workqueue: make wq_subsys const
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
cd2440d6 52#include <linux/sched/debug.h>
62635ea8 53#include <linux/nmi.h>
940d71c6 54#include <linux/kvm_para.h>
aa6fde93 55#include <linux/delay.h>
e22bee78 56
ea138446 57#include "workqueue_internal.h"
1da177e4 58
e563d0a7 59enum worker_pool_flags {
24647570
TH
60 /*
61 * worker_pool flags
bc2ae0f5 62 *
24647570 63 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 70 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 71 *
bc3a1afc 72 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 73 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 74 * worker_attach_to_pool() is in progress.
bc2ae0f5 75 */
692b4825 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
e563d0a7 78};
db7bccf4 79
e563d0a7 80enum worker_flags {
c8e55f36 81 /* worker flags */
c8e55f36
TH
82 WORKER_DIE = 1 << 1, /* die die die */
83 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 84 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 87 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 88
a9ab775b
TH
89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
90 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 91};
db7bccf4 92
e563d0a7 93enum wq_internal_consts {
e34cdddb 94 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 95
29c91e99 96 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 97 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 98
e22bee78
TH
99 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
100 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
101
3233cdbd
TH
102 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
103 /* call for help after 10ms
104 (min two ticks) */
e22bee78
TH
105 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
106 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
107
108 /*
109 * Rescue workers are used only on emergencies and shared by
8698a745 110 * all cpus. Give MIN_NICE.
e22bee78 111 */
8698a745
DY
112 RESCUER_NICE_LEVEL = MIN_NICE,
113 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 114
31c89007 115 WQ_NAME_LEN = 32,
c8e55f36 116};
1da177e4
LT
117
118/*
4690c4ab
TH
119 * Structure fields follow one of the following exclusion rules.
120 *
e41e704b
TH
121 * I: Modifiable by initialization/destruction paths and read-only for
122 * everyone else.
4690c4ab 123 *
e22bee78
TH
124 * P: Preemption protected. Disabling preemption is enough and should
125 * only be modified and accessed from the local cpu.
126 *
d565ed63 127 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 128 *
5797b1c1
TH
129 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
130 * reads.
131 *
bdf8b9bf
TH
132 * K: Only modified by worker while holding pool->lock. Can be safely read by
133 * self, while holding pool->lock or from IRQ context if %current is the
134 * kworker.
135 *
136 * S: Only modified by worker self.
137 *
1258fae7 138 * A: wq_pool_attach_mutex protected.
822d8405 139 *
68e13a67 140 * PL: wq_pool_mutex protected.
5bcab335 141 *
24acfb71 142 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 143 *
5b95e1af
LJ
144 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
145 *
146 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 147 * RCU for reads.
5b95e1af 148 *
3c25a55d
LJ
149 * WQ: wq->mutex protected.
150 *
24acfb71 151 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 152 *
a045a272
TH
153 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
154 * with READ_ONCE() without locking.
155 *
2e109a28 156 * MD: wq_mayday_lock protected.
cd2440d6
PM
157 *
158 * WD: Used internally by the watchdog.
1da177e4 159 */
1da177e4 160
2eaebdb3 161/* struct worker is defined in workqueue_internal.h */
c34056a3 162
bd7bdd43 163struct worker_pool {
a9b8a985 164 raw_spinlock_t lock; /* the pool lock */
d84ff051 165 int cpu; /* I: the associated cpu */
f3f90ad4 166 int node; /* I: the associated node ID */
9daf9e67 167 int id; /* I: pool ID */
bc8b50c2 168 unsigned int flags; /* L: flags */
bd7bdd43 169
82607adc 170 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 171 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 172
bc35f7ef
LJ
173 /*
174 * The counter is incremented in a process context on the associated CPU
175 * w/ preemption disabled, and decremented or reset in the same context
176 * but w/ pool->lock held. The readers grab pool->lock and are
177 * guaranteed to see if the counter reached zero.
178 */
179 int nr_running;
84f91c62 180
bd7bdd43 181 struct list_head worklist; /* L: list of pending works */
ea1abd61 182
5826cc8f
LJ
183 int nr_workers; /* L: total number of workers */
184 int nr_idle; /* L: currently idle workers */
bd7bdd43 185
2c1f1a91 186 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 187 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
188 struct work_struct idle_cull_work; /* L: worker idle cleanup */
189
190 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 191
c5aa87bb 192 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
193 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
194 /* L: hash of busy workers */
195
2607d7a6 196 struct worker *manager; /* L: purely informational */
92f9c5c4 197 struct list_head workers; /* A: attached workers */
e02b9312 198 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 199 struct completion *detach_completion; /* all workers detached */
e19e397a 200
7cda9aae 201 struct ida worker_ida; /* worker IDs for task name */
e19e397a 202
7a4e344c 203 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
204 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
205 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 206
29c91e99 207 /*
24acfb71 208 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
209 * from get_work_pool().
210 */
211 struct rcu_head rcu;
84f91c62 212};
8b03ae3c 213
725e8ec5
TH
214/*
215 * Per-pool_workqueue statistics. These can be monitored using
216 * tools/workqueue/wq_monitor.py.
217 */
218enum pool_workqueue_stats {
219 PWQ_STAT_STARTED, /* work items started execution */
220 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 221 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 222 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 223 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 224 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
225 PWQ_STAT_MAYDAY, /* maydays to rescuer */
226 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
227
228 PWQ_NR_STATS,
229};
230
1da177e4 231/*
112202d9
TH
232 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
233 * of work_struct->data are used for flags and the remaining high bits
234 * point to the pwq; thus, pwqs need to be aligned at two's power of the
235 * number of flag bits.
1da177e4 236 */
112202d9 237struct pool_workqueue {
bd7bdd43 238 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 239 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
240 int work_color; /* L: current color */
241 int flush_color; /* L: flushing color */
8864b4e5 242 int refcnt; /* L: reference count */
73f53c4a
TH
243 int nr_in_flight[WORK_NR_COLORS];
244 /* L: nr of in_flight works */
018f3a13
LJ
245
246 /*
247 * nr_active management and WORK_STRUCT_INACTIVE:
248 *
249 * When pwq->nr_active >= max_active, new work item is queued to
250 * pwq->inactive_works instead of pool->worklist and marked with
251 * WORK_STRUCT_INACTIVE.
252 *
5797b1c1
TH
253 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
254 * nr_active and all work items in pwq->inactive_works are marked with
255 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
256 * in pwq->inactive_works. Some of them are ready to run in
257 * pool->worklist or worker->scheduled. Those work itmes are only struct
258 * wq_barrier which is used for flush_work() and should not participate
259 * in nr_active. For non-barrier work item, it is marked with
260 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 261 */
1e19ffc6 262 int nr_active; /* L: nr of active works */
f97a4a1a 263 struct list_head inactive_works; /* L: inactive works */
5797b1c1 264 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 265 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 266 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 267
725e8ec5
TH
268 u64 stats[PWQ_NR_STATS];
269
8864b4e5 270 /*
967b494e 271 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
272 * and pwq_release_workfn() for details. pool_workqueue itself is also
273 * RCU protected so that the first pwq can be determined without
967b494e 274 * grabbing wq->mutex.
8864b4e5 275 */
687a9aa5 276 struct kthread_work release_work;
8864b4e5 277 struct rcu_head rcu;
e904e6c2 278} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 279
73f53c4a
TH
280/*
281 * Structure used to wait for workqueue flush.
282 */
283struct wq_flusher {
3c25a55d
LJ
284 struct list_head list; /* WQ: list of flushers */
285 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
286 struct completion done; /* flush completion */
287};
288
226223ab
TH
289struct wq_device;
290
91ccc6e7
TH
291/*
292 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
293 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
294 * As sharing a single nr_active across multiple sockets can be very expensive,
295 * the counting and enforcement is per NUMA node.
5797b1c1
TH
296 *
297 * The following struct is used to enforce per-node max_active. When a pwq wants
298 * to start executing a work item, it should increment ->nr using
299 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
300 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
301 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
302 * round-robin order.
91ccc6e7
TH
303 */
304struct wq_node_nr_active {
5797b1c1
TH
305 int max; /* per-node max_active */
306 atomic_t nr; /* per-node nr_active */
307 raw_spinlock_t lock; /* nests inside pool locks */
308 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
309};
310
1da177e4 311/*
c5aa87bb
TH
312 * The externally visible workqueue. It relays the issued work items to
313 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
314 */
315struct workqueue_struct {
3c25a55d 316 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 317 struct list_head list; /* PR: list of all workqueues */
73f53c4a 318
3c25a55d
LJ
319 struct mutex mutex; /* protects this wq */
320 int work_color; /* WQ: current work color */
321 int flush_color; /* WQ: current flush color */
112202d9 322 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
323 struct wq_flusher *first_flusher; /* WQ: first flusher */
324 struct list_head flusher_queue; /* WQ: flush waiters */
325 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 326
2e109a28 327 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 328 struct worker *rescuer; /* MD: rescue worker */
e22bee78 329
87fc741e 330 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
331
332 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 333 int max_active; /* WO: max active works */
5797b1c1 334 int min_active; /* WO: min active works */
a045a272 335 int saved_max_active; /* WQ: saved max_active */
5797b1c1 336 int saved_min_active; /* WQ: saved min_active */
226223ab 337
5b95e1af 338 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 339 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 340
226223ab
TH
341#ifdef CONFIG_SYSFS
342 struct wq_device *wq_dev; /* I: for sysfs interface */
343#endif
4e6045f1 344#ifdef CONFIG_LOCKDEP
669de8bd
BVA
345 char *lock_name;
346 struct lock_class_key key;
4690c4ab 347 struct lockdep_map lockdep_map;
4e6045f1 348#endif
ecf6881f 349 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 350
e2dca7ad 351 /*
24acfb71
TG
352 * Destruction of workqueue_struct is RCU protected to allow walking
353 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
354 * This is used to dump all workqueues from sysrq.
355 */
356 struct rcu_head rcu;
357
2728fd2f
TH
358 /* hot fields used during command issue, aligned to cacheline */
359 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 360 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 361 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
362};
363
e904e6c2
TH
364static struct kmem_cache *pwq_cache;
365
84193c07
TH
366/*
367 * Each pod type describes how CPUs should be grouped for unbound workqueues.
368 * See the comment above workqueue_attrs->affn_scope.
369 */
370struct wq_pod_type {
371 int nr_pods; /* number of pods */
372 cpumask_var_t *pod_cpus; /* pod -> cpus */
373 int *pod_node; /* pod -> node */
374 int *cpu_pod; /* cpu -> pod */
375};
376
377static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
523a301e 378static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
63c5484e
TH
379
380static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
523a301e 381 [WQ_AFFN_DFL] = "default",
63c5484e
TH
382 [WQ_AFFN_CPU] = "cpu",
383 [WQ_AFFN_SMT] = "smt",
384 [WQ_AFFN_CACHE] = "cache",
385 [WQ_AFFN_NUMA] = "numa",
386 [WQ_AFFN_SYSTEM] = "system",
387};
bce90380 388
c5f8cd6c
TH
389static bool wq_topo_initialized __read_mostly = false;
390
616db877
TH
391/*
392 * Per-cpu work items which run for longer than the following threshold are
393 * automatically considered CPU intensive and excluded from concurrency
394 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
395 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
396 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 397 */
aa6fde93 398static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877
TH
399module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
400
cee22a15 401/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 402static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
403module_param_named(power_efficient, wq_power_efficient, bool, 0444);
404
863b710b 405static bool wq_online; /* can kworkers be created yet? */
3347fa09 406
fef59c9c
TH
407/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
408static struct workqueue_attrs *wq_update_pod_attrs_buf;
4c16bd32 409
68e13a67 410static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 411static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 412static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
413/* wait for manager to go away */
414static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 415
e2dca7ad 416static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 417static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 418
99c621ef 419/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
420static cpumask_var_t wq_unbound_cpumask;
421
fe28f631
WL
422/* PL: user requested unbound cpumask via sysfs */
423static cpumask_var_t wq_requested_unbound_cpumask;
424
425/* PL: isolated cpumask to be excluded from unbound cpumask */
426static cpumask_var_t wq_isolated_cpumask;
427
ace3c549 428/* for further constrain wq_unbound_cpumask by cmdline parameter*/
429static struct cpumask wq_cmdline_cpumask __initdata;
430
ef557180
MG
431/* CPU where unbound work was last round robin scheduled from this CPU */
432static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 433
f303fccb
TH
434/*
435 * Local execution of unbound work items is no longer guaranteed. The
436 * following always forces round-robin CPU selection on unbound work items
437 * to uncover usages which depend on it.
438 */
439#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
440static bool wq_debug_force_rr_cpu = true;
441#else
442static bool wq_debug_force_rr_cpu = false;
443#endif
444module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
445
7d19c5ce 446/* the per-cpu worker pools */
25528213 447static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 448
68e13a67 449static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 450
68e13a67 451/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
452static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
453
c5aa87bb 454/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
455static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
456
8a2b7538
TH
457/* I: attributes used when instantiating ordered pools on demand */
458static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
459
967b494e
TH
460/*
461 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
462 * process context while holding a pool lock. Bounce to a dedicated kthread
463 * worker to avoid A-A deadlocks.
464 */
68279f9c 465static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 466
68279f9c 467struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 468EXPORT_SYMBOL(system_wq);
68279f9c 469struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 470EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 471struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 472EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 473struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 474EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 475struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 476EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 477struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 478EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 479struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 480EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 481
7d19c5ce 482static int worker_thread(void *__worker);
6ba94429 483static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 484static void show_pwq(struct pool_workqueue *pwq);
55df0933 485static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 486
97bd2347
TH
487#define CREATE_TRACE_POINTS
488#include <trace/events/workqueue.h>
489
68e13a67 490#define assert_rcu_or_pool_mutex() \
24acfb71 491 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 492 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 493 "RCU or wq_pool_mutex should be held")
5bcab335 494
5b95e1af 495#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 496 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
497 !lockdep_is_held(&wq->mutex) && \
498 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 499 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 500
f02ae73a
TH
501#define for_each_cpu_worker_pool(pool, cpu) \
502 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
503 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 504 (pool)++)
4ce62e9e 505
17116969
TH
506/**
507 * for_each_pool - iterate through all worker_pools in the system
508 * @pool: iteration cursor
611c92a0 509 * @pi: integer used for iteration
fa1b54e6 510 *
24acfb71 511 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
512 * locked. If the pool needs to be used beyond the locking in effect, the
513 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
514 *
515 * The if/else clause exists only for the lockdep assertion and can be
516 * ignored.
17116969 517 */
611c92a0
TH
518#define for_each_pool(pool, pi) \
519 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 520 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 521 else
17116969 522
822d8405
TH
523/**
524 * for_each_pool_worker - iterate through all workers of a worker_pool
525 * @worker: iteration cursor
822d8405
TH
526 * @pool: worker_pool to iterate workers of
527 *
1258fae7 528 * This must be called with wq_pool_attach_mutex.
822d8405
TH
529 *
530 * The if/else clause exists only for the lockdep assertion and can be
531 * ignored.
532 */
da028469
LJ
533#define for_each_pool_worker(worker, pool) \
534 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 535 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
536 else
537
49e3cf44
TH
538/**
539 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
540 * @pwq: iteration cursor
541 * @wq: the target workqueue
76af4d93 542 *
24acfb71 543 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
544 * If the pwq needs to be used beyond the locking in effect, the caller is
545 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
546 *
547 * The if/else clause exists only for the lockdep assertion and can be
548 * ignored.
49e3cf44
TH
549 */
550#define for_each_pwq(pwq, wq) \
49e9d1a9 551 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 552 lockdep_is_held(&(wq->mutex)))
f3421797 553
dc186ad7
TG
554#ifdef CONFIG_DEBUG_OBJECTS_WORK
555
f9e62f31 556static const struct debug_obj_descr work_debug_descr;
dc186ad7 557
99777288
SG
558static void *work_debug_hint(void *addr)
559{
560 return ((struct work_struct *) addr)->func;
561}
562
b9fdac7f
DC
563static bool work_is_static_object(void *addr)
564{
565 struct work_struct *work = addr;
566
567 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
568}
569
dc186ad7
TG
570/*
571 * fixup_init is called when:
572 * - an active object is initialized
573 */
02a982a6 574static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
575{
576 struct work_struct *work = addr;
577
578 switch (state) {
579 case ODEBUG_STATE_ACTIVE:
580 cancel_work_sync(work);
581 debug_object_init(work, &work_debug_descr);
02a982a6 582 return true;
dc186ad7 583 default:
02a982a6 584 return false;
dc186ad7
TG
585 }
586}
587
dc186ad7
TG
588/*
589 * fixup_free is called when:
590 * - an active object is freed
591 */
02a982a6 592static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
593{
594 struct work_struct *work = addr;
595
596 switch (state) {
597 case ODEBUG_STATE_ACTIVE:
598 cancel_work_sync(work);
599 debug_object_free(work, &work_debug_descr);
02a982a6 600 return true;
dc186ad7 601 default:
02a982a6 602 return false;
dc186ad7
TG
603 }
604}
605
f9e62f31 606static const struct debug_obj_descr work_debug_descr = {
dc186ad7 607 .name = "work_struct",
99777288 608 .debug_hint = work_debug_hint,
b9fdac7f 609 .is_static_object = work_is_static_object,
dc186ad7 610 .fixup_init = work_fixup_init,
dc186ad7
TG
611 .fixup_free = work_fixup_free,
612};
613
614static inline void debug_work_activate(struct work_struct *work)
615{
616 debug_object_activate(work, &work_debug_descr);
617}
618
619static inline void debug_work_deactivate(struct work_struct *work)
620{
621 debug_object_deactivate(work, &work_debug_descr);
622}
623
624void __init_work(struct work_struct *work, int onstack)
625{
626 if (onstack)
627 debug_object_init_on_stack(work, &work_debug_descr);
628 else
629 debug_object_init(work, &work_debug_descr);
630}
631EXPORT_SYMBOL_GPL(__init_work);
632
633void destroy_work_on_stack(struct work_struct *work)
634{
635 debug_object_free(work, &work_debug_descr);
636}
637EXPORT_SYMBOL_GPL(destroy_work_on_stack);
638
ea2e64f2
TG
639void destroy_delayed_work_on_stack(struct delayed_work *work)
640{
641 destroy_timer_on_stack(&work->timer);
642 debug_object_free(&work->work, &work_debug_descr);
643}
644EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
645
dc186ad7
TG
646#else
647static inline void debug_work_activate(struct work_struct *work) { }
648static inline void debug_work_deactivate(struct work_struct *work) { }
649#endif
650
4e8b22bd 651/**
67dc8325 652 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
653 * @pool: the pool pointer of interest
654 *
655 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
656 * successfully, -errno on failure.
657 */
9daf9e67
TH
658static int worker_pool_assign_id(struct worker_pool *pool)
659{
660 int ret;
661
68e13a67 662 lockdep_assert_held(&wq_pool_mutex);
5bcab335 663
4e8b22bd
LB
664 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
665 GFP_KERNEL);
229641a6 666 if (ret >= 0) {
e68035fb 667 pool->id = ret;
229641a6
TH
668 return 0;
669 }
fa1b54e6 670 return ret;
7c3eed5c
TH
671}
672
9f66cff2
TH
673static struct pool_workqueue __rcu **
674unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
675{
676 if (cpu >= 0)
677 return per_cpu_ptr(wq->cpu_pwq, cpu);
678 else
679 return &wq->dfl_pwq;
680}
681
682/* @cpu < 0 for dfl_pwq */
683static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
684{
685 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
686 lockdep_is_held(&wq_pool_mutex) ||
687 lockdep_is_held(&wq->mutex));
688}
689
5797b1c1
TH
690/**
691 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
692 * @wq: workqueue of interest
693 *
694 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
695 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
696 * default pwq is always mapped to the pool with the current effective cpumask.
697 */
698static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
699{
700 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
701}
702
73f53c4a
TH
703static unsigned int work_color_to_flags(int color)
704{
705 return color << WORK_STRUCT_COLOR_SHIFT;
706}
707
c4560c2c 708static int get_work_color(unsigned long work_data)
73f53c4a 709{
c4560c2c 710 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
711 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
712}
713
714static int work_next_color(int color)
715{
716 return (color + 1) % WORK_NR_COLORS;
717}
1da177e4 718
14441960 719/*
112202d9
TH
720 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
721 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 722 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 723 *
112202d9
TH
724 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
725 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
726 * work->data. These functions should only be called while the work is
727 * owned - ie. while the PENDING bit is set.
7a22ad75 728 *
112202d9 729 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 730 * corresponding to a work. Pool is available once the work has been
112202d9 731 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 732 * available only while the work item is queued.
7a22ad75 733 *
bbb68dfa
TH
734 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
735 * canceled. While being canceled, a work item may have its PENDING set
736 * but stay off timer and worklist for arbitrarily long and nobody should
737 * try to steal the PENDING bit.
14441960 738 */
7a22ad75
TH
739static inline void set_work_data(struct work_struct *work, unsigned long data,
740 unsigned long flags)
365970a1 741{
6183c009 742 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
743 atomic_long_set(&work->data, data | flags | work_static(work));
744}
365970a1 745
112202d9 746static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
747 unsigned long extra_flags)
748{
112202d9
TH
749 set_work_data(work, (unsigned long)pwq,
750 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
751}
752
4468a00f
LJ
753static void set_work_pool_and_keep_pending(struct work_struct *work,
754 int pool_id)
755{
756 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
757 WORK_STRUCT_PENDING);
758}
759
7c3eed5c
TH
760static void set_work_pool_and_clear_pending(struct work_struct *work,
761 int pool_id)
7a22ad75 762{
23657bb1
TH
763 /*
764 * The following wmb is paired with the implied mb in
765 * test_and_set_bit(PENDING) and ensures all updates to @work made
766 * here are visible to and precede any updates by the next PENDING
767 * owner.
768 */
769 smp_wmb();
7c3eed5c 770 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
771 /*
772 * The following mb guarantees that previous clear of a PENDING bit
773 * will not be reordered with any speculative LOADS or STORES from
774 * work->current_func, which is executed afterwards. This possible
8bdc6201 775 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
776 * the same @work. E.g. consider this case:
777 *
778 * CPU#0 CPU#1
779 * ---------------------------- --------------------------------
780 *
781 * 1 STORE event_indicated
782 * 2 queue_work_on() {
783 * 3 test_and_set_bit(PENDING)
784 * 4 } set_..._and_clear_pending() {
785 * 5 set_work_data() # clear bit
786 * 6 smp_mb()
787 * 7 work->current_func() {
788 * 8 LOAD event_indicated
789 * }
790 *
791 * Without an explicit full barrier speculative LOAD on line 8 can
792 * be executed before CPU#0 does STORE on line 1. If that happens,
793 * CPU#0 observes the PENDING bit is still set and new execution of
794 * a @work is not queued in a hope, that CPU#1 will eventually
795 * finish the queued @work. Meanwhile CPU#1 does not see
796 * event_indicated is set, because speculative LOAD was executed
797 * before actual STORE.
