Merge tag 'for-linux-6.12-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
4cb1ef64 32#include <linux/interrupt.h>
1da177e4
LT
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
1fa44eca 40#include <linux/hardirq.h>
46934023 41#include <linux/mempolicy.h>
341a5958 42#include <linux/freezer.h>
d5abe669 43#include <linux/debug_locks.h>
4e6045f1 44#include <linux/lockdep.h>
c34056a3 45#include <linux/idr.h>
29c91e99 46#include <linux/jhash.h>
42f8570f 47#include <linux/hashtable.h>
76af4d93 48#include <linux/rculist.h>
bce90380 49#include <linux/nodemask.h>
4c16bd32 50#include <linux/moduleparam.h>
3d1cb205 51#include <linux/uaccess.h>
c98a9805 52#include <linux/sched/isolation.h>
cd2440d6 53#include <linux/sched/debug.h>
62635ea8 54#include <linux/nmi.h>
940d71c6 55#include <linux/kvm_para.h>
aa6fde93 56#include <linux/delay.h>
2f34d733 57#include <linux/irq_work.h>
e22bee78 58
ea138446 59#include "workqueue_internal.h"
1da177e4 60
e563d0a7 61enum worker_pool_flags {
24647570
TH
62 /*
63 * worker_pool flags
bc2ae0f5 64 *
24647570 65 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 72 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 73 *
bc3a1afc 74 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 75 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 76 * worker_attach_to_pool() is in progress.
4cb1ef64
TH
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
bc2ae0f5 80 */
4cb1ef64
TH
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
24647570 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
1acd92d9 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
e563d0a7 85};
db7bccf4 86
e563d0a7 87enum worker_flags {
c8e55f36 88 /* worker flags */
c8e55f36
TH
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 91 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 95
a9ab775b
TH
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 98};
db7bccf4 99
c5f5b942
TH
100enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
86898fa6 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
c5f5b942
TH
103};
104
e563d0a7 105enum wq_internal_consts {
e34cdddb 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 107
29c91e99 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 110
e22bee78
TH
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
3233cdbd
TH
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
e22bee78
TH
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
8698a745 122 * all cpus. Give MIN_NICE.
e22bee78 123 */
8698a745
DY
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 126
31c89007 127 WQ_NAME_LEN = 32,
2a1b02bc 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
c8e55f36 129};
1da177e4 130
4cb1ef64
TH
131/*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137#define BH_WORKER_RESTARTS 10
138
1da177e4 139/*
4690c4ab
TH
140 * Structure fields follow one of the following exclusion rules.
141 *
e41e704b
TH
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
4690c4ab 144 *
e22bee78
TH
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
d565ed63 148 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 149 *
5797b1c1
TH
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
bdf8b9bf
TH
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
1258fae7 159 * A: wq_pool_attach_mutex protected.
822d8405 160 *
68e13a67 161 * PL: wq_pool_mutex protected.
5bcab335 162 *
24acfb71 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 164 *
5b95e1af
LJ
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 168 * RCU for reads.
5b95e1af 169 *
3c25a55d
LJ
170 * WQ: wq->mutex protected.
171 *
24acfb71 172 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 173 *
a045a272
TH
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
2e109a28 177 * MD: wq_mayday_lock protected.
cd2440d6
PM
178 *
179 * WD: Used internally by the watchdog.
1da177e4 180 */
1da177e4 181
2eaebdb3 182/* struct worker is defined in workqueue_internal.h */
c34056a3 183
bd7bdd43 184struct worker_pool {
a9b8a985 185 raw_spinlock_t lock; /* the pool lock */
d84ff051 186 int cpu; /* I: the associated cpu */
f3f90ad4 187 int node; /* I: the associated node ID */
9daf9e67 188 int id; /* I: pool ID */
bc8b50c2 189 unsigned int flags; /* L: flags */
bd7bdd43 190
82607adc 191 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 192 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 193
bc35f7ef
LJ
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
84f91c62 201
bd7bdd43 202 struct list_head worklist; /* L: list of pending works */
ea1abd61 203
5826cc8f
LJ
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
bd7bdd43 206
2c1f1a91 207 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 208 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 212
c5aa87bb 213 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
2607d7a6 217 struct worker *manager; /* L: purely informational */
92f9c5c4 218 struct list_head workers; /* A: attached workers */
e19e397a 219
7cda9aae 220 struct ida worker_ida; /* worker IDs for task name */
e19e397a 221
7a4e344c 222 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 225
29c91e99 226 /*
24acfb71 227 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
228 * from get_work_pool().
229 */
230 struct rcu_head rcu;
84f91c62 231};
8b03ae3c 232
725e8ec5
TH
233/*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237enum pool_workqueue_stats {
238 PWQ_STAT_STARTED, /* work items started execution */
239 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
244 PWQ_STAT_MAYDAY, /* maydays to rescuer */
245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
246
247 PWQ_NR_STATS,
248};
249
1da177e4 250/*
e9a8e01f 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
112202d9
TH
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
1da177e4 255 */
112202d9 256struct pool_workqueue {
bd7bdd43 257 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 258 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
259 int work_color; /* L: current color */
260 int flush_color; /* L: flushing color */
8864b4e5 261 int refcnt; /* L: reference count */
73f53c4a
TH
262 int nr_in_flight[WORK_NR_COLORS];
263 /* L: nr of in_flight works */
4c065dbc 264 bool plugged; /* L: execution suspended */
018f3a13
LJ
265
266 /*
267 * nr_active management and WORK_STRUCT_INACTIVE:
268 *
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
272 *
5797b1c1
TH
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 281 */
1e19ffc6 282 int nr_active; /* L: nr of active works */
f97a4a1a 283 struct list_head inactive_works; /* L: inactive works */
5797b1c1 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 286 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 287
725e8ec5
TH
288 u64 stats[PWQ_NR_STATS];
289
8864b4e5 290 /*
967b494e 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
967b494e 294 * grabbing wq->mutex.
8864b4e5 295 */
687a9aa5 296 struct kthread_work release_work;
8864b4e5 297 struct rcu_head rcu;
e9a8e01f 298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
1da177e4 299
73f53c4a
TH
300/*
301 * Structure used to wait for workqueue flush.
302 */
303struct wq_flusher {
3c25a55d
LJ
304 struct list_head list; /* WQ: list of flushers */
305 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
306 struct completion done; /* flush completion */
307};
308
226223ab
TH
309struct wq_device;
310
91ccc6e7
TH
311/*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
5797b1c1
TH
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
91ccc6e7
TH
323 */
324struct wq_node_nr_active {
5797b1c1
TH
325 int max; /* per-node max_active */
326 atomic_t nr; /* per-node nr_active */
327 raw_spinlock_t lock; /* nests inside pool locks */
328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
329};
330
1da177e4 331/*
c5aa87bb
TH
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
334 */
335struct workqueue_struct {
3c25a55d 336 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 337 struct list_head list; /* PR: list of all workqueues */
73f53c4a 338
3c25a55d
LJ
339 struct mutex mutex; /* protects this wq */
340 int work_color; /* WQ: current work color */
341 int flush_color; /* WQ: current flush color */
112202d9 342 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
343 struct wq_flusher *first_flusher; /* WQ: first flusher */
344 struct list_head flusher_queue; /* WQ: flush waiters */
345 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 346
2e109a28 347 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 348 struct worker *rescuer; /* MD: rescue worker */
e22bee78 349
87fc741e 350 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
351
352 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 353 int max_active; /* WO: max active works */
5797b1c1 354 int min_active; /* WO: min active works */
a045a272 355 int saved_max_active; /* WQ: saved max_active */
5797b1c1 356 int saved_min_active; /* WQ: saved min_active */
226223ab 357
5b95e1af 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 360
226223ab
TH
361#ifdef CONFIG_SYSFS
362 struct wq_device *wq_dev; /* I: for sysfs interface */
363#endif
4e6045f1 364#ifdef CONFIG_LOCKDEP
669de8bd
BVA
365 char *lock_name;
366 struct lock_class_key key;
4f022f43
MB
367 struct lockdep_map __lockdep_map;
368 struct lockdep_map *lockdep_map;
4e6045f1 369#endif
ecf6881f 370 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 371
e2dca7ad 372 /*
24acfb71
TG
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
2728fd2f
TH
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
c4c8f369 381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
383};
384
84193c07
TH
385/*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394};
395
1211f3b2
TH
396struct work_offq_data {
397 u32 pool_id;
86898fa6 398 u32 disable;
1211f3b2
TH
399 u32 flags;
400};
401
63c5484e 402static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
c7a40c49
TH
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
63c5484e 409};
bce90380 410
616db877
TH
411/*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 417 */
aa6fde93 418static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877 419module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
ccdec921
XY
420#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421static unsigned int wq_cpu_intensive_warning_thresh = 4;
422module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423#endif
616db877 424
cee22a15 425/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 426static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
427module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
863b710b 429static bool wq_online; /* can kworkers be created yet? */
c7a40c49
TH
430static bool wq_topo_initialized __read_mostly = false;
431
432static struct kmem_cache *pwq_cache;
433
434static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
3347fa09 436
fef59c9c 437/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
b2b1f933 438static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
4c16bd32 439
68e13a67 440static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 441static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 442static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
443/* wait for manager to go away */
444static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 445
e2dca7ad 446static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 447static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 448
8d84baf7
LJ
449/* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450static cpumask_var_t wq_online_cpumask;
451
99c621ef 452/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
453static cpumask_var_t wq_unbound_cpumask;
454
fe28f631
WL
455/* PL: user requested unbound cpumask via sysfs */
456static cpumask_var_t wq_requested_unbound_cpumask;
457
458/* PL: isolated cpumask to be excluded from unbound cpumask */
459static cpumask_var_t wq_isolated_cpumask;
460
ace3c549 461/* for further constrain wq_unbound_cpumask by cmdline parameter*/
462static struct cpumask wq_cmdline_cpumask __initdata;
463
ef557180
MG
464/* CPU where unbound work was last round robin scheduled from this CPU */
465static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 466
f303fccb
TH
467/*
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
471 */
472#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473static bool wq_debug_force_rr_cpu = true;
474#else
475static bool wq_debug_force_rr_cpu = false;
476#endif
477module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478
2f34d733 479/* to raise softirq for the BH worker pools on other CPUs */
b4722b85 480static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
2f34d733 481
4cb1ef64 482/* the BH worker pools */
b4722b85 483static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
4cb1ef64 484
7d19c5ce 485/* the per-cpu worker pools */
b4722b85 486static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 487
68e13a67 488static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 489
68e13a67 490/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
491static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
c5aa87bb 493/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
494static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
8a2b7538
TH
496/* I: attributes used when instantiating ordered pools on demand */
497static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
967b494e
TH
499/*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
68279f9c 504static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 505
68279f9c 506struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 507EXPORT_SYMBOL(system_wq);
68279f9c 508struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 509EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 510struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 511EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 512struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 513EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 514struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 515EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 516struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 517EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 518struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 519EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
4cb1ef64
TH
520struct workqueue_struct *system_bh_wq;
521EXPORT_SYMBOL_GPL(system_bh_wq);
522struct workqueue_struct *system_bh_highpri_wq;
523EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
d320c038 524
7d19c5ce 525static int worker_thread(void *__worker);
6ba94429 526static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 527static void show_pwq(struct pool_workqueue *pwq);
55df0933 528static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 529
97bd2347
TH
530#define CREATE_TRACE_POINTS
531#include <trace/events/workqueue.h>
532
68e13a67 533#define assert_rcu_or_pool_mutex() \
d355001f 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
f78f5b90 535 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 536 "RCU or wq_pool_mutex should be held")
5bcab335 537
5b95e1af 538#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
d355001f 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
f78f5b90
PM
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 542 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 543
4cb1ef64
TH
544#define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
f02ae73a
TH
549#define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 552 (pool)++)
4ce62e9e 553
17116969
TH
554/**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
611c92a0 557 * @pi: integer used for iteration
fa1b54e6 558 *
24acfb71 559 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
17116969 565 */
611c92a0
TH
566#define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 569 else
17116969 570
822d8405
TH
571/**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
822d8405
TH
574 * @pool: worker_pool to iterate workers of
575 *
1258fae7 576 * This must be called with wq_pool_attach_mutex.
822d8405
TH
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
da028469
LJ
581#define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
584 else
585
49e3cf44
TH
586/**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
76af4d93 590 *
24acfb71 591 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
49e3cf44
TH
597 */
598#define for_each_pwq(pwq, wq) \
49e9d1a9 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 600 lockdep_is_held(&(wq->mutex)))
f3421797 601
dc186ad7
TG
602#ifdef CONFIG_DEBUG_OBJECTS_WORK
603
f9e62f31 604static const struct debug_obj_descr work_debug_descr;
dc186ad7 605
99777288
SG
606static void *work_debug_hint(void *addr)
607{
608 return ((struct work_struct *) addr)->func;
609}
610
b9fdac7f
DC
611static bool work_is_static_object(void *addr)
612{
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616}
617
dc186ad7
TG
618/*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
02a982a6 622static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
623{
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
02a982a6 630 return true;
dc186ad7 631 default:
02a982a6 632 return false;
dc186ad7
TG
633 }
634}
635
dc186ad7
TG
636/*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
02a982a6 640static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
641{
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
02a982a6 648 return true;
dc186ad7 649 default:
02a982a6 650 return false;
dc186ad7
TG
651 }
652}
653
f9e62f31 654static const struct debug_obj_descr work_debug_descr = {
dc186ad7 655 .name = "work_struct",
99777288 656 .debug_hint = work_debug_hint,
b9fdac7f 657 .is_static_object = work_is_static_object,
dc186ad7 658 .fixup_init = work_fixup_init,
dc186ad7
TG
659 .fixup_free = work_fixup_free,
660};
661
662static inline void debug_work_activate(struct work_struct *work)
663{
664 debug_object_activate(work, &work_debug_descr);
665}
666
667static inline void debug_work_deactivate(struct work_struct *work)
668{
669 debug_object_deactivate(work, &work_debug_descr);
670}
671
672void __init_work(struct work_struct *work, int onstack)
673{
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678}
679EXPORT_SYMBOL_GPL(__init_work);
680
681void destroy_work_on_stack(struct work_struct *work)
682{
683 debug_object_free(work, &work_debug_descr);
684}
685EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
ea2e64f2
TG
687void destroy_delayed_work_on_stack(struct delayed_work *work)
688{
689 destroy_timer_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691}
692EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
dc186ad7
TG
694#else
695static inline void debug_work_activate(struct work_struct *work) { }
696static inline void debug_work_deactivate(struct work_struct *work) { }
697#endif
698
4e8b22bd 699/**
67dc8325 700 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
9daf9e67
TH
706static int worker_pool_assign_id(struct worker_pool *pool)
707{
708 int ret;
709
68e13a67 710 lockdep_assert_held(&wq_pool_mutex);
5bcab335 711
4e8b22bd
LB
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
229641a6 714 if (ret >= 0) {
e68035fb 715 pool->id = ret;
229641a6
TH
716 return 0;
717 }
fa1b54e6 718 return ret;
7c3eed5c
TH
719}
720
9f66cff2
TH
721static struct pool_workqueue __rcu **
722unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723{
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728}
729
730/* @cpu < 0 for dfl_pwq */
731static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732{
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736}
737
5797b1c1
TH
738/**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
746static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747{
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749}
750
73f53c4a
TH
751static unsigned int work_color_to_flags(int color)
752{
753 return color << WORK_STRUCT_COLOR_SHIFT;
754}
755
c4560c2c 756static int get_work_color(unsigned long work_data)
73f53c4a 757{
c4560c2c 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760}
761
762static int work_next_color(int color)
763{
764 return (color + 1) % WORK_NR_COLORS;
765}
1da177e4 766
456a78ee
TH
767static unsigned long pool_offq_flags(struct worker_pool *pool)
768{
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770}
771
14441960 772/*
112202d9
TH
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 775 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 776 *
afe928c1
TH
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
7a22ad75 780 *
112202d9 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 782 * corresponding to a work. Pool is available once the work has been
112202d9 783 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 784 * available only while the work item is queued.
14441960 785 */
bccdc1fa 786static inline void set_work_data(struct work_struct *work, unsigned long data)
365970a1 787{
6183c009 788 WARN_ON_ONCE(!work_pending(work));
bccdc1fa 789 atomic_long_set(&work->data, data | work_static(work));
7a22ad75 790}
365970a1 791
112202d9 792static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
bccdc1fa 793 unsigned long flags)
7a22ad75 794{
bccdc1fa
TH
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
365970a1
DH
797}
798
4468a00f 799static void set_work_pool_and_keep_pending(struct work_struct *work,
bccdc1fa 800 int pool_id, unsigned long flags)
4468a00f 801{
bccdc1fa
TH
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
4468a00f
LJ
804}
805
7c3eed5c 806static void set_work_pool_and_clear_pending(struct work_struct *work,
bccdc1fa 807 int pool_id, unsigned long flags)
7a22ad75 808{
23657bb1
TH
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
bccdc1fa
TH
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
346c09f8
RP
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
8bdc6201 822 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
7a22ad75 847}
f756d5e2 848
afa4bb77
LT
849static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850{
e9a8e01f 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
afa4bb77
LT
852}
853
112202d9 854static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 855{
e120153d 856 unsigned long data = atomic_long_read(&work->data);
7a22ad75 857
112202d9 858 if (data & WORK_STRUCT_PWQ)
afa4bb77 859 return work_struct_pwq(data);
e120153d
TH
860 else
861 return NULL;
4d707b9f
ON
862}
863
7c3eed5c
TH
864/**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
68e13a67 868 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
d185af30
YB
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
878 */
879static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 880{
e120153d 881 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 882 int pool_id;
7a22ad75 883
68e13a67 884 assert_rcu_or_pool_mutex();
fa1b54e6 885
112202d9 886 if (data & WORK_STRUCT_PWQ)
afa4bb77 887 return work_struct_pwq(data)->pool;
7a22ad75 888
7c3eed5c
TH
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
891 return NULL;
892
fa1b54e6 893 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
894}
895
1211f3b2 896static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
7c3eed5c 897{
38f7e145 898 return (v >> shift) & ((1U << bits) - 1);
7c3eed5c
TH
899}
900
1211f3b2 901static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
bbb68dfa 902{
1211f3b2 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
bbb68dfa 904
1211f3b2
TH
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
86898fa6
TH
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
1211f3b2 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
bbb68dfa
TH
910}
911
1211f3b2 912static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
bbb68dfa 913{
86898fa6
TH
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
bbb68dfa
TH
916}
917
e22bee78 918/*
3270476a
TH
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 921 * they're being called with pool->lock held.
e22bee78
TH
922 */
923
4594bf15 924/*
e22bee78
TH
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
974271c4
TH
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
706026c2 929 * function will always return %true for unbound pools as long as the
974271c4 930 * worklist isn't empty.
4594bf15 931 */
63d95a91 932static bool need_more_worker(struct worker_pool *pool)
365970a1 933{
0219a352 934 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 935}
4594bf15 936
e22bee78 937/* Can I start working? Called from busy but !running workers. */
63d95a91 938static bool may_start_working(struct worker_pool *pool)
e22bee78 939{
63d95a91 940 return pool->nr_idle;
e22bee78
TH
941}
942
943/* Do I need to keep working? Called from currently running workers. */
63d95a91 944static bool keep_working(struct worker_pool *pool)
e22bee78 945{
bc35f7ef 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
947}
948
949/* Do we need a new worker? Called from manager. */
63d95a91 950static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 951{
63d95a91 952 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 953}
365970a1 954
e22bee78 955/* Do we have too many workers and should some go away? */
63d95a91 956static bool too_many_workers(struct worker_pool *pool)
e22bee78 957{
692b4825 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
963}
964
c54d5046
TH
965/**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
971 */
972static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973{
974 struct worker_pool *pool = worker->pool;
975
bc8b50c2 976 lockdep_assert_held(&pool->lock);
c54d5046
TH
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985}
986
987/**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
993 */
994static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995{
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
bc8b50c2 999 lockdep_assert_held(&pool->lock);
c54d5046
TH
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011}
1012
797e8345
TH
1013/* Return the first idle worker. Called with pool->lock held. */
1014static struct worker *first_idle_worker(struct worker_pool *pool)
1015{
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020}
1021
1022/**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void worker_enter_idle(struct worker *worker)
1033{
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054}
1055
1056/**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
1065static void worker_leave_idle(struct worker *worker)
1066{
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074}
1075
1076/**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
1109static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111{
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121}
1122
1123/**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
873eaca6
TH
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
797e8345
TH
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
1137static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139{
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159}
1160
873eaca6
TH
1161/**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
1177static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179{
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201}
1202
2f34d733
TH
1203static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204{
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208}
1209
fd0a68a2
TH
1210static void kick_bh_pool(struct worker_pool *pool)
1211{
1212#ifdef CONFIG_SMP
1acd92d9
TH
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
fd0a68a2
TH
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219#endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224}
1225
797e8345 1226/**
0219a352
TH
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
797e8345 1229 *
0219a352
TH
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
797e8345 1232 */
0219a352 1233static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1234{
1235 struct worker *worker = first_idle_worker(pool);
8639eceb 1236 struct task_struct *p;
797e8345 1237
0219a352
TH
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
4cb1ef64 1243 if (pool->flags & POOL_BH) {
fd0a68a2 1244 kick_bh_pool(pool);
4cb1ef64
TH
1245 return true;
1246 }
1247
8639eceb
TH
1248 p = worker->task;
1249
1250#ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
57a01eaf
SS
1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 cpu_online_mask);
1273 if (wake_cpu < nr_cpu_ids) {
1274 p->wake_cpu = wake_cpu;
1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 }
8639eceb
TH
1277 }
1278#endif
1279 wake_up_process(p);
0219a352 1280 return true;
797e8345
TH
1281}
1282
63638450
TH
1283#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285/*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297#define WCI_MAX_ENTS 128
1298
1299struct wci_ent {
1300 work_func_t func;
1301 atomic64_t cnt;
1302 struct hlist_node hash_node;
1303};
1304
1305static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306static int wci_nr_ents;
1307static DEFINE_RAW_SPINLOCK(wci_lock);
1308static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
1310static struct wci_ent *wci_find_ent(work_func_t func)
1311{
1312 struct wci_ent *ent;
1313
1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 (unsigned long)func) {
1316 if (ent->func == func)
1317 return ent;
1318 }
1319 return NULL;
1320}
1321
1322static void wq_cpu_intensive_report(work_func_t func)
1323{
1324 struct wci_ent *ent;
1325
1326restart:
1327 ent = wci_find_ent(func);
1328 if (ent) {
1329 u64 cnt;
1330
1331 /*
ccdec921 1332 * Start reporting from the warning_thresh and back off
63638450
TH
1333 * exponentially.
1334 */
1335 cnt = atomic64_inc_return_relaxed(&ent->cnt);
ccdec921
XY
1336 if (wq_cpu_intensive_warning_thresh &&
1337 cnt >= wq_cpu_intensive_warning_thresh &&
1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
63638450
TH
1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent->func, wq_cpu_intensive_thresh_us,
1341 atomic64_read(&ent->cnt));
1342 return;
1343 }
1344
1345 /*
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1348 * noise already.
1349 */
1350 if (wci_nr_ents >= WCI_MAX_ENTS)
1351 return;
1352
1353 raw_spin_lock(&wci_lock);
1354
1355 if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 raw_spin_unlock(&wci_lock);
1357 return;
1358 }
1359
1360 if (wci_find_ent(func)) {
1361 raw_spin_unlock(&wci_lock);
1362 goto restart;
1363 }
1364
1365 ent = &wci_ents[wci_nr_ents++];
1366 ent->func = func;
ccdec921 1367 atomic64_set(&ent->cnt, 0);
63638450
TH
1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370 raw_spin_unlock(&wci_lock);
ccdec921
XY
1371
1372 goto restart;
63638450
TH
1373}
1374
1375#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1376static void wq_cpu_intensive_report(work_func_t func) {}
1377#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
d302f017 1379/**
6d25be57 1380 * wq_worker_running - a worker is running again
e22bee78 1381 * @task: task waking up
e22bee78 1382 *
6d25be57 1383 * This function is called when a worker returns from schedule()
e22bee78 1384 */
6d25be57 1385void wq_worker_running(struct task_struct *task)
e22bee78
TH
1386{
1387 struct worker *worker = kthread_data(task);
1388
c8f6219b 1389 if (!READ_ONCE(worker->sleeping))
6d25be57 1390 return;
07edfece
FW
1391
1392 /*
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1397 */
1398 preempt_disable();
6d25be57 1399 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1400 worker->pool->nr_running++;
07edfece 1401 preempt_enable();
616db877
TH
1402
1403 /*
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 */
1407 worker->current_at = worker->task->se.sum_exec_runtime;
1408
c8f6219b 1409 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1410}
1411
1412/**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
e22bee78 1415 *
6d25be57 1416 * This function is called from schedule() when a busy worker is
ccf45156 1417 * going to sleep.
e22bee78 1418 */
6d25be57 1419void wq_worker_sleeping(struct task_struct *task)
e22bee78 1420{
cc5bff38 1421 struct worker *worker = kthread_data(task);
111c225a 1422 struct worker_pool *pool;
e22bee78 1423
111c225a
TH
1424 /*
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1428 */
2d64672e 1429 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1430 return;
e22bee78 1431
111c225a 1432 pool = worker->pool;
111c225a 1433
62849a96 1434 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1435 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1436 return;
1437
c8f6219b 1438 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1439 raw_spin_lock_irq(&pool->lock);
e22bee78 1440
45c753f5
FW
1441 /*
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1445 */
1446 if (worker->flags & WORKER_NOT_RUNNING) {
1447 raw_spin_unlock_irq(&pool->lock);
1448 return;
1449 }
1450
bc35f7ef 1451 pool->nr_running--;
0219a352 1452 if (kick_pool(pool))
725e8ec5 1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1454
a9b8a985 1455 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1456}
1457
616db877
TH
1458/**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
86dd6c04 1462 * Called from sched_tick(). We're in the IRQ context and the current
616db877
TH
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
1465void wq_worker_tick(struct task_struct *task)
1466{
1467 struct worker *worker = kthread_data(task);
1468 struct pool_workqueue *pwq = worker->current_pwq;
1469 struct worker_pool *pool = worker->pool;
1470
1471 if (!pwq)
1472 return;
1473
8a1dd1e5
TH
1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
18c8ae81
Z
1476 if (!wq_cpu_intensive_thresh_us)
1477 return;
1478
616db877
TH
1479 /*
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1483 *
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
616db877 1490 */
c8f6219b 1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1492 worker->task->se.sum_exec_runtime - worker->current_at <
1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 return;
1495
1496 raw_spin_lock(&pool->lock);
1497
1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1499 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
0219a352 1502 if (kick_pool(pool))
616db877 1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1504
1505 raw_spin_unlock(&pool->lock);
1506}
1507
1b69ac6b
JW
1508/**
1509 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1510 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
a9b8a985 1516 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1517 *
4b047002
JW
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1b69ac6b
JW
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
1532work_func_t wq_worker_last_func(struct task_struct *task)
1533{
1534 struct worker *worker = kthread_data(task);
1535
1536 return worker->last_func;
1537}
1538
91ccc6e7
TH
1539/**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
1552static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 int node)
1554{
1555 if (!(wq->flags & WQ_UNBOUND))
1556 return NULL;
1557
1558 if (node == NUMA_NO_NODE)
1559 node = nr_node_ids;
1560
1561 return wq->node_nr_active[node];
1562}
1563
5797b1c1
TH
1564/**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
1573static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574{
1575 struct cpumask *effective = unbound_effective_cpumask(wq);
1576 int min_active = READ_ONCE(wq->min_active);
1577 int max_active = READ_ONCE(wq->max_active);
1578 int total_cpus, node;
1579
1580 lockdep_assert_held(&wq->mutex);
1581
c5f8cd6c
TH
1582 if (!wq_topo_initialized)
1583 return;
1584
15930da4 1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
5797b1c1
TH
1586 off_cpu = -1;
1587
1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 if (off_cpu >= 0)
1590 total_cpus--;
1591
91f09870
LJ
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus)) {
1594 for_each_node(node)
1595 wq_node_nr_active(wq, node)->max = min_active;
1596
1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 return;
1599 }
1600
5797b1c1
TH
1601 for_each_node(node) {
1602 int node_cpus;
1603
1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 node_cpus--;
1607
1608 wq_node_nr_active(wq, node)->max =
1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 min_active, max_active);
1611 }
1612
d40f9202 1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
5797b1c1
TH
1614}
1615
8864b4e5
TH
1616/**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
1623static void get_pwq(struct pool_workqueue *pwq)
1624{
1625 lockdep_assert_held(&pwq->pool->lock);
1626 WARN_ON_ONCE(pwq->refcnt <= 0);
1627 pwq->refcnt++;
1628}
1629
1630/**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1636 */
1637static void put_pwq(struct pool_workqueue *pwq)
1638{
1639 lockdep_assert_held(&pwq->pool->lock);
1640 if (likely(--pwq->refcnt))
1641 return;
8864b4e5 1642 /*
967b494e
TH
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1645 */
687a9aa5 1646 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1647}
1648
dce90d47
TH
1649/**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1654 */
1655static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656{
1657 if (pwq) {
1658 /*
24acfb71 1659 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1660 * following lock operations are safe.
