workqueue: Use list_last_entry() to get the last idle worker
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
4cb1ef64 32#include <linux/interrupt.h>
1da177e4
LT
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
1fa44eca 40#include <linux/hardirq.h>
46934023 41#include <linux/mempolicy.h>
341a5958 42#include <linux/freezer.h>
d5abe669 43#include <linux/debug_locks.h>
4e6045f1 44#include <linux/lockdep.h>
c34056a3 45#include <linux/idr.h>
29c91e99 46#include <linux/jhash.h>
42f8570f 47#include <linux/hashtable.h>
76af4d93 48#include <linux/rculist.h>
bce90380 49#include <linux/nodemask.h>
4c16bd32 50#include <linux/moduleparam.h>
3d1cb205 51#include <linux/uaccess.h>
c98a9805 52#include <linux/sched/isolation.h>
cd2440d6 53#include <linux/sched/debug.h>
62635ea8 54#include <linux/nmi.h>
940d71c6 55#include <linux/kvm_para.h>
aa6fde93 56#include <linux/delay.h>
2f34d733 57#include <linux/irq_work.h>
e22bee78 58
ea138446 59#include "workqueue_internal.h"
1da177e4 60
e563d0a7 61enum worker_pool_flags {
24647570
TH
62 /*
63 * worker_pool flags
bc2ae0f5 64 *
24647570 65 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 72 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 73 *
bc3a1afc 74 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 75 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 76 * worker_attach_to_pool() is in progress.
4cb1ef64
TH
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
bc2ae0f5 80 */
4cb1ef64
TH
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
24647570 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
1acd92d9 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
e563d0a7 85};
db7bccf4 86
e563d0a7 87enum worker_flags {
c8e55f36 88 /* worker flags */
c8e55f36
TH
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 91 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 95
a9ab775b
TH
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 98};
db7bccf4 99
c5f5b942
TH
100enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
86898fa6 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
c5f5b942
TH
103};
104
e563d0a7 105enum wq_internal_consts {
e34cdddb 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 107
29c91e99 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 110
e22bee78
TH
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
3233cdbd
TH
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
e22bee78
TH
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
8698a745 122 * all cpus. Give MIN_NICE.
e22bee78 123 */
8698a745
DY
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 126
31c89007 127 WQ_NAME_LEN = 32,
c8e55f36 128};
1da177e4 129
4cb1ef64
TH
130/*
131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133 * msecs_to_jiffies() can't be an initializer.
134 */
135#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
136#define BH_WORKER_RESTARTS 10
137
1da177e4 138/*
4690c4ab
TH
139 * Structure fields follow one of the following exclusion rules.
140 *
e41e704b
TH
141 * I: Modifiable by initialization/destruction paths and read-only for
142 * everyone else.
4690c4ab 143 *
e22bee78
TH
144 * P: Preemption protected. Disabling preemption is enough and should
145 * only be modified and accessed from the local cpu.
146 *
d565ed63 147 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 148 *
5797b1c1
TH
149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150 * reads.
151 *
bdf8b9bf
TH
152 * K: Only modified by worker while holding pool->lock. Can be safely read by
153 * self, while holding pool->lock or from IRQ context if %current is the
154 * kworker.
155 *
156 * S: Only modified by worker self.
157 *
1258fae7 158 * A: wq_pool_attach_mutex protected.
822d8405 159 *
68e13a67 160 * PL: wq_pool_mutex protected.
5bcab335 161 *
24acfb71 162 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 163 *
5b95e1af
LJ
164 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
165 *
166 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 167 * RCU for reads.
5b95e1af 168 *
3c25a55d
LJ
169 * WQ: wq->mutex protected.
170 *
24acfb71 171 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 172 *
a045a272
TH
173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174 * with READ_ONCE() without locking.
175 *
2e109a28 176 * MD: wq_mayday_lock protected.
cd2440d6
PM
177 *
178 * WD: Used internally by the watchdog.
1da177e4 179 */
1da177e4 180
2eaebdb3 181/* struct worker is defined in workqueue_internal.h */
c34056a3 182
bd7bdd43 183struct worker_pool {
a9b8a985 184 raw_spinlock_t lock; /* the pool lock */
d84ff051 185 int cpu; /* I: the associated cpu */
f3f90ad4 186 int node; /* I: the associated node ID */
9daf9e67 187 int id; /* I: pool ID */
bc8b50c2 188 unsigned int flags; /* L: flags */
bd7bdd43 189
82607adc 190 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 191 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 192
bc35f7ef
LJ
193 /*
194 * The counter is incremented in a process context on the associated CPU
195 * w/ preemption disabled, and decremented or reset in the same context
196 * but w/ pool->lock held. The readers grab pool->lock and are
197 * guaranteed to see if the counter reached zero.
198 */
199 int nr_running;
84f91c62 200
bd7bdd43 201 struct list_head worklist; /* L: list of pending works */
ea1abd61 202
5826cc8f
LJ
203 int nr_workers; /* L: total number of workers */
204 int nr_idle; /* L: currently idle workers */
bd7bdd43 205
2c1f1a91 206 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 207 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
208 struct work_struct idle_cull_work; /* L: worker idle cleanup */
209
210 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 211
c5aa87bb 212 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
213 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214 /* L: hash of busy workers */
215
2607d7a6 216 struct worker *manager; /* L: purely informational */
92f9c5c4 217 struct list_head workers; /* A: attached workers */
e02b9312 218 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 219 struct completion *detach_completion; /* all workers detached */
e19e397a 220
7cda9aae 221 struct ida worker_ida; /* worker IDs for task name */
e19e397a 222
7a4e344c 223 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
224 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
225 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 226
29c91e99 227 /*
24acfb71 228 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
229 * from get_work_pool().
230 */
231 struct rcu_head rcu;
84f91c62 232};
8b03ae3c 233
725e8ec5
TH
234/*
235 * Per-pool_workqueue statistics. These can be monitored using
236 * tools/workqueue/wq_monitor.py.
237 */
238enum pool_workqueue_stats {
239 PWQ_STAT_STARTED, /* work items started execution */
240 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 241 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 242 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 243 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 244 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
245 PWQ_STAT_MAYDAY, /* maydays to rescuer */
246 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
247
248 PWQ_NR_STATS,
249};
250
1da177e4 251/*
e9a8e01f 252 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
112202d9
TH
253 * of work_struct->data are used for flags and the remaining high bits
254 * point to the pwq; thus, pwqs need to be aligned at two's power of the
255 * number of flag bits.
1da177e4 256 */
112202d9 257struct pool_workqueue {
bd7bdd43 258 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 259 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
260 int work_color; /* L: current color */
261 int flush_color; /* L: flushing color */
8864b4e5 262 int refcnt; /* L: reference count */
73f53c4a
TH
263 int nr_in_flight[WORK_NR_COLORS];
264 /* L: nr of in_flight works */
4c065dbc 265 bool plugged; /* L: execution suspended */
018f3a13
LJ
266
267 /*
268 * nr_active management and WORK_STRUCT_INACTIVE:
269 *
270 * When pwq->nr_active >= max_active, new work item is queued to
271 * pwq->inactive_works instead of pool->worklist and marked with
272 * WORK_STRUCT_INACTIVE.
273 *
5797b1c1
TH
274 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
275 * nr_active and all work items in pwq->inactive_works are marked with
276 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
277 * in pwq->inactive_works. Some of them are ready to run in
278 * pool->worklist or worker->scheduled. Those work itmes are only struct
279 * wq_barrier which is used for flush_work() and should not participate
280 * in nr_active. For non-barrier work item, it is marked with
281 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 282 */
1e19ffc6 283 int nr_active; /* L: nr of active works */
f97a4a1a 284 struct list_head inactive_works; /* L: inactive works */
5797b1c1 285 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 286 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 287 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 288
725e8ec5
TH
289 u64 stats[PWQ_NR_STATS];
290
8864b4e5 291 /*
967b494e 292 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
293 * and pwq_release_workfn() for details. pool_workqueue itself is also
294 * RCU protected so that the first pwq can be determined without
967b494e 295 * grabbing wq->mutex.
8864b4e5 296 */
687a9aa5 297 struct kthread_work release_work;
8864b4e5 298 struct rcu_head rcu;
e9a8e01f 299} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
1da177e4 300
73f53c4a
TH
301/*
302 * Structure used to wait for workqueue flush.
303 */
304struct wq_flusher {
3c25a55d
LJ
305 struct list_head list; /* WQ: list of flushers */
306 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
307 struct completion done; /* flush completion */
308};
309
226223ab
TH
310struct wq_device;
311
91ccc6e7
TH
312/*
313 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
314 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
315 * As sharing a single nr_active across multiple sockets can be very expensive,
316 * the counting and enforcement is per NUMA node.
5797b1c1
TH
317 *
318 * The following struct is used to enforce per-node max_active. When a pwq wants
319 * to start executing a work item, it should increment ->nr using
320 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
321 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
322 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
323 * round-robin order.
91ccc6e7
TH
324 */
325struct wq_node_nr_active {
5797b1c1
TH
326 int max; /* per-node max_active */
327 atomic_t nr; /* per-node nr_active */
328 raw_spinlock_t lock; /* nests inside pool locks */
329 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
330};
331
1da177e4 332/*
c5aa87bb
TH
333 * The externally visible workqueue. It relays the issued work items to
334 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
335 */
336struct workqueue_struct {
3c25a55d 337 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 338 struct list_head list; /* PR: list of all workqueues */
73f53c4a 339
3c25a55d
LJ
340 struct mutex mutex; /* protects this wq */
341 int work_color; /* WQ: current work color */
342 int flush_color; /* WQ: current flush color */
112202d9 343 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
344 struct wq_flusher *first_flusher; /* WQ: first flusher */
345 struct list_head flusher_queue; /* WQ: flush waiters */
346 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 347
2e109a28 348 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 349 struct worker *rescuer; /* MD: rescue worker */
e22bee78 350
87fc741e 351 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
352
353 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 354 int max_active; /* WO: max active works */
5797b1c1 355 int min_active; /* WO: min active works */
a045a272 356 int saved_max_active; /* WQ: saved max_active */
5797b1c1 357 int saved_min_active; /* WQ: saved min_active */
226223ab 358
5b95e1af 359 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 360 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 361
226223ab
TH
362#ifdef CONFIG_SYSFS
363 struct wq_device *wq_dev; /* I: for sysfs interface */
364#endif
4e6045f1 365#ifdef CONFIG_LOCKDEP
669de8bd
BVA
366 char *lock_name;
367 struct lock_class_key key;
4690c4ab 368 struct lockdep_map lockdep_map;
4e6045f1 369#endif
ecf6881f 370 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 371
e2dca7ad 372 /*
24acfb71
TG
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
2728fd2f
TH
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
383};
384
84193c07
TH
385/*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394};
395
1211f3b2
TH
396struct work_offq_data {
397 u32 pool_id;
86898fa6 398 u32 disable;
1211f3b2
TH
399 u32 flags;
400};
401
63c5484e 402static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
c7a40c49
TH
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
63c5484e 409};
bce90380 410
616db877
TH
411/*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 417 */
aa6fde93 418static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877 419module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
ccdec921
XY
420#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421static unsigned int wq_cpu_intensive_warning_thresh = 4;
422module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423#endif
616db877 424
cee22a15 425/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 426static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
427module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
863b710b 429static bool wq_online; /* can kworkers be created yet? */
c7a40c49
TH
430static bool wq_topo_initialized __read_mostly = false;
431
432static struct kmem_cache *pwq_cache;
433
434static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
3347fa09 436
fef59c9c
TH
437/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438static struct workqueue_attrs *wq_update_pod_attrs_buf;
4c16bd32 439
68e13a67 440static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 441static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 442static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
443/* wait for manager to go away */
444static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 445
e2dca7ad 446static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 447static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 448
99c621ef 449/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
450static cpumask_var_t wq_unbound_cpumask;
451
fe28f631
WL
452/* PL: user requested unbound cpumask via sysfs */
453static cpumask_var_t wq_requested_unbound_cpumask;
454
455/* PL: isolated cpumask to be excluded from unbound cpumask */
456static cpumask_var_t wq_isolated_cpumask;
457
ace3c549 458/* for further constrain wq_unbound_cpumask by cmdline parameter*/
459static struct cpumask wq_cmdline_cpumask __initdata;
460
ef557180
MG
461/* CPU where unbound work was last round robin scheduled from this CPU */
462static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 463
f303fccb
TH
464/*
465 * Local execution of unbound work items is no longer guaranteed. The
466 * following always forces round-robin CPU selection on unbound work items
467 * to uncover usages which depend on it.
468 */
469#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
470static bool wq_debug_force_rr_cpu = true;
471#else
472static bool wq_debug_force_rr_cpu = false;
473#endif
474module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
475
2f34d733
TH
476/* to raise softirq for the BH worker pools on other CPUs */
477static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
478 bh_pool_irq_works);
479
4cb1ef64
TH
480/* the BH worker pools */
481static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
482 bh_worker_pools);
483
7d19c5ce 484/* the per-cpu worker pools */
4cb1ef64
TH
485static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
486 cpu_worker_pools);
7d19c5ce 487
68e13a67 488static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 489
68e13a67 490/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
491static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
c5aa87bb 493/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
494static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
8a2b7538
TH
496/* I: attributes used when instantiating ordered pools on demand */
497static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
967b494e
TH
499/*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
68279f9c 504static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 505
68279f9c 506struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 507EXPORT_SYMBOL(system_wq);
68279f9c 508struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 509EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 510struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 511EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 512struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 513EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 514struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 515EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 516struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 517EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 518struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 519EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
4cb1ef64
TH
520struct workqueue_struct *system_bh_wq;
521EXPORT_SYMBOL_GPL(system_bh_wq);
522struct workqueue_struct *system_bh_highpri_wq;
523EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
d320c038 524
7d19c5ce 525static int worker_thread(void *__worker);
6ba94429 526static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 527static void show_pwq(struct pool_workqueue *pwq);
55df0933 528static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 529
97bd2347
TH
530#define CREATE_TRACE_POINTS
531#include <trace/events/workqueue.h>
532
68e13a67 533#define assert_rcu_or_pool_mutex() \
d355001f 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
f78f5b90 535 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 536 "RCU or wq_pool_mutex should be held")
5bcab335 537
5b95e1af 538#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
d355001f 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
f78f5b90
PM
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 542 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 543
4cb1ef64
TH
544#define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
f02ae73a
TH
549#define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 552 (pool)++)
4ce62e9e 553
17116969
TH
554/**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
611c92a0 557 * @pi: integer used for iteration
fa1b54e6 558 *
24acfb71 559 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
17116969 565 */
611c92a0
TH
566#define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 569 else
17116969 570
822d8405
TH
571/**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
822d8405
TH
574 * @pool: worker_pool to iterate workers of
575 *
1258fae7 576 * This must be called with wq_pool_attach_mutex.
822d8405
TH
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
da028469
LJ
581#define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
584 else
585
49e3cf44
TH
586/**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
76af4d93 590 *
24acfb71 591 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
49e3cf44
TH
597 */
598#define for_each_pwq(pwq, wq) \
49e9d1a9 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 600 lockdep_is_held(&(wq->mutex)))
f3421797 601
dc186ad7
TG
602#ifdef CONFIG_DEBUG_OBJECTS_WORK
603
f9e62f31 604static const struct debug_obj_descr work_debug_descr;
dc186ad7 605
99777288
SG
606static void *work_debug_hint(void *addr)
607{
608 return ((struct work_struct *) addr)->func;
609}
610
b9fdac7f
DC
611static bool work_is_static_object(void *addr)
612{
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616}
617
dc186ad7
TG
618/*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
02a982a6 622static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
623{
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
02a982a6 630 return true;
dc186ad7 631 default:
02a982a6 632 return false;
dc186ad7
TG
633 }
634}
635
dc186ad7
TG
636/*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
02a982a6 640static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
641{
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
02a982a6 648 return true;
dc186ad7 649 default:
02a982a6 650 return false;
dc186ad7
TG
651 }
652}
653
f9e62f31 654static const struct debug_obj_descr work_debug_descr = {
dc186ad7 655 .name = "work_struct",
99777288 656 .debug_hint = work_debug_hint,
b9fdac7f 657 .is_static_object = work_is_static_object,
dc186ad7 658 .fixup_init = work_fixup_init,
dc186ad7
TG
659 .fixup_free = work_fixup_free,
660};
661
662static inline void debug_work_activate(struct work_struct *work)
663{
664 debug_object_activate(work, &work_debug_descr);
665}
666
667static inline void debug_work_deactivate(struct work_struct *work)
668{
669 debug_object_deactivate(work, &work_debug_descr);
670}
671
672void __init_work(struct work_struct *work, int onstack)
673{
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678}
679EXPORT_SYMBOL_GPL(__init_work);
680
681void destroy_work_on_stack(struct work_struct *work)
682{
683 debug_object_free(work, &work_debug_descr);
684}
685EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
ea2e64f2
TG
687void destroy_delayed_work_on_stack(struct delayed_work *work)
688{
689 destroy_timer_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691}
692EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
dc186ad7
TG
694#else
695static inline void debug_work_activate(struct work_struct *work) { }
696static inline void debug_work_deactivate(struct work_struct *work) { }
697#endif
698
4e8b22bd 699/**
67dc8325 700 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
9daf9e67
TH
706static int worker_pool_assign_id(struct worker_pool *pool)
707{
708 int ret;
709
68e13a67 710 lockdep_assert_held(&wq_pool_mutex);
5bcab335 711
4e8b22bd
LB
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
229641a6 714 if (ret >= 0) {
e68035fb 715 pool->id = ret;
229641a6
TH
716 return 0;
717 }
fa1b54e6 718 return ret;
7c3eed5c
TH
719}
720
9f66cff2
TH
721static struct pool_workqueue __rcu **
722unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723{
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728}
729
730/* @cpu < 0 for dfl_pwq */
731static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732{
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736}
737
5797b1c1
TH
738/**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
746static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747{
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749}
750
73f53c4a
TH
751static unsigned int work_color_to_flags(int color)
752{
753 return color << WORK_STRUCT_COLOR_SHIFT;
754}
755
c4560c2c 756static int get_work_color(unsigned long work_data)
73f53c4a 757{
c4560c2c 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760}
761
762static int work_next_color(int color)
763{
764 return (color + 1) % WORK_NR_COLORS;
765}
1da177e4 766
456a78ee
TH
767static unsigned long pool_offq_flags(struct worker_pool *pool)
768{
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770}
771
14441960 772/*
112202d9
TH
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 775 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 776 *
afe928c1
TH
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
7a22ad75 780 *
112202d9 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 782 * corresponding to a work. Pool is available once the work has been
112202d9 783 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 784 * available only while the work item is queued.
14441960 785 */
bccdc1fa 786static inline void set_work_data(struct work_struct *work, unsigned long data)
365970a1 787{
6183c009 788 WARN_ON_ONCE(!work_pending(work));
bccdc1fa 789 atomic_long_set(&work->data, data | work_static(work));
7a22ad75 790}
365970a1 791
112202d9 792static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
bccdc1fa 793 unsigned long flags)
7a22ad75 794{
bccdc1fa
TH
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
365970a1
DH
797}
798
4468a00f 799static void set_work_pool_and_keep_pending(struct work_struct *work,
bccdc1fa 800 int pool_id, unsigned long flags)
4468a00f 801{
bccdc1fa
TH
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
4468a00f
LJ
804}
805
7c3eed5c 806static void set_work_pool_and_clear_pending(struct work_struct *work,
bccdc1fa 807 int pool_id, unsigned long flags)
7a22ad75 808{
23657bb1
TH
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
bccdc1fa
TH
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
346c09f8
RP
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
8bdc6201 822 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
7a22ad75 847}
f756d5e2 848
afa4bb77
LT
849static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850{
e9a8e01f 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
afa4bb77
LT
852}
853
112202d9 854static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 855{
e120153d 856 unsigned long data = atomic_long_read(&work->data);
7a22ad75 857
112202d9 858 if (data & WORK_STRUCT_PWQ)
afa4bb77 859 return work_struct_pwq(data);
e120153d
TH
860 else
861 return NULL;
4d707b9f
ON
862}
863
7c3eed5c
TH
864/**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
68e13a67 868 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
d185af30
YB
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
878 */
879static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 880{
e120153d 881 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 882 int pool_id;
7a22ad75 883
68e13a67 884 assert_rcu_or_pool_mutex();
fa1b54e6 885
112202d9 886 if (data & WORK_STRUCT_PWQ)
afa4bb77 887 return work_struct_pwq(data)->pool;
7a22ad75 888
7c3eed5c
TH
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
891 return NULL;
892
fa1b54e6 893 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
894}
895
1211f3b2 896static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
7c3eed5c 897{
1211f3b2
TH
898 return (v >> shift) & ((1 << bits) - 1);
899}
54d5b7d0 900
1211f3b2
TH
901static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902{
903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
7c3eed5c 904
1211f3b2
TH
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
86898fa6
TH
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
1211f3b2 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
7c3eed5c
TH
910}
911
1211f3b2 912static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
bbb68dfa 913{
86898fa6
TH
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
bbb68dfa
TH
916}
917
e22bee78 918/*
3270476a
TH
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 921 * they're being called with pool->lock held.
e22bee78
TH
922 */
923
4594bf15 924/*
e22bee78
TH
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
974271c4
TH
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
706026c2 929 * function will always return %true for unbound pools as long as the
974271c4 930 * worklist isn't empty.
4594bf15 931 */
63d95a91 932static bool need_more_worker(struct worker_pool *pool)
365970a1 933{
0219a352 934 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 935}
4594bf15 936
e22bee78 937/* Can I start working? Called from busy but !running workers. */
63d95a91 938static bool may_start_working(struct worker_pool *pool)
e22bee78 939{
63d95a91 940 return pool->nr_idle;
e22bee78
TH
941}
942
943/* Do I need to keep working? Called from currently running workers. */
63d95a91 944static bool keep_working(struct worker_pool *pool)
e22bee78 945{
bc35f7ef 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
947}
948
949/* Do we need a new worker? Called from manager. */
63d95a91 950static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 951{
63d95a91 952 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 953}
365970a1 954
e22bee78 955/* Do we have too many workers and should some go away? */
63d95a91 956static bool too_many_workers(struct worker_pool *pool)
e22bee78 957{
692b4825 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
963}
964
c54d5046
TH
965/**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
971 */
972static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973{
974 struct worker_pool *pool = worker->pool;
975
bc8b50c2 976 lockdep_assert_held(&pool->lock);
c54d5046
TH
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985}
986
987/**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
993 */
994static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995{
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
bc8b50c2 999 lockdep_assert_held(&pool->lock);
c54d5046
TH
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011}
1012
797e8345
TH
1013/* Return the first idle worker. Called with pool->lock held. */
1014static struct worker *first_idle_worker(struct worker_pool *pool)
1015{
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020}
1021
1022/**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void worker_enter_idle(struct worker *worker)
1033{
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054}
1055
1056/**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
1065static void worker_leave_idle(struct worker *worker)
1066{
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074}
1075
1076/**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
1109static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111{
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121}
1122
1123/**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
873eaca6
TH
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
797e8345
TH
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
1137static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139{
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159}
1160
873eaca6
TH
1161/**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
1177static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179{
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201}
1202
2f34d733
TH
1203static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204{
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208}
1209
fd0a68a2
TH
1210static void kick_bh_pool(struct worker_pool *pool)
1211{
1212#ifdef CONFIG_SMP
1acd92d9
TH
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
fd0a68a2
TH
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219#endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224}
1225
797e8345 1226/**
0219a352
TH
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
797e8345 1229 *
0219a352
TH
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
797e8345 1232 */
0219a352 1233static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1234{
1235 struct worker *worker = first_idle_worker(pool);
8639eceb 1236 struct task_struct *p;
797e8345 1237
0219a352
TH
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
4cb1ef64 1243 if (pool->flags & POOL_BH) {
fd0a68a2 1244 kick_bh_pool(pool);
4cb1ef64
TH
1245 return true;
1246 }
1247
8639eceb
TH
1248 p = worker->task;
1249
1250#ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
1271 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1272 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1273 }
1274#endif
1275 wake_up_process(p);
0219a352 1276 return true;
797e8345
TH
1277}
1278
63638450
TH
1279#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1280
1281/*
1282 * Concurrency-managed per-cpu work items that hog CPU for longer than
1283 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1284 * which prevents them from stalling other concurrency-managed work items. If a
1285 * work function keeps triggering this mechanism, it's likely that the work item
1286 * should be using an unbound workqueue instead.
1287 *
1288 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1289 * and report them so that they can be examined and converted to use unbound
1290 * workqueues as appropriate. To avoid flooding the console, each violating work
1291 * function is tracked and reported with exponential backoff.
1292 */
1293#define WCI_MAX_ENTS 128
1294
1295struct wci_ent {
1296 work_func_t func;
1297 atomic64_t cnt;
1298 struct hlist_node hash_node;
1299};
1300
1301static struct wci_ent wci_ents[WCI_MAX_ENTS];
1302static int wci_nr_ents;
1303static DEFINE_RAW_SPINLOCK(wci_lock);
1304static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1305
1306static struct wci_ent *wci_find_ent(work_func_t func)
1307{
1308 struct wci_ent *ent;
1309
1310 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1311 (unsigned long)func) {
1312 if (ent->func == func)
1313 return ent;
1314 }
1315 return NULL;
1316}
1317
1318static void wq_cpu_intensive_report(work_func_t func)
1319{
1320 struct wci_ent *ent;
1321
1322restart:
1323 ent = wci_find_ent(func);
1324 if (ent) {
1325 u64 cnt;
1326
1327 /*
ccdec921 1328 * Start reporting from the warning_thresh and back off
63638450
TH
1329 * exponentially.
1330 */
1331 cnt = atomic64_inc_return_relaxed(&ent->cnt);
ccdec921
XY
1332 if (wq_cpu_intensive_warning_thresh &&
1333 cnt >= wq_cpu_intensive_warning_thresh &&
1334 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
63638450
TH
1335 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1336 ent->func, wq_cpu_intensive_thresh_us,
1337 atomic64_read(&ent->cnt));
1338 return;
1339 }
1340
1341 /*
1342 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1343 * is exhausted, something went really wrong and we probably made enough
1344 * noise already.
1345 */
1346 if (wci_nr_ents >= WCI_MAX_ENTS)
1347 return;
1348
1349 raw_spin_lock(&wci_lock);
1350
1351 if (wci_nr_ents >= WCI_MAX_ENTS) {
1352 raw_spin_unlock(&wci_lock);
1353 return;
1354 }
1355
1356 if (wci_find_ent(func)) {
1357 raw_spin_unlock(&wci_lock);
1358 goto restart;
1359 }
1360
1361 ent = &wci_ents[wci_nr_ents++];
1362 ent->func = func;
ccdec921 1363 atomic64_set(&ent->cnt, 0);
63638450
TH
1364 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1365
1366 raw_spin_unlock(&wci_lock);
ccdec921
XY
1367
1368 goto restart;
63638450
TH
1369}
1370
1371#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1372static void wq_cpu_intensive_report(work_func_t func) {}
1373#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1374
d302f017 1375/**
6d25be57 1376 * wq_worker_running - a worker is running again
e22bee78 1377 * @task: task waking up
e22bee78 1378 *
6d25be57 1379 * This function is called when a worker returns from schedule()
e22bee78 1380 */
6d25be57 1381void wq_worker_running(struct task_struct *task)
e22bee78
TH
1382{
1383 struct worker *worker = kthread_data(task);
1384
c8f6219b 1385 if (!READ_ONCE(worker->sleeping))
6d25be57 1386 return;
07edfece
FW
1387
1388 /*
1389 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1390 * and the nr_running increment below, we may ruin the nr_running reset
1391 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1392 * pool. Protect against such race.
1393 */
1394 preempt_disable();
6d25be57 1395 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1396 worker->pool->nr_running++;
07edfece 1397 preempt_enable();
616db877
TH
1398
1399 /*
1400 * CPU intensive auto-detection cares about how long a work item hogged
1401 * CPU without sleeping. Reset the starting timestamp on wakeup.
1402 */
1403 worker->current_at = worker->task->se.sum_exec_runtime;
1404
c8f6219b 1405 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1406}
1407
1408/**
1409 * wq_worker_sleeping - a worker is going to sleep
1410 * @task: task going to sleep
e22bee78 1411 *
6d25be57 1412 * This function is called from schedule() when a busy worker is
ccf45156 1413 * going to sleep.
e22bee78 1414 */
6d25be57 1415void wq_worker_sleeping(struct task_struct *task)
e22bee78 1416{
cc5bff38 1417 struct worker *worker = kthread_data(task);
111c225a 1418 struct worker_pool *pool;
e22bee78 1419
111c225a
TH
1420 /*
1421 * Rescuers, which may not have all the fields set up like normal
1422 * workers, also reach here, let's not access anything before
1423 * checking NOT_RUNNING.
1424 */
2d64672e 1425 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1426 return;
e22bee78 1427
111c225a 1428 pool = worker->pool;
111c225a 1429
62849a96 1430 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1431 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1432 return;
1433
c8f6219b 1434 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1435 raw_spin_lock_irq(&pool->lock);
e22bee78 1436
45c753f5
FW
1437 /*
1438 * Recheck in case unbind_workers() preempted us. We don't
1439 * want to decrement nr_running after the worker is unbound
1440 * and nr_running has been reset.
1441 */
1442 if (worker->flags & WORKER_NOT_RUNNING) {
1443 raw_spin_unlock_irq(&pool->lock);
1444 return;
1445 }
1446
bc35f7ef 1447 pool->nr_running--;
0219a352 1448 if (kick_pool(pool))
725e8ec5 1449 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1450
a9b8a985 1451 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1452}
1453
616db877
TH
1454/**
1455 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1456 * @task: task currently running
1457 *
1458 * Called from scheduler_tick(). We're in the IRQ context and the current
1459 * worker's fields which follow the 'K' locking rule can be accessed safely.
1460 */
1461void wq_worker_tick(struct task_struct *task)
1462{
1463 struct worker *worker = kthread_data(task);
1464 struct pool_workqueue *pwq = worker->current_pwq;
1465 struct worker_pool *pool = worker->pool;
1466
1467 if (!pwq)
1468 return;
1469
8a1dd1e5
TH
1470 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1471
18c8ae81
Z
1472 if (!wq_cpu_intensive_thresh_us)
1473 return;
1474
616db877
TH
1475 /*
1476 * If the current worker is concurrency managed and hogged the CPU for
1477 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1478 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1479 *
1480 * Set @worker->sleeping means that @worker is in the process of
1481 * switching out voluntarily and won't be contributing to
1482 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1483 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1484 * double decrements. The task is releasing the CPU anyway. Let's skip.