798 */
799 smp_mb();
7a22ad75 800}
f756d5e2 801
7a22ad75 802static void clear_work_data(struct work_struct *work)
1da177e4 803{
7c3eed5c
TH
804 smp_wmb(); /* see set_work_pool_and_clear_pending() */
805 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
806}
807
afa4bb77
LT
808static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
809{
810 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
811}
812
112202d9 813static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 814{
e120153d 815 unsigned long data = atomic_long_read(&work->data);
7a22ad75 816
112202d9 817 if (data & WORK_STRUCT_PWQ)
afa4bb77 818 return work_struct_pwq(data);
e120153d
TH
819 else
820 return NULL;
4d707b9f
ON
821}
822
7c3eed5c
TH
823/**
824 * get_work_pool - return the worker_pool a given work was associated with
825 * @work: the work item of interest
826 *
68e13a67 827 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
828 * access under RCU read lock. As such, this function should be
829 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
830 *
831 * All fields of the returned pool are accessible as long as the above
832 * mentioned locking is in effect. If the returned pool needs to be used
833 * beyond the critical section, the caller is responsible for ensuring the
834 * returned pool is and stays online.
d185af30
YB
835 *
836 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
837 */
838static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 839{
e120153d 840 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 841 int pool_id;
7a22ad75 842
68e13a67 843 assert_rcu_or_pool_mutex();
fa1b54e6 844
112202d9 845 if (data & WORK_STRUCT_PWQ)
afa4bb77 846 return work_struct_pwq(data)->pool;
7a22ad75 847
7c3eed5c
TH
848 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
849 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
850 return NULL;
851
fa1b54e6 852 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
853}
854
855/**
856 * get_work_pool_id - return the worker pool ID a given work is associated with
857 * @work: the work item of interest
858 *
d185af30 859 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
860 * %WORK_OFFQ_POOL_NONE if none.
861 */
862static int get_work_pool_id(struct work_struct *work)
863{
54d5b7d0
LJ
864 unsigned long data = atomic_long_read(&work->data);
865
112202d9 866 if (data & WORK_STRUCT_PWQ)
afa4bb77 867 return work_struct_pwq(data)->pool->id;
7c3eed5c 868
54d5b7d0 869 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
870}
871
bbb68dfa
TH
872static void mark_work_canceling(struct work_struct *work)
873{
7c3eed5c 874 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 875
7c3eed5c
TH
876 pool_id <<= WORK_OFFQ_POOL_SHIFT;
877 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
878}
879
880static bool work_is_canceling(struct work_struct *work)
881{
882 unsigned long data = atomic_long_read(&work->data);
883
112202d9 884 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
885}
886
e22bee78 887/*
3270476a
TH
888 * Policy functions. These define the policies on how the global worker
889 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 890 * they're being called with pool->lock held.
e22bee78
TH
891 */
892
4594bf15 893/*
e22bee78
TH
894 * Need to wake up a worker? Called from anything but currently
895 * running workers.
974271c4
TH
896 *
897 * Note that, because unbound workers never contribute to nr_running, this
706026c2 898 * function will always return %true for unbound pools as long as the
974271c4 899 * worklist isn't empty.
4594bf15 900 */
63d95a91 901static bool need_more_worker(struct worker_pool *pool)
365970a1 902{
0219a352 903 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 904}
4594bf15 905
e22bee78 906/* Can I start working? Called from busy but !running workers. */
63d95a91 907static bool may_start_working(struct worker_pool *pool)
e22bee78 908{
63d95a91 909 return pool->nr_idle;
e22bee78
TH
910}
911
912/* Do I need to keep working? Called from currently running workers. */
63d95a91 913static bool keep_working(struct worker_pool *pool)
e22bee78 914{
bc35f7ef 915 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
916}
917
918/* Do we need a new worker? Called from manager. */
63d95a91 919static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 920{
63d95a91 921 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 922}
365970a1 923
e22bee78 924/* Do we have too many workers and should some go away? */
63d95a91 925static bool too_many_workers(struct worker_pool *pool)
e22bee78 926{
692b4825 927 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
928 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
929 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
930
931 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
932}
933
c54d5046
TH
934/**
935 * worker_set_flags - set worker flags and adjust nr_running accordingly
936 * @worker: self
937 * @flags: flags to set
938 *
939 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
940 */
941static inline void worker_set_flags(struct worker *worker, unsigned int flags)
942{
943 struct worker_pool *pool = worker->pool;
944
bc8b50c2 945 lockdep_assert_held(&pool->lock);
c54d5046
TH
946
947 /* If transitioning into NOT_RUNNING, adjust nr_running. */
948 if ((flags & WORKER_NOT_RUNNING) &&
949 !(worker->flags & WORKER_NOT_RUNNING)) {
950 pool->nr_running--;
951 }
952
953 worker->flags |= flags;
954}
955
956/**
957 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
958 * @worker: self
959 * @flags: flags to clear
960 *
961 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
962 */
963static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
964{
965 struct worker_pool *pool = worker->pool;
966 unsigned int oflags = worker->flags;
967
bc8b50c2 968 lockdep_assert_held(&pool->lock);
c54d5046
TH
969
970 worker->flags &= ~flags;
971
972 /*
973 * If transitioning out of NOT_RUNNING, increment nr_running. Note
974 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
975 * of multiple flags, not a single flag.
976 */
977 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
978 if (!(worker->flags & WORKER_NOT_RUNNING))
979 pool->nr_running++;
980}
981
797e8345
TH
982/* Return the first idle worker. Called with pool->lock held. */
983static struct worker *first_idle_worker(struct worker_pool *pool)
984{
985 if (unlikely(list_empty(&pool->idle_list)))
986 return NULL;
987
988 return list_first_entry(&pool->idle_list, struct worker, entry);
989}
990
991/**
992 * worker_enter_idle - enter idle state
993 * @worker: worker which is entering idle state
994 *
995 * @worker is entering idle state. Update stats and idle timer if
996 * necessary.
997 *
998 * LOCKING:
999 * raw_spin_lock_irq(pool->lock).
1000 */
1001static void worker_enter_idle(struct worker *worker)
1002{
1003 struct worker_pool *pool = worker->pool;
1004
1005 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1006 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1007 (worker->hentry.next || worker->hentry.pprev)))
1008 return;
1009
1010 /* can't use worker_set_flags(), also called from create_worker() */
1011 worker->flags |= WORKER_IDLE;
1012 pool->nr_idle++;
1013 worker->last_active = jiffies;
1014
1015 /* idle_list is LIFO */
1016 list_add(&worker->entry, &pool->idle_list);
1017
1018 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1019 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1020
1021 /* Sanity check nr_running. */
1022 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1023}
1024
1025/**
1026 * worker_leave_idle - leave idle state
1027 * @worker: worker which is leaving idle state
1028 *
1029 * @worker is leaving idle state. Update stats.
1030 *
1031 * LOCKING:
1032 * raw_spin_lock_irq(pool->lock).
1033 */
1034static void worker_leave_idle(struct worker *worker)
1035{
1036 struct worker_pool *pool = worker->pool;
1037
1038 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1039 return;
1040 worker_clr_flags(worker, WORKER_IDLE);
1041 pool->nr_idle--;
1042 list_del_init(&worker->entry);
1043}
1044
1045/**
1046 * find_worker_executing_work - find worker which is executing a work
1047 * @pool: pool of interest
1048 * @work: work to find worker for
1049 *
1050 * Find a worker which is executing @work on @pool by searching
1051 * @pool->busy_hash which is keyed by the address of @work. For a worker
1052 * to match, its current execution should match the address of @work and
1053 * its work function. This is to avoid unwanted dependency between
1054 * unrelated work executions through a work item being recycled while still
1055 * being executed.
1056 *
1057 * This is a bit tricky. A work item may be freed once its execution
1058 * starts and nothing prevents the freed area from being recycled for
1059 * another work item. If the same work item address ends up being reused
1060 * before the original execution finishes, workqueue will identify the
1061 * recycled work item as currently executing and make it wait until the
1062 * current execution finishes, introducing an unwanted dependency.
1063 *
1064 * This function checks the work item address and work function to avoid
1065 * false positives. Note that this isn't complete as one may construct a
1066 * work function which can introduce dependency onto itself through a
1067 * recycled work item. Well, if somebody wants to shoot oneself in the
1068 * foot that badly, there's only so much we can do, and if such deadlock
1069 * actually occurs, it should be easy to locate the culprit work function.
1070 *
1071 * CONTEXT:
1072 * raw_spin_lock_irq(pool->lock).
1073 *
1074 * Return:
1075 * Pointer to worker which is executing @work if found, %NULL
1076 * otherwise.
1077 */
1078static struct worker *find_worker_executing_work(struct worker_pool *pool,
1079 struct work_struct *work)
1080{
1081 struct worker *worker;
1082
1083 hash_for_each_possible(pool->busy_hash, worker, hentry,
1084 (unsigned long)work)
1085 if (worker->current_work == work &&
1086 worker->current_func == work->func)
1087 return worker;
1088
1089 return NULL;
1090}
1091
1092/**
1093 * move_linked_works - move linked works to a list
1094 * @work: start of series of works to be scheduled
1095 * @head: target list to append @work to
1096 * @nextp: out parameter for nested worklist walking
1097 *
873eaca6
TH
1098 * Schedule linked works starting from @work to @head. Work series to be
1099 * scheduled starts at @work and includes any consecutive work with
1100 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1101 * @nextp.
797e8345
TH
1102 *
1103 * CONTEXT:
1104 * raw_spin_lock_irq(pool->lock).
1105 */
1106static void move_linked_works(struct work_struct *work, struct list_head *head,
1107 struct work_struct **nextp)
1108{
1109 struct work_struct *n;
1110
1111 /*
1112 * Linked worklist will always end before the end of the list,
1113 * use NULL for list head.
1114 */
1115 list_for_each_entry_safe_from(work, n, NULL, entry) {
1116 list_move_tail(&work->entry, head);
1117 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1118 break;
1119 }
1120
1121 /*
1122 * If we're already inside safe list traversal and have moved
1123 * multiple works to the scheduled queue, the next position
1124 * needs to be updated.
1125 */
1126 if (nextp)
1127 *nextp = n;
1128}
1129
873eaca6
TH
1130/**
1131 * assign_work - assign a work item and its linked work items to a worker
1132 * @work: work to assign
1133 * @worker: worker to assign to
1134 * @nextp: out parameter for nested worklist walking
1135 *
1136 * Assign @work and its linked work items to @worker. If @work is already being
1137 * executed by another worker in the same pool, it'll be punted there.
1138 *
1139 * If @nextp is not NULL, it's updated to point to the next work of the last
1140 * scheduled work. This allows assign_work() to be nested inside
1141 * list_for_each_entry_safe().
1142 *
1143 * Returns %true if @work was successfully assigned to @worker. %false if @work
1144 * was punted to another worker already executing it.
1145 */
1146static bool assign_work(struct work_struct *work, struct worker *worker,
1147 struct work_struct **nextp)
1148{
1149 struct worker_pool *pool = worker->pool;
1150 struct worker *collision;
1151
1152 lockdep_assert_held(&pool->lock);
1153
1154 /*
1155 * A single work shouldn't be executed concurrently by multiple workers.
1156 * __queue_work() ensures that @work doesn't jump to a different pool
1157 * while still running in the previous pool. Here, we should ensure that
1158 * @work is not executed concurrently by multiple workers from the same
1159 * pool. Check whether anyone is already processing the work. If so,
1160 * defer the work to the currently executing one.
1161 */
1162 collision = find_worker_executing_work(pool, work);
1163 if (unlikely(collision)) {
1164 move_linked_works(work, &collision->scheduled, nextp);
1165 return false;
1166 }
1167
1168 move_linked_works(work, &worker->scheduled, nextp);
1169 return true;
1170}
1171
797e8345 1172/**
0219a352
TH
1173 * kick_pool - wake up an idle worker if necessary
1174 * @pool: pool to kick
797e8345 1175 *
0219a352
TH
1176 * @pool may have pending work items. Wake up worker if necessary. Returns
1177 * whether a worker was woken up.
797e8345 1178 */
0219a352 1179static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1180{
1181 struct worker *worker = first_idle_worker(pool);
8639eceb 1182 struct task_struct *p;
797e8345 1183
0219a352
TH
1184 lockdep_assert_held(&pool->lock);
1185
1186 if (!need_more_worker(pool) || !worker)
1187 return false;
1188
8639eceb
TH
1189 p = worker->task;
1190
1191#ifdef CONFIG_SMP
1192 /*
1193 * Idle @worker is about to execute @work and waking up provides an
1194 * opportunity to migrate @worker at a lower cost by setting the task's
1195 * wake_cpu field. Let's see if we want to move @worker to improve
1196 * execution locality.
1197 *
1198 * We're waking the worker that went idle the latest and there's some
1199 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1200 * so, setting the wake_cpu won't do anything. As this is a best-effort
1201 * optimization and the race window is narrow, let's leave as-is for
1202 * now. If this becomes pronounced, we can skip over workers which are
1203 * still on cpu when picking an idle worker.
1204 *
1205 * If @pool has non-strict affinity, @worker might have ended up outside
1206 * its affinity scope. Repatriate.
1207 */
1208 if (!pool->attrs->affn_strict &&
1209 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1210 struct work_struct *work = list_first_entry(&pool->worklist,
1211 struct work_struct, entry);
1212 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1213 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1214 }
1215#endif
1216 wake_up_process(p);
0219a352 1217 return true;
797e8345
TH
1218}
1219
63638450
TH
1220#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1221
1222/*
1223 * Concurrency-managed per-cpu work items that hog CPU for longer than
1224 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1225 * which prevents them from stalling other concurrency-managed work items. If a
1226 * work function keeps triggering this mechanism, it's likely that the work item
1227 * should be using an unbound workqueue instead.
1228 *
1229 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1230 * and report them so that they can be examined and converted to use unbound
1231 * workqueues as appropriate. To avoid flooding the console, each violating work
1232 * function is tracked and reported with exponential backoff.
1233 */
1234#define WCI_MAX_ENTS 128
1235
1236struct wci_ent {
1237 work_func_t func;
1238 atomic64_t cnt;
1239 struct hlist_node hash_node;
1240};
1241
1242static struct wci_ent wci_ents[WCI_MAX_ENTS];
1243static int wci_nr_ents;
1244static DEFINE_RAW_SPINLOCK(wci_lock);
1245static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1246
1247static struct wci_ent *wci_find_ent(work_func_t func)
1248{
1249 struct wci_ent *ent;
1250
1251 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1252 (unsigned long)func) {
1253 if (ent->func == func)
1254 return ent;
1255 }
1256 return NULL;
1257}
1258
1259static void wq_cpu_intensive_report(work_func_t func)
1260{
1261 struct wci_ent *ent;
1262
1263restart:
1264 ent = wci_find_ent(func);
1265 if (ent) {
1266 u64 cnt;
1267
1268 /*
1269 * Start reporting from the fourth time and back off
1270 * exponentially.
1271 */
1272 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1273 if (cnt >= 4 && is_power_of_2(cnt))
1274 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1275 ent->func, wq_cpu_intensive_thresh_us,
1276 atomic64_read(&ent->cnt));
1277 return;
1278 }
1279
1280 /*
1281 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1282 * is exhausted, something went really wrong and we probably made enough
1283 * noise already.
1284 */
1285 if (wci_nr_ents >= WCI_MAX_ENTS)
1286 return;
1287
1288 raw_spin_lock(&wci_lock);
1289
1290 if (wci_nr_ents >= WCI_MAX_ENTS) {
1291 raw_spin_unlock(&wci_lock);
1292 return;
1293 }
1294
1295 if (wci_find_ent(func)) {
1296 raw_spin_unlock(&wci_lock);
1297 goto restart;
1298 }
1299
1300 ent = &wci_ents[wci_nr_ents++];
1301 ent->func = func;
1302 atomic64_set(&ent->cnt, 1);
1303 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1304
1305 raw_spin_unlock(&wci_lock);
1306}
1307
1308#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1309static void wq_cpu_intensive_report(work_func_t func) {}
1310#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1311
d302f017 1312/**
6d25be57 1313 * wq_worker_running - a worker is running again
e22bee78 1314 * @task: task waking up
e22bee78 1315 *
6d25be57 1316 * This function is called when a worker returns from schedule()
e22bee78 1317 */
6d25be57 1318void wq_worker_running(struct task_struct *task)
e22bee78
TH
1319{
1320 struct worker *worker = kthread_data(task);
1321
c8f6219b 1322 if (!READ_ONCE(worker->sleeping))
6d25be57 1323 return;
07edfece
FW
1324
1325 /*
1326 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1327 * and the nr_running increment below, we may ruin the nr_running reset
1328 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1329 * pool. Protect against such race.
1330 */
1331 preempt_disable();
6d25be57 1332 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1333 worker->pool->nr_running++;
07edfece 1334 preempt_enable();
616db877
TH
1335
1336 /*
1337 * CPU intensive auto-detection cares about how long a work item hogged
1338 * CPU without sleeping. Reset the starting timestamp on wakeup.
1339 */
1340 worker->current_at = worker->task->se.sum_exec_runtime;
1341
c8f6219b 1342 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1343}
1344
1345/**
1346 * wq_worker_sleeping - a worker is going to sleep
1347 * @task: task going to sleep
e22bee78 1348 *
6d25be57 1349 * This function is called from schedule() when a busy worker is
ccf45156 1350 * going to sleep.
e22bee78 1351 */
6d25be57 1352void wq_worker_sleeping(struct task_struct *task)
e22bee78 1353{
cc5bff38 1354 struct worker *worker = kthread_data(task);
111c225a 1355 struct worker_pool *pool;
e22bee78 1356
111c225a
TH
1357 /*
1358 * Rescuers, which may not have all the fields set up like normal
1359 * workers, also reach here, let's not access anything before
1360 * checking NOT_RUNNING.
1361 */
2d64672e 1362 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1363 return;
e22bee78 1364
111c225a 1365 pool = worker->pool;
111c225a 1366
62849a96 1367 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1368 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1369 return;
1370
c8f6219b 1371 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1372 raw_spin_lock_irq(&pool->lock);
e22bee78 1373
45c753f5
FW
1374 /*
1375 * Recheck in case unbind_workers() preempted us. We don't
1376 * want to decrement nr_running after the worker is unbound
1377 * and nr_running has been reset.
1378 */
1379 if (worker->flags & WORKER_NOT_RUNNING) {
1380 raw_spin_unlock_irq(&pool->lock);
1381 return;
1382 }
1383
bc35f7ef 1384 pool->nr_running--;
0219a352 1385 if (kick_pool(pool))
725e8ec5 1386 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1387
a9b8a985 1388 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1389}
1390
616db877
TH
1391/**
1392 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1393 * @task: task currently running
1394 *
1395 * Called from scheduler_tick(). We're in the IRQ context and the current
1396 * worker's fields which follow the 'K' locking rule can be accessed safely.
1397 */
1398void wq_worker_tick(struct task_struct *task)
1399{
1400 struct worker *worker = kthread_data(task);
1401 struct pool_workqueue *pwq = worker->current_pwq;
1402 struct worker_pool *pool = worker->pool;
1403
1404 if (!pwq)
1405 return;
1406
8a1dd1e5
TH
1407 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1408
18c8ae81
Z
1409 if (!wq_cpu_intensive_thresh_us)
1410 return;
1411
616db877
TH
1412 /*
1413 * If the current worker is concurrency managed and hogged the CPU for
1414 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1415 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1416 *
1417 * Set @worker->sleeping means that @worker is in the process of
1418 * switching out voluntarily and won't be contributing to
1419 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1420 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1421 * double decrements. The task is releasing the CPU anyway. Let's skip.
1422 * We probably want to make this prettier in the future.
616db877 1423 */
c8f6219b 1424 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1425 worker->task->se.sum_exec_runtime - worker->current_at <
1426 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1427 return;
1428
1429 raw_spin_lock(&pool->lock);
1430
1431 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1432 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1433 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1434
0219a352 1435 if (kick_pool(pool))
616db877 1436 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1437
1438 raw_spin_unlock(&pool->lock);
1439}
1440
1b69ac6b
JW
1441/**
1442 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1443 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1444 *
1445 * Determine the last function a worker executed. This is called from
1446 * the scheduler to get a worker's last known identity.
1447 *
1448 * CONTEXT:
a9b8a985 1449 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1450 *
4b047002
JW
1451 * This function is called during schedule() when a kworker is going
1452 * to sleep. It's used by psi to identify aggregation workers during
1453 * dequeuing, to allow periodic aggregation to shut-off when that
1454 * worker is the last task in the system or cgroup to go to sleep.
1455 *
1456 * As this function doesn't involve any workqueue-related locking, it
1457 * only returns stable values when called from inside the scheduler's
1458 * queuing and dequeuing paths, when @task, which must be a kworker,
1459 * is guaranteed to not be processing any works.
1460 *
1b69ac6b
JW
1461 * Return:
1462 * The last work function %current executed as a worker, NULL if it
1463 * hasn't executed any work yet.
1464 */
1465work_func_t wq_worker_last_func(struct task_struct *task)
1466{
1467 struct worker *worker = kthread_data(task);
1468
1469 return worker->last_func;
1470}
1471
91ccc6e7
TH
1472/**
1473 * wq_node_nr_active - Determine wq_node_nr_active to use
1474 * @wq: workqueue of interest
1475 * @node: NUMA node, can be %NUMA_NO_NODE
1476 *
1477 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1478 *
1479 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1480 *
1481 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1482 *
1483 * - Otherwise, node_nr_active[@node].
1484 */
1485static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1486 int node)
1487{
1488 if (!(wq->flags & WQ_UNBOUND))
1489 return NULL;
1490
1491 if (node == NUMA_NO_NODE)
1492 node = nr_node_ids;
1493
1494 return wq->node_nr_active[node];
1495}
1496
5797b1c1
TH
1497/**
1498 * wq_update_node_max_active - Update per-node max_actives to use
1499 * @wq: workqueue to update
1500 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1501 *
1502 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1503 * distributed among nodes according to the proportions of numbers of online
1504 * cpus. The result is always between @wq->min_active and max_active.
1505 */
1506static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1507{
1508 struct cpumask *effective = unbound_effective_cpumask(wq);
1509 int min_active = READ_ONCE(wq->min_active);
1510 int max_active = READ_ONCE(wq->max_active);
1511 int total_cpus, node;
1512
1513 lockdep_assert_held(&wq->mutex);
1514
c5f8cd6c
TH
1515 if (!wq_topo_initialized)
1516 return;
1517
15930da4 1518 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
5797b1c1
TH
1519 off_cpu = -1;
1520
1521 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1522 if (off_cpu >= 0)
1523 total_cpus--;
1524
1525 for_each_node(node) {
1526 int node_cpus;
1527
1528 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1529 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1530 node_cpus--;
1531
1532 wq_node_nr_active(wq, node)->max =
1533 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1534 min_active, max_active);
1535 }
1536
1537 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1538}
1539
8864b4e5
TH
1540/**
1541 * get_pwq - get an extra reference on the specified pool_workqueue
1542 * @pwq: pool_workqueue to get
1543 *
1544 * Obtain an extra reference on @pwq. The caller should guarantee that
1545 * @pwq has positive refcnt and be holding the matching pool->lock.
1546 */
1547static void get_pwq(struct pool_workqueue *pwq)
1548{
1549 lockdep_assert_held(&pwq->pool->lock);
1550 WARN_ON_ONCE(pwq->refcnt <= 0);
1551 pwq->refcnt++;
1552}
1553
1554/**
1555 * put_pwq - put a pool_workqueue reference
1556 * @pwq: pool_workqueue to put
1557 *
1558 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1559 * destruction. The caller should be holding the matching pool->lock.