1661 */
a9b8a985 1662 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1663 put_pwq(pwq);
a9b8a985 1664 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1665 }
1666}
1667
afa87ce8
TH
1668static bool pwq_is_empty(struct pool_workqueue *pwq)
1669{
1670 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671}
1672
4c638030
TH
1673static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 struct work_struct *work)
bf4ede01 1675{
1c270b79
TH
1676 unsigned long *wdb = work_data_bits(work);
1677
1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1679 trace_workqueue_activate_work(work);
82607adc
TH
1680 if (list_empty(&pwq->pool->worklist))
1681 pwq->pool->watchdog_ts = jiffies;
112202d9 1682 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1684}
1685
5797b1c1
TH
1686static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687{
1688 int max = READ_ONCE(nna->max);
1689
1690 while (true) {
1691 int old, tmp;
1692
1693 old = atomic_read(&nna->nr);
1694 if (old >= max)
1695 return false;
1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 if (tmp == old)
1698 return true;
1699 }
1700}
1701
1c270b79
TH
1702/**
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
5797b1c1 1705 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1706 *
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1709 */
5797b1c1 1710static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1711{
1712 struct workqueue_struct *wq = pwq->wq;
1713 struct worker_pool *pool = pwq->pool;
91ccc6e7 1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1715 bool obtained = false;
1c270b79
TH
1716
1717 lockdep_assert_held(&pool->lock);
1718
5797b1c1 1719 if (!nna) {
4cb1ef64 1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
5797b1c1
TH
1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 goto out;
1723 }
1724
4c065dbc
WL
1725 if (unlikely(pwq->plugged))
1726 return false;
1727
5797b1c1
TH
1728 /*
1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 * concurrency level. Don't jump the line.
1732 *
1733 * We need to ignore the pending test after max_active has increased as
1734 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 * increase it. This is indicated by @fill.
1736 */
1737 if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 goto out;
1739
1740 obtained = tryinc_node_nr_active(nna);
1741 if (obtained)
1742 goto out;
1743
1744 /*
1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 * and try again. The smp_mb() is paired with the implied memory barrier
1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 * we see the decremented $nna->nr or they see non-empty
1749 * $nna->pending_pwqs.
1750 */
1751 raw_spin_lock(&nna->lock);
1752
1753 if (list_empty(&pwq->pending_node))
1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 else if (likely(!fill))
1756 goto out_unlock;
1757
1758 smp_mb();
1759
1760 obtained = tryinc_node_nr_active(nna);
1c270b79 1761
5797b1c1
TH
1762 /*
1763 * If @fill, @pwq might have already been pending. Being spuriously
1764 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 */
1766 if (obtained && likely(!fill))
1767 list_del_init(&pwq->pending_node);
1768
1769out_unlock:
1770 raw_spin_unlock(&nna->lock);
1771out:
1772 if (obtained)
1c270b79
TH
1773 pwq->nr_active++;
1774 return obtained;
1775}
1776
1777/**
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
5797b1c1 1780 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1781 *
1782 * Activate the first inactive work item of @pwq if available and allowed by
1783 * max_active limit.
1784 *
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1787 */
5797b1c1 1788static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1789{
1790 struct work_struct *work =
1791 list_first_entry_or_null(&pwq->inactive_works,
1792 struct work_struct, entry);
1793
5797b1c1 1794 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1795 __pwq_activate_work(pwq, work);
1796 return true;
1797 } else {
1798 return false;
1799 }
1800}
1801
4c065dbc 1802/**
516d3dc9
WL
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
4c065dbc 1805 *
516d3dc9
WL
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
4c065dbc
WL
1809 *
1810 * dfl_pwq --------------+ [P] - plugged
1811 * |
1812 * v
1813 * pwqs -> A -> B [P] -> C [P] (newest)
1814 * | | |
1815 * 1 3 5
1816 * | | |
1817 * 2 4 6
516d3dc9
WL
1818 *
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
4c065dbc
WL
1823 */
1824static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825{
1826 struct pool_workqueue *pwq;
1827
1828 lockdep_assert_held(&wq->mutex);
1829
1830 /* Caller should make sure that pwqs isn't empty before calling */
1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 pwqs_node);
1833 raw_spin_lock_irq(&pwq->pool->lock);
1834 if (pwq->plugged) {
1835 pwq->plugged = false;
1836 if (pwq_activate_first_inactive(pwq, true))
1837 kick_pool(pwq->pool);
1838 }
1839 raw_spin_unlock_irq(&pwq->pool->lock);
1840}
1841
5797b1c1
TH
1842/**
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1846 *
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849 */
1850static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 struct worker_pool *caller_pool)
1852{
1853 struct worker_pool *locked_pool = caller_pool;
1854 struct pool_workqueue *pwq;
1855 struct work_struct *work;
1856
1857 lockdep_assert_held(&caller_pool->lock);
1858
1859 raw_spin_lock(&nna->lock);
1860retry:
1861 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 struct pool_workqueue, pending_node);
1863 if (!pwq)
1864 goto out_unlock;
1865
1866 /*
1867 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 * / lock dance. For that, we also need to release @nna->lock as it's
1870 * nested inside pool locks.
1871 */
1872 if (pwq->pool != locked_pool) {
1873 raw_spin_unlock(&locked_pool->lock);
1874 locked_pool = pwq->pool;
1875 if (!raw_spin_trylock(&locked_pool->lock)) {
1876 raw_spin_unlock(&nna->lock);
1877 raw_spin_lock(&locked_pool->lock);
1878 raw_spin_lock(&nna->lock);
1879 goto retry;
1880 }
1881 }
1882
1883 /*
1884 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 * Drop it from pending_pwqs and see if there's another one.
1886 */
1887 work = list_first_entry_or_null(&pwq->inactive_works,
1888 struct work_struct, entry);
1889 if (!work) {
1890 list_del_init(&pwq->pending_node);
1891 goto retry;
1892 }
1893
1894 /*
1895 * Acquire an nr_active count and activate the inactive work item. If
1896 * $pwq still has inactive work items, rotate it to the end of the
1897 * pending_pwqs so that we round-robin through them. This means that
1898 * inactive work items are not activated in queueing order which is fine
1899 * given that there has never been any ordering across different pwqs.
1900 */
1901 if (likely(tryinc_node_nr_active(nna))) {
1902 pwq->nr_active++;
1903 __pwq_activate_work(pwq, work);
1904
1905 if (list_empty(&pwq->inactive_works))
1906 list_del_init(&pwq->pending_node);
1907 else
1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909
1910 /* if activating a foreign pool, make sure it's running */
1911 if (pwq->pool != caller_pool)
1912 kick_pool(pwq->pool);
1913 }
1914
1915out_unlock:
1916 raw_spin_unlock(&nna->lock);
1917 if (locked_pool != caller_pool) {
1918 raw_spin_unlock(&locked_pool->lock);
1919 raw_spin_lock(&caller_pool->lock);
1920 }
1921}
1922
1c270b79
TH
1923/**
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1926 *
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1929 */
1930static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1931{
1c270b79 1932 struct worker_pool *pool = pwq->pool;
91ccc6e7 1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1934
1c270b79
TH
1935 lockdep_assert_held(&pool->lock);
1936
91ccc6e7
TH
1937 /*
1938 * @pwq->nr_active should be decremented for both percpu and unbound
1939 * workqueues.
1940 */
1c270b79 1941 pwq->nr_active--;
91ccc6e7
TH
1942
1943 /*
1944 * For a percpu workqueue, it's simple. Just need to kick the first
1945 * inactive work item on @pwq itself.
1946 */
1947 if (!nna) {
5797b1c1 1948 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1949 return;
1950 }
1951
5797b1c1
TH
1952 /*
1953 * If @pwq is for an unbound workqueue, it's more complicated because
1954 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 * pwq needs to wait for an nr_active count, it puts itself on
1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 * guarantee that either we see non-empty pending_pwqs or they see
1959 * decremented $nna->nr.
1960 *
1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 * max_active gets updated. However, it is guaranteed to be equal to or
1963 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 * This maintains the forward progress guarantee.
1965 */
1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 return;
1968
1969 if (!list_empty(&nna->pending_pwqs))
1970 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1971}
1972
bf4ede01 1973/**
112202d9
TH
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
c4560c2c 1976 * @work_data: work_data of work which left the queue
bf4ede01
TH
1977 *
1978 * A work either has completed or is removed from pending queue,
112202d9 1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1980 *
dd6c3c54
TH
1981 * NOTE:
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1985 *
bf4ede01 1986 * CONTEXT:
a9b8a985 1987 * raw_spin_lock_irq(pool->lock).
bf4ede01 1988 */
c4560c2c 1989static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1990{
c4560c2c
LJ
1991 int color = get_work_color(work_data);
1992
1c270b79
TH
1993 if (!(work_data & WORK_STRUCT_INACTIVE))
1994 pwq_dec_nr_active(pwq);
018f3a13 1995
112202d9 1996 pwq->nr_in_flight[color]--;
bf4ede01 1997
bf4ede01 1998 /* is flush in progress and are we at the flushing tip? */
112202d9 1999 if (likely(pwq->flush_color != color))
8864b4e5 2000 goto out_put;
bf4ede01
TH
2001
2002 /* are there still in-flight works? */
112202d9 2003 if (pwq->nr_in_flight[color])
8864b4e5 2004 goto out_put;
bf4ede01 2005
112202d9
TH
2006 /* this pwq is done, clear flush_color */
2007 pwq->flush_color = -1;
bf4ede01
TH
2008
2009 /*
112202d9 2010 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
2011 * will handle the rest.
2012 */
112202d9
TH
2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
2015out_put:
2016 put_pwq(pwq);
bf4ede01
TH
2017}
2018
36e227d2 2019/**
bbb68dfa 2020 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2 2021 * @work: work item to steal
c5f5b942 2022 * @cflags: %WORK_CANCEL_ flags
c26e2f2e 2023 * @irq_flags: place to store irq state
36e227d2
TH
2024 *
2025 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 2026 * stable state - idle, on timer or on worklist.
36e227d2 2027 *
d185af30 2028 * Return:
3eb6b31b
MCC
2029 *
2030 * ======== ================================================================
36e227d2
TH
2031 * 1 if @work was pending and we successfully stole PENDING
2032 * 0 if @work was idle and we claimed PENDING
2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
3eb6b31b 2034 * ======== ================================================================
36e227d2 2035 *
d185af30 2036 * Note:
bbb68dfa 2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry. This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
2041 *
2042 * On successful return, >= 0, irq is disabled and the caller is
c26e2f2e 2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
bbb68dfa 2044 *
e0aecdd8 2045 * This function is safe to call from any context including IRQ handler.
bf4ede01 2046 */
c5f5b942 2047static int try_to_grab_pending(struct work_struct *work, u32 cflags,
c26e2f2e 2048 unsigned long *irq_flags)
bf4ede01 2049{
d565ed63 2050 struct worker_pool *pool;
112202d9 2051 struct pool_workqueue *pwq;
bf4ede01 2052
c26e2f2e 2053 local_irq_save(*irq_flags);
bbb68dfa 2054
36e227d2 2055 /* try to steal the timer if it exists */
c5f5b942 2056 if (cflags & WORK_CANCEL_DELAYED) {
36e227d2
TH
2057 struct delayed_work *dwork = to_delayed_work(work);
2058
e0aecdd8
TH
2059 /*
2060 * dwork->timer is irqsafe. If del_timer() fails, it's
2061 * guaranteed that the timer is not queued anywhere and not
2062 * running on the local CPU.
2063 */
36e227d2
TH
2064 if (likely(del_timer(&dwork->timer)))
2065 return 1;
2066 }
2067
2068 /* try to claim PENDING the normal way */
bf4ede01
TH
2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 return 0;
2071
24acfb71 2072 rcu_read_lock();
bf4ede01
TH
2073 /*
2074 * The queueing is in progress, or it is already queued. Try to
2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 */
d565ed63
TH
2077 pool = get_work_pool(work);
2078 if (!pool)
bbb68dfa 2079 goto fail;
bf4ede01 2080
a9b8a985 2081 raw_spin_lock(&pool->lock);
0b3dae68 2082 /*
112202d9
TH
2083 * work->data is guaranteed to point to pwq only while the work
2084 * item is queued on pwq->wq, and both updating work->data to point
2085 * to pwq on queueing and to pool on dequeueing are done under
2086 * pwq->pool->lock. This in turn guarantees that, if work->data
2087 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
2088 * item is currently queued on that pool.
2089 */
112202d9
TH
2090 pwq = get_work_pwq(work);
2091 if (pwq && pwq->pool == pool) {
b56c7207 2092 unsigned long work_data = *work_data_bits(work);
c70e1779 2093
16062836
TH
2094 debug_work_deactivate(work);
2095
2096 /*
018f3a13
LJ
2097 * A cancelable inactive work item must be in the
2098 * pwq->inactive_works since a queued barrier can't be
2099 * canceled (see the comments in insert_wq_barrier()).
2100 *
b56c7207 2101 * An inactive work item cannot be deleted directly because
d812796e 2102 * it might have linked barrier work items which, if left
f97a4a1a 2103 * on the inactive_works list, will confuse pwq->nr_active
b56c7207
LJ
2104 * management later on and cause stall. Move the linked
2105 * barrier work items to the worklist when deleting the grabbed
2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 * it doesn't participate in nr_active management in later
2108 * pwq_dec_nr_in_flight().
16062836 2109 */
b56c7207
LJ
2110 if (work_data & WORK_STRUCT_INACTIVE)
2111 move_linked_works(work, &pwq->pool->worklist, NULL);
16062836
TH
2112
2113 list_del_init(&work->entry);
16062836 2114
c70e1779
TH
2115 /*
2116 * work->data points to pwq iff queued. Let's point to pool. As
2117 * this destroys work->data needed by the next step, stash it.
2118 */
456a78ee
TH
2119 set_work_pool_and_keep_pending(work, pool->id,
2120 pool_offq_flags(pool));
16062836 2121
dd6c3c54 2122 /* must be the last step, see the function comment */
c70e1779 2123 pwq_dec_nr_in_flight(pwq, work_data);
dd6c3c54 2124
a9b8a985 2125 raw_spin_unlock(&pool->lock);
24acfb71 2126 rcu_read_unlock();
16062836 2127 return 1;
bf4ede01 2128 }
a9b8a985 2129 raw_spin_unlock(&pool->lock);
bbb68dfa 2130fail:
24acfb71 2131 rcu_read_unlock();
c26e2f2e 2132 local_irq_restore(*irq_flags);
36e227d2 2133 return -EAGAIN;
bf4ede01
TH
2134}
2135
978b8409
TH
2136/**
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2141 *
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143 * or on worklist.
2144 *
f09b10b6 2145 * Can be called from any context. IRQ is disabled on return with IRQ state
978b8409
TH
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2148 *
2149 * Returns %true if @work was pending. %false if idle.
2150 */
2151static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 unsigned long *irq_flags)
2153{
978b8409
TH
2154 int ret;
2155
f09b10b6
TH
2156 while (true) {
2157 ret = try_to_grab_pending(work, cflags, irq_flags);
2158 if (ret >= 0)
2159 return ret;
2160 cpu_relax();
2161 }
978b8409
TH
2162}
2163
4690c4ab 2164/**
706026c2 2165 * insert_work - insert a work into a pool
112202d9 2166 * @pwq: pwq @work belongs to
4690c4ab
TH
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2170 *
112202d9 2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2172 * work_struct flags.
4690c4ab
TH
2173 *
2174 * CONTEXT:
a9b8a985 2175 * raw_spin_lock_irq(pool->lock).
4690c4ab 2176 */
112202d9
TH
2177static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 struct list_head *head, unsigned int extra_flags)
b89deed3 2179{
fe089f87 2180 debug_work_activate(work);
e22bee78 2181
e89a85d6 2182 /* record the work call stack in order to print it in KASAN reports */
f70da745 2183 kasan_record_aux_stack_noalloc(work);
e89a85d6 2184
4690c4ab 2185 /* we own @work, set data and link */
112202d9 2186 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2187 list_add_tail(&work->entry, head);
8864b4e5 2188 get_pwq(pwq);
b89deed3
ON
2189}
2190
c8efcc25
TH
2191/*
2192 * Test whether @work is being queued from another work executing on the
8d03ecfe 2193 * same workqueue.
c8efcc25
TH
2194 */
2195static bool is_chained_work(struct workqueue_struct *wq)
2196{
8d03ecfe
TH
2197 struct worker *worker;
2198
2199 worker = current_wq_worker();
2200 /*
bf393fd4 2201 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2202 * I'm @worker, it's safe to dereference it without locking.
2203 */
112202d9 2204 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2205}
2206
ef557180
MG
2207/*
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2211 */
2212static int wq_select_unbound_cpu(int cpu)
2213{
2214 int new_cpu;
2215
f303fccb
TH
2216 if (likely(!wq_debug_force_rr_cpu)) {
2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 return cpu;
a8ec5880
AF
2219 } else {
2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2221 }
2222
ef557180
MG
2223 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 if (unlikely(new_cpu >= nr_cpu_ids))
2228 return cpu;
2229 }
2230 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2231
2232 return new_cpu;
2233}
2234
d84ff051 2235static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2236 struct work_struct *work)
2237{
112202d9 2238 struct pool_workqueue *pwq;
fe089f87 2239 struct worker_pool *last_pool, *pool;
8a2e8e5d 2240 unsigned int work_flags;
b75cac93 2241 unsigned int req_cpu = cpu;
8930caba
TH
2242
2243 /*
2244 * While a work item is PENDING && off queue, a task trying to
2245 * steal the PENDING will busy-loop waiting for it to either get
2246 * queued or lose PENDING. Grabbing PENDING and queueing should
2247 * happen with IRQ disabled.
2248 */
8e8eb730 2249 lockdep_assert_irqs_disabled();
1da177e4 2250
33e3f0a3
RC
2251 /*
2252 * For a draining wq, only works from the same workqueue are
2253 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 * queues a new work item to a wq after destroy_workqueue(wq).
2255 */
2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2258 return;
24acfb71 2259 rcu_read_lock();
9e8cd2f5 2260retry:
c9178087 2261 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2262 if (req_cpu == WORK_CPU_UNBOUND) {
2263 if (wq->flags & WQ_UNBOUND)
aa202f1f 2264 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2265 else
aa202f1f 2266 cpu = raw_smp_processor_id();
aa202f1f 2267 }
dbf2576e 2268
636b927e 2269 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2270 pool = pwq->pool;
2271
c9178087
TH
2272 /*
2273 * If @work was previously on a different pool, it might still be
2274 * running there, in which case the work needs to be queued on that
2275 * pool to guarantee non-reentrancy.
58629d48
LJ
2276 *
2277 * For ordered workqueue, work items must be queued on the newest pwq
2278 * for accurate order management. Guaranteed order also guarantees
2279 * non-reentrancy. See the comments above unplug_oldest_pwq().
c9178087
TH
2280 */
2281 last_pool = get_work_pool(work);
58629d48 2282 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
c9178087 2283 struct worker *worker;
18aa9eff 2284
a9b8a985 2285 raw_spin_lock(&last_pool->lock);
18aa9eff 2286
c9178087 2287 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2288
c9178087
TH
2289 if (worker && worker->current_pwq->wq == wq) {
2290 pwq = worker->current_pwq;
fe089f87
TH
2291 pool = pwq->pool;
2292 WARN_ON_ONCE(pool != last_pool);
8930caba 2293 } else {
c9178087 2294 /* meh... not running there, queue here */
a9b8a985 2295 raw_spin_unlock(&last_pool->lock);
fe089f87 2296 raw_spin_lock(&pool->lock);
8930caba 2297 }
f3421797 2298 } else {
fe089f87 2299 raw_spin_lock(&pool->lock);
502ca9d8
TH
2300 }
2301
9e8cd2f5 2302 /*
636b927e
TH
2303 * pwq is determined and locked. For unbound pools, we could have raced
2304 * with pwq release and it could already be dead. If its refcnt is zero,
2305 * repeat pwq selection. Note that unbound pwqs never die without
2306 * another pwq replacing it in cpu_pwq or while work items are executing
2307 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2308 */
2309 if (unlikely(!pwq->refcnt)) {
2310 if (wq->flags & WQ_UNBOUND) {
fe089f87 2311 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2312 cpu_relax();
2313 goto retry;
2314 }
2315 /* oops */
2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 wq->name, cpu);
2318 }
2319
112202d9
TH
2320 /* pwq determined, queue */
2321 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2322
24acfb71
TG
2323 if (WARN_ON(!list_empty(&work->entry)))
2324 goto out;
1e19ffc6 2325
112202d9
TH
2326 pwq->nr_in_flight[pwq->work_color]++;
2327 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2328
a045a272
TH
2329 /*
2330 * Limit the number of concurrently active work items to max_active.
2331 * @work must also queue behind existing inactive work items to maintain
2332 * ordering when max_active changes. See wq_adjust_max_active().
2333 */
5797b1c1 2334 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2335 if (list_empty(&pool->worklist))
2336 pool->watchdog_ts = jiffies;
2337
cdadf009 2338 trace_workqueue_activate_work(work);
fe089f87 2339 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2340 kick_pool(pool);
8a2e8e5d 2341 } else {
f97a4a1a 2342 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2343 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2344 }
1e19ffc6 2345
24acfb71 2346out:
fe089f87 2347 raw_spin_unlock(&pool->lock);
24acfb71 2348 rcu_read_unlock();
1da177e4
LT
2349}
2350
86898fa6
TH
2351static bool clear_pending_if_disabled(struct work_struct *work)
2352{
2353 unsigned long data = *work_data_bits(work);
2354 struct work_offq_data offqd;
2355
2356 if (likely((data & WORK_STRUCT_PWQ) ||
2357 !(data & WORK_OFFQ_DISABLE_MASK)))
2358 return false;
2359
2360 work_offqd_unpack(&offqd, data);
2361 set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 work_offqd_pack_flags(&offqd));
2363 return true;
2364}
2365
0fcb78c2 2366/**
c1a220e7
ZR
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
0fcb78c2
REB
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
c1a220e7 2372 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2373 * can't go away. Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
d185af30
YB
2377 *
2378 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2379 */
d4283e93
TH
2380bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 struct work_struct *work)
1da177e4 2382{
d4283e93 2383 bool ret = false;
c26e2f2e 2384 unsigned long irq_flags;
ef1ca236 2385
c26e2f2e 2386 local_irq_save(irq_flags);
c1a220e7 2387
86898fa6
TH
2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 !clear_pending_if_disabled(work)) {
4690c4ab 2390 __queue_work(cpu, wq, work);
d4283e93 2391 ret = true;
c1a220e7 2392 }
ef1ca236 2393
c26e2f2e 2394 local_irq_restore(irq_flags);
1da177e4
LT
2395 return ret;
2396}
ad7b1f84 2397EXPORT_SYMBOL(queue_work_on);
1da177e4 2398
8204e0c1 2399/**
fef59c9c 2400 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2401 * @node: NUMA node ID that we want to select a CPU from
2402 *
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2407 */
fef59c9c 2408static int select_numa_node_cpu(int node)
8204e0c1
AD
2409{
2410 int cpu;
2411
8204e0c1
AD
2412 /* Delay binding to CPU if node is not valid or online */
2413 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 return WORK_CPU_UNBOUND;
2415
2416 /* Use local node/cpu if we are already there */
2417 cpu = raw_smp_processor_id();
2418 if (node == cpu_to_node(cpu))
2419 return cpu;
2420
2421 /* Use "random" otherwise know as "first" online CPU of node */
2422 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423
2424 /* If CPU is valid return that, otherwise just defer */
2425 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426}
2427
2428/**
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2433 *
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2436 * NUMA node.
2437 *
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2441 *
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2445 *
2446 * Return: %false if @work was already on a queue, %true otherwise.
2447 */
2448bool queue_work_node(int node, struct workqueue_struct *wq,
2449 struct work_struct *work)
2450{
c26e2f2e 2451 unsigned long irq_flags;
8204e0c1
AD
2452 bool ret = false;
2453
2454 /*
2455 * This current implementation is specific to unbound workqueues.
2456 * Specifically we only return the first available CPU for a given
2457 * node instead of cycling through individual CPUs within the node.
2458 *
2459 * If this is used with a per-cpu workqueue then the logic in
2460 * workqueue_select_cpu_near would need to be updated to allow for
2461 * some round robin type logic.
2462 */
2463 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464
c26e2f2e 2465 local_irq_save(irq_flags);
8204e0c1 2466
86898fa6
TH
2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 !clear_pending_if_disabled(work)) {
fef59c9c 2469 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2470
2471 __queue_work(cpu, wq, work);
2472 ret = true;
2473 }
2474
c26e2f2e 2475 local_irq_restore(irq_flags);
8204e0c1
AD
2476 return ret;
2477}
2478EXPORT_SYMBOL_GPL(queue_work_node);
2479
8c20feb6 2480void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2481{
8c20feb6 2482 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2483
e0aecdd8 2484 /* should have been called from irqsafe timer with irq already off */
60c057bc 2485 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2486}
1438ade5 2487EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2488
7beb2edf
TH
2489static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 struct delayed_work *dwork, unsigned long delay)
1da177e4 2491{
7beb2edf
TH
2492 struct timer_list *timer = &dwork->timer;
2493 struct work_struct *work = &dwork->work;
7beb2edf 2494
637fdbae 2495 WARN_ON_ONCE(!wq);
4b243563 2496 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2497 WARN_ON_ONCE(timer_pending(timer));
2498 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2499
8852aac2
TH
2500 /*
2501 * If @delay is 0, queue @dwork->work immediately. This is for
2502 * both optimization and correctness. The earliest @timer can
2503 * expire is on the closest next tick and delayed_work users depend
2504 * on that there's no such delay when @delay is 0.
2505 */
2506 if (!delay) {
2507 __queue_work(cpu, wq, &dwork->work);
2508 return;
2509 }
2510
60c057bc 2511 dwork->wq = wq;
1265057f 2512 dwork->cpu = cpu;
7beb2edf
TH
2513 timer->expires = jiffies + delay;
2514
aae17ebb
LB
2515 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2516 /* If the current cpu is a housekeeping cpu, use it. */
2517 cpu = smp_processor_id();
2518 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2519 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
041bd12e 2520 add_timer_on(timer, cpu);
aae17ebb
LB
2521 } else {
2522 if (likely(cpu == WORK_CPU_UNBOUND))
d08c407f 2523 add_timer_global(timer);
aae17ebb
LB
2524 else
2525 add_timer_on(timer, cpu);
2526 }
1da177e4
LT
2527}
2528
0fcb78c2
REB
2529/**
2530 * queue_delayed_work_on - queue work on specific CPU after delay
2531 * @cpu: CPU number to execute work on
2532 * @wq: workqueue to use
af9997e4 2533 * @dwork: work to queue
0fcb78c2
REB
2534 * @delay: number of jiffies to wait before queueing
2535 *
d185af30 2536 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2537 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2538 * execution.
0fcb78c2 2539 */
d4283e93
TH
2540bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2541 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2542{
52bad64d 2543 struct work_struct *work = &dwork->work;
d4283e93 2544 bool ret = false;
c26e2f2e 2545 unsigned long irq_flags;
7a6bc1cd 2546
8930caba 2547 /* read the comment in __queue_work() */
c26e2f2e 2548 local_irq_save(irq_flags);
7a6bc1cd 2549
86898fa6
TH
2550 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2551 !clear_pending_if_disabled(work)) {
7beb2edf 2552 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2553 ret = true;
7a6bc1cd 2554 }
8a3e77cc 2555
c26e2f2e 2556 local_irq_restore(irq_flags);
7a6bc1cd
VP
2557 return ret;
2558}
ad7b1f84 2559EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2560
8376fe22
TH
2561/**
2562 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2563 * @cpu: CPU number to execute work on
2564 * @wq: workqueue to use
2565 * @dwork: work to queue
2566 * @delay: number of jiffies to wait before queueing
2567 *
2568 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2569 * modify @dwork's timer so that it expires after @delay. If @delay is
2570 * zero, @work is guaranteed to be scheduled immediately regardless of its
2571 * current state.
2572 *
d185af30 2573 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2574 * pending and its timer was modified.
2575 *
e0aecdd8 2576 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2577 * See try_to_grab_pending() for details.
2578 */
2579bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2580 struct delayed_work *dwork, unsigned long delay)
2581{
c26e2f2e 2582 unsigned long irq_flags;
f09b10b6 2583 bool ret;
c7fc77f7 2584
f09b10b6 2585 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
63bc0362 2586
f09b10b6 2587 if (!clear_pending_if_disabled(&dwork->work))
8376fe22 2588 __queue_delayed_work(cpu, wq, dwork, delay);
8376fe22 2589
f09b10b6 2590 local_irq_restore(irq_flags);
7a6bc1cd
VP
2591 return ret;
2592}
8376fe22
TH
2593EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2594
05f0fe6b
TH
2595static void rcu_work_rcufn(struct rcu_head *rcu)
2596{
2597 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2598
2599 /* read the comment in __queue_work() */
2600 local_irq_disable();
2601 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2602 local_irq_enable();
2603}
2604
2605/**
2606 * queue_rcu_work - queue work after a RCU grace period
2607 * @wq: workqueue to use
2608 * @rwork: work to queue
2609 *
2610 * Return: %false if @rwork was already pending, %true otherwise. Note
2611 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2612 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2613 * execution may happen before a full RCU grace period has passed.
2614 */
2615bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2616{
2617 struct work_struct *work = &rwork->work;
2618
86898fa6
TH
2619 /*
2620 * rcu_work can't be canceled or disabled. Warn if the user reached
2621 * inside @rwork and disabled the inner work.
2622 */
2623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2624 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
05f0fe6b 2625 rwork->wq = wq;
a7e30c0e 2626 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2627 return true;
2628 }
2629
2630 return false;
2631}
2632EXPORT_SYMBOL(queue_rcu_work);
2633
f7537df5 2634static struct worker *alloc_worker(int node)
c34056a3
TH
2635{
2636 struct worker *worker;
2637
f7537df5 2638 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2639 if (worker) {
2640 INIT_LIST_HEAD(&worker->entry);
affee4b2 2641 INIT_LIST_HEAD(&worker->scheduled);
da028469 2642 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2643 /* on creation a worker is in !idle && prep state */
2644 worker->flags = WORKER_PREP;
c8e55f36 2645 }
c34056a3
TH
2646 return worker;
2647}
2648
9546b29e
TH
2649static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2650{
8639eceb
TH
2651 if (pool->cpu < 0 && pool->attrs->affn_strict)
2652 return pool->attrs->__pod_cpumask;
2653 else
2654 return pool->attrs->cpumask;
9546b29e
TH
2655}
2656
4736cbf7
LJ
2657/**
2658 * worker_attach_to_pool() - attach a worker to a pool
2659 * @worker: worker to be attached
2660 * @pool: the target pool
2661 *
2662 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2663 * cpu-binding of @worker are kept coordinated with the pool across
2664 * cpu-[un]hotplugs.
