workqueue: consistently use int for @cpu variables
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
d84ff051 127 int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
30cdf249 172 struct list_head pwqs_node; /* I: node on wq->pwqs */
493a1724 173 struct list_head mayday_node; /* W: node on wq->maydays */
e904e6c2 174} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 175
73f53c4a
TH
176/*
177 * Structure used to wait for workqueue flush.
178 */
179struct wq_flusher {
180 struct list_head list; /* F: list of flushers */
181 int flush_color; /* F: flush color waiting for */
182 struct completion done; /* flush completion */
183};
184
1da177e4
LT
185/*
186 * The externally visible workqueue abstraction is an array of
187 * per-CPU workqueues:
188 */
189struct workqueue_struct {
9c5a2ba7 190 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 191 union {
112202d9
TH
192 struct pool_workqueue __percpu *pcpu;
193 struct pool_workqueue *single;
bdbc5dd7 194 unsigned long v;
112202d9 195 } pool_wq; /* I: pwq's */
30cdf249 196 struct list_head pwqs; /* I: all pwqs of this wq */
4690c4ab 197 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
198
199 struct mutex flush_mutex; /* protects wq flushing */
200 int work_color; /* F: current work color */
201 int flush_color; /* F: current flush color */
112202d9 202 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
203 struct wq_flusher *first_flusher; /* F: first flusher */
204 struct list_head flusher_queue; /* F: flush waiters */
205 struct list_head flusher_overflow; /* F: flush overflow list */
206
493a1724 207 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
208 struct worker *rescuer; /* I: rescue worker */
209
9c5a2ba7 210 int nr_drainers; /* W: drain in progress */
112202d9 211 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 212#ifdef CONFIG_LOCKDEP
4690c4ab 213 struct lockdep_map lockdep_map;
4e6045f1 214#endif
b196be89 215 char name[]; /* I: workqueue name */
1da177e4
LT
216};
217
e904e6c2
TH
218static struct kmem_cache *pwq_cache;
219
d320c038 220struct workqueue_struct *system_wq __read_mostly;
d320c038 221EXPORT_SYMBOL_GPL(system_wq);
044c782c 222struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 223EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 224struct workqueue_struct *system_long_wq __read_mostly;
d320c038 225EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 226struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 227EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 228struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 229EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 230
97bd2347
TH
231#define CREATE_TRACE_POINTS
232#include <trace/events/workqueue.h>
233
38db41d9 234#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
235 for ((pool) = &std_worker_pools(cpu)[0]; \
236 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 237
b67bfe0d
SL
238#define for_each_busy_worker(worker, i, pool) \
239 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 240
706026c2
TH
241static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
242 unsigned int sw)
f3421797
TH
243{
244 if (cpu < nr_cpu_ids) {
245 if (sw & 1) {
246 cpu = cpumask_next(cpu, mask);
247 if (cpu < nr_cpu_ids)
248 return cpu;
249 }
250 if (sw & 2)
251 return WORK_CPU_UNBOUND;
252 }
6be19588 253 return WORK_CPU_END;
f3421797
TH
254}
255
09884951
TH
256/*
257 * CPU iterators
258 *
706026c2 259 * An extra cpu number is defined using an invalid cpu number
09884951 260 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
261 * specific CPU. The following iterators are similar to for_each_*_cpu()
262 * iterators but also considers the unbound CPU.
09884951 263 *
706026c2
TH
264 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
265 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951 266 */
706026c2
TH
267#define for_each_wq_cpu(cpu) \
268 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 269 (cpu) < WORK_CPU_END; \
706026c2 270 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 271
706026c2
TH
272#define for_each_online_wq_cpu(cpu) \
273 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 274 (cpu) < WORK_CPU_END; \
706026c2 275 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 276
17116969
TH
277/**
278 * for_each_pool - iterate through all worker_pools in the system
279 * @pool: iteration cursor
280 * @id: integer used for iteration
281 */
282#define for_each_pool(pool, id) \
283 idr_for_each_entry(&worker_pool_idr, pool, id)
284
49e3cf44
TH
285/**
286 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
287 * @pwq: iteration cursor
288 * @wq: the target workqueue
289 */
290#define for_each_pwq(pwq, wq) \
291 list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
f3421797 292
dc186ad7
TG
293#ifdef CONFIG_DEBUG_OBJECTS_WORK
294
295static struct debug_obj_descr work_debug_descr;
296
99777288
SG
297static void *work_debug_hint(void *addr)
298{
299 return ((struct work_struct *) addr)->func;
300}
301
dc186ad7
TG
302/*
303 * fixup_init is called when:
304 * - an active object is initialized
305 */
306static int work_fixup_init(void *addr, enum debug_obj_state state)
307{
308 struct work_struct *work = addr;
309
310 switch (state) {
311 case ODEBUG_STATE_ACTIVE:
312 cancel_work_sync(work);
313 debug_object_init(work, &work_debug_descr);
314 return 1;
315 default:
316 return 0;
317 }
318}
319
320/*
321 * fixup_activate is called when:
322 * - an active object is activated
323 * - an unknown object is activated (might be a statically initialized object)
324 */
325static int work_fixup_activate(void *addr, enum debug_obj_state state)
326{
327 struct work_struct *work = addr;
328
329 switch (state) {
330
331 case ODEBUG_STATE_NOTAVAILABLE:
332 /*
333 * This is not really a fixup. The work struct was
334 * statically initialized. We just make sure that it
335 * is tracked in the object tracker.
336 */
22df02bb 337 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
338 debug_object_init(work, &work_debug_descr);
339 debug_object_activate(work, &work_debug_descr);
340 return 0;
341 }
342 WARN_ON_ONCE(1);
343 return 0;
344
345 case ODEBUG_STATE_ACTIVE:
346 WARN_ON(1);
347
348 default:
349 return 0;
350 }
351}
352
353/*
354 * fixup_free is called when:
355 * - an active object is freed
356 */
357static int work_fixup_free(void *addr, enum debug_obj_state state)
358{
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_free(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369}
370
371static struct debug_obj_descr work_debug_descr = {
372 .name = "work_struct",
99777288 373 .debug_hint = work_debug_hint,
dc186ad7
TG
374 .fixup_init = work_fixup_init,
375 .fixup_activate = work_fixup_activate,
376 .fixup_free = work_fixup_free,
377};
378
379static inline void debug_work_activate(struct work_struct *work)
380{
381 debug_object_activate(work, &work_debug_descr);
382}
383
384static inline void debug_work_deactivate(struct work_struct *work)
385{
386 debug_object_deactivate(work, &work_debug_descr);
387}
388
389void __init_work(struct work_struct *work, int onstack)
390{
391 if (onstack)
392 debug_object_init_on_stack(work, &work_debug_descr);
393 else
394 debug_object_init(work, &work_debug_descr);
395}
396EXPORT_SYMBOL_GPL(__init_work);
397
398void destroy_work_on_stack(struct work_struct *work)
399{
400 debug_object_free(work, &work_debug_descr);
401}
402EXPORT_SYMBOL_GPL(destroy_work_on_stack);
403
404#else
405static inline void debug_work_activate(struct work_struct *work) { }
406static inline void debug_work_deactivate(struct work_struct *work) { }
407#endif
408
95402b38
GS
409/* Serializes the accesses to the list of workqueues. */
410static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 411static LIST_HEAD(workqueues);
a0a1a5fd 412static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 413
e22bee78 414/*
e19e397a
TH
415 * The CPU and unbound standard worker pools. The unbound ones have
416 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 417 */
e19e397a
TH
418static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
419 cpu_std_worker_pools);
a60dc39c 420static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 421
9daf9e67
TH
422/* idr of all pools */
423static DEFINE_MUTEX(worker_pool_idr_mutex);
424static DEFINE_IDR(worker_pool_idr);
425
c34056a3 426static int worker_thread(void *__worker);
1da177e4 427
a60dc39c 428static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 429{
f3421797 430 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 431 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 432 else
a60dc39c 433 return unbound_std_worker_pools;
8b03ae3c
TH
434}
435
4e8f0a60
TH
436static int std_worker_pool_pri(struct worker_pool *pool)
437{
a60dc39c 438 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
439}
440
9daf9e67
TH
441/* allocate ID and assign it to @pool */
442static int worker_pool_assign_id(struct worker_pool *pool)
443{
444 int ret;
445
446 mutex_lock(&worker_pool_idr_mutex);
447 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
448 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
449 mutex_unlock(&worker_pool_idr_mutex);
450
451 return ret;
452}
453
7c3eed5c
TH
454/*
455 * Lookup worker_pool by id. The idr currently is built during boot and
456 * never modified. Don't worry about locking for now.
457 */
458static struct worker_pool *worker_pool_by_id(int pool_id)
459{
460 return idr_find(&worker_pool_idr, pool_id);
461}
462
d565ed63
TH
463static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
464{
a60dc39c 465 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 466
a60dc39c 467 return &pools[highpri];
d565ed63
TH
468}
469
d84ff051 470static struct pool_workqueue *get_pwq(int cpu, struct workqueue_struct *wq)
b1f4ec17 471{
f3421797 472 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 473 if (likely(cpu < nr_cpu_ids))
112202d9 474 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 475 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 476 return wq->pool_wq.single;
f3421797 477 return NULL;
b1f4ec17
ON
478}
479
73f53c4a
TH
480static unsigned int work_color_to_flags(int color)
481{
482 return color << WORK_STRUCT_COLOR_SHIFT;
483}
484
485static int get_work_color(struct work_struct *work)
486{
487 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
488 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
489}
490
491static int work_next_color(int color)
492{
493 return (color + 1) % WORK_NR_COLORS;
494}
1da177e4 495
14441960 496/*
112202d9
TH
497 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
498 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 499 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 500 *
112202d9
TH
501 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
502 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
503 * work->data. These functions should only be called while the work is
504 * owned - ie. while the PENDING bit is set.
7a22ad75 505 *
112202d9 506 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 507 * corresponding to a work. Pool is available once the work has been
112202d9 508 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 509 * available only while the work item is queued.
7a22ad75 510 *
bbb68dfa
TH
511 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
512 * canceled. While being canceled, a work item may have its PENDING set
513 * but stay off timer and worklist for arbitrarily long and nobody should
514 * try to steal the PENDING bit.
14441960 515 */
7a22ad75
TH
516static inline void set_work_data(struct work_struct *work, unsigned long data,
517 unsigned long flags)
365970a1 518{
6183c009 519 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
520 atomic_long_set(&work->data, data | flags | work_static(work));
521}
365970a1 522
112202d9 523static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
524 unsigned long extra_flags)
525{
112202d9
TH
526 set_work_data(work, (unsigned long)pwq,
527 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
528}
529
4468a00f
LJ
530static void set_work_pool_and_keep_pending(struct work_struct *work,
531 int pool_id)
532{
533 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
534 WORK_STRUCT_PENDING);
535}
536
7c3eed5c
TH
537static void set_work_pool_and_clear_pending(struct work_struct *work,
538 int pool_id)
7a22ad75 539{
23657bb1
TH
540 /*
541 * The following wmb is paired with the implied mb in
542 * test_and_set_bit(PENDING) and ensures all updates to @work made
543 * here are visible to and precede any updates by the next PENDING
544 * owner.
545 */
546 smp_wmb();
7c3eed5c 547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 548}
f756d5e2 549
7a22ad75 550static void clear_work_data(struct work_struct *work)
1da177e4 551{
7c3eed5c
TH
552 smp_wmb(); /* see set_work_pool_and_clear_pending() */
553 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
554}
555
112202d9 556static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 557{
e120153d 558 unsigned long data = atomic_long_read(&work->data);
7a22ad75 559
112202d9 560 if (data & WORK_STRUCT_PWQ)
e120153d
TH
561 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
562 else
563 return NULL;
4d707b9f
ON
564}
565
7c3eed5c
TH
566/**
567 * get_work_pool - return the worker_pool a given work was associated with
568 * @work: the work item of interest
569 *
570 * Return the worker_pool @work was last associated with. %NULL if none.
571 */
572static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 573{
e120153d 574 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
575 struct worker_pool *pool;
576 int pool_id;
7a22ad75 577
112202d9
TH
578 if (data & WORK_STRUCT_PWQ)
579 return ((struct pool_workqueue *)
7c3eed5c 580 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 581
7c3eed5c
TH
582 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
583 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
584 return NULL;
585
7c3eed5c
TH
586 pool = worker_pool_by_id(pool_id);
587 WARN_ON_ONCE(!pool);
588 return pool;
589}
590
591/**
592 * get_work_pool_id - return the worker pool ID a given work is associated with
593 * @work: the work item of interest
594 *
595 * Return the worker_pool ID @work was last associated with.
596 * %WORK_OFFQ_POOL_NONE if none.
597 */
598static int get_work_pool_id(struct work_struct *work)
599{
54d5b7d0
LJ
600 unsigned long data = atomic_long_read(&work->data);
601
112202d9
TH
602 if (data & WORK_STRUCT_PWQ)
603 return ((struct pool_workqueue *)
54d5b7d0 604 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 605
54d5b7d0 606 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
607}
608
bbb68dfa
TH
609static void mark_work_canceling(struct work_struct *work)
610{
7c3eed5c 611 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 612
7c3eed5c
TH
613 pool_id <<= WORK_OFFQ_POOL_SHIFT;
614 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
615}
616
617static bool work_is_canceling(struct work_struct *work)
618{
619 unsigned long data = atomic_long_read(&work->data);
620
112202d9 621 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
622}
623
e22bee78 624/*
3270476a
TH
625 * Policy functions. These define the policies on how the global worker
626 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 627 * they're being called with pool->lock held.
e22bee78
TH
628 */
629
63d95a91 630static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 631{
e19e397a 632 return !atomic_read(&pool->nr_running);
a848e3b6
ON
633}
634
4594bf15 635/*
e22bee78
TH
636 * Need to wake up a worker? Called from anything but currently
637 * running workers.
974271c4
TH
638 *
639 * Note that, because unbound workers never contribute to nr_running, this
706026c2 640 * function will always return %true for unbound pools as long as the
974271c4 641 * worklist isn't empty.
4594bf15 642 */
63d95a91 643static bool need_more_worker(struct worker_pool *pool)
365970a1 644{
63d95a91 645 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 646}
4594bf15 647
e22bee78 648/* Can I start working? Called from busy but !running workers. */
63d95a91 649static bool may_start_working(struct worker_pool *pool)
e22bee78 650{
63d95a91 651 return pool->nr_idle;
e22bee78
TH
652}
653
654/* Do I need to keep working? Called from currently running workers. */
63d95a91 655static bool keep_working(struct worker_pool *pool)
e22bee78 656{
e19e397a
TH
657 return !list_empty(&pool->worklist) &&
658 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
659}
660
661/* Do we need a new worker? Called from manager. */
63d95a91 662static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 663{
63d95a91 664 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 665}
365970a1 666
e22bee78 667/* Do I need to be the manager? */
63d95a91 668static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_to_create_worker(pool) ||
11ebea50 671 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
672}
673
674/* Do we have too many workers and should some go away? */
63d95a91 675static bool too_many_workers(struct worker_pool *pool)
e22bee78 676{
552a37e9 677 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
678 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
679 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 680
ea1abd61
LJ
681 /*
682 * nr_idle and idle_list may disagree if idle rebinding is in
683 * progress. Never return %true if idle_list is empty.