1485 * We probably want to make this prettier in the future.
616db877 1486 */
c8f6219b 1487 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1488 worker->task->se.sum_exec_runtime - worker->current_at <
1489 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1490 return;
1491
1492 raw_spin_lock(&pool->lock);
1493
1494 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1495 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1496 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1497
0219a352 1498 if (kick_pool(pool))
616db877 1499 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1500
1501 raw_spin_unlock(&pool->lock);
1502}
1503
1b69ac6b
JW
1504/**
1505 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1506 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1507 *
1508 * Determine the last function a worker executed. This is called from
1509 * the scheduler to get a worker's last known identity.
1510 *
1511 * CONTEXT:
a9b8a985 1512 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1513 *
4b047002
JW
1514 * This function is called during schedule() when a kworker is going
1515 * to sleep. It's used by psi to identify aggregation workers during
1516 * dequeuing, to allow periodic aggregation to shut-off when that
1517 * worker is the last task in the system or cgroup to go to sleep.
1518 *
1519 * As this function doesn't involve any workqueue-related locking, it
1520 * only returns stable values when called from inside the scheduler's
1521 * queuing and dequeuing paths, when @task, which must be a kworker,
1522 * is guaranteed to not be processing any works.
1523 *
1b69ac6b
JW
1524 * Return:
1525 * The last work function %current executed as a worker, NULL if it
1526 * hasn't executed any work yet.
1527 */
1528work_func_t wq_worker_last_func(struct task_struct *task)
1529{
1530 struct worker *worker = kthread_data(task);
1531
1532 return worker->last_func;
1533}
1534
91ccc6e7
TH
1535/**
1536 * wq_node_nr_active - Determine wq_node_nr_active to use
1537 * @wq: workqueue of interest
1538 * @node: NUMA node, can be %NUMA_NO_NODE
1539 *
1540 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1541 *
1542 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1543 *
1544 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1545 *
1546 * - Otherwise, node_nr_active[@node].
1547 */
1548static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1549 int node)
1550{
1551 if (!(wq->flags & WQ_UNBOUND))
1552 return NULL;
1553
1554 if (node == NUMA_NO_NODE)
1555 node = nr_node_ids;
1556
1557 return wq->node_nr_active[node];
1558}
1559
5797b1c1
TH
1560/**
1561 * wq_update_node_max_active - Update per-node max_actives to use
1562 * @wq: workqueue to update
1563 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1564 *
1565 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1566 * distributed among nodes according to the proportions of numbers of online
1567 * cpus. The result is always between @wq->min_active and max_active.
1568 */
1569static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1570{
1571 struct cpumask *effective = unbound_effective_cpumask(wq);
1572 int min_active = READ_ONCE(wq->min_active);
1573 int max_active = READ_ONCE(wq->max_active);
1574 int total_cpus, node;
1575
1576 lockdep_assert_held(&wq->mutex);
1577
c5f8cd6c
TH
1578 if (!wq_topo_initialized)
1579 return;
1580
15930da4 1581 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
5797b1c1
TH
1582 off_cpu = -1;
1583
1584 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1585 if (off_cpu >= 0)
1586 total_cpus--;
1587
1588 for_each_node(node) {
1589 int node_cpus;
1590
1591 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1592 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1593 node_cpus--;
1594
1595 wq_node_nr_active(wq, node)->max =
1596 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1597 min_active, max_active);
1598 }
1599
1600 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1601}
1602
8864b4e5
TH
1603/**
1604 * get_pwq - get an extra reference on the specified pool_workqueue
1605 * @pwq: pool_workqueue to get
1606 *
1607 * Obtain an extra reference on @pwq. The caller should guarantee that
1608 * @pwq has positive refcnt and be holding the matching pool->lock.
1609 */
1610static void get_pwq(struct pool_workqueue *pwq)
1611{
1612 lockdep_assert_held(&pwq->pool->lock);
1613 WARN_ON_ONCE(pwq->refcnt <= 0);
1614 pwq->refcnt++;
1615}
1616
1617/**
1618 * put_pwq - put a pool_workqueue reference
1619 * @pwq: pool_workqueue to put
1620 *
1621 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1622 * destruction. The caller should be holding the matching pool->lock.
1623 */
1624static void put_pwq(struct pool_workqueue *pwq)
1625{
1626 lockdep_assert_held(&pwq->pool->lock);
1627 if (likely(--pwq->refcnt))
1628 return;
8864b4e5 1629 /*
967b494e
TH
1630 * @pwq can't be released under pool->lock, bounce to a dedicated
1631 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1632 */
687a9aa5 1633 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1634}
1635
dce90d47
TH
1636/**
1637 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1638 * @pwq: pool_workqueue to put (can be %NULL)
1639 *
1640 * put_pwq() with locking. This function also allows %NULL @pwq.
1641 */
1642static void put_pwq_unlocked(struct pool_workqueue *pwq)
1643{
1644 if (pwq) {
1645 /*
24acfb71 1646 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1647 * following lock operations are safe.
1648 */
a9b8a985 1649 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1650 put_pwq(pwq);
a9b8a985 1651 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1652 }
1653}
1654
afa87ce8
TH
1655static bool pwq_is_empty(struct pool_workqueue *pwq)
1656{
1657 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1658}
1659
4c638030
TH
1660static void __pwq_activate_work(struct pool_workqueue *pwq,
1661 struct work_struct *work)
bf4ede01 1662{
1c270b79
TH
1663 unsigned long *wdb = work_data_bits(work);
1664
1665 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1666 trace_workqueue_activate_work(work);
82607adc
TH
1667 if (list_empty(&pwq->pool->worklist))
1668 pwq->pool->watchdog_ts = jiffies;
112202d9 1669 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1670 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1671}
1672
1673/**
1674 * pwq_activate_work - Activate a work item if inactive
1675 * @pwq: pool_workqueue @work belongs to
1676 * @work: work item to activate
1677 *
1678 * Returns %true if activated. %false if already active.
1679 */
1680static bool pwq_activate_work(struct pool_workqueue *pwq,
1681 struct work_struct *work)
1682{
1683 struct worker_pool *pool = pwq->pool;
91ccc6e7 1684 struct wq_node_nr_active *nna;
4c638030
TH
1685
1686 lockdep_assert_held(&pool->lock);
1687
1688 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1689 return false;
1690
91ccc6e7
TH
1691 nna = wq_node_nr_active(pwq->wq, pool->node);
1692 if (nna)
1693 atomic_inc(&nna->nr);
1694
112202d9 1695 pwq->nr_active++;
4c638030
TH
1696 __pwq_activate_work(pwq, work);
1697 return true;
bf4ede01
TH
1698}
1699
5797b1c1
TH
1700static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1701{
1702 int max = READ_ONCE(nna->max);
1703
1704 while (true) {
1705 int old, tmp;
1706
1707 old = atomic_read(&nna->nr);
1708 if (old >= max)
1709 return false;
1710 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1711 if (tmp == old)
1712 return true;
1713 }
1714}
1715
1c270b79
TH
1716/**
1717 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1718 * @pwq: pool_workqueue of interest
5797b1c1 1719 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1720 *
1721 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1722 * successfully obtained. %false otherwise.
1723 */
5797b1c1 1724static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1725{
1726 struct workqueue_struct *wq = pwq->wq;
1727 struct worker_pool *pool = pwq->pool;
91ccc6e7 1728 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1729 bool obtained = false;
1c270b79
TH
1730
1731 lockdep_assert_held(&pool->lock);
1732
5797b1c1 1733 if (!nna) {
4cb1ef64 1734 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
5797b1c1
TH
1735 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1736 goto out;
1737 }
1738
4c065dbc
WL
1739 if (unlikely(pwq->plugged))
1740 return false;
1741
5797b1c1
TH
1742 /*
1743 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1744 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1745 * concurrency level. Don't jump the line.
1746 *
1747 * We need to ignore the pending test after max_active has increased as
1748 * pwq_dec_nr_active() can only maintain the concurrency level but not
1749 * increase it. This is indicated by @fill.
1750 */
1751 if (!list_empty(&pwq->pending_node) && likely(!fill))
1752 goto out;
1753
1754 obtained = tryinc_node_nr_active(nna);
1755 if (obtained)
1756 goto out;
1757
1758 /*
1759 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1760 * and try again. The smp_mb() is paired with the implied memory barrier
1761 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1762 * we see the decremented $nna->nr or they see non-empty
1763 * $nna->pending_pwqs.
1764 */
1765 raw_spin_lock(&nna->lock);
1766
1767 if (list_empty(&pwq->pending_node))
1768 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1769 else if (likely(!fill))
1770 goto out_unlock;
1771
1772 smp_mb();
1773
1774 obtained = tryinc_node_nr_active(nna);
1c270b79 1775
5797b1c1
TH
1776 /*
1777 * If @fill, @pwq might have already been pending. Being spuriously
1778 * pending in cold paths doesn't affect anything. Let's leave it be.
1779 */
1780 if (obtained && likely(!fill))
1781 list_del_init(&pwq->pending_node);
1782
1783out_unlock:
1784 raw_spin_unlock(&nna->lock);
1785out:
1786 if (obtained)
1c270b79
TH
1787 pwq->nr_active++;
1788 return obtained;
1789}
1790
1791/**
1792 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1793 * @pwq: pool_workqueue of interest
5797b1c1 1794 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1795 *
1796 * Activate the first inactive work item of @pwq if available and allowed by
1797 * max_active limit.
1798 *
1799 * Returns %true if an inactive work item has been activated. %false if no
1800 * inactive work item is found or max_active limit is reached.
1801 */
5797b1c1 1802static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1803{
1804 struct work_struct *work =
1805 list_first_entry_or_null(&pwq->inactive_works,
1806 struct work_struct, entry);
1807
5797b1c1 1808 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1809 __pwq_activate_work(pwq, work);
1810 return true;
1811 } else {
1812 return false;
1813 }
1814}
1815
4c065dbc 1816/**
516d3dc9
WL
1817 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1818 * @wq: workqueue_struct where its oldest pwq is to be unplugged
4c065dbc 1819 *
516d3dc9
WL
1820 * This function should only be called for ordered workqueues where only the
1821 * oldest pwq is unplugged, the others are plugged to suspend execution to
1822 * ensure proper work item ordering::
4c065dbc
WL
1823 *
1824 * dfl_pwq --------------+ [P] - plugged
1825 * |
1826 * v
1827 * pwqs -> A -> B [P] -> C [P] (newest)
1828 * | | |
1829 * 1 3 5
1830 * | | |
1831 * 2 4 6
516d3dc9
WL
1832 *
1833 * When the oldest pwq is drained and removed, this function should be called
1834 * to unplug the next oldest one to start its work item execution. Note that
1835 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1836 * the list is the oldest.
4c065dbc
WL
1837 */
1838static void unplug_oldest_pwq(struct workqueue_struct *wq)
1839{
1840 struct pool_workqueue *pwq;
1841
1842 lockdep_assert_held(&wq->mutex);
1843
1844 /* Caller should make sure that pwqs isn't empty before calling */
1845 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1846 pwqs_node);
1847 raw_spin_lock_irq(&pwq->pool->lock);
1848 if (pwq->plugged) {
1849 pwq->plugged = false;
1850 if (pwq_activate_first_inactive(pwq, true))
1851 kick_pool(pwq->pool);
1852 }
1853 raw_spin_unlock_irq(&pwq->pool->lock);
1854}
1855
5797b1c1
TH
1856/**
1857 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1858 * @nna: wq_node_nr_active to activate a pending pwq for
1859 * @caller_pool: worker_pool the caller is locking
1860 *
1861 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1862 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1863 */
1864static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1865 struct worker_pool *caller_pool)
1866{
1867 struct worker_pool *locked_pool = caller_pool;
1868 struct pool_workqueue *pwq;
1869 struct work_struct *work;
1870
1871 lockdep_assert_held(&caller_pool->lock);
1872
1873 raw_spin_lock(&nna->lock);
1874retry:
1875 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1876 struct pool_workqueue, pending_node);
1877 if (!pwq)
1878 goto out_unlock;
1879
1880 /*
1881 * If @pwq is for a different pool than @locked_pool, we need to lock
1882 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1883 * / lock dance. For that, we also need to release @nna->lock as it's
1884 * nested inside pool locks.
1885 */
1886 if (pwq->pool != locked_pool) {
1887 raw_spin_unlock(&locked_pool->lock);
1888 locked_pool = pwq->pool;
1889 if (!raw_spin_trylock(&locked_pool->lock)) {
1890 raw_spin_unlock(&nna->lock);
1891 raw_spin_lock(&locked_pool->lock);
1892 raw_spin_lock(&nna->lock);
1893 goto retry;
1894 }
1895 }
1896
1897 /*
1898 * $pwq may not have any inactive work items due to e.g. cancellations.
1899 * Drop it from pending_pwqs and see if there's another one.
1900 */
1901 work = list_first_entry_or_null(&pwq->inactive_works,
1902 struct work_struct, entry);
1903 if (!work) {
1904 list_del_init(&pwq->pending_node);
1905 goto retry;
1906 }
1907
1908 /*
1909 * Acquire an nr_active count and activate the inactive work item. If
1910 * $pwq still has inactive work items, rotate it to the end of the
1911 * pending_pwqs so that we round-robin through them. This means that
1912 * inactive work items are not activated in queueing order which is fine
1913 * given that there has never been any ordering across different pwqs.
1914 */
1915 if (likely(tryinc_node_nr_active(nna))) {
1916 pwq->nr_active++;
1917 __pwq_activate_work(pwq, work);
1918
1919 if (list_empty(&pwq->inactive_works))
1920 list_del_init(&pwq->pending_node);
1921 else
1922 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1923
1924 /* if activating a foreign pool, make sure it's running */
1925 if (pwq->pool != caller_pool)
1926 kick_pool(pwq->pool);
1927 }
1928
1929out_unlock:
1930 raw_spin_unlock(&nna->lock);
1931 if (locked_pool != caller_pool) {
1932 raw_spin_unlock(&locked_pool->lock);
1933 raw_spin_lock(&caller_pool->lock);
1934 }
1935}
1936
1c270b79
TH
1937/**
1938 * pwq_dec_nr_active - Retire an active count
1939 * @pwq: pool_workqueue of interest
1940 *
1941 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1942 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1943 */
1944static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1945{
1c270b79 1946 struct worker_pool *pool = pwq->pool;
91ccc6e7 1947 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1948
1c270b79
TH
1949 lockdep_assert_held(&pool->lock);
1950
91ccc6e7
TH
1951 /*
1952 * @pwq->nr_active should be decremented for both percpu and unbound
1953 * workqueues.
1954 */
1c270b79 1955 pwq->nr_active--;
91ccc6e7
TH
1956
1957 /*
1958 * For a percpu workqueue, it's simple. Just need to kick the first
1959 * inactive work item on @pwq itself.
1960 */
1961 if (!nna) {
5797b1c1 1962 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1963 return;
1964 }
1965
5797b1c1
TH
1966 /*
1967 * If @pwq is for an unbound workqueue, it's more complicated because
1968 * multiple pwqs and pools may be sharing the nr_active count. When a
1969 * pwq needs to wait for an nr_active count, it puts itself on
1970 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1971 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1972 * guarantee that either we see non-empty pending_pwqs or they see
1973 * decremented $nna->nr.
1974 *
1975 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1976 * max_active gets updated. However, it is guaranteed to be equal to or
1977 * larger than @pwq->wq->min_active which is above zero unless freezing.
1978 * This maintains the forward progress guarantee.
1979 */
1980 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1981 return;
1982
1983 if (!list_empty(&nna->pending_pwqs))
1984 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1985}
1986
bf4ede01 1987/**
112202d9
TH
1988 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1989 * @pwq: pwq of interest
c4560c2c 1990 * @work_data: work_data of work which left the queue
bf4ede01
TH
1991 *
1992 * A work either has completed or is removed from pending queue,
112202d9 1993 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1994 *
dd6c3c54
TH
1995 * NOTE:
1996 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1997 * and thus should be called after all other state updates for the in-flight
1998 * work item is complete.
1999 *
bf4ede01 2000 * CONTEXT:
a9b8a985 2001 * raw_spin_lock_irq(pool->lock).
bf4ede01 2002 */
c4560c2c 2003static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 2004{
c4560c2c
LJ
2005 int color = get_work_color(work_data);
2006
1c270b79
TH
2007 if (!(work_data & WORK_STRUCT_INACTIVE))
2008 pwq_dec_nr_active(pwq);
018f3a13 2009
112202d9 2010 pwq->nr_in_flight[color]--;
bf4ede01 2011
bf4ede01 2012 /* is flush in progress and are we at the flushing tip? */
112202d9 2013 if (likely(pwq->flush_color != color))
8864b4e5 2014 goto out_put;
bf4ede01
TH
2015
2016 /* are there still in-flight works? */
112202d9 2017 if (pwq->nr_in_flight[color])
8864b4e5 2018 goto out_put;
bf4ede01 2019
112202d9
TH
2020 /* this pwq is done, clear flush_color */
2021 pwq->flush_color = -1;
bf4ede01
TH
2022
2023 /*
112202d9 2024 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
2025 * will handle the rest.
2026 */
112202d9
TH
2027 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2028 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
2029out_put:
2030 put_pwq(pwq);
bf4ede01
TH
2031}
2032
36e227d2 2033/**
bbb68dfa 2034 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2 2035 * @work: work item to steal
c5f5b942 2036 * @cflags: %WORK_CANCEL_ flags
c26e2f2e 2037 * @irq_flags: place to store irq state
36e227d2
TH
2038 *
2039 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 2040 * stable state - idle, on timer or on worklist.
36e227d2 2041 *
d185af30 2042 * Return:
3eb6b31b
MCC
2043 *
2044 * ======== ================================================================
36e227d2
TH
2045 * 1 if @work was pending and we successfully stole PENDING
2046 * 0 if @work was idle and we claimed PENDING
2047 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
3eb6b31b 2048 * ======== ================================================================
36e227d2 2049 *
d185af30 2050 * Note:
bbb68dfa 2051 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
2052 * interrupted while holding PENDING and @work off queue, irq must be
2053 * disabled on entry. This, combined with delayed_work->timer being
2054 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
2055 *
2056 * On successful return, >= 0, irq is disabled and the caller is
c26e2f2e 2057 * responsible for releasing it using local_irq_restore(*@irq_flags).
bbb68dfa 2058 *
e0aecdd8 2059 * This function is safe to call from any context including IRQ handler.
bf4ede01 2060 */
c5f5b942 2061static int try_to_grab_pending(struct work_struct *work, u32 cflags,
c26e2f2e 2062 unsigned long *irq_flags)
bf4ede01 2063{
d565ed63 2064 struct worker_pool *pool;
112202d9 2065 struct pool_workqueue *pwq;
bf4ede01 2066
c26e2f2e 2067 local_irq_save(*irq_flags);
bbb68dfa 2068
36e227d2 2069 /* try to steal the timer if it exists */
c5f5b942 2070 if (cflags & WORK_CANCEL_DELAYED) {
36e227d2
TH
2071 struct delayed_work *dwork = to_delayed_work(work);
2072
e0aecdd8
TH
2073 /*
2074 * dwork->timer is irqsafe. If del_timer() fails, it's
2075 * guaranteed that the timer is not queued anywhere and not
2076 * running on the local CPU.
2077 */
36e227d2
TH
2078 if (likely(del_timer(&dwork->timer)))
2079 return 1;
2080 }
2081
2082 /* try to claim PENDING the normal way */
bf4ede01
TH
2083 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2084 return 0;
2085
24acfb71 2086 rcu_read_lock();
bf4ede01
TH
2087 /*
2088 * The queueing is in progress, or it is already queued. Try to
2089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2090 */
d565ed63
TH
2091 pool = get_work_pool(work);
2092 if (!pool)
bbb68dfa 2093 goto fail;
bf4ede01 2094
a9b8a985 2095 raw_spin_lock(&pool->lock);
0b3dae68 2096 /*
112202d9
TH
2097 * work->data is guaranteed to point to pwq only while the work
2098 * item is queued on pwq->wq, and both updating work->data to point
2099 * to pwq on queueing and to pool on dequeueing are done under
2100 * pwq->pool->lock. This in turn guarantees that, if work->data
2101 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
2102 * item is currently queued on that pool.
2103 */
112202d9
TH
2104 pwq = get_work_pwq(work);
2105 if (pwq && pwq->pool == pool) {
c70e1779
TH
2106 unsigned long work_data;
2107
16062836
TH
2108 debug_work_deactivate(work);
2109
2110 /*
018f3a13
LJ
2111 * A cancelable inactive work item must be in the
2112 * pwq->inactive_works since a queued barrier can't be
2113 * canceled (see the comments in insert_wq_barrier()).
2114 *
f97a4a1a 2115 * An inactive work item cannot be grabbed directly because
d812796e 2116 * it might have linked barrier work items which, if left
f97a4a1a 2117 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
2118 * management later on and cause stall. Make sure the work
2119 * item is activated before grabbing.
2120 */
4c638030 2121 pwq_activate_work(pwq, work);
16062836
TH
2122
2123 list_del_init(&work->entry);
16062836 2124
c70e1779
TH
2125 /*
2126 * work->data points to pwq iff queued. Let's point to pool. As
2127 * this destroys work->data needed by the next step, stash it.
2128 */
2129 work_data = *work_data_bits(work);
456a78ee
TH
2130 set_work_pool_and_keep_pending(work, pool->id,
2131 pool_offq_flags(pool));
16062836 2132
dd6c3c54 2133 /* must be the last step, see the function comment */
c70e1779 2134 pwq_dec_nr_in_flight(pwq, work_data);
dd6c3c54 2135
a9b8a985 2136 raw_spin_unlock(&pool->lock);
24acfb71 2137 rcu_read_unlock();
16062836 2138 return 1;
bf4ede01 2139 }
a9b8a985 2140 raw_spin_unlock(&pool->lock);
bbb68dfa 2141fail:
24acfb71 2142 rcu_read_unlock();
c26e2f2e 2143 local_irq_restore(*irq_flags);
36e227d2 2144 return -EAGAIN;
bf4ede01
TH
2145}
2146
978b8409
TH
2147/**
2148 * work_grab_pending - steal work item from worklist and disable irq
2149 * @work: work item to steal
2150 * @cflags: %WORK_CANCEL_ flags
2151 * @irq_flags: place to store IRQ state
2152 *
2153 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2154 * or on worklist.
2155 *
f09b10b6 2156 * Can be called from any context. IRQ is disabled on return with IRQ state
978b8409
TH
2157 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2158 * local_irq_restore().
2159 *
2160 * Returns %true if @work was pending. %false if idle.
2161 */
2162static bool work_grab_pending(struct work_struct *work, u32 cflags,
2163 unsigned long *irq_flags)
2164{
978b8409
TH
2165 int ret;
2166
f09b10b6
TH
2167 while (true) {
2168 ret = try_to_grab_pending(work, cflags, irq_flags);
2169 if (ret >= 0)
2170 return ret;
2171 cpu_relax();
2172 }
978b8409
TH
2173}
2174
4690c4ab 2175/**
706026c2 2176 * insert_work - insert a work into a pool
112202d9 2177 * @pwq: pwq @work belongs to
4690c4ab
TH
2178 * @work: work to insert
2179 * @head: insertion point
2180 * @extra_flags: extra WORK_STRUCT_* flags to set
2181 *
112202d9 2182 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2183 * work_struct flags.
4690c4ab
TH
2184 *
2185 * CONTEXT:
a9b8a985 2186 * raw_spin_lock_irq(pool->lock).
4690c4ab 2187 */
112202d9
TH
2188static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2189 struct list_head *head, unsigned int extra_flags)
b89deed3 2190{
fe089f87 2191 debug_work_activate(work);
e22bee78 2192
e89a85d6 2193 /* record the work call stack in order to print it in KASAN reports */
f70da745 2194 kasan_record_aux_stack_noalloc(work);
e89a85d6 2195
4690c4ab 2196 /* we own @work, set data and link */
112202d9 2197 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2198 list_add_tail(&work->entry, head);
8864b4e5 2199 get_pwq(pwq);
b89deed3
ON
2200}
2201
c8efcc25
TH
2202/*
2203 * Test whether @work is being queued from another work executing on the
8d03ecfe 2204 * same workqueue.
c8efcc25
TH
2205 */
2206static bool is_chained_work(struct workqueue_struct *wq)
2207{
8d03ecfe
TH
2208 struct worker *worker;
2209
2210 worker = current_wq_worker();
2211 /*
bf393fd4 2212 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2213 * I'm @worker, it's safe to dereference it without locking.
2214 */
112202d9 2215 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2216}
2217
ef557180
MG
2218/*
2219 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2220 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2221 * avoid perturbing sensitive tasks.
2222 */
2223static int wq_select_unbound_cpu(int cpu)
2224{
2225 int new_cpu;
2226
f303fccb
TH
2227 if (likely(!wq_debug_force_rr_cpu)) {
2228 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2229 return cpu;
a8ec5880
AF
2230 } else {
2231 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2232 }
2233
ef557180
MG
2234 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2235 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2236 if (unlikely(new_cpu >= nr_cpu_ids)) {
2237 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2238 if (unlikely(new_cpu >= nr_cpu_ids))
2239 return cpu;
2240 }
2241 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2242
2243 return new_cpu;
2244}
2245
d84ff051 2246static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2247 struct work_struct *work)
2248{
112202d9 2249 struct pool_workqueue *pwq;
fe089f87 2250 struct worker_pool *last_pool, *pool;
8a2e8e5d 2251 unsigned int work_flags;
b75cac93 2252 unsigned int req_cpu = cpu;
8930caba
TH
2253
2254 /*
2255 * While a work item is PENDING && off queue, a task trying to
2256 * steal the PENDING will busy-loop waiting for it to either get
2257 * queued or lose PENDING. Grabbing PENDING and queueing should
2258 * happen with IRQ disabled.
2259 */
8e8eb730 2260 lockdep_assert_irqs_disabled();
1da177e4 2261
33e3f0a3
RC
2262 /*
2263 * For a draining wq, only works from the same workqueue are
2264 * allowed. The __WQ_DESTROYING helps to spot the issue that
2265 * queues a new work item to a wq after destroy_workqueue(wq).
2266 */
2267 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2268 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2269 return;
24acfb71 2270 rcu_read_lock();
9e8cd2f5 2271retry:
c9178087 2272 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2273 if (req_cpu == WORK_CPU_UNBOUND) {
2274 if (wq->flags & WQ_UNBOUND)
aa202f1f 2275 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2276 else
aa202f1f 2277 cpu = raw_smp_processor_id();
aa202f1f 2278 }
dbf2576e 2279
636b927e 2280 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2281 pool = pwq->pool;
2282
c9178087
TH
2283 /*
2284 * If @work was previously on a different pool, it might still be
2285 * running there, in which case the work needs to be queued on that
2286 * pool to guarantee non-reentrancy.
2287 */
2288 last_pool = get_work_pool(work);
fe089f87 2289 if (last_pool && last_pool != pool) {
c9178087 2290 struct worker *worker;
18aa9eff 2291
a9b8a985 2292 raw_spin_lock(&last_pool->lock);
18aa9eff 2293
c9178087 2294 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2295
c9178087
TH
2296 if (worker && worker->current_pwq->wq == wq) {
2297 pwq = worker->current_pwq;
fe089f87
TH
2298 pool = pwq->pool;
2299 WARN_ON_ONCE(pool != last_pool);
8930caba 2300 } else {
c9178087 2301 /* meh... not running there, queue here */
a9b8a985 2302 raw_spin_unlock(&last_pool->lock);
fe089f87 2303 raw_spin_lock(&pool->lock);
8930caba 2304 }
f3421797 2305 } else {
fe089f87 2306 raw_spin_lock(&pool->lock);
502ca9d8
TH
2307 }
2308
9e8cd2f5 2309 /*
636b927e
TH
2310 * pwq is determined and locked. For unbound pools, we could have raced
2311 * with pwq release and it could already be dead. If its refcnt is zero,
2312 * repeat pwq selection. Note that unbound pwqs never die without
2313 * another pwq replacing it in cpu_pwq or while work items are executing
2314 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2315 */
2316 if (unlikely(!pwq->refcnt)) {
2317 if (wq->flags & WQ_UNBOUND) {
fe089f87 2318 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2319 cpu_relax();
2320 goto retry;
2321 }
2322 /* oops */
2323 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2324 wq->name, cpu);
2325 }
2326
112202d9
TH
2327 /* pwq determined, queue */
2328 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2329
24acfb71
TG
2330 if (WARN_ON(!list_empty(&work->entry)))
2331 goto out;
1e19ffc6 2332
112202d9
TH
2333 pwq->nr_in_flight[pwq->work_color]++;
2334 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2335
a045a272
TH
2336 /*
2337 * Limit the number of concurrently active work items to max_active.
2338 * @work must also queue behind existing inactive work items to maintain
2339 * ordering when max_active changes. See wq_adjust_max_active().
2340 */
5797b1c1 2341 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2342 if (list_empty(&pool->worklist))
2343 pool->watchdog_ts = jiffies;
2344
cdadf009 2345 trace_workqueue_activate_work(work);
fe089f87 2346 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2347 kick_pool(pool);
8a2e8e5d 2348 } else {
f97a4a1a 2349 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2350 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2351 }
1e19ffc6 2352
24acfb71 2353out:
fe089f87 2354 raw_spin_unlock(&pool->lock);
24acfb71 2355 rcu_read_unlock();
1da177e4
LT
2356}
2357
86898fa6
TH
2358static bool clear_pending_if_disabled(struct work_struct *work)
2359{
2360 unsigned long data = *work_data_bits(work);
2361 struct work_offq_data offqd;
2362
2363 if (likely((data & WORK_STRUCT_PWQ) ||
2364 !(data & WORK_OFFQ_DISABLE_MASK)))
2365 return false;
2366
2367 work_offqd_unpack(&offqd, data);
2368 set_work_pool_and_clear_pending(work, offqd.pool_id,
2369 work_offqd_pack_flags(&offqd));
2370 return true;
2371}
2372
0fcb78c2 2373/**
c1a220e7
ZR
2374 * queue_work_on - queue work on specific cpu
2375 * @cpu: CPU number to execute work on
0fcb78c2
REB
2376 * @wq: workqueue to use
2377 * @work: work to queue
2378 *
c1a220e7 2379 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2380 * can't go away. Callers that fail to ensure that the specified
2381 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2382 * But note well that callers specifying a CPU that never has been
2383 * online will get a splat.
d185af30
YB
2384 *
2385 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2386 */
d4283e93
TH
2387bool queue_work_on(int cpu, struct workqueue_struct *wq,
2388 struct work_struct *work)
1da177e4 2389{
d4283e93 2390 bool ret = false;
c26e2f2e 2391 unsigned long irq_flags;
ef1ca236 2392
c26e2f2e 2393 local_irq_save(irq_flags);
c1a220e7 2394
86898fa6
TH
2395 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2396 !clear_pending_if_disabled(work)) {
4690c4ab 2397 __queue_work(cpu, wq, work);
d4283e93 2398 ret = true;
c1a220e7 2399 }
ef1ca236 2400
c26e2f2e 2401 local_irq_restore(irq_flags);
1da177e4
LT
2402 return ret;
2403}
ad7b1f84 2404EXPORT_SYMBOL(queue_work_on);
1da177e4 2405
8204e0c1 2406/**
fef59c9c 2407 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2408 * @node: NUMA node ID that we want to select a CPU from
2409 *
2410 * This function will attempt to find a "random" cpu available on a given
2411 * node. If there are no CPUs available on the given node it will return
2412 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2413 * available CPU if we need to schedule this work.