1560 */
1561static void put_pwq(struct pool_workqueue *pwq)
1562{
1563 lockdep_assert_held(&pwq->pool->lock);
1564 if (likely(--pwq->refcnt))
1565 return;
8864b4e5 1566 /*
967b494e
TH
1567 * @pwq can't be released under pool->lock, bounce to a dedicated
1568 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1569 */
687a9aa5 1570 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1571}
1572
dce90d47
TH
1573/**
1574 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1575 * @pwq: pool_workqueue to put (can be %NULL)
1576 *
1577 * put_pwq() with locking. This function also allows %NULL @pwq.
1578 */
1579static void put_pwq_unlocked(struct pool_workqueue *pwq)
1580{
1581 if (pwq) {
1582 /*
24acfb71 1583 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1584 * following lock operations are safe.
1585 */
a9b8a985 1586 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1587 put_pwq(pwq);
a9b8a985 1588 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1589 }
1590}
1591
afa87ce8
TH
1592static bool pwq_is_empty(struct pool_workqueue *pwq)
1593{
1594 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1595}
1596
4c638030
TH
1597static void __pwq_activate_work(struct pool_workqueue *pwq,
1598 struct work_struct *work)
bf4ede01 1599{
1c270b79
TH
1600 unsigned long *wdb = work_data_bits(work);
1601
1602 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1603 trace_workqueue_activate_work(work);
82607adc
TH
1604 if (list_empty(&pwq->pool->worklist))
1605 pwq->pool->watchdog_ts = jiffies;
112202d9 1606 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1607 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1608}
1609
1610/**
1611 * pwq_activate_work - Activate a work item if inactive
1612 * @pwq: pool_workqueue @work belongs to
1613 * @work: work item to activate
1614 *
1615 * Returns %true if activated. %false if already active.
1616 */
1617static bool pwq_activate_work(struct pool_workqueue *pwq,
1618 struct work_struct *work)
1619{
1620 struct worker_pool *pool = pwq->pool;
91ccc6e7 1621 struct wq_node_nr_active *nna;
4c638030
TH
1622
1623 lockdep_assert_held(&pool->lock);
1624
1625 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1626 return false;
1627
91ccc6e7
TH
1628 nna = wq_node_nr_active(pwq->wq, pool->node);
1629 if (nna)
1630 atomic_inc(&nna->nr);
1631
112202d9 1632 pwq->nr_active++;
4c638030
TH
1633 __pwq_activate_work(pwq, work);
1634 return true;
bf4ede01
TH
1635}
1636
5797b1c1
TH
1637static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1638{
1639 int max = READ_ONCE(nna->max);
1640
1641 while (true) {
1642 int old, tmp;
1643
1644 old = atomic_read(&nna->nr);
1645 if (old >= max)
1646 return false;
1647 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1648 if (tmp == old)
1649 return true;
1650 }
1651}
1652
1c270b79
TH
1653/**
1654 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1655 * @pwq: pool_workqueue of interest
5797b1c1 1656 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1657 *
1658 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1659 * successfully obtained. %false otherwise.
1660 */
5797b1c1 1661static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1662{
1663 struct workqueue_struct *wq = pwq->wq;
1664 struct worker_pool *pool = pwq->pool;
91ccc6e7 1665 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1666 bool obtained = false;
1c270b79
TH
1667
1668 lockdep_assert_held(&pool->lock);
1669
5797b1c1
TH
1670 if (!nna) {
1671 /* per-cpu workqueue, pwq->nr_active is sufficient */
1672 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1673 goto out;
1674 }
1675
1676 /*
1677 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1678 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1679 * concurrency level. Don't jump the line.
1680 *
1681 * We need to ignore the pending test after max_active has increased as
1682 * pwq_dec_nr_active() can only maintain the concurrency level but not
1683 * increase it. This is indicated by @fill.
1684 */
1685 if (!list_empty(&pwq->pending_node) && likely(!fill))
1686 goto out;
1687
1688 obtained = tryinc_node_nr_active(nna);
1689 if (obtained)
1690 goto out;
1691
1692 /*
1693 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1694 * and try again. The smp_mb() is paired with the implied memory barrier
1695 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1696 * we see the decremented $nna->nr or they see non-empty
1697 * $nna->pending_pwqs.
1698 */
1699 raw_spin_lock(&nna->lock);
1700
1701 if (list_empty(&pwq->pending_node))
1702 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1703 else if (likely(!fill))
1704 goto out_unlock;
1705
1706 smp_mb();
1707
1708 obtained = tryinc_node_nr_active(nna);
1c270b79 1709
5797b1c1
TH
1710 /*
1711 * If @fill, @pwq might have already been pending. Being spuriously
1712 * pending in cold paths doesn't affect anything. Let's leave it be.
1713 */
1714 if (obtained && likely(!fill))
1715 list_del_init(&pwq->pending_node);
1716
1717out_unlock:
1718 raw_spin_unlock(&nna->lock);
1719out:
1720 if (obtained)
1c270b79
TH
1721 pwq->nr_active++;
1722 return obtained;
1723}
1724
1725/**
1726 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1727 * @pwq: pool_workqueue of interest
5797b1c1 1728 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1729 *
1730 * Activate the first inactive work item of @pwq if available and allowed by
1731 * max_active limit.
1732 *
1733 * Returns %true if an inactive work item has been activated. %false if no
1734 * inactive work item is found or max_active limit is reached.
1735 */
5797b1c1 1736static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1737{
1738 struct work_struct *work =
1739 list_first_entry_or_null(&pwq->inactive_works,
1740 struct work_struct, entry);
1741
5797b1c1 1742 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1743 __pwq_activate_work(pwq, work);
1744 return true;
1745 } else {
1746 return false;
1747 }
1748}
1749
5797b1c1
TH
1750/**
1751 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1752 * @nna: wq_node_nr_active to activate a pending pwq for
1753 * @caller_pool: worker_pool the caller is locking
1754 *
1755 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1756 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1757 */
1758static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1759 struct worker_pool *caller_pool)
1760{
1761 struct worker_pool *locked_pool = caller_pool;
1762 struct pool_workqueue *pwq;
1763 struct work_struct *work;
1764
1765 lockdep_assert_held(&caller_pool->lock);
1766
1767 raw_spin_lock(&nna->lock);
1768retry:
1769 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1770 struct pool_workqueue, pending_node);
1771 if (!pwq)
1772 goto out_unlock;
1773
1774 /*
1775 * If @pwq is for a different pool than @locked_pool, we need to lock
1776 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1777 * / lock dance. For that, we also need to release @nna->lock as it's
1778 * nested inside pool locks.
1779 */
1780 if (pwq->pool != locked_pool) {
1781 raw_spin_unlock(&locked_pool->lock);
1782 locked_pool = pwq->pool;
1783 if (!raw_spin_trylock(&locked_pool->lock)) {
1784 raw_spin_unlock(&nna->lock);
1785 raw_spin_lock(&locked_pool->lock);
1786 raw_spin_lock(&nna->lock);
1787 goto retry;
1788 }
1789 }
1790
1791 /*
1792 * $pwq may not have any inactive work items due to e.g. cancellations.
1793 * Drop it from pending_pwqs and see if there's another one.
1794 */
1795 work = list_first_entry_or_null(&pwq->inactive_works,
1796 struct work_struct, entry);
1797 if (!work) {
1798 list_del_init(&pwq->pending_node);
1799 goto retry;
1800 }
1801
1802 /*
1803 * Acquire an nr_active count and activate the inactive work item. If
1804 * $pwq still has inactive work items, rotate it to the end of the
1805 * pending_pwqs so that we round-robin through them. This means that
1806 * inactive work items are not activated in queueing order which is fine
1807 * given that there has never been any ordering across different pwqs.
1808 */
1809 if (likely(tryinc_node_nr_active(nna))) {
1810 pwq->nr_active++;
1811 __pwq_activate_work(pwq, work);
1812
1813 if (list_empty(&pwq->inactive_works))
1814 list_del_init(&pwq->pending_node);
1815 else
1816 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1817
1818 /* if activating a foreign pool, make sure it's running */
1819 if (pwq->pool != caller_pool)
1820 kick_pool(pwq->pool);
1821 }
1822
1823out_unlock:
1824 raw_spin_unlock(&nna->lock);
1825 if (locked_pool != caller_pool) {
1826 raw_spin_unlock(&locked_pool->lock);
1827 raw_spin_lock(&caller_pool->lock);
1828 }
1829}
1830
1c270b79
TH
1831/**
1832 * pwq_dec_nr_active - Retire an active count
1833 * @pwq: pool_workqueue of interest
1834 *
1835 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1836 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1837 */
1838static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1839{
1c270b79 1840 struct worker_pool *pool = pwq->pool;
91ccc6e7 1841 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1842
1c270b79
TH
1843 lockdep_assert_held(&pool->lock);
1844
91ccc6e7
TH
1845 /*
1846 * @pwq->nr_active should be decremented for both percpu and unbound
1847 * workqueues.
1848 */
1c270b79 1849 pwq->nr_active--;
91ccc6e7
TH
1850
1851 /*
1852 * For a percpu workqueue, it's simple. Just need to kick the first
1853 * inactive work item on @pwq itself.
1854 */
1855 if (!nna) {
5797b1c1 1856 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1857 return;
1858 }
1859
5797b1c1
TH
1860 /*
1861 * If @pwq is for an unbound workqueue, it's more complicated because
1862 * multiple pwqs and pools may be sharing the nr_active count. When a
1863 * pwq needs to wait for an nr_active count, it puts itself on
1864 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1865 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1866 * guarantee that either we see non-empty pending_pwqs or they see
1867 * decremented $nna->nr.
1868 *
1869 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1870 * max_active gets updated. However, it is guaranteed to be equal to or
1871 * larger than @pwq->wq->min_active which is above zero unless freezing.
1872 * This maintains the forward progress guarantee.
1873 */
1874 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1875 return;
1876
1877 if (!list_empty(&nna->pending_pwqs))
1878 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1879}
1880
bf4ede01 1881/**
112202d9
TH
1882 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1883 * @pwq: pwq of interest
c4560c2c 1884 * @work_data: work_data of work which left the queue
bf4ede01
TH
1885 *
1886 * A work either has completed or is removed from pending queue,
112202d9 1887 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1888 *
dd6c3c54
TH
1889 * NOTE:
1890 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1891 * and thus should be called after all other state updates for the in-flight
1892 * work item is complete.
1893 *
bf4ede01 1894 * CONTEXT:
a9b8a985 1895 * raw_spin_lock_irq(pool->lock).
bf4ede01 1896 */
c4560c2c 1897static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1898{
c4560c2c
LJ
1899 int color = get_work_color(work_data);
1900
1c270b79
TH
1901 if (!(work_data & WORK_STRUCT_INACTIVE))
1902 pwq_dec_nr_active(pwq);
018f3a13 1903
112202d9 1904 pwq->nr_in_flight[color]--;
bf4ede01 1905
bf4ede01 1906 /* is flush in progress and are we at the flushing tip? */
112202d9 1907 if (likely(pwq->flush_color != color))
8864b4e5 1908 goto out_put;
bf4ede01
TH
1909
1910 /* are there still in-flight works? */
112202d9 1911 if (pwq->nr_in_flight[color])
8864b4e5 1912 goto out_put;
bf4ede01 1913
112202d9
TH
1914 /* this pwq is done, clear flush_color */
1915 pwq->flush_color = -1;
bf4ede01
TH
1916
1917 /*
112202d9 1918 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1919 * will handle the rest.
1920 */
112202d9
TH
1921 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1922 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1923out_put:
1924 put_pwq(pwq);
bf4ede01
TH
1925}
1926
36e227d2 1927/**
bbb68dfa 1928 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1929 * @work: work item to steal
1930 * @is_dwork: @work is a delayed_work
bbb68dfa 1931 * @flags: place to store irq state
36e227d2
TH
1932 *
1933 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1934 * stable state - idle, on timer or on worklist.
36e227d2 1935 *
d185af30 1936 * Return:
3eb6b31b
MCC
1937 *
1938 * ======== ================================================================
36e227d2
TH
1939 * 1 if @work was pending and we successfully stole PENDING
1940 * 0 if @work was idle and we claimed PENDING
1941 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1942 * -ENOENT if someone else is canceling @work, this state may persist
1943 * for arbitrarily long
3eb6b31b 1944 * ======== ================================================================
36e227d2 1945 *
d185af30 1946 * Note:
bbb68dfa 1947 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1948 * interrupted while holding PENDING and @work off queue, irq must be
1949 * disabled on entry. This, combined with delayed_work->timer being
1950 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1951 *
1952 * On successful return, >= 0, irq is disabled and the caller is
1953 * responsible for releasing it using local_irq_restore(*@flags).
1954 *
e0aecdd8 1955 * This function is safe to call from any context including IRQ handler.
bf4ede01 1956 */
bbb68dfa
TH
1957static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1958 unsigned long *flags)
bf4ede01 1959{
d565ed63 1960 struct worker_pool *pool;
112202d9 1961 struct pool_workqueue *pwq;
bf4ede01 1962
bbb68dfa
TH
1963 local_irq_save(*flags);
1964
36e227d2
TH
1965 /* try to steal the timer if it exists */
1966 if (is_dwork) {
1967 struct delayed_work *dwork = to_delayed_work(work);
1968
e0aecdd8
TH
1969 /*
1970 * dwork->timer is irqsafe. If del_timer() fails, it's
1971 * guaranteed that the timer is not queued anywhere and not
1972 * running on the local CPU.
1973 */
36e227d2
TH
1974 if (likely(del_timer(&dwork->timer)))
1975 return 1;
1976 }
1977
1978 /* try to claim PENDING the normal way */
bf4ede01
TH
1979 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1980 return 0;
1981
24acfb71 1982 rcu_read_lock();
bf4ede01
TH
1983 /*
1984 * The queueing is in progress, or it is already queued. Try to
1985 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1986 */
d565ed63
TH
1987 pool = get_work_pool(work);
1988 if (!pool)
bbb68dfa 1989 goto fail;
bf4ede01 1990
a9b8a985 1991 raw_spin_lock(&pool->lock);
0b3dae68 1992 /*
112202d9
TH
1993 * work->data is guaranteed to point to pwq only while the work
1994 * item is queued on pwq->wq, and both updating work->data to point
1995 * to pwq on queueing and to pool on dequeueing are done under
1996 * pwq->pool->lock. This in turn guarantees that, if work->data
1997 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1998 * item is currently queued on that pool.
1999 */
112202d9
TH
2000 pwq = get_work_pwq(work);
2001 if (pwq && pwq->pool == pool) {
c70e1779
TH
2002 unsigned long work_data;
2003
16062836
TH
2004 debug_work_deactivate(work);
2005
2006 /*
018f3a13
LJ
2007 * A cancelable inactive work item must be in the
2008 * pwq->inactive_works since a queued barrier can't be
2009 * canceled (see the comments in insert_wq_barrier()).
2010 *
f97a4a1a 2011 * An inactive work item cannot be grabbed directly because
d812796e 2012 * it might have linked barrier work items which, if left
f97a4a1a 2013 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
2014 * management later on and cause stall. Make sure the work
2015 * item is activated before grabbing.
2016 */
4c638030 2017 pwq_activate_work(pwq, work);
16062836
TH
2018
2019 list_del_init(&work->entry);
16062836 2020
c70e1779
TH
2021 /*
2022 * work->data points to pwq iff queued. Let's point to pool. As
2023 * this destroys work->data needed by the next step, stash it.
2024 */
2025 work_data = *work_data_bits(work);
16062836
TH
2026 set_work_pool_and_keep_pending(work, pool->id);
2027
dd6c3c54 2028 /* must be the last step, see the function comment */
c70e1779 2029 pwq_dec_nr_in_flight(pwq, work_data);
dd6c3c54 2030
a9b8a985 2031 raw_spin_unlock(&pool->lock);
24acfb71 2032 rcu_read_unlock();
16062836 2033 return 1;
bf4ede01 2034 }
a9b8a985 2035 raw_spin_unlock(&pool->lock);
bbb68dfa 2036fail:
24acfb71 2037 rcu_read_unlock();
bbb68dfa
TH
2038 local_irq_restore(*flags);
2039 if (work_is_canceling(work))
2040 return -ENOENT;
2041 cpu_relax();
36e227d2 2042 return -EAGAIN;
bf4ede01
TH
2043}
2044
4690c4ab 2045/**
706026c2 2046 * insert_work - insert a work into a pool
112202d9 2047 * @pwq: pwq @work belongs to
4690c4ab
TH
2048 * @work: work to insert
2049 * @head: insertion point
2050 * @extra_flags: extra WORK_STRUCT_* flags to set
2051 *
112202d9 2052 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2053 * work_struct flags.
4690c4ab
TH
2054 *
2055 * CONTEXT:
a9b8a985 2056 * raw_spin_lock_irq(pool->lock).
4690c4ab 2057 */
112202d9
TH
2058static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2059 struct list_head *head, unsigned int extra_flags)
b89deed3 2060{
fe089f87 2061 debug_work_activate(work);
e22bee78 2062
e89a85d6 2063 /* record the work call stack in order to print it in KASAN reports */
f70da745 2064 kasan_record_aux_stack_noalloc(work);
e89a85d6 2065
4690c4ab 2066 /* we own @work, set data and link */
112202d9 2067 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2068 list_add_tail(&work->entry, head);
8864b4e5 2069 get_pwq(pwq);
b89deed3
ON
2070}
2071
c8efcc25
TH
2072/*
2073 * Test whether @work is being queued from another work executing on the
8d03ecfe 2074 * same workqueue.
c8efcc25
TH
2075 */
2076static bool is_chained_work(struct workqueue_struct *wq)
2077{
8d03ecfe
TH
2078 struct worker *worker;
2079
2080 worker = current_wq_worker();
2081 /*
bf393fd4 2082 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2083 * I'm @worker, it's safe to dereference it without locking.
2084 */
112202d9 2085 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2086}
2087
ef557180
MG
2088/*
2089 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2090 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2091 * avoid perturbing sensitive tasks.
2092 */
2093static int wq_select_unbound_cpu(int cpu)
2094{
2095 int new_cpu;
2096
f303fccb
TH
2097 if (likely(!wq_debug_force_rr_cpu)) {
2098 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2099 return cpu;
a8ec5880
AF
2100 } else {
2101 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2102 }
2103
ef557180
MG
2104 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2105 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2106 if (unlikely(new_cpu >= nr_cpu_ids)) {
2107 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2108 if (unlikely(new_cpu >= nr_cpu_ids))
2109 return cpu;
2110 }
2111 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2112
2113 return new_cpu;
2114}
2115
d84ff051 2116static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2117 struct work_struct *work)
2118{
112202d9 2119 struct pool_workqueue *pwq;
fe089f87 2120 struct worker_pool *last_pool, *pool;
8a2e8e5d 2121 unsigned int work_flags;
b75cac93 2122 unsigned int req_cpu = cpu;
8930caba
TH
2123
2124 /*
2125 * While a work item is PENDING && off queue, a task trying to
2126 * steal the PENDING will busy-loop waiting for it to either get
2127 * queued or lose PENDING. Grabbing PENDING and queueing should
2128 * happen with IRQ disabled.
2129 */
8e8eb730 2130 lockdep_assert_irqs_disabled();
1da177e4 2131
1e19ffc6 2132
33e3f0a3
RC
2133 /*
2134 * For a draining wq, only works from the same workqueue are
2135 * allowed. The __WQ_DESTROYING helps to spot the issue that
2136 * queues a new work item to a wq after destroy_workqueue(wq).
2137 */
2138 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2139 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2140 return;
24acfb71 2141 rcu_read_lock();
9e8cd2f5 2142retry:
c9178087 2143 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2144 if (req_cpu == WORK_CPU_UNBOUND) {
2145 if (wq->flags & WQ_UNBOUND)
aa202f1f 2146 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2147 else
aa202f1f 2148 cpu = raw_smp_processor_id();
aa202f1f 2149 }
dbf2576e 2150
636b927e 2151 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2152 pool = pwq->pool;
2153
c9178087
TH
2154 /*
2155 * If @work was previously on a different pool, it might still be
2156 * running there, in which case the work needs to be queued on that
2157 * pool to guarantee non-reentrancy.
2158 */
2159 last_pool = get_work_pool(work);
fe089f87 2160 if (last_pool && last_pool != pool) {
c9178087 2161 struct worker *worker;
18aa9eff 2162
a9b8a985 2163 raw_spin_lock(&last_pool->lock);
18aa9eff 2164
c9178087 2165 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2166
c9178087
TH
2167 if (worker && worker->current_pwq->wq == wq) {
2168 pwq = worker->current_pwq;
fe089f87
TH
2169 pool = pwq->pool;
2170 WARN_ON_ONCE(pool != last_pool);
8930caba 2171 } else {
c9178087 2172 /* meh... not running there, queue here */
a9b8a985 2173 raw_spin_unlock(&last_pool->lock);
fe089f87 2174 raw_spin_lock(&pool->lock);
8930caba 2175 }
f3421797 2176 } else {
fe089f87 2177 raw_spin_lock(&pool->lock);
502ca9d8
TH
2178 }
2179
9e8cd2f5 2180 /*
636b927e
TH
2181 * pwq is determined and locked. For unbound pools, we could have raced
2182 * with pwq release and it could already be dead. If its refcnt is zero,
2183 * repeat pwq selection. Note that unbound pwqs never die without
2184 * another pwq replacing it in cpu_pwq or while work items are executing
2185 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2186 */
2187 if (unlikely(!pwq->refcnt)) {
2188 if (wq->flags & WQ_UNBOUND) {
fe089f87 2189 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2190 cpu_relax();
2191 goto retry;
2192 }
2193 /* oops */
2194 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2195 wq->name, cpu);
2196 }
2197
112202d9
TH
2198 /* pwq determined, queue */
2199 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2200
24acfb71
TG
2201 if (WARN_ON(!list_empty(&work->entry)))
2202 goto out;
1e19ffc6 2203
112202d9
TH
2204 pwq->nr_in_flight[pwq->work_color]++;
2205 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2206
a045a272
TH
2207 /*
2208 * Limit the number of concurrently active work items to max_active.
2209 * @work must also queue behind existing inactive work items to maintain
2210 * ordering when max_active changes. See wq_adjust_max_active().
2211 */
5797b1c1 2212 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2213 if (list_empty(&pool->worklist))
2214 pool->watchdog_ts = jiffies;
2215
cdadf009 2216 trace_workqueue_activate_work(work);
fe089f87 2217 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2218 kick_pool(pool);
8a2e8e5d 2219 } else {
f97a4a1a 2220 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2221 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2222 }
1e19ffc6 2223
24acfb71 2224out:
fe089f87 2225 raw_spin_unlock(&pool->lock);
24acfb71 2226 rcu_read_unlock();
1da177e4
LT
2227}
2228
0fcb78c2 2229/**
c1a220e7
ZR
2230 * queue_work_on - queue work on specific cpu
2231 * @cpu: CPU number to execute work on
0fcb78c2
REB
2232 * @wq: workqueue to use
2233 * @work: work to queue
2234 *
c1a220e7 2235 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2236 * can't go away. Callers that fail to ensure that the specified
2237 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2238 * But note well that callers specifying a CPU that never has been
2239 * online will get a splat.
d185af30
YB
2240 *
2241 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2242 */
d4283e93
TH
2243bool queue_work_on(int cpu, struct workqueue_struct *wq,
2244 struct work_struct *work)
1da177e4 2245{
d4283e93 2246 bool ret = false;
8930caba 2247 unsigned long flags;
ef1ca236 2248
8930caba 2249 local_irq_save(flags);
c1a220e7 2250
22df02bb 2251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 2252 __queue_work(cpu, wq, work);
d4283e93 2253 ret = true;
c1a220e7 2254 }
ef1ca236 2255
8930caba 2256 local_irq_restore(flags);
1da177e4
LT
2257 return ret;
2258}
ad7b1f84 2259EXPORT_SYMBOL(queue_work_on);
1da177e4 2260
8204e0c1 2261/**
fef59c9c 2262 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2263 * @node: NUMA node ID that we want to select a CPU from
2264 *
2265 * This function will attempt to find a "random" cpu available on a given
2266 * node. If there are no CPUs available on the given node it will return
2267 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2268 * available CPU if we need to schedule this work.