2665 */
2666static void worker_attach_to_pool(struct worker *worker,
4cb1ef64 2667 struct worker_pool *pool)
4736cbf7 2668{
1258fae7 2669 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2670
4736cbf7 2671 /*
4cb1ef64
TH
2672 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2673 * across this function. See the comments above the flag definition for
2674 * details. BH workers are, while per-CPU, always DISASSOCIATED.
4736cbf7 2675 */
4cb1ef64 2676 if (pool->flags & POOL_DISASSOCIATED) {
4736cbf7 2677 worker->flags |= WORKER_UNBOUND;
4cb1ef64
TH
2678 } else {
2679 WARN_ON_ONCE(pool->flags & POOL_BH);
5c25b5ff 2680 kthread_set_per_cpu(worker->task, pool->cpu);
4cb1ef64 2681 }
4736cbf7 2682
640f17c8 2683 if (worker->rescue_wq)
9546b29e 2684 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2685
4736cbf7 2686 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2687 worker->pool = pool;
4736cbf7 2688
1258fae7 2689 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2690}
2691
f45b1c3c
LJ
2692static void unbind_worker(struct worker *worker)
2693{
2694 lockdep_assert_held(&wq_pool_attach_mutex);
2695
2696 kthread_set_per_cpu(worker->task, -1);
2697 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2698 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2699 else
2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2701}
2702
f4b7b53c
LJ
2703
2704static void detach_worker(struct worker *worker)
2705{
2706 lockdep_assert_held(&wq_pool_attach_mutex);
2707
2708 unbind_worker(worker);
2709 list_del(&worker->node);
f4b7b53c
LJ
2710}
2711
60f5a4bc
LJ
2712/**
2713 * worker_detach_from_pool() - detach a worker from its pool
2714 * @worker: worker which is attached to its pool
60f5a4bc 2715 *
4736cbf7
LJ
2716 * Undo the attaching which had been done in worker_attach_to_pool(). The
2717 * caller worker shouldn't access to the pool after detached except it has
2718 * other reference to the pool.
60f5a4bc 2719 */
a2d812a2 2720static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2721{
a2d812a2 2722 struct worker_pool *pool = worker->pool;
60f5a4bc 2723
4cb1ef64
TH
2724 /* there is one permanent BH worker per CPU which should never detach */
2725 WARN_ON_ONCE(pool->flags & POOL_BH);
2726
1258fae7 2727 mutex_lock(&wq_pool_attach_mutex);
f4b7b53c 2728 detach_worker(worker);
73613840 2729 worker->pool = NULL;
1258fae7 2730 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2731
b62c0751
LJ
2732 /* clear leftover flags without pool->lock after it is detached */
2733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
60f5a4bc
LJ
2734}
2735
2a1b02bc
TH
2736static int format_worker_id(char *buf, size_t size, struct worker *worker,
2737 struct worker_pool *pool)
2738{
2739 if (worker->rescue_wq)
2740 return scnprintf(buf, size, "kworker/R-%s",
2741 worker->rescue_wq->name);
2742
2743 if (pool) {
2744 if (pool->cpu >= 0)
2745 return scnprintf(buf, size, "kworker/%d:%d%s",
2746 pool->cpu, worker->id,
2747 pool->attrs->nice < 0 ? "H" : "");
2748 else
2749 return scnprintf(buf, size, "kworker/u%d:%d",
2750 pool->id, worker->id);
2751 } else {
2752 return scnprintf(buf, size, "kworker/dying");
2753 }
2754}
2755
c34056a3
TH
2756/**
2757 * create_worker - create a new workqueue worker
63d95a91 2758 * @pool: pool the new worker will belong to
c34056a3 2759 *
051e1850 2760 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2761 *
2762 * CONTEXT:
2763 * Might sleep. Does GFP_KERNEL allocations.
2764 *
d185af30 2765 * Return:
c34056a3
TH
2766 * Pointer to the newly created worker.
2767 */
bc2ae0f5 2768static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2769{
e441b56f
ZL
2770 struct worker *worker;
2771 int id;
c34056a3 2772
7cda9aae 2773 /* ID is needed to determine kthread name */
e441b56f 2774 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2775 if (id < 0) {
2776 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2777 ERR_PTR(id));
e441b56f 2778 return NULL;
3f0ea0b8 2779 }
c34056a3 2780
f7537df5 2781 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2782 if (!worker) {
2783 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2784 goto fail;
3f0ea0b8 2785 }
c34056a3 2786
c34056a3
TH
2787 worker->id = id;
2788
4cb1ef64 2789 if (!(pool->flags & POOL_BH)) {
2a1b02bc 2790 char id_buf[WORKER_ID_LEN];
4cb1ef64 2791
2a1b02bc 2792 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
4cb1ef64 2793 worker->task = kthread_create_on_node(worker_thread, worker,
2a1b02bc 2794 pool->node, "%s", id_buf);
4cb1ef64
TH
2795 if (IS_ERR(worker->task)) {
2796 if (PTR_ERR(worker->task) == -EINTR) {
2a1b02bc 2797 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
4cb1ef64
TH
2798 id_buf);
2799 } else {
2800 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2801 worker->task);
2802 }
2803 goto fail;
60f54038 2804 }
c34056a3 2805
4cb1ef64
TH
2806 set_user_nice(worker->task, pool->attrs->nice);
2807 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2808 }
91151228 2809
da028469 2810 /* successful, attach the worker to the pool */
4736cbf7 2811 worker_attach_to_pool(worker, pool);
822d8405 2812
051e1850 2813 /* start the newly created worker */
a9b8a985 2814 raw_spin_lock_irq(&pool->lock);
0219a352 2815
051e1850
LJ
2816 worker->pool->nr_workers++;
2817 worker_enter_idle(worker);
0219a352
TH
2818
2819 /*
2820 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2821 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2822 * wake it up explicitly.
0219a352 2823 */
4cb1ef64
TH
2824 if (worker->task)
2825 wake_up_process(worker->task);
0219a352 2826
a9b8a985 2827 raw_spin_unlock_irq(&pool->lock);
051e1850 2828
c34056a3 2829 return worker;
822d8405 2830
c34056a3 2831fail:
e441b56f 2832 ida_free(&pool->worker_ida, id);
c34056a3
TH
2833 kfree(worker);
2834 return NULL;
2835}
2836
f4b7b53c 2837static void detach_dying_workers(struct list_head *cull_list)
793777bc 2838{
68f83057 2839 struct worker *worker;
793777bc 2840
f4b7b53c
LJ
2841 list_for_each_entry(worker, cull_list, entry)
2842 detach_worker(worker);
793777bc
VS
2843}
2844
68f83057 2845static void reap_dying_workers(struct list_head *cull_list)
e02b9312
VS
2846{
2847 struct worker *worker, *tmp;
2848
2849 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2850 list_del_init(&worker->entry);
68f83057
LJ
2851 kthread_stop_put(worker->task);
2852 kfree(worker);
e02b9312
VS
2853 }
2854}
2855
c34056a3 2856/**
e02b9312 2857 * set_worker_dying - Tag a worker for destruction
c34056a3 2858 * @worker: worker to be destroyed
e02b9312 2859 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2860 *
e02b9312
VS
2861 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2862 * should be idle.
c8e55f36
TH
2863 *
2864 * CONTEXT:
a9b8a985 2865 * raw_spin_lock_irq(pool->lock).
c34056a3 2866 */
e02b9312 2867static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2868{
bd7bdd43 2869 struct worker_pool *pool = worker->pool;
c34056a3 2870
cd549687 2871 lockdep_assert_held(&pool->lock);
e02b9312 2872 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2873
c34056a3 2874 /* sanity check frenzy */
6183c009 2875 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2876 WARN_ON(!list_empty(&worker->scheduled)) ||
2877 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2878 return;
c34056a3 2879
73eb7fe7
LJ
2880 pool->nr_workers--;
2881 pool->nr_idle--;
5bdfff96 2882
cb444766 2883 worker->flags |= WORKER_DIE;
e02b9312
VS
2884
2885 list_move(&worker->entry, list);
68f83057
LJ
2886
2887 /* get an extra task struct reference for later kthread_stop_put() */
2888 get_task_struct(worker->task);
c34056a3
TH
2889}
2890
3f959aa3
VS
2891/**
2892 * idle_worker_timeout - check if some idle workers can now be deleted.
2893 * @t: The pool's idle_timer that just expired
2894 *
2895 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2896 * worker_leave_idle(), as a worker flicking between idle and active while its
2897 * pool is at the too_many_workers() tipping point would cause too much timer
2898 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2899 * it expire and re-evaluate things from there.
2900 */
32a6c723 2901static void idle_worker_timeout(struct timer_list *t)
e22bee78 2902{
32a6c723 2903 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2904 bool do_cull = false;
2905
2906 if (work_pending(&pool->idle_cull_work))
2907 return;
e22bee78 2908
a9b8a985 2909 raw_spin_lock_irq(&pool->lock);
e22bee78 2910
3f959aa3 2911 if (too_many_workers(pool)) {
e22bee78
TH
2912 struct worker *worker;
2913 unsigned long expires;
2914
2915 /* idle_list is kept in LIFO order, check the last one */
d70f5d57 2916 worker = list_last_entry(&pool->idle_list, struct worker, entry);
3f959aa3
VS
2917 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2918 do_cull = !time_before(jiffies, expires);
2919
2920 if (!do_cull)
2921 mod_timer(&pool->idle_timer, expires);
2922 }
2923 raw_spin_unlock_irq(&pool->lock);
2924
2925 if (do_cull)
2926 queue_work(system_unbound_wq, &pool->idle_cull_work);
2927}
2928
2929/**
2930 * idle_cull_fn - cull workers that have been idle for too long.
2931 * @work: the pool's work for handling these idle workers
2932 *
2933 * This goes through a pool's idle workers and gets rid of those that have been
2934 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2935 *
2936 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2937 * culled, so this also resets worker affinity. This requires a sleepable
2938 * context, hence the split between timer callback and work item.
3f959aa3
VS
2939 */
2940static void idle_cull_fn(struct work_struct *work)
2941{
2942 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2943 LIST_HEAD(cull_list);
3f959aa3 2944
e02b9312
VS
2945 /*
2946 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
f4b7b53c
LJ
2947 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2948 * This is required as a previously-preempted worker could run after
2949 * set_worker_dying() has happened but before detach_dying_workers() did.
e02b9312
VS
2950 */
2951 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2952 raw_spin_lock_irq(&pool->lock);
2953
2954 while (too_many_workers(pool)) {
2955 struct worker *worker;
2956 unsigned long expires;
2957
d70f5d57 2958 worker = list_last_entry(&pool->idle_list, struct worker, entry);
e22bee78
TH
2959 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2960
3347fc9f 2961 if (time_before(jiffies, expires)) {
63d95a91 2962 mod_timer(&pool->idle_timer, expires);
3347fc9f 2963 break;
d5abe669 2964 }
3347fc9f 2965
e02b9312 2966 set_worker_dying(worker, &cull_list);
e22bee78
TH
2967 }
2968
a9b8a985 2969 raw_spin_unlock_irq(&pool->lock);
f4b7b53c 2970 detach_dying_workers(&cull_list);
e02b9312 2971 mutex_unlock(&wq_pool_attach_mutex);
68f83057
LJ
2972
2973 reap_dying_workers(&cull_list);
e22bee78 2974}
d5abe669 2975
493a1724 2976static void send_mayday(struct work_struct *work)
e22bee78 2977{
112202d9
TH
2978 struct pool_workqueue *pwq = get_work_pwq(work);
2979 struct workqueue_struct *wq = pwq->wq;
493a1724 2980
2e109a28 2981 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2982
493008a8 2983 if (!wq->rescuer)
493a1724 2984 return;
e22bee78
TH
2985
2986 /* mayday mayday mayday */
493a1724 2987 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2988 /*
2989 * If @pwq is for an unbound wq, its base ref may be put at
2990 * any time due to an attribute change. Pin @pwq until the
2991 * rescuer is done with it.
2992 */
2993 get_pwq(pwq);
493a1724 2994 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2995 wake_up_process(wq->rescuer->task);
725e8ec5 2996 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2997 }
e22bee78
TH
2998}
2999
32a6c723 3000static void pool_mayday_timeout(struct timer_list *t)
e22bee78 3001{
32a6c723 3002 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
3003 struct work_struct *work;
3004
a9b8a985
SAS
3005 raw_spin_lock_irq(&pool->lock);
3006 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 3007
63d95a91 3008 if (need_to_create_worker(pool)) {
e22bee78
TH
3009 /*
3010 * We've been trying to create a new worker but
3011 * haven't been successful. We might be hitting an
3012 * allocation deadlock. Send distress signals to
3013 * rescuers.
3014 */
63d95a91 3015 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 3016 send_mayday(work);
1da177e4 3017 }
e22bee78 3018
a9b8a985
SAS
3019 raw_spin_unlock(&wq_mayday_lock);
3020 raw_spin_unlock_irq(&pool->lock);
e22bee78 3021
63d95a91 3022 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
3023}
3024
e22bee78
TH
3025/**
3026 * maybe_create_worker - create a new worker if necessary
63d95a91 3027 * @pool: pool to create a new worker for
e22bee78 3028 *
63d95a91 3029 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
3030 * have at least one idle worker on return from this function. If
3031 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 3032 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
3033 * possible allocation deadlock.
3034 *
c5aa87bb
TH
3035 * On return, need_to_create_worker() is guaranteed to be %false and
3036 * may_start_working() %true.
e22bee78
TH
3037 *
3038 * LOCKING:
a9b8a985 3039 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
3040 * multiple times. Does GFP_KERNEL allocations. Called only from
3041 * manager.
e22bee78 3042 */
29187a9e 3043static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
3044__releases(&pool->lock)
3045__acquires(&pool->lock)
1da177e4 3046{
e22bee78 3047restart:
a9b8a985 3048 raw_spin_unlock_irq(&pool->lock);
9f9c2364 3049
e22bee78 3050 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 3051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
3052
3053 while (true) {
051e1850 3054 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 3055 break;
1da177e4 3056
e212f361 3057 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 3058
63d95a91 3059 if (!need_to_create_worker(pool))
e22bee78
TH
3060 break;
3061 }
3062
63d95a91 3063 del_timer_sync(&pool->mayday_timer);
a9b8a985 3064 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
3065 /*
3066 * This is necessary even after a new worker was just successfully
3067 * created as @pool->lock was dropped and the new worker might have
3068 * already become busy.
3069 */
63d95a91 3070 if (need_to_create_worker(pool))
e22bee78 3071 goto restart;
e22bee78
TH
3072}
3073
73f53c4a 3074/**
e22bee78
TH
3075 * manage_workers - manage worker pool
3076 * @worker: self
73f53c4a 3077 *
706026c2 3078 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 3079 * to. At any given time, there can be only zero or one manager per
706026c2 3080 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
3081 *
3082 * The caller can safely start processing works on false return. On
3083 * true return, it's guaranteed that need_to_create_worker() is false
3084 * and may_start_working() is true.
73f53c4a
TH
3085 *
3086 * CONTEXT:
a9b8a985 3087 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
3088 * multiple times. Does GFP_KERNEL allocations.
3089 *
d185af30 3090 * Return:
29187a9e
TH
3091 * %false if the pool doesn't need management and the caller can safely
3092 * start processing works, %true if management function was performed and
3093 * the conditions that the caller verified before calling the function may
3094 * no longer be true.
73f53c4a 3095 */
e22bee78 3096static bool manage_workers(struct worker *worker)
73f53c4a 3097{
63d95a91 3098 struct worker_pool *pool = worker->pool;
73f53c4a 3099
692b4825 3100 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 3101 return false;
692b4825
TH
3102
3103 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 3104 pool->manager = worker;
1e19ffc6 3105
29187a9e 3106 maybe_create_worker(pool);
e22bee78 3107
2607d7a6 3108 pool->manager = NULL;
692b4825 3109 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 3110 rcuwait_wake_up(&manager_wait);
29187a9e 3111 return true;
73f53c4a
TH
3112}
3113
a62428c0
TH
3114/**
3115 * process_one_work - process single work
c34056a3 3116 * @worker: self
a62428c0
TH
3117 * @work: work to process
3118 *
3119 * Process @work. This function contains all the logics necessary to
3120 * process a single work including synchronization against and
3121 * interaction with other workers on the same cpu, queueing and
3122 * flushing. As long as context requirement is met, any worker can
3123 * call this function to process a work.
3124 *
3125 * CONTEXT:
a9b8a985 3126 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 3127 */
c34056a3 3128static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
3129__releases(&pool->lock)
3130__acquires(&pool->lock)
a62428c0 3131{
112202d9 3132 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 3133 struct worker_pool *pool = worker->pool;
c4560c2c 3134 unsigned long work_data;
c35aea39 3135 int lockdep_start_depth, rcu_start_depth;
1acd92d9 3136 bool bh_draining = pool->flags & POOL_BH_DRAINING;
a62428c0
TH
3137#ifdef CONFIG_LOCKDEP
3138 /*
3139 * It is permissible to free the struct work_struct from
3140 * inside the function that is called from it, this we need to
3141 * take into account for lockdep too. To avoid bogus "held
3142 * lock freed" warnings as well as problems when looking into
3143 * work->lockdep_map, make a copy and use that here.
3144 */
4d82a1de
PZ
3145 struct lockdep_map lockdep_map;
3146
3147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 3148#endif
807407c0 3149 /* ensure we're on the correct CPU */
85327af6 3150 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 3151 raw_smp_processor_id() != pool->cpu);
25511a47 3152
8930caba 3153 /* claim and dequeue */
a62428c0 3154 debug_work_deactivate(work);
c9e7cf27 3155 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 3156 worker->current_work = work;
a2c1c57b 3157 worker->current_func = work->func;
112202d9 3158 worker->current_pwq = pwq;
4cb1ef64
TH
3159 if (worker->task)
3160 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 3161 work_data = *work_data_bits(work);
d812796e 3162 worker->current_color = get_work_color(work_data);
7a22ad75 3163
8bf89593
TH
3164 /*
3165 * Record wq name for cmdline and debug reporting, may get
3166 * overridden through set_worker_desc().
3167 */
3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3169
a62428c0
TH
3170 list_del_init(&work->entry);
3171
fb0e7beb 3172 /*
228f1d00
LJ
3173 * CPU intensive works don't participate in concurrency management.
3174 * They're the scheduler's responsibility. This takes @worker out
3175 * of concurrency management and the next code block will chain
3176 * execution of the pending work items.
fb0e7beb 3177 */
616db877 3178 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 3179 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3180
974271c4 3181 /*
0219a352
TH
3182 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3183 * since nr_running would always be >= 1 at this point. This is used to
3184 * chain execution of the pending work items for WORKER_NOT_RUNNING
3185 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 3186 */
0219a352 3187 kick_pool(pool);
974271c4 3188
8930caba 3189 /*
7c3eed5c 3190 * Record the last pool and clear PENDING which should be the last
d565ed63 3191 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3192 * PENDING and queued state changes happen together while IRQ is
3193 * disabled.
8930caba 3194 */
456a78ee 3195 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
a62428c0 3196
fe48ba7d 3197 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3198 raw_spin_unlock_irq(&pool->lock);
a62428c0 3199
c35aea39
TH
3200 rcu_start_depth = rcu_preempt_depth();
3201 lockdep_start_depth = lockdep_depth(current);
1acd92d9
TH
3202 /* see drain_dead_softirq_workfn() */
3203 if (!bh_draining)
4f022f43 3204 lock_map_acquire(pwq->wq->lockdep_map);
a62428c0 3205 lock_map_acquire(&lockdep_map);
e6f3faa7 3206 /*
f52be570
PZ
3207 * Strictly speaking we should mark the invariant state without holding
3208 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3209 *
3210 * However, that would result in:
3211 *
3212 * A(W1)
3213 * WFC(C)
3214 * A(W1)
3215 * C(C)
3216 *
3217 * Which would create W1->C->W1 dependencies, even though there is no
3218 * actual deadlock possible. There are two solutions, using a
3219 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3220 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3221 * these locks.
3222 *
3223 * AFAICT there is no possible deadlock scenario between the
3224 * flush_work() and complete() primitives (except for single-threaded
3225 * workqueues), so hiding them isn't a problem.
3226 */
f52be570 3227 lockdep_invariant_state(true);
e36c886a 3228 trace_workqueue_execute_start(work);
a2c1c57b 3229 worker->current_func(work);
e36c886a
AV
3230 /*
3231 * While we must be careful to not use "work" after this, the trace
3232 * point will only record its address.
3233 */
1c5da0ec 3234 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3235 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3236 lock_map_release(&lockdep_map);
1acd92d9 3237 if (!bh_draining)
4f022f43 3238 lock_map_release(pwq->wq->lockdep_map);
a62428c0 3239
c35aea39
TH
3240 if (unlikely((worker->task && in_atomic()) ||
3241 lockdep_depth(current) != lockdep_start_depth ||
3242 rcu_preempt_depth() != rcu_start_depth)) {
3243 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3244 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3245 current->comm, task_pid_nr(current), preempt_count(),
3246 lockdep_start_depth, lockdep_depth(current),
3247 rcu_start_depth, rcu_preempt_depth(),
3248 worker->current_func);
a62428c0
TH
3249 debug_show_held_locks(current);
3250 dump_stack();
3251 }
3252
b22ce278 3253 /*
025f50f3 3254 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3255 * kernels, where a requeueing work item waiting for something to
3256 * happen could deadlock with stop_machine as such work item could
3257 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3258 * stop_machine. At the same time, report a quiescent RCU state so
3259 * the same condition doesn't freeze RCU.
b22ce278 3260 */
4cb1ef64
TH
3261 if (worker->task)
3262 cond_resched();
b22ce278 3263
a9b8a985 3264 raw_spin_lock_irq(&pool->lock);
a62428c0 3265
616db877
TH
3266 /*
3267 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3268 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3269 * wq_cpu_intensive_thresh_us. Clear it.
3270 */
3271 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3272
1b69ac6b
JW
3273 /* tag the worker for identification in schedule() */
3274 worker->last_func = worker->current_func;
3275
a62428c0 3276 /* we're done with it, release */
42f8570f 3277 hash_del(&worker->hentry);
c34056a3 3278 worker->current_work = NULL;
a2c1c57b 3279 worker->current_func = NULL;
112202d9 3280 worker->current_pwq = NULL;
d812796e 3281 worker->current_color = INT_MAX;
dd6c3c54
TH
3282
3283 /* must be the last step, see the function comment */
c4560c2c 3284 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3285}
3286
affee4b2
TH
3287/**
3288 * process_scheduled_works - process scheduled works
3289 * @worker: self
3290 *
3291 * Process all scheduled works. Please note that the scheduled list
3292 * may change while processing a work, so this function repeatedly
3293 * fetches a work from the top and executes it.
3294 *
3295 * CONTEXT:
a9b8a985 3296 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3297 * multiple times.
3298 */
3299static void process_scheduled_works(struct worker *worker)
1da177e4 3300{
c0ab017d
TH
3301 struct work_struct *work;
3302 bool first = true;
3303
3304 while ((work = list_first_entry_or_null(&worker->scheduled,
3305 struct work_struct, entry))) {
3306 if (first) {
3307 worker->pool->watchdog_ts = jiffies;
3308 first = false;
3309 }
c34056a3 3310 process_one_work(worker, work);
1da177e4 3311 }
1da177e4
LT
3312}
3313
197f6acc
TH
3314static void set_pf_worker(bool val)
3315{
3316 mutex_lock(&wq_pool_attach_mutex);
3317 if (val)
3318 current->flags |= PF_WQ_WORKER;
3319 else
3320 current->flags &= ~PF_WQ_WORKER;
3321 mutex_unlock(&wq_pool_attach_mutex);
3322}
3323
4690c4ab
TH
3324/**
3325 * worker_thread - the worker thread function
c34056a3 3326 * @__worker: self
4690c4ab 3327 *
c5aa87bb
TH
3328 * The worker thread function. All workers belong to a worker_pool -
3329 * either a per-cpu one or dynamic unbound one. These workers process all
3330 * work items regardless of their specific target workqueue. The only
3331 * exception is work items which belong to workqueues with a rescuer which
3332 * will be explained in rescuer_thread().
d185af30
YB
3333 *
3334 * Return: 0
4690c4ab 3335 */
c34056a3 3336static int worker_thread(void *__worker)
1da177e4 3337{
c34056a3 3338 struct worker *worker = __worker;
bd7bdd43 3339 struct worker_pool *pool = worker->pool;
1da177e4 3340
e22bee78 3341 /* tell the scheduler that this is a workqueue worker */
197f6acc 3342 set_pf_worker(true);
c8e55f36 3343woke_up:
a9b8a985 3344 raw_spin_lock_irq(&pool->lock);
1da177e4 3345
a9ab775b
TH
3346 /* am I supposed to die? */
3347 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3348 raw_spin_unlock_irq(&pool->lock);
197f6acc 3349 set_pf_worker(false);
73613840
LJ
3350 /*
3351 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3352 * shouldn't be accessed, reset it to NULL in case otherwise.
3353 */
3354 worker->pool = NULL;
e441b56f 3355 ida_free(&pool->worker_ida, worker->id);
a9ab775b 3356 return 0;
c8e55f36 3357 }
affee4b2 3358
c8e55f36 3359 worker_leave_idle(worker);
db7bccf4 3360recheck:
e22bee78 3361 /* no more worker necessary? */
63d95a91 3362 if (!need_more_worker(pool))
e22bee78
TH
3363 goto sleep;
3364
3365 /* do we need to manage? */
63d95a91 3366 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3367 goto recheck;
3368
c8e55f36
TH
3369 /*
3370 * ->scheduled list can only be filled while a worker is
3371 * preparing to process a work or actually processing it.
3372 * Make sure nobody diddled with it while I was sleeping.
3373 */
6183c009 3374 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3375
e22bee78 3376 /*
a9ab775b
TH
3377 * Finish PREP stage. We're guaranteed to have at least one idle
3378 * worker or that someone else has already assumed the manager
3379 * role. This is where @worker starts participating in concurrency
3380 * management if applicable and concurrency management is restored
3381 * after being rebound. See rebind_workers() for details.
e22bee78 3382 */
a9ab775b 3383 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3384
3385 do {
c8e55f36 3386 struct work_struct *work =
bd7bdd43 3387 list_first_entry(&pool->worklist,
c8e55f36
TH
3388 struct work_struct, entry);
3389
873eaca6
TH
3390 if (assign_work(work, worker, NULL))
3391 process_scheduled_works(worker);
63d95a91 3392 } while (keep_working(pool));
e22bee78 3393
228f1d00 3394 worker_set_flags(worker, WORKER_PREP);
d313dd85 3395sleep:
c8e55f36 3396 /*
d565ed63
TH
3397 * pool->lock is held and there's no work to process and no need to
3398 * manage, sleep. Workers are woken up only while holding
3399 * pool->lock or from local cpu, so setting the current state
3400 * before releasing pool->lock is enough to prevent losing any
3401 * event.
c8e55f36
TH
3402 */
3403 worker_enter_idle(worker);
c5a94a61 3404 __set_current_state(TASK_IDLE);
a9b8a985 3405 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3406 schedule();
3407 goto woke_up;
1da177e4
LT
3408}
3409
e22bee78
TH
3410/**
3411 * rescuer_thread - the rescuer thread function
111c225a 3412 * @__rescuer: self
e22bee78
TH
3413 *
3414 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3415 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3416 *
706026c2 3417 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3418 * worker which uses GFP_KERNEL allocation which has slight chance of
3419 * developing into deadlock if some works currently on the same queue
3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3421 * the problem rescuer solves.
3422 *
706026c2
TH
3423 * When such condition is possible, the pool summons rescuers of all
3424 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3425 * those works so that forward progress can be guaranteed.
3426 *
3427 * This should happen rarely.
d185af30
YB
3428 *
3429 * Return: 0
e22bee78 3430 */
111c225a 3431static int rescuer_thread(void *__rescuer)
e22bee78 3432{
111c225a
TH
3433 struct worker *rescuer = __rescuer;
3434 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3435 bool should_stop;
e22bee78
TH
3436
3437 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3438
3439 /*
3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3441 * doesn't participate in concurrency management.
3442 */
197f6acc 3443 set_pf_worker(true);
e22bee78 3444repeat:
c5a94a61 3445 set_current_state(TASK_IDLE);
e22bee78 3446
4d595b86
LJ
3447 /*
3448 * By the time the rescuer is requested to stop, the workqueue
3449 * shouldn't have any work pending, but @wq->maydays may still have
3450 * pwq(s) queued. This can happen by non-rescuer workers consuming
3451 * all the work items before the rescuer got to them. Go through
3452 * @wq->maydays processing before acting on should_stop so that the
3453 * list is always empty on exit.
3454 */
3455 should_stop = kthread_should_stop();
e22bee78 3456
493a1724 3457 /* see whether any pwq is asking for help */
a9b8a985 3458 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3459
3460 while (!list_empty(&wq->maydays)) {
3461 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3462 struct pool_workqueue, mayday_node);
112202d9 3463 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3464 struct work_struct *work, *n;
3465
3466 __set_current_state(TASK_RUNNING);
493a1724
TH
3467 list_del_init(&pwq->mayday_node);
3468
a9b8a985 3469 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3470
51697d39
LJ
3471 worker_attach_to_pool(rescuer, pool);
3472
a9b8a985 3473 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3474
3475 /*
3476 * Slurp in all works issued via this workqueue and
3477 * process'em.