2414 */
fef59c9c 2415static int select_numa_node_cpu(int node)
8204e0c1
AD
2416{
2417 int cpu;
2418
8204e0c1
AD
2419 /* Delay binding to CPU if node is not valid or online */
2420 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2421 return WORK_CPU_UNBOUND;
2422
2423 /* Use local node/cpu if we are already there */
2424 cpu = raw_smp_processor_id();
2425 if (node == cpu_to_node(cpu))
2426 return cpu;
2427
2428 /* Use "random" otherwise know as "first" online CPU of node */
2429 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2430
2431 /* If CPU is valid return that, otherwise just defer */
2432 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2433}
2434
2435/**
2436 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2437 * @node: NUMA node that we are targeting the work for
2438 * @wq: workqueue to use
2439 * @work: work to queue
2440 *
2441 * We queue the work to a "random" CPU within a given NUMA node. The basic
2442 * idea here is to provide a way to somehow associate work with a given
2443 * NUMA node.
2444 *
2445 * This function will only make a best effort attempt at getting this onto
2446 * the right NUMA node. If no node is requested or the requested node is
2447 * offline then we just fall back to standard queue_work behavior.
2448 *
2449 * Currently the "random" CPU ends up being the first available CPU in the
2450 * intersection of cpu_online_mask and the cpumask of the node, unless we
2451 * are running on the node. In that case we just use the current CPU.
2452 *
2453 * Return: %false if @work was already on a queue, %true otherwise.
2454 */
2455bool queue_work_node(int node, struct workqueue_struct *wq,
2456 struct work_struct *work)
2457{
c26e2f2e 2458 unsigned long irq_flags;
8204e0c1
AD
2459 bool ret = false;
2460
2461 /*
2462 * This current implementation is specific to unbound workqueues.
2463 * Specifically we only return the first available CPU for a given
2464 * node instead of cycling through individual CPUs within the node.
2465 *
2466 * If this is used with a per-cpu workqueue then the logic in
2467 * workqueue_select_cpu_near would need to be updated to allow for
2468 * some round robin type logic.
2469 */
2470 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2471
c26e2f2e 2472 local_irq_save(irq_flags);
8204e0c1 2473
86898fa6
TH
2474 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2475 !clear_pending_if_disabled(work)) {
fef59c9c 2476 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2477
2478 __queue_work(cpu, wq, work);
2479 ret = true;
2480 }
2481
c26e2f2e 2482 local_irq_restore(irq_flags);
8204e0c1
AD
2483 return ret;
2484}
2485EXPORT_SYMBOL_GPL(queue_work_node);
2486
8c20feb6 2487void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2488{
8c20feb6 2489 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2490
e0aecdd8 2491 /* should have been called from irqsafe timer with irq already off */
60c057bc 2492 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2493}
1438ade5 2494EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2495
7beb2edf
TH
2496static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2497 struct delayed_work *dwork, unsigned long delay)
1da177e4 2498{
7beb2edf
TH
2499 struct timer_list *timer = &dwork->timer;
2500 struct work_struct *work = &dwork->work;
7beb2edf 2501
637fdbae 2502 WARN_ON_ONCE(!wq);
4b243563 2503 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2504 WARN_ON_ONCE(timer_pending(timer));
2505 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2506
8852aac2
TH
2507 /*
2508 * If @delay is 0, queue @dwork->work immediately. This is for
2509 * both optimization and correctness. The earliest @timer can
2510 * expire is on the closest next tick and delayed_work users depend
2511 * on that there's no such delay when @delay is 0.
2512 */
2513 if (!delay) {
2514 __queue_work(cpu, wq, &dwork->work);
2515 return;
2516 }
2517
60c057bc 2518 dwork->wq = wq;
1265057f 2519 dwork->cpu = cpu;
7beb2edf
TH
2520 timer->expires = jiffies + delay;
2521
aae17ebb
LB
2522 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2523 /* If the current cpu is a housekeeping cpu, use it. */
2524 cpu = smp_processor_id();
2525 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2526 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
041bd12e 2527 add_timer_on(timer, cpu);
aae17ebb
LB
2528 } else {
2529 if (likely(cpu == WORK_CPU_UNBOUND))
d08c407f 2530 add_timer_global(timer);
aae17ebb
LB
2531 else
2532 add_timer_on(timer, cpu);
2533 }
1da177e4
LT
2534}
2535
0fcb78c2
REB
2536/**
2537 * queue_delayed_work_on - queue work on specific CPU after delay
2538 * @cpu: CPU number to execute work on
2539 * @wq: workqueue to use
af9997e4 2540 * @dwork: work to queue
0fcb78c2
REB
2541 * @delay: number of jiffies to wait before queueing
2542 *
d185af30 2543 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545 * execution.
0fcb78c2 2546 */
d4283e93
TH
2547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2549{
52bad64d 2550 struct work_struct *work = &dwork->work;
d4283e93 2551 bool ret = false;
c26e2f2e 2552 unsigned long irq_flags;
7a6bc1cd 2553
8930caba 2554 /* read the comment in __queue_work() */
c26e2f2e 2555 local_irq_save(irq_flags);
7a6bc1cd 2556
86898fa6
TH
2557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558 !clear_pending_if_disabled(work)) {
7beb2edf 2559 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2560 ret = true;
7a6bc1cd 2561 }
8a3e77cc 2562
c26e2f2e 2563 local_irq_restore(irq_flags);
7a6bc1cd
VP
2564 return ret;
2565}
ad7b1f84 2566EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2567
8376fe22
TH
2568/**
2569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570 * @cpu: CPU number to execute work on
2571 * @wq: workqueue to use
2572 * @dwork: work to queue
2573 * @delay: number of jiffies to wait before queueing
2574 *
2575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576 * modify @dwork's timer so that it expires after @delay. If @delay is
2577 * zero, @work is guaranteed to be scheduled immediately regardless of its
2578 * current state.
2579 *
d185af30 2580 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2581 * pending and its timer was modified.
2582 *
e0aecdd8 2583 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2584 * See try_to_grab_pending() for details.
2585 */
2586bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587 struct delayed_work *dwork, unsigned long delay)
2588{
c26e2f2e 2589 unsigned long irq_flags;
f09b10b6 2590 bool ret;
c7fc77f7 2591
f09b10b6 2592 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
63bc0362 2593
f09b10b6 2594 if (!clear_pending_if_disabled(&dwork->work))
8376fe22 2595 __queue_delayed_work(cpu, wq, dwork, delay);
8376fe22 2596
f09b10b6 2597 local_irq_restore(irq_flags);
7a6bc1cd
VP
2598 return ret;
2599}
8376fe22
TH
2600EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601
05f0fe6b
TH
2602static void rcu_work_rcufn(struct rcu_head *rcu)
2603{
2604 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605
2606 /* read the comment in __queue_work() */
2607 local_irq_disable();
2608 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609 local_irq_enable();
2610}
2611
2612/**
2613 * queue_rcu_work - queue work after a RCU grace period
2614 * @wq: workqueue to use
2615 * @rwork: work to queue
2616 *
2617 * Return: %false if @rwork was already pending, %true otherwise. Note
2618 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2619 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2620 * execution may happen before a full RCU grace period has passed.
2621 */
2622bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623{
2624 struct work_struct *work = &rwork->work;
2625
86898fa6
TH
2626 /*
2627 * rcu_work can't be canceled or disabled. Warn if the user reached
2628 * inside @rwork and disabled the inner work.
2629 */
2630 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
05f0fe6b 2632 rwork->wq = wq;
a7e30c0e 2633 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2634 return true;
2635 }
2636
2637 return false;
2638}
2639EXPORT_SYMBOL(queue_rcu_work);
2640
f7537df5 2641static struct worker *alloc_worker(int node)
c34056a3
TH
2642{
2643 struct worker *worker;
2644
f7537df5 2645 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2646 if (worker) {
2647 INIT_LIST_HEAD(&worker->entry);
affee4b2 2648 INIT_LIST_HEAD(&worker->scheduled);
da028469 2649 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2650 /* on creation a worker is in !idle && prep state */
2651 worker->flags = WORKER_PREP;
c8e55f36 2652 }
c34056a3
TH
2653 return worker;
2654}
2655
9546b29e
TH
2656static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657{
8639eceb
TH
2658 if (pool->cpu < 0 && pool->attrs->affn_strict)
2659 return pool->attrs->__pod_cpumask;
2660 else
2661 return pool->attrs->cpumask;
9546b29e
TH
2662}
2663
4736cbf7
LJ
2664/**
2665 * worker_attach_to_pool() - attach a worker to a pool
2666 * @worker: worker to be attached
2667 * @pool: the target pool
2668 *
2669 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2670 * cpu-binding of @worker are kept coordinated with the pool across
2671 * cpu-[un]hotplugs.
2672 */
2673static void worker_attach_to_pool(struct worker *worker,
4cb1ef64 2674 struct worker_pool *pool)
4736cbf7 2675{
1258fae7 2676 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2677
4736cbf7 2678 /*
4cb1ef64
TH
2679 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680 * across this function. See the comments above the flag definition for
2681 * details. BH workers are, while per-CPU, always DISASSOCIATED.
4736cbf7 2682 */
4cb1ef64 2683 if (pool->flags & POOL_DISASSOCIATED) {
4736cbf7 2684 worker->flags |= WORKER_UNBOUND;
4cb1ef64
TH
2685 } else {
2686 WARN_ON_ONCE(pool->flags & POOL_BH);
5c25b5ff 2687 kthread_set_per_cpu(worker->task, pool->cpu);
4cb1ef64 2688 }
4736cbf7 2689
640f17c8 2690 if (worker->rescue_wq)
9546b29e 2691 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2692
4736cbf7 2693 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2694 worker->pool = pool;
4736cbf7 2695
1258fae7 2696 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2697}
2698
60f5a4bc
LJ
2699/**
2700 * worker_detach_from_pool() - detach a worker from its pool
2701 * @worker: worker which is attached to its pool
60f5a4bc 2702 *
4736cbf7
LJ
2703 * Undo the attaching which had been done in worker_attach_to_pool(). The
2704 * caller worker shouldn't access to the pool after detached except it has
2705 * other reference to the pool.
60f5a4bc 2706 */
a2d812a2 2707static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2708{
a2d812a2 2709 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2710 struct completion *detach_completion = NULL;
2711
4cb1ef64
TH
2712 /* there is one permanent BH worker per CPU which should never detach */
2713 WARN_ON_ONCE(pool->flags & POOL_BH);
2714
1258fae7 2715 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2716
5c25b5ff 2717 kthread_set_per_cpu(worker->task, -1);
da028469 2718 list_del(&worker->node);
a2d812a2
TH
2719 worker->pool = NULL;
2720
e02b9312 2721 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2722 detach_completion = pool->detach_completion;
1258fae7 2723 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2724
b62c0751
LJ
2725 /* clear leftover flags without pool->lock after it is detached */
2726 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2727
60f5a4bc
LJ
2728 if (detach_completion)
2729 complete(detach_completion);
2730}
2731
c34056a3
TH
2732/**
2733 * create_worker - create a new workqueue worker
63d95a91 2734 * @pool: pool the new worker will belong to
c34056a3 2735 *
051e1850 2736 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2737 *
2738 * CONTEXT:
2739 * Might sleep. Does GFP_KERNEL allocations.
2740 *
d185af30 2741 * Return:
c34056a3
TH
2742 * Pointer to the newly created worker.
2743 */
bc2ae0f5 2744static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2745{
e441b56f
ZL
2746 struct worker *worker;
2747 int id;
5d9c7a1e 2748 char id_buf[23];
c34056a3 2749
7cda9aae 2750 /* ID is needed to determine kthread name */
e441b56f 2751 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2752 if (id < 0) {
2753 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2754 ERR_PTR(id));
e441b56f 2755 return NULL;
3f0ea0b8 2756 }
c34056a3 2757
f7537df5 2758 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2759 if (!worker) {
2760 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2761 goto fail;
3f0ea0b8 2762 }
c34056a3 2763
c34056a3
TH
2764 worker->id = id;
2765
4cb1ef64
TH
2766 if (!(pool->flags & POOL_BH)) {
2767 if (pool->cpu >= 0)
2768 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2769 pool->attrs->nice < 0 ? "H" : "");
2770 else
2771 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2772
2773 worker->task = kthread_create_on_node(worker_thread, worker,
2774 pool->node, "kworker/%s", id_buf);
2775 if (IS_ERR(worker->task)) {
2776 if (PTR_ERR(worker->task) == -EINTR) {
2777 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2778 id_buf);
2779 } else {
2780 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2781 worker->task);
2782 }
2783 goto fail;
60f54038 2784 }
c34056a3 2785
4cb1ef64
TH
2786 set_user_nice(worker->task, pool->attrs->nice);
2787 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2788 }
91151228 2789
da028469 2790 /* successful, attach the worker to the pool */
4736cbf7 2791 worker_attach_to_pool(worker, pool);
822d8405 2792
051e1850 2793 /* start the newly created worker */
a9b8a985 2794 raw_spin_lock_irq(&pool->lock);
0219a352 2795
051e1850
LJ
2796 worker->pool->nr_workers++;
2797 worker_enter_idle(worker);
0219a352
TH
2798
2799 /*
2800 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2801 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2802 * wake it up explicitly.
0219a352 2803 */
4cb1ef64
TH
2804 if (worker->task)
2805 wake_up_process(worker->task);
0219a352 2806
a9b8a985 2807 raw_spin_unlock_irq(&pool->lock);
051e1850 2808
c34056a3 2809 return worker;
822d8405 2810
c34056a3 2811fail:
e441b56f 2812 ida_free(&pool->worker_ida, id);
c34056a3
TH
2813 kfree(worker);
2814 return NULL;
2815}
2816
793777bc
VS
2817static void unbind_worker(struct worker *worker)
2818{
2819 lockdep_assert_held(&wq_pool_attach_mutex);
2820
2821 kthread_set_per_cpu(worker->task, -1);
2822 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2823 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2824 else
2825 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2826}
2827
e02b9312
VS
2828static void wake_dying_workers(struct list_head *cull_list)
2829{
2830 struct worker *worker, *tmp;
2831
2832 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2833 list_del_init(&worker->entry);
2834 unbind_worker(worker);
2835 /*
2836 * If the worker was somehow already running, then it had to be
2837 * in pool->idle_list when set_worker_dying() happened or we
2838 * wouldn't have gotten here.
2839 *
2840 * Thus, the worker must either have observed the WORKER_DIE
2841 * flag, or have set its state to TASK_IDLE. Either way, the
2842 * below will be observed by the worker and is safe to do
2843 * outside of pool->lock.
2844 */
2845 wake_up_process(worker->task);
2846 }
2847}
2848
c34056a3 2849/**
e02b9312 2850 * set_worker_dying - Tag a worker for destruction
c34056a3 2851 * @worker: worker to be destroyed
e02b9312 2852 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2853 *
e02b9312
VS
2854 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2855 * should be idle.
c8e55f36
TH
2856 *
2857 * CONTEXT:
a9b8a985 2858 * raw_spin_lock_irq(pool->lock).
c34056a3 2859 */
e02b9312 2860static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2861{
bd7bdd43 2862 struct worker_pool *pool = worker->pool;
c34056a3 2863
cd549687 2864 lockdep_assert_held(&pool->lock);
e02b9312 2865 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2866
c34056a3 2867 /* sanity check frenzy */
6183c009 2868 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2869 WARN_ON(!list_empty(&worker->scheduled)) ||
2870 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2871 return;
c34056a3 2872
73eb7fe7
LJ
2873 pool->nr_workers--;
2874 pool->nr_idle--;
5bdfff96 2875
cb444766 2876 worker->flags |= WORKER_DIE;
e02b9312
VS
2877
2878 list_move(&worker->entry, list);
2879 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2880}
2881
3f959aa3
VS
2882/**
2883 * idle_worker_timeout - check if some idle workers can now be deleted.
2884 * @t: The pool's idle_timer that just expired
2885 *
2886 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2887 * worker_leave_idle(), as a worker flicking between idle and active while its
2888 * pool is at the too_many_workers() tipping point would cause too much timer
2889 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2890 * it expire and re-evaluate things from there.
2891 */
32a6c723 2892static void idle_worker_timeout(struct timer_list *t)
e22bee78 2893{
32a6c723 2894 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2895 bool do_cull = false;
2896
2897 if (work_pending(&pool->idle_cull_work))
2898 return;
e22bee78 2899
a9b8a985 2900 raw_spin_lock_irq(&pool->lock);
e22bee78 2901
3f959aa3 2902 if (too_many_workers(pool)) {
e22bee78
TH
2903 struct worker *worker;
2904 unsigned long expires;
2905
2906 /* idle_list is kept in LIFO order, check the last one */
d70f5d57 2907 worker = list_last_entry(&pool->idle_list, struct worker, entry);
3f959aa3
VS
2908 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2909 do_cull = !time_before(jiffies, expires);
2910
2911 if (!do_cull)
2912 mod_timer(&pool->idle_timer, expires);
2913 }
2914 raw_spin_unlock_irq(&pool->lock);
2915
2916 if (do_cull)
2917 queue_work(system_unbound_wq, &pool->idle_cull_work);
2918}
2919
2920/**
2921 * idle_cull_fn - cull workers that have been idle for too long.
2922 * @work: the pool's work for handling these idle workers
2923 *
2924 * This goes through a pool's idle workers and gets rid of those that have been
2925 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2926 *
2927 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2928 * culled, so this also resets worker affinity. This requires a sleepable
2929 * context, hence the split between timer callback and work item.
3f959aa3
VS
2930 */
2931static void idle_cull_fn(struct work_struct *work)
2932{
2933 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2934 LIST_HEAD(cull_list);
3f959aa3 2935
e02b9312
VS
2936 /*
2937 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2938 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2939 * path. This is required as a previously-preempted worker could run after
2940 * set_worker_dying() has happened but before wake_dying_workers() did.
2941 */
2942 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2943 raw_spin_lock_irq(&pool->lock);
2944
2945 while (too_many_workers(pool)) {
2946 struct worker *worker;
2947 unsigned long expires;
2948
d70f5d57 2949 worker = list_last_entry(&pool->idle_list, struct worker, entry);
e22bee78
TH
2950 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2951
3347fc9f 2952 if (time_before(jiffies, expires)) {
63d95a91 2953 mod_timer(&pool->idle_timer, expires);
3347fc9f 2954 break;
d5abe669 2955 }
3347fc9f 2956
e02b9312 2957 set_worker_dying(worker, &cull_list);
e22bee78
TH
2958 }
2959
a9b8a985 2960 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2961 wake_dying_workers(&cull_list);
2962 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2963}
d5abe669 2964
493a1724 2965static void send_mayday(struct work_struct *work)
e22bee78 2966{
112202d9
TH
2967 struct pool_workqueue *pwq = get_work_pwq(work);
2968 struct workqueue_struct *wq = pwq->wq;
493a1724 2969
2e109a28 2970 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2971
493008a8 2972 if (!wq->rescuer)
493a1724 2973 return;
e22bee78
TH
2974
2975 /* mayday mayday mayday */
493a1724 2976 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2977 /*
2978 * If @pwq is for an unbound wq, its base ref may be put at
2979 * any time due to an attribute change. Pin @pwq until the
2980 * rescuer is done with it.
2981 */
2982 get_pwq(pwq);
493a1724 2983 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2984 wake_up_process(wq->rescuer->task);
725e8ec5 2985 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2986 }
e22bee78
TH
2987}
2988
32a6c723 2989static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2990{
32a6c723 2991 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2992 struct work_struct *work;
2993
a9b8a985
SAS
2994 raw_spin_lock_irq(&pool->lock);
2995 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2996
63d95a91 2997 if (need_to_create_worker(pool)) {
e22bee78
TH
2998 /*
2999 * We've been trying to create a new worker but
3000 * haven't been successful. We might be hitting an
3001 * allocation deadlock. Send distress signals to
3002 * rescuers.
3003 */
63d95a91 3004 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 3005 send_mayday(work);
1da177e4 3006 }
e22bee78 3007
a9b8a985
SAS
3008 raw_spin_unlock(&wq_mayday_lock);
3009 raw_spin_unlock_irq(&pool->lock);
e22bee78 3010
63d95a91 3011 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
3012}
3013
e22bee78
TH
3014/**
3015 * maybe_create_worker - create a new worker if necessary
63d95a91 3016 * @pool: pool to create a new worker for
e22bee78 3017 *
63d95a91 3018 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
3019 * have at least one idle worker on return from this function. If
3020 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 3021 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
3022 * possible allocation deadlock.
3023 *
c5aa87bb
TH
3024 * On return, need_to_create_worker() is guaranteed to be %false and
3025 * may_start_working() %true.
e22bee78
TH
3026 *
3027 * LOCKING:
a9b8a985 3028 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
3029 * multiple times. Does GFP_KERNEL allocations. Called only from
3030 * manager.
e22bee78 3031 */
29187a9e 3032static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
3033__releases(&pool->lock)
3034__acquires(&pool->lock)
1da177e4 3035{
e22bee78 3036restart:
a9b8a985 3037 raw_spin_unlock_irq(&pool->lock);
9f9c2364 3038
e22bee78 3039 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 3040 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
3041
3042 while (true) {
051e1850 3043 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 3044 break;
1da177e4 3045
e212f361 3046 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 3047
63d95a91 3048 if (!need_to_create_worker(pool))
e22bee78
TH
3049 break;
3050 }
3051
63d95a91 3052 del_timer_sync(&pool->mayday_timer);
a9b8a985 3053 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
3054 /*
3055 * This is necessary even after a new worker was just successfully
3056 * created as @pool->lock was dropped and the new worker might have
3057 * already become busy.
3058 */
63d95a91 3059 if (need_to_create_worker(pool))
e22bee78 3060 goto restart;
e22bee78
TH
3061}
3062
73f53c4a 3063/**
e22bee78
TH
3064 * manage_workers - manage worker pool
3065 * @worker: self
73f53c4a 3066 *
706026c2 3067 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 3068 * to. At any given time, there can be only zero or one manager per
706026c2 3069 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
3070 *
3071 * The caller can safely start processing works on false return. On
3072 * true return, it's guaranteed that need_to_create_worker() is false
3073 * and may_start_working() is true.
73f53c4a
TH
3074 *
3075 * CONTEXT:
a9b8a985 3076 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
3077 * multiple times. Does GFP_KERNEL allocations.
3078 *
d185af30 3079 * Return:
29187a9e
TH
3080 * %false if the pool doesn't need management and the caller can safely
3081 * start processing works, %true if management function was performed and
3082 * the conditions that the caller verified before calling the function may
3083 * no longer be true.
73f53c4a 3084 */
e22bee78 3085static bool manage_workers(struct worker *worker)
73f53c4a 3086{
63d95a91 3087 struct worker_pool *pool = worker->pool;
73f53c4a 3088
692b4825 3089 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 3090 return false;
692b4825
TH
3091
3092 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 3093 pool->manager = worker;
1e19ffc6 3094
29187a9e 3095 maybe_create_worker(pool);
e22bee78 3096
2607d7a6 3097 pool->manager = NULL;
692b4825 3098 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 3099 rcuwait_wake_up(&manager_wait);
29187a9e 3100 return true;
73f53c4a
TH
3101}
3102
a62428c0
TH
3103/**
3104 * process_one_work - process single work
c34056a3 3105 * @worker: self
a62428c0
TH
3106 * @work: work to process
3107 *
3108 * Process @work. This function contains all the logics necessary to
3109 * process a single work including synchronization against and
3110 * interaction with other workers on the same cpu, queueing and
3111 * flushing. As long as context requirement is met, any worker can
3112 * call this function to process a work.
3113 *
3114 * CONTEXT:
a9b8a985 3115 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 3116 */
c34056a3 3117static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
3118__releases(&pool->lock)
3119__acquires(&pool->lock)
a62428c0 3120{
112202d9 3121 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 3122 struct worker_pool *pool = worker->pool;
c4560c2c 3123 unsigned long work_data;
c35aea39 3124 int lockdep_start_depth, rcu_start_depth;
1acd92d9 3125 bool bh_draining = pool->flags & POOL_BH_DRAINING;
a62428c0
TH
3126#ifdef CONFIG_LOCKDEP
3127 /*
3128 * It is permissible to free the struct work_struct from
3129 * inside the function that is called from it, this we need to
3130 * take into account for lockdep too. To avoid bogus "held
3131 * lock freed" warnings as well as problems when looking into
3132 * work->lockdep_map, make a copy and use that here.
3133 */
4d82a1de
PZ
3134 struct lockdep_map lockdep_map;
3135
3136 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 3137#endif
807407c0 3138 /* ensure we're on the correct CPU */
85327af6 3139 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 3140 raw_smp_processor_id() != pool->cpu);
25511a47 3141
8930caba 3142 /* claim and dequeue */
a62428c0 3143 debug_work_deactivate(work);
c9e7cf27 3144 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 3145 worker->current_work = work;
a2c1c57b 3146 worker->current_func = work->func;
112202d9 3147 worker->current_pwq = pwq;
4cb1ef64
TH
3148 if (worker->task)
3149 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 3150 work_data = *work_data_bits(work);
d812796e 3151 worker->current_color = get_work_color(work_data);
7a22ad75 3152
8bf89593
TH
3153 /*
3154 * Record wq name for cmdline and debug reporting, may get
3155 * overridden through set_worker_desc().
3156 */
3157 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3158
a62428c0
TH
3159 list_del_init(&work->entry);
3160
fb0e7beb 3161 /*
228f1d00
LJ
3162 * CPU intensive works don't participate in concurrency management.
3163 * They're the scheduler's responsibility. This takes @worker out
3164 * of concurrency management and the next code block will chain
3165 * execution of the pending work items.
fb0e7beb 3166 */
616db877 3167 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 3168 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3169
974271c4 3170 /*
0219a352
TH
3171 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3172 * since nr_running would always be >= 1 at this point. This is used to
3173 * chain execution of the pending work items for WORKER_NOT_RUNNING
3174 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 3175 */
0219a352 3176 kick_pool(pool);
974271c4 3177
8930caba 3178 /*
7c3eed5c 3179 * Record the last pool and clear PENDING which should be the last
d565ed63 3180 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3181 * PENDING and queued state changes happen together while IRQ is
3182 * disabled.
8930caba 3183 */
456a78ee 3184 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
a62428c0 3185
fe48ba7d 3186 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3187 raw_spin_unlock_irq(&pool->lock);
a62428c0 3188
c35aea39
TH
3189 rcu_start_depth = rcu_preempt_depth();
3190 lockdep_start_depth = lockdep_depth(current);
1acd92d9
TH
3191 /* see drain_dead_softirq_workfn() */
3192 if (!bh_draining)
3193 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 3194 lock_map_acquire(&lockdep_map);
e6f3faa7 3195 /*
f52be570
PZ
3196 * Strictly speaking we should mark the invariant state without holding
3197 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3198 *
3199 * However, that would result in:
3200 *
3201 * A(W1)
3202 * WFC(C)
3203 * A(W1)
3204 * C(C)
3205 *
3206 * Which would create W1->C->W1 dependencies, even though there is no
3207 * actual deadlock possible. There are two solutions, using a
3208 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3209 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3210 * these locks.
3211 *
3212 * AFAICT there is no possible deadlock scenario between the
3213 * flush_work() and complete() primitives (except for single-threaded
3214 * workqueues), so hiding them isn't a problem.
3215 */
f52be570 3216 lockdep_invariant_state(true);
e36c886a 3217 trace_workqueue_execute_start(work);
a2c1c57b 3218 worker->current_func(work);
e36c886a
AV
3219 /*
3220 * While we must be careful to not use "work" after this, the trace
3221 * point will only record its address.
3222 */
1c5da0ec 3223 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3224 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3225 lock_map_release(&lockdep_map);
1acd92d9
TH
3226 if (!bh_draining)
3227 lock_map_release(&pwq->wq->lockdep_map);
a62428c0 3228
c35aea39
TH
3229 if (unlikely((worker->task && in_atomic()) ||
3230 lockdep_depth(current) != lockdep_start_depth ||
3231 rcu_preempt_depth() != rcu_start_depth)) {
3232 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3233 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3234 current->comm, task_pid_nr(current), preempt_count(),
3235 lockdep_start_depth, lockdep_depth(current),
3236 rcu_start_depth, rcu_preempt_depth(),
3237 worker->current_func);
a62428c0
TH
3238 debug_show_held_locks(current);
3239 dump_stack();
3240 }
3241
b22ce278 3242 /*
025f50f3 3243 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3244 * kernels, where a requeueing work item waiting for something to
3245 * happen could deadlock with stop_machine as such work item could
3246 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3247 * stop_machine. At the same time, report a quiescent RCU state so
3248 * the same condition doesn't freeze RCU.
b22ce278 3249 */
4cb1ef64
TH
3250 if (worker->task)
3251 cond_resched();
b22ce278 3252
a9b8a985 3253 raw_spin_lock_irq(&pool->lock);
a62428c0 3254
616db877
TH
3255 /*
3256 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3257 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3258 * wq_cpu_intensive_thresh_us. Clear it.
3259 */
3260 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3261
1b69ac6b
JW
3262 /* tag the worker for identification in schedule() */
3263 worker->last_func = worker->current_func;
3264
a62428c0 3265 /* we're done with it, release */
42f8570f 3266 hash_del(&worker->hentry);
c34056a3 3267 worker->current_work = NULL;
a2c1c57b 3268 worker->current_func = NULL;
112202d9 3269 worker->current_pwq = NULL;
d812796e 3270 worker->current_color = INT_MAX;
dd6c3c54
TH
3271
3272 /* must be the last step, see the function comment */
c4560c2c 3273 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3274}
3275
affee4b2
TH
3276/**
3277 * process_scheduled_works - process scheduled works
3278 * @worker: self
3279 *
3280 * Process all scheduled works. Please note that the scheduled list
3281 * may change while processing a work, so this function repeatedly
3282 * fetches a work from the top and executes it.