2269 */
fef59c9c 2270static int select_numa_node_cpu(int node)
8204e0c1
AD
2271{
2272 int cpu;
2273
8204e0c1
AD
2274 /* Delay binding to CPU if node is not valid or online */
2275 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2276 return WORK_CPU_UNBOUND;
2277
2278 /* Use local node/cpu if we are already there */
2279 cpu = raw_smp_processor_id();
2280 if (node == cpu_to_node(cpu))
2281 return cpu;
2282
2283 /* Use "random" otherwise know as "first" online CPU of node */
2284 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2285
2286 /* If CPU is valid return that, otherwise just defer */
2287 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2288}
2289
2290/**
2291 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2292 * @node: NUMA node that we are targeting the work for
2293 * @wq: workqueue to use
2294 * @work: work to queue
2295 *
2296 * We queue the work to a "random" CPU within a given NUMA node. The basic
2297 * idea here is to provide a way to somehow associate work with a given
2298 * NUMA node.
2299 *
2300 * This function will only make a best effort attempt at getting this onto
2301 * the right NUMA node. If no node is requested or the requested node is
2302 * offline then we just fall back to standard queue_work behavior.
2303 *
2304 * Currently the "random" CPU ends up being the first available CPU in the
2305 * intersection of cpu_online_mask and the cpumask of the node, unless we
2306 * are running on the node. In that case we just use the current CPU.
2307 *
2308 * Return: %false if @work was already on a queue, %true otherwise.
2309 */
2310bool queue_work_node(int node, struct workqueue_struct *wq,
2311 struct work_struct *work)
2312{
2313 unsigned long flags;
2314 bool ret = false;
2315
2316 /*
2317 * This current implementation is specific to unbound workqueues.
2318 * Specifically we only return the first available CPU for a given
2319 * node instead of cycling through individual CPUs within the node.
2320 *
2321 * If this is used with a per-cpu workqueue then the logic in
2322 * workqueue_select_cpu_near would need to be updated to allow for
2323 * some round robin type logic.
2324 */
2325 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2326
2327 local_irq_save(flags);
2328
2329 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
fef59c9c 2330 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2331
2332 __queue_work(cpu, wq, work);
2333 ret = true;
2334 }
2335
2336 local_irq_restore(flags);
2337 return ret;
2338}
2339EXPORT_SYMBOL_GPL(queue_work_node);
2340
8c20feb6 2341void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2342{
8c20feb6 2343 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2344
e0aecdd8 2345 /* should have been called from irqsafe timer with irq already off */
60c057bc 2346 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2347}
1438ade5 2348EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2349
7beb2edf
TH
2350static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2351 struct delayed_work *dwork, unsigned long delay)
1da177e4 2352{
7beb2edf
TH
2353 struct timer_list *timer = &dwork->timer;
2354 struct work_struct *work = &dwork->work;
7beb2edf 2355
637fdbae 2356 WARN_ON_ONCE(!wq);
4b243563 2357 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2358 WARN_ON_ONCE(timer_pending(timer));
2359 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2360
8852aac2
TH
2361 /*
2362 * If @delay is 0, queue @dwork->work immediately. This is for
2363 * both optimization and correctness. The earliest @timer can
2364 * expire is on the closest next tick and delayed_work users depend
2365 * on that there's no such delay when @delay is 0.
2366 */
2367 if (!delay) {
2368 __queue_work(cpu, wq, &dwork->work);
2369 return;
2370 }
2371
60c057bc 2372 dwork->wq = wq;
1265057f 2373 dwork->cpu = cpu;
7beb2edf
TH
2374 timer->expires = jiffies + delay;
2375
aae17ebb
LB
2376 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2377 /* If the current cpu is a housekeeping cpu, use it. */
2378 cpu = smp_processor_id();
2379 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2380 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
041bd12e 2381 add_timer_on(timer, cpu);
aae17ebb
LB
2382 } else {
2383 if (likely(cpu == WORK_CPU_UNBOUND))
2384 add_timer(timer);
2385 else
2386 add_timer_on(timer, cpu);
2387 }
1da177e4
LT
2388}
2389
0fcb78c2
REB
2390/**
2391 * queue_delayed_work_on - queue work on specific CPU after delay
2392 * @cpu: CPU number to execute work on
2393 * @wq: workqueue to use
af9997e4 2394 * @dwork: work to queue
0fcb78c2
REB
2395 * @delay: number of jiffies to wait before queueing
2396 *
d185af30 2397 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2398 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2399 * execution.
0fcb78c2 2400 */
d4283e93
TH
2401bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2402 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2403{
52bad64d 2404 struct work_struct *work = &dwork->work;
d4283e93 2405 bool ret = false;
8930caba 2406 unsigned long flags;
7a6bc1cd 2407
8930caba
TH
2408 /* read the comment in __queue_work() */
2409 local_irq_save(flags);
7a6bc1cd 2410
22df02bb 2411 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 2412 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2413 ret = true;
7a6bc1cd 2414 }
8a3e77cc 2415
8930caba 2416 local_irq_restore(flags);
7a6bc1cd
VP
2417 return ret;
2418}
ad7b1f84 2419EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2420
8376fe22
TH
2421/**
2422 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2423 * @cpu: CPU number to execute work on
2424 * @wq: workqueue to use
2425 * @dwork: work to queue
2426 * @delay: number of jiffies to wait before queueing
2427 *
2428 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2429 * modify @dwork's timer so that it expires after @delay. If @delay is
2430 * zero, @work is guaranteed to be scheduled immediately regardless of its
2431 * current state.
2432 *
d185af30 2433 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2434 * pending and its timer was modified.
2435 *
e0aecdd8 2436 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2437 * See try_to_grab_pending() for details.
2438 */
2439bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2440 struct delayed_work *dwork, unsigned long delay)
2441{
2442 unsigned long flags;
2443 int ret;
c7fc77f7 2444
8376fe22
TH
2445 do {
2446 ret = try_to_grab_pending(&dwork->work, true, &flags);
2447 } while (unlikely(ret == -EAGAIN));
63bc0362 2448
8376fe22
TH
2449 if (likely(ret >= 0)) {
2450 __queue_delayed_work(cpu, wq, dwork, delay);
2451 local_irq_restore(flags);
7a6bc1cd 2452 }
8376fe22
TH
2453
2454 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
2455 return ret;
2456}
8376fe22
TH
2457EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2458
05f0fe6b
TH
2459static void rcu_work_rcufn(struct rcu_head *rcu)
2460{
2461 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2462
2463 /* read the comment in __queue_work() */
2464 local_irq_disable();
2465 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2466 local_irq_enable();
2467}
2468
2469/**
2470 * queue_rcu_work - queue work after a RCU grace period
2471 * @wq: workqueue to use
2472 * @rwork: work to queue
2473 *
2474 * Return: %false if @rwork was already pending, %true otherwise. Note
2475 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2476 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2477 * execution may happen before a full RCU grace period has passed.
2478 */
2479bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2480{
2481 struct work_struct *work = &rwork->work;
2482
2483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2484 rwork->wq = wq;
a7e30c0e 2485 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2486 return true;
2487 }
2488
2489 return false;
2490}
2491EXPORT_SYMBOL(queue_rcu_work);
2492
f7537df5 2493static struct worker *alloc_worker(int node)
c34056a3
TH
2494{
2495 struct worker *worker;
2496
f7537df5 2497 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2498 if (worker) {
2499 INIT_LIST_HEAD(&worker->entry);
affee4b2 2500 INIT_LIST_HEAD(&worker->scheduled);
da028469 2501 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2502 /* on creation a worker is in !idle && prep state */
2503 worker->flags = WORKER_PREP;
c8e55f36 2504 }
c34056a3
TH
2505 return worker;
2506}
2507
9546b29e
TH
2508static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2509{
8639eceb
TH
2510 if (pool->cpu < 0 && pool->attrs->affn_strict)
2511 return pool->attrs->__pod_cpumask;
2512 else
2513 return pool->attrs->cpumask;
9546b29e
TH
2514}
2515
4736cbf7
LJ
2516/**
2517 * worker_attach_to_pool() - attach a worker to a pool
2518 * @worker: worker to be attached
2519 * @pool: the target pool
2520 *
2521 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2522 * cpu-binding of @worker are kept coordinated with the pool across
2523 * cpu-[un]hotplugs.
2524 */
2525static void worker_attach_to_pool(struct worker *worker,
2526 struct worker_pool *pool)
2527{
1258fae7 2528 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2529
4736cbf7 2530 /*
1258fae7
TH
2531 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2532 * stable across this function. See the comments above the flag
2533 * definition for details.
4736cbf7
LJ
2534 */
2535 if (pool->flags & POOL_DISASSOCIATED)
2536 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
2537 else
2538 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 2539
640f17c8 2540 if (worker->rescue_wq)
9546b29e 2541 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2542
4736cbf7 2543 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2544 worker->pool = pool;
4736cbf7 2545
1258fae7 2546 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2547}
2548
60f5a4bc
LJ
2549/**
2550 * worker_detach_from_pool() - detach a worker from its pool
2551 * @worker: worker which is attached to its pool
60f5a4bc 2552 *
4736cbf7
LJ
2553 * Undo the attaching which had been done in worker_attach_to_pool(). The
2554 * caller worker shouldn't access to the pool after detached except it has
2555 * other reference to the pool.
60f5a4bc 2556 */
a2d812a2 2557static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2558{
a2d812a2 2559 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2560 struct completion *detach_completion = NULL;
2561
1258fae7 2562 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2563
5c25b5ff 2564 kthread_set_per_cpu(worker->task, -1);
da028469 2565 list_del(&worker->node);
a2d812a2
TH
2566 worker->pool = NULL;
2567
e02b9312 2568 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2569 detach_completion = pool->detach_completion;
1258fae7 2570 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2571
b62c0751
LJ
2572 /* clear leftover flags without pool->lock after it is detached */
2573 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2574
60f5a4bc
LJ
2575 if (detach_completion)
2576 complete(detach_completion);
2577}
2578
c34056a3
TH
2579/**
2580 * create_worker - create a new workqueue worker
63d95a91 2581 * @pool: pool the new worker will belong to
c34056a3 2582 *
051e1850 2583 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2584 *
2585 * CONTEXT:
2586 * Might sleep. Does GFP_KERNEL allocations.
2587 *
d185af30 2588 * Return:
c34056a3
TH
2589 * Pointer to the newly created worker.
2590 */
bc2ae0f5 2591static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2592{
e441b56f
ZL
2593 struct worker *worker;
2594 int id;
5d9c7a1e 2595 char id_buf[23];
c34056a3 2596
7cda9aae 2597 /* ID is needed to determine kthread name */
e441b56f 2598 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2599 if (id < 0) {
2600 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2601 ERR_PTR(id));
e441b56f 2602 return NULL;
3f0ea0b8 2603 }
c34056a3 2604
f7537df5 2605 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2606 if (!worker) {
2607 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2608 goto fail;
3f0ea0b8 2609 }
c34056a3 2610
c34056a3
TH
2611 worker->id = id;
2612
29c91e99 2613 if (pool->cpu >= 0)
e3c916a4
TH
2614 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2615 pool->attrs->nice < 0 ? "H" : "");
f3421797 2616 else
e3c916a4
TH
2617 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2618
f3f90ad4 2619 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 2620 "kworker/%s", id_buf);
3f0ea0b8 2621 if (IS_ERR(worker->task)) {
60f54038
PM
2622 if (PTR_ERR(worker->task) == -EINTR) {
2623 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2624 id_buf);
2625 } else {
2626 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2627 worker->task);
2628 }
c34056a3 2629 goto fail;
3f0ea0b8 2630 }
c34056a3 2631
91151228 2632 set_user_nice(worker->task, pool->attrs->nice);
9546b29e 2633 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
91151228 2634
da028469 2635 /* successful, attach the worker to the pool */
4736cbf7 2636 worker_attach_to_pool(worker, pool);
822d8405 2637
051e1850 2638 /* start the newly created worker */
a9b8a985 2639 raw_spin_lock_irq(&pool->lock);
0219a352 2640
051e1850
LJ
2641 worker->pool->nr_workers++;
2642 worker_enter_idle(worker);
0219a352
TH
2643
2644 /*
2645 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2646 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2647 * wake it up explicitly.
0219a352 2648 */
051e1850 2649 wake_up_process(worker->task);
0219a352 2650
a9b8a985 2651 raw_spin_unlock_irq(&pool->lock);
051e1850 2652
c34056a3 2653 return worker;
822d8405 2654
c34056a3 2655fail:
e441b56f 2656 ida_free(&pool->worker_ida, id);
c34056a3
TH
2657 kfree(worker);
2658 return NULL;
2659}
2660
793777bc
VS
2661static void unbind_worker(struct worker *worker)
2662{
2663 lockdep_assert_held(&wq_pool_attach_mutex);
2664
2665 kthread_set_per_cpu(worker->task, -1);
2666 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2667 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2668 else
2669 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2670}
2671
e02b9312
VS
2672static void wake_dying_workers(struct list_head *cull_list)
2673{
2674 struct worker *worker, *tmp;
2675
2676 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2677 list_del_init(&worker->entry);
2678 unbind_worker(worker);
2679 /*
2680 * If the worker was somehow already running, then it had to be
2681 * in pool->idle_list when set_worker_dying() happened or we
2682 * wouldn't have gotten here.
2683 *
2684 * Thus, the worker must either have observed the WORKER_DIE
2685 * flag, or have set its state to TASK_IDLE. Either way, the
2686 * below will be observed by the worker and is safe to do
2687 * outside of pool->lock.
2688 */
2689 wake_up_process(worker->task);
2690 }
2691}
2692
c34056a3 2693/**
e02b9312 2694 * set_worker_dying - Tag a worker for destruction
c34056a3 2695 * @worker: worker to be destroyed
e02b9312 2696 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2697 *
e02b9312
VS
2698 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2699 * should be idle.
c8e55f36
TH
2700 *
2701 * CONTEXT:
a9b8a985 2702 * raw_spin_lock_irq(pool->lock).
c34056a3 2703 */
e02b9312 2704static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2705{
bd7bdd43 2706 struct worker_pool *pool = worker->pool;
c34056a3 2707
cd549687 2708 lockdep_assert_held(&pool->lock);
e02b9312 2709 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2710
c34056a3 2711 /* sanity check frenzy */
6183c009 2712 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2713 WARN_ON(!list_empty(&worker->scheduled)) ||
2714 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2715 return;
c34056a3 2716
73eb7fe7
LJ
2717 pool->nr_workers--;
2718 pool->nr_idle--;
5bdfff96 2719
cb444766 2720 worker->flags |= WORKER_DIE;
e02b9312
VS
2721
2722 list_move(&worker->entry, list);
2723 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2724}
2725
3f959aa3
VS
2726/**
2727 * idle_worker_timeout - check if some idle workers can now be deleted.
2728 * @t: The pool's idle_timer that just expired
2729 *
2730 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2731 * worker_leave_idle(), as a worker flicking between idle and active while its
2732 * pool is at the too_many_workers() tipping point would cause too much timer
2733 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2734 * it expire and re-evaluate things from there.
2735 */
32a6c723 2736static void idle_worker_timeout(struct timer_list *t)
e22bee78 2737{
32a6c723 2738 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2739 bool do_cull = false;
2740
2741 if (work_pending(&pool->idle_cull_work))
2742 return;
e22bee78 2743
a9b8a985 2744 raw_spin_lock_irq(&pool->lock);
e22bee78 2745
3f959aa3 2746 if (too_many_workers(pool)) {
e22bee78
TH
2747 struct worker *worker;
2748 unsigned long expires;
2749
2750 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2751 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2752 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2753 do_cull = !time_before(jiffies, expires);
2754
2755 if (!do_cull)
2756 mod_timer(&pool->idle_timer, expires);
2757 }
2758 raw_spin_unlock_irq(&pool->lock);
2759
2760 if (do_cull)
2761 queue_work(system_unbound_wq, &pool->idle_cull_work);
2762}
2763
2764/**
2765 * idle_cull_fn - cull workers that have been idle for too long.
2766 * @work: the pool's work for handling these idle workers
2767 *
2768 * This goes through a pool's idle workers and gets rid of those that have been
2769 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2770 *
2771 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2772 * culled, so this also resets worker affinity. This requires a sleepable
2773 * context, hence the split between timer callback and work item.
3f959aa3
VS
2774 */
2775static void idle_cull_fn(struct work_struct *work)
2776{
2777 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2778 LIST_HEAD(cull_list);
3f959aa3 2779
e02b9312
VS
2780 /*
2781 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2782 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2783 * path. This is required as a previously-preempted worker could run after
2784 * set_worker_dying() has happened but before wake_dying_workers() did.
2785 */
2786 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2787 raw_spin_lock_irq(&pool->lock);
2788
2789 while (too_many_workers(pool)) {
2790 struct worker *worker;
2791 unsigned long expires;
2792
63d95a91 2793 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2794 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2795
3347fc9f 2796 if (time_before(jiffies, expires)) {
63d95a91 2797 mod_timer(&pool->idle_timer, expires);
3347fc9f 2798 break;
d5abe669 2799 }
3347fc9f 2800
e02b9312 2801 set_worker_dying(worker, &cull_list);
e22bee78
TH
2802 }
2803
a9b8a985 2804 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2805 wake_dying_workers(&cull_list);
2806 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2807}
d5abe669 2808
493a1724 2809static void send_mayday(struct work_struct *work)
e22bee78 2810{
112202d9
TH
2811 struct pool_workqueue *pwq = get_work_pwq(work);
2812 struct workqueue_struct *wq = pwq->wq;
493a1724 2813
2e109a28 2814 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2815
493008a8 2816 if (!wq->rescuer)
493a1724 2817 return;
e22bee78
TH
2818
2819 /* mayday mayday mayday */
493a1724 2820 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2821 /*
2822 * If @pwq is for an unbound wq, its base ref may be put at
2823 * any time due to an attribute change. Pin @pwq until the
2824 * rescuer is done with it.
2825 */
2826 get_pwq(pwq);
493a1724 2827 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2828 wake_up_process(wq->rescuer->task);
725e8ec5 2829 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2830 }
e22bee78
TH
2831}
2832
32a6c723 2833static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2834{
32a6c723 2835 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2836 struct work_struct *work;
2837
a9b8a985
SAS
2838 raw_spin_lock_irq(&pool->lock);
2839 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2840
63d95a91 2841 if (need_to_create_worker(pool)) {
e22bee78
TH
2842 /*
2843 * We've been trying to create a new worker but
2844 * haven't been successful. We might be hitting an
2845 * allocation deadlock. Send distress signals to
2846 * rescuers.
2847 */
63d95a91 2848 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2849 send_mayday(work);
1da177e4 2850 }
e22bee78 2851
a9b8a985
SAS
2852 raw_spin_unlock(&wq_mayday_lock);
2853 raw_spin_unlock_irq(&pool->lock);
e22bee78 2854
63d95a91 2855 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2856}
2857
e22bee78
TH
2858/**
2859 * maybe_create_worker - create a new worker if necessary
63d95a91 2860 * @pool: pool to create a new worker for
e22bee78 2861 *
63d95a91 2862 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2863 * have at least one idle worker on return from this function. If
2864 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2865 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2866 * possible allocation deadlock.
2867 *
c5aa87bb
TH
2868 * On return, need_to_create_worker() is guaranteed to be %false and
2869 * may_start_working() %true.
e22bee78
TH
2870 *
2871 * LOCKING:
a9b8a985 2872 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2873 * multiple times. Does GFP_KERNEL allocations. Called only from
2874 * manager.
e22bee78 2875 */
29187a9e 2876static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2877__releases(&pool->lock)
2878__acquires(&pool->lock)
1da177e4 2879{
e22bee78 2880restart:
a9b8a985 2881 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2882
e22bee78 2883 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2884 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2885
2886 while (true) {
051e1850 2887 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2888 break;
1da177e4 2889
e212f361 2890 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2891
63d95a91 2892 if (!need_to_create_worker(pool))
e22bee78
TH
2893 break;
2894 }
2895
63d95a91 2896 del_timer_sync(&pool->mayday_timer);
a9b8a985 2897 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2898 /*
2899 * This is necessary even after a new worker was just successfully
2900 * created as @pool->lock was dropped and the new worker might have
2901 * already become busy.
2902 */
63d95a91 2903 if (need_to_create_worker(pool))
e22bee78 2904 goto restart;
e22bee78
TH
2905}
2906
73f53c4a 2907/**
e22bee78
TH
2908 * manage_workers - manage worker pool
2909 * @worker: self
73f53c4a 2910 *
706026c2 2911 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2912 * to. At any given time, there can be only zero or one manager per
706026c2 2913 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2914 *
2915 * The caller can safely start processing works on false return. On
2916 * true return, it's guaranteed that need_to_create_worker() is false
2917 * and may_start_working() is true.
73f53c4a
TH
2918 *
2919 * CONTEXT:
a9b8a985 2920 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2921 * multiple times. Does GFP_KERNEL allocations.
2922 *
d185af30 2923 * Return:
29187a9e
TH
2924 * %false if the pool doesn't need management and the caller can safely
2925 * start processing works, %true if management function was performed and
2926 * the conditions that the caller verified before calling the function may
2927 * no longer be true.
73f53c4a 2928 */
e22bee78 2929static bool manage_workers(struct worker *worker)
73f53c4a 2930{
63d95a91 2931 struct worker_pool *pool = worker->pool;
73f53c4a 2932
692b4825 2933 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2934 return false;
692b4825
TH
2935
2936 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2937 pool->manager = worker;
1e19ffc6 2938
29187a9e 2939 maybe_create_worker(pool);
e22bee78 2940
2607d7a6 2941 pool->manager = NULL;
692b4825 2942 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2943 rcuwait_wake_up(&manager_wait);
29187a9e 2944 return true;
73f53c4a
TH
2945}
2946
a62428c0
TH
2947/**
2948 * process_one_work - process single work
c34056a3 2949 * @worker: self
a62428c0
TH
2950 * @work: work to process
2951 *
2952 * Process @work. This function contains all the logics necessary to
2953 * process a single work including synchronization against and
2954 * interaction with other workers on the same cpu, queueing and
2955 * flushing. As long as context requirement is met, any worker can
2956 * call this function to process a work.