684 */
685 if (list_empty(&pool->idle_list))
686 return false;
687
e22bee78 688 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
689}
690
4d707b9f 691/*
e22bee78
TH
692 * Wake up functions.
693 */
694
7e11629d 695/* Return the first worker. Safe with preemption disabled */
63d95a91 696static struct worker *first_worker(struct worker_pool *pool)
7e11629d 697{
63d95a91 698 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
699 return NULL;
700
63d95a91 701 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
702}
703
704/**
705 * wake_up_worker - wake up an idle worker
63d95a91 706 * @pool: worker pool to wake worker from
7e11629d 707 *
63d95a91 708 * Wake up the first idle worker of @pool.
7e11629d
TH
709 *
710 * CONTEXT:
d565ed63 711 * spin_lock_irq(pool->lock).
7e11629d 712 */
63d95a91 713static void wake_up_worker(struct worker_pool *pool)
7e11629d 714{
63d95a91 715 struct worker *worker = first_worker(pool);
7e11629d
TH
716
717 if (likely(worker))
718 wake_up_process(worker->task);
719}
720
d302f017 721/**
e22bee78
TH
722 * wq_worker_waking_up - a worker is waking up
723 * @task: task waking up
724 * @cpu: CPU @task is waking up to
725 *
726 * This function is called during try_to_wake_up() when a worker is
727 * being awoken.
728 *
729 * CONTEXT:
730 * spin_lock_irq(rq->lock)
731 */
d84ff051 732void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
733{
734 struct worker *worker = kthread_data(task);
735
36576000 736 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 737 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 738 atomic_inc(&worker->pool->nr_running);
36576000 739 }
e22bee78
TH
740}
741
742/**
743 * wq_worker_sleeping - a worker is going to sleep
744 * @task: task going to sleep
745 * @cpu: CPU in question, must be the current CPU number
746 *
747 * This function is called during schedule() when a busy worker is
748 * going to sleep. Worker on the same cpu can be woken up by
749 * returning pointer to its task.
750 *
751 * CONTEXT:
752 * spin_lock_irq(rq->lock)
753 *
754 * RETURNS:
755 * Worker task on @cpu to wake up, %NULL if none.
756 */
d84ff051 757struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
758{
759 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 760 struct worker_pool *pool;
e22bee78 761
111c225a
TH
762 /*
763 * Rescuers, which may not have all the fields set up like normal
764 * workers, also reach here, let's not access anything before
765 * checking NOT_RUNNING.
766 */
2d64672e 767 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
768 return NULL;
769
111c225a 770 pool = worker->pool;
111c225a 771
e22bee78 772 /* this can only happen on the local cpu */
6183c009
TH
773 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
774 return NULL;
e22bee78
TH
775
776 /*
777 * The counterpart of the following dec_and_test, implied mb,
778 * worklist not empty test sequence is in insert_work().
779 * Please read comment there.
780 *
628c78e7
TH
781 * NOT_RUNNING is clear. This means that we're bound to and
782 * running on the local cpu w/ rq lock held and preemption
783 * disabled, which in turn means that none else could be
d565ed63 784 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 785 * lock is safe.
e22bee78 786 */
e19e397a
TH
787 if (atomic_dec_and_test(&pool->nr_running) &&
788 !list_empty(&pool->worklist))
63d95a91 789 to_wakeup = first_worker(pool);
e22bee78
TH
790 return to_wakeup ? to_wakeup->task : NULL;
791}
792
793/**
794 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 795 * @worker: self
d302f017
TH
796 * @flags: flags to set
797 * @wakeup: wakeup an idle worker if necessary
798 *
e22bee78
TH
799 * Set @flags in @worker->flags and adjust nr_running accordingly. If
800 * nr_running becomes zero and @wakeup is %true, an idle worker is
801 * woken up.
d302f017 802 *
cb444766 803 * CONTEXT:
d565ed63 804 * spin_lock_irq(pool->lock)
d302f017
TH
805 */
806static inline void worker_set_flags(struct worker *worker, unsigned int flags,
807 bool wakeup)
808{
bd7bdd43 809 struct worker_pool *pool = worker->pool;
e22bee78 810
cb444766
TH
811 WARN_ON_ONCE(worker->task != current);
812
e22bee78
TH
813 /*
814 * If transitioning into NOT_RUNNING, adjust nr_running and
815 * wake up an idle worker as necessary if requested by
816 * @wakeup.
817 */
818 if ((flags & WORKER_NOT_RUNNING) &&
819 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 820 if (wakeup) {
e19e397a 821 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 822 !list_empty(&pool->worklist))
63d95a91 823 wake_up_worker(pool);
e22bee78 824 } else
e19e397a 825 atomic_dec(&pool->nr_running);
e22bee78
TH
826 }
827
d302f017
TH
828 worker->flags |= flags;
829}
830
831/**
e22bee78 832 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 833 * @worker: self
d302f017
TH
834 * @flags: flags to clear
835 *
e22bee78 836 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 837 *
cb444766 838 * CONTEXT:
d565ed63 839 * spin_lock_irq(pool->lock)
d302f017
TH
840 */
841static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
842{
63d95a91 843 struct worker_pool *pool = worker->pool;
e22bee78
TH
844 unsigned int oflags = worker->flags;
845
cb444766
TH
846 WARN_ON_ONCE(worker->task != current);
847
d302f017 848 worker->flags &= ~flags;
e22bee78 849
42c025f3
TH
850 /*
851 * If transitioning out of NOT_RUNNING, increment nr_running. Note
852 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
853 * of multiple flags, not a single flag.
854 */
e22bee78
TH
855 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
856 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 857 atomic_inc(&pool->nr_running);
d302f017
TH
858}
859
8cca0eea
TH
860/**
861 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 862 * @pool: pool of interest
8cca0eea
TH
863 * @work: work to find worker for
864 *
c9e7cf27
TH
865 * Find a worker which is executing @work on @pool by searching
866 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
867 * to match, its current execution should match the address of @work and
868 * its work function. This is to avoid unwanted dependency between
869 * unrelated work executions through a work item being recycled while still
870 * being executed.
871 *
872 * This is a bit tricky. A work item may be freed once its execution
873 * starts and nothing prevents the freed area from being recycled for
874 * another work item. If the same work item address ends up being reused
875 * before the original execution finishes, workqueue will identify the
876 * recycled work item as currently executing and make it wait until the
877 * current execution finishes, introducing an unwanted dependency.
878 *
879 * This function checks the work item address, work function and workqueue
880 * to avoid false positives. Note that this isn't complete as one may
881 * construct a work function which can introduce dependency onto itself
882 * through a recycled work item. Well, if somebody wants to shoot oneself
883 * in the foot that badly, there's only so much we can do, and if such
884 * deadlock actually occurs, it should be easy to locate the culprit work
885 * function.
8cca0eea
TH
886 *
887 * CONTEXT:
d565ed63 888 * spin_lock_irq(pool->lock).
8cca0eea
TH
889 *
890 * RETURNS:
891 * Pointer to worker which is executing @work if found, NULL
892 * otherwise.
4d707b9f 893 */
c9e7cf27 894static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 895 struct work_struct *work)
4d707b9f 896{
42f8570f 897 struct worker *worker;
42f8570f 898
b67bfe0d 899 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
900 (unsigned long)work)
901 if (worker->current_work == work &&
902 worker->current_func == work->func)
42f8570f
SL
903 return worker;
904
905 return NULL;
4d707b9f
ON
906}
907
bf4ede01
TH
908/**
909 * move_linked_works - move linked works to a list
910 * @work: start of series of works to be scheduled
911 * @head: target list to append @work to
912 * @nextp: out paramter for nested worklist walking
913 *
914 * Schedule linked works starting from @work to @head. Work series to
915 * be scheduled starts at @work and includes any consecutive work with
916 * WORK_STRUCT_LINKED set in its predecessor.
917 *
918 * If @nextp is not NULL, it's updated to point to the next work of
919 * the last scheduled work. This allows move_linked_works() to be
920 * nested inside outer list_for_each_entry_safe().
921 *
922 * CONTEXT:
d565ed63 923 * spin_lock_irq(pool->lock).
bf4ede01
TH
924 */
925static void move_linked_works(struct work_struct *work, struct list_head *head,
926 struct work_struct **nextp)
927{
928 struct work_struct *n;
929
930 /*
931 * Linked worklist will always end before the end of the list,
932 * use NULL for list head.
933 */
934 list_for_each_entry_safe_from(work, n, NULL, entry) {
935 list_move_tail(&work->entry, head);
936 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
937 break;
938 }
939
940 /*
941 * If we're already inside safe list traversal and have moved
942 * multiple works to the scheduled queue, the next position
943 * needs to be updated.
944 */
945 if (nextp)
946 *nextp = n;
947}
948
112202d9 949static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 950{
112202d9 951 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
952
953 trace_workqueue_activate_work(work);
112202d9 954 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 955 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 956 pwq->nr_active++;
bf4ede01
TH
957}
958
112202d9 959static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 960{
112202d9 961 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
962 struct work_struct, entry);
963
112202d9 964 pwq_activate_delayed_work(work);
3aa62497
LJ
965}
966
bf4ede01 967/**
112202d9
TH
968 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
969 * @pwq: pwq of interest
bf4ede01 970 * @color: color of work which left the queue
bf4ede01
TH
971 *
972 * A work either has completed or is removed from pending queue,
112202d9 973 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
974 *
975 * CONTEXT:
d565ed63 976 * spin_lock_irq(pool->lock).
bf4ede01 977 */
112202d9 978static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
979{
980 /* ignore uncolored works */
981 if (color == WORK_NO_COLOR)
982 return;
983
112202d9 984 pwq->nr_in_flight[color]--;
bf4ede01 985
112202d9
TH
986 pwq->nr_active--;
987 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 988 /* one down, submit a delayed one */
112202d9
TH
989 if (pwq->nr_active < pwq->max_active)
990 pwq_activate_first_delayed(pwq);
bf4ede01
TH
991 }
992
993 /* is flush in progress and are we at the flushing tip? */
112202d9 994 if (likely(pwq->flush_color != color))
bf4ede01
TH
995 return;
996
997 /* are there still in-flight works? */
112202d9 998 if (pwq->nr_in_flight[color])
bf4ede01
TH
999 return;
1000
112202d9
TH
1001 /* this pwq is done, clear flush_color */
1002 pwq->flush_color = -1;
bf4ede01
TH
1003
1004 /*
112202d9 1005 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1006 * will handle the rest.
1007 */
112202d9
TH
1008 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1009 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1010}
1011
36e227d2 1012/**
bbb68dfa 1013 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1014 * @work: work item to steal
1015 * @is_dwork: @work is a delayed_work
bbb68dfa 1016 * @flags: place to store irq state
36e227d2
TH
1017 *
1018 * Try to grab PENDING bit of @work. This function can handle @work in any
1019 * stable state - idle, on timer or on worklist. Return values are
1020 *
1021 * 1 if @work was pending and we successfully stole PENDING
1022 * 0 if @work was idle and we claimed PENDING
1023 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1024 * -ENOENT if someone else is canceling @work, this state may persist
1025 * for arbitrarily long
36e227d2 1026 *
bbb68dfa 1027 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1028 * interrupted while holding PENDING and @work off queue, irq must be
1029 * disabled on entry. This, combined with delayed_work->timer being
1030 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1031 *
1032 * On successful return, >= 0, irq is disabled and the caller is
1033 * responsible for releasing it using local_irq_restore(*@flags).
1034 *
e0aecdd8 1035 * This function is safe to call from any context including IRQ handler.
bf4ede01 1036 */
bbb68dfa
TH
1037static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1038 unsigned long *flags)
bf4ede01 1039{
d565ed63 1040 struct worker_pool *pool;
112202d9 1041 struct pool_workqueue *pwq;
bf4ede01 1042
bbb68dfa
TH
1043 local_irq_save(*flags);
1044
36e227d2
TH
1045 /* try to steal the timer if it exists */
1046 if (is_dwork) {
1047 struct delayed_work *dwork = to_delayed_work(work);
1048
e0aecdd8
TH
1049 /*
1050 * dwork->timer is irqsafe. If del_timer() fails, it's
1051 * guaranteed that the timer is not queued anywhere and not
1052 * running on the local CPU.
1053 */
36e227d2
TH
1054 if (likely(del_timer(&dwork->timer)))
1055 return 1;
1056 }
1057
1058 /* try to claim PENDING the normal way */
bf4ede01
TH
1059 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1060 return 0;
1061
1062 /*
1063 * The queueing is in progress, or it is already queued. Try to
1064 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1065 */
d565ed63
TH
1066 pool = get_work_pool(work);
1067 if (!pool)
bbb68dfa 1068 goto fail;
bf4ede01 1069
d565ed63 1070 spin_lock(&pool->lock);
0b3dae68 1071 /*
112202d9
TH
1072 * work->data is guaranteed to point to pwq only while the work
1073 * item is queued on pwq->wq, and both updating work->data to point
1074 * to pwq on queueing and to pool on dequeueing are done under
1075 * pwq->pool->lock. This in turn guarantees that, if work->data
1076 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1077 * item is currently queued on that pool.
1078 */
112202d9
TH
1079 pwq = get_work_pwq(work);
1080 if (pwq && pwq->pool == pool) {
16062836
TH
1081 debug_work_deactivate(work);
1082
1083 /*
1084 * A delayed work item cannot be grabbed directly because
1085 * it might have linked NO_COLOR work items which, if left
112202d9 1086 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1087 * management later on and cause stall. Make sure the work
1088 * item is activated before grabbing.
1089 */
1090 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1091 pwq_activate_delayed_work(work);
16062836
TH
1092
1093 list_del_init(&work->entry);
112202d9 1094 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1095
112202d9 1096 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1097 set_work_pool_and_keep_pending(work, pool->id);
1098
1099 spin_unlock(&pool->lock);
1100 return 1;
bf4ede01 1101 }
d565ed63 1102 spin_unlock(&pool->lock);
bbb68dfa
TH
1103fail:
1104 local_irq_restore(*flags);
1105 if (work_is_canceling(work))
1106 return -ENOENT;
1107 cpu_relax();
36e227d2 1108 return -EAGAIN;
bf4ede01
TH
1109}
1110
4690c4ab 1111/**
706026c2 1112 * insert_work - insert a work into a pool
112202d9 1113 * @pwq: pwq @work belongs to
4690c4ab
TH
1114 * @work: work to insert
1115 * @head: insertion point
1116 * @extra_flags: extra WORK_STRUCT_* flags to set
1117 *
112202d9 1118 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1119 * work_struct flags.