3478 */
873eaca6 3479 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3480 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3481 if (get_work_pwq(work) == pwq &&
3482 assign_work(work, rescuer, &n))
725e8ec5 3483 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3484 }
e22bee78 3485
873eaca6 3486 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3487 process_scheduled_works(rescuer);
3488
3489 /*
3490 * The above execution of rescued work items could
3491 * have created more to rescue through
f97a4a1a 3492 * pwq_activate_first_inactive() or chained
008847f6
N
3493 * queueing. Let's put @pwq back on mayday list so
3494 * that such back-to-back work items, which may be
3495 * being used to relieve memory pressure, don't
3496 * incur MAYDAY_INTERVAL delay inbetween.
3497 */
4f3f4cf3 3498 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3499 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3500 /*
3501 * Queue iff we aren't racing destruction
3502 * and somebody else hasn't queued it already.
3503 */
3504 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3505 get_pwq(pwq);
3506 list_add_tail(&pwq->mayday_node, &wq->maydays);
3507 }
a9b8a985 3508 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3509 }
3510 }
7576958a 3511
77668c8b
LJ
3512 /*
3513 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3514 * go away while we're still attached to it.
77668c8b
LJ
3515 */
3516 put_pwq(pwq);
3517
7576958a 3518 /*
0219a352
TH
3519 * Leave this pool. Notify regular workers; otherwise, we end up
3520 * with 0 concurrency and stalling the execution.
7576958a 3521 */
0219a352 3522 kick_pool(pool);
7576958a 3523
a9b8a985 3524 raw_spin_unlock_irq(&pool->lock);
13b1d625 3525
a2d812a2 3526 worker_detach_from_pool(rescuer);
13b1d625 3527
a9b8a985 3528 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3529 }
3530
a9b8a985 3531 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3532
4d595b86
LJ
3533 if (should_stop) {
3534 __set_current_state(TASK_RUNNING);
197f6acc 3535 set_pf_worker(false);
4d595b86
LJ
3536 return 0;
3537 }
3538
111c225a
TH
3539 /* rescuers should never participate in concurrency management */
3540 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3541 schedule();
3542 goto repeat;
1da177e4
LT
3543}
3544
4cb1ef64
TH
3545static void bh_worker(struct worker *worker)
3546{
3547 struct worker_pool *pool = worker->pool;
3548 int nr_restarts = BH_WORKER_RESTARTS;
3549 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3550
3551 raw_spin_lock_irq(&pool->lock);
3552 worker_leave_idle(worker);
3553
3554 /*
3555 * This function follows the structure of worker_thread(). See there for
3556 * explanations on each step.
3557 */
3558 if (!need_more_worker(pool))
3559 goto done;
3560
3561 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3562 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3563
3564 do {
3565 struct work_struct *work =
3566 list_first_entry(&pool->worklist,
3567 struct work_struct, entry);
3568
3569 if (assign_work(work, worker, NULL))
3570 process_scheduled_works(worker);
3571 } while (keep_working(pool) &&
3572 --nr_restarts && time_before(jiffies, end));
3573
3574 worker_set_flags(worker, WORKER_PREP);
3575done:
3576 worker_enter_idle(worker);
3577 kick_pool(pool);
3578 raw_spin_unlock_irq(&pool->lock);
3579}
3580
3581/*
3582 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3583 *
3584 * This is currently called from tasklet[_hi]action() and thus is also called
3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3587 * can be dropped.
3588 *
3589 * After full conversion, we'll add worker->softirq_action, directly use the
3590 * softirq action and obtain the worker pointer from the softirq_action pointer.
3591 */
3592void workqueue_softirq_action(bool highpri)
3593{
3594 struct worker_pool *pool =
3595 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3596 if (need_more_worker(pool))
3597 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3598}
3599
1acd92d9
TH
3600struct wq_drain_dead_softirq_work {
3601 struct work_struct work;
3602 struct worker_pool *pool;
3603 struct completion done;
3604};
3605
3606static void drain_dead_softirq_workfn(struct work_struct *work)
3607{
3608 struct wq_drain_dead_softirq_work *dead_work =
3609 container_of(work, struct wq_drain_dead_softirq_work, work);
3610 struct worker_pool *pool = dead_work->pool;
3611 bool repeat;
3612
3613 /*
3614 * @pool's CPU is dead and we want to execute its still pending work
3615 * items from this BH work item which is running on a different CPU. As
3616 * its CPU is dead, @pool can't be kicked and, as work execution path
3617 * will be nested, a lockdep annotation needs to be suppressed. Mark
3618 * @pool with %POOL_BH_DRAINING for the special treatments.
3619 */
3620 raw_spin_lock_irq(&pool->lock);
3621 pool->flags |= POOL_BH_DRAINING;
3622 raw_spin_unlock_irq(&pool->lock);
3623
3624 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3625
3626 raw_spin_lock_irq(&pool->lock);
3627 pool->flags &= ~POOL_BH_DRAINING;
3628 repeat = need_more_worker(pool);
3629 raw_spin_unlock_irq(&pool->lock);
3630
3631 /*
3632 * bh_worker() might hit consecutive execution limit and bail. If there
3633 * still are pending work items, reschedule self and return so that we
3634 * don't hog this CPU's BH.
3635 */
3636 if (repeat) {
3637 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3638 queue_work(system_bh_highpri_wq, work);
3639 else
3640 queue_work(system_bh_wq, work);
3641 } else {
3642 complete(&dead_work->done);
3643 }
3644}
3645
3646/*
3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3649 * have to worry about draining overlapping with CPU coming back online or
3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3651 * on). Let's keep it simple and drain them synchronously. These are BH work
3652 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3653 */
3654void workqueue_softirq_dead(unsigned int cpu)
3655{
3656 int i;
3657
3658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3659 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3660 struct wq_drain_dead_softirq_work dead_work;
3661
3662 if (!need_more_worker(pool))
3663 continue;
3664
e7cc3be6 3665 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
1acd92d9
TH
3666 dead_work.pool = pool;
3667 init_completion(&dead_work.done);
3668
3669 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3670 queue_work(system_bh_highpri_wq, &dead_work.work);
3671 else
3672 queue_work(system_bh_wq, &dead_work.work);
3673
3674 wait_for_completion(&dead_work.done);
31103f40 3675 destroy_work_on_stack(&dead_work.work);
1acd92d9
TH
3676 }
3677}
3678
fca839c0
TH
3679/**
3680 * check_flush_dependency - check for flush dependency sanity
3681 * @target_wq: workqueue being flushed
3682 * @target_work: work item being flushed (NULL for workqueue flushes)
3683 *
3684 * %current is trying to flush the whole @target_wq or @target_work on it.
3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3686 * reclaiming memory or running on a workqueue which doesn't have
3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3688 * a deadlock.
3689 */
3690static void check_flush_dependency(struct workqueue_struct *target_wq,
3691 struct work_struct *target_work)
3692{
3693 work_func_t target_func = target_work ? target_work->func : NULL;
3694 struct worker *worker;
3695
3696 if (target_wq->flags & WQ_MEM_RECLAIM)
3697 return;
3698
3699 worker = current_wq_worker();
3700
3701 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3703 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3704 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3705 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3707 worker->current_pwq->wq->name, worker->current_func,
3708 target_wq->name, target_func);
3709}
3710
fc2e4d70
ON
3711struct wq_barrier {
3712 struct work_struct work;
3713 struct completion done;
2607d7a6 3714 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3715};
3716
3717static void wq_barrier_func(struct work_struct *work)
3718{
3719 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3720 complete(&barr->done);
3721}
3722
4690c4ab
TH
3723/**
3724 * insert_wq_barrier - insert a barrier work
112202d9 3725 * @pwq: pwq to insert barrier into
4690c4ab 3726 * @barr: wq_barrier to insert
affee4b2
TH
3727 * @target: target work to attach @barr to
3728 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3729 *
affee4b2
TH
3730 * @barr is linked to @target such that @barr is completed only after
3731 * @target finishes execution. Please note that the ordering
3732 * guarantee is observed only with respect to @target and on the local
3733 * cpu.
3734 *
3735 * Currently, a queued barrier can't be canceled. This is because
3736 * try_to_grab_pending() can't determine whether the work to be
3737 * grabbed is at the head of the queue and thus can't clear LINKED
3738 * flag of the previous work while there must be a valid next work
3739 * after a work with LINKED flag set.
3740 *
3741 * Note that when @worker is non-NULL, @target may be modified
112202d9 3742 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3743 *
3744 * CONTEXT:
a9b8a985 3745 * raw_spin_lock_irq(pool->lock).
4690c4ab 3746 */
112202d9 3747static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3748 struct wq_barrier *barr,
3749 struct work_struct *target, struct worker *worker)
fc2e4d70 3750{
4cb1ef64 3751 static __maybe_unused struct lock_class_key bh_key, thr_key;
d812796e
LJ
3752 unsigned int work_flags = 0;
3753 unsigned int work_color;
affee4b2 3754 struct list_head *head;
affee4b2 3755
dc186ad7 3756 /*
d565ed63 3757 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3758 * as we know for sure that this will not trigger any of the
3759 * checks and call back into the fixup functions where we
3760 * might deadlock.
4cb1ef64
TH
3761 *
3762 * BH and threaded workqueues need separate lockdep keys to avoid
3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3764 * usage".
dc186ad7 3765 */
4cb1ef64
TH
3766 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3767 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
22df02bb 3768 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3769
fd1a5b04
BP
3770 init_completion_map(&barr->done, &target->lockdep_map);
3771
2607d7a6 3772 barr->task = current;
83c22520 3773
5797b1c1 3774 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3775 work_flags |= WORK_STRUCT_INACTIVE;
3776
affee4b2
TH
3777 /*
3778 * If @target is currently being executed, schedule the
3779 * barrier to the worker; otherwise, put it after @target.
3780 */
d812796e 3781 if (worker) {
affee4b2 3782 head = worker->scheduled.next;
d812796e
LJ
3783 work_color = worker->current_color;
3784 } else {
affee4b2
TH
3785 unsigned long *bits = work_data_bits(target);
3786
3787 head = target->entry.next;
3788 /* there can already be other linked works, inherit and set */
d21cece0 3789 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3790 work_color = get_work_color(*bits);
affee4b2
TH
3791 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3792 }
3793
d812796e
LJ
3794 pwq->nr_in_flight[work_color]++;
3795 work_flags |= work_color_to_flags(work_color);
3796
d21cece0 3797 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3798}
3799
73f53c4a 3800/**
112202d9 3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3802 * @wq: workqueue being flushed
3803 * @flush_color: new flush color, < 0 for no-op
3804 * @work_color: new work color, < 0 for no-op
3805 *
112202d9 3806 * Prepare pwqs for workqueue flushing.
73f53c4a 3807 *
112202d9
TH
3808 * If @flush_color is non-negative, flush_color on all pwqs should be
3809 * -1. If no pwq has in-flight commands at the specified color, all
3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3811 * has in flight commands, its pwq->flush_color is set to
3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3813 * wakeup logic is armed and %true is returned.
3814 *
3815 * The caller should have initialized @wq->first_flusher prior to
3816 * calling this function with non-negative @flush_color. If
3817 * @flush_color is negative, no flush color update is done and %false
3818 * is returned.
3819 *
112202d9 3820 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3821 * work_color which is previous to @work_color and all will be
3822 * advanced to @work_color.
3823 *
3824 * CONTEXT:
3c25a55d 3825 * mutex_lock(wq->mutex).
73f53c4a 3826 *
d185af30 3827 * Return:
73f53c4a
TH
3828 * %true if @flush_color >= 0 and there's something to flush. %false
3829 * otherwise.
3830 */
112202d9 3831static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3832 int flush_color, int work_color)
1da177e4 3833{
73f53c4a 3834 bool wait = false;
49e3cf44 3835 struct pool_workqueue *pwq;
1da177e4 3836
73f53c4a 3837 if (flush_color >= 0) {
6183c009 3838 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3839 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3840 }
2355b70f 3841
49e3cf44 3842 for_each_pwq(pwq, wq) {
112202d9 3843 struct worker_pool *pool = pwq->pool;
fc2e4d70 3844
a9b8a985 3845 raw_spin_lock_irq(&pool->lock);
83c22520 3846
73f53c4a 3847 if (flush_color >= 0) {
6183c009 3848 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3849
112202d9
TH
3850 if (pwq->nr_in_flight[flush_color]) {
3851 pwq->flush_color = flush_color;
3852 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3853 wait = true;
3854 }
3855 }
1da177e4 3856
73f53c4a 3857 if (work_color >= 0) {
6183c009 3858 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3859 pwq->work_color = work_color;
73f53c4a 3860 }
1da177e4 3861
a9b8a985 3862 raw_spin_unlock_irq(&pool->lock);
1da177e4 3863 }
2355b70f 3864
112202d9 3865 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3866 complete(&wq->first_flusher->done);
14441960 3867
73f53c4a 3868 return wait;
1da177e4
LT
3869}
3870
c35aea39
TH
3871static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3872{
4cb1ef64 3873#ifdef CONFIG_LOCKDEP
84c425be
SS
3874 if (unlikely(!wq->lockdep_map))
3875 return;
3876
4cb1ef64
TH
3877 if (wq->flags & WQ_BH)
3878 local_bh_disable();
3879
4f022f43
MB
3880 lock_map_acquire(wq->lockdep_map);
3881 lock_map_release(wq->lockdep_map);
4cb1ef64
TH
3882
3883 if (wq->flags & WQ_BH)
3884 local_bh_enable();
3885#endif
c35aea39
TH
3886}
3887
3888static void touch_work_lockdep_map(struct work_struct *work,
3889 struct workqueue_struct *wq)
3890{
4cb1ef64
TH
3891#ifdef CONFIG_LOCKDEP
3892 if (wq->flags & WQ_BH)
3893 local_bh_disable();
3894
c35aea39
TH
3895 lock_map_acquire(&work->lockdep_map);
3896 lock_map_release(&work->lockdep_map);
4cb1ef64
TH
3897
3898 if (wq->flags & WQ_BH)
3899 local_bh_enable();
3900#endif
c35aea39
TH
3901}
3902
0fcb78c2 3903/**
c4f135d6 3904 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3905 * @wq: workqueue to flush
1da177e4 3906 *
c5aa87bb
TH
3907 * This function sleeps until all work items which were queued on entry
3908 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3909 */
c4f135d6 3910void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3911{
73f53c4a
TH
3912 struct wq_flusher this_flusher = {
3913 .list = LIST_HEAD_INIT(this_flusher.list),
3914 .flush_color = -1,
4f022f43 3915 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
73f53c4a
TH
3916 };
3917 int next_color;
1da177e4 3918
3347fa09
TH
3919 if (WARN_ON(!wq_online))
3920 return;
3921
c35aea39 3922 touch_wq_lockdep_map(wq);
87915adc 3923
3c25a55d 3924 mutex_lock(&wq->mutex);
73f53c4a
TH
3925
3926 /*
3927 * Start-to-wait phase
3928 */
3929 next_color = work_next_color(wq->work_color);
3930
3931 if (next_color != wq->flush_color) {
3932 /*
3933 * Color space is not full. The current work_color
3934 * becomes our flush_color and work_color is advanced
3935 * by one.
3936 */
6183c009 3937 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3938 this_flusher.flush_color = wq->work_color;
3939 wq->work_color = next_color;
3940
3941 if (!wq->first_flusher) {
3942 /* no flush in progress, become the first flusher */
6183c009 3943 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3944
3945 wq->first_flusher = &this_flusher;
3946
112202d9 3947 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3948 wq->work_color)) {
3949 /* nothing to flush, done */
3950 wq->flush_color = next_color;
3951 wq->first_flusher = NULL;
3952 goto out_unlock;
3953 }
3954 } else {
3955 /* wait in queue */
6183c009 3956 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3957 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3958 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3959 }
3960 } else {
3961 /*
3962 * Oops, color space is full, wait on overflow queue.
3963 * The next flush completion will assign us
3964 * flush_color and transfer to flusher_queue.
3965 */
3966 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3967 }
3968
fca839c0
TH
3969 check_flush_dependency(wq, NULL);
3970
3c25a55d 3971 mutex_unlock(&wq->mutex);
73f53c4a
TH
3972
3973 wait_for_completion(&this_flusher.done);
3974
3975 /*
3976 * Wake-up-and-cascade phase
3977 *
3978 * First flushers are responsible for cascading flushes and
3979 * handling overflow. Non-first flushers can simply return.
3980 */
00d5d15b 3981 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3982 return;
3983
3c25a55d 3984 mutex_lock(&wq->mutex);
73f53c4a 3985
4ce48b37
TH
3986 /* we might have raced, check again with mutex held */
3987 if (wq->first_flusher != &this_flusher)
3988 goto out_unlock;
3989
00d5d15b 3990 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3991
6183c009
TH
3992 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3993 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3994
3995 while (true) {
3996 struct wq_flusher *next, *tmp;
3997
3998 /* complete all the flushers sharing the current flush color */
3999 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4000 if (next->flush_color != wq->flush_color)
4001 break;
4002 list_del_init(&next->list);
4003 complete(&next->done);
4004 }
4005
6183c009
TH
4006 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4007 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
4008
4009 /* this flush_color is finished, advance by one */
4010 wq->flush_color = work_next_color(wq->flush_color);
4011
4012 /* one color has been freed, handle overflow queue */
4013 if (!list_empty(&wq->flusher_overflow)) {
4014 /*
4015 * Assign the same color to all overflowed
4016 * flushers, advance work_color and append to
4017 * flusher_queue. This is the start-to-wait
4018 * phase for these overflowed flushers.
4019 */
4020 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4021 tmp->flush_color = wq->work_color;
4022
4023 wq->work_color = work_next_color(wq->work_color);
4024
4025 list_splice_tail_init(&wq->flusher_overflow,
4026 &wq->flusher_queue);
112202d9 4027 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
4028 }
4029
4030 if (list_empty(&wq->flusher_queue)) {
6183c009 4031 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
4032 break;
4033 }
4034
4035 /*
4036 * Need to flush more colors. Make the next flusher
112202d9 4037 * the new first flusher and arm pwqs.
73f53c4a 4038 */
6183c009
TH
4039 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4040 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
4041
4042 list_del_init(&next->list);
4043 wq->first_flusher = next;
4044
112202d9 4045 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
4046 break;
4047
4048 /*
4049 * Meh... this color is already done, clear first
4050 * flusher and repeat cascading.
4051 */
4052 wq->first_flusher = NULL;
4053 }
4054
4055out_unlock:
3c25a55d 4056 mutex_unlock(&wq->mutex);
1da177e4 4057}
c4f135d6 4058EXPORT_SYMBOL(__flush_workqueue);
1da177e4 4059
9c5a2ba7
TH
4060/**
4061 * drain_workqueue - drain a workqueue
4062 * @wq: workqueue to drain
4063 *
4064 * Wait until the workqueue becomes empty. While draining is in progress,
4065 * only chain queueing is allowed. IOW, only currently pending or running
4066 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 4067 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
4068 * by the depth of chaining and should be relatively short. Whine if it
4069 * takes too long.
4070 */
4071void drain_workqueue(struct workqueue_struct *wq)
4072{
4073 unsigned int flush_cnt = 0;
49e3cf44 4074 struct pool_workqueue *pwq;
9c5a2ba7
TH
4075
4076 /*
4077 * __queue_work() needs to test whether there are drainers, is much
4078 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 4079 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 4080 */
87fc741e 4081 mutex_lock(&wq->mutex);
9c5a2ba7 4082 if (!wq->nr_drainers++)
618b01eb 4083 wq->flags |= __WQ_DRAINING;
87fc741e 4084 mutex_unlock(&wq->mutex);
9c5a2ba7 4085reflush:
c4f135d6 4086 __flush_workqueue(wq);
9c5a2ba7 4087
b09f4fd3 4088 mutex_lock(&wq->mutex);
76af4d93 4089
49e3cf44 4090 for_each_pwq(pwq, wq) {
fa2563e4 4091 bool drained;
9c5a2ba7 4092
a9b8a985 4093 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 4094 drained = pwq_is_empty(pwq);
a9b8a985 4095 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
4096
4097 if (drained)
9c5a2ba7
TH
4098 continue;
4099
4100 if (++flush_cnt == 10 ||
4101 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
4102 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4103 wq->name, __func__, flush_cnt);
76af4d93 4104
b09f4fd3 4105 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
4106 goto reflush;
4107 }
4108
9c5a2ba7 4109 if (!--wq->nr_drainers)
618b01eb 4110 wq->flags &= ~__WQ_DRAINING;
87fc741e 4111 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
4112}
4113EXPORT_SYMBOL_GPL(drain_workqueue);
4114
d6e89786
JB
4115static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4116 bool from_cancel)
db700897 4117{
affee4b2 4118 struct worker *worker = NULL;
c9e7cf27 4119 struct worker_pool *pool;
112202d9 4120 struct pool_workqueue *pwq;
c35aea39 4121 struct workqueue_struct *wq;
db700897 4122
24acfb71 4123 rcu_read_lock();
c9e7cf27 4124 pool = get_work_pool(work);
fa1b54e6 4125 if (!pool) {
24acfb71 4126 rcu_read_unlock();
baf59022 4127 return false;
fa1b54e6 4128 }
db700897 4129
a9b8a985 4130 raw_spin_lock_irq(&pool->lock);
0b3dae68 4131 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
4132 pwq = get_work_pwq(work);
4133 if (pwq) {
4134 if (unlikely(pwq->pool != pool))
4690c4ab 4135 goto already_gone;
606a5020 4136 } else {
c9e7cf27 4137 worker = find_worker_executing_work(pool, work);
affee4b2 4138 if (!worker)
4690c4ab 4139 goto already_gone;
112202d9 4140 pwq = worker->current_pwq;
606a5020 4141 }
db700897 4142
c35aea39
TH
4143 wq = pwq->wq;
4144 check_flush_dependency(wq, work);
fca839c0 4145
112202d9 4146 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 4147 raw_spin_unlock_irq(&pool->lock);
7a22ad75 4148
c35aea39
TH
4149 touch_work_lockdep_map(work, wq);
4150
e159489b 4151 /*
a1d14934
PZ
4152 * Force a lock recursion deadlock when using flush_work() inside a
4153 * single-threaded or rescuer equipped workqueue.
4154 *
4155 * For single threaded workqueues the deadlock happens when the work
4156 * is after the work issuing the flush_work(). For rescuer equipped
4157 * workqueues the deadlock happens when the rescuer stalls, blocking
4158 * forward progress.
e159489b 4159 */
c35aea39
TH
4160 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4161 touch_wq_lockdep_map(wq);
4162
24acfb71 4163 rcu_read_unlock();
401a8d04 4164 return true;
4690c4ab 4165already_gone:
a9b8a985 4166 raw_spin_unlock_irq(&pool->lock);
24acfb71 4167 rcu_read_unlock();
401a8d04 4168 return false;
db700897 4169}
baf59022 4170
d6e89786
JB
4171static bool __flush_work(struct work_struct *work, bool from_cancel)
4172{
4173 struct wq_barrier barr;
4174
4175 if (WARN_ON(!wq_online))
4176 return false;
4177
4d43d395
TH
4178 if (WARN_ON(!work->func))
4179 return false;
4180
134874e2 4181 if (!start_flush_work(work, &barr, from_cancel))
d6e89786 4182 return false;
134874e2
TH
4183
4184 /*
4185 * start_flush_work() returned %true. If @from_cancel is set, we know
4186 * that @work must have been executing during start_flush_work() and
4187 * can't currently be queued. Its data must contain OFFQ bits. If @work
4188 * was queued on a BH workqueue, we also know that it was running in the
4189 * BH context and thus can be busy-waited.
4190 */
8bc35475
TH
4191 if (from_cancel) {
4192 unsigned long data = *work_data_bits(work);
4193
4194 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4195 (data & WORK_OFFQ_BH)) {
4196 /*
4197 * On RT, prevent a live lock when %current preempted
4198 * soft interrupt processing or prevents ksoftirqd from
4199 * running by keeping flipping BH. If the BH work item
4200 * runs on a different CPU then this has no effect other
4201 * than doing the BH disable/enable dance for nothing.
4202 * This is copied from
4203 * kernel/softirq.c::tasklet_unlock_spin_wait().
4204 */
4205 while (!try_wait_for_completion(&barr.done)) {
4206 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4207 local_bh_disable();
4208 local_bh_enable();
4209 } else {
4210 cpu_relax();
4211 }
134874e2 4212 }
8bc35475 4213 goto out_destroy;
134874e2 4214 }
d6e89786 4215 }
134874e2 4216
8bc35475
TH
4217 wait_for_completion(&barr.done);
4218
4219out_destroy:
134874e2
TH
4220 destroy_work_on_stack(&barr.work);
4221 return true;
d6e89786
JB
4222}
4223
baf59022
TH
4224/**
4225 * flush_work - wait for a work to finish executing the last queueing instance
4226 * @work: the work to flush
4227 *
606a5020
TH
4228 * Wait until @work has finished execution. @work is guaranteed to be idle
4229 * on return if it hasn't been requeued since flush started.
baf59022 4230 *
d185af30 4231 * Return:
baf59022
TH
4232 * %true if flush_work() waited for the work to finish execution,
4233 * %false if it was already idle.
4234 */
4235bool flush_work(struct work_struct *work)
4236{
134874e2 4237 might_sleep();
d6e89786 4238 return __flush_work(work, false);
6e84d644 4239}
606a5020 4240EXPORT_SYMBOL_GPL(flush_work);
6e84d644 4241
cdc6e4b3
TH
4242/**
4243 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4244 * @dwork: the delayed work to flush
4245 *
4246 * Delayed timer is cancelled and the pending work is queued for
4247 * immediate execution. Like flush_work(), this function only
4248 * considers the last queueing instance of @dwork.
4249 *
4250 * Return:
4251 * %true if flush_work() waited for the work to finish execution,
4252 * %false if it was already idle.
4253 */
4254bool flush_delayed_work(struct delayed_work *dwork)
4255{
4256 local_irq_disable();
4257 if (del_timer_sync(&dwork->timer))
4258 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4259 local_irq_enable();
4260 return flush_work(&dwork->work);
4261}
4262EXPORT_SYMBOL(flush_delayed_work);
4263
4264/**
4265 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4266 * @rwork: the rcu work to flush
4267 *
4268 * Return:
4269 * %true if flush_rcu_work() waited for the work to finish execution,
4270 * %false if it was already idle.
4271 */
4272bool flush_rcu_work(struct rcu_work *rwork)
4273{
4274 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4275 rcu_barrier();
4276 flush_work(&rwork->work);
4277 return true;
4278 } else {
4279 return flush_work(&rwork->work);
4280 }
4281}
4282EXPORT_SYMBOL(flush_rcu_work);
4283
86898fa6
TH
4284static void work_offqd_disable(struct work_offq_data *offqd)
4285{
4286 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4287
4288 if (likely(offqd->disable < max))
4289 offqd->disable++;
4290 else
4291 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4292}
4293
4294static void work_offqd_enable(struct work_offq_data *offqd)
4295{
4296 if (likely(offqd->disable > 0))
4297 offqd->disable--;
4298 else
4299 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4300}
4301
c5f5b942 4302static bool __cancel_work(struct work_struct *work, u32 cflags)
cdc6e4b3 4303{
1211f3b2 4304 struct work_offq_data offqd;
c26e2f2e 4305 unsigned long irq_flags;
cdc6e4b3
TH
4306 int ret;
4307
f09b10b6 4308 ret = work_grab_pending(work, cflags, &irq_flags);
cdc6e4b3 4309
1211f3b2 4310 work_offqd_unpack(&offqd, *work_data_bits(work));
cdc6e4b3 4311
86898fa6
TH
4312 if (cflags & WORK_CANCEL_DISABLE)
4313 work_offqd_disable(&offqd);
4314
1211f3b2
TH
4315 set_work_pool_and_clear_pending(work, offqd.pool_id,
4316 work_offqd_pack_flags(&offqd));
c26e2f2e 4317 local_irq_restore(irq_flags);
cdc6e4b3
TH
4318 return ret;
4319}
4320
c5f5b942 4321static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
1f1f642e 4322{
978b8409 4323 bool ret;
1f1f642e 4324
f09b10b6 4325 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
bbb68dfa 4326
134874e2
TH
4327 if (*work_data_bits(work) & WORK_OFFQ_BH)
4328 WARN_ON_ONCE(in_hardirq());
4329 else
4330 might_sleep();
bbb68dfa 4331
3347fa09 4332 /*
c7a40c49
TH
4333 * Skip __flush_work() during early boot when we know that @work isn't
4334 * executing. This allows canceling during early boot.
3347fa09
TH
4335 */
4336 if (wq_online)
d6e89786 4337 __flush_work(work, true);
3347fa09 4338
f09b10b6
TH
4339 if (!(cflags & WORK_CANCEL_DISABLE))
4340 enable_work(work);
8603e1b3 4341
1f1f642e
ON
4342 return ret;
4343}
4344
cdc6e4b3
TH
4345/*
4346 * See cancel_delayed_work()
4347 */
4348bool cancel_work(struct work_struct *work)
4349{
c5f5b942 4350 return __cancel_work(work, 0);
cdc6e4b3
TH
4351}
4352EXPORT_SYMBOL(cancel_work);
4353
6e84d644 4354/**
401a8d04
TH
4355 * cancel_work_sync - cancel a work and wait for it to finish
4356 * @work: the work to cancel
6e84d644 4357 *
134874e2
TH
4358 * Cancel @work and wait for its execution to finish. This function can be used
4359 * even if the work re-queues itself or migrates to another workqueue. On return
4360 * from this function, @work is guaranteed to be not pending or executing on any
4361 * CPU as long as there aren't racing enqueues.