3283 *
3284 * CONTEXT:
a9b8a985 3285 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3286 * multiple times.
3287 */
3288static void process_scheduled_works(struct worker *worker)
1da177e4 3289{
c0ab017d
TH
3290 struct work_struct *work;
3291 bool first = true;
3292
3293 while ((work = list_first_entry_or_null(&worker->scheduled,
3294 struct work_struct, entry))) {
3295 if (first) {
3296 worker->pool->watchdog_ts = jiffies;
3297 first = false;
3298 }
c34056a3 3299 process_one_work(worker, work);
1da177e4 3300 }
1da177e4
LT
3301}
3302
197f6acc
TH
3303static void set_pf_worker(bool val)
3304{
3305 mutex_lock(&wq_pool_attach_mutex);
3306 if (val)
3307 current->flags |= PF_WQ_WORKER;
3308 else
3309 current->flags &= ~PF_WQ_WORKER;
3310 mutex_unlock(&wq_pool_attach_mutex);
3311}
3312
4690c4ab
TH
3313/**
3314 * worker_thread - the worker thread function
c34056a3 3315 * @__worker: self
4690c4ab 3316 *
c5aa87bb
TH
3317 * The worker thread function. All workers belong to a worker_pool -
3318 * either a per-cpu one or dynamic unbound one. These workers process all
3319 * work items regardless of their specific target workqueue. The only
3320 * exception is work items which belong to workqueues with a rescuer which
3321 * will be explained in rescuer_thread().
d185af30
YB
3322 *
3323 * Return: 0
4690c4ab 3324 */
c34056a3 3325static int worker_thread(void *__worker)
1da177e4 3326{
c34056a3 3327 struct worker *worker = __worker;
bd7bdd43 3328 struct worker_pool *pool = worker->pool;
1da177e4 3329
e22bee78 3330 /* tell the scheduler that this is a workqueue worker */
197f6acc 3331 set_pf_worker(true);
c8e55f36 3332woke_up:
a9b8a985 3333 raw_spin_lock_irq(&pool->lock);
1da177e4 3334
a9ab775b
TH
3335 /* am I supposed to die? */
3336 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3337 raw_spin_unlock_irq(&pool->lock);
197f6acc 3338 set_pf_worker(false);
60f5a4bc
LJ
3339
3340 set_task_comm(worker->task, "kworker/dying");
e441b56f 3341 ida_free(&pool->worker_ida, worker->id);
a2d812a2 3342 worker_detach_from_pool(worker);
e02b9312 3343 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 3344 kfree(worker);
a9ab775b 3345 return 0;
c8e55f36 3346 }
affee4b2 3347
c8e55f36 3348 worker_leave_idle(worker);
db7bccf4 3349recheck:
e22bee78 3350 /* no more worker necessary? */
63d95a91 3351 if (!need_more_worker(pool))
e22bee78
TH
3352 goto sleep;
3353
3354 /* do we need to manage? */
63d95a91 3355 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3356 goto recheck;
3357
c8e55f36
TH
3358 /*
3359 * ->scheduled list can only be filled while a worker is
3360 * preparing to process a work or actually processing it.
3361 * Make sure nobody diddled with it while I was sleeping.
3362 */
6183c009 3363 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3364
e22bee78 3365 /*
a9ab775b
TH
3366 * Finish PREP stage. We're guaranteed to have at least one idle
3367 * worker or that someone else has already assumed the manager
3368 * role. This is where @worker starts participating in concurrency
3369 * management if applicable and concurrency management is restored
3370 * after being rebound. See rebind_workers() for details.
e22bee78 3371 */
a9ab775b 3372 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3373
3374 do {
c8e55f36 3375 struct work_struct *work =
bd7bdd43 3376 list_first_entry(&pool->worklist,
c8e55f36
TH
3377 struct work_struct, entry);
3378
873eaca6
TH
3379 if (assign_work(work, worker, NULL))
3380 process_scheduled_works(worker);
63d95a91 3381 } while (keep_working(pool));
e22bee78 3382
228f1d00 3383 worker_set_flags(worker, WORKER_PREP);
d313dd85 3384sleep:
c8e55f36 3385 /*
d565ed63
TH
3386 * pool->lock is held and there's no work to process and no need to
3387 * manage, sleep. Workers are woken up only while holding
3388 * pool->lock or from local cpu, so setting the current state
3389 * before releasing pool->lock is enough to prevent losing any
3390 * event.
c8e55f36
TH
3391 */
3392 worker_enter_idle(worker);
c5a94a61 3393 __set_current_state(TASK_IDLE);
a9b8a985 3394 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3395 schedule();
3396 goto woke_up;
1da177e4
LT
3397}
3398
e22bee78
TH
3399/**
3400 * rescuer_thread - the rescuer thread function
111c225a 3401 * @__rescuer: self
e22bee78
TH
3402 *
3403 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3404 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3405 *
706026c2 3406 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3407 * worker which uses GFP_KERNEL allocation which has slight chance of
3408 * developing into deadlock if some works currently on the same queue
3409 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3410 * the problem rescuer solves.
3411 *
706026c2
TH
3412 * When such condition is possible, the pool summons rescuers of all
3413 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3414 * those works so that forward progress can be guaranteed.
3415 *
3416 * This should happen rarely.
d185af30
YB
3417 *
3418 * Return: 0
e22bee78 3419 */
111c225a 3420static int rescuer_thread(void *__rescuer)
e22bee78 3421{
111c225a
TH
3422 struct worker *rescuer = __rescuer;
3423 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3424 bool should_stop;
e22bee78
TH
3425
3426 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3427
3428 /*
3429 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3430 * doesn't participate in concurrency management.
3431 */
197f6acc 3432 set_pf_worker(true);
e22bee78 3433repeat:
c5a94a61 3434 set_current_state(TASK_IDLE);
e22bee78 3435
4d595b86
LJ
3436 /*
3437 * By the time the rescuer is requested to stop, the workqueue
3438 * shouldn't have any work pending, but @wq->maydays may still have
3439 * pwq(s) queued. This can happen by non-rescuer workers consuming
3440 * all the work items before the rescuer got to them. Go through
3441 * @wq->maydays processing before acting on should_stop so that the
3442 * list is always empty on exit.
3443 */
3444 should_stop = kthread_should_stop();
e22bee78 3445
493a1724 3446 /* see whether any pwq is asking for help */
a9b8a985 3447 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3448
3449 while (!list_empty(&wq->maydays)) {
3450 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3451 struct pool_workqueue, mayday_node);
112202d9 3452 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3453 struct work_struct *work, *n;
3454
3455 __set_current_state(TASK_RUNNING);
493a1724
TH
3456 list_del_init(&pwq->mayday_node);
3457
a9b8a985 3458 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3459
51697d39
LJ
3460 worker_attach_to_pool(rescuer, pool);
3461
a9b8a985 3462 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3463
3464 /*
3465 * Slurp in all works issued via this workqueue and
3466 * process'em.
3467 */
873eaca6 3468 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3469 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3470 if (get_work_pwq(work) == pwq &&
3471 assign_work(work, rescuer, &n))
725e8ec5 3472 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3473 }
e22bee78 3474
873eaca6 3475 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3476 process_scheduled_works(rescuer);
3477
3478 /*
3479 * The above execution of rescued work items could
3480 * have created more to rescue through
f97a4a1a 3481 * pwq_activate_first_inactive() or chained
008847f6
N
3482 * queueing. Let's put @pwq back on mayday list so
3483 * that such back-to-back work items, which may be
3484 * being used to relieve memory pressure, don't
3485 * incur MAYDAY_INTERVAL delay inbetween.
3486 */
4f3f4cf3 3487 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3488 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3489 /*
3490 * Queue iff we aren't racing destruction
3491 * and somebody else hasn't queued it already.
3492 */
3493 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3494 get_pwq(pwq);
3495 list_add_tail(&pwq->mayday_node, &wq->maydays);
3496 }
a9b8a985 3497 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3498 }
3499 }
7576958a 3500
77668c8b
LJ
3501 /*
3502 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3503 * go away while we're still attached to it.
77668c8b
LJ
3504 */
3505 put_pwq(pwq);
3506
7576958a 3507 /*
0219a352
TH
3508 * Leave this pool. Notify regular workers; otherwise, we end up
3509 * with 0 concurrency and stalling the execution.
7576958a 3510 */
0219a352 3511 kick_pool(pool);
7576958a 3512
a9b8a985 3513 raw_spin_unlock_irq(&pool->lock);
13b1d625 3514
a2d812a2 3515 worker_detach_from_pool(rescuer);
13b1d625 3516
a9b8a985 3517 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3518 }
3519
a9b8a985 3520 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3521
4d595b86
LJ
3522 if (should_stop) {
3523 __set_current_state(TASK_RUNNING);
197f6acc 3524 set_pf_worker(false);
4d595b86
LJ
3525 return 0;
3526 }
3527
111c225a
TH
3528 /* rescuers should never participate in concurrency management */
3529 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3530 schedule();
3531 goto repeat;
1da177e4
LT
3532}
3533
4cb1ef64
TH
3534static void bh_worker(struct worker *worker)
3535{
3536 struct worker_pool *pool = worker->pool;
3537 int nr_restarts = BH_WORKER_RESTARTS;
3538 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3539
3540 raw_spin_lock_irq(&pool->lock);
3541 worker_leave_idle(worker);
3542
3543 /*
3544 * This function follows the structure of worker_thread(). See there for
3545 * explanations on each step.
3546 */
3547 if (!need_more_worker(pool))
3548 goto done;
3549
3550 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3551 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3552
3553 do {
3554 struct work_struct *work =
3555 list_first_entry(&pool->worklist,
3556 struct work_struct, entry);
3557
3558 if (assign_work(work, worker, NULL))
3559 process_scheduled_works(worker);
3560 } while (keep_working(pool) &&
3561 --nr_restarts && time_before(jiffies, end));
3562
3563 worker_set_flags(worker, WORKER_PREP);
3564done:
3565 worker_enter_idle(worker);
3566 kick_pool(pool);
3567 raw_spin_unlock_irq(&pool->lock);
3568}
3569
3570/*
3571 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3572 *
3573 * This is currently called from tasklet[_hi]action() and thus is also called
3574 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3575 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3576 * can be dropped.
3577 *
3578 * After full conversion, we'll add worker->softirq_action, directly use the
3579 * softirq action and obtain the worker pointer from the softirq_action pointer.
3580 */
3581void workqueue_softirq_action(bool highpri)
3582{
3583 struct worker_pool *pool =
3584 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3585 if (need_more_worker(pool))
3586 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3587}
3588
1acd92d9
TH
3589struct wq_drain_dead_softirq_work {
3590 struct work_struct work;
3591 struct worker_pool *pool;
3592 struct completion done;
3593};
3594
3595static void drain_dead_softirq_workfn(struct work_struct *work)
3596{
3597 struct wq_drain_dead_softirq_work *dead_work =
3598 container_of(work, struct wq_drain_dead_softirq_work, work);
3599 struct worker_pool *pool = dead_work->pool;
3600 bool repeat;
3601
3602 /*
3603 * @pool's CPU is dead and we want to execute its still pending work
3604 * items from this BH work item which is running on a different CPU. As
3605 * its CPU is dead, @pool can't be kicked and, as work execution path
3606 * will be nested, a lockdep annotation needs to be suppressed. Mark
3607 * @pool with %POOL_BH_DRAINING for the special treatments.
3608 */
3609 raw_spin_lock_irq(&pool->lock);
3610 pool->flags |= POOL_BH_DRAINING;
3611 raw_spin_unlock_irq(&pool->lock);
3612
3613 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3614
3615 raw_spin_lock_irq(&pool->lock);
3616 pool->flags &= ~POOL_BH_DRAINING;
3617 repeat = need_more_worker(pool);
3618 raw_spin_unlock_irq(&pool->lock);
3619
3620 /*
3621 * bh_worker() might hit consecutive execution limit and bail. If there
3622 * still are pending work items, reschedule self and return so that we
3623 * don't hog this CPU's BH.
3624 */
3625 if (repeat) {
3626 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3627 queue_work(system_bh_highpri_wq, work);
3628 else
3629 queue_work(system_bh_wq, work);
3630 } else {
3631 complete(&dead_work->done);
3632 }
3633}
3634
3635/*
3636 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3637 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3638 * have to worry about draining overlapping with CPU coming back online or
3639 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3640 * on). Let's keep it simple and drain them synchronously. These are BH work
3641 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3642 */
3643void workqueue_softirq_dead(unsigned int cpu)
3644{
3645 int i;
3646
3647 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3648 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3649 struct wq_drain_dead_softirq_work dead_work;
3650
3651 if (!need_more_worker(pool))
3652 continue;
3653
e7cc3be6 3654 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
1acd92d9
TH
3655 dead_work.pool = pool;
3656 init_completion(&dead_work.done);
3657
3658 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3659 queue_work(system_bh_highpri_wq, &dead_work.work);
3660 else
3661 queue_work(system_bh_wq, &dead_work.work);
3662
3663 wait_for_completion(&dead_work.done);
3664 }
3665}
3666
fca839c0
TH
3667/**
3668 * check_flush_dependency - check for flush dependency sanity
3669 * @target_wq: workqueue being flushed
3670 * @target_work: work item being flushed (NULL for workqueue flushes)
3671 *
3672 * %current is trying to flush the whole @target_wq or @target_work on it.
3673 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3674 * reclaiming memory or running on a workqueue which doesn't have
3675 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3676 * a deadlock.
3677 */
3678static void check_flush_dependency(struct workqueue_struct *target_wq,
3679 struct work_struct *target_work)
3680{
3681 work_func_t target_func = target_work ? target_work->func : NULL;
3682 struct worker *worker;
3683
3684 if (target_wq->flags & WQ_MEM_RECLAIM)
3685 return;
3686
3687 worker = current_wq_worker();
3688
3689 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3690 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3691 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3692 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3693 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3694 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3695 worker->current_pwq->wq->name, worker->current_func,
3696 target_wq->name, target_func);
3697}
3698
fc2e4d70
ON
3699struct wq_barrier {
3700 struct work_struct work;
3701 struct completion done;
2607d7a6 3702 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3703};
3704
3705static void wq_barrier_func(struct work_struct *work)
3706{
3707 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3708 complete(&barr->done);
3709}
3710
4690c4ab
TH
3711/**
3712 * insert_wq_barrier - insert a barrier work
112202d9 3713 * @pwq: pwq to insert barrier into
4690c4ab 3714 * @barr: wq_barrier to insert
affee4b2
TH
3715 * @target: target work to attach @barr to
3716 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3717 *
affee4b2
TH
3718 * @barr is linked to @target such that @barr is completed only after
3719 * @target finishes execution. Please note that the ordering
3720 * guarantee is observed only with respect to @target and on the local
3721 * cpu.
3722 *
3723 * Currently, a queued barrier can't be canceled. This is because
3724 * try_to_grab_pending() can't determine whether the work to be
3725 * grabbed is at the head of the queue and thus can't clear LINKED
3726 * flag of the previous work while there must be a valid next work
3727 * after a work with LINKED flag set.
3728 *
3729 * Note that when @worker is non-NULL, @target may be modified
112202d9 3730 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3731 *
3732 * CONTEXT:
a9b8a985 3733 * raw_spin_lock_irq(pool->lock).
4690c4ab 3734 */
112202d9 3735static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3736 struct wq_barrier *barr,
3737 struct work_struct *target, struct worker *worker)
fc2e4d70 3738{
4cb1ef64 3739 static __maybe_unused struct lock_class_key bh_key, thr_key;
d812796e
LJ
3740 unsigned int work_flags = 0;
3741 unsigned int work_color;
affee4b2 3742 struct list_head *head;
affee4b2 3743
dc186ad7 3744 /*
d565ed63 3745 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3746 * as we know for sure that this will not trigger any of the
3747 * checks and call back into the fixup functions where we
3748 * might deadlock.
4cb1ef64
TH
3749 *
3750 * BH and threaded workqueues need separate lockdep keys to avoid
3751 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3752 * usage".
dc186ad7 3753 */
4cb1ef64
TH
3754 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3755 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
22df02bb 3756 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3757
fd1a5b04
BP
3758 init_completion_map(&barr->done, &target->lockdep_map);
3759
2607d7a6 3760 barr->task = current;
83c22520 3761
5797b1c1 3762 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3763 work_flags |= WORK_STRUCT_INACTIVE;
3764
affee4b2
TH
3765 /*
3766 * If @target is currently being executed, schedule the
3767 * barrier to the worker; otherwise, put it after @target.
3768 */
d812796e 3769 if (worker) {
affee4b2 3770 head = worker->scheduled.next;
d812796e
LJ
3771 work_color = worker->current_color;
3772 } else {
affee4b2
TH
3773 unsigned long *bits = work_data_bits(target);
3774
3775 head = target->entry.next;
3776 /* there can already be other linked works, inherit and set */
d21cece0 3777 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3778 work_color = get_work_color(*bits);
affee4b2
TH
3779 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3780 }
3781
d812796e
LJ
3782 pwq->nr_in_flight[work_color]++;
3783 work_flags |= work_color_to_flags(work_color);
3784
d21cece0 3785 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3786}
3787
73f53c4a 3788/**
112202d9 3789 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3790 * @wq: workqueue being flushed
3791 * @flush_color: new flush color, < 0 for no-op
3792 * @work_color: new work color, < 0 for no-op
3793 *
112202d9 3794 * Prepare pwqs for workqueue flushing.
73f53c4a 3795 *
112202d9
TH
3796 * If @flush_color is non-negative, flush_color on all pwqs should be
3797 * -1. If no pwq has in-flight commands at the specified color, all
3798 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3799 * has in flight commands, its pwq->flush_color is set to
3800 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3801 * wakeup logic is armed and %true is returned.
3802 *
3803 * The caller should have initialized @wq->first_flusher prior to
3804 * calling this function with non-negative @flush_color. If
3805 * @flush_color is negative, no flush color update is done and %false
3806 * is returned.
3807 *
112202d9 3808 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3809 * work_color which is previous to @work_color and all will be
3810 * advanced to @work_color.
3811 *
3812 * CONTEXT:
3c25a55d 3813 * mutex_lock(wq->mutex).
73f53c4a 3814 *
d185af30 3815 * Return:
73f53c4a
TH
3816 * %true if @flush_color >= 0 and there's something to flush. %false
3817 * otherwise.
3818 */
112202d9 3819static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3820 int flush_color, int work_color)
1da177e4 3821{
73f53c4a 3822 bool wait = false;
49e3cf44 3823 struct pool_workqueue *pwq;
1da177e4 3824
73f53c4a 3825 if (flush_color >= 0) {
6183c009 3826 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3827 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3828 }
2355b70f 3829
49e3cf44 3830 for_each_pwq(pwq, wq) {
112202d9 3831 struct worker_pool *pool = pwq->pool;
fc2e4d70 3832
a9b8a985 3833 raw_spin_lock_irq(&pool->lock);
83c22520 3834
73f53c4a 3835 if (flush_color >= 0) {
6183c009 3836 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3837
112202d9
TH
3838 if (pwq->nr_in_flight[flush_color]) {
3839 pwq->flush_color = flush_color;
3840 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3841 wait = true;
3842 }
3843 }
1da177e4 3844
73f53c4a 3845 if (work_color >= 0) {
6183c009 3846 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3847 pwq->work_color = work_color;
73f53c4a 3848 }
1da177e4 3849
a9b8a985 3850 raw_spin_unlock_irq(&pool->lock);
1da177e4 3851 }
2355b70f 3852
112202d9 3853 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3854 complete(&wq->first_flusher->done);
14441960 3855
73f53c4a 3856 return wait;
1da177e4
LT
3857}
3858
c35aea39
TH
3859static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3860{
4cb1ef64
TH
3861#ifdef CONFIG_LOCKDEP
3862 if (wq->flags & WQ_BH)
3863 local_bh_disable();
3864
c35aea39
TH
3865 lock_map_acquire(&wq->lockdep_map);
3866 lock_map_release(&wq->lockdep_map);
4cb1ef64
TH
3867
3868 if (wq->flags & WQ_BH)
3869 local_bh_enable();
3870#endif
c35aea39
TH
3871}
3872
3873static void touch_work_lockdep_map(struct work_struct *work,
3874 struct workqueue_struct *wq)
3875{
4cb1ef64
TH
3876#ifdef CONFIG_LOCKDEP
3877 if (wq->flags & WQ_BH)
3878 local_bh_disable();
3879
c35aea39
TH
3880 lock_map_acquire(&work->lockdep_map);
3881 lock_map_release(&work->lockdep_map);
4cb1ef64
TH
3882
3883 if (wq->flags & WQ_BH)
3884 local_bh_enable();
3885#endif
c35aea39
TH
3886}
3887
0fcb78c2 3888/**
c4f135d6 3889 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3890 * @wq: workqueue to flush
1da177e4 3891 *
c5aa87bb
TH
3892 * This function sleeps until all work items which were queued on entry
3893 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3894 */
c4f135d6 3895void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3896{
73f53c4a
TH
3897 struct wq_flusher this_flusher = {
3898 .list = LIST_HEAD_INIT(this_flusher.list),
3899 .flush_color = -1,
fd1a5b04 3900 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3901 };
3902 int next_color;
1da177e4 3903
3347fa09
TH
3904 if (WARN_ON(!wq_online))
3905 return;
3906
c35aea39 3907 touch_wq_lockdep_map(wq);
87915adc 3908
3c25a55d 3909 mutex_lock(&wq->mutex);
73f53c4a
TH
3910
3911 /*
3912 * Start-to-wait phase
3913 */
3914 next_color = work_next_color(wq->work_color);
3915
3916 if (next_color != wq->flush_color) {
3917 /*
3918 * Color space is not full. The current work_color
3919 * becomes our flush_color and work_color is advanced
3920 * by one.
3921 */
6183c009 3922 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3923 this_flusher.flush_color = wq->work_color;
3924 wq->work_color = next_color;
3925
3926 if (!wq->first_flusher) {
3927 /* no flush in progress, become the first flusher */
6183c009 3928 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3929
3930 wq->first_flusher = &this_flusher;
3931
112202d9 3932 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3933 wq->work_color)) {
3934 /* nothing to flush, done */
3935 wq->flush_color = next_color;
3936 wq->first_flusher = NULL;
3937 goto out_unlock;
3938 }
3939 } else {
3940 /* wait in queue */
6183c009 3941 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3942 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3943 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3944 }
3945 } else {
3946 /*
3947 * Oops, color space is full, wait on overflow queue.
3948 * The next flush completion will assign us
3949 * flush_color and transfer to flusher_queue.
3950 */
3951 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3952 }
3953
fca839c0
TH
3954 check_flush_dependency(wq, NULL);
3955
3c25a55d 3956 mutex_unlock(&wq->mutex);
73f53c4a
TH
3957
3958 wait_for_completion(&this_flusher.done);
3959
3960 /*
3961 * Wake-up-and-cascade phase
3962 *
3963 * First flushers are responsible for cascading flushes and
3964 * handling overflow. Non-first flushers can simply return.
3965 */
00d5d15b 3966 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3967 return;
3968
3c25a55d 3969 mutex_lock(&wq->mutex);
73f53c4a 3970
4ce48b37
TH
3971 /* we might have raced, check again with mutex held */
3972 if (wq->first_flusher != &this_flusher)
3973 goto out_unlock;
3974
00d5d15b 3975 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3976
6183c009
TH
3977 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3978 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3979
3980 while (true) {
3981 struct wq_flusher *next, *tmp;
3982
3983 /* complete all the flushers sharing the current flush color */
3984 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3985 if (next->flush_color != wq->flush_color)
3986 break;
3987 list_del_init(&next->list);
3988 complete(&next->done);
3989 }
3990
6183c009
TH
3991 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3992 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3993
3994 /* this flush_color is finished, advance by one */
3995 wq->flush_color = work_next_color(wq->flush_color);
3996
3997 /* one color has been freed, handle overflow queue */
3998 if (!list_empty(&wq->flusher_overflow)) {
3999 /*
4000 * Assign the same color to all overflowed
4001 * flushers, advance work_color and append to
4002 * flusher_queue. This is the start-to-wait
4003 * phase for these overflowed flushers.
4004 */
4005 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4006 tmp->flush_color = wq->work_color;
4007
4008 wq->work_color = work_next_color(wq->work_color);
4009
4010 list_splice_tail_init(&wq->flusher_overflow,
4011 &wq->flusher_queue);
112202d9 4012 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
4013 }
4014
4015 if (list_empty(&wq->flusher_queue)) {
6183c009 4016 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
4017 break;
4018 }
4019
4020 /*
4021 * Need to flush more colors. Make the next flusher
112202d9 4022 * the new first flusher and arm pwqs.
73f53c4a 4023 */
6183c009
TH
4024 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4025 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
4026
4027 list_del_init(&next->list);
4028 wq->first_flusher = next;
4029
112202d9 4030 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
4031 break;
4032
4033 /*
4034 * Meh... this color is already done, clear first
4035 * flusher and repeat cascading.
4036 */
4037 wq->first_flusher = NULL;
4038 }
4039
4040out_unlock:
3c25a55d 4041 mutex_unlock(&wq->mutex);
1da177e4 4042}
c4f135d6 4043EXPORT_SYMBOL(__flush_workqueue);
1da177e4 4044
9c5a2ba7
TH
4045/**
4046 * drain_workqueue - drain a workqueue
4047 * @wq: workqueue to drain
4048 *
4049 * Wait until the workqueue becomes empty. While draining is in progress,
4050 * only chain queueing is allowed. IOW, only currently pending or running
4051 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 4052 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
4053 * by the depth of chaining and should be relatively short. Whine if it
4054 * takes too long.
4055 */
4056void drain_workqueue(struct workqueue_struct *wq)
4057{
4058 unsigned int flush_cnt = 0;
49e3cf44 4059 struct pool_workqueue *pwq;
9c5a2ba7
TH
4060
4061 /*
4062 * __queue_work() needs to test whether there are drainers, is much
4063 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 4064 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 4065 */
87fc741e 4066 mutex_lock(&wq->mutex);
9c5a2ba7 4067 if (!wq->nr_drainers++)
618b01eb 4068 wq->flags |= __WQ_DRAINING;
87fc741e 4069 mutex_unlock(&wq->mutex);
9c5a2ba7 4070reflush:
c4f135d6 4071 __flush_workqueue(wq);
9c5a2ba7 4072
b09f4fd3 4073 mutex_lock(&wq->mutex);
76af4d93 4074
49e3cf44 4075 for_each_pwq(pwq, wq) {
fa2563e4 4076 bool drained;
9c5a2ba7 4077
a9b8a985 4078 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 4079 drained = pwq_is_empty(pwq);
a9b8a985 4080 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
4081
4082 if (drained)
9c5a2ba7
TH
4083 continue;
4084
4085 if (++flush_cnt == 10 ||
4086 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
4087 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4088 wq->name, __func__, flush_cnt);
76af4d93 4089
b09f4fd3 4090 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
4091 goto reflush;
4092 }
4093
9c5a2ba7 4094 if (!--wq->nr_drainers)
618b01eb 4095 wq->flags &= ~__WQ_DRAINING;
87fc741e 4096 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
4097}
4098EXPORT_SYMBOL_GPL(drain_workqueue);
4099
d6e89786
JB
4100static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4101 bool from_cancel)
db700897 4102{
affee4b2 4103 struct worker *worker = NULL;
c9e7cf27 4104 struct worker_pool *pool;
112202d9 4105 struct pool_workqueue *pwq;
c35aea39 4106 struct workqueue_struct *wq;
db700897 4107
24acfb71 4108 rcu_read_lock();
c9e7cf27 4109 pool = get_work_pool(work);
fa1b54e6 4110 if (!pool) {
24acfb71 4111 rcu_read_unlock();
baf59022 4112 return false;
fa1b54e6 4113 }
db700897 4114
a9b8a985 4115 raw_spin_lock_irq(&pool->lock);
0b3dae68 4116 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
4117 pwq = get_work_pwq(work);
4118 if (pwq) {
4119 if (unlikely(pwq->pool != pool))
4690c4ab 4120 goto already_gone;
606a5020 4121 } else {
c9e7cf27 4122 worker = find_worker_executing_work(pool, work);
affee4b2 4123 if (!worker)
4690c4ab 4124 goto already_gone;
112202d9 4125 pwq = worker->current_pwq;
606a5020 4126 }
db700897 4127
c35aea39
TH
4128 wq = pwq->wq;
4129 check_flush_dependency(wq, work);
fca839c0 4130
112202d9 4131 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 4132 raw_spin_unlock_irq(&pool->lock);
7a22ad75 4133
c35aea39
TH
4134 touch_work_lockdep_map(work, wq);
4135
e159489b 4136 /*
a1d14934
PZ
4137 * Force a lock recursion deadlock when using flush_work() inside a
4138 * single-threaded or rescuer equipped workqueue.
4139 *
4140 * For single threaded workqueues the deadlock happens when the work
4141 * is after the work issuing the flush_work(). For rescuer equipped
4142 * workqueues the deadlock happens when the rescuer stalls, blocking
4143 * forward progress.
e159489b 4144 */
c35aea39
TH
4145 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4146 touch_wq_lockdep_map(wq);
4147
24acfb71 4148 rcu_read_unlock();
401a8d04 4149 return true;
4690c4ab 4150already_gone:
a9b8a985 4151 raw_spin_unlock_irq(&pool->lock);
24acfb71 4152 rcu_read_unlock();
401a8d04 4153 return false;
db700897 4154}
baf59022 4155
d6e89786
JB
4156static bool __flush_work(struct work_struct *work, bool from_cancel)
4157{
4158 struct wq_barrier barr;
134874e2 4159 unsigned long data;
d6e89786
JB
4160
4161 if (WARN_ON(!wq_online))
4162 return false;
4163
4d43d395
TH
4164 if (WARN_ON(!work->func))
4165 return false;
4166
134874e2 4167 if (!start_flush_work(work, &barr, from_cancel))
d6e89786 4168 return false;
134874e2
TH
4169
4170 /*
4171 * start_flush_work() returned %true. If @from_cancel is set, we know
4172 * that @work must have been executing during start_flush_work() and
4173 * can't currently be queued. Its data must contain OFFQ bits. If @work
4174 * was queued on a BH workqueue, we also know that it was running in the
4175 * BH context and thus can be busy-waited.
4176 */
4177 data = *work_data_bits(work);
4178 if (from_cancel &&
4179 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4180 /*
4181 * On RT, prevent a live lock when %current preempted soft
4182 * interrupt processing or prevents ksoftirqd from running by
4183 * keeping flipping BH. If the BH work item runs on a different
4184 * CPU then this has no effect other than doing the BH
4185 * disable/enable dance for nothing. This is copied from
4186 * kernel/softirq.c::tasklet_unlock_spin_wait().