4690c4ab
TH
1120 *
1121 * CONTEXT:
d565ed63 1122 * spin_lock_irq(pool->lock).
4690c4ab 1123 */
112202d9
TH
1124static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1125 struct list_head *head, unsigned int extra_flags)
b89deed3 1126{
112202d9 1127 struct worker_pool *pool = pwq->pool;
e22bee78 1128
4690c4ab 1129 /* we own @work, set data and link */
112202d9 1130 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1131 list_add_tail(&work->entry, head);
e22bee78
TH
1132
1133 /*
1134 * Ensure either worker_sched_deactivated() sees the above
1135 * list_add_tail() or we see zero nr_running to avoid workers
1136 * lying around lazily while there are works to be processed.
1137 */
1138 smp_mb();
1139
63d95a91
TH
1140 if (__need_more_worker(pool))
1141 wake_up_worker(pool);
b89deed3
ON
1142}
1143
c8efcc25
TH
1144/*
1145 * Test whether @work is being queued from another work executing on the
8d03ecfe 1146 * same workqueue.
c8efcc25
TH
1147 */
1148static bool is_chained_work(struct workqueue_struct *wq)
1149{
8d03ecfe
TH
1150 struct worker *worker;
1151
1152 worker = current_wq_worker();
1153 /*
1154 * Return %true iff I'm a worker execuing a work item on @wq. If
1155 * I'm @worker, it's safe to dereference it without locking.
1156 */
112202d9 1157 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1158}
1159
d84ff051 1160static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1161 struct work_struct *work)
1162{
112202d9 1163 struct pool_workqueue *pwq;
1e19ffc6 1164 struct list_head *worklist;
8a2e8e5d 1165 unsigned int work_flags;
b75cac93 1166 unsigned int req_cpu = cpu;
8930caba
TH
1167
1168 /*
1169 * While a work item is PENDING && off queue, a task trying to
1170 * steal the PENDING will busy-loop waiting for it to either get
1171 * queued or lose PENDING. Grabbing PENDING and queueing should
1172 * happen with IRQ disabled.
1173 */
1174 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1175
dc186ad7 1176 debug_work_activate(work);
1e19ffc6 1177
c8efcc25 1178 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1179 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1180 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1181 return;
1182
112202d9 1183 /* determine the pwq to use */
c7fc77f7 1184 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1185 struct worker_pool *last_pool;
18aa9eff 1186
57469821 1187 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1188 cpu = raw_smp_processor_id();
1189
18aa9eff 1190 /*
dbf2576e
TH
1191 * It's multi cpu. If @work was previously on a different
1192 * cpu, it might still be running there, in which case the
1193 * work needs to be queued on that cpu to guarantee
1194 * non-reentrancy.
18aa9eff 1195 */
112202d9 1196 pwq = get_pwq(cpu, wq);
c9e7cf27 1197 last_pool = get_work_pool(work);
dbf2576e 1198
112202d9 1199 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1200 struct worker *worker;
1201
d565ed63 1202 spin_lock(&last_pool->lock);
18aa9eff 1203
c9e7cf27 1204 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1205
112202d9
TH
1206 if (worker && worker->current_pwq->wq == wq) {
1207 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1208 } else {
18aa9eff 1209 /* meh... not running there, queue here */
d565ed63 1210 spin_unlock(&last_pool->lock);
112202d9 1211 spin_lock(&pwq->pool->lock);
18aa9eff 1212 }
8930caba 1213 } else {
112202d9 1214 spin_lock(&pwq->pool->lock);
8930caba 1215 }
f3421797 1216 } else {
112202d9
TH
1217 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1218 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1219 }
1220
112202d9
TH
1221 /* pwq determined, queue */
1222 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1223
f5b2552b 1224 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1225 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1226 return;
1227 }
1e19ffc6 1228
112202d9
TH
1229 pwq->nr_in_flight[pwq->work_color]++;
1230 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1231
112202d9 1232 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1233 trace_workqueue_activate_work(work);
112202d9
TH
1234 pwq->nr_active++;
1235 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1236 } else {
1237 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1238 worklist = &pwq->delayed_works;
8a2e8e5d 1239 }
1e19ffc6 1240
112202d9 1241 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1242
112202d9 1243 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1244}
1245
0fcb78c2 1246/**
c1a220e7
ZR
1247 * queue_work_on - queue work on specific cpu
1248 * @cpu: CPU number to execute work on
0fcb78c2
REB
1249 * @wq: workqueue to use
1250 * @work: work to queue
1251 *
d4283e93 1252 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1253 *
c1a220e7
ZR
1254 * We queue the work to a specific CPU, the caller must ensure it
1255 * can't go away.
1da177e4 1256 */
d4283e93
TH
1257bool queue_work_on(int cpu, struct workqueue_struct *wq,
1258 struct work_struct *work)
1da177e4 1259{
d4283e93 1260 bool ret = false;
8930caba 1261 unsigned long flags;
ef1ca236 1262
8930caba 1263 local_irq_save(flags);
c1a220e7 1264
22df02bb 1265 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1266 __queue_work(cpu, wq, work);
d4283e93 1267 ret = true;
c1a220e7 1268 }
ef1ca236 1269
8930caba 1270 local_irq_restore(flags);
1da177e4
LT
1271 return ret;
1272}
c1a220e7 1273EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1274
c1a220e7 1275/**
0a13c00e 1276 * queue_work - queue work on a workqueue
c1a220e7
ZR
1277 * @wq: workqueue to use
1278 * @work: work to queue
1279 *
d4283e93 1280 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1281 *
0a13c00e
TH
1282 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1283 * it can be processed by another CPU.
c1a220e7 1284 */
d4283e93 1285bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1286{
57469821 1287 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1288}
0a13c00e 1289EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1290
d8e794df 1291void delayed_work_timer_fn(unsigned long __data)
1da177e4 1292{
52bad64d 1293 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1294
e0aecdd8 1295 /* should have been called from irqsafe timer with irq already off */
60c057bc 1296 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1297}
1438ade5 1298EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1299
7beb2edf
TH
1300static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1301 struct delayed_work *dwork, unsigned long delay)
1da177e4 1302{
7beb2edf
TH
1303 struct timer_list *timer = &dwork->timer;
1304 struct work_struct *work = &dwork->work;
7beb2edf
TH
1305
1306 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1307 timer->data != (unsigned long)dwork);
fc4b514f
TH
1308 WARN_ON_ONCE(timer_pending(timer));
1309 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1310
8852aac2
TH
1311 /*
1312 * If @delay is 0, queue @dwork->work immediately. This is for
1313 * both optimization and correctness. The earliest @timer can
1314 * expire is on the closest next tick and delayed_work users depend
1315 * on that there's no such delay when @delay is 0.
1316 */
1317 if (!delay) {
1318 __queue_work(cpu, wq, &dwork->work);
1319 return;
1320 }
1321
7beb2edf 1322 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1323
60c057bc 1324 dwork->wq = wq;
1265057f 1325 dwork->cpu = cpu;
7beb2edf
TH
1326 timer->expires = jiffies + delay;
1327
1328 if (unlikely(cpu != WORK_CPU_UNBOUND))
1329 add_timer_on(timer, cpu);
1330 else
1331 add_timer(timer);
1da177e4
LT
1332}
1333
0fcb78c2
REB
1334/**
1335 * queue_delayed_work_on - queue work on specific CPU after delay
1336 * @cpu: CPU number to execute work on
1337 * @wq: workqueue to use
af9997e4 1338 * @dwork: work to queue
0fcb78c2
REB
1339 * @delay: number of jiffies to wait before queueing
1340 *
715f1300
TH
1341 * Returns %false if @work was already on a queue, %true otherwise. If
1342 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1343 * execution.
0fcb78c2 1344 */
d4283e93
TH
1345bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1346 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1347{
52bad64d 1348 struct work_struct *work = &dwork->work;
d4283e93 1349 bool ret = false;
8930caba 1350 unsigned long flags;
7a6bc1cd 1351
8930caba
TH
1352 /* read the comment in __queue_work() */
1353 local_irq_save(flags);
7a6bc1cd 1354
22df02bb 1355 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1356 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1357 ret = true;
7a6bc1cd 1358 }
8a3e77cc 1359
8930caba 1360 local_irq_restore(flags);
7a6bc1cd
VP
1361 return ret;
1362}
ae90dd5d 1363EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1364
0a13c00e
TH
1365/**
1366 * queue_delayed_work - queue work on a workqueue after delay
1367 * @wq: workqueue to use
1368 * @dwork: delayable work to queue
1369 * @delay: number of jiffies to wait before queueing
1370 *
715f1300 1371 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1372 */
d4283e93 1373bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1374 struct delayed_work *dwork, unsigned long delay)
1375{
57469821 1376 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1377}
1378EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1379
8376fe22
TH
1380/**
1381 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1382 * @cpu: CPU number to execute work on
1383 * @wq: workqueue to use
1384 * @dwork: work to queue
1385 * @delay: number of jiffies to wait before queueing
1386 *
1387 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1388 * modify @dwork's timer so that it expires after @delay. If @delay is
1389 * zero, @work is guaranteed to be scheduled immediately regardless of its
1390 * current state.
1391 *
1392 * Returns %false if @dwork was idle and queued, %true if @dwork was
1393 * pending and its timer was modified.
1394 *
e0aecdd8 1395 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1396 * See try_to_grab_pending() for details.
1397 */
1398bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1399 struct delayed_work *dwork, unsigned long delay)
1400{
1401 unsigned long flags;
1402 int ret;
c7fc77f7 1403
8376fe22
TH
1404 do {
1405 ret = try_to_grab_pending(&dwork->work, true, &flags);
1406 } while (unlikely(ret == -EAGAIN));
63bc0362 1407
8376fe22
TH
1408 if (likely(ret >= 0)) {
1409 __queue_delayed_work(cpu, wq, dwork, delay);
1410 local_irq_restore(flags);
7a6bc1cd 1411 }
8376fe22
TH
1412
1413 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1414 return ret;
1415}
8376fe22
TH
1416EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1417
1418/**
1419 * mod_delayed_work - modify delay of or queue a delayed work
1420 * @wq: workqueue to use
1421 * @dwork: work to queue
1422 * @delay: number of jiffies to wait before queueing
1423 *
1424 * mod_delayed_work_on() on local CPU.
1425 */
1426bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1427 unsigned long delay)
1428{
1429 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1430}
1431EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1432
c8e55f36
TH
1433/**
1434 * worker_enter_idle - enter idle state
1435 * @worker: worker which is entering idle state
1436 *
1437 * @worker is entering idle state. Update stats and idle timer if
1438 * necessary.
1439 *
1440 * LOCKING:
d565ed63 1441 * spin_lock_irq(pool->lock).
c8e55f36
TH
1442 */
1443static void worker_enter_idle(struct worker *worker)
1da177e4 1444{
bd7bdd43 1445 struct worker_pool *pool = worker->pool;
c8e55f36 1446
6183c009
TH
1447 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1448 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1449 (worker->hentry.next || worker->hentry.pprev)))
1450 return;
c8e55f36 1451
cb444766
TH
1452 /* can't use worker_set_flags(), also called from start_worker() */
1453 worker->flags |= WORKER_IDLE;
bd7bdd43 1454 pool->nr_idle++;
e22bee78 1455 worker->last_active = jiffies;
c8e55f36
TH
1456
1457 /* idle_list is LIFO */
bd7bdd43 1458 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1459
628c78e7
TH
1460 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1461 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1462
544ecf31 1463 /*
706026c2 1464 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1465 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1466 * nr_running, the warning may trigger spuriously. Check iff
1467 * unbind is not in progress.
544ecf31 1468 */
24647570 1469 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1470 pool->nr_workers == pool->nr_idle &&
e19e397a 1471 atomic_read(&pool->nr_running));
c8e55f36
TH
1472}
1473
1474/**
1475 * worker_leave_idle - leave idle state
1476 * @worker: worker which is leaving idle state
1477 *
1478 * @worker is leaving idle state. Update stats.
1479 *
1480 * LOCKING:
d565ed63 1481 * spin_lock_irq(pool->lock).
c8e55f36
TH
1482 */
1483static void worker_leave_idle(struct worker *worker)
1484{
bd7bdd43 1485 struct worker_pool *pool = worker->pool;
c8e55f36 1486
6183c009
TH
1487 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1488 return;
d302f017 1489 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1490 pool->nr_idle--;
c8e55f36
TH
1491 list_del_init(&worker->entry);
1492}
1493
e22bee78 1494/**
f36dc67b
LJ
1495 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1496 * @pool: target worker_pool
1497 *
1498 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1499 *
1500 * Works which are scheduled while the cpu is online must at least be
1501 * scheduled to a worker which is bound to the cpu so that if they are
1502 * flushed from cpu callbacks while cpu is going down, they are
1503 * guaranteed to execute on the cpu.
1504 *
f5faa077 1505 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1506 * themselves to the target cpu and may race with cpu going down or
1507 * coming online. kthread_bind() can't be used because it may put the
1508 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1509 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1510 * [dis]associated in the meantime.
1511 *
706026c2 1512 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1513 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1514 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1515 * enters idle state or fetches works without dropping lock, it can
1516 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1517 *
1518 * CONTEXT:
d565ed63 1519 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1520 * held.
1521 *
1522 * RETURNS:
706026c2 1523 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1524 * bound), %false if offline.
1525 */
f36dc67b 1526static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1527__acquires(&pool->lock)
e22bee78 1528{
e22bee78 1529 while (true) {
4e6045f1 1530 /*
e22bee78
TH
1531 * The following call may fail, succeed or succeed
1532 * without actually migrating the task to the cpu if
1533 * it races with cpu hotunplug operation. Verify
24647570 1534 * against POOL_DISASSOCIATED.
4e6045f1 1535 */
24647570 1536 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1537 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1538
d565ed63 1539 spin_lock_irq(&pool->lock);
24647570 1540 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1541 return false;
f5faa077 1542 if (task_cpu(current) == pool->cpu &&
e22bee78 1543 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1544 get_cpu_mask(pool->cpu)))
e22bee78 1545 return true;
d565ed63 1546 spin_unlock_irq(&pool->lock);
e22bee78 1547
5035b20f
TH
1548 /*
1549 * We've raced with CPU hot[un]plug. Give it a breather
1550 * and retry migration. cond_resched() is required here;
1551 * otherwise, we might deadlock against cpu_stop trying to
1552 * bring down the CPU on non-preemptive kernel.