1f1f642e 4362 *
134874e2
TH
4363 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4364 * Use cancel_delayed_work_sync() instead.
6e84d644 4365 *
134874e2
TH
4366 * Must be called from a sleepable context if @work was last queued on a non-BH
4367 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4368 * if @work was last queued on a BH workqueue.
401a8d04 4369 *
134874e2 4370 * Returns %true if @work was pending, %false otherwise.
6e84d644 4371 */
401a8d04 4372bool cancel_work_sync(struct work_struct *work)
6e84d644 4373{
c5f5b942 4374 return __cancel_work_sync(work, 0);
b89deed3 4375}
28e53bdd 4376EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 4377
09383498 4378/**
57b30ae7
TH
4379 * cancel_delayed_work - cancel a delayed work
4380 * @dwork: delayed_work to cancel
09383498 4381 *
d185af30
YB
4382 * Kill off a pending delayed_work.
4383 *
4384 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4385 * pending.
4386 *
4387 * Note:
4388 * The work callback function may still be running on return, unless
4389 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4390 * use cancel_delayed_work_sync() to wait on it.
09383498 4391 *
57b30ae7 4392 * This function is safe to call from any context including IRQ handler.
09383498 4393 */
57b30ae7 4394bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4395{
c5f5b942 4396 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
09383498 4397}
57b30ae7 4398EXPORT_SYMBOL(cancel_delayed_work);
09383498 4399
401a8d04
TH
4400/**
4401 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4402 * @dwork: the delayed work cancel
4403 *
4404 * This is cancel_work_sync() for delayed works.
4405 *
d185af30 4406 * Return:
401a8d04
TH
4407 * %true if @dwork was pending, %false otherwise.
4408 */
4409bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4410{
c5f5b942 4411 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
6e84d644 4412}
f5a421a4 4413EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4414
86898fa6
TH
4415/**
4416 * disable_work - Disable and cancel a work item
4417 * @work: work item to disable
4418 *
4419 * Disable @work by incrementing its disable count and cancel it if currently
4420 * pending. As long as the disable count is non-zero, any attempt to queue @work
4421 * will fail and return %false. The maximum supported disable depth is 2 to the
4422 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4423 *
f09b10b6
TH
4424 * Can be called from any context. Returns %true if @work was pending, %false
4425 * otherwise.
86898fa6
TH
4426 */
4427bool disable_work(struct work_struct *work)
4428{
4429 return __cancel_work(work, WORK_CANCEL_DISABLE);
4430}
4431EXPORT_SYMBOL_GPL(disable_work);
4432
4433/**
4434 * disable_work_sync - Disable, cancel and drain a work item
4435 * @work: work item to disable
4436 *
4437 * Similar to disable_work() but also wait for @work to finish if currently
4438 * executing.
4439 *
134874e2
TH
4440 * Must be called from a sleepable context if @work was last queued on a non-BH
4441 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4442 * if @work was last queued on a BH workqueue.
4443 *
4444 * Returns %true if @work was pending, %false otherwise.
86898fa6
TH
4445 */
4446bool disable_work_sync(struct work_struct *work)
4447{
4448 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4449}
4450EXPORT_SYMBOL_GPL(disable_work_sync);
4451
4452/**
4453 * enable_work - Enable a work item
4454 * @work: work item to enable
4455 *
4456 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4457 * only be queued if its disable count is 0.
4458 *
f09b10b6
TH
4459 * Can be called from any context. Returns %true if the disable count reached 0.
4460 * Otherwise, %false.
86898fa6
TH
4461 */
4462bool enable_work(struct work_struct *work)
4463{
4464 struct work_offq_data offqd;
4465 unsigned long irq_flags;
4466
4467 work_grab_pending(work, 0, &irq_flags);
4468
4469 work_offqd_unpack(&offqd, *work_data_bits(work));
4470 work_offqd_enable(&offqd);
4471 set_work_pool_and_clear_pending(work, offqd.pool_id,
4472 work_offqd_pack_flags(&offqd));
4473 local_irq_restore(irq_flags);
4474
4475 return !offqd.disable;
4476}
4477EXPORT_SYMBOL_GPL(enable_work);
4478
4479/**
4480 * disable_delayed_work - Disable and cancel a delayed work item
4481 * @dwork: delayed work item to disable
4482 *
4483 * disable_work() for delayed work items.
4484 */
4485bool disable_delayed_work(struct delayed_work *dwork)
4486{
4487 return __cancel_work(&dwork->work,
4488 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4489}
4490EXPORT_SYMBOL_GPL(disable_delayed_work);
4491
4492/**
4493 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4494 * @dwork: delayed work item to disable
4495 *
4496 * disable_work_sync() for delayed work items.
4497 */
4498bool disable_delayed_work_sync(struct delayed_work *dwork)
4499{
4500 return __cancel_work_sync(&dwork->work,
4501 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4502}
4503EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4504
4505/**
4506 * enable_delayed_work - Enable a delayed work item
4507 * @dwork: delayed work item to enable
4508 *
4509 * enable_work() for delayed work items.
4510 */
4511bool enable_delayed_work(struct delayed_work *dwork)
4512{
4513 return enable_work(&dwork->work);
4514}
4515EXPORT_SYMBOL_GPL(enable_delayed_work);
4516
b6136773 4517/**
31ddd871 4518 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4519 * @func: the function to call
b6136773 4520 *
31ddd871
TH
4521 * schedule_on_each_cpu() executes @func on each online CPU using the
4522 * system workqueue and blocks until all CPUs have completed.
b6136773 4523 * schedule_on_each_cpu() is very slow.
31ddd871 4524 *
d185af30 4525 * Return:
31ddd871 4526 * 0 on success, -errno on failure.
b6136773 4527 */
65f27f38 4528int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4529{
4530 int cpu;
38f51568 4531 struct work_struct __percpu *works;
15316ba8 4532
b6136773
AM
4533 works = alloc_percpu(struct work_struct);
4534 if (!works)
15316ba8 4535 return -ENOMEM;
b6136773 4536
ffd8bea8 4537 cpus_read_lock();
93981800 4538
15316ba8 4539 for_each_online_cpu(cpu) {
9bfb1839
IM
4540 struct work_struct *work = per_cpu_ptr(works, cpu);
4541
4542 INIT_WORK(work, func);
b71ab8c2 4543 schedule_work_on(cpu, work);
65a64464 4544 }
93981800
TH
4545
4546 for_each_online_cpu(cpu)
4547 flush_work(per_cpu_ptr(works, cpu));
4548
ffd8bea8 4549 cpus_read_unlock();
b6136773 4550 free_percpu(works);
15316ba8
CL
4551 return 0;
4552}
4553
1fa44eca
JB
4554/**
4555 * execute_in_process_context - reliably execute the routine with user context
4556 * @fn: the function to execute
1fa44eca
JB
4557 * @ew: guaranteed storage for the execute work structure (must
4558 * be available when the work executes)
4559 *
4560 * Executes the function immediately if process context is available,
4561 * otherwise schedules the function for delayed execution.
4562 *
d185af30 4563 * Return: 0 - function was executed
1fa44eca
JB
4564 * 1 - function was scheduled for execution
4565 */
65f27f38 4566int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4567{
4568 if (!in_interrupt()) {
65f27f38 4569 fn(&ew->work);
1fa44eca
JB
4570 return 0;
4571 }
4572
65f27f38 4573 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4574 schedule_work(&ew->work);
4575
4576 return 1;
4577}
4578EXPORT_SYMBOL_GPL(execute_in_process_context);
4579
6ba94429
FW
4580/**
4581 * free_workqueue_attrs - free a workqueue_attrs
4582 * @attrs: workqueue_attrs to free
226223ab 4583 *
6ba94429 4584 * Undo alloc_workqueue_attrs().
226223ab 4585 */
513c98d0 4586void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4587{
6ba94429
FW
4588 if (attrs) {
4589 free_cpumask_var(attrs->cpumask);
9546b29e 4590 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4591 kfree(attrs);
4592 }
226223ab
TH
4593}
4594
6ba94429
FW
4595/**
4596 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4597 *
4598 * Allocate a new workqueue_attrs, initialize with default settings and
4599 * return it.
4600 *
4601 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4602 */
513c98d0 4603struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4604{
6ba94429 4605 struct workqueue_attrs *attrs;
226223ab 4606
be69d00d 4607 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4608 if (!attrs)
4609 goto fail;
be69d00d 4610 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4611 goto fail;
9546b29e
TH
4612 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4613 goto fail;
6ba94429
FW
4614
4615 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4616 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4617 return attrs;
4618fail:
4619 free_workqueue_attrs(attrs);
4620 return NULL;
226223ab
TH
4621}
4622
6ba94429
FW
4623static void copy_workqueue_attrs(struct workqueue_attrs *to,
4624 const struct workqueue_attrs *from)
226223ab 4625{
6ba94429
FW
4626 to->nice = from->nice;
4627 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4628 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4629 to->affn_strict = from->affn_strict;
84193c07 4630
6ba94429 4631 /*
84193c07
TH
4632 * Unlike hash and equality test, copying shouldn't ignore wq-only
4633 * fields as copying is used for both pool and wq attrs. Instead,
4634 * get_unbound_pool() explicitly clears the fields.
6ba94429 4635 */
84193c07 4636 to->affn_scope = from->affn_scope;
af73f5c9 4637 to->ordered = from->ordered;
226223ab
TH
4638}
4639
5de7a03c
TH
4640/*
4641 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4642 * comments in 'struct workqueue_attrs' definition.
4643 */
4644static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4645{
84193c07 4646 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c 4647 attrs->ordered = false;
ae1296a7
LJ
4648 if (attrs->affn_strict)
4649 cpumask_copy(attrs->cpumask, cpu_possible_mask);
5de7a03c
TH
4650}
4651
6ba94429
FW
4652/* hash value of the content of @attr */
4653static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4654{
6ba94429 4655 u32 hash = 0;
226223ab 4656
6ba94429 4657 hash = jhash_1word(attrs->nice, hash);
ae1296a7 4658 hash = jhash_1word(attrs->affn_strict, hash);
9546b29e
TH
4659 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4660 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
ae1296a7
LJ
4661 if (!attrs->affn_strict)
4662 hash = jhash(cpumask_bits(attrs->cpumask),
4663 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
6ba94429 4664 return hash;
226223ab 4665}
226223ab 4666
6ba94429
FW
4667/* content equality test */
4668static bool wqattrs_equal(const struct workqueue_attrs *a,
4669 const struct workqueue_attrs *b)
226223ab 4670{
6ba94429
FW
4671 if (a->nice != b->nice)
4672 return false;
ae1296a7 4673 if (a->affn_strict != b->affn_strict)
6ba94429 4674 return false;
9546b29e
TH
4675 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4676 return false;
ae1296a7 4677 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
8639eceb 4678 return false;
6ba94429 4679 return true;
226223ab
TH
4680}
4681
0f36ee24
TH
4682/* Update @attrs with actually available CPUs */
4683static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4684 const cpumask_t *unbound_cpumask)
4685{
4686 /*
4687 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4688 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4689 * @unbound_cpumask.
4690 */
4691 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4692 if (unlikely(cpumask_empty(attrs->cpumask)))
4693 cpumask_copy(attrs->cpumask, unbound_cpumask);
4694}
4695
84193c07
TH
4696/* find wq_pod_type to use for @attrs */
4697static const struct wq_pod_type *
4698wqattrs_pod_type(const struct workqueue_attrs *attrs)
4699{
523a301e
TH
4700 enum wq_affn_scope scope;
4701 struct wq_pod_type *pt;
4702
4703 /* to synchronize access to wq_affn_dfl */
4704 lockdep_assert_held(&wq_pool_mutex);
4705
4706 if (attrs->affn_scope == WQ_AFFN_DFL)
4707 scope = wq_affn_dfl;
4708 else
4709 scope = attrs->affn_scope;
4710
4711 pt = &wq_pod_types[scope];
84193c07
TH
4712
4713 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4714 likely(pt->nr_pods))
4715 return pt;
4716
4717 /*
4718 * Before workqueue_init_topology(), only SYSTEM is available which is
4719 * initialized in workqueue_init_early().
4720 */
4721 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4722 BUG_ON(!pt->nr_pods);
4723 return pt;
4724}
4725
6ba94429
FW
4726/**
4727 * init_worker_pool - initialize a newly zalloc'd worker_pool
4728 * @pool: worker_pool to initialize
4729 *
402dd89d 4730 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4731 *
4732 * Return: 0 on success, -errno on failure. Even on failure, all fields
4733 * inside @pool proper are initialized and put_unbound_pool() can be called
4734 * on @pool safely to release it.
4735 */
4736static int init_worker_pool(struct worker_pool *pool)
226223ab 4737{
a9b8a985 4738 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4739 pool->id = -1;
4740 pool->cpu = -1;
4741 pool->node = NUMA_NO_NODE;
4742 pool->flags |= POOL_DISASSOCIATED;
82607adc 4743 pool->watchdog_ts = jiffies;
6ba94429
FW
4744 INIT_LIST_HEAD(&pool->worklist);
4745 INIT_LIST_HEAD(&pool->idle_list);
4746 hash_init(pool->busy_hash);
226223ab 4747
32a6c723 4748 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4749 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4750
32a6c723 4751 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4752
6ba94429 4753 INIT_LIST_HEAD(&pool->workers);
226223ab 4754
6ba94429
FW
4755 ida_init(&pool->worker_ida);
4756 INIT_HLIST_NODE(&pool->hash_node);
4757 pool->refcnt = 1;
226223ab 4758
6ba94429 4759 /* shouldn't fail above this point */
be69d00d 4760 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4761 if (!pool->attrs)
4762 return -ENOMEM;
5de7a03c
TH
4763
4764 wqattrs_clear_for_pool(pool->attrs);
4765
6ba94429 4766 return 0;
226223ab
TH
4767}
4768
669de8bd
BVA
4769#ifdef CONFIG_LOCKDEP
4770static void wq_init_lockdep(struct workqueue_struct *wq)
4771{
4772 char *lock_name;
4773
4774 lockdep_register_key(&wq->key);
4775 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4776 if (!lock_name)
4777 lock_name = wq->name;
69a106c0
QC
4778
4779 wq->lock_name = lock_name;
4f022f43
MB
4780 wq->lockdep_map = &wq->__lockdep_map;
4781 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
669de8bd
BVA
4782}
4783
4784static void wq_unregister_lockdep(struct workqueue_struct *wq)
4785{
ec0a7d44
MB
4786 if (wq->lockdep_map != &wq->__lockdep_map)
4787 return;
4788
669de8bd
BVA
4789 lockdep_unregister_key(&wq->key);
4790}
4791
4792static void wq_free_lockdep(struct workqueue_struct *wq)
4793{
ec0a7d44
MB
4794 if (wq->lockdep_map != &wq->__lockdep_map)
4795 return;
4796
669de8bd
BVA
4797 if (wq->lock_name != wq->name)
4798 kfree(wq->lock_name);
4799}
4800#else
4801static void wq_init_lockdep(struct workqueue_struct *wq)
4802{
4803}
4804
4805static void wq_unregister_lockdep(struct workqueue_struct *wq)
4806{
4807}
4808
4809static void wq_free_lockdep(struct workqueue_struct *wq)
4810{
4811}
4812#endif
4813
91ccc6e7
TH
4814static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4815{
4816 int node;
4817
4818 for_each_node(node) {
4819 kfree(nna_ar[node]);
4820 nna_ar[node] = NULL;
4821 }
4822
4823 kfree(nna_ar[nr_node_ids]);
4824 nna_ar[nr_node_ids] = NULL;
4825}
4826
4827static void init_node_nr_active(struct wq_node_nr_active *nna)
4828{
c5f8cd6c 4829 nna->max = WQ_DFL_MIN_ACTIVE;
91ccc6e7 4830 atomic_set(&nna->nr, 0);
5797b1c1
TH
4831 raw_spin_lock_init(&nna->lock);
4832 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4833}
4834
4835/*
4836 * Each node's nr_active counter will be accessed mostly from its own node and
4837 * should be allocated in the node.
4838 */
4839static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4840{
4841 struct wq_node_nr_active *nna;
4842 int node;
4843
4844 for_each_node(node) {
4845 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4846 if (!nna)
4847 goto err_free;
4848 init_node_nr_active(nna);
4849 nna_ar[node] = nna;
4850 }
4851
4852 /* [nr_node_ids] is used as the fallback */
4853 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4854 if (!nna)
4855 goto err_free;
4856 init_node_nr_active(nna);
4857 nna_ar[nr_node_ids] = nna;
4858
4859 return 0;
4860
4861err_free:
4862 free_node_nr_active(nna_ar);
4863 return -ENOMEM;
4864}
4865
6ba94429 4866static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4867{
6ba94429
FW
4868 struct workqueue_struct *wq =
4869 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4870
91ccc6e7
TH
4871 if (wq->flags & WQ_UNBOUND)
4872 free_node_nr_active(wq->node_nr_active);
4873
669de8bd 4874 wq_free_lockdep(wq);
636b927e
TH
4875 free_percpu(wq->cpu_pwq);
4876 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4877 kfree(wq);
226223ab
TH
4878}
4879
6ba94429 4880static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4881{
6ba94429 4882 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4883
6ba94429
FW
4884 ida_destroy(&pool->worker_ida);
4885 free_workqueue_attrs(pool->attrs);
4886 kfree(pool);
226223ab
TH
4887}
4888
6ba94429
FW
4889/**
4890 * put_unbound_pool - put a worker_pool
4891 * @pool: worker_pool to put
4892 *
24acfb71 4893 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4894 * safe manner. get_unbound_pool() calls this function on its failure path
4895 * and this function should be able to release pools which went through,
4896 * successfully or not, init_worker_pool().
4897 *
4898 * Should be called with wq_pool_mutex held.
4899 */
4900static void put_unbound_pool(struct worker_pool *pool)
226223ab 4901{
6ba94429 4902 struct worker *worker;
9680540c 4903 LIST_HEAD(cull_list);
e02b9312 4904
6ba94429 4905 lockdep_assert_held(&wq_pool_mutex);
226223ab 4906
6ba94429
FW
4907 if (--pool->refcnt)
4908 return;
226223ab 4909
6ba94429
FW
4910 /* sanity checks */
4911 if (WARN_ON(!(pool->cpu < 0)) ||
4912 WARN_ON(!list_empty(&pool->worklist)))
4913 return;
226223ab 4914
6ba94429
FW
4915 /* release id and unhash */
4916 if (pool->id >= 0)
4917 idr_remove(&worker_pool_idr, pool->id);
4918 hash_del(&pool->hash_node);
d55262c4 4919
6ba94429 4920 /*
692b4825
TH
4921 * Become the manager and destroy all workers. This prevents
4922 * @pool's workers from blocking on attach_mutex. We're the last
4923 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4924 *
4925 * Having a concurrent manager is quite unlikely to happen as we can
4926 * only get here with
4927 * pwq->refcnt == pool->refcnt == 0
4928 * which implies no work queued to the pool, which implies no worker can
4929 * become the manager. However a worker could have taken the role of
4930 * manager before the refcnts dropped to 0, since maybe_create_worker()
4931 * drops pool->lock
6ba94429 4932 */
9ab03be4
VS
4933 while (true) {
4934 rcuwait_wait_event(&manager_wait,
4935 !(pool->flags & POOL_MANAGER_ACTIVE),
4936 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4937
4938 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4939 raw_spin_lock_irq(&pool->lock);
4940 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4941 pool->flags |= POOL_MANAGER_ACTIVE;
4942 break;
4943 }
4944 raw_spin_unlock_irq(&pool->lock);
e02b9312 4945 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4946 }
692b4825 4947
6ba94429 4948 while ((worker = first_idle_worker(pool)))
e02b9312 4949 set_worker_dying(worker, &cull_list);
6ba94429 4950 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4951 raw_spin_unlock_irq(&pool->lock);
d55262c4 4952
f4b7b53c 4953 detach_dying_workers(&cull_list);
e02b9312 4954
1258fae7 4955 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4956
68f83057 4957 reap_dying_workers(&cull_list);
226223ab 4958
6ba94429
FW
4959 /* shut down the timers */
4960 del_timer_sync(&pool->idle_timer);
3f959aa3 4961 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4962 del_timer_sync(&pool->mayday_timer);
226223ab 4963
24acfb71 4964 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4965 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4966}
4967
4968/**
6ba94429
FW
4969 * get_unbound_pool - get a worker_pool with the specified attributes
4970 * @attrs: the attributes of the worker_pool to get
226223ab 4971 *
6ba94429
FW
4972 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4973 * reference count and return it. If there already is a matching
4974 * worker_pool, it will be used; otherwise, this function attempts to
4975 * create a new one.
226223ab 4976 *
6ba94429 4977 * Should be called with wq_pool_mutex held.
226223ab 4978 *
6ba94429
FW
4979 * Return: On success, a worker_pool with the same attributes as @attrs.
4980 * On failure, %NULL.
226223ab 4981 */
6ba94429 4982static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4983{
84193c07 4984 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4985 u32 hash = wqattrs_hash(attrs);
4986 struct worker_pool *pool;
84193c07 4987 int pod, node = NUMA_NO_NODE;
226223ab 4988
6ba94429 4989 lockdep_assert_held(&wq_pool_mutex);
226223ab 4990
6ba94429
FW
4991 /* do we already have a matching pool? */
4992 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4993 if (wqattrs_equal(pool->attrs, attrs)) {
4994 pool->refcnt++;
4995 return pool;
4996 }
4997 }
226223ab 4998
9546b29e 4999 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 5000 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 5001 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
5002 node = pt->pod_node[pod];
5003 break;
e2273584
XP
5004 }
5005 }
5006
6ba94429 5007 /* nope, create a new one */
84193c07 5008 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
5009 if (!pool || init_worker_pool(pool) < 0)
5010 goto fail;
5011
84193c07 5012 pool->node = node;
5de7a03c
TH
5013 copy_workqueue_attrs(pool->attrs, attrs);
5014 wqattrs_clear_for_pool(pool->attrs);
226223ab 5015
6ba94429
FW
5016 if (worker_pool_assign_id(pool) < 0)
5017 goto fail;
226223ab 5018
6ba94429 5019 /* create and start the initial worker */
3347fa09 5020 if (wq_online && !create_worker(pool))
6ba94429 5021 goto fail;
226223ab 5022
6ba94429
FW
5023 /* install */
5024 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 5025
6ba94429
FW
5026 return pool;
5027fail:
5028 if (pool)
5029 put_unbound_pool(pool);
5030 return NULL;
226223ab 5031}
226223ab 5032
6ba94429 5033/*
967b494e
TH
5034 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5035 * refcnt and needs to be destroyed.
7a4e344c 5036 */
687a9aa5 5037static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 5038{
6ba94429 5039 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 5040 release_work);
6ba94429
FW
5041 struct workqueue_struct *wq = pwq->wq;
5042 struct worker_pool *pool = pwq->pool;
b42b0bdd 5043 bool is_last = false;
7a4e344c 5044
b42b0bdd 5045 /*
687a9aa5 5046 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
5047 * @wq, and @wq is invalid to access.
5048 */
5049 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
5050 mutex_lock(&wq->mutex);
5051 list_del_rcu(&pwq->pwqs_node);
5052 is_last = list_empty(&wq->pwqs);
4c065dbc
WL
5053
5054 /*
5055 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5056 */
5057 if (!is_last && (wq->flags & __WQ_ORDERED))
5058 unplug_oldest_pwq(wq);
5059
b42b0bdd
YY
5060 mutex_unlock(&wq->mutex);
5061 }
6ba94429 5062
687a9aa5
TH
5063 if (wq->flags & WQ_UNBOUND) {
5064 mutex_lock(&wq_pool_mutex);
5065 put_unbound_pool(pool);
5066 mutex_unlock(&wq_pool_mutex);
5067 }
6ba94429 5068
5797b1c1
TH
5069 if (!list_empty(&pwq->pending_node)) {
5070 struct wq_node_nr_active *nna =
5071 wq_node_nr_active(pwq->wq, pwq->pool->node);
5072
5073 raw_spin_lock_irq(&nna->lock);
5074 list_del_init(&pwq->pending_node);
5075 raw_spin_unlock_irq(&nna->lock);
5076 }
5077
37c2277f 5078 kfree_rcu(pwq, rcu);
7a4e344c 5079
2865a8fb 5080 /*
6ba94429
FW
5081 * If we're the last pwq going away, @wq is already dead and no one
5082 * is gonna access it anymore. Schedule RCU free.
2865a8fb 5083 */
669de8bd
BVA
5084 if (is_last) {
5085 wq_unregister_lockdep(wq);
25b00775 5086 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 5087 }
29c91e99
TH
5088}
5089
67dc8325 5090/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
5091static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5092 struct worker_pool *pool)
29c91e99 5093{
e9a8e01f 5094 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
29c91e99 5095
6ba94429
FW
5096 memset(pwq, 0, sizeof(*pwq));
5097
5098 pwq->pool = pool;
5099 pwq->wq = wq;
5100 pwq->flush_color = -1;
5101 pwq->refcnt = 1;
f97a4a1a 5102 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 5103 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
5104 INIT_LIST_HEAD(&pwq->pwqs_node);
5105 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 5106 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
5107}
5108
6ba94429
FW
5109/* sync @pwq with the current state of its associated wq and link it */
5110static void link_pwq(struct pool_workqueue *pwq)
29c91e99 5111{
6ba94429 5112 struct workqueue_struct *wq = pwq->wq;
29c91e99 5113
6ba94429 5114 lockdep_assert_held(&wq->mutex);
a892cacc 5115
6ba94429
FW
5116 /* may be called multiple times, ignore if already linked */
5117 if (!list_empty(&pwq->pwqs_node))
29c91e99 5118 return;
29c91e99 5119
6ba94429
FW
5120 /* set the matching work_color */
5121 pwq->work_color = wq->work_color;
29c91e99 5122
6ba94429 5123 /* link in @pwq */
26fb7e3d 5124 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
6ba94429 5125}
29c91e99 5126
6ba94429
FW
5127/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5128static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5129 const struct workqueue_attrs *attrs)
5130{
5131 struct worker_pool *pool;
5132 struct pool_workqueue *pwq;
60f5a4bc 5133
6ba94429 5134 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 5135
6ba94429
FW
5136 pool = get_unbound_pool(attrs);
5137 if (!pool)
5138 return NULL;
60f5a4bc 5139
6ba94429
FW
5140 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5141 if (!pwq) {
5142 put_unbound_pool(pool);
5143 return NULL;
5144 }
29c91e99 5145
6ba94429
FW
5146 init_pwq(pwq, wq, pool);
5147 return pwq;
5148}
29c91e99 5149
1726a171
LJ
5150static void apply_wqattrs_lock(void)
5151{
1726a171
LJ
5152 mutex_lock(&wq_pool_mutex);
5153}
5154
5155static void apply_wqattrs_unlock(void)
5156{
5157 mutex_unlock(&wq_pool_mutex);
1726a171
LJ
5158}
5159
29c91e99 5160/**
fef59c9c 5161 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 5162 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 5163 * @cpu: the target CPU
29c91e99 5164 *
88a41b18 5165 * Calculate the cpumask a workqueue with @attrs should use on @pod.
9546b29e 5166 * The result is stored in @attrs->__pod_cpumask.
a892cacc 5167 *
fef59c9c
TH
5168 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5169 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5170 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 5171 *
fef59c9c 5172 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 5173 */
88a41b18 5174static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
29c91e99 5175{
84193c07
TH
5176 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5177 int pod = pt->cpu_pod[cpu];
29c91e99 5178
fbb3d4c1 5179 /* calculate possible CPUs in @pod that @attrs wants */
9546b29e 5180 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
fbb3d4c1
LJ
5181 /* does @pod have any online CPUs @attrs wants? */
5182 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
9546b29e 5183 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
5184 return;
5185 }
4c16bd32
TH
5186}
5187
9f66cff2 5188/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
5189static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5190 int cpu, struct pool_workqueue *pwq)
1befcf30 5191{
9f66cff2 5192 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
5193 struct pool_workqueue *old_pwq;
5194
5b95e1af 5195 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
5196 lockdep_assert_held(&wq->mutex);
5197
5198 /* link_pwq() can handle duplicate calls */
5199 link_pwq(pwq);
5200
9f66cff2
TH
5201 old_pwq = rcu_access_pointer(*slot);
5202 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
5203 return old_pwq;
5204}
5205
2d5f0764
LJ
5206/* context to store the prepared attrs & pwqs before applying */
5207struct apply_wqattrs_ctx {
5208 struct workqueue_struct *wq; /* target workqueue */
5209 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 5210 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
5211 struct pool_workqueue *dfl_pwq;
5212 struct pool_workqueue *pwq_tbl[];
5213};
5214
5215/* free the resources after success or abort */
5216static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5217{
5218 if (ctx) {
636b927e 5219 int cpu;
2d5f0764 5220
636b927e
TH
5221 for_each_possible_cpu(cpu)
5222 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
5223 put_pwq_unlocked(ctx->dfl_pwq);
5224
5225 free_workqueue_attrs(ctx->attrs);
5226
5227 kfree(ctx);
5228 }
5229}
5230
5231/* allocate the attrs and pwqs for later installation */
5232static struct apply_wqattrs_ctx *
5233apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
5234 const struct workqueue_attrs *attrs,
5235 const cpumask_var_t unbound_cpumask)
9e8cd2f5 5236{
2d5f0764 5237 struct apply_wqattrs_ctx *ctx;
9546b29e 5238 struct workqueue_attrs *new_attrs;
636b927e 5239 int cpu;
9e8cd2f5 5240
2d5f0764 5241 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 5242
84193c07
TH
5243 if (WARN_ON(attrs->affn_scope < 0 ||
5244 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5245 return ERR_PTR(-EINVAL);
5246
636b927e 5247 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 5248
be69d00d 5249 new_attrs = alloc_workqueue_attrs();
9546b29e 5250 if (!ctx || !new_attrs)
2d5f0764 5251 goto out_free;
13e2e556 5252
4c16bd32
TH
5253 /*
5254 * If something goes wrong during CPU up/down, we'll fall back to
5255 * the default pwq covering whole @attrs->cpumask. Always create
5256 * it even if we don't use it immediately.