4187 */
4188 while (!try_wait_for_completion(&barr.done)) {
4189 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4190 local_bh_disable();
4191 local_bh_enable();
4192 } else {
4193 cpu_relax();
4194 }
4195 }
4196 } else {
4197 wait_for_completion(&barr.done);
d6e89786 4198 }
134874e2
TH
4199
4200 destroy_work_on_stack(&barr.work);
4201 return true;
d6e89786
JB
4202}
4203
baf59022
TH
4204/**
4205 * flush_work - wait for a work to finish executing the last queueing instance
4206 * @work: the work to flush
4207 *
606a5020
TH
4208 * Wait until @work has finished execution. @work is guaranteed to be idle
4209 * on return if it hasn't been requeued since flush started.
baf59022 4210 *
d185af30 4211 * Return:
baf59022
TH
4212 * %true if flush_work() waited for the work to finish execution,
4213 * %false if it was already idle.
4214 */
4215bool flush_work(struct work_struct *work)
4216{
134874e2 4217 might_sleep();
d6e89786 4218 return __flush_work(work, false);
6e84d644 4219}
606a5020 4220EXPORT_SYMBOL_GPL(flush_work);
6e84d644 4221
cdc6e4b3
TH
4222/**
4223 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4224 * @dwork: the delayed work to flush
4225 *
4226 * Delayed timer is cancelled and the pending work is queued for
4227 * immediate execution. Like flush_work(), this function only
4228 * considers the last queueing instance of @dwork.
4229 *
4230 * Return:
4231 * %true if flush_work() waited for the work to finish execution,
4232 * %false if it was already idle.
4233 */
4234bool flush_delayed_work(struct delayed_work *dwork)
4235{
4236 local_irq_disable();
4237 if (del_timer_sync(&dwork->timer))
4238 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4239 local_irq_enable();
4240 return flush_work(&dwork->work);
4241}
4242EXPORT_SYMBOL(flush_delayed_work);
4243
4244/**
4245 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4246 * @rwork: the rcu work to flush
4247 *
4248 * Return:
4249 * %true if flush_rcu_work() waited for the work to finish execution,
4250 * %false if it was already idle.
4251 */
4252bool flush_rcu_work(struct rcu_work *rwork)
4253{
4254 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4255 rcu_barrier();
4256 flush_work(&rwork->work);
4257 return true;
4258 } else {
4259 return flush_work(&rwork->work);
4260 }
4261}
4262EXPORT_SYMBOL(flush_rcu_work);
4263
86898fa6
TH
4264static void work_offqd_disable(struct work_offq_data *offqd)
4265{
4266 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4267
4268 if (likely(offqd->disable < max))
4269 offqd->disable++;
4270 else
4271 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4272}
4273
4274static void work_offqd_enable(struct work_offq_data *offqd)
4275{
4276 if (likely(offqd->disable > 0))
4277 offqd->disable--;
4278 else
4279 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4280}
4281
c5f5b942 4282static bool __cancel_work(struct work_struct *work, u32 cflags)
cdc6e4b3 4283{
1211f3b2 4284 struct work_offq_data offqd;
c26e2f2e 4285 unsigned long irq_flags;
cdc6e4b3
TH
4286 int ret;
4287
f09b10b6 4288 ret = work_grab_pending(work, cflags, &irq_flags);
cdc6e4b3 4289
1211f3b2 4290 work_offqd_unpack(&offqd, *work_data_bits(work));
86898fa6
TH
4291
4292 if (cflags & WORK_CANCEL_DISABLE)
4293 work_offqd_disable(&offqd);
4294
1211f3b2
TH
4295 set_work_pool_and_clear_pending(work, offqd.pool_id,
4296 work_offqd_pack_flags(&offqd));
c26e2f2e 4297 local_irq_restore(irq_flags);
cdc6e4b3
TH
4298 return ret;
4299}
4300
c5f5b942 4301static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
1f1f642e 4302{
978b8409 4303 bool ret;
1f1f642e 4304
f09b10b6 4305 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
bbb68dfa 4306
134874e2
TH
4307 if (*work_data_bits(work) & WORK_OFFQ_BH)
4308 WARN_ON_ONCE(in_hardirq());
4309 else
4310 might_sleep();
4311
3347fa09 4312 /*
c7a40c49
TH
4313 * Skip __flush_work() during early boot when we know that @work isn't
4314 * executing. This allows canceling during early boot.
3347fa09
TH
4315 */
4316 if (wq_online)
d6e89786 4317 __flush_work(work, true);
3347fa09 4318
f09b10b6
TH
4319 if (!(cflags & WORK_CANCEL_DISABLE))
4320 enable_work(work);
8603e1b3 4321
1f1f642e
ON
4322 return ret;
4323}
4324
cdc6e4b3
TH
4325/*
4326 * See cancel_delayed_work()
4327 */
4328bool cancel_work(struct work_struct *work)
4329{
c5f5b942 4330 return __cancel_work(work, 0);
cdc6e4b3
TH
4331}
4332EXPORT_SYMBOL(cancel_work);
4333
6e84d644 4334/**
401a8d04
TH
4335 * cancel_work_sync - cancel a work and wait for it to finish
4336 * @work: the work to cancel
6e84d644 4337 *
134874e2
TH
4338 * Cancel @work and wait for its execution to finish. This function can be used
4339 * even if the work re-queues itself or migrates to another workqueue. On return
4340 * from this function, @work is guaranteed to be not pending or executing on any
4341 * CPU as long as there aren't racing enqueues.
1f1f642e 4342 *
134874e2
TH
4343 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4344 * Use cancel_delayed_work_sync() instead.
6e84d644 4345 *
134874e2
TH
4346 * Must be called from a sleepable context if @work was last queued on a non-BH
4347 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4348 * if @work was last queued on a BH workqueue.
401a8d04 4349 *
134874e2 4350 * Returns %true if @work was pending, %false otherwise.
6e84d644 4351 */
401a8d04 4352bool cancel_work_sync(struct work_struct *work)
6e84d644 4353{
c5f5b942 4354 return __cancel_work_sync(work, 0);
b89deed3 4355}
28e53bdd 4356EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 4357
09383498 4358/**
57b30ae7
TH
4359 * cancel_delayed_work - cancel a delayed work
4360 * @dwork: delayed_work to cancel
09383498 4361 *
d185af30
YB
4362 * Kill off a pending delayed_work.
4363 *
4364 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4365 * pending.
4366 *
4367 * Note:
4368 * The work callback function may still be running on return, unless
4369 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4370 * use cancel_delayed_work_sync() to wait on it.
09383498 4371 *
57b30ae7 4372 * This function is safe to call from any context including IRQ handler.
09383498 4373 */
57b30ae7 4374bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4375{
c5f5b942 4376 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
09383498 4377}
57b30ae7 4378EXPORT_SYMBOL(cancel_delayed_work);
09383498 4379
401a8d04
TH
4380/**
4381 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4382 * @dwork: the delayed work cancel
4383 *
4384 * This is cancel_work_sync() for delayed works.
4385 *
d185af30 4386 * Return:
401a8d04
TH
4387 * %true if @dwork was pending, %false otherwise.
4388 */
4389bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4390{
c5f5b942 4391 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
6e84d644 4392}
f5a421a4 4393EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4394
86898fa6
TH
4395/**
4396 * disable_work - Disable and cancel a work item
4397 * @work: work item to disable
4398 *
4399 * Disable @work by incrementing its disable count and cancel it if currently
4400 * pending. As long as the disable count is non-zero, any attempt to queue @work
4401 * will fail and return %false. The maximum supported disable depth is 2 to the
4402 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4403 *
f09b10b6
TH
4404 * Can be called from any context. Returns %true if @work was pending, %false
4405 * otherwise.
86898fa6
TH
4406 */
4407bool disable_work(struct work_struct *work)
4408{
4409 return __cancel_work(work, WORK_CANCEL_DISABLE);
4410}
4411EXPORT_SYMBOL_GPL(disable_work);
4412
4413/**
4414 * disable_work_sync - Disable, cancel and drain a work item
4415 * @work: work item to disable
4416 *
4417 * Similar to disable_work() but also wait for @work to finish if currently
4418 * executing.
4419 *
134874e2
TH
4420 * Must be called from a sleepable context if @work was last queued on a non-BH
4421 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4422 * if @work was last queued on a BH workqueue.
4423 *
4424 * Returns %true if @work was pending, %false otherwise.
86898fa6
TH
4425 */
4426bool disable_work_sync(struct work_struct *work)
4427{
4428 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4429}
4430EXPORT_SYMBOL_GPL(disable_work_sync);
4431
4432/**
4433 * enable_work - Enable a work item
4434 * @work: work item to enable
4435 *
4436 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4437 * only be queued if its disable count is 0.
4438 *
f09b10b6
TH
4439 * Can be called from any context. Returns %true if the disable count reached 0.
4440 * Otherwise, %false.
86898fa6
TH
4441 */
4442bool enable_work(struct work_struct *work)
4443{
4444 struct work_offq_data offqd;
4445 unsigned long irq_flags;
4446
4447 work_grab_pending(work, 0, &irq_flags);
4448
4449 work_offqd_unpack(&offqd, *work_data_bits(work));
4450 work_offqd_enable(&offqd);
4451 set_work_pool_and_clear_pending(work, offqd.pool_id,
4452 work_offqd_pack_flags(&offqd));
4453 local_irq_restore(irq_flags);
4454
4455 return !offqd.disable;
4456}
4457EXPORT_SYMBOL_GPL(enable_work);
4458
4459/**
4460 * disable_delayed_work - Disable and cancel a delayed work item
4461 * @dwork: delayed work item to disable
4462 *
4463 * disable_work() for delayed work items.
4464 */
4465bool disable_delayed_work(struct delayed_work *dwork)
4466{
4467 return __cancel_work(&dwork->work,
4468 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4469}
4470EXPORT_SYMBOL_GPL(disable_delayed_work);
4471
4472/**
4473 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4474 * @dwork: delayed work item to disable
4475 *
4476 * disable_work_sync() for delayed work items.
4477 */
4478bool disable_delayed_work_sync(struct delayed_work *dwork)
4479{
4480 return __cancel_work_sync(&dwork->work,
4481 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4482}
4483EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4484
4485/**
4486 * enable_delayed_work - Enable a delayed work item
4487 * @dwork: delayed work item to enable
4488 *
4489 * enable_work() for delayed work items.
4490 */
4491bool enable_delayed_work(struct delayed_work *dwork)
4492{
4493 return enable_work(&dwork->work);
4494}
4495EXPORT_SYMBOL_GPL(enable_delayed_work);
4496
b6136773 4497/**
31ddd871 4498 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4499 * @func: the function to call
b6136773 4500 *
31ddd871
TH
4501 * schedule_on_each_cpu() executes @func on each online CPU using the
4502 * system workqueue and blocks until all CPUs have completed.
b6136773 4503 * schedule_on_each_cpu() is very slow.
31ddd871 4504 *
d185af30 4505 * Return:
31ddd871 4506 * 0 on success, -errno on failure.
b6136773 4507 */
65f27f38 4508int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4509{
4510 int cpu;
38f51568 4511 struct work_struct __percpu *works;
15316ba8 4512
b6136773
AM
4513 works = alloc_percpu(struct work_struct);
4514 if (!works)
15316ba8 4515 return -ENOMEM;
b6136773 4516
ffd8bea8 4517 cpus_read_lock();
93981800 4518
15316ba8 4519 for_each_online_cpu(cpu) {
9bfb1839
IM
4520 struct work_struct *work = per_cpu_ptr(works, cpu);
4521
4522 INIT_WORK(work, func);
b71ab8c2 4523 schedule_work_on(cpu, work);
65a64464 4524 }
93981800
TH
4525
4526 for_each_online_cpu(cpu)
4527 flush_work(per_cpu_ptr(works, cpu));
4528
ffd8bea8 4529 cpus_read_unlock();
b6136773 4530 free_percpu(works);
15316ba8
CL
4531 return 0;
4532}
4533
1fa44eca
JB
4534/**
4535 * execute_in_process_context - reliably execute the routine with user context
4536 * @fn: the function to execute
1fa44eca
JB
4537 * @ew: guaranteed storage for the execute work structure (must
4538 * be available when the work executes)
4539 *
4540 * Executes the function immediately if process context is available,
4541 * otherwise schedules the function for delayed execution.
4542 *
d185af30 4543 * Return: 0 - function was executed
1fa44eca
JB
4544 * 1 - function was scheduled for execution
4545 */
65f27f38 4546int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4547{
4548 if (!in_interrupt()) {
65f27f38 4549 fn(&ew->work);
1fa44eca
JB
4550 return 0;
4551 }
4552
65f27f38 4553 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4554 schedule_work(&ew->work);
4555
4556 return 1;
4557}
4558EXPORT_SYMBOL_GPL(execute_in_process_context);
4559
6ba94429
FW
4560/**
4561 * free_workqueue_attrs - free a workqueue_attrs
4562 * @attrs: workqueue_attrs to free
226223ab 4563 *
6ba94429 4564 * Undo alloc_workqueue_attrs().
226223ab 4565 */
513c98d0 4566void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4567{
6ba94429
FW
4568 if (attrs) {
4569 free_cpumask_var(attrs->cpumask);
9546b29e 4570 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4571 kfree(attrs);
4572 }
226223ab
TH
4573}
4574
6ba94429
FW
4575/**
4576 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4577 *
4578 * Allocate a new workqueue_attrs, initialize with default settings and
4579 * return it.
4580 *
4581 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4582 */
513c98d0 4583struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4584{
6ba94429 4585 struct workqueue_attrs *attrs;
226223ab 4586
be69d00d 4587 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4588 if (!attrs)
4589 goto fail;
be69d00d 4590 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4591 goto fail;
9546b29e
TH
4592 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4593 goto fail;
6ba94429
FW
4594
4595 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4596 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4597 return attrs;
4598fail:
4599 free_workqueue_attrs(attrs);
4600 return NULL;
226223ab
TH
4601}
4602
6ba94429
FW
4603static void copy_workqueue_attrs(struct workqueue_attrs *to,
4604 const struct workqueue_attrs *from)
226223ab 4605{
6ba94429
FW
4606 to->nice = from->nice;
4607 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4608 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4609 to->affn_strict = from->affn_strict;
84193c07 4610
6ba94429 4611 /*
84193c07
TH
4612 * Unlike hash and equality test, copying shouldn't ignore wq-only
4613 * fields as copying is used for both pool and wq attrs. Instead,
4614 * get_unbound_pool() explicitly clears the fields.
6ba94429 4615 */
84193c07 4616 to->affn_scope = from->affn_scope;
af73f5c9 4617 to->ordered = from->ordered;
226223ab
TH
4618}
4619
5de7a03c
TH
4620/*
4621 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4622 * comments in 'struct workqueue_attrs' definition.
4623 */
4624static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4625{
84193c07 4626 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c 4627 attrs->ordered = false;
ae1296a7
LJ
4628 if (attrs->affn_strict)
4629 cpumask_copy(attrs->cpumask, cpu_possible_mask);
5de7a03c
TH
4630}
4631
6ba94429
FW
4632/* hash value of the content of @attr */
4633static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4634{
6ba94429 4635 u32 hash = 0;
226223ab 4636
6ba94429 4637 hash = jhash_1word(attrs->nice, hash);
ae1296a7 4638 hash = jhash_1word(attrs->affn_strict, hash);
9546b29e
TH
4639 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4640 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
ae1296a7
LJ
4641 if (!attrs->affn_strict)
4642 hash = jhash(cpumask_bits(attrs->cpumask),
4643 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
6ba94429 4644 return hash;
226223ab 4645}
226223ab 4646
6ba94429
FW
4647/* content equality test */
4648static bool wqattrs_equal(const struct workqueue_attrs *a,
4649 const struct workqueue_attrs *b)
226223ab 4650{
6ba94429
FW
4651 if (a->nice != b->nice)
4652 return false;
ae1296a7 4653 if (a->affn_strict != b->affn_strict)
6ba94429 4654 return false;
9546b29e
TH
4655 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4656 return false;
ae1296a7 4657 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
8639eceb 4658 return false;
6ba94429 4659 return true;
226223ab
TH
4660}
4661
0f36ee24
TH
4662/* Update @attrs with actually available CPUs */
4663static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4664 const cpumask_t *unbound_cpumask)
4665{
4666 /*
4667 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4668 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4669 * @unbound_cpumask.
4670 */
4671 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4672 if (unlikely(cpumask_empty(attrs->cpumask)))
4673 cpumask_copy(attrs->cpumask, unbound_cpumask);
4674}
4675
84193c07
TH
4676/* find wq_pod_type to use for @attrs */
4677static const struct wq_pod_type *
4678wqattrs_pod_type(const struct workqueue_attrs *attrs)
4679{
523a301e
TH
4680 enum wq_affn_scope scope;
4681 struct wq_pod_type *pt;
4682
4683 /* to synchronize access to wq_affn_dfl */
4684 lockdep_assert_held(&wq_pool_mutex);
4685
4686 if (attrs->affn_scope == WQ_AFFN_DFL)
4687 scope = wq_affn_dfl;
4688 else
4689 scope = attrs->affn_scope;
4690
4691 pt = &wq_pod_types[scope];
84193c07
TH
4692
4693 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4694 likely(pt->nr_pods))
4695 return pt;
4696
4697 /*
4698 * Before workqueue_init_topology(), only SYSTEM is available which is
4699 * initialized in workqueue_init_early().
4700 */
4701 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4702 BUG_ON(!pt->nr_pods);
4703 return pt;
4704}
4705
6ba94429
FW
4706/**
4707 * init_worker_pool - initialize a newly zalloc'd worker_pool
4708 * @pool: worker_pool to initialize
4709 *
402dd89d 4710 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4711 *
4712 * Return: 0 on success, -errno on failure. Even on failure, all fields
4713 * inside @pool proper are initialized and put_unbound_pool() can be called
4714 * on @pool safely to release it.
4715 */
4716static int init_worker_pool(struct worker_pool *pool)
226223ab 4717{
a9b8a985 4718 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4719 pool->id = -1;
4720 pool->cpu = -1;
4721 pool->node = NUMA_NO_NODE;
4722 pool->flags |= POOL_DISASSOCIATED;
82607adc 4723 pool->watchdog_ts = jiffies;
6ba94429
FW
4724 INIT_LIST_HEAD(&pool->worklist);
4725 INIT_LIST_HEAD(&pool->idle_list);
4726 hash_init(pool->busy_hash);
226223ab 4727
32a6c723 4728 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4729 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4730
32a6c723 4731 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4732
6ba94429 4733 INIT_LIST_HEAD(&pool->workers);
e02b9312 4734 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 4735
6ba94429
FW
4736 ida_init(&pool->worker_ida);
4737 INIT_HLIST_NODE(&pool->hash_node);
4738 pool->refcnt = 1;
226223ab 4739
6ba94429 4740 /* shouldn't fail above this point */
be69d00d 4741 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4742 if (!pool->attrs)
4743 return -ENOMEM;
5de7a03c
TH
4744
4745 wqattrs_clear_for_pool(pool->attrs);
4746
6ba94429 4747 return 0;
226223ab
TH
4748}
4749
669de8bd
BVA
4750#ifdef CONFIG_LOCKDEP
4751static void wq_init_lockdep(struct workqueue_struct *wq)
4752{
4753 char *lock_name;
4754
4755 lockdep_register_key(&wq->key);
4756 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4757 if (!lock_name)
4758 lock_name = wq->name;
69a106c0
QC
4759
4760 wq->lock_name = lock_name;
669de8bd
BVA
4761 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4762}
4763
4764static void wq_unregister_lockdep(struct workqueue_struct *wq)
4765{
4766 lockdep_unregister_key(&wq->key);
4767}
4768
4769static void wq_free_lockdep(struct workqueue_struct *wq)
4770{
4771 if (wq->lock_name != wq->name)
4772 kfree(wq->lock_name);
4773}
4774#else
4775static void wq_init_lockdep(struct workqueue_struct *wq)
4776{
4777}
4778
4779static void wq_unregister_lockdep(struct workqueue_struct *wq)
4780{
4781}
4782
4783static void wq_free_lockdep(struct workqueue_struct *wq)
4784{
4785}
4786#endif
4787
91ccc6e7
TH
4788static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4789{
4790 int node;
4791
4792 for_each_node(node) {
4793 kfree(nna_ar[node]);
4794 nna_ar[node] = NULL;
4795 }
4796
4797 kfree(nna_ar[nr_node_ids]);
4798 nna_ar[nr_node_ids] = NULL;
4799}
4800
4801static void init_node_nr_active(struct wq_node_nr_active *nna)
4802{
c5f8cd6c 4803 nna->max = WQ_DFL_MIN_ACTIVE;
91ccc6e7 4804 atomic_set(&nna->nr, 0);
5797b1c1
TH
4805 raw_spin_lock_init(&nna->lock);
4806 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4807}
4808
4809/*
4810 * Each node's nr_active counter will be accessed mostly from its own node and
4811 * should be allocated in the node.
4812 */
4813static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4814{
4815 struct wq_node_nr_active *nna;
4816 int node;
4817
4818 for_each_node(node) {
4819 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4820 if (!nna)
4821 goto err_free;
4822 init_node_nr_active(nna);
4823 nna_ar[node] = nna;
4824 }
4825
4826 /* [nr_node_ids] is used as the fallback */
4827 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4828 if (!nna)
4829 goto err_free;
4830 init_node_nr_active(nna);
4831 nna_ar[nr_node_ids] = nna;
4832
4833 return 0;
4834
4835err_free:
4836 free_node_nr_active(nna_ar);
4837 return -ENOMEM;
4838}
4839
6ba94429 4840static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4841{
6ba94429
FW
4842 struct workqueue_struct *wq =
4843 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4844
91ccc6e7
TH
4845 if (wq->flags & WQ_UNBOUND)
4846 free_node_nr_active(wq->node_nr_active);
4847
669de8bd 4848 wq_free_lockdep(wq);
636b927e
TH
4849 free_percpu(wq->cpu_pwq);
4850 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4851 kfree(wq);
226223ab
TH
4852}
4853
6ba94429 4854static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4855{
6ba94429 4856 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4857
6ba94429
FW
4858 ida_destroy(&pool->worker_ida);
4859 free_workqueue_attrs(pool->attrs);
4860 kfree(pool);
226223ab
TH
4861}
4862
6ba94429
FW
4863/**
4864 * put_unbound_pool - put a worker_pool
4865 * @pool: worker_pool to put
4866 *
24acfb71 4867 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4868 * safe manner. get_unbound_pool() calls this function on its failure path
4869 * and this function should be able to release pools which went through,
4870 * successfully or not, init_worker_pool().
4871 *
4872 * Should be called with wq_pool_mutex held.
4873 */
4874static void put_unbound_pool(struct worker_pool *pool)
226223ab 4875{
6ba94429
FW
4876 DECLARE_COMPLETION_ONSTACK(detach_completion);
4877 struct worker *worker;
9680540c 4878 LIST_HEAD(cull_list);
e02b9312 4879
6ba94429 4880 lockdep_assert_held(&wq_pool_mutex);
226223ab 4881
6ba94429
FW
4882 if (--pool->refcnt)
4883 return;
226223ab 4884
6ba94429
FW
4885 /* sanity checks */
4886 if (WARN_ON(!(pool->cpu < 0)) ||
4887 WARN_ON(!list_empty(&pool->worklist)))
4888 return;
226223ab 4889
6ba94429
FW
4890 /* release id and unhash */
4891 if (pool->id >= 0)
4892 idr_remove(&worker_pool_idr, pool->id);
4893 hash_del(&pool->hash_node);
d55262c4 4894
6ba94429 4895 /*
692b4825
TH
4896 * Become the manager and destroy all workers. This prevents
4897 * @pool's workers from blocking on attach_mutex. We're the last
4898 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4899 *
4900 * Having a concurrent manager is quite unlikely to happen as we can
4901 * only get here with
4902 * pwq->refcnt == pool->refcnt == 0
4903 * which implies no work queued to the pool, which implies no worker can
4904 * become the manager. However a worker could have taken the role of
4905 * manager before the refcnts dropped to 0, since maybe_create_worker()
4906 * drops pool->lock
6ba94429 4907 */
9ab03be4
VS
4908 while (true) {
4909 rcuwait_wait_event(&manager_wait,
4910 !(pool->flags & POOL_MANAGER_ACTIVE),
4911 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4912
4913 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4914 raw_spin_lock_irq(&pool->lock);
4915 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4916 pool->flags |= POOL_MANAGER_ACTIVE;
4917 break;
4918 }
4919 raw_spin_unlock_irq(&pool->lock);
e02b9312 4920 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4921 }
692b4825 4922
6ba94429 4923 while ((worker = first_idle_worker(pool)))
e02b9312 4924 set_worker_dying(worker, &cull_list);
6ba94429 4925 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4926 raw_spin_unlock_irq(&pool->lock);
d55262c4 4927
e02b9312
VS
4928 wake_dying_workers(&cull_list);
4929
4930 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 4931 pool->detach_completion = &detach_completion;
1258fae7 4932 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4933
6ba94429
FW
4934 if (pool->detach_completion)
4935 wait_for_completion(pool->detach_completion);
226223ab 4936
6ba94429
FW
4937 /* shut down the timers */
4938 del_timer_sync(&pool->idle_timer);
3f959aa3 4939 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4940 del_timer_sync(&pool->mayday_timer);
226223ab 4941
24acfb71 4942 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4943 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4944}
4945
4946/**
6ba94429
FW
4947 * get_unbound_pool - get a worker_pool with the specified attributes
4948 * @attrs: the attributes of the worker_pool to get
226223ab 4949 *
6ba94429
FW
4950 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4951 * reference count and return it. If there already is a matching
4952 * worker_pool, it will be used; otherwise, this function attempts to
4953 * create a new one.
226223ab 4954 *
6ba94429 4955 * Should be called with wq_pool_mutex held.
226223ab 4956 *
6ba94429
FW
4957 * Return: On success, a worker_pool with the same attributes as @attrs.
4958 * On failure, %NULL.
226223ab 4959 */
6ba94429 4960static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4961{
84193c07 4962 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4963 u32 hash = wqattrs_hash(attrs);
4964 struct worker_pool *pool;
84193c07 4965 int pod, node = NUMA_NO_NODE;
226223ab 4966
6ba94429 4967 lockdep_assert_held(&wq_pool_mutex);
226223ab 4968
6ba94429
FW
4969 /* do we already have a matching pool? */
4970 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4971 if (wqattrs_equal(pool->attrs, attrs)) {
4972 pool->refcnt++;
4973 return pool;
4974 }
4975 }
226223ab 4976
9546b29e 4977 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 4978 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 4979 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
4980 node = pt->pod_node[pod];
4981 break;
e2273584
XP
4982 }
4983 }
4984
6ba94429 4985 /* nope, create a new one */
84193c07 4986 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
4987 if (!pool || init_worker_pool(pool) < 0)
4988 goto fail;
4989
84193c07 4990 pool->node = node;
5de7a03c
TH
4991 copy_workqueue_attrs(pool->attrs, attrs);
4992 wqattrs_clear_for_pool(pool->attrs);
226223ab 4993
6ba94429
FW
4994 if (worker_pool_assign_id(pool) < 0)
4995 goto fail;
226223ab 4996
6ba94429 4997 /* create and start the initial worker */
3347fa09 4998 if (wq_online && !create_worker(pool))
6ba94429 4999 goto fail;
226223ab 5000
6ba94429
FW
5001 /* install */
5002 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 5003
6ba94429
FW
5004 return pool;
5005fail:
5006 if (pool)
5007 put_unbound_pool(pool);
5008 return NULL;
226223ab 5009}
226223ab 5010
6ba94429 5011static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 5012{
6ba94429
FW
5013 kmem_cache_free(pwq_cache,
5014 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
5015}
5016
6ba94429 5017/*
967b494e
TH
5018 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5019 * refcnt and needs to be destroyed.
7a4e344c 5020 */
687a9aa5 5021static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 5022{
6ba94429 5023 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 5024 release_work);
6ba94429
FW
5025 struct workqueue_struct *wq = pwq->wq;
5026 struct worker_pool *pool = pwq->pool;
b42b0bdd 5027 bool is_last = false;
7a4e344c 5028
b42b0bdd 5029 /*
687a9aa5 5030 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
5031 * @wq, and @wq is invalid to access.
5032 */
5033 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
5034 mutex_lock(&wq->mutex);
5035 list_del_rcu(&pwq->pwqs_node);
5036 is_last = list_empty(&wq->pwqs);
4c065dbc
WL
5037
5038 /*
5039 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5040 */
5041 if (!is_last && (wq->flags & __WQ_ORDERED))
5042 unplug_oldest_pwq(wq);
5043
b42b0bdd
YY
5044 mutex_unlock(&wq->mutex);
5045 }
6ba94429 5046
687a9aa5
TH
5047 if (wq->flags & WQ_UNBOUND) {
5048 mutex_lock(&wq_pool_mutex);
5049 put_unbound_pool(pool);
5050 mutex_unlock(&wq_pool_mutex);
5051 }
6ba94429 5052
5797b1c1
TH
5053 if (!list_empty(&pwq->pending_node)) {
5054 struct wq_node_nr_active *nna =
5055 wq_node_nr_active(pwq->wq, pwq->pool->node);
5056
5057 raw_spin_lock_irq(&nna->lock);
5058 list_del_init(&pwq->pending_node);
5059 raw_spin_unlock_irq(&nna->lock);
5060 }
5061
25b00775 5062 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 5063
2865a8fb 5064 /*
6ba94429
FW
5065 * If we're the last pwq going away, @wq is already dead and no one
5066 * is gonna access it anymore. Schedule RCU free.