2957 *
2958 * CONTEXT:
a9b8a985 2959 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2960 */
c34056a3 2961static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2962__releases(&pool->lock)
2963__acquires(&pool->lock)
a62428c0 2964{
112202d9 2965 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2966 struct worker_pool *pool = worker->pool;
c4560c2c 2967 unsigned long work_data;
a62428c0
TH
2968#ifdef CONFIG_LOCKDEP
2969 /*
2970 * It is permissible to free the struct work_struct from
2971 * inside the function that is called from it, this we need to
2972 * take into account for lockdep too. To avoid bogus "held
2973 * lock freed" warnings as well as problems when looking into
2974 * work->lockdep_map, make a copy and use that here.
2975 */
4d82a1de
PZ
2976 struct lockdep_map lockdep_map;
2977
2978 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2979#endif
807407c0 2980 /* ensure we're on the correct CPU */
85327af6 2981 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2982 raw_smp_processor_id() != pool->cpu);
25511a47 2983
8930caba 2984 /* claim and dequeue */
a62428c0 2985 debug_work_deactivate(work);
c9e7cf27 2986 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2987 worker->current_work = work;
a2c1c57b 2988 worker->current_func = work->func;
112202d9 2989 worker->current_pwq = pwq;
616db877 2990 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 2991 work_data = *work_data_bits(work);
d812796e 2992 worker->current_color = get_work_color(work_data);
7a22ad75 2993
8bf89593
TH
2994 /*
2995 * Record wq name for cmdline and debug reporting, may get
2996 * overridden through set_worker_desc().
2997 */
2998 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2999
a62428c0
TH
3000 list_del_init(&work->entry);
3001
fb0e7beb 3002 /*
228f1d00
LJ
3003 * CPU intensive works don't participate in concurrency management.
3004 * They're the scheduler's responsibility. This takes @worker out
3005 * of concurrency management and the next code block will chain
3006 * execution of the pending work items.
fb0e7beb 3007 */
616db877 3008 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 3009 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3010
974271c4 3011 /*
0219a352
TH
3012 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3013 * since nr_running would always be >= 1 at this point. This is used to
3014 * chain execution of the pending work items for WORKER_NOT_RUNNING
3015 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 3016 */
0219a352 3017 kick_pool(pool);
974271c4 3018
8930caba 3019 /*
7c3eed5c 3020 * Record the last pool and clear PENDING which should be the last
d565ed63 3021 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3022 * PENDING and queued state changes happen together while IRQ is
3023 * disabled.
8930caba 3024 */
7c3eed5c 3025 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 3026
fe48ba7d 3027 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3028 raw_spin_unlock_irq(&pool->lock);
a62428c0 3029
a1d14934 3030 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 3031 lock_map_acquire(&lockdep_map);
e6f3faa7 3032 /*
f52be570
PZ
3033 * Strictly speaking we should mark the invariant state without holding
3034 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3035 *
3036 * However, that would result in:
3037 *
3038 * A(W1)
3039 * WFC(C)
3040 * A(W1)
3041 * C(C)
3042 *
3043 * Which would create W1->C->W1 dependencies, even though there is no
3044 * actual deadlock possible. There are two solutions, using a
3045 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3046 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3047 * these locks.
3048 *
3049 * AFAICT there is no possible deadlock scenario between the
3050 * flush_work() and complete() primitives (except for single-threaded
3051 * workqueues), so hiding them isn't a problem.
3052 */
f52be570 3053 lockdep_invariant_state(true);
e36c886a 3054 trace_workqueue_execute_start(work);
a2c1c57b 3055 worker->current_func(work);
e36c886a
AV
3056 /*
3057 * While we must be careful to not use "work" after this, the trace
3058 * point will only record its address.
3059 */
1c5da0ec 3060 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3061 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3062 lock_map_release(&lockdep_map);
112202d9 3063 lock_map_release(&pwq->wq->lockdep_map);
a62428c0 3064
1a65a6d1
XY
3065 if (unlikely(in_atomic() || lockdep_depth(current) > 0 ||
3066 rcu_preempt_depth() > 0)) {
3067 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n"
d75f773c 3068 " last function: %ps\n",
1a65a6d1
XY
3069 current->comm, preempt_count(), rcu_preempt_depth(),
3070 task_pid_nr(current), worker->current_func);
a62428c0
TH
3071 debug_show_held_locks(current);
3072 dump_stack();
3073 }
3074
b22ce278 3075 /*
025f50f3 3076 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3077 * kernels, where a requeueing work item waiting for something to
3078 * happen could deadlock with stop_machine as such work item could
3079 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3080 * stop_machine. At the same time, report a quiescent RCU state so
3081 * the same condition doesn't freeze RCU.
b22ce278 3082 */
a7e6425e 3083 cond_resched();
b22ce278 3084
a9b8a985 3085 raw_spin_lock_irq(&pool->lock);
a62428c0 3086
616db877
TH
3087 /*
3088 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3089 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3090 * wq_cpu_intensive_thresh_us. Clear it.
3091 */
3092 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3093
1b69ac6b
JW
3094 /* tag the worker for identification in schedule() */
3095 worker->last_func = worker->current_func;
3096
a62428c0 3097 /* we're done with it, release */
42f8570f 3098 hash_del(&worker->hentry);
c34056a3 3099 worker->current_work = NULL;
a2c1c57b 3100 worker->current_func = NULL;
112202d9 3101 worker->current_pwq = NULL;
d812796e 3102 worker->current_color = INT_MAX;
dd6c3c54
TH
3103
3104 /* must be the last step, see the function comment */
c4560c2c 3105 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3106}
3107
affee4b2
TH
3108/**
3109 * process_scheduled_works - process scheduled works
3110 * @worker: self
3111 *
3112 * Process all scheduled works. Please note that the scheduled list
3113 * may change while processing a work, so this function repeatedly
3114 * fetches a work from the top and executes it.
3115 *
3116 * CONTEXT:
a9b8a985 3117 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3118 * multiple times.
3119 */
3120static void process_scheduled_works(struct worker *worker)
1da177e4 3121{
c0ab017d
TH
3122 struct work_struct *work;
3123 bool first = true;
3124
3125 while ((work = list_first_entry_or_null(&worker->scheduled,
3126 struct work_struct, entry))) {
3127 if (first) {
3128 worker->pool->watchdog_ts = jiffies;
3129 first = false;
3130 }
c34056a3 3131 process_one_work(worker, work);
1da177e4 3132 }
1da177e4
LT
3133}
3134
197f6acc
TH
3135static void set_pf_worker(bool val)
3136{
3137 mutex_lock(&wq_pool_attach_mutex);
3138 if (val)
3139 current->flags |= PF_WQ_WORKER;
3140 else
3141 current->flags &= ~PF_WQ_WORKER;
3142 mutex_unlock(&wq_pool_attach_mutex);
3143}
3144
4690c4ab
TH
3145/**
3146 * worker_thread - the worker thread function
c34056a3 3147 * @__worker: self
4690c4ab 3148 *
c5aa87bb
TH
3149 * The worker thread function. All workers belong to a worker_pool -
3150 * either a per-cpu one or dynamic unbound one. These workers process all
3151 * work items regardless of their specific target workqueue. The only
3152 * exception is work items which belong to workqueues with a rescuer which
3153 * will be explained in rescuer_thread().
d185af30
YB
3154 *
3155 * Return: 0
4690c4ab 3156 */
c34056a3 3157static int worker_thread(void *__worker)
1da177e4 3158{
c34056a3 3159 struct worker *worker = __worker;
bd7bdd43 3160 struct worker_pool *pool = worker->pool;
1da177e4 3161
e22bee78 3162 /* tell the scheduler that this is a workqueue worker */
197f6acc 3163 set_pf_worker(true);
c8e55f36 3164woke_up:
a9b8a985 3165 raw_spin_lock_irq(&pool->lock);
1da177e4 3166
a9ab775b
TH
3167 /* am I supposed to die? */
3168 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3169 raw_spin_unlock_irq(&pool->lock);
197f6acc 3170 set_pf_worker(false);
60f5a4bc
LJ
3171
3172 set_task_comm(worker->task, "kworker/dying");
e441b56f 3173 ida_free(&pool->worker_ida, worker->id);
a2d812a2 3174 worker_detach_from_pool(worker);
e02b9312 3175 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 3176 kfree(worker);
a9ab775b 3177 return 0;
c8e55f36 3178 }
affee4b2 3179
c8e55f36 3180 worker_leave_idle(worker);
db7bccf4 3181recheck:
e22bee78 3182 /* no more worker necessary? */
63d95a91 3183 if (!need_more_worker(pool))
e22bee78
TH
3184 goto sleep;
3185
3186 /* do we need to manage? */
63d95a91 3187 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3188 goto recheck;
3189
c8e55f36
TH
3190 /*
3191 * ->scheduled list can only be filled while a worker is
3192 * preparing to process a work or actually processing it.
3193 * Make sure nobody diddled with it while I was sleeping.
3194 */
6183c009 3195 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3196
e22bee78 3197 /*
a9ab775b
TH
3198 * Finish PREP stage. We're guaranteed to have at least one idle
3199 * worker or that someone else has already assumed the manager
3200 * role. This is where @worker starts participating in concurrency
3201 * management if applicable and concurrency management is restored
3202 * after being rebound. See rebind_workers() for details.
e22bee78 3203 */
a9ab775b 3204 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3205
3206 do {
c8e55f36 3207 struct work_struct *work =
bd7bdd43 3208 list_first_entry(&pool->worklist,
c8e55f36
TH
3209 struct work_struct, entry);
3210
873eaca6
TH
3211 if (assign_work(work, worker, NULL))
3212 process_scheduled_works(worker);
63d95a91 3213 } while (keep_working(pool));
e22bee78 3214
228f1d00 3215 worker_set_flags(worker, WORKER_PREP);
d313dd85 3216sleep:
c8e55f36 3217 /*
d565ed63
TH
3218 * pool->lock is held and there's no work to process and no need to
3219 * manage, sleep. Workers are woken up only while holding
3220 * pool->lock or from local cpu, so setting the current state
3221 * before releasing pool->lock is enough to prevent losing any
3222 * event.
c8e55f36
TH
3223 */
3224 worker_enter_idle(worker);
c5a94a61 3225 __set_current_state(TASK_IDLE);
a9b8a985 3226 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3227 schedule();
3228 goto woke_up;
1da177e4
LT
3229}
3230
e22bee78
TH
3231/**
3232 * rescuer_thread - the rescuer thread function
111c225a 3233 * @__rescuer: self
e22bee78
TH
3234 *
3235 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3236 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3237 *
706026c2 3238 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3239 * worker which uses GFP_KERNEL allocation which has slight chance of
3240 * developing into deadlock if some works currently on the same queue
3241 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3242 * the problem rescuer solves.
3243 *
706026c2
TH
3244 * When such condition is possible, the pool summons rescuers of all
3245 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3246 * those works so that forward progress can be guaranteed.
3247 *
3248 * This should happen rarely.
d185af30
YB
3249 *
3250 * Return: 0
e22bee78 3251 */
111c225a 3252static int rescuer_thread(void *__rescuer)
e22bee78 3253{
111c225a
TH
3254 struct worker *rescuer = __rescuer;
3255 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3256 bool should_stop;
e22bee78
TH
3257
3258 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3259
3260 /*
3261 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3262 * doesn't participate in concurrency management.
3263 */
197f6acc 3264 set_pf_worker(true);
e22bee78 3265repeat:
c5a94a61 3266 set_current_state(TASK_IDLE);
e22bee78 3267
4d595b86
LJ
3268 /*
3269 * By the time the rescuer is requested to stop, the workqueue
3270 * shouldn't have any work pending, but @wq->maydays may still have
3271 * pwq(s) queued. This can happen by non-rescuer workers consuming
3272 * all the work items before the rescuer got to them. Go through
3273 * @wq->maydays processing before acting on should_stop so that the
3274 * list is always empty on exit.
3275 */
3276 should_stop = kthread_should_stop();
e22bee78 3277
493a1724 3278 /* see whether any pwq is asking for help */
a9b8a985 3279 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3280
3281 while (!list_empty(&wq->maydays)) {
3282 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3283 struct pool_workqueue, mayday_node);
112202d9 3284 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3285 struct work_struct *work, *n;
3286
3287 __set_current_state(TASK_RUNNING);
493a1724
TH
3288 list_del_init(&pwq->mayday_node);
3289
a9b8a985 3290 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3291
51697d39
LJ
3292 worker_attach_to_pool(rescuer, pool);
3293
a9b8a985 3294 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3295
3296 /*
3297 * Slurp in all works issued via this workqueue and
3298 * process'em.
3299 */
873eaca6 3300 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3301 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3302 if (get_work_pwq(work) == pwq &&
3303 assign_work(work, rescuer, &n))
725e8ec5 3304 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3305 }
e22bee78 3306
873eaca6 3307 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3308 process_scheduled_works(rescuer);
3309
3310 /*
3311 * The above execution of rescued work items could
3312 * have created more to rescue through
f97a4a1a 3313 * pwq_activate_first_inactive() or chained
008847f6
N
3314 * queueing. Let's put @pwq back on mayday list so
3315 * that such back-to-back work items, which may be
3316 * being used to relieve memory pressure, don't
3317 * incur MAYDAY_INTERVAL delay inbetween.
3318 */
4f3f4cf3 3319 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3320 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3321 /*
3322 * Queue iff we aren't racing destruction
3323 * and somebody else hasn't queued it already.
3324 */
3325 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3326 get_pwq(pwq);
3327 list_add_tail(&pwq->mayday_node, &wq->maydays);
3328 }
a9b8a985 3329 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3330 }
3331 }
7576958a 3332
77668c8b
LJ
3333 /*
3334 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3335 * go away while we're still attached to it.
77668c8b
LJ
3336 */
3337 put_pwq(pwq);
3338
7576958a 3339 /*
0219a352
TH
3340 * Leave this pool. Notify regular workers; otherwise, we end up
3341 * with 0 concurrency and stalling the execution.
7576958a 3342 */
0219a352 3343 kick_pool(pool);
7576958a 3344
a9b8a985 3345 raw_spin_unlock_irq(&pool->lock);
13b1d625 3346
a2d812a2 3347 worker_detach_from_pool(rescuer);
13b1d625 3348
a9b8a985 3349 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3350 }
3351
a9b8a985 3352 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3353
4d595b86
LJ
3354 if (should_stop) {
3355 __set_current_state(TASK_RUNNING);
197f6acc 3356 set_pf_worker(false);
4d595b86
LJ
3357 return 0;
3358 }
3359
111c225a
TH
3360 /* rescuers should never participate in concurrency management */
3361 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3362 schedule();
3363 goto repeat;
1da177e4
LT
3364}
3365
fca839c0
TH
3366/**
3367 * check_flush_dependency - check for flush dependency sanity
3368 * @target_wq: workqueue being flushed
3369 * @target_work: work item being flushed (NULL for workqueue flushes)
3370 *
3371 * %current is trying to flush the whole @target_wq or @target_work on it.
3372 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3373 * reclaiming memory or running on a workqueue which doesn't have
3374 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3375 * a deadlock.
3376 */
3377static void check_flush_dependency(struct workqueue_struct *target_wq,
3378 struct work_struct *target_work)
3379{
3380 work_func_t target_func = target_work ? target_work->func : NULL;
3381 struct worker *worker;
3382
3383 if (target_wq->flags & WQ_MEM_RECLAIM)
3384 return;
3385
3386 worker = current_wq_worker();
3387
3388 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3389 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3390 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3391 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3392 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3393 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3394 worker->current_pwq->wq->name, worker->current_func,
3395 target_wq->name, target_func);
3396}
3397
fc2e4d70
ON
3398struct wq_barrier {
3399 struct work_struct work;
3400 struct completion done;
2607d7a6 3401 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3402};
3403
3404static void wq_barrier_func(struct work_struct *work)
3405{
3406 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3407 complete(&barr->done);
3408}
3409
4690c4ab
TH
3410/**
3411 * insert_wq_barrier - insert a barrier work
112202d9 3412 * @pwq: pwq to insert barrier into
4690c4ab 3413 * @barr: wq_barrier to insert
affee4b2
TH
3414 * @target: target work to attach @barr to
3415 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3416 *
affee4b2
TH
3417 * @barr is linked to @target such that @barr is completed only after
3418 * @target finishes execution. Please note that the ordering
3419 * guarantee is observed only with respect to @target and on the local
3420 * cpu.
3421 *
3422 * Currently, a queued barrier can't be canceled. This is because
3423 * try_to_grab_pending() can't determine whether the work to be
3424 * grabbed is at the head of the queue and thus can't clear LINKED
3425 * flag of the previous work while there must be a valid next work
3426 * after a work with LINKED flag set.
3427 *
3428 * Note that when @worker is non-NULL, @target may be modified
112202d9 3429 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3430 *
3431 * CONTEXT:
a9b8a985 3432 * raw_spin_lock_irq(pool->lock).
4690c4ab 3433 */
112202d9 3434static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3435 struct wq_barrier *barr,
3436 struct work_struct *target, struct worker *worker)
fc2e4d70 3437{
d812796e
LJ
3438 unsigned int work_flags = 0;
3439 unsigned int work_color;
affee4b2 3440 struct list_head *head;
affee4b2 3441
dc186ad7 3442 /*
d565ed63 3443 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3444 * as we know for sure that this will not trigger any of the
3445 * checks and call back into the fixup functions where we
3446 * might deadlock.
3447 */
ca1cab37 3448 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 3449 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3450
fd1a5b04
BP
3451 init_completion_map(&barr->done, &target->lockdep_map);
3452
2607d7a6 3453 barr->task = current;
83c22520 3454
5797b1c1 3455 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3456 work_flags |= WORK_STRUCT_INACTIVE;
3457
affee4b2
TH
3458 /*
3459 * If @target is currently being executed, schedule the
3460 * barrier to the worker; otherwise, put it after @target.
3461 */
d812796e 3462 if (worker) {
affee4b2 3463 head = worker->scheduled.next;
d812796e
LJ
3464 work_color = worker->current_color;
3465 } else {
affee4b2
TH
3466 unsigned long *bits = work_data_bits(target);
3467
3468 head = target->entry.next;
3469 /* there can already be other linked works, inherit and set */
d21cece0 3470 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3471 work_color = get_work_color(*bits);
affee4b2
TH
3472 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3473 }
3474
d812796e
LJ
3475 pwq->nr_in_flight[work_color]++;
3476 work_flags |= work_color_to_flags(work_color);
3477
d21cece0 3478 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3479}
3480
73f53c4a 3481/**
112202d9 3482 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3483 * @wq: workqueue being flushed
3484 * @flush_color: new flush color, < 0 for no-op
3485 * @work_color: new work color, < 0 for no-op
3486 *
112202d9 3487 * Prepare pwqs for workqueue flushing.
73f53c4a 3488 *
112202d9
TH
3489 * If @flush_color is non-negative, flush_color on all pwqs should be
3490 * -1. If no pwq has in-flight commands at the specified color, all
3491 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3492 * has in flight commands, its pwq->flush_color is set to
3493 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3494 * wakeup logic is armed and %true is returned.
3495 *
3496 * The caller should have initialized @wq->first_flusher prior to
3497 * calling this function with non-negative @flush_color. If
3498 * @flush_color is negative, no flush color update is done and %false
3499 * is returned.
3500 *
112202d9 3501 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3502 * work_color which is previous to @work_color and all will be
3503 * advanced to @work_color.
3504 *
3505 * CONTEXT:
3c25a55d 3506 * mutex_lock(wq->mutex).
73f53c4a 3507 *
d185af30 3508 * Return:
73f53c4a
TH
3509 * %true if @flush_color >= 0 and there's something to flush. %false
3510 * otherwise.
3511 */
112202d9 3512static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3513 int flush_color, int work_color)
1da177e4 3514{
73f53c4a 3515 bool wait = false;
49e3cf44 3516 struct pool_workqueue *pwq;
1da177e4 3517
73f53c4a 3518 if (flush_color >= 0) {
6183c009 3519 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3520 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3521 }
2355b70f 3522
49e3cf44 3523 for_each_pwq(pwq, wq) {
112202d9 3524 struct worker_pool *pool = pwq->pool;
fc2e4d70 3525
a9b8a985 3526 raw_spin_lock_irq(&pool->lock);
83c22520 3527
73f53c4a 3528 if (flush_color >= 0) {
6183c009 3529 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3530
112202d9
TH
3531 if (pwq->nr_in_flight[flush_color]) {
3532 pwq->flush_color = flush_color;
3533 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3534 wait = true;
3535 }
3536 }
1da177e4 3537
73f53c4a 3538 if (work_color >= 0) {
6183c009 3539 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3540 pwq->work_color = work_color;
73f53c4a 3541 }
1da177e4 3542
a9b8a985 3543 raw_spin_unlock_irq(&pool->lock);
1da177e4 3544 }
2355b70f 3545
112202d9 3546 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3547 complete(&wq->first_flusher->done);
14441960 3548
73f53c4a 3549 return wait;
1da177e4
LT
3550}
3551
0fcb78c2 3552/**
c4f135d6 3553 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3554 * @wq: workqueue to flush
1da177e4 3555 *
c5aa87bb
TH
3556 * This function sleeps until all work items which were queued on entry
3557 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3558 */
c4f135d6 3559void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3560{
73f53c4a
TH
3561 struct wq_flusher this_flusher = {
3562 .list = LIST_HEAD_INIT(this_flusher.list),
3563 .flush_color = -1,
fd1a5b04 3564 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3565 };
3566 int next_color;
1da177e4 3567
3347fa09
TH
3568 if (WARN_ON(!wq_online))
3569 return;
3570
87915adc
JB
3571 lock_map_acquire(&wq->lockdep_map);
3572 lock_map_release(&wq->lockdep_map);
3573
3c25a55d 3574 mutex_lock(&wq->mutex);
73f53c4a
TH
3575
3576 /*
3577 * Start-to-wait phase
3578 */
3579 next_color = work_next_color(wq->work_color);
3580
3581 if (next_color != wq->flush_color) {
3582 /*
3583 * Color space is not full. The current work_color
3584 * becomes our flush_color and work_color is advanced
3585 * by one.
3586 */
6183c009 3587 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3588 this_flusher.flush_color = wq->work_color;
3589 wq->work_color = next_color;
3590
3591 if (!wq->first_flusher) {
3592 /* no flush in progress, become the first flusher */
6183c009 3593 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3594
3595 wq->first_flusher = &this_flusher;
3596
112202d9 3597 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3598 wq->work_color)) {
3599 /* nothing to flush, done */
3600 wq->flush_color = next_color;
3601 wq->first_flusher = NULL;
3602 goto out_unlock;
3603 }
3604 } else {
3605 /* wait in queue */
6183c009 3606 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3607 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3608 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3609 }
3610 } else {
3611 /*
3612 * Oops, color space is full, wait on overflow queue.
3613 * The next flush completion will assign us
3614 * flush_color and transfer to flusher_queue.
3615 */
3616 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3617 }
3618
fca839c0
TH
3619 check_flush_dependency(wq, NULL);
3620
3c25a55d 3621 mutex_unlock(&wq->mutex);
73f53c4a
TH
3622
3623 wait_for_completion(&this_flusher.done);
3624
3625 /*
3626 * Wake-up-and-cascade phase
3627 *
3628 * First flushers are responsible for cascading flushes and
3629 * handling overflow. Non-first flushers can simply return.