5257 */
0f36ee24
TH
5258 copy_workqueue_attrs(new_attrs, attrs);
5259 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 5260 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
5261 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5262 if (!ctx->dfl_pwq)
5263 goto out_free;
4c16bd32 5264
636b927e 5265 for_each_possible_cpu(cpu) {
af73f5c9 5266 if (new_attrs->ordered) {
2d5f0764 5267 ctx->dfl_pwq->refcnt++;
636b927e
TH
5268 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5269 } else {
88a41b18 5270 wq_calc_pod_cpumask(new_attrs, cpu);
9546b29e 5271 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
5272 if (!ctx->pwq_tbl[cpu])
5273 goto out_free;
4c16bd32
TH
5274 }
5275 }
5276
042f7df1
LJ
5277 /* save the user configured attrs and sanitize it. */
5278 copy_workqueue_attrs(new_attrs, attrs);
5279 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 5280 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 5281 ctx->attrs = new_attrs;
042f7df1 5282
4c065dbc
WL
5283 /*
5284 * For initialized ordered workqueues, there should only be one pwq
5285 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5286 * of newly queued work items until execution of older work items in
5287 * the old pwq's have completed.
5288 */
5289 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5290 ctx->dfl_pwq->plugged = true;
5291
2d5f0764 5292 ctx->wq = wq;
2d5f0764
LJ
5293 return ctx;
5294
5295out_free:
2d5f0764
LJ
5296 free_workqueue_attrs(new_attrs);
5297 apply_wqattrs_cleanup(ctx);
84193c07 5298 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
5299}
5300
5301/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5302static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5303{
636b927e 5304 int cpu;
9e8cd2f5 5305
4c16bd32 5306 /* all pwqs have been created successfully, let's install'em */
2d5f0764 5307 mutex_lock(&ctx->wq->mutex);
a892cacc 5308
2d5f0764 5309 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 5310
9f66cff2 5311 /* save the previous pwqs and install the new ones */
636b927e
TH
5312 for_each_possible_cpu(cpu)
5313 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5314 ctx->pwq_tbl[cpu]);
9f66cff2 5315 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 5316
5797b1c1
TH
5317 /* update node_nr_active->max */
5318 wq_update_node_max_active(ctx->wq, -1);
5319
d64f2fa0
JL
5320 /* rescuer needs to respect wq cpumask changes */
5321 if (ctx->wq->rescuer)
5322 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5323 unbound_effective_cpumask(ctx->wq));
5324
2d5f0764
LJ
5325 mutex_unlock(&ctx->wq->mutex);
5326}
9e8cd2f5 5327
a0111cf6
LJ
5328static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5329 const struct workqueue_attrs *attrs)
2d5f0764
LJ
5330{
5331 struct apply_wqattrs_ctx *ctx;
4c16bd32 5332
2d5f0764
LJ
5333 /* only unbound workqueues can change attributes */
5334 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5335 return -EINVAL;
13e2e556 5336
99c621ef 5337 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
5338 if (IS_ERR(ctx))
5339 return PTR_ERR(ctx);
2d5f0764
LJ
5340
5341 /* the ctx has been prepared successfully, let's commit it */
6201171e 5342 apply_wqattrs_commit(ctx);
2d5f0764
LJ
5343 apply_wqattrs_cleanup(ctx);
5344
6201171e 5345 return 0;
9e8cd2f5
TH
5346}
5347
a0111cf6
LJ
5348/**
5349 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5350 * @wq: the target workqueue
5351 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5352 *
fef59c9c
TH
5353 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5354 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5355 * work items are affine to the pod it was issued on. Older pwqs are released as
5356 * in-flight work items finish. Note that a work item which repeatedly requeues
5357 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
5358 *
5359 * Performs GFP_KERNEL allocations.
5360 *
5361 * Return: 0 on success and -errno on failure.
5362 */
513c98d0 5363int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
5364 const struct workqueue_attrs *attrs)
5365{
5366 int ret;
5367
509b3204 5368 mutex_lock(&wq_pool_mutex);
a0111cf6 5369 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 5370 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
5371
5372 return ret;
5373}
5374
4c16bd32 5375/**
b2b1f933 5376 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
4c16bd32 5377 * @wq: the target workqueue
b2b1f933 5378 * @cpu: the CPU to update the pwq slot for
4c16bd32
TH
5379 *
5380 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
b2b1f933 5381 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
4c16bd32 5382 *
fef59c9c
TH
5383 *
5384 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5385 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5386 *
5387 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5388 * with a cpumask spanning multiple pods, the workers which were already
5389 * executing the work items for the workqueue will lose their CPU affinity and
5390 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5391 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5392 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 5393 */
b2b1f933 5394static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
4c16bd32 5395{
4c16bd32
TH
5396 struct pool_workqueue *old_pwq = NULL, *pwq;
5397 struct workqueue_attrs *target_attrs;
4c16bd32
TH
5398
5399 lockdep_assert_held(&wq_pool_mutex);
5400
84193c07 5401 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
5402 return;
5403
5404 /*
5405 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5406 * Let's use a preallocated one. The following buf is protected by
5407 * CPU hotplug exclusion.
5408 */
b2b1f933 5409 target_attrs = unbound_wq_update_pwq_attrs_buf;
4c16bd32 5410
4c16bd32 5411 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 5412 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 5413
636b927e 5414 /* nothing to do if the target cpumask matches the current pwq */
88a41b18 5415 wq_calc_pod_cpumask(target_attrs, cpu);
9f66cff2 5416 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 5417 return;
4c16bd32 5418
4c16bd32
TH
5419 /* create a new pwq */
5420 pwq = alloc_unbound_pwq(wq, target_attrs);
5421 if (!pwq) {
fef59c9c 5422 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 5423 wq->name);
77f300b1 5424 goto use_dfl_pwq;
4c16bd32
TH
5425 }
5426
f7142ed4 5427 /* Install the new pwq. */
4c16bd32 5428 mutex_lock(&wq->mutex);
636b927e 5429 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5430 goto out_unlock;
5431
5432use_dfl_pwq:
f7142ed4 5433 mutex_lock(&wq->mutex);
9f66cff2
TH
5434 pwq = unbound_pwq(wq, -1);
5435 raw_spin_lock_irq(&pwq->pool->lock);
5436 get_pwq(pwq);
5437 raw_spin_unlock_irq(&pwq->pool->lock);
5438 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5439out_unlock:
5440 mutex_unlock(&wq->mutex);
5441 put_pwq_unlocked(old_pwq);
5442}
5443
30cdf249 5444static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 5445{
49e3cf44 5446 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 5447 int cpu, ret;
30cdf249 5448
1726a171
LJ
5449 lockdep_assert_held(&wq_pool_mutex);
5450
636b927e
TH
5451 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5452 if (!wq->cpu_pwq)
5453 goto enomem;
30cdf249 5454
636b927e 5455 if (!(wq->flags & WQ_UNBOUND)) {
7ccc2151
WH
5456 struct worker_pool __percpu *pools;
5457
5458 if (wq->flags & WQ_BH)
5459 pools = bh_worker_pools;
5460 else
5461 pools = cpu_worker_pools;
5462
30cdf249 5463 for_each_possible_cpu(cpu) {
4cb1ef64 5464 struct pool_workqueue **pwq_p;
4cb1ef64
TH
5465 struct worker_pool *pool;
5466
4cb1ef64
TH
5467 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5468 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
5469
5470 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5471 pool->node);
5472 if (!*pwq_p)
5473 goto enomem;
f3421797 5474
687a9aa5 5475 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
5476
5477 mutex_lock(&wq->mutex);
687a9aa5 5478 link_pwq(*pwq_p);
f147f29e 5479 mutex_unlock(&wq->mutex);
30cdf249 5480 }
9e8cd2f5 5481 return 0;
509b3204
DJ
5482 }
5483
509b3204 5484 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5485 struct pool_workqueue *dfl_pwq;
5486
1726a171 5487 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
8a2b7538 5488 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5489 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5490 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5491 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5492 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5493 } else {
1726a171 5494 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5495 }
64344553 5496
509b3204 5497 return ret;
687a9aa5
TH
5498
5499enomem:
5500 if (wq->cpu_pwq) {
7b42f401
Z
5501 for_each_possible_cpu(cpu) {
5502 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5503
5504 if (pwq)
5505 kmem_cache_free(pwq_cache, pwq);
5506 }
687a9aa5
TH
5507 free_percpu(wq->cpu_pwq);
5508 wq->cpu_pwq = NULL;
5509 }
5510 return -ENOMEM;
0f900049
TH
5511}
5512
f3421797
TH
5513static int wq_clamp_max_active(int max_active, unsigned int flags,
5514 const char *name)
b71ab8c2 5515{
636b927e 5516 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5517 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5518 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5519
636b927e 5520 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5521}
5522
983c7515
TH
5523/*
5524 * Workqueues which may be used during memory reclaim should have a rescuer
5525 * to guarantee forward progress.
5526 */
5527static int init_rescuer(struct workqueue_struct *wq)
5528{
5529 struct worker *rescuer;
2a1b02bc 5530 char id_buf[WORKER_ID_LEN];
b92b36ea 5531 int ret;
983c7515 5532
449b31ad
LJ
5533 lockdep_assert_held(&wq_pool_mutex);
5534
983c7515
TH
5535 if (!(wq->flags & WQ_MEM_RECLAIM))
5536 return 0;
5537
5538 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5539 if (!rescuer) {
5540 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5541 wq->name);
983c7515 5542 return -ENOMEM;
4c0736a7 5543 }
983c7515
TH
5544
5545 rescuer->rescue_wq = wq;
2a1b02bc
TH
5546 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5547
5548 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
f187b697 5549 if (IS_ERR(rescuer->task)) {
b92b36ea 5550 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5551 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5552 wq->name, ERR_PTR(ret));
983c7515 5553 kfree(rescuer);
b92b36ea 5554 return ret;
983c7515
TH
5555 }
5556
5557 wq->rescuer = rescuer;
85f0ab43 5558 if (wq->flags & WQ_UNBOUND)
449b31ad 5559 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
85f0ab43
JL
5560 else
5561 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5562 wake_up_process(rescuer->task);
5563
5564 return 0;
5565}
5566
a045a272
TH
5567/**
5568 * wq_adjust_max_active - update a wq's max_active to the current setting
5569 * @wq: target workqueue
5570 *
5571 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5572 * activate inactive work items accordingly. If @wq is freezing, clear
5573 * @wq->max_active to zero.
5574 */
5575static void wq_adjust_max_active(struct workqueue_struct *wq)
5576{
c5404d4e 5577 bool activated;
5797b1c1 5578 int new_max, new_min;
a045a272
TH
5579
5580 lockdep_assert_held(&wq->mutex);
5581
5582 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5583 new_max = 0;
5584 new_min = 0;
5585 } else {
5586 new_max = wq->saved_max_active;
5587 new_min = wq->saved_min_active;
a045a272
TH
5588 }
5589
5797b1c1 5590 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5591 return;
5592
5593 /*
5797b1c1 5594 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5595 * active work items are allowed. This doesn't break work item ordering
5596 * because new work items are always queued behind existing inactive
5597 * work items if there are any.
5598 */
5797b1c1
TH
5599 WRITE_ONCE(wq->max_active, new_max);
5600 WRITE_ONCE(wq->min_active, new_min);
5601
5602 if (wq->flags & WQ_UNBOUND)
5603 wq_update_node_max_active(wq, -1);
5604
5605 if (new_max == 0)
5606 return;
a045a272 5607
c5404d4e
TH
5608 /*
5609 * Round-robin through pwq's activating the first inactive work item
5610 * until max_active is filled.
5611 */
5612 do {
5613 struct pool_workqueue *pwq;
a045a272 5614
c5404d4e
TH
5615 activated = false;
5616 for_each_pwq(pwq, wq) {
c26e2f2e 5617 unsigned long irq_flags;
a045a272 5618
c5404d4e 5619 /* can be called during early boot w/ irq disabled */
c26e2f2e 5620 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5797b1c1 5621 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5622 activated = true;
5623 kick_pool(pwq->pool);
5624 }
c26e2f2e 5625 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
c5404d4e
TH
5626 }
5627 } while (activated);
a045a272
TH
5628}
5629
b188c57a
MB
5630static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5631 unsigned int flags,
9b59a85a 5632 int max_active, va_list args)
1da177e4 5633{
1da177e4 5634 struct workqueue_struct *wq;
91ccc6e7
TH
5635 size_t wq_size;
5636 int name_len;
b196be89 5637
4cb1ef64
TH
5638 if (flags & WQ_BH) {
5639 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5640 return NULL;
5641 if (WARN_ON_ONCE(max_active))
5642 return NULL;
5643 }
5644
cee22a15
VK
5645 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5646 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5647 flags |= WQ_UNBOUND;
5648
ecf6881f 5649 /* allocate wq and format name */
91ccc6e7
TH
5650 if (flags & WQ_UNBOUND)
5651 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5652 else
5653 wq_size = sizeof(*wq);
5654
5655 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5656 if (!wq)
d2c1d404 5657 return NULL;
b196be89 5658
6029a918 5659 if (flags & WQ_UNBOUND) {
be69d00d 5660 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5661 if (!wq->unbound_attrs)
5662 goto err_free_wq;
5663 }
5664
91ccc6e7 5665 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
1da177e4 5666
91ccc6e7
TH
5667 if (name_len >= WQ_NAME_LEN)
5668 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5669 wq->name);
31c89007 5670
4cb1ef64
TH
5671 if (flags & WQ_BH) {
5672 /*
5673 * BH workqueues always share a single execution context per CPU
5674 * and don't impose any max_active limit.
5675 */
5676 max_active = INT_MAX;
5677 } else {
5678 max_active = max_active ?: WQ_DFL_ACTIVE;
5679 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5680 }
3af24433 5681
b196be89 5682 /* init wq */
97e37d7b 5683 wq->flags = flags;
a045a272 5684 wq->max_active = max_active;
5797b1c1
TH
5685 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5686 wq->saved_max_active = wq->max_active;
5687 wq->saved_min_active = wq->min_active;
3c25a55d 5688 mutex_init(&wq->mutex);
112202d9 5689 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5690 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5691 INIT_LIST_HEAD(&wq->flusher_queue);
5692 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5693 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5694
cce1a165 5695 INIT_LIST_HEAD(&wq->list);
3af24433 5696
91ccc6e7
TH
5697 if (flags & WQ_UNBOUND) {
5698 if (alloc_node_nr_active(wq->node_nr_active) < 0)
b188c57a 5699 goto err_free_wq;
91ccc6e7
TH
5700 }
5701
a0a1a5fd 5702 /*
1726a171 5703 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
aa868475 5704 * and the global freeze state.
a0a1a5fd 5705 */
1726a171
LJ
5706 apply_wqattrs_lock();
5707
5708 if (alloc_and_link_pwqs(wq) < 0)
5709 goto err_unlock_free_node_nr_active;
a0a1a5fd 5710
a357fc03 5711 mutex_lock(&wq->mutex);
a045a272 5712 wq_adjust_max_active(wq);
a357fc03 5713 mutex_unlock(&wq->mutex);
a0a1a5fd 5714
e2dca7ad 5715 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5716
c5178e6c 5717 if (wq_online && init_rescuer(wq) < 0)
449b31ad
LJ
5718 goto err_unlock_destroy;
5719
5720 apply_wqattrs_unlock();
c5178e6c 5721
c3138f38
LJ
5722 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5723 goto err_destroy;
1537663f 5724
3af24433 5725 return wq;
d2c1d404 5726
1726a171
LJ
5727err_unlock_free_node_nr_active:
5728 apply_wqattrs_unlock();
4e9a3738
LJ
5729 /*
5730 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5731 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5732 * completes before calling kfree(wq).
5733 */
5734 if (wq->flags & WQ_UNBOUND) {
5735 kthread_flush_worker(pwq_release_worker);
91ccc6e7 5736 free_node_nr_active(wq->node_nr_active);
4e9a3738 5737 }
82efcab3 5738err_free_wq:
6029a918 5739 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5740 kfree(wq);
5741 return NULL;
449b31ad
LJ
5742err_unlock_destroy:
5743 apply_wqattrs_unlock();
d2c1d404
TH
5744err_destroy:
5745 destroy_workqueue(wq);
4690c4ab 5746 return NULL;
3af24433 5747}
b188c57a
MB
5748
5749__printf(1, 4)
5750struct workqueue_struct *alloc_workqueue(const char *fmt,
5751 unsigned int flags,
5752 int max_active, ...)
5753{
5754 struct workqueue_struct *wq;
5755 va_list args;
5756
5757 va_start(args, max_active);
5758 wq = __alloc_workqueue(fmt, flags, max_active, args);
5759 va_end(args);
5760 if (!wq)
5761 return NULL;
5762
5763 wq_init_lockdep(wq);
5764
5765 return wq;
5766}
669de8bd 5767EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5768
ec0a7d44
MB
5769#ifdef CONFIG_LOCKDEP
5770__printf(1, 5)
5771struct workqueue_struct *
5772alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5773 int max_active, struct lockdep_map *lockdep_map, ...)
5774{
5775 struct workqueue_struct *wq;
5776 va_list args;
5777
5778 va_start(args, lockdep_map);
5779 wq = __alloc_workqueue(fmt, flags, max_active, args);
5780 va_end(args);
5781 if (!wq)
5782 return NULL;
5783
5784 wq->lockdep_map = lockdep_map;
5785
5786 return wq;
5787}
5788EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5789#endif
5790
c29eb853
TH
5791static bool pwq_busy(struct pool_workqueue *pwq)
5792{
5793 int i;
5794
5795 for (i = 0; i < WORK_NR_COLORS; i++)
5796 if (pwq->nr_in_flight[i])
5797 return true;
5798
9f66cff2 5799 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5800 return true;
afa87ce8 5801 if (!pwq_is_empty(pwq))
c29eb853
TH
5802 return true;
5803
5804 return false;
5805}
5806
3af24433
ON
5807/**
5808 * destroy_workqueue - safely terminate a workqueue
5809 * @wq: target workqueue
5810 *
5811 * Safely destroy a workqueue. All work currently pending will be done first.
5812 */
5813void destroy_workqueue(struct workqueue_struct *wq)
5814{
49e3cf44 5815 struct pool_workqueue *pwq;
636b927e 5816 int cpu;
3af24433 5817
def98c84
TH
5818 /*
5819 * Remove it from sysfs first so that sanity check failure doesn't
5820 * lead to sysfs name conflicts.
5821 */
5822 workqueue_sysfs_unregister(wq);
5823
33e3f0a3
RC
5824 /* mark the workqueue destruction is in progress */
5825 mutex_lock(&wq->mutex);
5826 wq->flags |= __WQ_DESTROYING;
5827 mutex_unlock(&wq->mutex);
5828
9c5a2ba7
TH
5829 /* drain it before proceeding with destruction */
5830 drain_workqueue(wq);
c8efcc25 5831
def98c84
TH
5832 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5833 if (wq->rescuer) {
5834 struct worker *rescuer = wq->rescuer;
5835
5836 /* this prevents new queueing */
a9b8a985 5837 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5838 wq->rescuer = NULL;
a9b8a985 5839 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5840
5841 /* rescuer will empty maydays list before exiting */
5842 kthread_stop(rescuer->task);
8efe1223 5843 kfree(rescuer);
def98c84
TH
5844 }
5845
c29eb853
TH
5846 /*
5847 * Sanity checks - grab all the locks so that we wait for all
5848 * in-flight operations which may do put_pwq().
5849 */
5850 mutex_lock(&wq_pool_mutex);
b09f4fd3 5851 mutex_lock(&wq->mutex);
49e3cf44 5852 for_each_pwq(pwq, wq) {
a9b8a985 5853 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5854 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5855 pr_warn("%s: %s has the following busy pwq\n",
5856 __func__, wq->name);
c29eb853 5857 show_pwq(pwq);
a9b8a985 5858 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5859 mutex_unlock(&wq->mutex);
c29eb853 5860 mutex_unlock(&wq_pool_mutex);
55df0933 5861 show_one_workqueue(wq);
6183c009 5862 return;
76af4d93 5863 }
a9b8a985 5864 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5865 }
b09f4fd3 5866 mutex_unlock(&wq->mutex);
6183c009 5867
a0a1a5fd
TH
5868 /*
5869 * wq list is used to freeze wq, remove from list after
5870 * flushing is complete in case freeze races us.
5871 */
e2dca7ad 5872 list_del_rcu(&wq->list);
68e13a67 5873 mutex_unlock(&wq_pool_mutex);
3af24433 5874
636b927e
TH
5875 /*
5876 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5877 * to put the base refs. @wq will be auto-destroyed from the last
5878 * pwq_put. RCU read lock prevents @wq from going away from under us.
5879 */
5880 rcu_read_lock();
4c16bd32 5881
636b927e 5882 for_each_possible_cpu(cpu) {
9f66cff2
TH
5883 put_pwq_unlocked(unbound_pwq(wq, cpu));
5884 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5885 }
636b927e 5886
9f66cff2
TH
5887 put_pwq_unlocked(unbound_pwq(wq, -1));
5888 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5889
5890 rcu_read_unlock();
3af24433
ON
5891}
5892EXPORT_SYMBOL_GPL(destroy_workqueue);
5893
dcd989cb
TH
5894/**
5895 * workqueue_set_max_active - adjust max_active of a workqueue
5896 * @wq: target workqueue
5897 * @max_active: new max_active value.
5898 *
5797b1c1
TH
5899 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5900 * comment.
dcd989cb
TH
5901 *
5902 * CONTEXT:
5903 * Don't call from IRQ context.
5904 */
5905void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5906{
4cb1ef64
TH
5907 /* max_active doesn't mean anything for BH workqueues */
5908 if (WARN_ON(wq->flags & WQ_BH))
5909 return;
8719dcea 5910 /* disallow meddling with max_active for ordered workqueues */
3bc1e711 5911 if (WARN_ON(wq->flags & __WQ_ORDERED))
8719dcea
TH
5912 return;
5913
f3421797 5914 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5915
a357fc03 5916 mutex_lock(&wq->mutex);
dcd989cb
TH
5917
5918 wq->saved_max_active = max_active;
5797b1c1
TH
5919 if (wq->flags & WQ_UNBOUND)
5920 wq->saved_min_active = min(wq->saved_min_active, max_active);
5921
a045a272 5922 wq_adjust_max_active(wq);
93981800 5923
a357fc03 5924 mutex_unlock(&wq->mutex);
15316ba8 5925}
dcd989cb 5926EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5927
8f172181
TH
5928/**
5929 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5930 * @wq: target unbound workqueue
5931 * @min_active: new min_active value
5932 *
5933 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5934 * unbound workqueue is not guaranteed to be able to process max_active
5935 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5936 * able to process min_active number of interdependent work items which is
5937 * %WQ_DFL_MIN_ACTIVE by default.
5938 *
5939 * Use this function to adjust the min_active value between 0 and the current
5940 * max_active.
5941 */
5942void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5943{
5944 /* min_active is only meaningful for non-ordered unbound workqueues */
5945 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5946 WQ_UNBOUND))
5947 return;
5948
5949 mutex_lock(&wq->mutex);
5950 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5951 wq_adjust_max_active(wq);
5952 mutex_unlock(&wq->mutex);
5953}
5954
27d4ee03
LW
5955/**
5956 * current_work - retrieve %current task's work struct
5957 *
5958 * Determine if %current task is a workqueue worker and what it's working on.
5959 * Useful to find out the context that the %current task is running in.
5960 *
5961 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5962 */
5963struct work_struct *current_work(void)
5964{
5965 struct worker *worker = current_wq_worker();
5966
5967 return worker ? worker->current_work : NULL;
5968}
5969EXPORT_SYMBOL(current_work);
5970
e6267616
TH
5971/**
5972 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5973 *
5974 * Determine whether %current is a workqueue rescuer. Can be used from
5975 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5976 *
5977 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5978 */
5979bool current_is_workqueue_rescuer(void)
5980{
5981 struct worker *worker = current_wq_worker();
5982
6a092dfd 5983 return worker && worker->rescue_wq;
e6267616
TH
5984}
5985
eef6a7d5 5986/**
dcd989cb
TH
5987 * workqueue_congested - test whether a workqueue is congested
5988 * @cpu: CPU in question
5989 * @wq: target workqueue
eef6a7d5 5990 *
dcd989cb
TH
5991 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5992 * no synchronization around this function and the test result is
5993 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5994 *
d3251859 5995 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5996 *
5997 * With the exception of ordered workqueues, all workqueues have per-cpu
5998 * pool_workqueues, each with its own congested state. A workqueue being
5999 * congested on one CPU doesn't mean that the workqueue is contested on any
6000 * other CPUs.
d3251859 6001 *
d185af30 6002 * Return:
dcd989cb 6003 * %true if congested, %false otherwise.
eef6a7d5 6004 */
d84ff051 6005bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 6006{
7fb98ea7 6007 struct pool_workqueue *pwq;
76af4d93
TH
6008 bool ret;
6009
24acfb71
TG
6010 rcu_read_lock();
6011 preempt_disable();
7fb98ea7 6012
d3251859
TH
6013 if (cpu == WORK_CPU_UNBOUND)
6014 cpu = smp_processor_id();
6015
636b927e 6016 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 6017 ret = !list_empty(&pwq->inactive_works);
636b927e 6018
24acfb71
TG
6019 preempt_enable();
6020 rcu_read_unlock();
76af4d93
TH
6021
6022 return ret;
1da177e4 6023}
dcd989cb 6024EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 6025
dcd989cb
TH
6026/**
6027 * work_busy - test whether a work is currently pending or running
6028 * @work: the work to be tested
6029 *
6030 * Test whether @work is currently pending or running. There is no
6031 * synchronization around this function and the test result is
6032 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 6033 *
d185af30 6034 * Return:
dcd989cb
TH
6035 * OR'd bitmask of WORK_BUSY_* bits.
6036 */
6037unsigned int work_busy(struct work_struct *work)
1da177e4 6038{
fa1b54e6 6039 struct worker_pool *pool;
c26e2f2e 6040 unsigned long irq_flags;
dcd989cb 6041 unsigned int ret = 0;
1da177e4 6042
dcd989cb
TH
6043 if (work_pending(work))
6044 ret |= WORK_BUSY_PENDING;
1da177e4 6045
24acfb71 6046 rcu_read_lock();
fa1b54e6 6047 pool = get_work_pool(work);
038366c5 6048 if (pool) {
c26e2f2e 6049 raw_spin_lock_irqsave(&pool->lock, irq_flags);
038366c5
LJ
6050 if (find_worker_executing_work(pool, work))
6051 ret |= WORK_BUSY_RUNNING;
c26e2f2e 6052 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
038366c5 6053 }
24acfb71 6054 rcu_read_unlock();
1da177e4 6055
dcd989cb 6056 return ret;
1da177e4 6057}
dcd989cb 6058EXPORT_SYMBOL_GPL(work_busy);
1da177e4 6059
3d1cb205
TH
6060/**
6061 * set_worker_desc - set description for the current work item
6062 * @fmt: printf-style format string
6063 * @...: arguments for the format string
6064 *
6065 * This function can be called by a running work function to describe what
6066 * the work item is about. If the worker task gets dumped, this
6067 * information will be printed out together to help debugging. The
6068 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6069 */
6070void set_worker_desc(const char *fmt, ...)
6071{
6072 struct worker *worker = current_wq_worker();
6073 va_list args;
6074
6075 if (worker) {
6076 va_start(args, fmt);
6077 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6078 va_end(args);
3d1cb205
TH
6079 }
6080}
5c750d58 6081EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
6082
6083/**
6084 * print_worker_info - print out worker information and description
6085 * @log_lvl: the log level to use when printing
6086 * @task: target task
6087 *
6088 * If @task is a worker and currently executing a work item, print out the
6089 * name of the workqueue being serviced and worker description set with
6090 * set_worker_desc() by the currently executing work item.
6091 *
6092 * This function can be safely called on any task as long as the
6093 * task_struct itself is accessible. While safe, this function isn't
6094 * synchronized and may print out mixups or garbages of limited length.
6095 */
6096void print_worker_info(const char *log_lvl, struct task_struct *task)
6097{
6098 work_func_t *fn = NULL;
6099 char name[WQ_NAME_LEN] = { };
6100 char desc[WORKER_DESC_LEN] = { };
6101 struct pool_workqueue *pwq = NULL;
6102 struct workqueue_struct *wq = NULL;
3d1cb205
TH
6103 struct worker *worker;
6104
6105 if (!(task->flags & PF_WQ_WORKER))
6106 return;
6107
6108 /*
6109 * This function is called without any synchronization and @task
6110 * could be in any state. Be careful with dereferences.
6111 */
e700591a 6112 worker = kthread_probe_data(task);
3d1cb205
TH
6113
6114 /*
8bf89593
TH
6115 * Carefully copy the associated workqueue's workfn, name and desc.
6116 * Keep the original last '\0' in case the original is garbage.