2865a8fb 5067 */
669de8bd
BVA
5068 if (is_last) {
5069 wq_unregister_lockdep(wq);
25b00775 5070 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 5071 }
29c91e99
TH
5072}
5073
67dc8325 5074/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
5075static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5076 struct worker_pool *pool)
29c91e99 5077{
e9a8e01f 5078 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
29c91e99 5079
6ba94429
FW
5080 memset(pwq, 0, sizeof(*pwq));
5081
5082 pwq->pool = pool;
5083 pwq->wq = wq;
5084 pwq->flush_color = -1;
5085 pwq->refcnt = 1;
f97a4a1a 5086 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 5087 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
5088 INIT_LIST_HEAD(&pwq->pwqs_node);
5089 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 5090 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
5091}
5092
6ba94429
FW
5093/* sync @pwq with the current state of its associated wq and link it */
5094static void link_pwq(struct pool_workqueue *pwq)
29c91e99 5095{
6ba94429 5096 struct workqueue_struct *wq = pwq->wq;
29c91e99 5097
6ba94429 5098 lockdep_assert_held(&wq->mutex);
a892cacc 5099
6ba94429
FW
5100 /* may be called multiple times, ignore if already linked */
5101 if (!list_empty(&pwq->pwqs_node))
29c91e99 5102 return;
29c91e99 5103
6ba94429
FW
5104 /* set the matching work_color */
5105 pwq->work_color = wq->work_color;
29c91e99 5106
6ba94429 5107 /* link in @pwq */
26fb7e3d 5108 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
6ba94429 5109}
29c91e99 5110
6ba94429
FW
5111/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5112static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5113 const struct workqueue_attrs *attrs)
5114{
5115 struct worker_pool *pool;
5116 struct pool_workqueue *pwq;
60f5a4bc 5117
6ba94429 5118 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 5119
6ba94429
FW
5120 pool = get_unbound_pool(attrs);
5121 if (!pool)
5122 return NULL;
60f5a4bc 5123
6ba94429
FW
5124 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5125 if (!pwq) {
5126 put_unbound_pool(pool);
5127 return NULL;
5128 }
29c91e99 5129
6ba94429
FW
5130 init_pwq(pwq, wq, pool);
5131 return pwq;
5132}
29c91e99 5133
29c91e99 5134/**
fef59c9c 5135 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 5136 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 5137 * @cpu: the target CPU
6ba94429 5138 * @cpu_going_down: if >= 0, the CPU to consider as offline
29c91e99 5139 *
fef59c9c
TH
5140 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5141 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
9546b29e 5142 * The result is stored in @attrs->__pod_cpumask.
a892cacc 5143 *
fef59c9c
TH
5144 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5145 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5146 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 5147 *
fef59c9c 5148 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 5149 */
9546b29e
TH
5150static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5151 int cpu_going_down)
29c91e99 5152{
84193c07
TH
5153 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5154 int pod = pt->cpu_pod[cpu];
29c91e99 5155
fef59c9c 5156 /* does @pod have any online CPUs @attrs wants? */
9546b29e
TH
5157 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5158 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
6ba94429 5159 if (cpu_going_down >= 0)
9546b29e 5160 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
29c91e99 5161
9546b29e
TH
5162 if (cpumask_empty(attrs->__pod_cpumask)) {
5163 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
5164 return;
5165 }
4c16bd32 5166
fef59c9c 5167 /* yeap, return possible CPUs in @pod that @attrs wants */
9546b29e 5168 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 5169
9546b29e 5170 if (cpumask_empty(attrs->__pod_cpumask))
1ad0f0a7
MB
5171 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5172 "possible intersect\n");
4c16bd32
TH
5173}
5174
9f66cff2 5175/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
5176static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5177 int cpu, struct pool_workqueue *pwq)
1befcf30 5178{
9f66cff2 5179 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
5180 struct pool_workqueue *old_pwq;
5181
5b95e1af 5182 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
5183 lockdep_assert_held(&wq->mutex);
5184
5185 /* link_pwq() can handle duplicate calls */
5186 link_pwq(pwq);
5187
9f66cff2
TH
5188 old_pwq = rcu_access_pointer(*slot);
5189 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
5190 return old_pwq;
5191}
5192
2d5f0764
LJ
5193/* context to store the prepared attrs & pwqs before applying */
5194struct apply_wqattrs_ctx {
5195 struct workqueue_struct *wq; /* target workqueue */
5196 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 5197 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
5198 struct pool_workqueue *dfl_pwq;
5199 struct pool_workqueue *pwq_tbl[];
5200};
5201
5202/* free the resources after success or abort */
5203static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5204{
5205 if (ctx) {
636b927e 5206 int cpu;
2d5f0764 5207
636b927e
TH
5208 for_each_possible_cpu(cpu)
5209 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
5210 put_pwq_unlocked(ctx->dfl_pwq);
5211
5212 free_workqueue_attrs(ctx->attrs);
5213
5214 kfree(ctx);
5215 }
5216}
5217
5218/* allocate the attrs and pwqs for later installation */
5219static struct apply_wqattrs_ctx *
5220apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
5221 const struct workqueue_attrs *attrs,
5222 const cpumask_var_t unbound_cpumask)
9e8cd2f5 5223{
2d5f0764 5224 struct apply_wqattrs_ctx *ctx;
9546b29e 5225 struct workqueue_attrs *new_attrs;
636b927e 5226 int cpu;
9e8cd2f5 5227
2d5f0764 5228 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 5229
84193c07
TH
5230 if (WARN_ON(attrs->affn_scope < 0 ||
5231 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5232 return ERR_PTR(-EINVAL);
5233
636b927e 5234 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 5235
be69d00d 5236 new_attrs = alloc_workqueue_attrs();
9546b29e 5237 if (!ctx || !new_attrs)
2d5f0764 5238 goto out_free;
13e2e556 5239
4c16bd32
TH
5240 /*
5241 * If something goes wrong during CPU up/down, we'll fall back to
5242 * the default pwq covering whole @attrs->cpumask. Always create
5243 * it even if we don't use it immediately.
5244 */
0f36ee24
TH
5245 copy_workqueue_attrs(new_attrs, attrs);
5246 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 5247 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
5248 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5249 if (!ctx->dfl_pwq)
5250 goto out_free;
4c16bd32 5251
636b927e 5252 for_each_possible_cpu(cpu) {
af73f5c9 5253 if (new_attrs->ordered) {
2d5f0764 5254 ctx->dfl_pwq->refcnt++;
636b927e
TH
5255 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5256 } else {
9546b29e
TH
5257 wq_calc_pod_cpumask(new_attrs, cpu, -1);
5258 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
5259 if (!ctx->pwq_tbl[cpu])
5260 goto out_free;
4c16bd32
TH
5261 }
5262 }
5263
042f7df1
LJ
5264 /* save the user configured attrs and sanitize it. */
5265 copy_workqueue_attrs(new_attrs, attrs);
5266 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 5267 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 5268 ctx->attrs = new_attrs;
042f7df1 5269
4c065dbc
WL
5270 /*
5271 * For initialized ordered workqueues, there should only be one pwq
5272 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5273 * of newly queued work items until execution of older work items in
5274 * the old pwq's have completed.
5275 */
5276 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5277 ctx->dfl_pwq->plugged = true;
5278
2d5f0764 5279 ctx->wq = wq;
2d5f0764
LJ
5280 return ctx;
5281
5282out_free:
2d5f0764
LJ
5283 free_workqueue_attrs(new_attrs);
5284 apply_wqattrs_cleanup(ctx);
84193c07 5285 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
5286}
5287
5288/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5289static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5290{
636b927e 5291 int cpu;
9e8cd2f5 5292
4c16bd32 5293 /* all pwqs have been created successfully, let's install'em */
2d5f0764 5294 mutex_lock(&ctx->wq->mutex);
a892cacc 5295
2d5f0764 5296 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 5297
9f66cff2 5298 /* save the previous pwqs and install the new ones */
636b927e
TH
5299 for_each_possible_cpu(cpu)
5300 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5301 ctx->pwq_tbl[cpu]);
9f66cff2 5302 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 5303
5797b1c1
TH
5304 /* update node_nr_active->max */
5305 wq_update_node_max_active(ctx->wq, -1);
5306
d64f2fa0
JL
5307 /* rescuer needs to respect wq cpumask changes */
5308 if (ctx->wq->rescuer)
5309 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5310 unbound_effective_cpumask(ctx->wq));
5311
2d5f0764
LJ
5312 mutex_unlock(&ctx->wq->mutex);
5313}
9e8cd2f5 5314
a0111cf6
LJ
5315static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5316 const struct workqueue_attrs *attrs)
2d5f0764
LJ
5317{
5318 struct apply_wqattrs_ctx *ctx;
4c16bd32 5319
2d5f0764
LJ
5320 /* only unbound workqueues can change attributes */
5321 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5322 return -EINVAL;
13e2e556 5323
99c621ef 5324 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
5325 if (IS_ERR(ctx))
5326 return PTR_ERR(ctx);
2d5f0764
LJ
5327
5328 /* the ctx has been prepared successfully, let's commit it */
6201171e 5329 apply_wqattrs_commit(ctx);
2d5f0764
LJ
5330 apply_wqattrs_cleanup(ctx);
5331
6201171e 5332 return 0;
9e8cd2f5
TH
5333}
5334
a0111cf6
LJ
5335/**
5336 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5337 * @wq: the target workqueue
5338 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5339 *
fef59c9c
TH
5340 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5341 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5342 * work items are affine to the pod it was issued on. Older pwqs are released as
5343 * in-flight work items finish. Note that a work item which repeatedly requeues
5344 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
5345 *
5346 * Performs GFP_KERNEL allocations.
5347 *
ffd8bea8 5348 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 5349 *
a0111cf6
LJ
5350 * Return: 0 on success and -errno on failure.
5351 */
513c98d0 5352int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
5353 const struct workqueue_attrs *attrs)
5354{
5355 int ret;
5356
509b3204
DJ
5357 lockdep_assert_cpus_held();
5358
5359 mutex_lock(&wq_pool_mutex);
a0111cf6 5360 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 5361 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
5362
5363 return ret;
5364}
5365
4c16bd32 5366/**
fef59c9c 5367 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 5368 * @wq: the target workqueue
4cbfd3de
TH
5369 * @cpu: the CPU to update pool association for
5370 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
5371 * @online: whether @cpu is coming up or going down
5372 *
5373 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 5374 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
5375 * @wq accordingly.
5376 *
fef59c9c
TH
5377 *
5378 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5379 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5380 *
5381 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5382 * with a cpumask spanning multiple pods, the workers which were already
5383 * executing the work items for the workqueue will lose their CPU affinity and
5384 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5385 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5386 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 5387 */
fef59c9c
TH
5388static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5389 int hotplug_cpu, bool online)
4c16bd32 5390{
4cbfd3de 5391 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
5392 struct pool_workqueue *old_pwq = NULL, *pwq;
5393 struct workqueue_attrs *target_attrs;
4c16bd32
TH
5394
5395 lockdep_assert_held(&wq_pool_mutex);
5396
84193c07 5397 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
5398 return;
5399
5400 /*
5401 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5402 * Let's use a preallocated one. The following buf is protected by
5403 * CPU hotplug exclusion.
5404 */
fef59c9c 5405 target_attrs = wq_update_pod_attrs_buf;
4c16bd32 5406
4c16bd32 5407 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 5408 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 5409
636b927e 5410 /* nothing to do if the target cpumask matches the current pwq */
9546b29e 5411 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
9f66cff2 5412 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 5413 return;
4c16bd32 5414
4c16bd32
TH
5415 /* create a new pwq */
5416 pwq = alloc_unbound_pwq(wq, target_attrs);
5417 if (!pwq) {
fef59c9c 5418 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 5419 wq->name);
77f300b1 5420 goto use_dfl_pwq;
4c16bd32
TH
5421 }
5422
f7142ed4 5423 /* Install the new pwq. */
4c16bd32 5424 mutex_lock(&wq->mutex);
636b927e 5425 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5426 goto out_unlock;
5427
5428use_dfl_pwq:
f7142ed4 5429 mutex_lock(&wq->mutex);
9f66cff2
TH
5430 pwq = unbound_pwq(wq, -1);
5431 raw_spin_lock_irq(&pwq->pool->lock);
5432 get_pwq(pwq);
5433 raw_spin_unlock_irq(&pwq->pool->lock);
5434 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5435out_unlock:
5436 mutex_unlock(&wq->mutex);
5437 put_pwq_unlocked(old_pwq);
5438}
5439
30cdf249 5440static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 5441{
49e3cf44 5442 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 5443 int cpu, ret;
30cdf249 5444
636b927e
TH
5445 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5446 if (!wq->cpu_pwq)
5447 goto enomem;
30cdf249 5448
636b927e 5449 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 5450 for_each_possible_cpu(cpu) {
4cb1ef64
TH
5451 struct pool_workqueue **pwq_p;
5452 struct worker_pool __percpu *pools;
5453 struct worker_pool *pool;
5454
5455 if (wq->flags & WQ_BH)
5456 pools = bh_worker_pools;
5457 else
5458 pools = cpu_worker_pools;
5459
5460 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5461 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
5462
5463 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5464 pool->node);
5465 if (!*pwq_p)
5466 goto enomem;
f3421797 5467
687a9aa5 5468 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
5469
5470 mutex_lock(&wq->mutex);
687a9aa5 5471 link_pwq(*pwq_p);
f147f29e 5472 mutex_unlock(&wq->mutex);
30cdf249 5473 }
9e8cd2f5 5474 return 0;
509b3204
DJ
5475 }
5476
ffd8bea8 5477 cpus_read_lock();
509b3204 5478 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5479 struct pool_workqueue *dfl_pwq;
5480
8a2b7538
TH
5481 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5482 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5483 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5484 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5485 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5486 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5487 } else {
509b3204 5488 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5489 }
ffd8bea8 5490 cpus_read_unlock();
509b3204 5491
64344553
Z
5492 /* for unbound pwq, flush the pwq_release_worker ensures that the
5493 * pwq_release_workfn() completes before calling kfree(wq).
5494 */
5495 if (ret)
5496 kthread_flush_worker(pwq_release_worker);
5497
509b3204 5498 return ret;
687a9aa5
TH
5499
5500enomem:
5501 if (wq->cpu_pwq) {
7b42f401
Z
5502 for_each_possible_cpu(cpu) {
5503 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5504
5505 if (pwq)
5506 kmem_cache_free(pwq_cache, pwq);
5507 }
687a9aa5
TH
5508 free_percpu(wq->cpu_pwq);
5509 wq->cpu_pwq = NULL;
5510 }
5511 return -ENOMEM;
0f900049
TH
5512}
5513
f3421797
TH
5514static int wq_clamp_max_active(int max_active, unsigned int flags,
5515 const char *name)
b71ab8c2 5516{
636b927e 5517 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5518 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5519 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5520
636b927e 5521 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5522}
5523
983c7515
TH
5524/*
5525 * Workqueues which may be used during memory reclaim should have a rescuer
5526 * to guarantee forward progress.
5527 */
5528static int init_rescuer(struct workqueue_struct *wq)
5529{
5530 struct worker *rescuer;
b92b36ea 5531 int ret;
983c7515
TH
5532
5533 if (!(wq->flags & WQ_MEM_RECLAIM))
5534 return 0;
5535
5536 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5537 if (!rescuer) {
5538 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5539 wq->name);
983c7515 5540 return -ENOMEM;
4c0736a7 5541 }
983c7515
TH
5542
5543 rescuer->rescue_wq = wq;
b6a46f72 5544 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
f187b697 5545 if (IS_ERR(rescuer->task)) {
b92b36ea 5546 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5547 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5548 wq->name, ERR_PTR(ret));
983c7515 5549 kfree(rescuer);
b92b36ea 5550 return ret;
983c7515
TH
5551 }
5552
5553 wq->rescuer = rescuer;
85f0ab43 5554 if (wq->flags & WQ_UNBOUND)
49584bb8 5555 kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
85f0ab43
JL
5556 else
5557 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5558 wake_up_process(rescuer->task);
5559
5560 return 0;
5561}
5562
a045a272
TH
5563/**
5564 * wq_adjust_max_active - update a wq's max_active to the current setting
5565 * @wq: target workqueue
5566 *
5567 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5568 * activate inactive work items accordingly. If @wq is freezing, clear
5569 * @wq->max_active to zero.
5570 */
5571static void wq_adjust_max_active(struct workqueue_struct *wq)
5572{
c5404d4e 5573 bool activated;
5797b1c1 5574 int new_max, new_min;
a045a272
TH
5575
5576 lockdep_assert_held(&wq->mutex);
5577
5578 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5579 new_max = 0;
5580 new_min = 0;
5581 } else {
5582 new_max = wq->saved_max_active;
5583 new_min = wq->saved_min_active;
a045a272
TH
5584 }
5585
5797b1c1 5586 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5587 return;
5588
5589 /*
5797b1c1 5590 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5591 * active work items are allowed. This doesn't break work item ordering
5592 * because new work items are always queued behind existing inactive
5593 * work items if there are any.
5594 */
5797b1c1
TH
5595 WRITE_ONCE(wq->max_active, new_max);
5596 WRITE_ONCE(wq->min_active, new_min);
5597
5598 if (wq->flags & WQ_UNBOUND)
5599 wq_update_node_max_active(wq, -1);
5600
5601 if (new_max == 0)
5602 return;
a045a272 5603
c5404d4e
TH
5604 /*
5605 * Round-robin through pwq's activating the first inactive work item
5606 * until max_active is filled.
5607 */
5608 do {
5609 struct pool_workqueue *pwq;
a045a272 5610
c5404d4e
TH
5611 activated = false;
5612 for_each_pwq(pwq, wq) {
c26e2f2e 5613 unsigned long irq_flags;
a045a272 5614
c5404d4e 5615 /* can be called during early boot w/ irq disabled */
c26e2f2e 5616 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5797b1c1 5617 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5618 activated = true;
5619 kick_pool(pwq->pool);
5620 }
c26e2f2e 5621 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
c5404d4e
TH
5622 }
5623 } while (activated);
a045a272
TH
5624}
5625
a2775bbc 5626__printf(1, 4)
669de8bd
BVA
5627struct workqueue_struct *alloc_workqueue(const char *fmt,
5628 unsigned int flags,
5629 int max_active, ...)
1da177e4 5630{
ecf6881f 5631 va_list args;
1da177e4 5632 struct workqueue_struct *wq;
91ccc6e7
TH
5633 size_t wq_size;
5634 int name_len;
b196be89 5635
4cb1ef64
TH
5636 if (flags & WQ_BH) {
5637 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5638 return NULL;
5639 if (WARN_ON_ONCE(max_active))
5640 return NULL;
5641 }
5642
cee22a15
VK
5643 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5644 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5645 flags |= WQ_UNBOUND;
5646
ecf6881f 5647 /* allocate wq and format name */
91ccc6e7
TH
5648 if (flags & WQ_UNBOUND)
5649 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5650 else
5651 wq_size = sizeof(*wq);
5652
5653 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5654 if (!wq)
d2c1d404 5655 return NULL;
b196be89 5656
6029a918 5657 if (flags & WQ_UNBOUND) {
be69d00d 5658 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5659 if (!wq->unbound_attrs)
5660 goto err_free_wq;
5661 }
5662
669de8bd 5663 va_start(args, max_active);
91ccc6e7 5664 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 5665 va_end(args);
1da177e4 5666
91ccc6e7
TH
5667 if (name_len >= WQ_NAME_LEN)
5668 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5669 wq->name);
31c89007 5670
4cb1ef64
TH
5671 if (flags & WQ_BH) {
5672 /*
5673 * BH workqueues always share a single execution context per CPU
5674 * and don't impose any max_active limit.
5675 */
5676 max_active = INT_MAX;
5677 } else {
5678 max_active = max_active ?: WQ_DFL_ACTIVE;
5679 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5680 }
3af24433 5681
b196be89 5682 /* init wq */
97e37d7b 5683 wq->flags = flags;
a045a272 5684 wq->max_active = max_active;
5797b1c1
TH
5685 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5686 wq->saved_max_active = wq->max_active;
5687 wq->saved_min_active = wq->min_active;
3c25a55d 5688 mutex_init(&wq->mutex);
112202d9 5689 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5690 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5691 INIT_LIST_HEAD(&wq->flusher_queue);
5692 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5693 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5694
669de8bd 5695 wq_init_lockdep(wq);
cce1a165 5696 INIT_LIST_HEAD(&wq->list);
3af24433 5697
91ccc6e7
TH
5698 if (flags & WQ_UNBOUND) {
5699 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5700 goto err_unreg_lockdep;
5701 }
5702
30cdf249 5703 if (alloc_and_link_pwqs(wq) < 0)
91ccc6e7 5704 goto err_free_node_nr_active;
1537663f 5705
40c17f75 5706 if (wq_online && init_rescuer(wq) < 0)
983c7515 5707 goto err_destroy;
3af24433 5708
226223ab
TH
5709 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5710 goto err_destroy;
5711
a0a1a5fd 5712 /*
68e13a67
LJ
5713 * wq_pool_mutex protects global freeze state and workqueues list.
5714 * Grab it, adjust max_active and add the new @wq to workqueues
5715 * list.
a0a1a5fd 5716 */
68e13a67 5717 mutex_lock(&wq_pool_mutex);
a0a1a5fd 5718
a357fc03 5719 mutex_lock(&wq->mutex);
a045a272 5720 wq_adjust_max_active(wq);
a357fc03 5721 mutex_unlock(&wq->mutex);
a0a1a5fd 5722
e2dca7ad 5723 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5724
68e13a67 5725 mutex_unlock(&wq_pool_mutex);
1537663f 5726
3af24433 5727 return wq;
d2c1d404 5728
91ccc6e7
TH
5729err_free_node_nr_active:
5730 if (wq->flags & WQ_UNBOUND)
5731 free_node_nr_active(wq->node_nr_active);
82efcab3 5732err_unreg_lockdep:
009bb421
BVA
5733 wq_unregister_lockdep(wq);
5734 wq_free_lockdep(wq);
82efcab3 5735err_free_wq:
6029a918 5736 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5737 kfree(wq);
5738 return NULL;
5739err_destroy:
5740 destroy_workqueue(wq);
4690c4ab 5741 return NULL;
3af24433 5742}
669de8bd 5743EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5744
c29eb853
TH
5745static bool pwq_busy(struct pool_workqueue *pwq)
5746{
5747 int i;
5748
5749 for (i = 0; i < WORK_NR_COLORS; i++)
5750 if (pwq->nr_in_flight[i])
5751 return true;
5752
9f66cff2 5753 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5754 return true;
afa87ce8 5755 if (!pwq_is_empty(pwq))
c29eb853
TH
5756 return true;
5757
5758 return false;
5759}
5760
3af24433
ON
5761/**
5762 * destroy_workqueue - safely terminate a workqueue
5763 * @wq: target workqueue
5764 *
5765 * Safely destroy a workqueue. All work currently pending will be done first.
5766 */
5767void destroy_workqueue(struct workqueue_struct *wq)
5768{
49e3cf44 5769 struct pool_workqueue *pwq;
636b927e 5770 int cpu;
3af24433 5771
def98c84
TH
5772 /*
5773 * Remove it from sysfs first so that sanity check failure doesn't
5774 * lead to sysfs name conflicts.
5775 */
5776 workqueue_sysfs_unregister(wq);
5777
33e3f0a3
RC
5778 /* mark the workqueue destruction is in progress */
5779 mutex_lock(&wq->mutex);
5780 wq->flags |= __WQ_DESTROYING;
5781 mutex_unlock(&wq->mutex);
5782
9c5a2ba7
TH
5783 /* drain it before proceeding with destruction */
5784 drain_workqueue(wq);
c8efcc25 5785
def98c84
TH
5786 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5787 if (wq->rescuer) {
5788 struct worker *rescuer = wq->rescuer;
5789
5790 /* this prevents new queueing */
a9b8a985 5791 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5792 wq->rescuer = NULL;
a9b8a985 5793 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5794
5795 /* rescuer will empty maydays list before exiting */
5796 kthread_stop(rescuer->task);
8efe1223 5797 kfree(rescuer);
def98c84
TH
5798 }
5799
c29eb853
TH
5800 /*
5801 * Sanity checks - grab all the locks so that we wait for all
5802 * in-flight operations which may do put_pwq().
5803 */
5804 mutex_lock(&wq_pool_mutex);
b09f4fd3 5805 mutex_lock(&wq->mutex);
49e3cf44 5806 for_each_pwq(pwq, wq) {
a9b8a985 5807 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5808 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5809 pr_warn("%s: %s has the following busy pwq\n",
5810 __func__, wq->name);
c29eb853 5811 show_pwq(pwq);
a9b8a985 5812 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5813 mutex_unlock(&wq->mutex);
c29eb853 5814 mutex_unlock(&wq_pool_mutex);
55df0933 5815 show_one_workqueue(wq);
6183c009 5816 return;
76af4d93 5817 }
a9b8a985 5818 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5819 }
b09f4fd3 5820 mutex_unlock(&wq->mutex);
6183c009 5821
a0a1a5fd
TH
5822 /*
5823 * wq list is used to freeze wq, remove from list after
5824 * flushing is complete in case freeze races us.
5825 */
e2dca7ad 5826 list_del_rcu(&wq->list);
68e13a67 5827 mutex_unlock(&wq_pool_mutex);
3af24433 5828
636b927e
TH
5829 /*
5830 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5831 * to put the base refs. @wq will be auto-destroyed from the last
5832 * pwq_put. RCU read lock prevents @wq from going away from under us.
5833 */
5834 rcu_read_lock();
4c16bd32 5835
636b927e 5836 for_each_possible_cpu(cpu) {
9f66cff2
TH
5837 put_pwq_unlocked(unbound_pwq(wq, cpu));
5838 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5839 }
636b927e 5840
9f66cff2
TH
5841 put_pwq_unlocked(unbound_pwq(wq, -1));
5842 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5843
5844 rcu_read_unlock();
3af24433
ON
5845}
5846EXPORT_SYMBOL_GPL(destroy_workqueue);
5847
dcd989cb
TH
5848/**
5849 * workqueue_set_max_active - adjust max_active of a workqueue
5850 * @wq: target workqueue
5851 * @max_active: new max_active value.
5852 *
5797b1c1
TH
5853 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5854 * comment.
dcd989cb
TH
5855 *
5856 * CONTEXT:
5857 * Don't call from IRQ context.
5858 */
5859void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5860{
4cb1ef64
TH
5861 /* max_active doesn't mean anything for BH workqueues */
5862 if (WARN_ON(wq->flags & WQ_BH))
5863 return;
8719dcea 5864 /* disallow meddling with max_active for ordered workqueues */
3bc1e711 5865 if (WARN_ON(wq->flags & __WQ_ORDERED))
8719dcea
TH
5866 return;
5867
f3421797 5868 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5869
a357fc03 5870 mutex_lock(&wq->mutex);
dcd989cb
TH
5871
5872 wq->saved_max_active = max_active;
5797b1c1
TH
5873 if (wq->flags & WQ_UNBOUND)
5874 wq->saved_min_active = min(wq->saved_min_active, max_active);
5875
a045a272 5876 wq_adjust_max_active(wq);
93981800 5877
a357fc03 5878 mutex_unlock(&wq->mutex);
15316ba8 5879}
dcd989cb 5880EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5881
8f172181
TH
5882/**
5883 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5884 * @wq: target unbound workqueue
5885 * @min_active: new min_active value
5886 *
5887 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5888 * unbound workqueue is not guaranteed to be able to process max_active
5889 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5890 * able to process min_active number of interdependent work items which is
5891 * %WQ_DFL_MIN_ACTIVE by default.
5892 *
5893 * Use this function to adjust the min_active value between 0 and the current
5894 * max_active.
5895 */
5896void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5897{
5898 /* min_active is only meaningful for non-ordered unbound workqueues */
5899 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5900 WQ_UNBOUND))
5901 return;
5902
5903 mutex_lock(&wq->mutex);
5904 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5905 wq_adjust_max_active(wq);
5906 mutex_unlock(&wq->mutex);
5907}
5908
27d4ee03
LW
5909/**
5910 * current_work - retrieve %current task's work struct
5911 *
5912 * Determine if %current task is a workqueue worker and what it's working on.
5913 * Useful to find out the context that the %current task is running in.
5914 *
5915 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5916 */
5917struct work_struct *current_work(void)
5918{
5919 struct worker *worker = current_wq_worker();
5920
5921 return worker ? worker->current_work : NULL;
5922}
5923EXPORT_SYMBOL(current_work);
5924
e6267616
TH
5925/**
5926 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5927 *
5928 * Determine whether %current is a workqueue rescuer. Can be used from
5929 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5930 *
5931 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5932 */
5933bool current_is_workqueue_rescuer(void)
5934{
5935 struct worker *worker = current_wq_worker();
5936
6a092dfd 5937 return worker && worker->rescue_wq;
e6267616
TH
5938}
5939
eef6a7d5 5940/**
dcd989cb
TH
5941 * workqueue_congested - test whether a workqueue is congested
5942 * @cpu: CPU in question
5943 * @wq: target workqueue
eef6a7d5 5944 *
dcd989cb
TH
5945 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5946 * no synchronization around this function and the test result is
5947 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5948 *
d3251859 5949 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5950 *
5951 * With the exception of ordered workqueues, all workqueues have per-cpu
5952 * pool_workqueues, each with its own congested state. A workqueue being
5953 * congested on one CPU doesn't mean that the workqueue is contested on any
5954 * other CPUs.
d3251859 5955 *
d185af30 5956 * Return:
dcd989cb 5957 * %true if congested, %false otherwise.
eef6a7d5 5958 */
d84ff051 5959bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 5960{
7fb98ea7 5961 struct pool_workqueue *pwq;
76af4d93
TH
5962 bool ret;
5963
24acfb71
TG
5964 rcu_read_lock();
5965 preempt_disable();
7fb98ea7 5966
d3251859
TH
5967 if (cpu == WORK_CPU_UNBOUND)
5968 cpu = smp_processor_id();
5969
636b927e 5970 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 5971 ret = !list_empty(&pwq->inactive_works);
636b927e 5972
24acfb71
TG
5973 preempt_enable();
5974 rcu_read_unlock();
76af4d93
TH
5975
5976 return ret;
1da177e4 5977}
dcd989cb 5978EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 5979
dcd989cb
TH
5980/**
5981 * work_busy - test whether a work is currently pending or running
5982 * @work: the work to be tested
5983 *
5984 * Test whether @work is currently pending or running. There is no
5985 * synchronization around this function and the test result is
5986 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 5987 *
d185af30 5988 * Return:
dcd989cb
TH
5989 * OR'd bitmask of WORK_BUSY_* bits.
5990 */
5991unsigned int work_busy(struct work_struct *work)
1da177e4 5992{
fa1b54e6 5993 struct worker_pool *pool;
c26e2f2e 5994 unsigned long irq_flags;
dcd989cb 5995 unsigned int ret = 0;
1da177e4 5996
dcd989cb
TH
5997 if (work_pending(work))
5998 ret |= WORK_BUSY_PENDING;
1da177e4 5999
24acfb71 6000 rcu_read_lock();
fa1b54e6 6001 pool = get_work_pool(work);
038366c5 6002 if (pool) {
c26e2f2e 6003 raw_spin_lock_irqsave(&pool->lock, irq_flags);
038366c5
LJ
6004 if (find_worker_executing_work(pool, work))
6005 ret |= WORK_BUSY_RUNNING;
c26e2f2e 6006 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
038366c5 6007 }
24acfb71 6008 rcu_read_unlock();
1da177e4 6009
dcd989cb 6010 return ret;
1da177e4 6011}
dcd989cb 6012EXPORT_SYMBOL_GPL(work_busy);
1da177e4 6013
3d1cb205
TH
6014/**
6015 * set_worker_desc - set description for the current work item
6016 * @fmt: printf-style format string
6017 * @...: arguments for the format string
6018 *
6019 * This function can be called by a running work function to describe what
6020 * the work item is about. If the worker task gets dumped, this
6021 * information will be printed out together to help debugging. The
6022 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6023 */
6024void set_worker_desc(const char *fmt, ...)
