1093int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1094{
3cf64b93
PJ
1095 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1096 return -EBUSY;
2ac521d3 1097 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1098}
1099EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1100
1101/**
1102 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1103 * @dst: destination buffer
1104 * @src: bitmap to copy
1105 * @nbits: number of bits in the bitmap
1106 *
1107 * Require nbits % BITS_PER_LONG == 0.
1108 */
e8f24278 1109#ifdef __BIG_ENDIAN
9b6c2d2e 1110void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1111{
9b6c2d2e 1112 unsigned int i;
ccbe329b
DV
1113
1114 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1115 if (BITS_PER_LONG == 64)
9b6c2d2e 1116 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1117 else
9b6c2d2e 1118 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1119 }
1120}
1121EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1122#endif
c724f193 1123
c42b65e3
AS
1124unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1125{
1126 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1127 flags);
1128}
1129EXPORT_SYMBOL(bitmap_alloc);
1130
1131unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1132{
1133 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1134}
1135EXPORT_SYMBOL(bitmap_zalloc);
1136
1137void bitmap_free(const unsigned long *bitmap)
1138{
1139 kfree(bitmap);
1140}
1141EXPORT_SYMBOL(bitmap_free);
1142
c724f193
YN
1143#if BITS_PER_LONG == 64
1144/**
1145 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1146 * @bitmap: array of unsigned longs, the destination bitmap
1147 * @buf: array of u32 (in host byte order), the source bitmap
1148 * @nbits: number of bits in @bitmap
1149 */
ccf7a6d4 1150void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1151{
1152 unsigned int i, halfwords;
1153
c724f193
YN
1154 halfwords = DIV_ROUND_UP(nbits, 32);
1155 for (i = 0; i < halfwords; i++) {
1156 bitmap[i/2] = (unsigned long) buf[i];
1157 if (++i < halfwords)
1158 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1159 }
1160
1161 /* Clear tail bits in last word beyond nbits. */
1162 if (nbits % BITS_PER_LONG)
1163 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1164}
1165EXPORT_SYMBOL(bitmap_from_arr32);
1166
1167/**
1168 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1169 * @buf: array of u32 (in host byte order), the dest bitmap
1170 * @bitmap: array of unsigned longs, the source bitmap
1171 * @nbits: number of bits in @bitmap
1172 */
1173void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1174{
1175 unsigned int i, halfwords;
1176
c724f193
YN
1177 halfwords = DIV_ROUND_UP(nbits, 32);
1178 for (i = 0; i < halfwords; i++) {
1179 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1180 if (++i < halfwords)
1181 buf[i] = (u32) (bitmap[i/2] >> 32);
1182 }
1183
1184 /* Clear tail bits in last element of array beyond nbits. */
1185 if (nbits % BITS_PER_LONG)
1186 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1187}
1188EXPORT_SYMBOL(bitmap_to_arr32);
1189
1190#endif