1553 */
e22bee78 1554 cpu_relax();
5035b20f 1555 cond_resched();
e22bee78
TH
1556 }
1557}
1558
25511a47 1559/*
ea1abd61 1560 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1561 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1562 */
1563static void idle_worker_rebind(struct worker *worker)
1564{
5f7dabfd 1565 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1566 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1567 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1568
ea1abd61
LJ
1569 /* rebind complete, become available again */
1570 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1571 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1572}
1573
e22bee78 1574/*
25511a47 1575 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1576 * the associated cpu which is coming back online. This is scheduled by
1577 * cpu up but can race with other cpu hotplug operations and may be
1578 * executed twice without intervening cpu down.
e22bee78 1579 */
25511a47 1580static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1581{
1582 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1583
f36dc67b 1584 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1585 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1586
d565ed63 1587 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1588}
1589
25511a47 1590/**
94cf58bb
TH
1591 * rebind_workers - rebind all workers of a pool to the associated CPU
1592 * @pool: pool of interest
25511a47 1593 *
94cf58bb 1594 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1595 * is different for idle and busy ones.
1596 *
ea1abd61
LJ
1597 * Idle ones will be removed from the idle_list and woken up. They will
1598 * add themselves back after completing rebind. This ensures that the
1599 * idle_list doesn't contain any unbound workers when re-bound busy workers
1600 * try to perform local wake-ups for concurrency management.
25511a47 1601 *
ea1abd61
LJ
1602 * Busy workers can rebind after they finish their current work items.
1603 * Queueing the rebind work item at the head of the scheduled list is
1604 * enough. Note that nr_running will be properly bumped as busy workers
1605 * rebind.
25511a47 1606 *
ea1abd61
LJ
1607 * On return, all non-manager workers are scheduled for rebind - see
1608 * manage_workers() for the manager special case. Any idle worker
1609 * including the manager will not appear on @idle_list until rebind is
1610 * complete, making local wake-ups safe.
25511a47 1611 */
94cf58bb 1612static void rebind_workers(struct worker_pool *pool)
25511a47 1613{
ea1abd61 1614 struct worker *worker, *n;
25511a47
TH
1615 int i;
1616
94cf58bb
TH
1617 lockdep_assert_held(&pool->assoc_mutex);
1618 lockdep_assert_held(&pool->lock);
25511a47 1619
5f7dabfd 1620 /* dequeue and kick idle ones */
94cf58bb
TH
1621 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1622 /*
1623 * idle workers should be off @pool->idle_list until rebind
1624 * is complete to avoid receiving premature local wake-ups.
1625 */
1626 list_del_init(&worker->entry);
25511a47 1627
94cf58bb
TH
1628 /*
1629 * worker_thread() will see the above dequeuing and call
1630 * idle_worker_rebind().
1631 */
1632 wake_up_process(worker->task);
1633 }
25511a47 1634
94cf58bb 1635 /* rebind busy workers */
b67bfe0d 1636 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1637 struct work_struct *rebind_work = &worker->rebind_work;
1638 struct workqueue_struct *wq;
25511a47 1639
94cf58bb
TH
1640 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1641 work_data_bits(rebind_work)))
1642 continue;
25511a47 1643
94cf58bb 1644 debug_work_activate(rebind_work);
90beca5d 1645
94cf58bb
TH
1646 /*
1647 * wq doesn't really matter but let's keep @worker->pool
112202d9 1648 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1649 */
1650 if (std_worker_pool_pri(worker->pool))
1651 wq = system_highpri_wq;
1652 else
1653 wq = system_wq;
1654
112202d9 1655 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1656 worker->scheduled.next,
1657 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1658 }
25511a47
TH
1659}
1660
c34056a3
TH
1661static struct worker *alloc_worker(void)
1662{
1663 struct worker *worker;
1664
1665 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1666 if (worker) {
1667 INIT_LIST_HEAD(&worker->entry);
affee4b2 1668 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1669 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1670 /* on creation a worker is in !idle && prep state */
1671 worker->flags = WORKER_PREP;
c8e55f36 1672 }
c34056a3
TH
1673 return worker;
1674}
1675
1676/**
1677 * create_worker - create a new workqueue worker
63d95a91 1678 * @pool: pool the new worker will belong to
c34056a3 1679 *
63d95a91 1680 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1681 * can be started by calling start_worker() or destroyed using
1682 * destroy_worker().
1683 *
1684 * CONTEXT:
1685 * Might sleep. Does GFP_KERNEL allocations.
1686 *
1687 * RETURNS:
1688 * Pointer to the newly created worker.
1689 */
bc2ae0f5 1690static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1691{
e34cdddb 1692 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1693 struct worker *worker = NULL;
f3421797 1694 int id = -1;
c34056a3 1695
d565ed63 1696 spin_lock_irq(&pool->lock);
bd7bdd43 1697 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1698 spin_unlock_irq(&pool->lock);
bd7bdd43 1699 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1700 goto fail;
d565ed63 1701 spin_lock_irq(&pool->lock);
c34056a3 1702 }
d565ed63 1703 spin_unlock_irq(&pool->lock);
c34056a3
TH
1704
1705 worker = alloc_worker();
1706 if (!worker)
1707 goto fail;
1708
bd7bdd43 1709 worker->pool = pool;
c34056a3
TH
1710 worker->id = id;
1711
ec22ca5e 1712 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1713 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1714 worker, cpu_to_node(pool->cpu),
d84ff051 1715 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1716 else
1717 worker->task = kthread_create(worker_thread, worker,
3270476a 1718 "kworker/u:%d%s", id, pri);
c34056a3
TH
1719 if (IS_ERR(worker->task))
1720 goto fail;
1721
e34cdddb 1722 if (std_worker_pool_pri(pool))
3270476a
TH
1723 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1724
db7bccf4 1725 /*
bc2ae0f5 1726 * Determine CPU binding of the new worker depending on
24647570 1727 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1728 * flag remains stable across this function. See the comments
1729 * above the flag definition for details.
1730 *
1731 * As an unbound worker may later become a regular one if CPU comes
1732 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1733 */
24647570 1734 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1735 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1736 } else {
db7bccf4 1737 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1738 worker->flags |= WORKER_UNBOUND;
f3421797 1739 }
c34056a3
TH
1740
1741 return worker;
1742fail:
1743 if (id >= 0) {
d565ed63 1744 spin_lock_irq(&pool->lock);
bd7bdd43 1745 ida_remove(&pool->worker_ida, id);
d565ed63 1746 spin_unlock_irq(&pool->lock);
c34056a3
TH
1747 }
1748 kfree(worker);
1749 return NULL;
1750}
1751
1752/**
1753 * start_worker - start a newly created worker
1754 * @worker: worker to start
1755 *
706026c2 1756 * Make the pool aware of @worker and start it.
c34056a3
TH
1757 *
1758 * CONTEXT:
d565ed63 1759 * spin_lock_irq(pool->lock).
c34056a3
TH
1760 */
1761static void start_worker(struct worker *worker)
1762{
cb444766 1763 worker->flags |= WORKER_STARTED;
bd7bdd43 1764 worker->pool->nr_workers++;
c8e55f36 1765 worker_enter_idle(worker);
c34056a3
TH
1766 wake_up_process(worker->task);
1767}
1768
1769/**
1770 * destroy_worker - destroy a workqueue worker
1771 * @worker: worker to be destroyed
1772 *
706026c2 1773 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1774 *
1775 * CONTEXT:
d565ed63 1776 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1777 */
1778static void destroy_worker(struct worker *worker)
1779{
bd7bdd43 1780 struct worker_pool *pool = worker->pool;
c34056a3
TH
1781 int id = worker->id;
1782
1783 /* sanity check frenzy */
6183c009
TH
1784 if (WARN_ON(worker->current_work) ||
1785 WARN_ON(!list_empty(&worker->scheduled)))
1786 return;
c34056a3 1787
c8e55f36 1788 if (worker->flags & WORKER_STARTED)
bd7bdd43 1789 pool->nr_workers--;
c8e55f36 1790 if (worker->flags & WORKER_IDLE)
bd7bdd43 1791 pool->nr_idle--;
c8e55f36
TH
1792
1793 list_del_init(&worker->entry);
cb444766 1794 worker->flags |= WORKER_DIE;
c8e55f36 1795
d565ed63 1796 spin_unlock_irq(&pool->lock);
c8e55f36 1797
c34056a3
TH
1798 kthread_stop(worker->task);
1799 kfree(worker);
1800
d565ed63 1801 spin_lock_irq(&pool->lock);
bd7bdd43 1802 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1803}
1804
63d95a91 1805static void idle_worker_timeout(unsigned long __pool)
e22bee78 1806{
63d95a91 1807 struct worker_pool *pool = (void *)__pool;
e22bee78 1808
d565ed63 1809 spin_lock_irq(&pool->lock);
e22bee78 1810
63d95a91 1811 if (too_many_workers(pool)) {
e22bee78
TH
1812 struct worker *worker;
1813 unsigned long expires;
1814
1815 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1816 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1817 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1818
1819 if (time_before(jiffies, expires))
63d95a91 1820 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1821 else {
1822 /* it's been idle for too long, wake up manager */
11ebea50 1823 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1824 wake_up_worker(pool);
d5abe669 1825 }
e22bee78
TH
1826 }
1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
e22bee78 1829}
d5abe669 1830
493a1724 1831static void send_mayday(struct work_struct *work)
e22bee78 1832{
112202d9
TH
1833 struct pool_workqueue *pwq = get_work_pwq(work);
1834 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1835
1836 lockdep_assert_held(&workqueue_lock);
e22bee78
TH
1837
1838 if (!(wq->flags & WQ_RESCUER))
493a1724 1839 return;
e22bee78
TH
1840
1841 /* mayday mayday mayday */
493a1724
TH
1842 if (list_empty(&pwq->mayday_node)) {
1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1844 wake_up_process(wq->rescuer->task);
493a1724 1845 }
e22bee78
TH
1846}
1847
706026c2 1848static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1849{
63d95a91 1850 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1851 struct work_struct *work;
1852
493a1724
TH
1853 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1854 spin_lock(&pool->lock);
e22bee78 1855
63d95a91 1856 if (need_to_create_worker(pool)) {
e22bee78
TH
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
63d95a91 1863 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1864 send_mayday(work);
1da177e4 1865 }
e22bee78 1866
493a1724
TH
1867 spin_unlock(&pool->lock);
1868 spin_unlock_irq(&workqueue_lock);
e22bee78 1869
63d95a91 1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1871}
1872
e22bee78
TH
1873/**
1874 * maybe_create_worker - create a new worker if necessary
63d95a91 1875 * @pool: pool to create a new worker for
e22bee78 1876 *
63d95a91 1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1880 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1881 * possible allocation deadlock.
1882 *
1883 * On return, need_to_create_worker() is guaranteed to be false and
1884 * may_start_working() true.
1885 *
1886 * LOCKING:
d565ed63 1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
1891 * RETURNS:
d565ed63 1892 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1893 * otherwise.
1894 */
63d95a91 1895static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1896__releases(&pool->lock)
1897__acquires(&pool->lock)
1da177e4 1898{
63d95a91 1899 if (!need_to_create_worker(pool))
e22bee78
TH
1900 return false;
1901restart:
d565ed63 1902 spin_unlock_irq(&pool->lock);
9f9c2364 1903
e22bee78 1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1906
1907 while (true) {
1908 struct worker *worker;
1909
bc2ae0f5 1910 worker = create_worker(pool);
e22bee78 1911 if (worker) {
63d95a91 1912 del_timer_sync(&pool->mayday_timer);
d565ed63 1913 spin_lock_irq(&pool->lock);
e22bee78 1914 start_worker(worker);
6183c009
TH
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
e22bee78
TH
1917 return true;
1918 }
1919
63d95a91 1920 if (!need_to_create_worker(pool))
e22bee78 1921 break;
1da177e4 1922
e22bee78
TH
1923 __set_current_state(TASK_INTERRUPTIBLE);
1924 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1925
63d95a91 1926 if (!need_to_create_worker(pool))
e22bee78
TH
1927 break;
1928 }
1929
63d95a91 1930 del_timer_sync(&pool->mayday_timer);
d565ed63 1931 spin_lock_irq(&pool->lock);
63d95a91 1932 if (need_to_create_worker(pool))
e22bee78
TH
1933 goto restart;
1934 return true;
1935}
1936
1937/**
1938 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1939 * @pool: pool to destroy workers for
e22bee78 1940 *
63d95a91 1941 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1942 * IDLE_WORKER_TIMEOUT.
1943 *
1944 * LOCKING:
d565ed63 1945 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1946 * multiple times. Called only from manager.
1947 *
1948 * RETURNS:
d565ed63 1949 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1953{
1954 bool ret = false;
1da177e4 1955
63d95a91 1956 while (too_many_workers(pool)) {
e22bee78
TH
1957 struct worker *worker;
1958 unsigned long expires;
3af24433 1959
63d95a91 1960 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1961 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1962
e22bee78 1963 if (time_before(jiffies, expires)) {
63d95a91 1964 mod_timer(&pool->idle_timer, expires);
3af24433 1965 break;
e22bee78 1966 }
1da177e4 1967
e22bee78
TH
1968 destroy_worker(worker);
1969 ret = true;
1da177e4 1970 }
1e19ffc6 1971
e22bee78 1972 return ret;
1e19ffc6
TH
1973}
1974
73f53c4a 1975/**
e22bee78
TH
1976 * manage_workers - manage worker pool
1977 * @worker: self
73f53c4a 1978 *
706026c2 1979 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1980 * to. At any given time, there can be only zero or one manager per
706026c2 1981 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1982 *
1983 * The caller can safely start processing works on false return. On
1984 * true return, it's guaranteed that need_to_create_worker() is false
1985 * and may_start_working() is true.
73f53c4a
TH
1986 *
1987 * CONTEXT:
d565ed63 1988 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1989 * multiple times. Does GFP_KERNEL allocations.
1990 *
1991 * RETURNS:
d565ed63
TH
1992 * spin_lock_irq(pool->lock) which may be released and regrabbed
1993 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 1994 */
e22bee78 1995static bool manage_workers(struct worker *worker)
73f53c4a 1996{
63d95a91 1997 struct worker_pool *pool = worker->pool;
e22bee78 1998 bool ret = false;
73f53c4a 1999
ee378aa4 2000 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2001 return ret;
1e19ffc6 2002
552a37e9 2003 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2004
ee378aa4
LJ
2005 /*
2006 * To simplify both worker management and CPU hotplug, hold off
2007 * management while hotplug is in progress. CPU hotplug path can't
2008 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2009 * lead to idle worker depletion (all become busy thinking someone
2010 * else is managing) which in turn can result in deadlock under
b2eb83d1 2011 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2012 * manager against CPU hotplug.
2013 *
b2eb83d1 2014 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2015 * progress. trylock first without dropping @pool->lock.
ee378aa4 2016 */
b2eb83d1 2017 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2018 spin_unlock_irq(&pool->lock);
b2eb83d1 2019 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2020 /*
2021 * CPU hotplug could have happened while we were waiting
b2eb83d1 2022 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2023 * because manager isn't either on idle or busy list, and
706026c2 2024 * @pool's state and ours could have deviated.
ee378aa4 2025 *
b2eb83d1 2026 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2027 * simply try to bind. It will succeed or fail depending
706026c2 2028 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2029 * %WORKER_UNBOUND accordingly.