6025{
6026 struct worker *worker = current_wq_worker();
6027 va_list args;
6028
6029 if (worker) {
6030 va_start(args, fmt);
6031 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6032 va_end(args);
3d1cb205
TH
6033 }
6034}
5c750d58 6035EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
6036
6037/**
6038 * print_worker_info - print out worker information and description
6039 * @log_lvl: the log level to use when printing
6040 * @task: target task
6041 *
6042 * If @task is a worker and currently executing a work item, print out the
6043 * name of the workqueue being serviced and worker description set with
6044 * set_worker_desc() by the currently executing work item.
6045 *
6046 * This function can be safely called on any task as long as the
6047 * task_struct itself is accessible. While safe, this function isn't
6048 * synchronized and may print out mixups or garbages of limited length.
6049 */
6050void print_worker_info(const char *log_lvl, struct task_struct *task)
6051{
6052 work_func_t *fn = NULL;
6053 char name[WQ_NAME_LEN] = { };
6054 char desc[WORKER_DESC_LEN] = { };
6055 struct pool_workqueue *pwq = NULL;
6056 struct workqueue_struct *wq = NULL;
3d1cb205
TH
6057 struct worker *worker;
6058
6059 if (!(task->flags & PF_WQ_WORKER))
6060 return;
6061
6062 /*
6063 * This function is called without any synchronization and @task
6064 * could be in any state. Be careful with dereferences.
6065 */
e700591a 6066 worker = kthread_probe_data(task);
3d1cb205
TH
6067
6068 /*
8bf89593
TH
6069 * Carefully copy the associated workqueue's workfn, name and desc.
6070 * Keep the original last '\0' in case the original is garbage.
3d1cb205 6071 */
fe557319
CH
6072 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6073 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6074 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6075 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6076 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
6077
6078 if (fn || name[0] || desc[0]) {
d75f773c 6079 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 6080 if (strcmp(name, desc))
3d1cb205
TH
6081 pr_cont(" (%s)", desc);
6082 pr_cont("\n");
6083 }
6084}
6085
3494fc30
TH
6086static void pr_cont_pool_info(struct worker_pool *pool)
6087{
6088 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6089 if (pool->node != NUMA_NO_NODE)
6090 pr_cont(" node=%d", pool->node);
4cb1ef64
TH
6091 pr_cont(" flags=0x%x", pool->flags);
6092 if (pool->flags & POOL_BH)
6093 pr_cont(" bh%s",
6094 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6095 else
6096 pr_cont(" nice=%d", pool->attrs->nice);
6097}
6098
6099static void pr_cont_worker_id(struct worker *worker)
6100{
6101 struct worker_pool *pool = worker->pool;
6102
6103 if (pool->flags & WQ_BH)
6104 pr_cont("bh%s",
6105 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6106 else
6107 pr_cont("%d%s", task_pid_nr(worker->task),
6108 worker->rescue_wq ? "(RESCUER)" : "");
3494fc30
TH
6109}
6110
c76feb0d
PM
6111struct pr_cont_work_struct {
6112 bool comma;
6113 work_func_t func;
6114 long ctr;
6115};
6116
6117static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6118{
6119 if (!pcwsp->ctr)
6120 goto out_record;
6121 if (func == pcwsp->func) {
6122 pcwsp->ctr++;
6123 return;
6124 }
6125 if (pcwsp->ctr == 1)
6126 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6127 else
6128 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6129 pcwsp->ctr = 0;
6130out_record:
6131 if ((long)func == -1L)
6132 return;
6133 pcwsp->comma = comma;
6134 pcwsp->func = func;
6135 pcwsp->ctr = 1;
6136}
6137
6138static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
6139{
6140 if (work->func == wq_barrier_func) {
6141 struct wq_barrier *barr;
6142
6143 barr = container_of(work, struct wq_barrier, work);
6144
c76feb0d 6145 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
6146 pr_cont("%s BAR(%d)", comma ? "," : "",
6147 task_pid_nr(barr->task));
6148 } else {
c76feb0d
PM
6149 if (!comma)
6150 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6151 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
6152 }
6153}
6154
6155static void show_pwq(struct pool_workqueue *pwq)
6156{
c76feb0d 6157 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
6158 struct worker_pool *pool = pwq->pool;
6159 struct work_struct *work;
6160 struct worker *worker;
6161 bool has_in_flight = false, has_pending = false;
6162 int bkt;
6163
6164 pr_info(" pwq %d:", pool->id);
6165 pr_cont_pool_info(pool);
6166
a045a272
TH
6167 pr_cont(" active=%d refcnt=%d%s\n",
6168 pwq->nr_active, pwq->refcnt,
3494fc30
TH
6169 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6170
6171 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6172 if (worker->current_pwq == pwq) {
6173 has_in_flight = true;
6174 break;
6175 }
6176 }
6177 if (has_in_flight) {
6178 bool comma = false;
6179
6180 pr_info(" in-flight:");
6181 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6182 if (worker->current_pwq != pwq)
6183 continue;
6184
4cb1ef64
TH
6185 pr_cont(" %s", comma ? "," : "");
6186 pr_cont_worker_id(worker);
6187 pr_cont(":%ps", worker->current_func);
3494fc30 6188 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
6189 pr_cont_work(false, work, &pcws);
6190 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6191 comma = true;
6192 }
6193 pr_cont("\n");
6194 }
6195
6196 list_for_each_entry(work, &pool->worklist, entry) {
6197 if (get_work_pwq(work) == pwq) {
6198 has_pending = true;
6199 break;
6200 }
6201 }
6202 if (has_pending) {
6203 bool comma = false;
6204
6205 pr_info(" pending:");
6206 list_for_each_entry(work, &pool->worklist, entry) {
6207 if (get_work_pwq(work) != pwq)
6208 continue;
6209
c76feb0d 6210 pr_cont_work(comma, work, &pcws);
3494fc30
TH
6211 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6212 }
c76feb0d 6213 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6214 pr_cont("\n");
6215 }
6216
f97a4a1a 6217 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
6218 bool comma = false;
6219
f97a4a1a
LJ
6220 pr_info(" inactive:");
6221 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 6222 pr_cont_work(comma, work, &pcws);
3494fc30
TH
6223 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6224 }
c76feb0d 6225 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
6226 pr_cont("\n");
6227 }
6228}
6229
6230/**
55df0933
IK
6231 * show_one_workqueue - dump state of specified workqueue
6232 * @wq: workqueue whose state will be printed
3494fc30 6233 */
55df0933 6234void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 6235{
55df0933
IK
6236 struct pool_workqueue *pwq;
6237 bool idle = true;
c26e2f2e 6238 unsigned long irq_flags;
3494fc30 6239
55df0933 6240 for_each_pwq(pwq, wq) {
afa87ce8 6241 if (!pwq_is_empty(pwq)) {
55df0933
IK
6242 idle = false;
6243 break;
3494fc30 6244 }
55df0933
IK
6245 }
6246 if (idle) /* Nothing to print for idle workqueue */
6247 return;
3494fc30 6248
55df0933 6249 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 6250
55df0933 6251 for_each_pwq(pwq, wq) {
c26e2f2e 6252 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
afa87ce8 6253 if (!pwq_is_empty(pwq)) {
62635ea8 6254 /*
55df0933
IK
6255 * Defer printing to avoid deadlocks in console
6256 * drivers that queue work while holding locks
6257 * also taken in their write paths.
62635ea8 6258 */
55df0933
IK
6259 printk_deferred_enter();
6260 show_pwq(pwq);
6261 printk_deferred_exit();
3494fc30 6262 }
c26e2f2e 6263 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
62635ea8
SS
6264 /*
6265 * We could be printing a lot from atomic context, e.g.
55df0933 6266 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
6267 * hard lockup.
6268 */
6269 touch_nmi_watchdog();
3494fc30
TH
6270 }
6271
55df0933
IK
6272}
6273
6274/**
6275 * show_one_worker_pool - dump state of specified worker pool
6276 * @pool: worker pool whose state will be printed
6277 */
6278static void show_one_worker_pool(struct worker_pool *pool)
6279{
6280 struct worker *worker;
6281 bool first = true;
c26e2f2e 6282 unsigned long irq_flags;
335a42eb 6283 unsigned long hung = 0;
55df0933 6284
c26e2f2e 6285 raw_spin_lock_irqsave(&pool->lock, irq_flags);
55df0933
IK
6286 if (pool->nr_workers == pool->nr_idle)
6287 goto next_pool;
335a42eb
PM
6288
6289 /* How long the first pending work is waiting for a worker. */
6290 if (!list_empty(&pool->worklist))
6291 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6292
55df0933
IK
6293 /*
6294 * Defer printing to avoid deadlocks in console drivers that
6295 * queue work while holding locks also taken in their write
6296 * paths.
6297 */
6298 printk_deferred_enter();
6299 pr_info("pool %d:", pool->id);
6300 pr_cont_pool_info(pool);
335a42eb 6301 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
6302 if (pool->manager)
6303 pr_cont(" manager: %d",
6304 task_pid_nr(pool->manager->task));
6305 list_for_each_entry(worker, &pool->idle_list, entry) {
4cb1ef64
TH
6306 pr_cont(" %s", first ? "idle: " : "");
6307 pr_cont_worker_id(worker);
55df0933
IK
6308 first = false;
6309 }
6310 pr_cont("\n");
6311 printk_deferred_exit();
6312next_pool:
c26e2f2e 6313 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
55df0933
IK
6314 /*
6315 * We could be printing a lot from atomic context, e.g.
6316 * sysrq-t -> show_all_workqueues(). Avoid triggering
6317 * hard lockup.
6318 */
6319 touch_nmi_watchdog();
6320
6321}
6322
6323/**
6324 * show_all_workqueues - dump workqueue state
6325 *
704bc669 6326 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
6327 */
6328void show_all_workqueues(void)
6329{
6330 struct workqueue_struct *wq;
6331 struct worker_pool *pool;
6332 int pi;
6333
6334 rcu_read_lock();
6335
6336 pr_info("Showing busy workqueues and worker pools:\n");
6337
6338 list_for_each_entry_rcu(wq, &workqueues, list)
6339 show_one_workqueue(wq);
6340
6341 for_each_pool(pool, pi)
6342 show_one_worker_pool(pool);
6343
24acfb71 6344 rcu_read_unlock();
3494fc30
TH
6345}
6346
704bc669
JL
6347/**
6348 * show_freezable_workqueues - dump freezable workqueue state
6349 *
6350 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6351 * still busy.
6352 */
6353void show_freezable_workqueues(void)
6354{
6355 struct workqueue_struct *wq;
6356
6357 rcu_read_lock();
6358
6359 pr_info("Showing freezable workqueues that are still busy:\n");
6360
6361 list_for_each_entry_rcu(wq, &workqueues, list) {
6362 if (!(wq->flags & WQ_FREEZABLE))
6363 continue;
6364 show_one_workqueue(wq);
6365 }
6366
6367 rcu_read_unlock();
6368}
6369
6b59808b
TH
6370/* used to show worker information through /proc/PID/{comm,stat,status} */
6371void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6372{
6b59808b
TH
6373 int off;
6374
6375 /* always show the actual comm */
6376 off = strscpy(buf, task->comm, size);
6377 if (off < 0)
6378 return;
6379
197f6acc 6380 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
6381 mutex_lock(&wq_pool_attach_mutex);
6382
197f6acc
TH
6383 if (task->flags & PF_WQ_WORKER) {
6384 struct worker *worker = kthread_data(task);
6385 struct worker_pool *pool = worker->pool;
6b59808b 6386
197f6acc 6387 if (pool) {
a9b8a985 6388 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
6389 /*
6390 * ->desc tracks information (wq name or
6391 * set_worker_desc()) for the latest execution. If
6392 * current, prepend '+', otherwise '-'.
6393 */
6394 if (worker->desc[0] != '\0') {
6395 if (worker->current_work)
6396 scnprintf(buf + off, size - off, "+%s",
6397 worker->desc);
6398 else
6399 scnprintf(buf + off, size - off, "-%s",
6400 worker->desc);
6401 }
a9b8a985 6402 raw_spin_unlock_irq(&pool->lock);
6b59808b 6403 }
6b59808b
TH
6404 }
6405
6406 mutex_unlock(&wq_pool_attach_mutex);
6407}
6408
66448bc2
MM
6409#ifdef CONFIG_SMP
6410
db7bccf4
TH
6411/*
6412 * CPU hotplug.
6413 *
e22bee78 6414 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 6415 * are a lot of assumptions on strong associations among work, pwq and
706026c2 6416 * pool which make migrating pending and scheduled works very
e22bee78 6417 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 6418 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
6419 * blocked draining impractical.
6420 *
24647570 6421 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
6422 * running as an unbound one and allowing it to be reattached later if the
6423 * cpu comes back online.
db7bccf4 6424 */
1da177e4 6425
e8b3f8db 6426static void unbind_workers(int cpu)
3af24433 6427{
4ce62e9e 6428 struct worker_pool *pool;
db7bccf4 6429 struct worker *worker;
3af24433 6430
f02ae73a 6431 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 6432 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 6433 raw_spin_lock_irq(&pool->lock);
3af24433 6434
94cf58bb 6435 /*
92f9c5c4 6436 * We've blocked all attach/detach operations. Make all workers
94cf58bb 6437 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 6438 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
6439 * And the preemption disabled section in their sched callbacks
6440 * are guaranteed to see WORKER_UNBOUND since the code here
6441 * is on the same cpu.
94cf58bb 6442 */
da028469 6443 for_each_pool_worker(worker, pool)
c9e7cf27 6444 worker->flags |= WORKER_UNBOUND;
06ba38a9 6445
24647570 6446 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 6447
eb283428 6448 /*
989442d7
LJ
6449 * The handling of nr_running in sched callbacks are disabled
6450 * now. Zap nr_running. After this, nr_running stays zero and
6451 * need_more_worker() and keep_working() are always true as
6452 * long as the worklist is not empty. This pool now behaves as
6453 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
6454 * are served by workers tied to the pool.
6455 */
bc35f7ef 6456 pool->nr_running = 0;
eb283428
LJ
6457
6458 /*
6459 * With concurrency management just turned off, a busy
6460 * worker blocking could lead to lengthy stalls. Kick off
6461 * unbound chain execution of currently pending work items.
6462 */
0219a352 6463 kick_pool(pool);
989442d7 6464
a9b8a985 6465 raw_spin_unlock_irq(&pool->lock);
989442d7 6466
793777bc
VS
6467 for_each_pool_worker(worker, pool)
6468 unbind_worker(worker);
989442d7
LJ
6469
6470 mutex_unlock(&wq_pool_attach_mutex);
eb283428 6471 }
3af24433 6472}
3af24433 6473
bd7c089e
TH
6474/**
6475 * rebind_workers - rebind all workers of a pool to the associated CPU
6476 * @pool: pool of interest
6477 *
a9ab775b 6478 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
6479 */
6480static void rebind_workers(struct worker_pool *pool)
6481{
a9ab775b 6482 struct worker *worker;
bd7c089e 6483
1258fae7 6484 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 6485
a9ab775b
TH
6486 /*
6487 * Restore CPU affinity of all workers. As all idle workers should
6488 * be on the run-queue of the associated CPU before any local
402dd89d 6489 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
6490 * of all workers first and then clear UNBOUND. As we're called
6491 * from CPU_ONLINE, the following shouldn't fail.
6492 */
c63a2e52
VS
6493 for_each_pool_worker(worker, pool) {
6494 kthread_set_per_cpu(worker->task, pool->cpu);
6495 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 6496 pool_allowed_cpus(pool)) < 0);
c63a2e52 6497 }
bd7c089e 6498
a9b8a985 6499 raw_spin_lock_irq(&pool->lock);
f7c17d26 6500
3de5e884 6501 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 6502
da028469 6503 for_each_pool_worker(worker, pool) {
a9ab775b 6504 unsigned int worker_flags = worker->flags;
bd7c089e 6505
a9ab775b
TH
6506 /*
6507 * We want to clear UNBOUND but can't directly call
6508 * worker_clr_flags() or adjust nr_running. Atomically
6509 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6510 * @worker will clear REBOUND using worker_clr_flags() when
6511 * it initiates the next execution cycle thus restoring
6512 * concurrency management. Note that when or whether
6513 * @worker clears REBOUND doesn't affect correctness.
6514 *
c95491ed 6515 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 6516 * tested without holding any lock in
6d25be57 6517 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
6518 * fail incorrectly leading to premature concurrency
6519 * management operations.
6520 */
6521 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6522 worker_flags |= WORKER_REBOUND;
6523 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6524 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6525 }
a9ab775b 6526
a9b8a985 6527 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6528}
6529
7dbc725e
TH
6530/**
6531 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6532 * @pool: unbound pool of interest
6533 * @cpu: the CPU which is coming up
6534 *
6535 * An unbound pool may end up with a cpumask which doesn't have any online
6536 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6537 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6538 * online CPU before, cpus_allowed of all its workers should be restored.
6539 */
6540static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6541{
6542 static cpumask_t cpumask;
6543 struct worker *worker;
7dbc725e 6544
1258fae7 6545 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6546
6547 /* is @cpu allowed for @pool? */
6548 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6549 return;
6550
7dbc725e 6551 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6552
6553 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6554 for_each_pool_worker(worker, pool)
d945b5e9 6555 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6556}
6557
7ee681b2
TG
6558int workqueue_prepare_cpu(unsigned int cpu)
6559{
6560 struct worker_pool *pool;
6561
6562 for_each_cpu_worker_pool(pool, cpu) {
6563 if (pool->nr_workers)
6564 continue;
6565 if (!create_worker(pool))
6566 return -ENOMEM;
6567 }
6568 return 0;
6569}
6570
6571int workqueue_online_cpu(unsigned int cpu)
3af24433 6572{
4ce62e9e 6573 struct worker_pool *pool;
4c16bd32 6574 struct workqueue_struct *wq;
7dbc725e 6575 int pi;
3ce63377 6576
7ee681b2 6577 mutex_lock(&wq_pool_mutex);
7dbc725e 6578
7ee681b2 6579 for_each_pool(pool, pi) {
4cb1ef64
TH
6580 /* BH pools aren't affected by hotplug */
6581 if (pool->flags & POOL_BH)
6582 continue;
94cf58bb 6583
4cb1ef64 6584 mutex_lock(&wq_pool_attach_mutex);
7ee681b2
TG
6585 if (pool->cpu == cpu)
6586 rebind_workers(pool);
6587 else if (pool->cpu < 0)
6588 restore_unbound_workers_cpumask(pool, cpu);
1258fae7 6589 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6590 }
6ba94429 6591
fef59c9c 6592 /* update pod affinity of unbound workqueues */
4cbfd3de 6593 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6594 struct workqueue_attrs *attrs = wq->unbound_attrs;
6595
6596 if (attrs) {
6597 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6598 int tcpu;
4cbfd3de 6599
84193c07 6600 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6601 wq_update_pod(wq, tcpu, cpu, true);
5797b1c1
TH
6602
6603 mutex_lock(&wq->mutex);
6604 wq_update_node_max_active(wq, -1);
6605 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6606 }
6607 }
6ba94429 6608
7ee681b2
TG
6609 mutex_unlock(&wq_pool_mutex);
6610 return 0;
6ba94429
FW
6611}
6612
7ee681b2 6613int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6614{
6ba94429
FW
6615 struct workqueue_struct *wq;
6616
7ee681b2 6617 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6618 if (WARN_ON(cpu != smp_processor_id()))
6619 return -1;
6620
6621 unbind_workers(cpu);
7ee681b2 6622
fef59c9c 6623 /* update pod affinity of unbound workqueues */
7ee681b2 6624 mutex_lock(&wq_pool_mutex);
4cbfd3de 6625 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6626 struct workqueue_attrs *attrs = wq->unbound_attrs;
6627
6628 if (attrs) {
6629 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6630 int tcpu;
4cbfd3de 6631
84193c07 6632 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6633 wq_update_pod(wq, tcpu, cpu, false);
5797b1c1
TH
6634
6635 mutex_lock(&wq->mutex);
6636 wq_update_node_max_active(wq, cpu);
6637 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6638 }
6639 }
7ee681b2
TG
6640 mutex_unlock(&wq_pool_mutex);
6641
7ee681b2 6642 return 0;
6ba94429
FW
6643}
6644
6ba94429
FW
6645struct work_for_cpu {
6646 struct work_struct work;
6647 long (*fn)(void *);
6648 void *arg;
6649 long ret;
6650};
6651
6652static void work_for_cpu_fn(struct work_struct *work)
6653{
6654 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6655
6656 wfc->ret = wfc->fn(wfc->arg);
6657}
6658
6659/**
265f3ed0 6660 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6661 * @cpu: the cpu to run on
6662 * @fn: the function to run
6663 * @arg: the function arg
265f3ed0 6664 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6665 *
6666 * It is up to the caller to ensure that the cpu doesn't go offline.
6667 * The caller must not hold any locks which would prevent @fn from completing.
6668 *
6669 * Return: The value @fn returns.
6670 */
265f3ed0
FW
6671long work_on_cpu_key(int cpu, long (*fn)(void *),
6672 void *arg, struct lock_class_key *key)
6ba94429
FW
6673{
6674 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6675
265f3ed0 6676 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6677 schedule_work_on(cpu, &wfc.work);
6678 flush_work(&wfc.work);
6679 destroy_work_on_stack(&wfc.work);
6680 return wfc.ret;
6681}
265f3ed0 6682EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6683
6684/**
265f3ed0 6685 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6686 * @cpu: the cpu to run on
6687 * @fn: the function to run
6688 * @arg: the function argument
265f3ed0 6689 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6690 *
6691 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6692 * any locks which would prevent @fn from completing.
6693 *
6694 * Return: The value @fn returns.
6695 */
265f3ed0
FW
6696long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6697 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6698{
6699 long ret = -ENODEV;
6700
ffd8bea8 6701 cpus_read_lock();
0e8d6a93 6702 if (cpu_online(cpu))
265f3ed0 6703 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6704 cpus_read_unlock();
0e8d6a93
TG
6705 return ret;
6706}
265f3ed0 6707EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6708#endif /* CONFIG_SMP */
6709
6710#ifdef CONFIG_FREEZER
6711
6712/**
6713 * freeze_workqueues_begin - begin freezing workqueues
6714 *
6715 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6716 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6717 * pool->worklist.
6718 *
6719 * CONTEXT:
6720 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6721 */
6722void freeze_workqueues_begin(void)
6723{
6724 struct workqueue_struct *wq;
6ba94429
FW
6725
6726 mutex_lock(&wq_pool_mutex);
6727
6728 WARN_ON_ONCE(workqueue_freezing);
6729 workqueue_freezing = true;
6730
6731 list_for_each_entry(wq, &workqueues, list) {
6732 mutex_lock(&wq->mutex);
a045a272 6733 wq_adjust_max_active(wq);
6ba94429
FW
6734 mutex_unlock(&wq->mutex);
6735 }
6736
6737 mutex_unlock(&wq_pool_mutex);
6738}
6739
6740/**
6741 * freeze_workqueues_busy - are freezable workqueues still busy?
6742 *
6743 * Check whether freezing is complete. This function must be called
6744 * between freeze_workqueues_begin() and thaw_workqueues().
6745 *
6746 * CONTEXT:
6747 * Grabs and releases wq_pool_mutex.
6748 *
6749 * Return:
6750 * %true if some freezable workqueues are still busy. %false if freezing
6751 * is complete.
6752 */
6753bool freeze_workqueues_busy(void)
6754{
6755 bool busy = false;
6756 struct workqueue_struct *wq;
6757 struct pool_workqueue *pwq;
6758
6759 mutex_lock(&wq_pool_mutex);
6760
6761 WARN_ON_ONCE(!workqueue_freezing);
6762
6763 list_for_each_entry(wq, &workqueues, list) {
6764 if (!(wq->flags & WQ_FREEZABLE))
6765 continue;
6766 /*
6767 * nr_active is monotonically decreasing. It's safe
6768 * to peek without lock.
6769 */
24acfb71 6770 rcu_read_lock();
6ba94429
FW
6771 for_each_pwq(pwq, wq) {
6772 WARN_ON_ONCE(pwq->nr_active < 0);
6773 if (pwq->nr_active) {
6774 busy = true;
24acfb71 6775 rcu_read_unlock();
6ba94429
FW
6776 goto out_unlock;
6777 }
6778 }
24acfb71 6779 rcu_read_unlock();
6ba94429
FW
6780 }
6781out_unlock:
6782 mutex_unlock(&wq_pool_mutex);
6783 return busy;
6784}
6785
6786/**
6787 * thaw_workqueues - thaw workqueues
6788 *
6789 * Thaw workqueues. Normal queueing is restored and all collected
6790 * frozen works are transferred to their respective pool worklists.
6791 *
6792 * CONTEXT:
6793 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6794 */
6795void thaw_workqueues(void)
6796{
6797 struct workqueue_struct *wq;
6ba94429
FW
6798
6799 mutex_lock(&wq_pool_mutex);
6800
6801 if (!workqueue_freezing)
6802 goto out_unlock;
6803
6804 workqueue_freezing = false;
6805
6806 /* restore max_active and repopulate worklist */
6807 list_for_each_entry(wq, &workqueues, list) {
6808 mutex_lock(&wq->mutex);
a045a272 6809 wq_adjust_max_active(wq);
6ba94429
FW
6810 mutex_unlock(&wq->mutex);
6811 }
6812
6813out_unlock:
6814 mutex_unlock(&wq_pool_mutex);
6815}
6816#endif /* CONFIG_FREEZER */
6817
99c621ef 6818static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6819{
6820 LIST_HEAD(ctxs);
6821 int ret = 0;
6822 struct workqueue_struct *wq;
6823 struct apply_wqattrs_ctx *ctx, *n;
6824
6825 lockdep_assert_held(&wq_pool_mutex);
6826
6827 list_for_each_entry(wq, &workqueues, list) {
8eb17dc1 6828 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
042f7df1 6829 continue;
042f7df1 6830
99c621ef 6831 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6832 if (IS_ERR(ctx)) {
6833 ret = PTR_ERR(ctx);
042f7df1
LJ
6834 break;
6835 }
6836
6837 list_add_tail(&ctx->list, &ctxs);
6838 }
6839
6840 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6841 if (!ret)
6842 apply_wqattrs_commit(ctx);
6843 apply_wqattrs_cleanup(ctx);
6844 }
6845
99c621ef
LJ
6846 if (!ret) {
6847 mutex_lock(&wq_pool_attach_mutex);
6848 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6849 mutex_unlock(&wq_pool_attach_mutex);
6850 }
042f7df1
LJ
6851 return ret;
6852}
6853
fe28f631
WL
6854/**
6855 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6856 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6857 *
6858 * This function can be called from cpuset code to provide a set of isolated
6859 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6860 * either cpus_read_lock or cpus_write_lock.
6861 */
6862int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6863{
6864 cpumask_var_t cpumask;
6865 int ret = 0;
6866
6867 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6868 return -ENOMEM;
6869
6870 lockdep_assert_cpus_held();
6871 mutex_lock(&wq_pool_mutex);
6872
6873 /* Save the current isolated cpumask & export it via sysfs */
6874 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6875
6876 /*
6877 * If the operation fails, it will fall back to
6878 * wq_requested_unbound_cpumask which is initially set to
6879 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6880 * by any subsequent write to workqueue/cpumask sysfs file.
6881 */
6882 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6883 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6884 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6885 ret = workqueue_apply_unbound_cpumask(cpumask);
6886
6887 mutex_unlock(&wq_pool_mutex);
6888 free_cpumask_var(cpumask);
6889 return ret;
6890}
6891
63c5484e
TH
6892static int parse_affn_scope(const char *val)
6893{
6894 int i;
6895
6896 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6897 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6898 return i;
6899 }
6900 return -EINVAL;
6901}
6902
6903static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6904{
523a301e
TH
6905 struct workqueue_struct *wq;
6906 int affn, cpu;
63c5484e
TH
6907
6908 affn = parse_affn_scope(val);
6909 if (affn < 0)
6910 return affn;
523a301e
TH
6911 if (affn == WQ_AFFN_DFL)
6912 return -EINVAL;
6913
6914 cpus_read_lock();
6915 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6916
6917 wq_affn_dfl = affn;
523a301e
TH
6918
6919 list_for_each_entry(wq, &workqueues, list) {
6920 for_each_online_cpu(cpu) {
6921 wq_update_pod(wq, cpu, cpu, true);
6922 }
6923 }
6924
6925 mutex_unlock(&wq_pool_mutex);
6926 cpus_read_unlock();
6927
63c5484e
TH
6928 return 0;
6929}
6930
6931static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6932{
6933 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6934}
6935
6936static const struct kernel_param_ops wq_affn_dfl_ops = {
6937 .set = wq_affn_dfl_set,
6938 .get = wq_affn_dfl_get,
6939};
6940
6941module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6942
6ba94429
FW
6943#ifdef CONFIG_SYSFS
6944/*
6945 * Workqueues with WQ_SYSFS flag set is visible to userland via
6946 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6947 * following attributes.
6948 *
63c5484e
TH
6949 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6950 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6951 *
6952 * Unbound workqueues have the following extra attributes.