3d1cb205 6117 */
fe557319
CH
6118 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6119 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6120 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6121 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6122 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
6123
6124 if (fn || name[0] || desc[0]) {
d75f773c 6125 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 6126 if (strcmp(name, desc))
3d1cb205
TH
6127 pr_cont(" (%s)", desc);
6128 pr_cont("\n");
6129 }
6130}
6131
3494fc30
TH
6132static void pr_cont_pool_info(struct worker_pool *pool)
6133{
6134 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6135 if (pool->node != NUMA_NO_NODE)
6136 pr_cont(" node=%d", pool->node);
4cb1ef64
TH
6137 pr_cont(" flags=0x%x", pool->flags);
6138 if (pool->flags & POOL_BH)
6139 pr_cont(" bh%s",
6140 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6141 else
6142 pr_cont(" nice=%d", pool->attrs->nice);
6143}
6144
6145static void pr_cont_worker_id(struct worker *worker)
6146{
6147 struct worker_pool *pool = worker->pool;
6148
6149 if (pool->flags & WQ_BH)
6150 pr_cont("bh%s",
6151 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6152 else
6153 pr_cont("%d%s", task_pid_nr(worker->task),
6154 worker->rescue_wq ? "(RESCUER)" : "");
3494fc30
TH
6155}
6156
c76feb0d
PM
6157struct pr_cont_work_struct {
6158 bool comma;
6159 work_func_t func;
6160 long ctr;
6161};
6162
6163static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6164{
6165 if (!pcwsp->ctr)
6166 goto out_record;
6167 if (func == pcwsp->func) {
6168 pcwsp->ctr++;
6169 return;
6170 }
6171 if (pcwsp->ctr == 1)
6172 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6173 else
6174 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6175 pcwsp->ctr = 0;
6176out_record:
6177 if ((long)func == -1L)
6178 return;
6179 pcwsp->comma = comma;
6180 pcwsp->func = func;
6181 pcwsp->ctr = 1;
6182}
6183
6184static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
6185{
6186 if (work->func == wq_barrier_func) {
6187 struct wq_barrier *barr;
6188
6189 barr = container_of(work, struct wq_barrier, work);
6190
c76feb0d 6191 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
6192 pr_cont("%s BAR(%d)", comma ? "," : "",
6193 task_pid_nr(barr->task));
6194 } else {
c76feb0d
PM
6195 if (!comma)
6196 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6197 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
6198 }
6199}
6200
6201static void show_pwq(struct pool_workqueue *pwq)
6202{
c76feb0d 6203 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
6204 struct worker_pool *pool = pwq->pool;
6205 struct work_struct *work;
6206 struct worker *worker;
6207 bool has_in_flight = false, has_pending = false;
6208 int bkt;
6209
6210 pr_info(" pwq %d:", pool->id);
6211 pr_cont_pool_info(pool);
6212
a045a272
TH
6213 pr_cont(" active=%d refcnt=%d%s\n",
6214 pwq->nr_active, pwq->refcnt,
3494fc30
TH
6215 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6216
6217 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6218 if (worker->current_pwq == pwq) {
6219 has_in_flight = true;
6220 break;
6221 }
6222 }
6223 if (has_in_flight) {
6224 bool comma = false;
6225
6226 pr_info(" in-flight:");
6227 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6228 if (worker->current_pwq != pwq)
6229 continue;
6230
4cb1ef64
TH
6231 pr_cont(" %s", comma ? "," : "");
6232 pr_cont_worker_id(worker);
6233 pr_cont(":%ps", worker->current_func);
3494fc30 6234 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
6235 pr_cont_work(false, work, &pcws);
6236 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6237 comma = true;
6238 }
6239 pr_cont("\n");
6240 }
6241
6242 list_for_each_entry(work, &pool->worklist, entry) {
6243 if (get_work_pwq(work) == pwq) {
6244 has_pending = true;
6245 break;
6246 }
6247 }
6248 if (has_pending) {
6249 bool comma = false;
6250
6251 pr_info(" pending:");
6252 list_for_each_entry(work, &pool->worklist, entry) {
6253 if (get_work_pwq(work) != pwq)
6254 continue;
6255
c76feb0d 6256 pr_cont_work(comma, work, &pcws);
3494fc30
TH
6257 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6258 }
c76feb0d 6259 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6260 pr_cont("\n");
6261 }
6262
f97a4a1a 6263 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
6264 bool comma = false;
6265
f97a4a1a
LJ
6266 pr_info(" inactive:");
6267 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 6268 pr_cont_work(comma, work, &pcws);
3494fc30
TH
6269 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6270 }
c76feb0d 6271 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6272 pr_cont("\n");
6273 }
6274}
6275
6276/**
55df0933
IK
6277 * show_one_workqueue - dump state of specified workqueue
6278 * @wq: workqueue whose state will be printed
3494fc30 6279 */
55df0933 6280void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 6281{
55df0933
IK
6282 struct pool_workqueue *pwq;
6283 bool idle = true;
c26e2f2e 6284 unsigned long irq_flags;
3494fc30 6285
55df0933 6286 for_each_pwq(pwq, wq) {
afa87ce8 6287 if (!pwq_is_empty(pwq)) {
55df0933
IK
6288 idle = false;
6289 break;
3494fc30 6290 }
55df0933
IK
6291 }
6292 if (idle) /* Nothing to print for idle workqueue */
6293 return;
3494fc30 6294
55df0933 6295 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 6296
55df0933 6297 for_each_pwq(pwq, wq) {
c26e2f2e 6298 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
afa87ce8 6299 if (!pwq_is_empty(pwq)) {
62635ea8 6300 /*
55df0933
IK
6301 * Defer printing to avoid deadlocks in console
6302 * drivers that queue work while holding locks
6303 * also taken in their write paths.
62635ea8 6304 */
55df0933
IK
6305 printk_deferred_enter();
6306 show_pwq(pwq);
6307 printk_deferred_exit();
3494fc30 6308 }
c26e2f2e 6309 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
62635ea8
SS
6310 /*
6311 * We could be printing a lot from atomic context, e.g.
55df0933 6312 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
6313 * hard lockup.
6314 */
6315 touch_nmi_watchdog();
3494fc30
TH
6316 }
6317
55df0933
IK
6318}
6319
6320/**
6321 * show_one_worker_pool - dump state of specified worker pool
6322 * @pool: worker pool whose state will be printed
6323 */
6324static void show_one_worker_pool(struct worker_pool *pool)
6325{
6326 struct worker *worker;
6327 bool first = true;
c26e2f2e 6328 unsigned long irq_flags;
335a42eb 6329 unsigned long hung = 0;
55df0933 6330
c26e2f2e 6331 raw_spin_lock_irqsave(&pool->lock, irq_flags);
55df0933
IK
6332 if (pool->nr_workers == pool->nr_idle)
6333 goto next_pool;
335a42eb
PM
6334
6335 /* How long the first pending work is waiting for a worker. */
6336 if (!list_empty(&pool->worklist))
6337 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6338
55df0933
IK
6339 /*
6340 * Defer printing to avoid deadlocks in console drivers that
6341 * queue work while holding locks also taken in their write
6342 * paths.
6343 */
6344 printk_deferred_enter();
6345 pr_info("pool %d:", pool->id);
6346 pr_cont_pool_info(pool);
335a42eb 6347 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
6348 if (pool->manager)
6349 pr_cont(" manager: %d",
6350 task_pid_nr(pool->manager->task));
6351 list_for_each_entry(worker, &pool->idle_list, entry) {
4cb1ef64
TH
6352 pr_cont(" %s", first ? "idle: " : "");
6353 pr_cont_worker_id(worker);
55df0933
IK
6354 first = false;
6355 }
6356 pr_cont("\n");
6357 printk_deferred_exit();
6358next_pool:
c26e2f2e 6359 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
55df0933
IK
6360 /*
6361 * We could be printing a lot from atomic context, e.g.
6362 * sysrq-t -> show_all_workqueues(). Avoid triggering
6363 * hard lockup.
6364 */
6365 touch_nmi_watchdog();
6366
6367}
6368
6369/**
6370 * show_all_workqueues - dump workqueue state
6371 *
704bc669 6372 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
6373 */
6374void show_all_workqueues(void)
6375{
6376 struct workqueue_struct *wq;
6377 struct worker_pool *pool;
6378 int pi;
6379
6380 rcu_read_lock();
6381
6382 pr_info("Showing busy workqueues and worker pools:\n");
6383
6384 list_for_each_entry_rcu(wq, &workqueues, list)
6385 show_one_workqueue(wq);
6386
6387 for_each_pool(pool, pi)
6388 show_one_worker_pool(pool);
6389
24acfb71 6390 rcu_read_unlock();
3494fc30
TH
6391}
6392
704bc669
JL
6393/**
6394 * show_freezable_workqueues - dump freezable workqueue state
6395 *
6396 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6397 * still busy.
6398 */
6399void show_freezable_workqueues(void)
6400{
6401 struct workqueue_struct *wq;
6402
6403 rcu_read_lock();
6404
6405 pr_info("Showing freezable workqueues that are still busy:\n");
6406
6407 list_for_each_entry_rcu(wq, &workqueues, list) {
6408 if (!(wq->flags & WQ_FREEZABLE))
6409 continue;
6410 show_one_workqueue(wq);
6411 }
6412
6413 rcu_read_unlock();
6414}
6415
6b59808b
TH
6416/* used to show worker information through /proc/PID/{comm,stat,status} */
6417void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6418{
197f6acc 6419 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
6420 mutex_lock(&wq_pool_attach_mutex);
6421
197f6acc
TH
6422 if (task->flags & PF_WQ_WORKER) {
6423 struct worker *worker = kthread_data(task);
6424 struct worker_pool *pool = worker->pool;
2a1b02bc
TH
6425 int off;
6426
6427 off = format_worker_id(buf, size, worker, pool);
6b59808b 6428
197f6acc 6429 if (pool) {
a9b8a985 6430 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
6431 /*
6432 * ->desc tracks information (wq name or
6433 * set_worker_desc()) for the latest execution. If
6434 * current, prepend '+', otherwise '-'.
6435 */
6436 if (worker->desc[0] != '\0') {
6437 if (worker->current_work)
6438 scnprintf(buf + off, size - off, "+%s",
6439 worker->desc);
6440 else
6441 scnprintf(buf + off, size - off, "-%s",
6442 worker->desc);
6443 }
a9b8a985 6444 raw_spin_unlock_irq(&pool->lock);
6b59808b 6445 }
2a1b02bc
TH
6446 } else {
6447 strscpy(buf, task->comm, size);
6b59808b
TH
6448 }
6449
6450 mutex_unlock(&wq_pool_attach_mutex);
6451}
6452
66448bc2
MM
6453#ifdef CONFIG_SMP
6454
db7bccf4
TH
6455/*
6456 * CPU hotplug.
6457 *
e22bee78 6458 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 6459 * are a lot of assumptions on strong associations among work, pwq and
706026c2 6460 * pool which make migrating pending and scheduled works very
e22bee78 6461 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 6462 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
6463 * blocked draining impractical.
6464 *
24647570 6465 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
6466 * running as an unbound one and allowing it to be reattached later if the
6467 * cpu comes back online.
db7bccf4 6468 */
1da177e4 6469
e8b3f8db 6470static void unbind_workers(int cpu)
3af24433 6471{
4ce62e9e 6472 struct worker_pool *pool;
db7bccf4 6473 struct worker *worker;
3af24433 6474
f02ae73a 6475 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 6476 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 6477 raw_spin_lock_irq(&pool->lock);
3af24433 6478
94cf58bb 6479 /*
92f9c5c4 6480 * We've blocked all attach/detach operations. Make all workers
94cf58bb 6481 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 6482 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
6483 * And the preemption disabled section in their sched callbacks
6484 * are guaranteed to see WORKER_UNBOUND since the code here
6485 * is on the same cpu.
94cf58bb 6486 */
da028469 6487 for_each_pool_worker(worker, pool)
c9e7cf27 6488 worker->flags |= WORKER_UNBOUND;
06ba38a9 6489
24647570 6490 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 6491
eb283428 6492 /*
989442d7
LJ
6493 * The handling of nr_running in sched callbacks are disabled
6494 * now. Zap nr_running. After this, nr_running stays zero and
6495 * need_more_worker() and keep_working() are always true as
6496 * long as the worklist is not empty. This pool now behaves as
6497 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
6498 * are served by workers tied to the pool.
6499 */
bc35f7ef 6500 pool->nr_running = 0;
eb283428
LJ
6501
6502 /*
6503 * With concurrency management just turned off, a busy
6504 * worker blocking could lead to lengthy stalls. Kick off
6505 * unbound chain execution of currently pending work items.
6506 */
0219a352 6507 kick_pool(pool);
989442d7 6508
a9b8a985 6509 raw_spin_unlock_irq(&pool->lock);
989442d7 6510
793777bc
VS
6511 for_each_pool_worker(worker, pool)
6512 unbind_worker(worker);
989442d7
LJ
6513
6514 mutex_unlock(&wq_pool_attach_mutex);
eb283428 6515 }
3af24433 6516}
3af24433 6517
bd7c089e
TH
6518/**
6519 * rebind_workers - rebind all workers of a pool to the associated CPU
6520 * @pool: pool of interest
6521 *
a9ab775b 6522 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
6523 */
6524static void rebind_workers(struct worker_pool *pool)
6525{
a9ab775b 6526 struct worker *worker;
bd7c089e 6527
1258fae7 6528 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 6529
a9ab775b
TH
6530 /*
6531 * Restore CPU affinity of all workers. As all idle workers should
6532 * be on the run-queue of the associated CPU before any local
402dd89d 6533 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
6534 * of all workers first and then clear UNBOUND. As we're called
6535 * from CPU_ONLINE, the following shouldn't fail.
6536 */
c63a2e52
VS
6537 for_each_pool_worker(worker, pool) {
6538 kthread_set_per_cpu(worker->task, pool->cpu);
6539 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 6540 pool_allowed_cpus(pool)) < 0);
c63a2e52 6541 }
bd7c089e 6542
a9b8a985 6543 raw_spin_lock_irq(&pool->lock);
f7c17d26 6544
3de5e884 6545 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 6546
da028469 6547 for_each_pool_worker(worker, pool) {
a9ab775b 6548 unsigned int worker_flags = worker->flags;
bd7c089e 6549
a9ab775b
TH
6550 /*
6551 * We want to clear UNBOUND but can't directly call
6552 * worker_clr_flags() or adjust nr_running. Atomically
6553 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6554 * @worker will clear REBOUND using worker_clr_flags() when
6555 * it initiates the next execution cycle thus restoring
6556 * concurrency management. Note that when or whether
6557 * @worker clears REBOUND doesn't affect correctness.
6558 *
c95491ed 6559 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 6560 * tested without holding any lock in
6d25be57 6561 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
6562 * fail incorrectly leading to premature concurrency
6563 * management operations.
6564 */
6565 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6566 worker_flags |= WORKER_REBOUND;
6567 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6568 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6569 }
a9ab775b 6570
a9b8a985 6571 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6572}
6573
7dbc725e
TH
6574/**
6575 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6576 * @pool: unbound pool of interest
6577 * @cpu: the CPU which is coming up
6578 *
6579 * An unbound pool may end up with a cpumask which doesn't have any online
6580 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6581 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6582 * online CPU before, cpus_allowed of all its workers should be restored.
6583 */
6584static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6585{
6586 static cpumask_t cpumask;
6587 struct worker *worker;
7dbc725e 6588
1258fae7 6589 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6590
6591 /* is @cpu allowed for @pool? */
6592 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6593 return;
6594
7dbc725e 6595 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6596
6597 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6598 for_each_pool_worker(worker, pool)
d945b5e9 6599 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6600}
6601
7ee681b2
TG
6602int workqueue_prepare_cpu(unsigned int cpu)
6603{
6604 struct worker_pool *pool;
6605
6606 for_each_cpu_worker_pool(pool, cpu) {
6607 if (pool->nr_workers)
6608 continue;
6609 if (!create_worker(pool))
6610 return -ENOMEM;
6611 }
6612 return 0;
6613}
6614
6615int workqueue_online_cpu(unsigned int cpu)
3af24433 6616{
4ce62e9e 6617 struct worker_pool *pool;
4c16bd32 6618 struct workqueue_struct *wq;
7dbc725e 6619 int pi;
3ce63377 6620
7ee681b2 6621 mutex_lock(&wq_pool_mutex);
7dbc725e 6622
8d84baf7
LJ
6623 cpumask_set_cpu(cpu, wq_online_cpumask);
6624
7ee681b2 6625 for_each_pool(pool, pi) {
4cb1ef64
TH
6626 /* BH pools aren't affected by hotplug */
6627 if (pool->flags & POOL_BH)
6628 continue;
94cf58bb 6629
4cb1ef64 6630 mutex_lock(&wq_pool_attach_mutex);
7ee681b2
TG
6631 if (pool->cpu == cpu)
6632 rebind_workers(pool);
6633 else if (pool->cpu < 0)
6634 restore_unbound_workers_cpumask(pool, cpu);
1258fae7 6635 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6636 }
6ba94429 6637
fef59c9c 6638 /* update pod affinity of unbound workqueues */
4cbfd3de 6639 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6640 struct workqueue_attrs *attrs = wq->unbound_attrs;
6641
6642 if (attrs) {
6643 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6644 int tcpu;
4cbfd3de 6645
84193c07 6646 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
b2b1f933 6647 unbound_wq_update_pwq(wq, tcpu);
5797b1c1
TH
6648
6649 mutex_lock(&wq->mutex);
6650 wq_update_node_max_active(wq, -1);
6651 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6652 }
6653 }
6ba94429 6654
7ee681b2
TG
6655 mutex_unlock(&wq_pool_mutex);
6656 return 0;
6ba94429
FW
6657}
6658
7ee681b2 6659int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6660{
6ba94429
FW
6661 struct workqueue_struct *wq;
6662
7ee681b2 6663 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6664 if (WARN_ON(cpu != smp_processor_id()))
6665 return -1;
6666
6667 unbind_workers(cpu);
7ee681b2 6668
fef59c9c 6669 /* update pod affinity of unbound workqueues */
7ee681b2 6670 mutex_lock(&wq_pool_mutex);
8d84baf7
LJ
6671
6672 cpumask_clear_cpu(cpu, wq_online_cpumask);
6673
4cbfd3de 6674 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6675 struct workqueue_attrs *attrs = wq->unbound_attrs;
6676
6677 if (attrs) {
6678 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6679 int tcpu;
4cbfd3de 6680
84193c07 6681 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
b2b1f933 6682 unbound_wq_update_pwq(wq, tcpu);
5797b1c1
TH
6683
6684 mutex_lock(&wq->mutex);
6685 wq_update_node_max_active(wq, cpu);
6686 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6687 }
6688 }
7ee681b2
TG
6689 mutex_unlock(&wq_pool_mutex);
6690
7ee681b2 6691 return 0;
6ba94429
FW
6692}
6693
6ba94429
FW
6694struct work_for_cpu {
6695 struct work_struct work;
6696 long (*fn)(void *);
6697 void *arg;
6698 long ret;
6699};
6700
6701static void work_for_cpu_fn(struct work_struct *work)
6702{
6703 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6704
6705 wfc->ret = wfc->fn(wfc->arg);
6706}
6707
6708/**
265f3ed0 6709 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6710 * @cpu: the cpu to run on
6711 * @fn: the function to run
6712 * @arg: the function arg
265f3ed0 6713 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6714 *
6715 * It is up to the caller to ensure that the cpu doesn't go offline.
6716 * The caller must not hold any locks which would prevent @fn from completing.
6717 *
6718 * Return: The value @fn returns.
6719 */
265f3ed0
FW
6720long work_on_cpu_key(int cpu, long (*fn)(void *),
6721 void *arg, struct lock_class_key *key)
6ba94429
FW
6722{
6723 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6724
265f3ed0 6725 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6726 schedule_work_on(cpu, &wfc.work);
6727 flush_work(&wfc.work);
6728 destroy_work_on_stack(&wfc.work);
6729 return wfc.ret;
6730}
265f3ed0 6731EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6732
6733/**
265f3ed0 6734 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6735 * @cpu: the cpu to run on
6736 * @fn: the function to run
6737 * @arg: the function argument
265f3ed0 6738 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6739 *
6740 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6741 * any locks which would prevent @fn from completing.
6742 *
6743 * Return: The value @fn returns.
6744 */
265f3ed0
FW
6745long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6746 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6747{
6748 long ret = -ENODEV;
6749
ffd8bea8 6750 cpus_read_lock();
0e8d6a93 6751 if (cpu_online(cpu))
265f3ed0 6752 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6753 cpus_read_unlock();
0e8d6a93
TG
6754 return ret;
6755}
265f3ed0 6756EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6757#endif /* CONFIG_SMP */
6758
6759#ifdef CONFIG_FREEZER
6760
6761/**
6762 * freeze_workqueues_begin - begin freezing workqueues
6763 *
6764 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6765 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6766 * pool->worklist.
6767 *
6768 * CONTEXT:
6769 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6770 */
6771void freeze_workqueues_begin(void)
6772{
6773 struct workqueue_struct *wq;
6ba94429
FW
6774
6775 mutex_lock(&wq_pool_mutex);
6776
6777 WARN_ON_ONCE(workqueue_freezing);
6778 workqueue_freezing = true;
6779
6780 list_for_each_entry(wq, &workqueues, list) {
6781 mutex_lock(&wq->mutex);
a045a272 6782 wq_adjust_max_active(wq);
6ba94429
FW
6783 mutex_unlock(&wq->mutex);
6784 }
6785
6786 mutex_unlock(&wq_pool_mutex);
6787}
6788
6789/**
6790 * freeze_workqueues_busy - are freezable workqueues still busy?
6791 *
6792 * Check whether freezing is complete. This function must be called
6793 * between freeze_workqueues_begin() and thaw_workqueues().
6794 *
6795 * CONTEXT:
6796 * Grabs and releases wq_pool_mutex.
6797 *
6798 * Return:
6799 * %true if some freezable workqueues are still busy. %false if freezing
6800 * is complete.
6801 */
6802bool freeze_workqueues_busy(void)
6803{
6804 bool busy = false;
6805 struct workqueue_struct *wq;
6806 struct pool_workqueue *pwq;
6807
6808 mutex_lock(&wq_pool_mutex);
6809
6810 WARN_ON_ONCE(!workqueue_freezing);
6811
6812 list_for_each_entry(wq, &workqueues, list) {
6813 if (!(wq->flags & WQ_FREEZABLE))
6814 continue;
6815 /*
6816 * nr_active is monotonically decreasing. It's safe
6817 * to peek without lock.
6818 */
24acfb71 6819 rcu_read_lock();
6ba94429
FW
6820 for_each_pwq(pwq, wq) {
6821 WARN_ON_ONCE(pwq->nr_active < 0);
6822 if (pwq->nr_active) {
6823 busy = true;
24acfb71 6824 rcu_read_unlock();
6ba94429
FW
6825 goto out_unlock;
6826 }
6827 }
24acfb71 6828 rcu_read_unlock();
6ba94429
FW
6829 }
6830out_unlock:
6831 mutex_unlock(&wq_pool_mutex);
6832 return busy;
6833}
6834
6835/**
6836 * thaw_workqueues - thaw workqueues
6837 *
6838 * Thaw workqueues. Normal queueing is restored and all collected
6839 * frozen works are transferred to their respective pool worklists.
6840 *
6841 * CONTEXT:
6842 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6843 */
6844void thaw_workqueues(void)
6845{
6846 struct workqueue_struct *wq;
6ba94429
FW
6847
6848 mutex_lock(&wq_pool_mutex);
6849
6850 if (!workqueue_freezing)
6851 goto out_unlock;
6852
6853 workqueue_freezing = false;
6854
6855 /* restore max_active and repopulate worklist */
6856 list_for_each_entry(wq, &workqueues, list) {
6857 mutex_lock(&wq->mutex);
a045a272 6858 wq_adjust_max_active(wq);
6ba94429
FW
6859 mutex_unlock(&wq->mutex);
6860 }
6861
6862out_unlock:
6863 mutex_unlock(&wq_pool_mutex);
6864}
6865#endif /* CONFIG_FREEZER */
6866
99c621ef 6867static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6868{
6869 LIST_HEAD(ctxs);
6870 int ret = 0;
6871 struct workqueue_struct *wq;
6872 struct apply_wqattrs_ctx *ctx, *n;
6873
6874 lockdep_assert_held(&wq_pool_mutex);
6875
6876 list_for_each_entry(wq, &workqueues, list) {
8eb17dc1 6877 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
042f7df1 6878 continue;
042f7df1 6879
99c621ef 6880 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6881 if (IS_ERR(ctx)) {
6882 ret = PTR_ERR(ctx);
042f7df1
LJ
6883 break;
6884 }
6885
6886 list_add_tail(&ctx->list, &ctxs);
6887 }
6888
6889 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6890 if (!ret)
6891 apply_wqattrs_commit(ctx);
6892 apply_wqattrs_cleanup(ctx);
6893 }
6894
99c621ef
LJ
6895 if (!ret) {
6896 mutex_lock(&wq_pool_attach_mutex);
6897 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6898 mutex_unlock(&wq_pool_attach_mutex);
6899 }
042f7df1
LJ
6900 return ret;
6901}
6902
fe28f631
WL
6903/**
6904 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6905 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6906 *
6907 * This function can be called from cpuset code to provide a set of isolated
aa868475 6908 * CPUs that should be excluded from wq_unbound_cpumask.
fe28f631
WL
6909 */
6910int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6911{
6912 cpumask_var_t cpumask;
6913 int ret = 0;
6914
6915 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6916 return -ENOMEM;
6917
fe28f631
WL
6918 mutex_lock(&wq_pool_mutex);
6919
fe28f631
WL
6920 /*
6921 * If the operation fails, it will fall back to
6922 * wq_requested_unbound_cpumask which is initially set to
6923 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6924 * by any subsequent write to workqueue/cpumask sysfs file.
6925 */
6926 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6927 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6928 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6929 ret = workqueue_apply_unbound_cpumask(cpumask);
6930
84165883
LJ
6931 /* Save the current isolated cpumask & export it via sysfs */
6932 if (!ret)
6933 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6934
fe28f631
WL
6935 mutex_unlock(&wq_pool_mutex);
6936 free_cpumask_var(cpumask);
6937 return ret;
6938}
6939
63c5484e
TH
6940static int parse_affn_scope(const char *val)
6941{
6942 int i;
6943
6944 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6945 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6946 return i;
6947 }
6948 return -EINVAL;
6949}
6950
6951static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6952{
523a301e
TH
6953 struct workqueue_struct *wq;
6954 int affn, cpu;
63c5484e
TH
6955
6956 affn = parse_affn_scope(val);
6957 if (affn < 0)
6958 return affn;
523a301e
TH
6959 if (affn == WQ_AFFN_DFL)
6960 return -EINVAL;
6961
6962 cpus_read_lock();
6963 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6964
6965 wq_affn_dfl = affn;
523a301e
TH
6966
6967 list_for_each_entry(wq, &workqueues, list) {
b2b1f933
LJ
6968 for_each_online_cpu(cpu)
6969 unbound_wq_update_pwq(wq, cpu);
523a301e
TH
6970 }
6971
6972 mutex_unlock(&wq_pool_mutex);
6973 cpus_read_unlock();
6974
63c5484e
TH
6975 return 0;
6976}
6977
6978static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6979{
6980 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6981}
6982
6983static const struct kernel_param_ops wq_affn_dfl_ops = {
6984 .set = wq_affn_dfl_set,
6985 .get = wq_affn_dfl_get,
6986};
6987
6988module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6989
6ba94429
FW
6990#ifdef CONFIG_SYSFS
6991/*
6992 * Workqueues with WQ_SYSFS flag set is visible to userland via
6993 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6994 * following attributes.
6995 *
63c5484e
TH
6996 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6997 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6998 *
6999 * Unbound workqueues have the following extra attributes.