2030 */
f36dc67b 2031 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2032 worker->flags &= ~WORKER_UNBOUND;
2033 else
2034 worker->flags |= WORKER_UNBOUND;
73f53c4a 2035
ee378aa4
LJ
2036 ret = true;
2037 }
73f53c4a 2038
11ebea50 2039 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2040
2041 /*
e22bee78
TH
2042 * Destroy and then create so that may_start_working() is true
2043 * on return.
73f53c4a 2044 */
63d95a91
TH
2045 ret |= maybe_destroy_workers(pool);
2046 ret |= maybe_create_worker(pool);
e22bee78 2047
552a37e9 2048 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2049 mutex_unlock(&pool->assoc_mutex);
e22bee78 2050 return ret;
73f53c4a
TH
2051}
2052
a62428c0
TH
2053/**
2054 * process_one_work - process single work
c34056a3 2055 * @worker: self
a62428c0
TH
2056 * @work: work to process
2057 *
2058 * Process @work. This function contains all the logics necessary to
2059 * process a single work including synchronization against and
2060 * interaction with other workers on the same cpu, queueing and
2061 * flushing. As long as context requirement is met, any worker can
2062 * call this function to process a work.
2063 *
2064 * CONTEXT:
d565ed63 2065 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2066 */
c34056a3 2067static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2068__releases(&pool->lock)
2069__acquires(&pool->lock)
a62428c0 2070{
112202d9 2071 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2072 struct worker_pool *pool = worker->pool;
112202d9 2073 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2074 int work_color;
7e11629d 2075 struct worker *collision;
a62428c0
TH
2076#ifdef CONFIG_LOCKDEP
2077 /*
2078 * It is permissible to free the struct work_struct from
2079 * inside the function that is called from it, this we need to
2080 * take into account for lockdep too. To avoid bogus "held
2081 * lock freed" warnings as well as problems when looking into
2082 * work->lockdep_map, make a copy and use that here.
2083 */
4d82a1de
PZ
2084 struct lockdep_map lockdep_map;
2085
2086 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2087#endif
6fec10a1
TH
2088 /*
2089 * Ensure we're on the correct CPU. DISASSOCIATED test is
2090 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2091 * unbound or a disassociated pool.
6fec10a1 2092 */
5f7dabfd 2093 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2094 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2095 raw_smp_processor_id() != pool->cpu);
25511a47 2096
7e11629d
TH
2097 /*
2098 * A single work shouldn't be executed concurrently by
2099 * multiple workers on a single cpu. Check whether anyone is
2100 * already processing the work. If so, defer the work to the
2101 * currently executing one.
2102 */
c9e7cf27 2103 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2104 if (unlikely(collision)) {
2105 move_linked_works(work, &collision->scheduled, NULL);
2106 return;
2107 }
2108
8930caba 2109 /* claim and dequeue */
a62428c0 2110 debug_work_deactivate(work);
c9e7cf27 2111 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2112 worker->current_work = work;
a2c1c57b 2113 worker->current_func = work->func;
112202d9 2114 worker->current_pwq = pwq;
73f53c4a 2115 work_color = get_work_color(work);
7a22ad75 2116
a62428c0
TH
2117 list_del_init(&work->entry);
2118
fb0e7beb
TH
2119 /*
2120 * CPU intensive works don't participate in concurrency
2121 * management. They're the scheduler's responsibility.
2122 */
2123 if (unlikely(cpu_intensive))
2124 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2125
974271c4 2126 /*
d565ed63 2127 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2128 * executed ASAP. Wake up another worker if necessary.
2129 */
63d95a91
TH
2130 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2131 wake_up_worker(pool);
974271c4 2132
8930caba 2133 /*
7c3eed5c 2134 * Record the last pool and clear PENDING which should be the last
d565ed63 2135 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2136 * PENDING and queued state changes happen together while IRQ is
2137 * disabled.
8930caba 2138 */
7c3eed5c 2139 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2140
d565ed63 2141 spin_unlock_irq(&pool->lock);
a62428c0 2142
112202d9 2143 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2144 lock_map_acquire(&lockdep_map);
e36c886a 2145 trace_workqueue_execute_start(work);
a2c1c57b 2146 worker->current_func(work);
e36c886a
AV
2147 /*
2148 * While we must be careful to not use "work" after this, the trace
2149 * point will only record its address.
2150 */
2151 trace_workqueue_execute_end(work);
a62428c0 2152 lock_map_release(&lockdep_map);
112202d9 2153 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2154
2155 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2156 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2157 " last function: %pf\n",
a2c1c57b
TH
2158 current->comm, preempt_count(), task_pid_nr(current),
2159 worker->current_func);
a62428c0
TH
2160 debug_show_held_locks(current);
2161 dump_stack();
2162 }
2163
d565ed63 2164 spin_lock_irq(&pool->lock);
a62428c0 2165
fb0e7beb
TH
2166 /* clear cpu intensive status */
2167 if (unlikely(cpu_intensive))
2168 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2169
a62428c0 2170 /* we're done with it, release */
42f8570f 2171 hash_del(&worker->hentry);
c34056a3 2172 worker->current_work = NULL;
a2c1c57b 2173 worker->current_func = NULL;
112202d9
TH
2174 worker->current_pwq = NULL;
2175 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2176}
2177
affee4b2
TH
2178/**
2179 * process_scheduled_works - process scheduled works
2180 * @worker: self
2181 *
2182 * Process all scheduled works. Please note that the scheduled list
2183 * may change while processing a work, so this function repeatedly
2184 * fetches a work from the top and executes it.
2185 *
2186 * CONTEXT:
d565ed63 2187 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2188 * multiple times.
2189 */
2190static void process_scheduled_works(struct worker *worker)
1da177e4 2191{
affee4b2
TH
2192 while (!list_empty(&worker->scheduled)) {
2193 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2194 struct work_struct, entry);
c34056a3 2195 process_one_work(worker, work);
1da177e4 2196 }
1da177e4
LT
2197}
2198
4690c4ab
TH
2199/**
2200 * worker_thread - the worker thread function
c34056a3 2201 * @__worker: self
4690c4ab 2202 *
706026c2
TH
2203 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2204 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2205 * their specific target workqueue. The only exception is works which
2206 * belong to workqueues with a rescuer which will be explained in
2207 * rescuer_thread().
4690c4ab 2208 */
c34056a3 2209static int worker_thread(void *__worker)
1da177e4 2210{
c34056a3 2211 struct worker *worker = __worker;
bd7bdd43 2212 struct worker_pool *pool = worker->pool;
1da177e4 2213
e22bee78
TH
2214 /* tell the scheduler that this is a workqueue worker */
2215 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2216woke_up:
d565ed63 2217 spin_lock_irq(&pool->lock);
1da177e4 2218
5f7dabfd
LJ
2219 /* we are off idle list if destruction or rebind is requested */
2220 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2221 spin_unlock_irq(&pool->lock);
25511a47 2222
5f7dabfd 2223 /* if DIE is set, destruction is requested */
25511a47
TH
2224 if (worker->flags & WORKER_DIE) {
2225 worker->task->flags &= ~PF_WQ_WORKER;
2226 return 0;
2227 }
2228
5f7dabfd 2229 /* otherwise, rebind */
25511a47
TH
2230 idle_worker_rebind(worker);
2231 goto woke_up;
c8e55f36 2232 }
affee4b2 2233
c8e55f36 2234 worker_leave_idle(worker);
db7bccf4 2235recheck:
e22bee78 2236 /* no more worker necessary? */
63d95a91 2237 if (!need_more_worker(pool))
e22bee78
TH
2238 goto sleep;
2239
2240 /* do we need to manage? */
63d95a91 2241 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2242 goto recheck;
2243
c8e55f36
TH
2244 /*
2245 * ->scheduled list can only be filled while a worker is
2246 * preparing to process a work or actually processing it.
2247 * Make sure nobody diddled with it while I was sleeping.
2248 */
6183c009 2249 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2250
e22bee78
TH
2251 /*
2252 * When control reaches this point, we're guaranteed to have
2253 * at least one idle worker or that someone else has already
2254 * assumed the manager role.
2255 */
2256 worker_clr_flags(worker, WORKER_PREP);
2257
2258 do {
c8e55f36 2259 struct work_struct *work =
bd7bdd43 2260 list_first_entry(&pool->worklist,
c8e55f36
TH
2261 struct work_struct, entry);
2262
2263 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2264 /* optimization path, not strictly necessary */
2265 process_one_work(worker, work);
2266 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2267 process_scheduled_works(worker);
c8e55f36
TH
2268 } else {
2269 move_linked_works(work, &worker->scheduled, NULL);
2270 process_scheduled_works(worker);
affee4b2 2271 }
63d95a91 2272 } while (keep_working(pool));
e22bee78
TH
2273
2274 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2275sleep:
63d95a91 2276 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2277 goto recheck;
d313dd85 2278
c8e55f36 2279 /*
d565ed63
TH
2280 * pool->lock is held and there's no work to process and no need to
2281 * manage, sleep. Workers are woken up only while holding
2282 * pool->lock or from local cpu, so setting the current state
2283 * before releasing pool->lock is enough to prevent losing any
2284 * event.
c8e55f36
TH
2285 */
2286 worker_enter_idle(worker);
2287 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2288 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2289 schedule();
2290 goto woke_up;
1da177e4
LT
2291}
2292
e22bee78
TH
2293/**
2294 * rescuer_thread - the rescuer thread function
111c225a 2295 * @__rescuer: self
e22bee78
TH
2296 *
2297 * Workqueue rescuer thread function. There's one rescuer for each
2298 * workqueue which has WQ_RESCUER set.
2299 *
706026c2 2300 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2301 * worker which uses GFP_KERNEL allocation which has slight chance of
2302 * developing into deadlock if some works currently on the same queue
2303 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2304 * the problem rescuer solves.
2305 *
706026c2
TH
2306 * When such condition is possible, the pool summons rescuers of all
2307 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2308 * those works so that forward progress can be guaranteed.
2309 *
2310 * This should happen rarely.
2311 */
111c225a 2312static int rescuer_thread(void *__rescuer)
e22bee78 2313{
111c225a
TH
2314 struct worker *rescuer = __rescuer;
2315 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2316 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2317
2318 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2319
2320 /*
2321 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2322 * doesn't participate in concurrency management.
2323 */
2324 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2325repeat:
2326 set_current_state(TASK_INTERRUPTIBLE);
2327
412d32e6
MG
2328 if (kthread_should_stop()) {
2329 __set_current_state(TASK_RUNNING);
111c225a 2330 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2331 return 0;
412d32e6 2332 }
e22bee78 2333
493a1724
TH
2334 /* see whether any pwq is asking for help */
2335 spin_lock_irq(&workqueue_lock);
2336
2337 while (!list_empty(&wq->maydays)) {
2338 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2339 struct pool_workqueue, mayday_node);
112202d9 2340 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2341 struct work_struct *work, *n;
2342
2343 __set_current_state(TASK_RUNNING);
493a1724
TH
2344 list_del_init(&pwq->mayday_node);
2345
2346 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2347
2348 /* migrate to the target cpu if possible */
f36dc67b 2349 worker_maybe_bind_and_lock(pool);
b3104104 2350 rescuer->pool = pool;
e22bee78
TH
2351
2352 /*
2353 * Slurp in all works issued via this workqueue and
2354 * process'em.
2355 */
6183c009 2356 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2357 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2358 if (get_work_pwq(work) == pwq)
e22bee78
TH
2359 move_linked_works(work, scheduled, &n);
2360
2361 process_scheduled_works(rescuer);
7576958a
TH
2362
2363 /*
d565ed63 2364 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2365 * regular worker; otherwise, we end up with 0 concurrency
2366 * and stalling the execution.
2367 */
63d95a91
TH
2368 if (keep_working(pool))
2369 wake_up_worker(pool);
7576958a 2370
b3104104 2371 rescuer->pool = NULL;
493a1724
TH
2372 spin_unlock(&pool->lock);
2373 spin_lock(&workqueue_lock);
e22bee78
TH
2374 }
2375
493a1724
TH
2376 spin_unlock_irq(&workqueue_lock);
2377
111c225a
TH
2378 /* rescuers should never participate in concurrency management */
2379 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2380 schedule();
2381 goto repeat;
1da177e4
LT
2382}
2383
fc2e4d70
ON
2384struct wq_barrier {
2385 struct work_struct work;
2386 struct completion done;
2387};
2388
2389static void wq_barrier_func(struct work_struct *work)
2390{
2391 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2392 complete(&barr->done);
2393}
2394
4690c4ab
TH
2395/**
2396 * insert_wq_barrier - insert a barrier work
112202d9 2397 * @pwq: pwq to insert barrier into
4690c4ab 2398 * @barr: wq_barrier to insert
affee4b2
TH
2399 * @target: target work to attach @barr to
2400 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2401 *
affee4b2
TH
2402 * @barr is linked to @target such that @barr is completed only after
2403 * @target finishes execution. Please note that the ordering
2404 * guarantee is observed only with respect to @target and on the local
2405 * cpu.
2406 *
2407 * Currently, a queued barrier can't be canceled. This is because
2408 * try_to_grab_pending() can't determine whether the work to be
2409 * grabbed is at the head of the queue and thus can't clear LINKED
2410 * flag of the previous work while there must be a valid next work
2411 * after a work with LINKED flag set.
2412 *
2413 * Note that when @worker is non-NULL, @target may be modified
112202d9 2414 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2415 *
2416 * CONTEXT:
d565ed63 2417 * spin_lock_irq(pool->lock).
4690c4ab 2418 */
112202d9 2419static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2420 struct wq_barrier *barr,
2421 struct work_struct *target, struct worker *worker)
fc2e4d70 2422{
affee4b2
TH
2423 struct list_head *head;
2424 unsigned int linked = 0;
2425
dc186ad7 2426 /*
d565ed63 2427 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2428 * as we know for sure that this will not trigger any of the
2429 * checks and call back into the fixup functions where we
2430 * might deadlock.
2431 */
ca1cab37 2432 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2433 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2434 init_completion(&barr->done);
83c22520 2435
affee4b2
TH
2436 /*
2437 * If @target is currently being executed, schedule the
2438 * barrier to the worker; otherwise, put it after @target.
2439 */
2440 if (worker)
2441 head = worker->scheduled.next;
2442 else {
2443 unsigned long *bits = work_data_bits(target);
2444
2445 head = target->entry.next;
2446 /* there can already be other linked works, inherit and set */
2447 linked = *bits & WORK_STRUCT_LINKED;
2448 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2449 }
2450
dc186ad7 2451 debug_work_activate(&barr->work);
112202d9 2452 insert_work(pwq, &barr->work, head,
affee4b2 2453 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2454}
2455
73f53c4a 2456/**
112202d9 2457 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2458 * @wq: workqueue being flushed
2459 * @flush_color: new flush color, < 0 for no-op
2460 * @work_color: new work color, < 0 for no-op
2461 *
112202d9 2462 * Prepare pwqs for workqueue flushing.