6953 *
63c5484e
TH
6954 * nice RW int : nice value of the workers
6955 * cpumask RW mask : bitmask of allowed CPUs for the workers
6956 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 6957 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
6958 */
6959struct wq_device {
6960 struct workqueue_struct *wq;
6961 struct device dev;
6962};
6963
6964static struct workqueue_struct *dev_to_wq(struct device *dev)
6965{
6966 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6967
6968 return wq_dev->wq;
6969}
6970
6971static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6972 char *buf)
6973{
6974 struct workqueue_struct *wq = dev_to_wq(dev);
6975
6976 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6977}
6978static DEVICE_ATTR_RO(per_cpu);
6979
6980static ssize_t max_active_show(struct device *dev,
6981 struct device_attribute *attr, char *buf)
6982{
6983 struct workqueue_struct *wq = dev_to_wq(dev);
6984
6985 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6986}
6987
6988static ssize_t max_active_store(struct device *dev,
6989 struct device_attribute *attr, const char *buf,
6990 size_t count)
6991{
6992 struct workqueue_struct *wq = dev_to_wq(dev);
6993 int val;
6994
6995 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6996 return -EINVAL;
6997
6998 workqueue_set_max_active(wq, val);
6999 return count;
7000}
7001static DEVICE_ATTR_RW(max_active);
7002
7003static struct attribute *wq_sysfs_attrs[] = {
7004 &dev_attr_per_cpu.attr,
7005 &dev_attr_max_active.attr,
7006 NULL,
7007};
7008ATTRIBUTE_GROUPS(wq_sysfs);
7009
49277a5b
WL
7010static void apply_wqattrs_lock(void)
7011{
7012 /* CPUs should stay stable across pwq creations and installations */
7013 cpus_read_lock();
7014 mutex_lock(&wq_pool_mutex);
7015}
7016
7017static void apply_wqattrs_unlock(void)
7018{
7019 mutex_unlock(&wq_pool_mutex);
7020 cpus_read_unlock();
7021}
7022
6ba94429
FW
7023static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7024 char *buf)
7025{
7026 struct workqueue_struct *wq = dev_to_wq(dev);
7027 int written;
7028
7029 mutex_lock(&wq->mutex);
7030 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7031 mutex_unlock(&wq->mutex);
7032
7033 return written;
7034}
7035
7036/* prepare workqueue_attrs for sysfs store operations */
7037static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7038{
7039 struct workqueue_attrs *attrs;
7040
899a94fe
LJ
7041 lockdep_assert_held(&wq_pool_mutex);
7042
be69d00d 7043 attrs = alloc_workqueue_attrs();
6ba94429
FW
7044 if (!attrs)
7045 return NULL;
7046
6ba94429 7047 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
7048 return attrs;
7049}
7050
7051static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7052 const char *buf, size_t count)
7053{
7054 struct workqueue_struct *wq = dev_to_wq(dev);
7055 struct workqueue_attrs *attrs;
d4d3e257
LJ
7056 int ret = -ENOMEM;
7057
7058 apply_wqattrs_lock();
6ba94429
FW
7059
7060 attrs = wq_sysfs_prep_attrs(wq);
7061 if (!attrs)
d4d3e257 7062 goto out_unlock;
6ba94429
FW
7063
7064 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7065 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 7066 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
7067 else
7068 ret = -EINVAL;
7069
d4d3e257
LJ
7070out_unlock:
7071 apply_wqattrs_unlock();
6ba94429
FW
7072 free_workqueue_attrs(attrs);
7073 return ret ?: count;
7074}
7075
7076static ssize_t wq_cpumask_show(struct device *dev,
7077 struct device_attribute *attr, char *buf)
7078{
7079 struct workqueue_struct *wq = dev_to_wq(dev);
7080 int written;
7081
7082 mutex_lock(&wq->mutex);
7083 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7084 cpumask_pr_args(wq->unbound_attrs->cpumask));
7085 mutex_unlock(&wq->mutex);
7086 return written;
7087}
7088
7089static ssize_t wq_cpumask_store(struct device *dev,
7090 struct device_attribute *attr,
7091 const char *buf, size_t count)
7092{
7093 struct workqueue_struct *wq = dev_to_wq(dev);
7094 struct workqueue_attrs *attrs;
d4d3e257
LJ
7095 int ret = -ENOMEM;
7096
7097 apply_wqattrs_lock();
6ba94429
FW
7098
7099 attrs = wq_sysfs_prep_attrs(wq);
7100 if (!attrs)
d4d3e257 7101 goto out_unlock;
6ba94429
FW
7102
7103 ret = cpumask_parse(buf, attrs->cpumask);
7104 if (!ret)
d4d3e257 7105 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 7106
d4d3e257
LJ
7107out_unlock:
7108 apply_wqattrs_unlock();
6ba94429
FW
7109 free_workqueue_attrs(attrs);
7110 return ret ?: count;
7111}
7112
63c5484e
TH
7113static ssize_t wq_affn_scope_show(struct device *dev,
7114 struct device_attribute *attr, char *buf)
7115{
7116 struct workqueue_struct *wq = dev_to_wq(dev);
7117 int written;
7118
7119 mutex_lock(&wq->mutex);
523a301e
TH
7120 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7121 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7122 wq_affn_names[WQ_AFFN_DFL],
7123 wq_affn_names[wq_affn_dfl]);
7124 else
7125 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7126 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
7127 mutex_unlock(&wq->mutex);
7128
7129 return written;
7130}
7131
7132static ssize_t wq_affn_scope_store(struct device *dev,
7133 struct device_attribute *attr,
7134 const char *buf, size_t count)
7135{
7136 struct workqueue_struct *wq = dev_to_wq(dev);
7137 struct workqueue_attrs *attrs;
7138 int affn, ret = -ENOMEM;
7139
7140 affn = parse_affn_scope(buf);
7141 if (affn < 0)
7142 return affn;
7143
7144 apply_wqattrs_lock();
7145 attrs = wq_sysfs_prep_attrs(wq);
7146 if (attrs) {
7147 attrs->affn_scope = affn;
7148 ret = apply_workqueue_attrs_locked(wq, attrs);
7149 }
7150 apply_wqattrs_unlock();
7151 free_workqueue_attrs(attrs);
7152 return ret ?: count;
7153}
7154
8639eceb
TH
7155static ssize_t wq_affinity_strict_show(struct device *dev,
7156 struct device_attribute *attr, char *buf)
7157{
7158 struct workqueue_struct *wq = dev_to_wq(dev);
7159
7160 return scnprintf(buf, PAGE_SIZE, "%d\n",
7161 wq->unbound_attrs->affn_strict);
7162}
7163
7164static ssize_t wq_affinity_strict_store(struct device *dev,
7165 struct device_attribute *attr,
7166 const char *buf, size_t count)
7167{
7168 struct workqueue_struct *wq = dev_to_wq(dev);
7169 struct workqueue_attrs *attrs;
7170 int v, ret = -ENOMEM;
7171
7172 if (sscanf(buf, "%d", &v) != 1)
7173 return -EINVAL;
7174
7175 apply_wqattrs_lock();
7176 attrs = wq_sysfs_prep_attrs(wq);
7177 if (attrs) {
7178 attrs->affn_strict = (bool)v;
7179 ret = apply_workqueue_attrs_locked(wq, attrs);
7180 }
7181 apply_wqattrs_unlock();
7182 free_workqueue_attrs(attrs);
7183 return ret ?: count;
7184}
7185
6ba94429 7186static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
7187 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7188 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 7189 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 7190 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
7191 __ATTR_NULL,
7192};
8ccad40d 7193
5df9197e 7194static const struct bus_type wq_subsys = {
6ba94429
FW
7195 .name = "workqueue",
7196 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
7197};
7198
49277a5b
WL
7199/**
7200 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7201 * @cpumask: the cpumask to set
7202 *
7203 * The low-level workqueues cpumask is a global cpumask that limits
7204 * the affinity of all unbound workqueues. This function check the @cpumask
7205 * and apply it to all unbound workqueues and updates all pwqs of them.
7206 *
7207 * Return: 0 - Success
7208 * -EINVAL - Invalid @cpumask
7209 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7210 */
7211static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7212{
7213 int ret = -EINVAL;
7214
7215 /*
7216 * Not excluding isolated cpus on purpose.
7217 * If the user wishes to include them, we allow that.
7218 */
7219 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7220 if (!cpumask_empty(cpumask)) {
7221 apply_wqattrs_lock();
7222 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7223 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7224 ret = 0;
7225 goto out_unlock;
7226 }
7227
7228 ret = workqueue_apply_unbound_cpumask(cpumask);
7229
7230out_unlock:
7231 apply_wqattrs_unlock();
7232 }
7233
7234 return ret;
7235}
7236
fe28f631
WL
7237static ssize_t __wq_cpumask_show(struct device *dev,
7238 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
7239{
7240 int written;
7241
042f7df1 7242 mutex_lock(&wq_pool_mutex);
fe28f631 7243 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 7244 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
7245
7246 return written;
7247}
7248
fe28f631
WL
7249static ssize_t wq_unbound_cpumask_show(struct device *dev,
7250 struct device_attribute *attr, char *buf)
7251{
7252 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7253}
7254
7255static ssize_t wq_requested_cpumask_show(struct device *dev,
7256 struct device_attribute *attr, char *buf)
7257{
7258 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7259}
7260
7261static ssize_t wq_isolated_cpumask_show(struct device *dev,
7262 struct device_attribute *attr, char *buf)
7263{
7264 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7265}
7266
042f7df1
LJ
7267static ssize_t wq_unbound_cpumask_store(struct device *dev,
7268 struct device_attribute *attr, const char *buf, size_t count)
7269{
7270 cpumask_var_t cpumask;
7271 int ret;
7272
7273 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7274 return -ENOMEM;
7275
7276 ret = cpumask_parse(buf, cpumask);
7277 if (!ret)
7278 ret = workqueue_set_unbound_cpumask(cpumask);
7279
7280 free_cpumask_var(cpumask);
7281 return ret ? ret : count;
7282}
7283
fe28f631 7284static struct device_attribute wq_sysfs_cpumask_attrs[] = {
042f7df1 7285 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
fe28f631
WL
7286 wq_unbound_cpumask_store),
7287 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7288 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7289 __ATTR_NULL,
7290};
b05a7928 7291
6ba94429 7292static int __init wq_sysfs_init(void)
2d3854a3 7293{
686f6697 7294 struct device *dev_root;
b05a7928
FW
7295 int err;
7296
7297 err = subsys_virtual_register(&wq_subsys, NULL);
7298 if (err)
7299 return err;
7300
686f6697
GKH
7301 dev_root = bus_get_dev_root(&wq_subsys);
7302 if (dev_root) {
fe28f631
WL
7303 struct device_attribute *attr;
7304
7305 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7306 err = device_create_file(dev_root, attr);
7307 if (err)
7308 break;
7309 }
686f6697
GKH
7310 put_device(dev_root);
7311 }
7312 return err;
2d3854a3 7313}
6ba94429 7314core_initcall(wq_sysfs_init);
2d3854a3 7315
6ba94429 7316static void wq_device_release(struct device *dev)
2d3854a3 7317{
6ba94429 7318 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 7319
6ba94429 7320 kfree(wq_dev);
2d3854a3 7321}
a0a1a5fd
TH
7322
7323/**
6ba94429
FW
7324 * workqueue_sysfs_register - make a workqueue visible in sysfs
7325 * @wq: the workqueue to register
a0a1a5fd 7326 *
6ba94429
FW
7327 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7328 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7329 * which is the preferred method.
a0a1a5fd 7330 *
6ba94429
FW
7331 * Workqueue user should use this function directly iff it wants to apply
7332 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7333 * apply_workqueue_attrs() may race against userland updating the
7334 * attributes.
7335 *
7336 * Return: 0 on success, -errno on failure.
a0a1a5fd 7337 */
6ba94429 7338int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 7339{
6ba94429
FW
7340 struct wq_device *wq_dev;
7341 int ret;
a0a1a5fd 7342
6ba94429 7343 /*
4c065dbc
WL
7344 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7345 * ordered workqueues.
6ba94429 7346 */
3bc1e711 7347 if (WARN_ON(wq->flags & __WQ_ORDERED))
6ba94429 7348 return -EINVAL;
a0a1a5fd 7349
6ba94429
FW
7350 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7351 if (!wq_dev)
7352 return -ENOMEM;
5bcab335 7353
6ba94429
FW
7354 wq_dev->wq = wq;
7355 wq_dev->dev.bus = &wq_subsys;
6ba94429 7356 wq_dev->dev.release = wq_device_release;
23217b44 7357 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 7358
6ba94429
FW
7359 /*
7360 * unbound_attrs are created separately. Suppress uevent until
7361 * everything is ready.
7362 */
7363 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 7364
6ba94429
FW
7365 ret = device_register(&wq_dev->dev);
7366 if (ret) {
537f4146 7367 put_device(&wq_dev->dev);
6ba94429
FW
7368 wq->wq_dev = NULL;
7369 return ret;
7370 }
a0a1a5fd 7371
6ba94429
FW
7372 if (wq->flags & WQ_UNBOUND) {
7373 struct device_attribute *attr;
a0a1a5fd 7374
6ba94429
FW
7375 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7376 ret = device_create_file(&wq_dev->dev, attr);
7377 if (ret) {
7378 device_unregister(&wq_dev->dev);
7379 wq->wq_dev = NULL;
7380 return ret;
a0a1a5fd
TH
7381 }
7382 }
7383 }
6ba94429
FW
7384
7385 dev_set_uevent_suppress(&wq_dev->dev, false);
7386 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7387 return 0;
a0a1a5fd
TH
7388}
7389
7390/**
6ba94429
FW
7391 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7392 * @wq: the workqueue to unregister
a0a1a5fd 7393 *
6ba94429 7394 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 7395 */
6ba94429 7396static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 7397{
6ba94429 7398 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 7399
6ba94429
FW
7400 if (!wq->wq_dev)
7401 return;
a0a1a5fd 7402
6ba94429
FW
7403 wq->wq_dev = NULL;
7404 device_unregister(&wq_dev->dev);
a0a1a5fd 7405}
6ba94429
FW
7406#else /* CONFIG_SYSFS */
7407static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7408#endif /* CONFIG_SYSFS */
a0a1a5fd 7409
82607adc
TH
7410/*
7411 * Workqueue watchdog.
7412 *
7413 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7414 * flush dependency, a concurrency managed work item which stays RUNNING
7415 * indefinitely. Workqueue stalls can be very difficult to debug as the
7416 * usual warning mechanisms don't trigger and internal workqueue state is
7417 * largely opaque.
7418 *
7419 * Workqueue watchdog monitors all worker pools periodically and dumps
7420 * state if some pools failed to make forward progress for a while where
7421 * forward progress is defined as the first item on ->worklist changing.
7422 *
7423 * This mechanism is controlled through the kernel parameter
7424 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7425 * corresponding sysfs parameter file.
7426 */
7427#ifdef CONFIG_WQ_WATCHDOG
7428
82607adc 7429static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 7430static struct timer_list wq_watchdog_timer;
82607adc
TH
7431
7432static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7433static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7434
cd2440d6
PM
7435/*
7436 * Show workers that might prevent the processing of pending work items.
7437 * The only candidates are CPU-bound workers in the running state.
7438 * Pending work items should be handled by another idle worker
7439 * in all other situations.
7440 */
7441static void show_cpu_pool_hog(struct worker_pool *pool)
7442{
7443 struct worker *worker;
c26e2f2e 7444 unsigned long irq_flags;
cd2440d6
PM
7445 int bkt;
7446
c26e2f2e 7447 raw_spin_lock_irqsave(&pool->lock, irq_flags);
cd2440d6
PM
7448
7449 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7450 if (task_is_running(worker->task)) {
7451 /*
7452 * Defer printing to avoid deadlocks in console
7453 * drivers that queue work while holding locks
7454 * also taken in their write paths.
7455 */
7456 printk_deferred_enter();
7457
7458 pr_info("pool %d:\n", pool->id);
7459 sched_show_task(worker->task);
7460
7461 printk_deferred_exit();
7462 }
7463 }
7464
c26e2f2e 7465 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
cd2440d6
PM
7466}
7467
7468static void show_cpu_pools_hogs(void)
7469{
7470 struct worker_pool *pool;
7471 int pi;
7472
7473 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7474
7475 rcu_read_lock();
7476
7477 for_each_pool(pool, pi) {
7478 if (pool->cpu_stall)
7479 show_cpu_pool_hog(pool);
7480
7481 }
7482
7483 rcu_read_unlock();
7484}
7485
82607adc
TH
7486static void wq_watchdog_reset_touched(void)
7487{
7488 int cpu;
7489
7490 wq_watchdog_touched = jiffies;
7491 for_each_possible_cpu(cpu)
7492 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7493}
7494
5cd79d6a 7495static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
7496{
7497 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7498 bool lockup_detected = false;
cd2440d6 7499 bool cpu_pool_stall = false;
940d71c6 7500 unsigned long now = jiffies;
82607adc
TH
7501 struct worker_pool *pool;
7502 int pi;
7503
7504 if (!thresh)
7505 return;
7506
7507 rcu_read_lock();
7508
7509 for_each_pool(pool, pi) {
7510 unsigned long pool_ts, touched, ts;
7511
cd2440d6 7512 pool->cpu_stall = false;
82607adc
TH
7513 if (list_empty(&pool->worklist))
7514 continue;
7515
940d71c6
SS
7516 /*
7517 * If a virtual machine is stopped by the host it can look to
7518 * the watchdog like a stall.
7519 */
7520 kvm_check_and_clear_guest_paused();
7521
82607adc 7522 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7523 if (pool->cpu >= 0)
7524 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7525 else
7526 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7527 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7528
7529 if (time_after(pool_ts, touched))
7530 ts = pool_ts;
7531 else
7532 ts = touched;
7533
82607adc 7534 /* did we stall? */
940d71c6 7535 if (time_after(now, ts + thresh)) {
82607adc 7536 lockup_detected = true;
4cb1ef64 7537 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
cd2440d6
PM
7538 pool->cpu_stall = true;
7539 cpu_pool_stall = true;
7540 }
82607adc
TH
7541 pr_emerg("BUG: workqueue lockup - pool");
7542 pr_cont_pool_info(pool);
7543 pr_cont(" stuck for %us!\n",
940d71c6 7544 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7545 }
cd2440d6
PM
7546
7547
82607adc
TH
7548 }
7549
7550 rcu_read_unlock();
7551
7552 if (lockup_detected)
55df0933 7553 show_all_workqueues();
82607adc 7554
cd2440d6
PM
7555 if (cpu_pool_stall)
7556 show_cpu_pools_hogs();
7557
82607adc
TH
7558 wq_watchdog_reset_touched();
7559 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7560}
7561
cb9d7fd5 7562notrace void wq_watchdog_touch(int cpu)
82607adc
TH
7563{
7564 if (cpu >= 0)
7565 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
7566
7567 wq_watchdog_touched = jiffies;
82607adc
TH
7568}
7569
7570static void wq_watchdog_set_thresh(unsigned long thresh)
7571{
7572 wq_watchdog_thresh = 0;
7573 del_timer_sync(&wq_watchdog_timer);
7574
7575 if (thresh) {
7576 wq_watchdog_thresh = thresh;
7577 wq_watchdog_reset_touched();
7578 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7579 }
7580}
7581
7582static int wq_watchdog_param_set_thresh(const char *val,
7583 const struct kernel_param *kp)
7584{
7585 unsigned long thresh;
7586 int ret;
7587
7588 ret = kstrtoul(val, 0, &thresh);
7589 if (ret)
7590 return ret;
7591
7592 if (system_wq)
7593 wq_watchdog_set_thresh(thresh);
7594 else
7595 wq_watchdog_thresh = thresh;
7596
7597 return 0;
7598}
7599
7600static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7601 .set = wq_watchdog_param_set_thresh,
7602 .get = param_get_ulong,
7603};
7604
7605module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7606 0644);
7607
7608static void wq_watchdog_init(void)
7609{
5cd79d6a 7610 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7611 wq_watchdog_set_thresh(wq_watchdog_thresh);
7612}
7613
7614#else /* CONFIG_WQ_WATCHDOG */
7615
7616static inline void wq_watchdog_init(void) { }
7617
7618#endif /* CONFIG_WQ_WATCHDOG */
7619
2f34d733
TH
7620static void bh_pool_kick_normal(struct irq_work *irq_work)
7621{
7622 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7623}
7624
7625static void bh_pool_kick_highpri(struct irq_work *irq_work)
7626{
7627 raise_softirq_irqoff(HI_SOFTIRQ);
7628}
7629
4a6c5607
TH
7630static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7631{
7632 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7633 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7634 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7635 return;
7636 }
7637
7638 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7639}
7640
2fcdb1b4
TH
7641static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7642{
7643 BUG_ON(init_worker_pool(pool));
7644 pool->cpu = cpu;
7645 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7646 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7647 pool->attrs->nice = nice;
7648 pool->attrs->affn_strict = true;
7649 pool->node = cpu_to_node(cpu);
7650
7651 /* alloc pool ID */
7652 mutex_lock(&wq_pool_mutex);
7653 BUG_ON(worker_pool_assign_id(pool));
7654 mutex_unlock(&wq_pool_mutex);
7655}
7656
3347fa09
TH
7657/**
7658 * workqueue_init_early - early init for workqueue subsystem
7659 *
2930155b
TH
7660 * This is the first step of three-staged workqueue subsystem initialization and
7661 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7662 * up. It sets up all the data structures and system workqueues and allows early
7663 * boot code to create workqueues and queue/cancel work items. Actual work item
7664 * execution starts only after kthreads can be created and scheduled right
7665 * before early initcalls.
3347fa09 7666 */
2333e829 7667void __init workqueue_init_early(void)
1da177e4 7668{
84193c07 7669 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c 7670 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
2f34d733
TH
7671 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7672 bh_pool_kick_highpri };
7a4e344c 7673 int i, cpu;
c34056a3 7674
10cdb157 7675 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7676
b05a7928 7677 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7678 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7679 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7680
4a6c5607
TH
7681 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7682 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7683 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7684 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7685 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7686
fe28f631 7687 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7688
e904e6c2
TH
7689 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7690
2930155b
TH
7691 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7692 BUG_ON(!wq_update_pod_attrs_buf);
7693
7bd20b6b
MT
7694 /*
7695 * If nohz_full is enabled, set power efficient workqueue as unbound.
7696 * This allows workqueue items to be moved to HK CPUs.
7697 */
7698 if (housekeeping_enabled(HK_TYPE_TICK))
7699 wq_power_efficient = true;
7700
84193c07
TH
7701 /* initialize WQ_AFFN_SYSTEM pods */
7702 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7703 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7704 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7705 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7706
7707 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7708
84193c07
TH
7709 pt->nr_pods = 1;
7710 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7711 pt->pod_node[0] = NUMA_NO_NODE;
7712 pt->cpu_pod[0] = 0;
7713
4cb1ef64 7714 /* initialize BH and CPU pools */
29c91e99 7715 for_each_possible_cpu(cpu) {
4ce62e9e 7716 struct worker_pool *pool;
8b03ae3c 7717
4cb1ef64
TH
7718 i = 0;
7719 for_each_bh_worker_pool(pool, cpu) {
2f34d733 7720 init_cpu_worker_pool(pool, cpu, std_nice[i]);
4cb1ef64 7721 pool->flags |= POOL_BH;
2f34d733
TH
7722 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7723 i++;
4cb1ef64
TH
7724 }
7725
7a4e344c 7726 i = 0;
2fcdb1b4
TH
7727 for_each_cpu_worker_pool(pool, cpu)
7728 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
8b03ae3c
TH
7729 }
7730
8a2b7538 7731 /* create default unbound and ordered wq attrs */
29c91e99
TH
7732 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7733 struct workqueue_attrs *attrs;
7734
be69d00d 7735 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7736 attrs->nice = std_nice[i];
29c91e99 7737 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7738
7739 /*
7740 * An ordered wq should have only one pwq as ordering is
7741 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7742 */
be69d00d 7743 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7744 attrs->nice = std_nice[i];
af73f5c9 7745 attrs->ordered = true;
8a2b7538 7746 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7747 }
7748
d320c038 7749 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7750 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7751 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7752 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7753 WQ_MAX_ACTIVE);
24d51add
TH
7754 system_freezable_wq = alloc_workqueue("events_freezable",
7755 WQ_FREEZABLE, 0);
0668106c
VK
7756 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7757 WQ_POWER_EFFICIENT, 0);
8318d6a6 7758 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7759 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7760 0);
4cb1ef64
TH
7761 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7762 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7763 WQ_BH | WQ_HIGHPRI, 0);
1aabe902 7764 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7765 !system_unbound_wq || !system_freezable_wq ||
7766 !system_power_efficient_wq ||
4cb1ef64
TH
7767 !system_freezable_power_efficient_wq ||
7768 !system_bh_wq || !system_bh_highpri_wq);
3347fa09
TH
7769}
7770
aa6fde93
TH
7771static void __init wq_cpu_intensive_thresh_init(void)
7772{
7773 unsigned long thresh;
7774 unsigned long bogo;
7775
dd64c873
Z
7776 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7777 BUG_ON(IS_ERR(pwq_release_worker));
7778
aa6fde93
TH
7779 /* if the user set it to a specific value, keep it */
7780 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7781 return;
7782
7783 /*
7784 * The default of 10ms is derived from the fact that most modern (as of
7785 * 2023) processors can do a lot in 10ms and that it's just below what
7786 * most consider human-perceivable. However, the kernel also runs on a
7787 * lot slower CPUs including microcontrollers where the threshold is way
7788 * too low.
7789 *
7790 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7791 * This is by no means accurate but it doesn't have to be. The mechanism
7792 * is still useful even when the threshold is fully scaled up. Also, as
7793 * the reports would usually be applicable to everyone, some machines
7794 * operating on longer thresholds won't significantly diminish their
7795 * usefulness.
7796 */
7797 thresh = 10 * USEC_PER_MSEC;
7798
7799 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7800 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7801 if (bogo < 4000)
7802 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7803
7804 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7805 loops_per_jiffy, bogo, thresh);
7806
7807 wq_cpu_intensive_thresh_us = thresh;
7808}
7809
3347fa09
TH
7810/**
7811 * workqueue_init - bring workqueue subsystem fully online
7812 *
2930155b
TH
7813 * This is the second step of three-staged workqueue subsystem initialization
7814 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7815 * been created and work items queued on them, but there are no kworkers
7816 * executing the work items yet. Populate the worker pools with the initial
7817 * workers and enable future kworker creations.
3347fa09 7818 */
2333e829 7819void __init workqueue_init(void)
3347fa09 7820{
2186d9f9 7821 struct workqueue_struct *wq;
3347fa09
TH
7822 struct worker_pool *pool;
7823 int cpu, bkt;
7824
aa6fde93
TH
7825 wq_cpu_intensive_thresh_init();
7826
2186d9f9
TH
7827 mutex_lock(&wq_pool_mutex);
7828
2930155b
TH
7829 /*
7830 * Per-cpu pools created earlier could be missing node hint. Fix them
7831 * up. Also, create a rescuer for workqueues that requested it.
7832 */
2186d9f9 7833 for_each_possible_cpu(cpu) {
4cb1ef64
TH
7834 for_each_bh_worker_pool(pool, cpu)
7835 pool->node = cpu_to_node(cpu);
7836 for_each_cpu_worker_pool(pool, cpu)
2186d9f9 7837 pool->node = cpu_to_node(cpu);
2186d9f9
TH
7838 }
7839
40c17f75 7840 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7841 WARN(init_rescuer(wq),
7842 "workqueue: failed to create early rescuer for %s",
7843 wq->name);
7844 }
2186d9f9
TH
7845
7846 mutex_unlock(&wq_pool_mutex);
7847
4cb1ef64
TH
7848 /*
7849 * Create the initial workers. A BH pool has one pseudo worker that
7850 * represents the shared BH execution context and thus doesn't get
7851 * affected by hotplug events. Create the BH pseudo workers for all
7852 * possible CPUs here.
7853 */
7854 for_each_possible_cpu(cpu)
7855 for_each_bh_worker_pool(pool, cpu)
7856 BUG_ON(!create_worker(pool));
7857
3347fa09
TH
7858 for_each_online_cpu(cpu) {
7859 for_each_cpu_worker_pool(pool, cpu) {
7860 pool->flags &= ~POOL_DISASSOCIATED;
7861 BUG_ON(!create_worker(pool));
7862 }
7863 }
7864
7865 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7866 BUG_ON(!create_worker(pool));
7867
7868 wq_online = true;
82607adc 7869 wq_watchdog_init();
1da177e4 7870}
c4f135d6 7871
025e1684
TH
7872/*
7873 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7874 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7875 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7876 */
7877static void __init init_pod_type(struct wq_pod_type *pt,
7878 bool (*cpus_share_pod)(int, int))
7879{
7880 int cur, pre, cpu, pod;
7881
7882 pt->nr_pods = 0;
7883
7884 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7885 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7886 BUG_ON(!pt->cpu_pod);
7887
7888 for_each_possible_cpu(cur) {
7889 for_each_possible_cpu(pre) {
7890 if (pre >= cur) {
7891 pt->cpu_pod[cur] = pt->nr_pods++;
7892 break;
7893 }
7894 if (cpus_share_pod(cur, pre)) {
7895 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7896 break;
7897 }
7898 }
7899 }
7900
7901 /* init the rest to match @pt->cpu_pod[] */
7902 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7903 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7904 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7905
7906 for (pod = 0; pod < pt->nr_pods; pod++)
7907 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7908
7909 for_each_possible_cpu(cpu) {
7910 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7911 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7912 }
7913}
7914
63c5484e
TH
7915static bool __init cpus_dont_share(int cpu0, int cpu1)
7916{
7917 return false;
7918}
7919
7920static bool __init cpus_share_smt(int cpu0, int cpu1)
7921{
7922#ifdef CONFIG_SCHED_SMT
7923 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7924#else
7925 return false;
7926#endif
7927}
7928
025e1684
TH
7929static bool __init cpus_share_numa(int cpu0, int cpu1)
7930{
7931 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7932}
7933
2930155b
TH
7934/**
7935 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7936 *
96068b60 7937 * This is the third step of three-staged workqueue subsystem initialization and
2930155b
TH
7938 * invoked after SMP and topology information are fully initialized. It
7939 * initializes the unbound CPU pods accordingly.
7940 */
7941void __init workqueue_init_topology(void)
a86feae6 7942{
2930155b 7943 struct workqueue_struct *wq;
025e1684 7944 int cpu;
a86feae6 7945
63c5484e
TH
7946 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7947 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7948 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7949 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7950
c5f8cd6c
TH
7951 wq_topo_initialized = true;
7952
2930155b 7953 mutex_lock(&wq_pool_mutex);
a86feae6 7954
2930155b
TH
7955 /*
7956 * Workqueues allocated earlier would have all CPUs sharing the default
7957 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7958 * combinations to apply per-pod sharing.
7959 */
7960 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 7961 for_each_online_cpu(cpu)
2930155b 7962 wq_update_pod(wq, cpu, cpu, true);
5797b1c1
TH
7963 if (wq->flags & WQ_UNBOUND) {
7964 mutex_lock(&wq->mutex);
7965 wq_update_node_max_active(wq, -1);
7966 mutex_unlock(&wq->mutex);
2930155b
TH
7967 }
7968 }
7969
7970 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
7971}
7972
20bdedaf
TH
7973void __warn_flushing_systemwide_wq(void)
7974{
7975 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7976 dump_stack();
7977}
c4f135d6 7978EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 7979
7980static int __init workqueue_unbound_cpus_setup(char *str)
7981{
7982 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7983 cpumask_clear(&wq_cmdline_cpumask);
7984 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7985 }
7986
7987 return 1;
7988}
7989__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);