3630 */
00d5d15b 3631 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3632 return;
3633
3c25a55d 3634 mutex_lock(&wq->mutex);
73f53c4a 3635
4ce48b37
TH
3636 /* we might have raced, check again with mutex held */
3637 if (wq->first_flusher != &this_flusher)
3638 goto out_unlock;
3639
00d5d15b 3640 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3641
6183c009
TH
3642 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3643 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3644
3645 while (true) {
3646 struct wq_flusher *next, *tmp;
3647
3648 /* complete all the flushers sharing the current flush color */
3649 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3650 if (next->flush_color != wq->flush_color)
3651 break;
3652 list_del_init(&next->list);
3653 complete(&next->done);
3654 }
3655
6183c009
TH
3656 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3657 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3658
3659 /* this flush_color is finished, advance by one */
3660 wq->flush_color = work_next_color(wq->flush_color);
3661
3662 /* one color has been freed, handle overflow queue */
3663 if (!list_empty(&wq->flusher_overflow)) {
3664 /*
3665 * Assign the same color to all overflowed
3666 * flushers, advance work_color and append to
3667 * flusher_queue. This is the start-to-wait
3668 * phase for these overflowed flushers.
3669 */
3670 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3671 tmp->flush_color = wq->work_color;
3672
3673 wq->work_color = work_next_color(wq->work_color);
3674
3675 list_splice_tail_init(&wq->flusher_overflow,
3676 &wq->flusher_queue);
112202d9 3677 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3678 }
3679
3680 if (list_empty(&wq->flusher_queue)) {
6183c009 3681 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3682 break;
3683 }
3684
3685 /*
3686 * Need to flush more colors. Make the next flusher
112202d9 3687 * the new first flusher and arm pwqs.
73f53c4a 3688 */
6183c009
TH
3689 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3690 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3691
3692 list_del_init(&next->list);
3693 wq->first_flusher = next;
3694
112202d9 3695 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3696 break;
3697
3698 /*
3699 * Meh... this color is already done, clear first
3700 * flusher and repeat cascading.
3701 */
3702 wq->first_flusher = NULL;
3703 }
3704
3705out_unlock:
3c25a55d 3706 mutex_unlock(&wq->mutex);
1da177e4 3707}
c4f135d6 3708EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3709
9c5a2ba7
TH
3710/**
3711 * drain_workqueue - drain a workqueue
3712 * @wq: workqueue to drain
3713 *
3714 * Wait until the workqueue becomes empty. While draining is in progress,
3715 * only chain queueing is allowed. IOW, only currently pending or running
3716 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3717 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3718 * by the depth of chaining and should be relatively short. Whine if it
3719 * takes too long.
3720 */
3721void drain_workqueue(struct workqueue_struct *wq)
3722{
3723 unsigned int flush_cnt = 0;
49e3cf44 3724 struct pool_workqueue *pwq;
9c5a2ba7
TH
3725
3726 /*
3727 * __queue_work() needs to test whether there are drainers, is much
3728 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3729 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3730 */
87fc741e 3731 mutex_lock(&wq->mutex);
9c5a2ba7 3732 if (!wq->nr_drainers++)
618b01eb 3733 wq->flags |= __WQ_DRAINING;
87fc741e 3734 mutex_unlock(&wq->mutex);
9c5a2ba7 3735reflush:
c4f135d6 3736 __flush_workqueue(wq);
9c5a2ba7 3737
b09f4fd3 3738 mutex_lock(&wq->mutex);
76af4d93 3739
49e3cf44 3740 for_each_pwq(pwq, wq) {
fa2563e4 3741 bool drained;
9c5a2ba7 3742
a9b8a985 3743 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 3744 drained = pwq_is_empty(pwq);
a9b8a985 3745 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3746
3747 if (drained)
9c5a2ba7
TH
3748 continue;
3749
3750 if (++flush_cnt == 10 ||
3751 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3752 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3753 wq->name, __func__, flush_cnt);
76af4d93 3754
b09f4fd3 3755 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3756 goto reflush;
3757 }
3758
9c5a2ba7 3759 if (!--wq->nr_drainers)
618b01eb 3760 wq->flags &= ~__WQ_DRAINING;
87fc741e 3761 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3762}
3763EXPORT_SYMBOL_GPL(drain_workqueue);
3764
d6e89786
JB
3765static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3766 bool from_cancel)
db700897 3767{
affee4b2 3768 struct worker *worker = NULL;
c9e7cf27 3769 struct worker_pool *pool;
112202d9 3770 struct pool_workqueue *pwq;
db700897
ON
3771
3772 might_sleep();
fa1b54e6 3773
24acfb71 3774 rcu_read_lock();
c9e7cf27 3775 pool = get_work_pool(work);
fa1b54e6 3776 if (!pool) {
24acfb71 3777 rcu_read_unlock();
baf59022 3778 return false;
fa1b54e6 3779 }
db700897 3780
a9b8a985 3781 raw_spin_lock_irq(&pool->lock);
0b3dae68 3782 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3783 pwq = get_work_pwq(work);
3784 if (pwq) {
3785 if (unlikely(pwq->pool != pool))
4690c4ab 3786 goto already_gone;
606a5020 3787 } else {
c9e7cf27 3788 worker = find_worker_executing_work(pool, work);
affee4b2 3789 if (!worker)
4690c4ab 3790 goto already_gone;
112202d9 3791 pwq = worker->current_pwq;
606a5020 3792 }
db700897 3793
fca839c0
TH
3794 check_flush_dependency(pwq->wq, work);
3795
112202d9 3796 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3797 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3798
e159489b 3799 /*
a1d14934
PZ
3800 * Force a lock recursion deadlock when using flush_work() inside a
3801 * single-threaded or rescuer equipped workqueue.
3802 *
3803 * For single threaded workqueues the deadlock happens when the work
3804 * is after the work issuing the flush_work(). For rescuer equipped
3805 * workqueues the deadlock happens when the rescuer stalls, blocking
3806 * forward progress.
e159489b 3807 */
d6e89786
JB
3808 if (!from_cancel &&
3809 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3810 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3811 lock_map_release(&pwq->wq->lockdep_map);
3812 }
24acfb71 3813 rcu_read_unlock();
401a8d04 3814 return true;
4690c4ab 3815already_gone:
a9b8a985 3816 raw_spin_unlock_irq(&pool->lock);
24acfb71 3817 rcu_read_unlock();
401a8d04 3818 return false;
db700897 3819}
baf59022 3820
d6e89786
JB
3821static bool __flush_work(struct work_struct *work, bool from_cancel)
3822{
3823 struct wq_barrier barr;
3824
3825 if (WARN_ON(!wq_online))
3826 return false;
3827
4d43d395
TH
3828 if (WARN_ON(!work->func))
3829 return false;
3830
c0feea59
TH
3831 lock_map_acquire(&work->lockdep_map);
3832 lock_map_release(&work->lockdep_map);
87915adc 3833
d6e89786
JB
3834 if (start_flush_work(work, &barr, from_cancel)) {
3835 wait_for_completion(&barr.done);
3836 destroy_work_on_stack(&barr.work);
3837 return true;
3838 } else {
3839 return false;
3840 }
3841}
3842
baf59022
TH
3843/**
3844 * flush_work - wait for a work to finish executing the last queueing instance
3845 * @work: the work to flush
3846 *
606a5020
TH
3847 * Wait until @work has finished execution. @work is guaranteed to be idle
3848 * on return if it hasn't been requeued since flush started.
baf59022 3849 *
d185af30 3850 * Return:
baf59022
TH
3851 * %true if flush_work() waited for the work to finish execution,
3852 * %false if it was already idle.
3853 */
3854bool flush_work(struct work_struct *work)
3855{
d6e89786 3856 return __flush_work(work, false);
6e84d644 3857}
606a5020 3858EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3859
8603e1b3 3860struct cwt_wait {
ac6424b9 3861 wait_queue_entry_t wait;
8603e1b3
TH
3862 struct work_struct *work;
3863};
3864
ac6424b9 3865static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3866{
3867 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3868
3869 if (cwait->work != key)
3870 return 0;
3871 return autoremove_wake_function(wait, mode, sync, key);
3872}
3873
36e227d2 3874static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3875{
8603e1b3 3876 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3877 unsigned long flags;
1f1f642e
ON
3878 int ret;
3879
3880 do {
bbb68dfa
TH
3881 ret = try_to_grab_pending(work, is_dwork, &flags);
3882 /*
8603e1b3
TH
3883 * If someone else is already canceling, wait for it to
3884 * finish. flush_work() doesn't work for PREEMPT_NONE
3885 * because we may get scheduled between @work's completion
3886 * and the other canceling task resuming and clearing
3887 * CANCELING - flush_work() will return false immediately
3888 * as @work is no longer busy, try_to_grab_pending() will
3889 * return -ENOENT as @work is still being canceled and the
3890 * other canceling task won't be able to clear CANCELING as
3891 * we're hogging the CPU.
3892 *
3893 * Let's wait for completion using a waitqueue. As this
3894 * may lead to the thundering herd problem, use a custom
3895 * wake function which matches @work along with exclusive
3896 * wait and wakeup.
bbb68dfa 3897 */
8603e1b3
TH
3898 if (unlikely(ret == -ENOENT)) {
3899 struct cwt_wait cwait;
3900
3901 init_wait(&cwait.wait);
3902 cwait.wait.func = cwt_wakefn;
3903 cwait.work = work;
3904
3905 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3906 TASK_UNINTERRUPTIBLE);
3907 if (work_is_canceling(work))
3908 schedule();
3909 finish_wait(&cancel_waitq, &cwait.wait);
3910 }
1f1f642e
ON
3911 } while (unlikely(ret < 0));
3912
bbb68dfa
TH
3913 /* tell other tasks trying to grab @work to back off */
3914 mark_work_canceling(work);
3915 local_irq_restore(flags);
3916
3347fa09
TH
3917 /*
3918 * This allows canceling during early boot. We know that @work
3919 * isn't executing.
3920 */
3921 if (wq_online)
d6e89786 3922 __flush_work(work, true);
3347fa09 3923
7a22ad75 3924 clear_work_data(work);
8603e1b3
TH
3925
3926 /*
3927 * Paired with prepare_to_wait() above so that either
3928 * waitqueue_active() is visible here or !work_is_canceling() is
3929 * visible there.
3930 */
3931 smp_mb();
3932 if (waitqueue_active(&cancel_waitq))
3933 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3934
1f1f642e
ON
3935 return ret;
3936}
3937
6e84d644 3938/**
401a8d04
TH
3939 * cancel_work_sync - cancel a work and wait for it to finish
3940 * @work: the work to cancel
6e84d644 3941 *
401a8d04
TH
3942 * Cancel @work and wait for its execution to finish. This function
3943 * can be used even if the work re-queues itself or migrates to
3944 * another workqueue. On return from this function, @work is
3945 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3946 *
401a8d04
TH
3947 * cancel_work_sync(&delayed_work->work) must not be used for
3948 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3949 *
401a8d04 3950 * The caller must ensure that the workqueue on which @work was last
6e84d644 3951 * queued can't be destroyed before this function returns.
401a8d04 3952 *
d185af30 3953 * Return:
401a8d04 3954 * %true if @work was pending, %false otherwise.
6e84d644 3955 */
401a8d04 3956bool cancel_work_sync(struct work_struct *work)
6e84d644 3957{
36e227d2 3958 return __cancel_work_timer(work, false);
b89deed3 3959}
28e53bdd 3960EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3961
6e84d644 3962/**
401a8d04
TH
3963 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3964 * @dwork: the delayed work to flush
6e84d644 3965 *
401a8d04
TH
3966 * Delayed timer is cancelled and the pending work is queued for
3967 * immediate execution. Like flush_work(), this function only
3968 * considers the last queueing instance of @dwork.
1f1f642e 3969 *
d185af30 3970 * Return:
401a8d04
TH
3971 * %true if flush_work() waited for the work to finish execution,
3972 * %false if it was already idle.
6e84d644 3973 */
401a8d04
TH
3974bool flush_delayed_work(struct delayed_work *dwork)
3975{
8930caba 3976 local_irq_disable();
401a8d04 3977 if (del_timer_sync(&dwork->timer))
60c057bc 3978 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3979 local_irq_enable();
401a8d04
TH
3980 return flush_work(&dwork->work);
3981}
3982EXPORT_SYMBOL(flush_delayed_work);
3983
05f0fe6b
TH
3984/**
3985 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3986 * @rwork: the rcu work to flush
3987 *
3988 * Return:
3989 * %true if flush_rcu_work() waited for the work to finish execution,
3990 * %false if it was already idle.
3991 */
3992bool flush_rcu_work(struct rcu_work *rwork)
3993{
3994 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3995 rcu_barrier();
3996 flush_work(&rwork->work);
3997 return true;
3998 } else {
3999 return flush_work(&rwork->work);
4000 }
4001}
4002EXPORT_SYMBOL(flush_rcu_work);
4003
f72b8792
JA
4004static bool __cancel_work(struct work_struct *work, bool is_dwork)
4005{
4006 unsigned long flags;
4007 int ret;
4008
4009 do {
4010 ret = try_to_grab_pending(work, is_dwork, &flags);
4011 } while (unlikely(ret == -EAGAIN));
4012
4013 if (unlikely(ret < 0))
4014 return false;
4015
4016 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
4017 local_irq_restore(flags);
4018 return ret;
4019}
4020
73b4b532
AG
4021/*
4022 * See cancel_delayed_work()
4023 */
4024bool cancel_work(struct work_struct *work)
4025{
4026 return __cancel_work(work, false);
4027}
4028EXPORT_SYMBOL(cancel_work);
4029
09383498 4030/**
57b30ae7
TH
4031 * cancel_delayed_work - cancel a delayed work
4032 * @dwork: delayed_work to cancel
09383498 4033 *
d185af30
YB
4034 * Kill off a pending delayed_work.
4035 *
4036 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4037 * pending.
4038 *
4039 * Note:
4040 * The work callback function may still be running on return, unless
4041 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4042 * use cancel_delayed_work_sync() to wait on it.
09383498 4043 *
57b30ae7 4044 * This function is safe to call from any context including IRQ handler.
09383498 4045 */
57b30ae7 4046bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4047{
f72b8792 4048 return __cancel_work(&dwork->work, true);
09383498 4049}
57b30ae7 4050EXPORT_SYMBOL(cancel_delayed_work);
09383498 4051
401a8d04
TH
4052/**
4053 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4054 * @dwork: the delayed work cancel
4055 *
4056 * This is cancel_work_sync() for delayed works.
4057 *
d185af30 4058 * Return:
401a8d04
TH
4059 * %true if @dwork was pending, %false otherwise.
4060 */
4061bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4062{
36e227d2 4063 return __cancel_work_timer(&dwork->work, true);
6e84d644 4064}
f5a421a4 4065EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4066
b6136773 4067/**
31ddd871 4068 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4069 * @func: the function to call
b6136773 4070 *
31ddd871
TH
4071 * schedule_on_each_cpu() executes @func on each online CPU using the
4072 * system workqueue and blocks until all CPUs have completed.
b6136773 4073 * schedule_on_each_cpu() is very slow.
31ddd871 4074 *
d185af30 4075 * Return:
31ddd871 4076 * 0 on success, -errno on failure.
b6136773 4077 */
65f27f38 4078int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4079{
4080 int cpu;
38f51568 4081 struct work_struct __percpu *works;
15316ba8 4082
b6136773
AM
4083 works = alloc_percpu(struct work_struct);
4084 if (!works)
15316ba8 4085 return -ENOMEM;
b6136773 4086
ffd8bea8 4087 cpus_read_lock();
93981800 4088
15316ba8 4089 for_each_online_cpu(cpu) {
9bfb1839
IM
4090 struct work_struct *work = per_cpu_ptr(works, cpu);
4091
4092 INIT_WORK(work, func);
b71ab8c2 4093 schedule_work_on(cpu, work);
65a64464 4094 }
93981800
TH
4095
4096 for_each_online_cpu(cpu)
4097 flush_work(per_cpu_ptr(works, cpu));
4098
ffd8bea8 4099 cpus_read_unlock();
b6136773 4100 free_percpu(works);
15316ba8
CL
4101 return 0;
4102}
4103
1fa44eca
JB
4104/**
4105 * execute_in_process_context - reliably execute the routine with user context
4106 * @fn: the function to execute
1fa44eca
JB
4107 * @ew: guaranteed storage for the execute work structure (must
4108 * be available when the work executes)
4109 *
4110 * Executes the function immediately if process context is available,
4111 * otherwise schedules the function for delayed execution.
4112 *
d185af30 4113 * Return: 0 - function was executed
1fa44eca
JB
4114 * 1 - function was scheduled for execution
4115 */
65f27f38 4116int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4117{
4118 if (!in_interrupt()) {
65f27f38 4119 fn(&ew->work);
1fa44eca
JB
4120 return 0;
4121 }
4122
65f27f38 4123 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4124 schedule_work(&ew->work);
4125
4126 return 1;
4127}
4128EXPORT_SYMBOL_GPL(execute_in_process_context);
4129
6ba94429
FW
4130/**
4131 * free_workqueue_attrs - free a workqueue_attrs
4132 * @attrs: workqueue_attrs to free
226223ab 4133 *
6ba94429 4134 * Undo alloc_workqueue_attrs().
226223ab 4135 */
513c98d0 4136void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4137{
6ba94429
FW
4138 if (attrs) {
4139 free_cpumask_var(attrs->cpumask);
9546b29e 4140 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4141 kfree(attrs);
4142 }
226223ab
TH
4143}
4144
6ba94429
FW
4145/**
4146 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4147 *
4148 * Allocate a new workqueue_attrs, initialize with default settings and
4149 * return it.
4150 *
4151 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4152 */
513c98d0 4153struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4154{
6ba94429 4155 struct workqueue_attrs *attrs;
226223ab 4156
be69d00d 4157 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4158 if (!attrs)
4159 goto fail;
be69d00d 4160 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4161 goto fail;
9546b29e
TH
4162 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4163 goto fail;
6ba94429
FW
4164
4165 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4166 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4167 return attrs;
4168fail:
4169 free_workqueue_attrs(attrs);
4170 return NULL;
226223ab
TH
4171}
4172
6ba94429
FW
4173static void copy_workqueue_attrs(struct workqueue_attrs *to,
4174 const struct workqueue_attrs *from)
226223ab 4175{
6ba94429
FW
4176 to->nice = from->nice;
4177 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4178 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4179 to->affn_strict = from->affn_strict;
84193c07 4180
6ba94429 4181 /*
84193c07
TH
4182 * Unlike hash and equality test, copying shouldn't ignore wq-only
4183 * fields as copying is used for both pool and wq attrs. Instead,
4184 * get_unbound_pool() explicitly clears the fields.
6ba94429 4185 */
84193c07 4186 to->affn_scope = from->affn_scope;
af73f5c9 4187 to->ordered = from->ordered;
226223ab
TH
4188}
4189
5de7a03c
TH
4190/*
4191 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4192 * comments in 'struct workqueue_attrs' definition.
4193 */
4194static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4195{
84193c07 4196 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c
TH
4197 attrs->ordered = false;
4198}
4199
6ba94429
FW
4200/* hash value of the content of @attr */
4201static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4202{
6ba94429 4203 u32 hash = 0;
226223ab 4204
6ba94429
FW
4205 hash = jhash_1word(attrs->nice, hash);
4206 hash = jhash(cpumask_bits(attrs->cpumask),
4207 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
9546b29e
TH
4208 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4209 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
8639eceb 4210 hash = jhash_1word(attrs->affn_strict, hash);
6ba94429 4211 return hash;
226223ab 4212}
226223ab 4213
6ba94429
FW
4214/* content equality test */
4215static bool wqattrs_equal(const struct workqueue_attrs *a,
4216 const struct workqueue_attrs *b)
226223ab 4217{
6ba94429
FW
4218 if (a->nice != b->nice)
4219 return false;
4220 if (!cpumask_equal(a->cpumask, b->cpumask))
4221 return false;
9546b29e
TH
4222 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4223 return false;
8639eceb
TH
4224 if (a->affn_strict != b->affn_strict)
4225 return false;
6ba94429 4226 return true;
226223ab
TH
4227}
4228
0f36ee24
TH
4229/* Update @attrs with actually available CPUs */
4230static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4231 const cpumask_t *unbound_cpumask)
4232{
4233 /*
4234 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4235 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4236 * @unbound_cpumask.
4237 */
4238 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4239 if (unlikely(cpumask_empty(attrs->cpumask)))
4240 cpumask_copy(attrs->cpumask, unbound_cpumask);
4241}
4242
84193c07
TH
4243/* find wq_pod_type to use for @attrs */
4244static const struct wq_pod_type *
4245wqattrs_pod_type(const struct workqueue_attrs *attrs)
4246{
523a301e
TH
4247 enum wq_affn_scope scope;
4248 struct wq_pod_type *pt;
4249
4250 /* to synchronize access to wq_affn_dfl */
4251 lockdep_assert_held(&wq_pool_mutex);
4252
4253 if (attrs->affn_scope == WQ_AFFN_DFL)
4254 scope = wq_affn_dfl;
4255 else
4256 scope = attrs->affn_scope;
4257
4258 pt = &wq_pod_types[scope];
84193c07
TH
4259
4260 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4261 likely(pt->nr_pods))
4262 return pt;
4263
4264 /*
4265 * Before workqueue_init_topology(), only SYSTEM is available which is
4266 * initialized in workqueue_init_early().
4267 */
4268 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4269 BUG_ON(!pt->nr_pods);
4270 return pt;
4271}
4272
6ba94429
FW
4273/**
4274 * init_worker_pool - initialize a newly zalloc'd worker_pool
4275 * @pool: worker_pool to initialize
4276 *
402dd89d 4277 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4278 *
4279 * Return: 0 on success, -errno on failure. Even on failure, all fields
4280 * inside @pool proper are initialized and put_unbound_pool() can be called
4281 * on @pool safely to release it.