73f53c4a 2463 *
112202d9
TH
2464 * If @flush_color is non-negative, flush_color on all pwqs should be
2465 * -1. If no pwq has in-flight commands at the specified color, all
2466 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2467 * has in flight commands, its pwq->flush_color is set to
2468 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2469 * wakeup logic is armed and %true is returned.
2470 *
2471 * The caller should have initialized @wq->first_flusher prior to
2472 * calling this function with non-negative @flush_color. If
2473 * @flush_color is negative, no flush color update is done and %false
2474 * is returned.
2475 *
112202d9 2476 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2477 * work_color which is previous to @work_color and all will be
2478 * advanced to @work_color.
2479 *
2480 * CONTEXT:
2481 * mutex_lock(wq->flush_mutex).
2482 *
2483 * RETURNS:
2484 * %true if @flush_color >= 0 and there's something to flush. %false
2485 * otherwise.
2486 */
112202d9 2487static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2488 int flush_color, int work_color)
1da177e4 2489{
73f53c4a 2490 bool wait = false;
49e3cf44 2491 struct pool_workqueue *pwq;
1da177e4 2492
73f53c4a 2493 if (flush_color >= 0) {
6183c009 2494 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2495 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2496 }
2355b70f 2497
49e3cf44 2498 for_each_pwq(pwq, wq) {
112202d9 2499 struct worker_pool *pool = pwq->pool;
fc2e4d70 2500
d565ed63 2501 spin_lock_irq(&pool->lock);
83c22520 2502
73f53c4a 2503 if (flush_color >= 0) {
6183c009 2504 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2505
112202d9
TH
2506 if (pwq->nr_in_flight[flush_color]) {
2507 pwq->flush_color = flush_color;
2508 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2509 wait = true;
2510 }
2511 }
1da177e4 2512
73f53c4a 2513 if (work_color >= 0) {
6183c009 2514 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2515 pwq->work_color = work_color;
73f53c4a 2516 }
1da177e4 2517
d565ed63 2518 spin_unlock_irq(&pool->lock);
1da177e4 2519 }
2355b70f 2520
112202d9 2521 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2522 complete(&wq->first_flusher->done);
14441960 2523
73f53c4a 2524 return wait;
1da177e4
LT
2525}
2526
0fcb78c2 2527/**
1da177e4 2528 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2529 * @wq: workqueue to flush
1da177e4
LT
2530 *
2531 * Forces execution of the workqueue and blocks until its completion.
2532 * This is typically used in driver shutdown handlers.
2533 *
fc2e4d70
ON
2534 * We sleep until all works which were queued on entry have been handled,
2535 * but we are not livelocked by new incoming ones.
1da177e4 2536 */
7ad5b3a5 2537void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2538{
73f53c4a
TH
2539 struct wq_flusher this_flusher = {
2540 .list = LIST_HEAD_INIT(this_flusher.list),
2541 .flush_color = -1,
2542 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2543 };
2544 int next_color;
1da177e4 2545
3295f0ef
IM
2546 lock_map_acquire(&wq->lockdep_map);
2547 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2548
2549 mutex_lock(&wq->flush_mutex);
2550
2551 /*
2552 * Start-to-wait phase
2553 */
2554 next_color = work_next_color(wq->work_color);
2555
2556 if (next_color != wq->flush_color) {
2557 /*
2558 * Color space is not full. The current work_color
2559 * becomes our flush_color and work_color is advanced
2560 * by one.
2561 */
6183c009 2562 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2563 this_flusher.flush_color = wq->work_color;
2564 wq->work_color = next_color;
2565
2566 if (!wq->first_flusher) {
2567 /* no flush in progress, become the first flusher */
6183c009 2568 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2569
2570 wq->first_flusher = &this_flusher;
2571
112202d9 2572 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2573 wq->work_color)) {
2574 /* nothing to flush, done */
2575 wq->flush_color = next_color;
2576 wq->first_flusher = NULL;
2577 goto out_unlock;
2578 }
2579 } else {
2580 /* wait in queue */
6183c009 2581 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2582 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2583 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2584 }
2585 } else {
2586 /*
2587 * Oops, color space is full, wait on overflow queue.
2588 * The next flush completion will assign us
2589 * flush_color and transfer to flusher_queue.
2590 */
2591 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2592 }
2593
2594 mutex_unlock(&wq->flush_mutex);
2595
2596 wait_for_completion(&this_flusher.done);
2597
2598 /*
2599 * Wake-up-and-cascade phase
2600 *
2601 * First flushers are responsible for cascading flushes and
2602 * handling overflow. Non-first flushers can simply return.
2603 */
2604 if (wq->first_flusher != &this_flusher)
2605 return;
2606
2607 mutex_lock(&wq->flush_mutex);
2608
4ce48b37
TH
2609 /* we might have raced, check again with mutex held */
2610 if (wq->first_flusher != &this_flusher)
2611 goto out_unlock;
2612
73f53c4a
TH
2613 wq->first_flusher = NULL;
2614
6183c009
TH
2615 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2616 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2617
2618 while (true) {
2619 struct wq_flusher *next, *tmp;
2620
2621 /* complete all the flushers sharing the current flush color */
2622 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2623 if (next->flush_color != wq->flush_color)
2624 break;
2625 list_del_init(&next->list);
2626 complete(&next->done);
2627 }
2628
6183c009
TH
2629 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2630 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2631
2632 /* this flush_color is finished, advance by one */
2633 wq->flush_color = work_next_color(wq->flush_color);
2634
2635 /* one color has been freed, handle overflow queue */
2636 if (!list_empty(&wq->flusher_overflow)) {
2637 /*
2638 * Assign the same color to all overflowed
2639 * flushers, advance work_color and append to
2640 * flusher_queue. This is the start-to-wait
2641 * phase for these overflowed flushers.
2642 */
2643 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2644 tmp->flush_color = wq->work_color;
2645
2646 wq->work_color = work_next_color(wq->work_color);
2647
2648 list_splice_tail_init(&wq->flusher_overflow,
2649 &wq->flusher_queue);
112202d9 2650 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2651 }
2652
2653 if (list_empty(&wq->flusher_queue)) {
6183c009 2654 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2655 break;
2656 }
2657
2658 /*
2659 * Need to flush more colors. Make the next flusher
112202d9 2660 * the new first flusher and arm pwqs.
73f53c4a 2661 */
6183c009
TH
2662 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2663 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2664
2665 list_del_init(&next->list);
2666 wq->first_flusher = next;
2667
112202d9 2668 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2669 break;
2670
2671 /*
2672 * Meh... this color is already done, clear first
2673 * flusher and repeat cascading.
2674 */
2675 wq->first_flusher = NULL;
2676 }
2677
2678out_unlock:
2679 mutex_unlock(&wq->flush_mutex);
1da177e4 2680}
ae90dd5d 2681EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2682
9c5a2ba7
TH
2683/**
2684 * drain_workqueue - drain a workqueue
2685 * @wq: workqueue to drain
2686 *
2687 * Wait until the workqueue becomes empty. While draining is in progress,
2688 * only chain queueing is allowed. IOW, only currently pending or running
2689 * work items on @wq can queue further work items on it. @wq is flushed
2690 * repeatedly until it becomes empty. The number of flushing is detemined
2691 * by the depth of chaining and should be relatively short. Whine if it
2692 * takes too long.
2693 */
2694void drain_workqueue(struct workqueue_struct *wq)
2695{
2696 unsigned int flush_cnt = 0;
49e3cf44 2697 struct pool_workqueue *pwq;
9c5a2ba7
TH
2698
2699 /*
2700 * __queue_work() needs to test whether there are drainers, is much
2701 * hotter than drain_workqueue() and already looks at @wq->flags.
2702 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2703 */
e98d5b16 2704 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2705 if (!wq->nr_drainers++)
2706 wq->flags |= WQ_DRAINING;
e98d5b16 2707 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2708reflush:
2709 flush_workqueue(wq);
2710
49e3cf44 2711 for_each_pwq(pwq, wq) {
fa2563e4 2712 bool drained;
9c5a2ba7 2713
112202d9
TH
2714 spin_lock_irq(&pwq->pool->lock);
2715 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2716 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2717
2718 if (drained)
9c5a2ba7
TH
2719 continue;
2720
2721 if (++flush_cnt == 10 ||
2722 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2723 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2724 wq->name, flush_cnt);
9c5a2ba7
TH
2725 goto reflush;
2726 }
2727
e98d5b16 2728 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2729 if (!--wq->nr_drainers)
2730 wq->flags &= ~WQ_DRAINING;
e98d5b16 2731 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2732}
2733EXPORT_SYMBOL_GPL(drain_workqueue);
2734
606a5020 2735static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2736{
affee4b2 2737 struct worker *worker = NULL;
c9e7cf27 2738 struct worker_pool *pool;
112202d9 2739 struct pool_workqueue *pwq;
db700897
ON
2740
2741 might_sleep();
c9e7cf27
TH
2742 pool = get_work_pool(work);
2743 if (!pool)
baf59022 2744 return false;
db700897 2745
d565ed63 2746 spin_lock_irq(&pool->lock);
0b3dae68 2747 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2748 pwq = get_work_pwq(work);
2749 if (pwq) {
2750 if (unlikely(pwq->pool != pool))
4690c4ab 2751 goto already_gone;
606a5020 2752 } else {
c9e7cf27 2753 worker = find_worker_executing_work(pool, work);
affee4b2 2754 if (!worker)
4690c4ab 2755 goto already_gone;
112202d9 2756 pwq = worker->current_pwq;
606a5020 2757 }
db700897 2758
112202d9 2759 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2760 spin_unlock_irq(&pool->lock);
7a22ad75 2761
e159489b
TH
2762 /*
2763 * If @max_active is 1 or rescuer is in use, flushing another work
2764 * item on the same workqueue may lead to deadlock. Make sure the
2765 * flusher is not running on the same workqueue by verifying write
2766 * access.
2767 */
112202d9
TH
2768 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2769 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2770 else
112202d9
TH
2771 lock_map_acquire_read(&pwq->wq->lockdep_map);
2772 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2773
401a8d04 2774 return true;
4690c4ab 2775already_gone:
d565ed63 2776 spin_unlock_irq(&pool->lock);
401a8d04 2777 return false;
db700897 2778}
baf59022
TH
2779
2780/**
2781 * flush_work - wait for a work to finish executing the last queueing instance
2782 * @work: the work to flush
2783 *
606a5020
TH
2784 * Wait until @work has finished execution. @work is guaranteed to be idle
2785 * on return if it hasn't been requeued since flush started.
baf59022
TH
2786 *
2787 * RETURNS:
2788 * %true if flush_work() waited for the work to finish execution,
2789 * %false if it was already idle.
2790 */
2791bool flush_work(struct work_struct *work)
2792{
2793 struct wq_barrier barr;
2794
0976dfc1
SB
2795 lock_map_acquire(&work->lockdep_map);
2796 lock_map_release(&work->lockdep_map);
2797
606a5020 2798 if (start_flush_work(work, &barr)) {
401a8d04
TH
2799 wait_for_completion(&barr.done);
2800 destroy_work_on_stack(&barr.work);
2801 return true;
606a5020 2802 } else {
401a8d04 2803 return false;
6e84d644 2804 }
6e84d644 2805}
606a5020 2806EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2807
36e227d2 2808static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2809{
bbb68dfa 2810 unsigned long flags;
1f1f642e
ON
2811 int ret;
2812
2813 do {
bbb68dfa
TH
2814 ret = try_to_grab_pending(work, is_dwork, &flags);
2815 /*
2816 * If someone else is canceling, wait for the same event it
2817 * would be waiting for before retrying.
2818 */
2819 if (unlikely(ret == -ENOENT))
606a5020 2820 flush_work(work);
1f1f642e
ON
2821 } while (unlikely(ret < 0));
2822
bbb68dfa
TH
2823 /* tell other tasks trying to grab @work to back off */
2824 mark_work_canceling(work);
2825 local_irq_restore(flags);
2826
606a5020 2827 flush_work(work);
7a22ad75 2828 clear_work_data(work);
1f1f642e
ON
2829 return ret;
2830}
2831
6e84d644 2832/**
401a8d04
TH
2833 * cancel_work_sync - cancel a work and wait for it to finish
2834 * @work: the work to cancel
6e84d644 2835 *
401a8d04
TH
2836 * Cancel @work and wait for its execution to finish. This function
2837 * can be used even if the work re-queues itself or migrates to
2838 * another workqueue. On return from this function, @work is
2839 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2840 *
401a8d04
TH
2841 * cancel_work_sync(&delayed_work->work) must not be used for
2842 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2843 *
401a8d04 2844 * The caller must ensure that the workqueue on which @work was last
6e84d644 2845 * queued can't be destroyed before this function returns.
401a8d04
TH
2846 *
2847 * RETURNS:
2848 * %true if @work was pending, %false otherwise.
6e84d644 2849 */
401a8d04 2850bool cancel_work_sync(struct work_struct *work)
6e84d644 2851{
36e227d2 2852 return __cancel_work_timer(work, false);
b89deed3 2853}
28e53bdd 2854EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2855
6e84d644 2856/**
401a8d04
TH
2857 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2858 * @dwork: the delayed work to flush
6e84d644 2859 *
401a8d04
TH
2860 * Delayed timer is cancelled and the pending work is queued for
2861 * immediate execution. Like flush_work(), this function only
2862 * considers the last queueing instance of @dwork.
1f1f642e 2863 *
401a8d04
TH
2864 * RETURNS:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
6e84d644 2867 */
401a8d04
TH
2868bool flush_delayed_work(struct delayed_work *dwork)
2869{
8930caba 2870 local_irq_disable();
401a8d04 2871 if (del_timer_sync(&dwork->timer))
60c057bc 2872 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2873 local_irq_enable();
401a8d04
TH
2874 return flush_work(&dwork->work);
2875}
2876EXPORT_SYMBOL(flush_delayed_work);
2877
09383498 2878/**
57b30ae7
TH
2879 * cancel_delayed_work - cancel a delayed work
2880 * @dwork: delayed_work to cancel
09383498 2881 *
57b30ae7
TH
2882 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2883 * and canceled; %false if wasn't pending. Note that the work callback
2884 * function may still be running on return, unless it returns %true and the
2885 * work doesn't re-arm itself. Explicitly flush or use
2886 * cancel_delayed_work_sync() to wait on it.
09383498 2887 *
57b30ae7 2888 * This function is safe to call from any context including IRQ handler.
09383498 2889 */
57b30ae7 2890bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2891{
57b30ae7
TH
2892 unsigned long flags;
2893 int ret;
2894
2895 do {
2896 ret = try_to_grab_pending(&dwork->work, true, &flags);
2897 } while (unlikely(ret == -EAGAIN));
2898
2899 if (unlikely(ret < 0))
2900 return false;
2901
7c3eed5c
TH
2902 set_work_pool_and_clear_pending(&dwork->work,
2903 get_work_pool_id(&dwork->work));
57b30ae7 2904 local_irq_restore(flags);
c0158ca6 2905 return ret;
09383498 2906}
57b30ae7 2907EXPORT_SYMBOL(cancel_delayed_work);
09383498 2908
401a8d04
TH
2909/**
2910 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2911 * @dwork: the delayed work cancel
2912 *
2913 * This is cancel_work_sync() for delayed works.