7000 *
63c5484e
TH
7001 * nice RW int : nice value of the workers
7002 * cpumask RW mask : bitmask of allowed CPUs for the workers
7003 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 7004 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
7005 */
7006struct wq_device {
7007 struct workqueue_struct *wq;
7008 struct device dev;
7009};
7010
7011static struct workqueue_struct *dev_to_wq(struct device *dev)
7012{
7013 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7014
7015 return wq_dev->wq;
7016}
7017
7018static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7019 char *buf)
7020{
7021 struct workqueue_struct *wq = dev_to_wq(dev);
7022
7023 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7024}
7025static DEVICE_ATTR_RO(per_cpu);
7026
7027static ssize_t max_active_show(struct device *dev,
7028 struct device_attribute *attr, char *buf)
7029{
7030 struct workqueue_struct *wq = dev_to_wq(dev);
7031
7032 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7033}
7034
7035static ssize_t max_active_store(struct device *dev,
7036 struct device_attribute *attr, const char *buf,
7037 size_t count)
7038{
7039 struct workqueue_struct *wq = dev_to_wq(dev);
7040 int val;
7041
7042 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7043 return -EINVAL;
7044
7045 workqueue_set_max_active(wq, val);
7046 return count;
7047}
7048static DEVICE_ATTR_RW(max_active);
7049
7050static struct attribute *wq_sysfs_attrs[] = {
7051 &dev_attr_per_cpu.attr,
7052 &dev_attr_max_active.attr,
7053 NULL,
7054};
7055ATTRIBUTE_GROUPS(wq_sysfs);
7056
6ba94429
FW
7057static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7058 char *buf)
7059{
7060 struct workqueue_struct *wq = dev_to_wq(dev);
7061 int written;
7062
7063 mutex_lock(&wq->mutex);
7064 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7065 mutex_unlock(&wq->mutex);
7066
7067 return written;
7068}
7069
7070/* prepare workqueue_attrs for sysfs store operations */
7071static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7072{
7073 struct workqueue_attrs *attrs;
7074
899a94fe
LJ
7075 lockdep_assert_held(&wq_pool_mutex);
7076
be69d00d 7077 attrs = alloc_workqueue_attrs();
6ba94429
FW
7078 if (!attrs)
7079 return NULL;
7080
6ba94429 7081 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
7082 return attrs;
7083}
7084
7085static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7086 const char *buf, size_t count)
7087{
7088 struct workqueue_struct *wq = dev_to_wq(dev);
7089 struct workqueue_attrs *attrs;
d4d3e257
LJ
7090 int ret = -ENOMEM;
7091
7092 apply_wqattrs_lock();
6ba94429
FW
7093
7094 attrs = wq_sysfs_prep_attrs(wq);
7095 if (!attrs)
d4d3e257 7096 goto out_unlock;
6ba94429
FW
7097
7098 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7099 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 7100 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
7101 else
7102 ret = -EINVAL;
7103
d4d3e257
LJ
7104out_unlock:
7105 apply_wqattrs_unlock();
6ba94429
FW
7106 free_workqueue_attrs(attrs);
7107 return ret ?: count;
7108}
7109
7110static ssize_t wq_cpumask_show(struct device *dev,
7111 struct device_attribute *attr, char *buf)
7112{
7113 struct workqueue_struct *wq = dev_to_wq(dev);
7114 int written;
7115
7116 mutex_lock(&wq->mutex);
7117 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7118 cpumask_pr_args(wq->unbound_attrs->cpumask));
7119 mutex_unlock(&wq->mutex);
7120 return written;
7121}
7122
7123static ssize_t wq_cpumask_store(struct device *dev,
7124 struct device_attribute *attr,
7125 const char *buf, size_t count)
7126{
7127 struct workqueue_struct *wq = dev_to_wq(dev);
7128 struct workqueue_attrs *attrs;
d4d3e257
LJ
7129 int ret = -ENOMEM;
7130
7131 apply_wqattrs_lock();
6ba94429
FW
7132
7133 attrs = wq_sysfs_prep_attrs(wq);
7134 if (!attrs)
d4d3e257 7135 goto out_unlock;
6ba94429
FW
7136
7137 ret = cpumask_parse(buf, attrs->cpumask);
7138 if (!ret)
d4d3e257 7139 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 7140
d4d3e257
LJ
7141out_unlock:
7142 apply_wqattrs_unlock();
6ba94429
FW
7143 free_workqueue_attrs(attrs);
7144 return ret ?: count;
7145}
7146
63c5484e
TH
7147static ssize_t wq_affn_scope_show(struct device *dev,
7148 struct device_attribute *attr, char *buf)
7149{
7150 struct workqueue_struct *wq = dev_to_wq(dev);
7151 int written;
7152
7153 mutex_lock(&wq->mutex);
523a301e
TH
7154 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7155 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7156 wq_affn_names[WQ_AFFN_DFL],
7157 wq_affn_names[wq_affn_dfl]);
7158 else
7159 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7160 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
7161 mutex_unlock(&wq->mutex);
7162
7163 return written;
7164}
7165
7166static ssize_t wq_affn_scope_store(struct device *dev,
7167 struct device_attribute *attr,
7168 const char *buf, size_t count)
7169{
7170 struct workqueue_struct *wq = dev_to_wq(dev);
7171 struct workqueue_attrs *attrs;
7172 int affn, ret = -ENOMEM;
7173
7174 affn = parse_affn_scope(buf);
7175 if (affn < 0)
7176 return affn;
7177
7178 apply_wqattrs_lock();
7179 attrs = wq_sysfs_prep_attrs(wq);
7180 if (attrs) {
7181 attrs->affn_scope = affn;
7182 ret = apply_workqueue_attrs_locked(wq, attrs);
7183 }
7184 apply_wqattrs_unlock();
7185 free_workqueue_attrs(attrs);
7186 return ret ?: count;
7187}
7188
8639eceb
TH
7189static ssize_t wq_affinity_strict_show(struct device *dev,
7190 struct device_attribute *attr, char *buf)
7191{
7192 struct workqueue_struct *wq = dev_to_wq(dev);
7193
7194 return scnprintf(buf, PAGE_SIZE, "%d\n",
7195 wq->unbound_attrs->affn_strict);
7196}
7197
7198static ssize_t wq_affinity_strict_store(struct device *dev,
7199 struct device_attribute *attr,
7200 const char *buf, size_t count)
7201{
7202 struct workqueue_struct *wq = dev_to_wq(dev);
7203 struct workqueue_attrs *attrs;
7204 int v, ret = -ENOMEM;
7205
7206 if (sscanf(buf, "%d", &v) != 1)
7207 return -EINVAL;
7208
7209 apply_wqattrs_lock();
7210 attrs = wq_sysfs_prep_attrs(wq);
7211 if (attrs) {
7212 attrs->affn_strict = (bool)v;
7213 ret = apply_workqueue_attrs_locked(wq, attrs);
7214 }
7215 apply_wqattrs_unlock();
7216 free_workqueue_attrs(attrs);
7217 return ret ?: count;
7218}
7219
6ba94429 7220static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
7221 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7222 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 7223 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 7224 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
7225 __ATTR_NULL,
7226};
8ccad40d 7227
5df9197e 7228static const struct bus_type wq_subsys = {
6ba94429
FW
7229 .name = "workqueue",
7230 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
7231};
7232
49277a5b
WL
7233/**
7234 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7235 * @cpumask: the cpumask to set
7236 *
7237 * The low-level workqueues cpumask is a global cpumask that limits
7238 * the affinity of all unbound workqueues. This function check the @cpumask
7239 * and apply it to all unbound workqueues and updates all pwqs of them.
7240 *
7241 * Return: 0 - Success
7242 * -EINVAL - Invalid @cpumask
7243 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7244 */
7245static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7246{
7247 int ret = -EINVAL;
7248
7249 /*
7250 * Not excluding isolated cpus on purpose.
7251 * If the user wishes to include them, we allow that.
7252 */
7253 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7254 if (!cpumask_empty(cpumask)) {
b3d20916 7255 ret = 0;
49277a5b 7256 apply_wqattrs_lock();
b3d20916
LJ
7257 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7258 ret = workqueue_apply_unbound_cpumask(cpumask);
84165883
LJ
7259 if (!ret)
7260 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
49277a5b
WL
7261 apply_wqattrs_unlock();
7262 }
7263
7264 return ret;
7265}
7266
fe28f631
WL
7267static ssize_t __wq_cpumask_show(struct device *dev,
7268 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
7269{
7270 int written;
7271
042f7df1 7272 mutex_lock(&wq_pool_mutex);
fe28f631 7273 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 7274 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
7275
7276 return written;
7277}
7278
79202591 7279static ssize_t cpumask_requested_show(struct device *dev,
fe28f631
WL
7280 struct device_attribute *attr, char *buf)
7281{
79202591 7282 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
fe28f631 7283}
79202591 7284static DEVICE_ATTR_RO(cpumask_requested);
fe28f631 7285
79202591 7286static ssize_t cpumask_isolated_show(struct device *dev,
fe28f631
WL
7287 struct device_attribute *attr, char *buf)
7288{
79202591 7289 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
fe28f631 7290}
79202591 7291static DEVICE_ATTR_RO(cpumask_isolated);
fe28f631 7292
79202591 7293static ssize_t cpumask_show(struct device *dev,
fe28f631
WL
7294 struct device_attribute *attr, char *buf)
7295{
79202591 7296 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
fe28f631
WL
7297}
7298
79202591 7299static ssize_t cpumask_store(struct device *dev,
042f7df1
LJ
7300 struct device_attribute *attr, const char *buf, size_t count)
7301{
7302 cpumask_var_t cpumask;
7303 int ret;
7304
7305 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7306 return -ENOMEM;
7307
7308 ret = cpumask_parse(buf, cpumask);
7309 if (!ret)
7310 ret = workqueue_set_unbound_cpumask(cpumask);
7311
7312 free_cpumask_var(cpumask);
7313 return ret ? ret : count;
7314}
79202591 7315static DEVICE_ATTR_RW(cpumask);
042f7df1 7316
79202591
DW
7317static struct attribute *wq_sysfs_cpumask_attrs[] = {
7318 &dev_attr_cpumask.attr,
7319 &dev_attr_cpumask_requested.attr,
7320 &dev_attr_cpumask_isolated.attr,
7321 NULL,
fe28f631 7322};
79202591 7323ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
b05a7928 7324
6ba94429 7325static int __init wq_sysfs_init(void)
2d3854a3 7326{
79202591 7327 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
2d3854a3 7328}
6ba94429 7329core_initcall(wq_sysfs_init);
2d3854a3 7330
6ba94429 7331static void wq_device_release(struct device *dev)
2d3854a3 7332{
6ba94429 7333 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 7334
6ba94429 7335 kfree(wq_dev);
2d3854a3 7336}
a0a1a5fd
TH
7337
7338/**
6ba94429
FW
7339 * workqueue_sysfs_register - make a workqueue visible in sysfs
7340 * @wq: the workqueue to register
a0a1a5fd 7341 *
6ba94429
FW
7342 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7343 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7344 * which is the preferred method.
a0a1a5fd 7345 *
6ba94429
FW
7346 * Workqueue user should use this function directly iff it wants to apply
7347 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7348 * apply_workqueue_attrs() may race against userland updating the
7349 * attributes.
7350 *
7351 * Return: 0 on success, -errno on failure.
a0a1a5fd 7352 */
6ba94429 7353int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 7354{
6ba94429
FW
7355 struct wq_device *wq_dev;
7356 int ret;
a0a1a5fd 7357
6ba94429 7358 /*
4c065dbc
WL
7359 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7360 * ordered workqueues.
6ba94429 7361 */
3bc1e711 7362 if (WARN_ON(wq->flags & __WQ_ORDERED))
6ba94429 7363 return -EINVAL;
a0a1a5fd 7364
6ba94429
FW
7365 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7366 if (!wq_dev)
7367 return -ENOMEM;
5bcab335 7368
6ba94429
FW
7369 wq_dev->wq = wq;
7370 wq_dev->dev.bus = &wq_subsys;
6ba94429 7371 wq_dev->dev.release = wq_device_release;
23217b44 7372 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 7373
6ba94429
FW
7374 /*
7375 * unbound_attrs are created separately. Suppress uevent until
7376 * everything is ready.
7377 */
7378 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 7379
6ba94429
FW
7380 ret = device_register(&wq_dev->dev);
7381 if (ret) {
537f4146 7382 put_device(&wq_dev->dev);
6ba94429
FW
7383 wq->wq_dev = NULL;
7384 return ret;
7385 }
a0a1a5fd 7386
6ba94429
FW
7387 if (wq->flags & WQ_UNBOUND) {
7388 struct device_attribute *attr;
a0a1a5fd 7389
6ba94429
FW
7390 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7391 ret = device_create_file(&wq_dev->dev, attr);
7392 if (ret) {
7393 device_unregister(&wq_dev->dev);
7394 wq->wq_dev = NULL;
7395 return ret;
a0a1a5fd
TH
7396 }
7397 }
7398 }
6ba94429
FW
7399
7400 dev_set_uevent_suppress(&wq_dev->dev, false);
7401 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7402 return 0;
a0a1a5fd
TH
7403}
7404
7405/**
6ba94429
FW
7406 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7407 * @wq: the workqueue to unregister
a0a1a5fd 7408 *
6ba94429 7409 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 7410 */
6ba94429 7411static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 7412{
6ba94429 7413 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 7414
6ba94429
FW
7415 if (!wq->wq_dev)
7416 return;
a0a1a5fd 7417
6ba94429
FW
7418 wq->wq_dev = NULL;
7419 device_unregister(&wq_dev->dev);
a0a1a5fd 7420}
6ba94429
FW
7421#else /* CONFIG_SYSFS */
7422static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7423#endif /* CONFIG_SYSFS */
a0a1a5fd 7424
82607adc
TH
7425/*
7426 * Workqueue watchdog.
7427 *
7428 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7429 * flush dependency, a concurrency managed work item which stays RUNNING
7430 * indefinitely. Workqueue stalls can be very difficult to debug as the
7431 * usual warning mechanisms don't trigger and internal workqueue state is
7432 * largely opaque.
7433 *
7434 * Workqueue watchdog monitors all worker pools periodically and dumps
7435 * state if some pools failed to make forward progress for a while where
7436 * forward progress is defined as the first item on ->worklist changing.
7437 *
7438 * This mechanism is controlled through the kernel parameter
7439 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7440 * corresponding sysfs parameter file.
7441 */
7442#ifdef CONFIG_WQ_WATCHDOG
7443
82607adc 7444static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 7445static struct timer_list wq_watchdog_timer;
82607adc
TH
7446
7447static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7448static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7449
073107b3
SK
7450static unsigned int wq_panic_on_stall;
7451module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7452
cd2440d6
PM
7453/*
7454 * Show workers that might prevent the processing of pending work items.
7455 * The only candidates are CPU-bound workers in the running state.
7456 * Pending work items should be handled by another idle worker
7457 * in all other situations.
7458 */
7459static void show_cpu_pool_hog(struct worker_pool *pool)
7460{
7461 struct worker *worker;
c26e2f2e 7462 unsigned long irq_flags;
cd2440d6
PM
7463 int bkt;
7464
c26e2f2e 7465 raw_spin_lock_irqsave(&pool->lock, irq_flags);
cd2440d6
PM
7466
7467 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7468 if (task_is_running(worker->task)) {
7469 /*
7470 * Defer printing to avoid deadlocks in console
7471 * drivers that queue work while holding locks
7472 * also taken in their write paths.
7473 */
7474 printk_deferred_enter();
7475
7476 pr_info("pool %d:\n", pool->id);
7477 sched_show_task(worker->task);
7478
7479 printk_deferred_exit();
7480 }
7481 }
7482
c26e2f2e 7483 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
cd2440d6
PM
7484}
7485
7486static void show_cpu_pools_hogs(void)
7487{
7488 struct worker_pool *pool;
7489 int pi;
7490
7491 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7492
7493 rcu_read_lock();
7494
7495 for_each_pool(pool, pi) {
7496 if (pool->cpu_stall)
7497 show_cpu_pool_hog(pool);
7498
7499 }
7500
7501 rcu_read_unlock();
7502}
7503
073107b3
SK
7504static void panic_on_wq_watchdog(void)
7505{
7506 static unsigned int wq_stall;
7507
7508 if (wq_panic_on_stall) {
7509 wq_stall++;
7510 BUG_ON(wq_stall >= wq_panic_on_stall);
7511 }
7512}
7513
82607adc
TH
7514static void wq_watchdog_reset_touched(void)
7515{
7516 int cpu;
7517
7518 wq_watchdog_touched = jiffies;
7519 for_each_possible_cpu(cpu)
7520 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7521}
7522
5cd79d6a 7523static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
7524{
7525 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7526 bool lockup_detected = false;
cd2440d6 7527 bool cpu_pool_stall = false;
940d71c6 7528 unsigned long now = jiffies;
82607adc
TH
7529 struct worker_pool *pool;
7530 int pi;
7531
7532 if (!thresh)
7533 return;
7534
7535 rcu_read_lock();
7536
7537 for_each_pool(pool, pi) {
7538 unsigned long pool_ts, touched, ts;
7539
cd2440d6 7540 pool->cpu_stall = false;
82607adc
TH
7541 if (list_empty(&pool->worklist))
7542 continue;
7543
940d71c6
SS
7544 /*
7545 * If a virtual machine is stopped by the host it can look to
7546 * the watchdog like a stall.
7547 */
7548 kvm_check_and_clear_guest_paused();
7549
82607adc 7550 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7551 if (pool->cpu >= 0)
7552 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7553 else
7554 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7555 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7556
7557 if (time_after(pool_ts, touched))
7558 ts = pool_ts;
7559 else
7560 ts = touched;
7561
82607adc 7562 /* did we stall? */
940d71c6 7563 if (time_after(now, ts + thresh)) {
82607adc 7564 lockup_detected = true;
4cb1ef64 7565 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
cd2440d6
PM
7566 pool->cpu_stall = true;
7567 cpu_pool_stall = true;
7568 }
82607adc
TH
7569 pr_emerg("BUG: workqueue lockup - pool");
7570 pr_cont_pool_info(pool);
7571 pr_cont(" stuck for %us!\n",
940d71c6 7572 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7573 }
cd2440d6
PM
7574
7575
82607adc
TH
7576 }
7577
7578 rcu_read_unlock();
7579
7580 if (lockup_detected)
55df0933 7581 show_all_workqueues();
82607adc 7582
cd2440d6
PM
7583 if (cpu_pool_stall)
7584 show_cpu_pools_hogs();
7585
073107b3
SK
7586 if (lockup_detected)
7587 panic_on_wq_watchdog();
7588
82607adc
TH
7589 wq_watchdog_reset_touched();
7590 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7591}
7592
cb9d7fd5 7593notrace void wq_watchdog_touch(int cpu)
82607adc 7594{
98f887f8
NP
7595 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7596 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7597 unsigned long now = jiffies;
7598
82607adc 7599 if (cpu >= 0)
98f887f8 7600 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
18e24deb
NP
7601 else
7602 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
89e28ce6 7603
98f887f8
NP
7604 /* Don't unnecessarily store to global cacheline */
7605 if (time_after(now, touch_ts + thresh / 4))
7606 WRITE_ONCE(wq_watchdog_touched, jiffies);
82607adc
TH
7607}
7608
7609static void wq_watchdog_set_thresh(unsigned long thresh)
7610{
7611 wq_watchdog_thresh = 0;
7612 del_timer_sync(&wq_watchdog_timer);
7613
7614 if (thresh) {
7615 wq_watchdog_thresh = thresh;
7616 wq_watchdog_reset_touched();
7617 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7618 }
7619}
7620
7621static int wq_watchdog_param_set_thresh(const char *val,
7622 const struct kernel_param *kp)
7623{
7624 unsigned long thresh;
7625 int ret;
7626
7627 ret = kstrtoul(val, 0, &thresh);
7628 if (ret)
7629 return ret;
7630
7631 if (system_wq)
7632 wq_watchdog_set_thresh(thresh);
7633 else
7634 wq_watchdog_thresh = thresh;
7635
7636 return 0;
7637}
7638
7639static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7640 .set = wq_watchdog_param_set_thresh,
7641 .get = param_get_ulong,
7642};
7643
7644module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7645 0644);
7646
7647static void wq_watchdog_init(void)
7648{
5cd79d6a 7649 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7650 wq_watchdog_set_thresh(wq_watchdog_thresh);
7651}
7652
7653#else /* CONFIG_WQ_WATCHDOG */
7654
7655static inline void wq_watchdog_init(void) { }
7656
7657#endif /* CONFIG_WQ_WATCHDOG */
7658
2f34d733
TH
7659static void bh_pool_kick_normal(struct irq_work *irq_work)
7660{
7661 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7662}
7663
7664static void bh_pool_kick_highpri(struct irq_work *irq_work)
7665{
7666 raise_softirq_irqoff(HI_SOFTIRQ);
7667}
7668
4a6c5607
TH
7669static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7670{
7671 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7672 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7673 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7674 return;
7675 }
7676
7677 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7678}
7679
2fcdb1b4
TH
7680static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7681{
7682 BUG_ON(init_worker_pool(pool));
7683 pool->cpu = cpu;
7684 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7685 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7686 pool->attrs->nice = nice;
7687 pool->attrs->affn_strict = true;
7688 pool->node = cpu_to_node(cpu);
7689
7690 /* alloc pool ID */
7691 mutex_lock(&wq_pool_mutex);
7692 BUG_ON(worker_pool_assign_id(pool));
7693 mutex_unlock(&wq_pool_mutex);
7694}
7695
3347fa09
TH
7696/**
7697 * workqueue_init_early - early init for workqueue subsystem
7698 *
2930155b
TH
7699 * This is the first step of three-staged workqueue subsystem initialization and
7700 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7701 * up. It sets up all the data structures and system workqueues and allows early
7702 * boot code to create workqueues and queue/cancel work items. Actual work item
7703 * execution starts only after kthreads can be created and scheduled right
7704 * before early initcalls.
3347fa09 7705 */
2333e829 7706void __init workqueue_init_early(void)
1da177e4 7707{
84193c07 7708 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c 7709 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
2f34d733
TH
7710 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7711 bh_pool_kick_highpri };
7a4e344c 7712 int i, cpu;
c34056a3 7713
10cdb157 7714 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7715
8d84baf7 7716 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
b05a7928 7717 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7718 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7719 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7720
8d84baf7 7721 cpumask_copy(wq_online_cpumask, cpu_online_mask);
4a6c5607
TH
7722 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7723 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7724 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7725 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7726 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7727
fe28f631 7728 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7729
e904e6c2
TH
7730 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7731
b2b1f933
LJ
7732 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7733 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
2930155b 7734
7bd20b6b
MT
7735 /*
7736 * If nohz_full is enabled, set power efficient workqueue as unbound.
7737 * This allows workqueue items to be moved to HK CPUs.
7738 */
7739 if (housekeeping_enabled(HK_TYPE_TICK))
7740 wq_power_efficient = true;
7741
84193c07
TH
7742 /* initialize WQ_AFFN_SYSTEM pods */
7743 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7744 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7745 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7746 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7747
7748 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7749
84193c07
TH
7750 pt->nr_pods = 1;
7751 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7752 pt->pod_node[0] = NUMA_NO_NODE;
7753 pt->cpu_pod[0] = 0;
7754
4cb1ef64 7755 /* initialize BH and CPU pools */
29c91e99 7756 for_each_possible_cpu(cpu) {
4ce62e9e 7757 struct worker_pool *pool;
8b03ae3c 7758
4cb1ef64
TH
7759 i = 0;
7760 for_each_bh_worker_pool(pool, cpu) {
2f34d733 7761 init_cpu_worker_pool(pool, cpu, std_nice[i]);
4cb1ef64 7762 pool->flags |= POOL_BH;
2f34d733
TH
7763 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7764 i++;
4cb1ef64
TH
7765 }
7766
7a4e344c 7767 i = 0;
2fcdb1b4
TH
7768 for_each_cpu_worker_pool(pool, cpu)
7769 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
8b03ae3c
TH
7770 }
7771
8a2b7538 7772 /* create default unbound and ordered wq attrs */
29c91e99
TH
7773 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7774 struct workqueue_attrs *attrs;
7775
be69d00d 7776 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7777 attrs->nice = std_nice[i];
29c91e99 7778 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7779
7780 /*
7781 * An ordered wq should have only one pwq as ordering is
7782 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7783 */
be69d00d 7784 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7785 attrs->nice = std_nice[i];
af73f5c9 7786 attrs->ordered = true;
8a2b7538 7787 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7788 }
7789
d320c038 7790 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7791 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7792 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7793 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7794 WQ_MAX_ACTIVE);
24d51add
TH
7795 system_freezable_wq = alloc_workqueue("events_freezable",
7796 WQ_FREEZABLE, 0);
0668106c
VK
7797 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7798 WQ_POWER_EFFICIENT, 0);
8318d6a6 7799 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7800 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7801 0);
4cb1ef64
TH
7802 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7803 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7804 WQ_BH | WQ_HIGHPRI, 0);
1aabe902 7805 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7806 !system_unbound_wq || !system_freezable_wq ||
7807 !system_power_efficient_wq ||
4cb1ef64
TH
7808 !system_freezable_power_efficient_wq ||
7809 !system_bh_wq || !system_bh_highpri_wq);
3347fa09
TH
7810}
7811
aa6fde93
TH
7812static void __init wq_cpu_intensive_thresh_init(void)
7813{
7814 unsigned long thresh;
7815 unsigned long bogo;
7816
dd64c873
Z
7817 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7818 BUG_ON(IS_ERR(pwq_release_worker));
7819
aa6fde93
TH
7820 /* if the user set it to a specific value, keep it */
7821 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7822 return;
7823
7824 /*
7825 * The default of 10ms is derived from the fact that most modern (as of
7826 * 2023) processors can do a lot in 10ms and that it's just below what
7827 * most consider human-perceivable. However, the kernel also runs on a
7828 * lot slower CPUs including microcontrollers where the threshold is way
7829 * too low.
7830 *
7831 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7832 * This is by no means accurate but it doesn't have to be. The mechanism
7833 * is still useful even when the threshold is fully scaled up. Also, as
7834 * the reports would usually be applicable to everyone, some machines
7835 * operating on longer thresholds won't significantly diminish their
7836 * usefulness.
7837 */
7838 thresh = 10 * USEC_PER_MSEC;
7839
7840 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7841 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7842 if (bogo < 4000)
7843 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7844
7845 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7846 loops_per_jiffy, bogo, thresh);
7847
7848 wq_cpu_intensive_thresh_us = thresh;
7849}
7850
3347fa09
TH
7851/**
7852 * workqueue_init - bring workqueue subsystem fully online
7853 *
2930155b
TH
7854 * This is the second step of three-staged workqueue subsystem initialization
7855 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7856 * been created and work items queued on them, but there are no kworkers
7857 * executing the work items yet. Populate the worker pools with the initial
7858 * workers and enable future kworker creations.
3347fa09 7859 */
2333e829 7860void __init workqueue_init(void)
3347fa09 7861{
2186d9f9 7862 struct workqueue_struct *wq;
3347fa09
TH
7863 struct worker_pool *pool;
7864 int cpu, bkt;
7865
aa6fde93
TH
7866 wq_cpu_intensive_thresh_init();
7867
2186d9f9
TH
7868 mutex_lock(&wq_pool_mutex);
7869
2930155b
TH
7870 /*
7871 * Per-cpu pools created earlier could be missing node hint. Fix them
7872 * up. Also, create a rescuer for workqueues that requested it.
7873 */
2186d9f9 7874 for_each_possible_cpu(cpu) {
4cb1ef64
TH
7875 for_each_bh_worker_pool(pool, cpu)
7876 pool->node = cpu_to_node(cpu);
7877 for_each_cpu_worker_pool(pool, cpu)
2186d9f9 7878 pool->node = cpu_to_node(cpu);
2186d9f9
TH
7879 }
7880
40c17f75 7881 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7882 WARN(init_rescuer(wq),
7883 "workqueue: failed to create early rescuer for %s",
7884 wq->name);
7885 }
2186d9f9
TH
7886
7887 mutex_unlock(&wq_pool_mutex);
7888
4cb1ef64
TH
7889 /*
7890 * Create the initial workers. A BH pool has one pseudo worker that
7891 * represents the shared BH execution context and thus doesn't get
7892 * affected by hotplug events. Create the BH pseudo workers for all
7893 * possible CPUs here.
7894 */
7895 for_each_possible_cpu(cpu)
7896 for_each_bh_worker_pool(pool, cpu)
7897 BUG_ON(!create_worker(pool));
7898
3347fa09
TH
7899 for_each_online_cpu(cpu) {
7900 for_each_cpu_worker_pool(pool, cpu) {
7901 pool->flags &= ~POOL_DISASSOCIATED;
7902 BUG_ON(!create_worker(pool));
7903 }
7904 }
7905
7906 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7907 BUG_ON(!create_worker(pool));
7908
7909 wq_online = true;
82607adc 7910 wq_watchdog_init();
1da177e4 7911}
c4f135d6 7912
025e1684
TH
7913/*
7914 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7915 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7916 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7917 */
7918static void __init init_pod_type(struct wq_pod_type *pt,
7919 bool (*cpus_share_pod)(int, int))
7920{
7921 int cur, pre, cpu, pod;
7922
7923 pt->nr_pods = 0;
7924
7925 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7926 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7927 BUG_ON(!pt->cpu_pod);
7928
7929 for_each_possible_cpu(cur) {
7930 for_each_possible_cpu(pre) {
7931 if (pre >= cur) {
7932 pt->cpu_pod[cur] = pt->nr_pods++;
7933 break;
7934 }
7935 if (cpus_share_pod(cur, pre)) {
7936 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7937 break;
7938 }
7939 }
7940 }
7941
7942 /* init the rest to match @pt->cpu_pod[] */
7943 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7944 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7945 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7946
7947 for (pod = 0; pod < pt->nr_pods; pod++)
7948 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7949
7950 for_each_possible_cpu(cpu) {
7951 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7952 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7953 }
7954}
7955
63c5484e
TH
7956static bool __init cpus_dont_share(int cpu0, int cpu1)
7957{
7958 return false;
7959}
7960
7961static bool __init cpus_share_smt(int cpu0, int cpu1)
7962{
7963#ifdef CONFIG_SCHED_SMT
7964 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7965#else
7966 return false;
7967#endif
7968}
7969
025e1684
TH
7970static bool __init cpus_share_numa(int cpu0, int cpu1)
7971{
7972 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7973}
7974
2930155b
TH
7975/**
7976 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7977 *
96068b60 7978 * This is the third step of three-staged workqueue subsystem initialization and
2930155b
TH
7979 * invoked after SMP and topology information are fully initialized. It
7980 * initializes the unbound CPU pods accordingly.
7981 */
7982void __init workqueue_init_topology(void)
a86feae6 7983{
2930155b 7984 struct workqueue_struct *wq;
025e1684 7985 int cpu;
a86feae6 7986
63c5484e
TH
7987 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7988 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7989 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7990 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7991
c5f8cd6c
TH
7992 wq_topo_initialized = true;
7993
2930155b 7994 mutex_lock(&wq_pool_mutex);
a86feae6 7995
2930155b
TH
7996 /*
7997 * Workqueues allocated earlier would have all CPUs sharing the default
b2b1f933
LJ
7998 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7999 * and CPU combinations to apply per-pod sharing.
2930155b
TH
8000 */
8001 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 8002 for_each_online_cpu(cpu)
b2b1f933 8003 unbound_wq_update_pwq(wq, cpu);
5797b1c1
TH
8004 if (wq->flags & WQ_UNBOUND) {
8005 mutex_lock(&wq->mutex);
8006 wq_update_node_max_active(wq, -1);
8007 mutex_unlock(&wq->mutex);
2930155b
TH
8008 }
8009 }
8010
8011 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
8012}
8013
20bdedaf
TH
8014void __warn_flushing_systemwide_wq(void)
8015{
8016 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8017 dump_stack();
8018}
c4f135d6 8019EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 8020
8021static int __init workqueue_unbound_cpus_setup(char *str)
8022{
8023 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8024 cpumask_clear(&wq_cmdline_cpumask);
8025 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8026 }
8027
8028 return 1;
8029}
8030__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);