4282 */
4283static int init_worker_pool(struct worker_pool *pool)
226223ab 4284{
a9b8a985 4285 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4286 pool->id = -1;
4287 pool->cpu = -1;
4288 pool->node = NUMA_NO_NODE;
4289 pool->flags |= POOL_DISASSOCIATED;
82607adc 4290 pool->watchdog_ts = jiffies;
6ba94429
FW
4291 INIT_LIST_HEAD(&pool->worklist);
4292 INIT_LIST_HEAD(&pool->idle_list);
4293 hash_init(pool->busy_hash);
226223ab 4294
32a6c723 4295 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4296 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4297
32a6c723 4298 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4299
6ba94429 4300 INIT_LIST_HEAD(&pool->workers);
e02b9312 4301 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 4302
6ba94429
FW
4303 ida_init(&pool->worker_ida);
4304 INIT_HLIST_NODE(&pool->hash_node);
4305 pool->refcnt = 1;
226223ab 4306
6ba94429 4307 /* shouldn't fail above this point */
be69d00d 4308 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4309 if (!pool->attrs)
4310 return -ENOMEM;
5de7a03c
TH
4311
4312 wqattrs_clear_for_pool(pool->attrs);
4313
6ba94429 4314 return 0;
226223ab
TH
4315}
4316
669de8bd
BVA
4317#ifdef CONFIG_LOCKDEP
4318static void wq_init_lockdep(struct workqueue_struct *wq)
4319{
4320 char *lock_name;
4321
4322 lockdep_register_key(&wq->key);
4323 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4324 if (!lock_name)
4325 lock_name = wq->name;
69a106c0
QC
4326
4327 wq->lock_name = lock_name;
669de8bd
BVA
4328 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4329}
4330
4331static void wq_unregister_lockdep(struct workqueue_struct *wq)
4332{
4333 lockdep_unregister_key(&wq->key);
4334}
4335
4336static void wq_free_lockdep(struct workqueue_struct *wq)
4337{
4338 if (wq->lock_name != wq->name)
4339 kfree(wq->lock_name);
4340}
4341#else
4342static void wq_init_lockdep(struct workqueue_struct *wq)
4343{
4344}
4345
4346static void wq_unregister_lockdep(struct workqueue_struct *wq)
4347{
4348}
4349
4350static void wq_free_lockdep(struct workqueue_struct *wq)
4351{
4352}
4353#endif
4354
91ccc6e7
TH
4355static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4356{
4357 int node;
4358
4359 for_each_node(node) {
4360 kfree(nna_ar[node]);
4361 nna_ar[node] = NULL;
4362 }
4363
4364 kfree(nna_ar[nr_node_ids]);
4365 nna_ar[nr_node_ids] = NULL;
4366}
4367
4368static void init_node_nr_active(struct wq_node_nr_active *nna)
4369{
c5f8cd6c 4370 nna->max = WQ_DFL_MIN_ACTIVE;
91ccc6e7 4371 atomic_set(&nna->nr, 0);
5797b1c1
TH
4372 raw_spin_lock_init(&nna->lock);
4373 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4374}
4375
4376/*
4377 * Each node's nr_active counter will be accessed mostly from its own node and
4378 * should be allocated in the node.
4379 */
4380static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4381{
4382 struct wq_node_nr_active *nna;
4383 int node;
4384
4385 for_each_node(node) {
4386 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4387 if (!nna)
4388 goto err_free;
4389 init_node_nr_active(nna);
4390 nna_ar[node] = nna;
4391 }
4392
4393 /* [nr_node_ids] is used as the fallback */
4394 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4395 if (!nna)
4396 goto err_free;
4397 init_node_nr_active(nna);
4398 nna_ar[nr_node_ids] = nna;
4399
4400 return 0;
4401
4402err_free:
4403 free_node_nr_active(nna_ar);
4404 return -ENOMEM;
4405}
4406
6ba94429 4407static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4408{
6ba94429
FW
4409 struct workqueue_struct *wq =
4410 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4411
91ccc6e7
TH
4412 if (wq->flags & WQ_UNBOUND)
4413 free_node_nr_active(wq->node_nr_active);
4414
669de8bd 4415 wq_free_lockdep(wq);
636b927e
TH
4416 free_percpu(wq->cpu_pwq);
4417 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4418 kfree(wq);
226223ab
TH
4419}
4420
6ba94429 4421static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4422{
6ba94429 4423 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4424
6ba94429
FW
4425 ida_destroy(&pool->worker_ida);
4426 free_workqueue_attrs(pool->attrs);
4427 kfree(pool);
226223ab
TH
4428}
4429
6ba94429
FW
4430/**
4431 * put_unbound_pool - put a worker_pool
4432 * @pool: worker_pool to put
4433 *
24acfb71 4434 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4435 * safe manner. get_unbound_pool() calls this function on its failure path
4436 * and this function should be able to release pools which went through,
4437 * successfully or not, init_worker_pool().
4438 *
4439 * Should be called with wq_pool_mutex held.
4440 */
4441static void put_unbound_pool(struct worker_pool *pool)
226223ab 4442{
6ba94429
FW
4443 DECLARE_COMPLETION_ONSTACK(detach_completion);
4444 struct worker *worker;
9680540c 4445 LIST_HEAD(cull_list);
e02b9312 4446
6ba94429 4447 lockdep_assert_held(&wq_pool_mutex);
226223ab 4448
6ba94429
FW
4449 if (--pool->refcnt)
4450 return;
226223ab 4451
6ba94429
FW
4452 /* sanity checks */
4453 if (WARN_ON(!(pool->cpu < 0)) ||
4454 WARN_ON(!list_empty(&pool->worklist)))
4455 return;
226223ab 4456
6ba94429
FW
4457 /* release id and unhash */
4458 if (pool->id >= 0)
4459 idr_remove(&worker_pool_idr, pool->id);
4460 hash_del(&pool->hash_node);
d55262c4 4461
6ba94429 4462 /*
692b4825
TH
4463 * Become the manager and destroy all workers. This prevents
4464 * @pool's workers from blocking on attach_mutex. We're the last
4465 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4466 *
4467 * Having a concurrent manager is quite unlikely to happen as we can
4468 * only get here with
4469 * pwq->refcnt == pool->refcnt == 0
4470 * which implies no work queued to the pool, which implies no worker can
4471 * become the manager. However a worker could have taken the role of
4472 * manager before the refcnts dropped to 0, since maybe_create_worker()
4473 * drops pool->lock
6ba94429 4474 */
9ab03be4
VS
4475 while (true) {
4476 rcuwait_wait_event(&manager_wait,
4477 !(pool->flags & POOL_MANAGER_ACTIVE),
4478 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4479
4480 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4481 raw_spin_lock_irq(&pool->lock);
4482 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4483 pool->flags |= POOL_MANAGER_ACTIVE;
4484 break;
4485 }
4486 raw_spin_unlock_irq(&pool->lock);
e02b9312 4487 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4488 }
692b4825 4489
6ba94429 4490 while ((worker = first_idle_worker(pool)))
e02b9312 4491 set_worker_dying(worker, &cull_list);
6ba94429 4492 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4493 raw_spin_unlock_irq(&pool->lock);
d55262c4 4494
e02b9312
VS
4495 wake_dying_workers(&cull_list);
4496
4497 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 4498 pool->detach_completion = &detach_completion;
1258fae7 4499 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4500
6ba94429
FW
4501 if (pool->detach_completion)
4502 wait_for_completion(pool->detach_completion);
226223ab 4503
6ba94429
FW
4504 /* shut down the timers */
4505 del_timer_sync(&pool->idle_timer);
3f959aa3 4506 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4507 del_timer_sync(&pool->mayday_timer);
226223ab 4508
24acfb71 4509 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4510 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4511}
4512
4513/**
6ba94429
FW
4514 * get_unbound_pool - get a worker_pool with the specified attributes
4515 * @attrs: the attributes of the worker_pool to get
226223ab 4516 *
6ba94429
FW
4517 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4518 * reference count and return it. If there already is a matching
4519 * worker_pool, it will be used; otherwise, this function attempts to
4520 * create a new one.
226223ab 4521 *
6ba94429 4522 * Should be called with wq_pool_mutex held.
226223ab 4523 *
6ba94429
FW
4524 * Return: On success, a worker_pool with the same attributes as @attrs.
4525 * On failure, %NULL.
226223ab 4526 */
6ba94429 4527static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4528{
84193c07 4529 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4530 u32 hash = wqattrs_hash(attrs);
4531 struct worker_pool *pool;
84193c07 4532 int pod, node = NUMA_NO_NODE;
226223ab 4533
6ba94429 4534 lockdep_assert_held(&wq_pool_mutex);
226223ab 4535
6ba94429
FW
4536 /* do we already have a matching pool? */
4537 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4538 if (wqattrs_equal(pool->attrs, attrs)) {
4539 pool->refcnt++;
4540 return pool;
4541 }
4542 }
226223ab 4543
9546b29e 4544 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 4545 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 4546 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
4547 node = pt->pod_node[pod];
4548 break;
e2273584
XP
4549 }
4550 }
4551
6ba94429 4552 /* nope, create a new one */
84193c07 4553 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
4554 if (!pool || init_worker_pool(pool) < 0)
4555 goto fail;
4556
84193c07 4557 pool->node = node;
5de7a03c
TH
4558 copy_workqueue_attrs(pool->attrs, attrs);
4559 wqattrs_clear_for_pool(pool->attrs);
226223ab 4560
6ba94429
FW
4561 if (worker_pool_assign_id(pool) < 0)
4562 goto fail;
226223ab 4563
6ba94429 4564 /* create and start the initial worker */
3347fa09 4565 if (wq_online && !create_worker(pool))
6ba94429 4566 goto fail;
226223ab 4567
6ba94429
FW
4568 /* install */
4569 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 4570
6ba94429
FW
4571 return pool;
4572fail:
4573 if (pool)
4574 put_unbound_pool(pool);
4575 return NULL;
226223ab 4576}
226223ab 4577
6ba94429 4578static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 4579{
6ba94429
FW
4580 kmem_cache_free(pwq_cache,
4581 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
4582}
4583
6ba94429 4584/*
967b494e
TH
4585 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4586 * refcnt and needs to be destroyed.
7a4e344c 4587 */
687a9aa5 4588static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 4589{
6ba94429 4590 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 4591 release_work);
6ba94429
FW
4592 struct workqueue_struct *wq = pwq->wq;
4593 struct worker_pool *pool = pwq->pool;
b42b0bdd 4594 bool is_last = false;
7a4e344c 4595
b42b0bdd 4596 /*
687a9aa5 4597 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
4598 * @wq, and @wq is invalid to access.
4599 */
4600 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
4601 mutex_lock(&wq->mutex);
4602 list_del_rcu(&pwq->pwqs_node);
4603 is_last = list_empty(&wq->pwqs);
4604 mutex_unlock(&wq->mutex);
4605 }
6ba94429 4606
687a9aa5
TH
4607 if (wq->flags & WQ_UNBOUND) {
4608 mutex_lock(&wq_pool_mutex);
4609 put_unbound_pool(pool);
4610 mutex_unlock(&wq_pool_mutex);
4611 }
6ba94429 4612
5797b1c1
TH
4613 if (!list_empty(&pwq->pending_node)) {
4614 struct wq_node_nr_active *nna =
4615 wq_node_nr_active(pwq->wq, pwq->pool->node);
4616
4617 raw_spin_lock_irq(&nna->lock);
4618 list_del_init(&pwq->pending_node);
4619 raw_spin_unlock_irq(&nna->lock);
4620 }
4621
25b00775 4622 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 4623
2865a8fb 4624 /*
6ba94429
FW
4625 * If we're the last pwq going away, @wq is already dead and no one
4626 * is gonna access it anymore. Schedule RCU free.
2865a8fb 4627 */
669de8bd
BVA
4628 if (is_last) {
4629 wq_unregister_lockdep(wq);
25b00775 4630 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 4631 }
29c91e99
TH
4632}
4633
67dc8325 4634/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
4635static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4636 struct worker_pool *pool)
29c91e99 4637{
6ba94429 4638 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 4639
6ba94429
FW
4640 memset(pwq, 0, sizeof(*pwq));
4641
4642 pwq->pool = pool;
4643 pwq->wq = wq;
4644 pwq->flush_color = -1;
4645 pwq->refcnt = 1;
f97a4a1a 4646 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 4647 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
4648 INIT_LIST_HEAD(&pwq->pwqs_node);
4649 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 4650 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
4651}
4652
6ba94429
FW
4653/* sync @pwq with the current state of its associated wq and link it */
4654static void link_pwq(struct pool_workqueue *pwq)
29c91e99 4655{
6ba94429 4656 struct workqueue_struct *wq = pwq->wq;
29c91e99 4657
6ba94429 4658 lockdep_assert_held(&wq->mutex);
a892cacc 4659
6ba94429
FW
4660 /* may be called multiple times, ignore if already linked */
4661 if (!list_empty(&pwq->pwqs_node))
29c91e99 4662 return;
29c91e99 4663
6ba94429
FW
4664 /* set the matching work_color */
4665 pwq->work_color = wq->work_color;
29c91e99 4666
6ba94429
FW
4667 /* link in @pwq */
4668 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4669}
29c91e99 4670
6ba94429
FW
4671/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4672static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4673 const struct workqueue_attrs *attrs)
4674{
4675 struct worker_pool *pool;
4676 struct pool_workqueue *pwq;
60f5a4bc 4677
6ba94429 4678 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 4679
6ba94429
FW
4680 pool = get_unbound_pool(attrs);
4681 if (!pool)
4682 return NULL;
60f5a4bc 4683
6ba94429
FW
4684 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4685 if (!pwq) {
4686 put_unbound_pool(pool);
4687 return NULL;
4688 }
29c91e99 4689
6ba94429
FW
4690 init_pwq(pwq, wq, pool);
4691 return pwq;
4692}
29c91e99 4693
29c91e99 4694/**
fef59c9c 4695 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 4696 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 4697 * @cpu: the target CPU
6ba94429 4698 * @cpu_going_down: if >= 0, the CPU to consider as offline
29c91e99 4699 *
fef59c9c
TH
4700 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4701 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
9546b29e 4702 * The result is stored in @attrs->__pod_cpumask.
a892cacc 4703 *
fef59c9c
TH
4704 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4705 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4706 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 4707 *
fef59c9c 4708 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 4709 */
9546b29e
TH
4710static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4711 int cpu_going_down)
29c91e99 4712{
84193c07
TH
4713 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4714 int pod = pt->cpu_pod[cpu];
29c91e99 4715
fef59c9c 4716 /* does @pod have any online CPUs @attrs wants? */
9546b29e
TH
4717 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4718 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
6ba94429 4719 if (cpu_going_down >= 0)
9546b29e 4720 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
29c91e99 4721
9546b29e
TH
4722 if (cpumask_empty(attrs->__pod_cpumask)) {
4723 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
4724 return;
4725 }
4c16bd32 4726
fef59c9c 4727 /* yeap, return possible CPUs in @pod that @attrs wants */
9546b29e 4728 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 4729
9546b29e 4730 if (cpumask_empty(attrs->__pod_cpumask))
1ad0f0a7
MB
4731 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4732 "possible intersect\n");
4c16bd32
TH
4733}
4734
9f66cff2 4735/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
4736static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4737 int cpu, struct pool_workqueue *pwq)
1befcf30 4738{
9f66cff2 4739 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
4740 struct pool_workqueue *old_pwq;
4741
5b95e1af 4742 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4743 lockdep_assert_held(&wq->mutex);
4744
4745 /* link_pwq() can handle duplicate calls */
4746 link_pwq(pwq);
4747
9f66cff2
TH
4748 old_pwq = rcu_access_pointer(*slot);
4749 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
4750 return old_pwq;
4751}
4752
2d5f0764
LJ
4753/* context to store the prepared attrs & pwqs before applying */
4754struct apply_wqattrs_ctx {
4755 struct workqueue_struct *wq; /* target workqueue */
4756 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4757 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4758 struct pool_workqueue *dfl_pwq;
4759 struct pool_workqueue *pwq_tbl[];
4760};
4761
4762/* free the resources after success or abort */
4763static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4764{
4765 if (ctx) {
636b927e 4766 int cpu;
2d5f0764 4767
636b927e
TH
4768 for_each_possible_cpu(cpu)
4769 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
4770 put_pwq_unlocked(ctx->dfl_pwq);
4771
4772 free_workqueue_attrs(ctx->attrs);
4773
4774 kfree(ctx);
4775 }
4776}
4777
4778/* allocate the attrs and pwqs for later installation */
4779static struct apply_wqattrs_ctx *
4780apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4781 const struct workqueue_attrs *attrs,
4782 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4783{
2d5f0764 4784 struct apply_wqattrs_ctx *ctx;
9546b29e 4785 struct workqueue_attrs *new_attrs;
636b927e 4786 int cpu;
9e8cd2f5 4787
2d5f0764 4788 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4789
84193c07
TH
4790 if (WARN_ON(attrs->affn_scope < 0 ||
4791 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4792 return ERR_PTR(-EINVAL);
4793
636b927e 4794 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 4795
be69d00d 4796 new_attrs = alloc_workqueue_attrs();
9546b29e 4797 if (!ctx || !new_attrs)
2d5f0764 4798 goto out_free;
13e2e556 4799
4c16bd32
TH
4800 /*
4801 * If something goes wrong during CPU up/down, we'll fall back to
4802 * the default pwq covering whole @attrs->cpumask. Always create
4803 * it even if we don't use it immediately.
4804 */
0f36ee24
TH
4805 copy_workqueue_attrs(new_attrs, attrs);
4806 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 4807 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
4808 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4809 if (!ctx->dfl_pwq)
4810 goto out_free;
4c16bd32 4811
636b927e 4812 for_each_possible_cpu(cpu) {
af73f5c9 4813 if (new_attrs->ordered) {
2d5f0764 4814 ctx->dfl_pwq->refcnt++;
636b927e
TH
4815 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4816 } else {
9546b29e
TH
4817 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4818 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
4819 if (!ctx->pwq_tbl[cpu])
4820 goto out_free;
4c16bd32
TH
4821 }
4822 }
4823
042f7df1
LJ
4824 /* save the user configured attrs and sanitize it. */
4825 copy_workqueue_attrs(new_attrs, attrs);
4826 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 4827 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 4828 ctx->attrs = new_attrs;
042f7df1 4829
2d5f0764 4830 ctx->wq = wq;
2d5f0764
LJ
4831 return ctx;
4832
4833out_free:
2d5f0764
LJ
4834 free_workqueue_attrs(new_attrs);
4835 apply_wqattrs_cleanup(ctx);
84193c07 4836 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
4837}
4838
4839/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4840static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4841{
636b927e 4842 int cpu;
9e8cd2f5 4843
4c16bd32 4844 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4845 mutex_lock(&ctx->wq->mutex);
a892cacc 4846
2d5f0764 4847 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 4848
9f66cff2 4849 /* save the previous pwqs and install the new ones */
636b927e
TH
4850 for_each_possible_cpu(cpu)
4851 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4852 ctx->pwq_tbl[cpu]);
9f66cff2 4853 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 4854
5797b1c1
TH
4855 /* update node_nr_active->max */
4856 wq_update_node_max_active(ctx->wq, -1);
4857
2d5f0764
LJ
4858 mutex_unlock(&ctx->wq->mutex);
4859}
9e8cd2f5 4860
a0111cf6
LJ
4861static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4862 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4863{
4864 struct apply_wqattrs_ctx *ctx;
4c16bd32 4865
2d5f0764
LJ
4866 /* only unbound workqueues can change attributes */
4867 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4868 return -EINVAL;
13e2e556 4869
2d5f0764 4870 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4871 if (!list_empty(&wq->pwqs)) {
4872 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4873 return -EINVAL;
4874
4875 wq->flags &= ~__WQ_ORDERED;
4876 }
2d5f0764 4877
99c621ef 4878 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
4879 if (IS_ERR(ctx))
4880 return PTR_ERR(ctx);
2d5f0764
LJ
4881
4882 /* the ctx has been prepared successfully, let's commit it */
6201171e 4883 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4884 apply_wqattrs_cleanup(ctx);
4885
6201171e 4886 return 0;
9e8cd2f5
TH
4887}
4888
a0111cf6
LJ
4889/**
4890 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4891 * @wq: the target workqueue
4892 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4893 *
fef59c9c
TH
4894 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4895 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4896 * work items are affine to the pod it was issued on. Older pwqs are released as
4897 * in-flight work items finish. Note that a work item which repeatedly requeues
4898 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
4899 *
4900 * Performs GFP_KERNEL allocations.
4901 *
ffd8bea8 4902 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4903 *
a0111cf6
LJ
4904 * Return: 0 on success and -errno on failure.
4905 */
513c98d0 4906int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4907 const struct workqueue_attrs *attrs)
4908{
4909 int ret;
4910
509b3204
DJ
4911 lockdep_assert_cpus_held();
4912
4913 mutex_lock(&wq_pool_mutex);
a0111cf6 4914 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4915 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4916
4917 return ret;
4918}
4919
4c16bd32 4920/**
fef59c9c 4921 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 4922 * @wq: the target workqueue
4cbfd3de
TH
4923 * @cpu: the CPU to update pool association for
4924 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
4925 * @online: whether @cpu is coming up or going down
4926 *
4927 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 4928 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
4929 * @wq accordingly.
4930 *
fef59c9c
TH
4931 *
4932 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4933 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4934 *
4935 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4936 * with a cpumask spanning multiple pods, the workers which were already
4937 * executing the work items for the workqueue will lose their CPU affinity and
4938 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4939 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4940 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 4941 */
fef59c9c
TH
4942static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4943 int hotplug_cpu, bool online)
4c16bd32 4944{
4cbfd3de 4945 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
4946 struct pool_workqueue *old_pwq = NULL, *pwq;
4947 struct workqueue_attrs *target_attrs;
4c16bd32
TH
4948
4949 lockdep_assert_held(&wq_pool_mutex);
4950
84193c07 4951 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
4952 return;
4953
4954 /*
4955 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4956 * Let's use a preallocated one. The following buf is protected by
4957 * CPU hotplug exclusion.
4958 */
fef59c9c 4959 target_attrs = wq_update_pod_attrs_buf;
4c16bd32 4960
4c16bd32 4961 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 4962 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 4963
636b927e 4964 /* nothing to do if the target cpumask matches the current pwq */
9546b29e 4965 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
9f66cff2 4966 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 4967 return;
4c16bd32 4968
4c16bd32
TH
4969 /* create a new pwq */
4970 pwq = alloc_unbound_pwq(wq, target_attrs);
4971 if (!pwq) {
fef59c9c 4972 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 4973 wq->name);
77f300b1 4974 goto use_dfl_pwq;
4c16bd32
TH
4975 }
4976
f7142ed4 4977 /* Install the new pwq. */
4c16bd32 4978 mutex_lock(&wq->mutex);
636b927e 4979 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
4980 goto out_unlock;
4981
4982use_dfl_pwq:
f7142ed4 4983 mutex_lock(&wq->mutex);
9f66cff2
TH
4984 pwq = unbound_pwq(wq, -1);
4985 raw_spin_lock_irq(&pwq->pool->lock);
4986 get_pwq(pwq);
4987 raw_spin_unlock_irq(&pwq->pool->lock);
4988 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
4989out_unlock:
4990 mutex_unlock(&wq->mutex);
4991 put_pwq_unlocked(old_pwq);
4992}
4993
30cdf249 4994static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4995{
49e3cf44 4996 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4997 int cpu, ret;
30cdf249 4998
636b927e
TH
4999 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5000 if (!wq->cpu_pwq)
5001 goto enomem;
30cdf249 5002
636b927e 5003 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 5004 for_each_possible_cpu(cpu) {
687a9aa5 5005 struct pool_workqueue **pwq_p =
ee1ceef7 5006 per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
5007 struct worker_pool *pool =
5008 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
5009
5010 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5011 pool->node);
5012 if (!*pwq_p)
5013 goto enomem;
f3421797 5014
687a9aa5 5015 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
5016
5017 mutex_lock(&wq->mutex);
687a9aa5 5018 link_pwq(*pwq_p);
f147f29e 5019 mutex_unlock(&wq->mutex);
30cdf249 5020 }
9e8cd2f5 5021 return 0;
509b3204
DJ
5022 }
5023
ffd8bea8 5024 cpus_read_lock();
509b3204 5025 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5026 struct pool_workqueue *dfl_pwq;
5027
8a2b7538
TH
5028 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5029 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5030 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5031 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5032 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5033 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5034 } else {
509b3204 5035 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5036 }
ffd8bea8 5037 cpus_read_unlock();
509b3204 5038
64344553
Z
5039 /* for unbound pwq, flush the pwq_release_worker ensures that the
5040 * pwq_release_workfn() completes before calling kfree(wq).