2914 *
2915 * RETURNS:
2916 * %true if @dwork was pending, %false otherwise.
2917 */
2918bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2919{
36e227d2 2920 return __cancel_work_timer(&dwork->work, true);
6e84d644 2921}
f5a421a4 2922EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2923
0fcb78c2 2924/**
c1a220e7
ZR
2925 * schedule_work_on - put work task on a specific cpu
2926 * @cpu: cpu to put the work task on
2927 * @work: job to be done
2928 *
2929 * This puts a job on a specific cpu
2930 */
d4283e93 2931bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2932{
d320c038 2933 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2934}
2935EXPORT_SYMBOL(schedule_work_on);
2936
0fcb78c2 2937/**
0fcb78c2
REB
2938 * schedule_work - put work task in global workqueue
2939 * @work: job to be done
0fcb78c2 2940 *
d4283e93
TH
2941 * Returns %false if @work was already on the kernel-global workqueue and
2942 * %true otherwise.
5b0f437d
BVA
2943 *
2944 * This puts a job in the kernel-global workqueue if it was not already
2945 * queued and leaves it in the same position on the kernel-global
2946 * workqueue otherwise.
0fcb78c2 2947 */
d4283e93 2948bool schedule_work(struct work_struct *work)
1da177e4 2949{
d320c038 2950 return queue_work(system_wq, work);
1da177e4 2951}
ae90dd5d 2952EXPORT_SYMBOL(schedule_work);
1da177e4 2953
0fcb78c2
REB
2954/**
2955 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2956 * @cpu: cpu to use
52bad64d 2957 * @dwork: job to be done
0fcb78c2
REB
2958 * @delay: number of jiffies to wait
2959 *
2960 * After waiting for a given time this puts a job in the kernel-global
2961 * workqueue on the specified CPU.
2962 */
d4283e93
TH
2963bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2964 unsigned long delay)
1da177e4 2965{
d320c038 2966 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2967}
ae90dd5d 2968EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2969
0fcb78c2
REB
2970/**
2971 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2972 * @dwork: job to be done
2973 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2974 *
2975 * After waiting for a given time this puts a job in the kernel-global
2976 * workqueue.
2977 */
d4283e93 2978bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2979{
d320c038 2980 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2981}
ae90dd5d 2982EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2983
b6136773 2984/**
31ddd871 2985 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2986 * @func: the function to call
b6136773 2987 *
31ddd871
TH
2988 * schedule_on_each_cpu() executes @func on each online CPU using the
2989 * system workqueue and blocks until all CPUs have completed.
b6136773 2990 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2991 *
2992 * RETURNS:
2993 * 0 on success, -errno on failure.
b6136773 2994 */
65f27f38 2995int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2996{
2997 int cpu;
38f51568 2998 struct work_struct __percpu *works;
15316ba8 2999
b6136773
AM
3000 works = alloc_percpu(struct work_struct);
3001 if (!works)
15316ba8 3002 return -ENOMEM;
b6136773 3003
93981800
TH
3004 get_online_cpus();
3005
15316ba8 3006 for_each_online_cpu(cpu) {
9bfb1839
IM
3007 struct work_struct *work = per_cpu_ptr(works, cpu);
3008
3009 INIT_WORK(work, func);
b71ab8c2 3010 schedule_work_on(cpu, work);
65a64464 3011 }
93981800
TH
3012
3013 for_each_online_cpu(cpu)
3014 flush_work(per_cpu_ptr(works, cpu));
3015
95402b38 3016 put_online_cpus();
b6136773 3017 free_percpu(works);
15316ba8
CL
3018 return 0;
3019}
3020
eef6a7d5
AS
3021/**
3022 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3023 *
3024 * Forces execution of the kernel-global workqueue and blocks until its
3025 * completion.
3026 *
3027 * Think twice before calling this function! It's very easy to get into
3028 * trouble if you don't take great care. Either of the following situations
3029 * will lead to deadlock:
3030 *
3031 * One of the work items currently on the workqueue needs to acquire
3032 * a lock held by your code or its caller.
3033 *
3034 * Your code is running in the context of a work routine.
3035 *
3036 * They will be detected by lockdep when they occur, but the first might not
3037 * occur very often. It depends on what work items are on the workqueue and
3038 * what locks they need, which you have no control over.
3039 *
3040 * In most situations flushing the entire workqueue is overkill; you merely
3041 * need to know that a particular work item isn't queued and isn't running.
3042 * In such cases you should use cancel_delayed_work_sync() or
3043 * cancel_work_sync() instead.
3044 */
1da177e4
LT
3045void flush_scheduled_work(void)
3046{
d320c038 3047 flush_workqueue(system_wq);
1da177e4 3048}
ae90dd5d 3049EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3050
1fa44eca
JB
3051/**
3052 * execute_in_process_context - reliably execute the routine with user context
3053 * @fn: the function to execute
1fa44eca
JB
3054 * @ew: guaranteed storage for the execute work structure (must
3055 * be available when the work executes)
3056 *
3057 * Executes the function immediately if process context is available,
3058 * otherwise schedules the function for delayed execution.
3059 *
3060 * Returns: 0 - function was executed
3061 * 1 - function was scheduled for execution
3062 */
65f27f38 3063int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3064{
3065 if (!in_interrupt()) {
65f27f38 3066 fn(&ew->work);
1fa44eca
JB
3067 return 0;
3068 }
3069
65f27f38 3070 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3071 schedule_work(&ew->work);
3072
3073 return 1;
3074}
3075EXPORT_SYMBOL_GPL(execute_in_process_context);
3076
1da177e4
LT
3077int keventd_up(void)
3078{
d320c038 3079 return system_wq != NULL;
1da177e4
LT
3080}
3081
30cdf249 3082static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3083{
49e3cf44 3084 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3085 int cpu;
3086
3087 if (!(wq->flags & WQ_UNBOUND)) {
e904e6c2 3088 wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
30cdf249
TH
3089 if (!wq->pool_wq.pcpu)
3090 return -ENOMEM;
3091
3092 for_each_possible_cpu(cpu) {
3093 struct pool_workqueue *pwq = get_pwq(cpu, wq);
f3421797 3094
49e3cf44 3095 pwq->pool = get_std_worker_pool(cpu, highpri);
30cdf249
TH
3096 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3097 }
3098 } else {
3099 struct pool_workqueue *pwq;
3100
3101 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3102 if (!pwq)
3103 return -ENOMEM;
3104
3105 wq->pool_wq.single = pwq;
49e3cf44 3106 pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
30cdf249
TH
3107 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3108 }
3109
3110 return 0;
0f900049
TH
3111}
3112
112202d9 3113static void free_pwqs(struct workqueue_struct *wq)
0f900049 3114{
e06ffa1e 3115 if (!(wq->flags & WQ_UNBOUND))
112202d9 3116 free_percpu(wq->pool_wq.pcpu);
e904e6c2
TH
3117 else
3118 kmem_cache_free(pwq_cache, wq->pool_wq.single);
0f900049
TH
3119}
3120
f3421797
TH
3121static int wq_clamp_max_active(int max_active, unsigned int flags,
3122 const char *name)
b71ab8c2 3123{
f3421797
TH
3124 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3125
3126 if (max_active < 1 || max_active > lim)
044c782c
VI
3127 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3128 max_active, name, 1, lim);
b71ab8c2 3129
f3421797 3130 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3131}
3132
b196be89 3133struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3134 unsigned int flags,
3135 int max_active,
3136 struct lock_class_key *key,
b196be89 3137 const char *lock_name, ...)
1da177e4 3138{
b196be89 3139 va_list args, args1;
1da177e4 3140 struct workqueue_struct *wq;
49e3cf44 3141 struct pool_workqueue *pwq;
b196be89
TH
3142 size_t namelen;
3143
3144 /* determine namelen, allocate wq and format name */
3145 va_start(args, lock_name);
3146 va_copy(args1, args);
3147 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3148
3149 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3150 if (!wq)
3151 goto err;
3152
3153 vsnprintf(wq->name, namelen, fmt, args1);
3154 va_end(args);
3155 va_end(args1);
1da177e4 3156
6370a6ad
TH
3157 /*
3158 * Workqueues which may be used during memory reclaim should
3159 * have a rescuer to guarantee forward progress.
3160 */
3161 if (flags & WQ_MEM_RECLAIM)
3162 flags |= WQ_RESCUER;
3163
d320c038 3164 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3165 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3166
b196be89 3167 /* init wq */
97e37d7b 3168 wq->flags = flags;
a0a1a5fd 3169 wq->saved_max_active = max_active;
73f53c4a 3170 mutex_init(&wq->flush_mutex);
112202d9 3171 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3172 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3173 INIT_LIST_HEAD(&wq->flusher_queue);
3174 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3175 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3176
eb13ba87 3177 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3178 INIT_LIST_HEAD(&wq->list);
3af24433 3179
30cdf249 3180 if (alloc_and_link_pwqs(wq) < 0)
bdbc5dd7
TH
3181 goto err;
3182
49e3cf44 3183 for_each_pwq(pwq, wq) {
112202d9 3184 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
112202d9
TH
3185 pwq->wq = wq;
3186 pwq->flush_color = -1;
3187 pwq->max_active = max_active;
3188 INIT_LIST_HEAD(&pwq->delayed_works);
493a1724 3189 INIT_LIST_HEAD(&pwq->mayday_node);
e22bee78 3190 }
1537663f 3191
e22bee78
TH
3192 if (flags & WQ_RESCUER) {
3193 struct worker *rescuer;
3194
e22bee78
TH
3195 wq->rescuer = rescuer = alloc_worker();
3196 if (!rescuer)
3197 goto err;
3198
111c225a
TH
3199 rescuer->rescue_wq = wq;
3200 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3201 wq->name);
e22bee78
TH
3202 if (IS_ERR(rescuer->task))
3203 goto err;
3204
e22bee78
TH
3205 rescuer->task->flags |= PF_THREAD_BOUND;
3206 wake_up_process(rescuer->task);
3af24433
ON
3207 }
3208
a0a1a5fd
TH
3209 /*
3210 * workqueue_lock protects global freeze state and workqueues
3211 * list. Grab it, set max_active accordingly and add the new
3212 * workqueue to workqueues list.
3213 */
e98d5b16 3214 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3215
58a69cb4 3216 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3217 for_each_pwq(pwq, wq)
3218 pwq->max_active = 0;
a0a1a5fd 3219
1537663f 3220 list_add(&wq->list, &workqueues);
a0a1a5fd 3221
e98d5b16 3222 spin_unlock_irq(&workqueue_lock);
1537663f 3223
3af24433 3224 return wq;
4690c4ab
TH
3225err:
3226 if (wq) {
112202d9 3227 free_pwqs(wq);
e22bee78 3228 kfree(wq->rescuer);
4690c4ab
TH
3229 kfree(wq);
3230 }
3231 return NULL;
3af24433 3232}
d320c038 3233EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3234
3af24433
ON
3235/**
3236 * destroy_workqueue - safely terminate a workqueue
3237 * @wq: target workqueue
3238 *
3239 * Safely destroy a workqueue. All work currently pending will be done first.
3240 */
3241void destroy_workqueue(struct workqueue_struct *wq)
3242{
49e3cf44 3243 struct pool_workqueue *pwq;
3af24433 3244
9c5a2ba7
TH
3245 /* drain it before proceeding with destruction */
3246 drain_workqueue(wq);
c8efcc25 3247
6183c009 3248 /* sanity checks */
49e3cf44 3249 for_each_pwq(pwq, wq) {
6183c009
TH
3250 int i;
3251
3252 for (i = 0; i < WORK_NR_COLORS; i++)
3253 if (WARN_ON(pwq->nr_in_flight[i]))
3254 return;
3255 if (WARN_ON(pwq->nr_active) ||
3256 WARN_ON(!list_empty(&pwq->delayed_works)))
3257 return;
3258 }
3259
a0a1a5fd
TH
3260 /*
3261 * wq list is used to freeze wq, remove from list after
3262 * flushing is complete in case freeze races us.
3263 */
e98d5b16 3264 spin_lock_irq(&workqueue_lock);
b1f4ec17 3265 list_del(&wq->list);
e98d5b16 3266 spin_unlock_irq(&workqueue_lock);
3af24433 3267
e22bee78
TH
3268 if (wq->flags & WQ_RESCUER) {
3269 kthread_stop(wq->rescuer->task);
8d9df9f0 3270 kfree(wq->rescuer);
e22bee78
TH
3271 }
3272
112202d9 3273 free_pwqs(wq);
3af24433
ON
3274 kfree(wq);
3275}
3276EXPORT_SYMBOL_GPL(destroy_workqueue);
3277
9f4bd4cd 3278/**
112202d9
TH
3279 * pwq_set_max_active - adjust max_active of a pwq
3280 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3281 * @max_active: new max_active value.
3282 *
112202d9 3283 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3284 * increased.
3285 *
3286 * CONTEXT:
d565ed63 3287 * spin_lock_irq(pool->lock).
9f4bd4cd 3288 */
112202d9 3289static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3290{
112202d9 3291 pwq->max_active = max_active;
9f4bd4cd 3292
112202d9
TH
3293 while (!list_empty(&pwq->delayed_works) &&
3294 pwq->nr_active < pwq->max_active)
3295 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3296}
3297
dcd989cb
TH
3298/**
3299 * workqueue_set_max_active - adjust max_active of a workqueue
3300 * @wq: target workqueue
3301 * @max_active: new max_active value.
3302 *
3303 * Set max_active of @wq to @max_active.
3304 *
3305 * CONTEXT:
3306 * Don't call from IRQ context.
3307 */
3308void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3309{
49e3cf44 3310 struct pool_workqueue *pwq;
dcd989cb 3311
f3421797 3312 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3313
e98d5b16 3314 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3315
3316 wq->saved_max_active = max_active;
3317
49e3cf44 3318 for_each_pwq(pwq, wq) {
112202d9 3319 struct worker_pool *pool = pwq->pool;
dcd989cb 3320
e98d5b16 3321 spin_lock(&pool->lock);
dcd989cb 3322
58a69cb4 3323 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3324 !(pool->flags & POOL_FREEZING))
112202d9 3325 pwq_set_max_active(pwq, max_active);
9bfb1839 3326
e98d5b16 3327 spin_unlock(&pool->lock);
65a64464 3328 }
93981800 3329
e98d5b16 3330 spin_unlock_irq(&workqueue_lock);
15316ba8 3331}
dcd989cb 3332EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3333
eef6a7d5 3334/**
dcd989cb
TH
3335 * workqueue_congested - test whether a workqueue is congested
3336 * @cpu: CPU in question
3337 * @wq: target workqueue
eef6a7d5 3338 *
dcd989cb
TH
3339 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3340 * no synchronization around this function and the test result is
3341 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3342 *
dcd989cb
TH
3343 * RETURNS:
3344 * %true if congested, %false otherwise.
eef6a7d5 3345 */
d84ff051 3346bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3347{
112202d9 3348 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3349
112202d9 3350 return !list_empty(&pwq->delayed_works);
1da177e4 3351}
dcd989cb 3352EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3353
dcd989cb
TH
3354/**
3355 * work_busy - test whether a work is currently pending or running
3356 * @work: the work to be tested
3357 *
3358 * Test whether @work is currently pending or running. There is no
3359 * synchronization around this function and the test result is
3360 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3361 *
3362 * RETURNS:
3363 * OR'd bitmask of WORK_BUSY_* bits.
3364 */
3365unsigned int work_busy(struct work_struct *work)
1da177e4 3366{
c9e7cf27 3367 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3368 unsigned long flags;
3369 unsigned int ret = 0;
1da177e4 3370
dcd989cb
TH
3371 if (work_pending(work))
3372 ret |= WORK_BUSY_PENDING;
1da177e4 3373
038366c5
LJ
3374 if (pool) {
3375 spin_lock_irqsave(&pool->lock, flags);
3376 if (find_worker_executing_work(pool, work))
3377 ret |= WORK_BUSY_RUNNING;
3378 spin_unlock_irqrestore(&pool->lock, flags);
3379 }
1da177e4 3380
dcd989cb 3381 return ret;
1da177e4 3382}
dcd989cb 3383EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3384
db7bccf4
TH
3385/*
3386 * CPU hotplug.
3387 *
e22bee78 3388 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3389 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3390 * pool which make migrating pending and scheduled works very
e22bee78 3391 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3392 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3393 * blocked draining impractical.
3394 *
24647570 3395 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3396 * running as an unbound one and allowing it to be reattached later if the
3397 * cpu comes back online.
db7bccf4 3398 */
1da177e4 3399
706026c2 3400static void wq_unbind_fn(struct work_struct *work)
3af24433 3401{
38db41d9 3402 int cpu = smp_processor_id();
4ce62e9e 3403 struct worker_pool *pool;
db7bccf4 3404 struct worker *worker;
db7bccf4 3405 int i;
3af24433 3406
38db41d9 3407 for_each_std_worker_pool(pool, cpu) {
6183c009 3408 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3409
94cf58bb
TH
3410 mutex_lock(&pool->assoc_mutex);
3411 spin_lock_irq(&pool->lock);
3af24433 3412
94cf58bb
TH
3413 /*
3414 * We've claimed all manager positions. Make all workers
3415 * unbound and set DISASSOCIATED. Before this, all workers
3416 * except for the ones which are still executing works from
3417 * before the last CPU down must be on the cpu. After
3418 * this, they may become diasporas.
3419 */
4ce62e9e 3420 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3421 worker->flags |= WORKER_UNBOUND;
3af24433 3422
b67bfe0d 3423 for_each_busy_worker(worker, i, pool)
c9e7cf27 3424 worker->flags |= WORKER_UNBOUND;
06ba38a9 3425
24647570 3426 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3427
94cf58bb
TH
3428 spin_unlock_irq(&pool->lock);
3429 mutex_unlock(&pool->assoc_mutex);
3430 }
628c78e7 3431
e22bee78 3432 /*
403c821d 3433 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3434 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3435 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3436 */
e22bee78 3437 schedule();
06ba38a9 3438
e22bee78 3439 /*
628c78e7
TH
3440 * Sched callbacks are disabled now. Zap nr_running. After this,
3441 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3442 * are always true as long as the worklist is not empty. Pools on
3443 * @cpu now behave as unbound (in terms of concurrency management)
3444 * pools which are served by workers tied to the CPU.
628c78e7
TH
3445 *
3446 * On return from this function, the current worker would trigger
3447 * unbound chain execution of pending work items if other workers
3448 * didn't already.
e22bee78 3449 */
38db41d9 3450 for_each_std_worker_pool(pool, cpu)
e19e397a 3451 atomic_set(&pool->nr_running, 0);
3af24433 3452}
3af24433 3453
8db25e78
TH
3454/*
3455 * Workqueues should be brought up before normal priority CPU notifiers.
3456 * This will be registered high priority CPU notifier.
3457 */
9fdf9b73 3458static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3459 unsigned long action,
3460 void *hcpu)
3af24433 3461{
d84ff051 3462 int cpu = (unsigned long)hcpu;
4ce62e9e 3463 struct worker_pool *pool;
3ce63377 3464
8db25e78 3465 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3466 case CPU_UP_PREPARE:
38db41d9 3467 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3468 struct worker *worker;
3469
3470 if (pool->nr_workers)
3471 continue;
3472
3473 worker = create_worker(pool);
3474 if (!worker)
3475 return NOTIFY_BAD;
3476
d565ed63 3477 spin_lock_irq(&pool->lock);
3ce63377 3478 start_worker(worker);
d565ed63 3479 spin_unlock_irq(&pool->lock);
3af24433 3480 }
8db25e78 3481 break;
3af24433 3482
db7bccf4
TH
3483 case CPU_DOWN_FAILED:
3484 case CPU_ONLINE:
38db41d9 3485 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3486 mutex_lock(&pool->assoc_mutex);
3487 spin_lock_irq(&pool->lock);
3488
24647570 3489 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3490 rebind_workers(pool);
3491
3492 spin_unlock_irq(&pool->lock);
3493 mutex_unlock(&pool->assoc_mutex);
3494 }
db7bccf4 3495 break;
00dfcaf7 3496 }
65758202
TH
3497 return NOTIFY_OK;
3498}
3499
3500/*
3501 * Workqueues should be brought down after normal priority CPU notifiers.
3502 * This will be registered as low priority CPU notifier.
3503 */
9fdf9b73 3504static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3505 unsigned long action,
3506 void *hcpu)
3507{
d84ff051 3508 int cpu = (unsigned long)hcpu;
8db25e78
TH
3509 struct work_struct unbind_work;
3510
65758202
TH
3511 switch (action & ~CPU_TASKS_FROZEN) {
3512 case CPU_DOWN_PREPARE:
8db25e78 3513 /* unbinding should happen on the local CPU */
706026c2 3514 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3515 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3516 flush_work(&unbind_work);
3517 break;
65758202
TH
3518 }
3519 return NOTIFY_OK;
3520}
3521
2d3854a3 3522#ifdef CONFIG_SMP
8ccad40d 3523
2d3854a3 3524struct work_for_cpu {
ed48ece2 3525 struct work_struct work;
2d3854a3
RR
3526 long (*fn)(void *);
3527 void *arg;
3528 long ret;
3529};
3530
ed48ece2 3531static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3532{
ed48ece2
TH
3533 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3534
2d3854a3
RR
3535 wfc->ret = wfc->fn(wfc->arg);
3536}
3537
3538/**
3539 * work_on_cpu - run a function in user context on a particular cpu
3540 * @cpu: the cpu to run on
3541 * @fn: the function to run
3542 * @arg: the function arg
3543 *
31ad9081
RR
3544 * This will return the value @fn returns.
3545 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3546 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 3547 */
d84ff051 3548long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 3549{
ed48ece2 3550 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3551
ed48ece2
TH
3552 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3553 schedule_work_on(cpu, &wfc.work);
3554 flush_work(&wfc.work);
2d3854a3
RR
3555 return wfc.ret;
3556}
3557EXPORT_SYMBOL_GPL(work_on_cpu);
3558#endif /* CONFIG_SMP */
3559
a0a1a5fd
TH
3560#ifdef CONFIG_FREEZER
3561
3562/**
3563 * freeze_workqueues_begin - begin freezing workqueues
3564 *
58a69cb4
TH
3565 * Start freezing workqueues. After this function returns, all freezable
3566 * workqueues will queue new works to their frozen_works list instead of
706026c2 3567 * pool->worklist.
a0a1a5fd
TH
3568 *
3569 * CONTEXT:
d565ed63 3570 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3571 */
3572void freeze_workqueues_begin(void)
3573{
17116969 3574 struct worker_pool *pool;
24b8a847
TH
3575 struct workqueue_struct *wq;
3576 struct pool_workqueue *pwq;
17116969 3577 int id;
a0a1a5fd 3578
e98d5b16 3579 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3580
6183c009 3581 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3582 workqueue_freezing = true;
3583
24b8a847 3584 /* set FREEZING */
17116969 3585 for_each_pool(pool, id) {
17116969 3586 spin_lock(&pool->lock);
17116969
TH
3587 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3588 pool->flags |= POOL_FREEZING;
24b8a847
TH
3589 spin_unlock(&pool->lock);
3590 }
a0a1a5fd 3591
24b8a847
TH
3592 /* suppress further executions by setting max_active to zero */
3593 list_for_each_entry(wq, &workqueues, list) {
3594 if (!(wq->flags & WQ_FREEZABLE))
3595 continue;
8b03ae3c 3596
24b8a847
TH
3597 for_each_pwq(pwq, wq) {
3598 spin_lock(&pwq->pool->lock);
3599 pwq->max_active = 0;
3600 spin_unlock(&pwq->pool->lock);
a1056305 3601 }
a0a1a5fd
TH
3602 }
3603
e98d5b16 3604 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3605}
3606
3607/**
58a69cb4 3608 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3609 *
3610 * Check whether freezing is complete. This function must be called
3611 * between freeze_workqueues_begin() and thaw_workqueues().
3612 *
3613 * CONTEXT:
3614 * Grabs and releases workqueue_lock.
3615 *
3616 * RETURNS:
58a69cb4
TH
3617 * %true if some freezable workqueues are still busy. %false if freezing
3618 * is complete.
a0a1a5fd
TH
3619 */
3620bool freeze_workqueues_busy(void)
3621{
a0a1a5fd 3622 bool busy = false;
24b8a847
TH
3623 struct workqueue_struct *wq;
3624 struct pool_workqueue *pwq;
a0a1a5fd 3625
e98d5b16 3626 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3627
6183c009 3628 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3629
24b8a847
TH
3630 list_for_each_entry(wq, &workqueues, list) {
3631 if (!(wq->flags & WQ_FREEZABLE))
3632 continue;
a0a1a5fd
TH
3633 /*
3634 * nr_active is monotonically decreasing. It's safe
3635 * to peek without lock.
3636 */
24b8a847 3637 for_each_pwq(pwq, wq) {
6183c009 3638 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3639 if (pwq->nr_active) {
a0a1a5fd
TH
3640 busy = true;
3641 goto out_unlock;
3642 }
3643 }
3644 }
3645out_unlock:
e98d5b16 3646 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3647 return busy;
3648}
3649
3650/**
3651 * thaw_workqueues - thaw workqueues
3652 *
3653 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3654 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3655 *
3656 * CONTEXT:
d565ed63 3657 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3658 */
3659void thaw_workqueues(void)
3660{
24b8a847
TH
3661 struct workqueue_struct *wq;
3662 struct pool_workqueue *pwq;
3663 struct worker_pool *pool;
3664 int id;
a0a1a5fd 3665
e98d5b16 3666 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3667
3668 if (!workqueue_freezing)
3669 goto out_unlock;
3670
24b8a847
TH
3671 /* clear FREEZING */
3672 for_each_pool(pool, id) {
3673 spin_lock(&pool->lock);
3674 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3675 pool->flags &= ~POOL_FREEZING;
3676 spin_unlock(&pool->lock);
3677 }
8b03ae3c 3678
24b8a847
TH
3679 /* restore max_active and repopulate worklist */
3680 list_for_each_entry(wq, &workqueues, list) {
3681 if (!(wq->flags & WQ_FREEZABLE))
3682 continue;
a1056305 3683
24b8a847
TH
3684 for_each_pwq(pwq, wq) {
3685 spin_lock(&pwq->pool->lock);
3686 pwq_set_max_active(pwq, wq->saved_max_active);
3687 spin_unlock(&pwq->pool->lock);
d565ed63 3688 }
a0a1a5fd
TH
3689 }
3690
24b8a847
TH
3691 /* kick workers */
3692 for_each_pool(pool, id) {
3693 spin_lock(&pool->lock);
3694 wake_up_worker(pool);
3695 spin_unlock(&pool->lock);
3696 }
3697
a0a1a5fd
TH
3698 workqueue_freezing = false;
3699out_unlock:
e98d5b16 3700 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3701}
3702#endif /* CONFIG_FREEZER */
3703
6ee0578b 3704static int __init init_workqueues(void)
1da177e4 3705{
d84ff051 3706 int cpu;
c34056a3 3707
7c3eed5c
TH
3708 /* make sure we have enough bits for OFFQ pool ID */
3709 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3710 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3711
e904e6c2
TH
3712 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3713
3714 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3715
65758202 3716 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3717 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3718
706026c2
TH
3719 /* initialize CPU pools */
3720 for_each_wq_cpu(cpu) {
4ce62e9e 3721 struct worker_pool *pool;
8b03ae3c 3722
38db41d9 3723 for_each_std_worker_pool(pool, cpu) {
d565ed63 3724 spin_lock_init(&pool->lock);
ec22ca5e 3725 pool->cpu = cpu;
24647570 3726 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3727 INIT_LIST_HEAD(&pool->worklist);
3728 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3729 hash_init(pool->busy_hash);
e7577c50 3730
4ce62e9e
TH
3731 init_timer_deferrable(&pool->idle_timer);
3732 pool->idle_timer.function = idle_worker_timeout;
3733 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3734
706026c2 3735 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3736 (unsigned long)pool);
3737
b2eb83d1 3738 mutex_init(&pool->assoc_mutex);
4ce62e9e 3739 ida_init(&pool->worker_ida);
9daf9e67
TH
3740
3741 /* alloc pool ID */
3742 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3743 }
8b03ae3c
TH
3744 }
3745
e22bee78 3746 /* create the initial worker */
706026c2 3747 for_each_online_wq_cpu(cpu) {
4ce62e9e 3748 struct worker_pool *pool;
e22bee78 3749
38db41d9 3750 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3751 struct worker *worker;
3752
24647570
TH
3753 if (cpu != WORK_CPU_UNBOUND)
3754 pool->flags &= ~POOL_DISASSOCIATED;
3755
bc2ae0f5 3756 worker = create_worker(pool);
4ce62e9e 3757 BUG_ON(!worker);
d565ed63 3758 spin_lock_irq(&pool->lock);
4ce62e9e 3759 start_worker(worker);
d565ed63 3760 spin_unlock_irq(&pool->lock);
4ce62e9e 3761 }
e22bee78
TH
3762 }
3763
d320c038 3764 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3765 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3766 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3767 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3768 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3769 system_freezable_wq = alloc_workqueue("events_freezable",
3770 WQ_FREEZABLE, 0);
1aabe902 3771 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3772 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3773 return 0;
1da177e4 3774}
6ee0578b 3775early_initcall(init_workqueues);