5041 */
5042 if (ret)
5043 kthread_flush_worker(pwq_release_worker);
5044
509b3204 5045 return ret;
687a9aa5
TH
5046
5047enomem:
5048 if (wq->cpu_pwq) {
7b42f401
Z
5049 for_each_possible_cpu(cpu) {
5050 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5051
5052 if (pwq)
5053 kmem_cache_free(pwq_cache, pwq);
5054 }
687a9aa5
TH
5055 free_percpu(wq->cpu_pwq);
5056 wq->cpu_pwq = NULL;
5057 }
5058 return -ENOMEM;
0f900049
TH
5059}
5060
f3421797
TH
5061static int wq_clamp_max_active(int max_active, unsigned int flags,
5062 const char *name)
b71ab8c2 5063{
636b927e 5064 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5065 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5066 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5067
636b927e 5068 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5069}
5070
983c7515
TH
5071/*
5072 * Workqueues which may be used during memory reclaim should have a rescuer
5073 * to guarantee forward progress.
5074 */
5075static int init_rescuer(struct workqueue_struct *wq)
5076{
5077 struct worker *rescuer;
b92b36ea 5078 int ret;
983c7515
TH
5079
5080 if (!(wq->flags & WQ_MEM_RECLAIM))
5081 return 0;
5082
5083 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5084 if (!rescuer) {
5085 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5086 wq->name);
983c7515 5087 return -ENOMEM;
4c0736a7 5088 }
983c7515
TH
5089
5090 rescuer->rescue_wq = wq;
b6a46f72 5091 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
f187b697 5092 if (IS_ERR(rescuer->task)) {
b92b36ea 5093 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5094 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5095 wq->name, ERR_PTR(ret));
983c7515 5096 kfree(rescuer);
b92b36ea 5097 return ret;
983c7515
TH
5098 }
5099
5100 wq->rescuer = rescuer;
85f0ab43
JL
5101 if (wq->flags & WQ_UNBOUND)
5102 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
5103 else
5104 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5105 wake_up_process(rescuer->task);
5106
5107 return 0;
5108}
5109
a045a272
TH
5110/**
5111 * wq_adjust_max_active - update a wq's max_active to the current setting
5112 * @wq: target workqueue
5113 *
5114 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5115 * activate inactive work items accordingly. If @wq is freezing, clear
5116 * @wq->max_active to zero.
5117 */
5118static void wq_adjust_max_active(struct workqueue_struct *wq)
5119{
c5404d4e 5120 bool activated;
5797b1c1 5121 int new_max, new_min;
a045a272
TH
5122
5123 lockdep_assert_held(&wq->mutex);
5124
5125 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5126 new_max = 0;
5127 new_min = 0;
5128 } else {
5129 new_max = wq->saved_max_active;
5130 new_min = wq->saved_min_active;
a045a272
TH
5131 }
5132
5797b1c1 5133 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5134 return;
5135
5136 /*
5797b1c1 5137 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5138 * active work items are allowed. This doesn't break work item ordering
5139 * because new work items are always queued behind existing inactive
5140 * work items if there are any.
5141 */
5797b1c1
TH
5142 WRITE_ONCE(wq->max_active, new_max);
5143 WRITE_ONCE(wq->min_active, new_min);
5144
5145 if (wq->flags & WQ_UNBOUND)
5146 wq_update_node_max_active(wq, -1);
5147
5148 if (new_max == 0)
5149 return;
a045a272 5150
c5404d4e
TH
5151 /*
5152 * Round-robin through pwq's activating the first inactive work item
5153 * until max_active is filled.
5154 */
5155 do {
5156 struct pool_workqueue *pwq;
a045a272 5157
c5404d4e
TH
5158 activated = false;
5159 for_each_pwq(pwq, wq) {
5160 unsigned long flags;
a045a272 5161
c5404d4e
TH
5162 /* can be called during early boot w/ irq disabled */
5163 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5797b1c1 5164 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5165 activated = true;
5166 kick_pool(pwq->pool);
5167 }
5168 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5169 }
5170 } while (activated);
a045a272
TH
5171}
5172
a2775bbc 5173__printf(1, 4)
669de8bd
BVA
5174struct workqueue_struct *alloc_workqueue(const char *fmt,
5175 unsigned int flags,
5176 int max_active, ...)
1da177e4 5177{
ecf6881f 5178 va_list args;
1da177e4 5179 struct workqueue_struct *wq;
91ccc6e7
TH
5180 size_t wq_size;
5181 int name_len;
b196be89 5182
5c0338c6 5183 /*
fef59c9c
TH
5184 * Unbound && max_active == 1 used to imply ordered, which is no longer
5185 * the case on many machines due to per-pod pools. While
5c0338c6 5186 * alloc_ordered_workqueue() is the right way to create an ordered
fef59c9c 5187 * workqueue, keep the previous behavior to avoid subtle breakages.
5c0338c6
TH
5188 */
5189 if ((flags & WQ_UNBOUND) && max_active == 1)
5190 flags |= __WQ_ORDERED;
5191
cee22a15
VK
5192 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5193 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5194 flags |= WQ_UNBOUND;
5195
ecf6881f 5196 /* allocate wq and format name */
91ccc6e7
TH
5197 if (flags & WQ_UNBOUND)
5198 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5199 else
5200 wq_size = sizeof(*wq);
5201
5202 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5203 if (!wq)
d2c1d404 5204 return NULL;
b196be89 5205
6029a918 5206 if (flags & WQ_UNBOUND) {
be69d00d 5207 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5208 if (!wq->unbound_attrs)
5209 goto err_free_wq;
5210 }
5211
669de8bd 5212 va_start(args, max_active);
91ccc6e7 5213 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 5214 va_end(args);
1da177e4 5215
91ccc6e7
TH
5216 if (name_len >= WQ_NAME_LEN)
5217 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5218 wq->name);
31c89007 5219
d320c038 5220 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 5221 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 5222
b196be89 5223 /* init wq */
97e37d7b 5224 wq->flags = flags;
a045a272 5225 wq->max_active = max_active;
5797b1c1
TH
5226 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5227 wq->saved_max_active = wq->max_active;
5228 wq->saved_min_active = wq->min_active;
3c25a55d 5229 mutex_init(&wq->mutex);
112202d9 5230 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5231 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5232 INIT_LIST_HEAD(&wq->flusher_queue);
5233 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5234 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5235
669de8bd 5236 wq_init_lockdep(wq);
cce1a165 5237 INIT_LIST_HEAD(&wq->list);
3af24433 5238
91ccc6e7
TH
5239 if (flags & WQ_UNBOUND) {
5240 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5241 goto err_unreg_lockdep;
5242 }
5243
30cdf249 5244 if (alloc_and_link_pwqs(wq) < 0)
91ccc6e7 5245 goto err_free_node_nr_active;
1537663f 5246
40c17f75 5247 if (wq_online && init_rescuer(wq) < 0)
983c7515 5248 goto err_destroy;
3af24433 5249
226223ab
TH
5250 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5251 goto err_destroy;
5252
a0a1a5fd 5253 /*
68e13a67
LJ
5254 * wq_pool_mutex protects global freeze state and workqueues list.
5255 * Grab it, adjust max_active and add the new @wq to workqueues
5256 * list.
a0a1a5fd 5257 */
68e13a67 5258 mutex_lock(&wq_pool_mutex);
a0a1a5fd 5259
a357fc03 5260 mutex_lock(&wq->mutex);
a045a272 5261 wq_adjust_max_active(wq);
a357fc03 5262 mutex_unlock(&wq->mutex);
a0a1a5fd 5263
e2dca7ad 5264 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5265
68e13a67 5266 mutex_unlock(&wq_pool_mutex);
1537663f 5267
3af24433 5268 return wq;
d2c1d404 5269
91ccc6e7
TH
5270err_free_node_nr_active:
5271 if (wq->flags & WQ_UNBOUND)
5272 free_node_nr_active(wq->node_nr_active);
82efcab3 5273err_unreg_lockdep:
009bb421
BVA
5274 wq_unregister_lockdep(wq);
5275 wq_free_lockdep(wq);
82efcab3 5276err_free_wq:
6029a918 5277 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5278 kfree(wq);
5279 return NULL;
5280err_destroy:
5281 destroy_workqueue(wq);
4690c4ab 5282 return NULL;
3af24433 5283}
669de8bd 5284EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5285
c29eb853
TH
5286static bool pwq_busy(struct pool_workqueue *pwq)
5287{
5288 int i;
5289
5290 for (i = 0; i < WORK_NR_COLORS; i++)
5291 if (pwq->nr_in_flight[i])
5292 return true;
5293
9f66cff2 5294 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5295 return true;
afa87ce8 5296 if (!pwq_is_empty(pwq))
c29eb853
TH
5297 return true;
5298
5299 return false;
5300}
5301
3af24433
ON
5302/**
5303 * destroy_workqueue - safely terminate a workqueue
5304 * @wq: target workqueue
5305 *
5306 * Safely destroy a workqueue. All work currently pending will be done first.
5307 */
5308void destroy_workqueue(struct workqueue_struct *wq)
5309{
49e3cf44 5310 struct pool_workqueue *pwq;
636b927e 5311 int cpu;
3af24433 5312
def98c84
TH
5313 /*
5314 * Remove it from sysfs first so that sanity check failure doesn't
5315 * lead to sysfs name conflicts.
5316 */
5317 workqueue_sysfs_unregister(wq);
5318
33e3f0a3
RC
5319 /* mark the workqueue destruction is in progress */
5320 mutex_lock(&wq->mutex);
5321 wq->flags |= __WQ_DESTROYING;
5322 mutex_unlock(&wq->mutex);
5323
9c5a2ba7
TH
5324 /* drain it before proceeding with destruction */
5325 drain_workqueue(wq);
c8efcc25 5326
def98c84
TH
5327 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5328 if (wq->rescuer) {
5329 struct worker *rescuer = wq->rescuer;
5330
5331 /* this prevents new queueing */
a9b8a985 5332 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5333 wq->rescuer = NULL;
a9b8a985 5334 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5335
5336 /* rescuer will empty maydays list before exiting */
5337 kthread_stop(rescuer->task);
8efe1223 5338 kfree(rescuer);
def98c84
TH
5339 }
5340
c29eb853
TH
5341 /*
5342 * Sanity checks - grab all the locks so that we wait for all
5343 * in-flight operations which may do put_pwq().
5344 */
5345 mutex_lock(&wq_pool_mutex);
b09f4fd3 5346 mutex_lock(&wq->mutex);
49e3cf44 5347 for_each_pwq(pwq, wq) {
a9b8a985 5348 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5349 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5350 pr_warn("%s: %s has the following busy pwq\n",
5351 __func__, wq->name);
c29eb853 5352 show_pwq(pwq);
a9b8a985 5353 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5354 mutex_unlock(&wq->mutex);
c29eb853 5355 mutex_unlock(&wq_pool_mutex);
55df0933 5356 show_one_workqueue(wq);
6183c009 5357 return;
76af4d93 5358 }
a9b8a985 5359 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5360 }
b09f4fd3 5361 mutex_unlock(&wq->mutex);
6183c009 5362
a0a1a5fd
TH
5363 /*
5364 * wq list is used to freeze wq, remove from list after
5365 * flushing is complete in case freeze races us.
5366 */
e2dca7ad 5367 list_del_rcu(&wq->list);
68e13a67 5368 mutex_unlock(&wq_pool_mutex);
3af24433 5369
636b927e
TH
5370 /*
5371 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5372 * to put the base refs. @wq will be auto-destroyed from the last
5373 * pwq_put. RCU read lock prevents @wq from going away from under us.
5374 */
5375 rcu_read_lock();
4c16bd32 5376
636b927e 5377 for_each_possible_cpu(cpu) {
9f66cff2
TH
5378 put_pwq_unlocked(unbound_pwq(wq, cpu));
5379 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5380 }
636b927e 5381
9f66cff2
TH
5382 put_pwq_unlocked(unbound_pwq(wq, -1));
5383 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5384
5385 rcu_read_unlock();
3af24433
ON
5386}
5387EXPORT_SYMBOL_GPL(destroy_workqueue);
5388
dcd989cb
TH
5389/**
5390 * workqueue_set_max_active - adjust max_active of a workqueue
5391 * @wq: target workqueue
5392 * @max_active: new max_active value.
5393 *
5797b1c1
TH
5394 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5395 * comment.
dcd989cb
TH
5396 *
5397 * CONTEXT:
5398 * Don't call from IRQ context.
5399 */
5400void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5401{
8719dcea 5402 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 5403 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
5404 return;
5405
f3421797 5406 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5407
a357fc03 5408 mutex_lock(&wq->mutex);
dcd989cb 5409
0a94efb5 5410 wq->flags &= ~__WQ_ORDERED;
dcd989cb 5411 wq->saved_max_active = max_active;
5797b1c1
TH
5412 if (wq->flags & WQ_UNBOUND)
5413 wq->saved_min_active = min(wq->saved_min_active, max_active);
5414
a045a272 5415 wq_adjust_max_active(wq);
93981800 5416
a357fc03 5417 mutex_unlock(&wq->mutex);
15316ba8 5418}
dcd989cb 5419EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5420
27d4ee03
LW
5421/**
5422 * current_work - retrieve %current task's work struct
5423 *
5424 * Determine if %current task is a workqueue worker and what it's working on.
5425 * Useful to find out the context that the %current task is running in.
5426 *
5427 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5428 */
5429struct work_struct *current_work(void)
5430{
5431 struct worker *worker = current_wq_worker();
5432
5433 return worker ? worker->current_work : NULL;
5434}
5435EXPORT_SYMBOL(current_work);
5436
e6267616
TH
5437/**
5438 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5439 *
5440 * Determine whether %current is a workqueue rescuer. Can be used from
5441 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5442 *
5443 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5444 */
5445bool current_is_workqueue_rescuer(void)
5446{
5447 struct worker *worker = current_wq_worker();
5448
6a092dfd 5449 return worker && worker->rescue_wq;
e6267616
TH
5450}
5451
eef6a7d5 5452/**
dcd989cb
TH
5453 * workqueue_congested - test whether a workqueue is congested
5454 * @cpu: CPU in question
5455 * @wq: target workqueue
eef6a7d5 5456 *
dcd989cb
TH
5457 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5458 * no synchronization around this function and the test result is
5459 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5460 *
d3251859 5461 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5462 *
5463 * With the exception of ordered workqueues, all workqueues have per-cpu
5464 * pool_workqueues, each with its own congested state. A workqueue being
5465 * congested on one CPU doesn't mean that the workqueue is contested on any
5466 * other CPUs.
d3251859 5467 *
d185af30 5468 * Return:
dcd989cb 5469 * %true if congested, %false otherwise.
eef6a7d5 5470 */
d84ff051 5471bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 5472{
7fb98ea7 5473 struct pool_workqueue *pwq;
76af4d93
TH
5474 bool ret;
5475
24acfb71
TG
5476 rcu_read_lock();
5477 preempt_disable();
7fb98ea7 5478
d3251859
TH
5479 if (cpu == WORK_CPU_UNBOUND)
5480 cpu = smp_processor_id();
5481
636b927e 5482 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 5483 ret = !list_empty(&pwq->inactive_works);
636b927e 5484
24acfb71
TG
5485 preempt_enable();
5486 rcu_read_unlock();
76af4d93
TH
5487
5488 return ret;
1da177e4 5489}
dcd989cb 5490EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 5491
dcd989cb
TH
5492/**
5493 * work_busy - test whether a work is currently pending or running
5494 * @work: the work to be tested
5495 *
5496 * Test whether @work is currently pending or running. There is no
5497 * synchronization around this function and the test result is
5498 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 5499 *
d185af30 5500 * Return:
dcd989cb
TH
5501 * OR'd bitmask of WORK_BUSY_* bits.
5502 */
5503unsigned int work_busy(struct work_struct *work)
1da177e4 5504{
fa1b54e6 5505 struct worker_pool *pool;
dcd989cb
TH
5506 unsigned long flags;
5507 unsigned int ret = 0;
1da177e4 5508
dcd989cb
TH
5509 if (work_pending(work))
5510 ret |= WORK_BUSY_PENDING;
1da177e4 5511
24acfb71 5512 rcu_read_lock();
fa1b54e6 5513 pool = get_work_pool(work);
038366c5 5514 if (pool) {
a9b8a985 5515 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
5516 if (find_worker_executing_work(pool, work))
5517 ret |= WORK_BUSY_RUNNING;
a9b8a985 5518 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 5519 }
24acfb71 5520 rcu_read_unlock();
1da177e4 5521
dcd989cb 5522 return ret;
1da177e4 5523}
dcd989cb 5524EXPORT_SYMBOL_GPL(work_busy);
1da177e4 5525
3d1cb205
TH
5526/**
5527 * set_worker_desc - set description for the current work item
5528 * @fmt: printf-style format string
5529 * @...: arguments for the format string
5530 *
5531 * This function can be called by a running work function to describe what
5532 * the work item is about. If the worker task gets dumped, this
5533 * information will be printed out together to help debugging. The
5534 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5535 */
5536void set_worker_desc(const char *fmt, ...)
5537{
5538 struct worker *worker = current_wq_worker();
5539 va_list args;
5540
5541 if (worker) {
5542 va_start(args, fmt);
5543 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5544 va_end(args);
3d1cb205
TH
5545 }
5546}
5c750d58 5547EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
5548
5549/**
5550 * print_worker_info - print out worker information and description
5551 * @log_lvl: the log level to use when printing
5552 * @task: target task
5553 *
5554 * If @task is a worker and currently executing a work item, print out the
5555 * name of the workqueue being serviced and worker description set with
5556 * set_worker_desc() by the currently executing work item.
5557 *
5558 * This function can be safely called on any task as long as the
5559 * task_struct itself is accessible. While safe, this function isn't
5560 * synchronized and may print out mixups or garbages of limited length.
5561 */
5562void print_worker_info(const char *log_lvl, struct task_struct *task)
5563{
5564 work_func_t *fn = NULL;
5565 char name[WQ_NAME_LEN] = { };
5566 char desc[WORKER_DESC_LEN] = { };
5567 struct pool_workqueue *pwq = NULL;
5568 struct workqueue_struct *wq = NULL;
3d1cb205
TH
5569 struct worker *worker;
5570
5571 if (!(task->flags & PF_WQ_WORKER))
5572 return;
5573
5574 /*
5575 * This function is called without any synchronization and @task
5576 * could be in any state. Be careful with dereferences.
5577 */
e700591a 5578 worker = kthread_probe_data(task);
3d1cb205
TH
5579
5580 /*
8bf89593
TH
5581 * Carefully copy the associated workqueue's workfn, name and desc.
5582 * Keep the original last '\0' in case the original is garbage.
3d1cb205 5583 */
fe557319
CH
5584 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5585 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5586 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5587 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5588 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
5589
5590 if (fn || name[0] || desc[0]) {
d75f773c 5591 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 5592 if (strcmp(name, desc))
3d1cb205
TH
5593 pr_cont(" (%s)", desc);
5594 pr_cont("\n");
5595 }
5596}
5597
3494fc30
TH
5598static void pr_cont_pool_info(struct worker_pool *pool)
5599{
5600 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5601 if (pool->node != NUMA_NO_NODE)
5602 pr_cont(" node=%d", pool->node);
5603 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5604}
5605
c76feb0d
PM
5606struct pr_cont_work_struct {
5607 bool comma;
5608 work_func_t func;
5609 long ctr;
5610};
5611
5612static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5613{
5614 if (!pcwsp->ctr)
5615 goto out_record;
5616 if (func == pcwsp->func) {
5617 pcwsp->ctr++;
5618 return;
5619 }
5620 if (pcwsp->ctr == 1)
5621 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5622 else
5623 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5624 pcwsp->ctr = 0;
5625out_record:
5626 if ((long)func == -1L)
5627 return;
5628 pcwsp->comma = comma;
5629 pcwsp->func = func;
5630 pcwsp->ctr = 1;
5631}
5632
5633static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
5634{
5635 if (work->func == wq_barrier_func) {
5636 struct wq_barrier *barr;
5637
5638 barr = container_of(work, struct wq_barrier, work);
5639
c76feb0d 5640 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
5641 pr_cont("%s BAR(%d)", comma ? "," : "",
5642 task_pid_nr(barr->task));
5643 } else {
c76feb0d
PM
5644 if (!comma)
5645 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5646 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
5647 }
5648}
5649
5650static void show_pwq(struct pool_workqueue *pwq)
5651{
c76feb0d 5652 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
5653 struct worker_pool *pool = pwq->pool;
5654 struct work_struct *work;
5655 struct worker *worker;
5656 bool has_in_flight = false, has_pending = false;
5657 int bkt;
5658
5659 pr_info(" pwq %d:", pool->id);
5660 pr_cont_pool_info(pool);
5661
a045a272
TH
5662 pr_cont(" active=%d refcnt=%d%s\n",
5663 pwq->nr_active, pwq->refcnt,
3494fc30
TH
5664 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5665
5666 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5667 if (worker->current_pwq == pwq) {
5668 has_in_flight = true;
5669 break;
5670 }
5671 }
5672 if (has_in_flight) {
5673 bool comma = false;
5674
5675 pr_info(" in-flight:");
5676 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5677 if (worker->current_pwq != pwq)
5678 continue;
5679
d75f773c 5680 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 5681 task_pid_nr(worker->task),
30ae2fc0 5682 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
5683 worker->current_func);
5684 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
5685 pr_cont_work(false, work, &pcws);
5686 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5687 comma = true;
5688 }
5689 pr_cont("\n");
5690 }
5691
5692 list_for_each_entry(work, &pool->worklist, entry) {
5693 if (get_work_pwq(work) == pwq) {
5694 has_pending = true;
5695 break;
5696 }
5697 }
5698 if (has_pending) {
5699 bool comma = false;
5700
5701 pr_info(" pending:");
5702 list_for_each_entry(work, &pool->worklist, entry) {
5703 if (get_work_pwq(work) != pwq)
5704 continue;
5705
c76feb0d 5706 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5707 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5708 }
c76feb0d 5709 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5710 pr_cont("\n");
5711 }
5712
f97a4a1a 5713 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
5714 bool comma = false;
5715
f97a4a1a
LJ
5716 pr_info(" inactive:");
5717 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 5718 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5719 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5720 }
c76feb0d 5721 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5722 pr_cont("\n");
5723 }
5724}
5725
5726/**
55df0933
IK
5727 * show_one_workqueue - dump state of specified workqueue
5728 * @wq: workqueue whose state will be printed
3494fc30 5729 */
55df0933 5730void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 5731{
55df0933
IK
5732 struct pool_workqueue *pwq;
5733 bool idle = true;
3494fc30 5734 unsigned long flags;
3494fc30 5735
55df0933 5736 for_each_pwq(pwq, wq) {
afa87ce8 5737 if (!pwq_is_empty(pwq)) {
55df0933
IK
5738 idle = false;
5739 break;
3494fc30 5740 }
55df0933
IK
5741 }
5742 if (idle) /* Nothing to print for idle workqueue */
5743 return;
3494fc30 5744
55df0933 5745 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 5746
55df0933
IK
5747 for_each_pwq(pwq, wq) {
5748 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
afa87ce8 5749 if (!pwq_is_empty(pwq)) {
62635ea8 5750 /*
55df0933
IK
5751 * Defer printing to avoid deadlocks in console
5752 * drivers that queue work while holding locks
5753 * also taken in their write paths.
62635ea8 5754 */
55df0933
IK
5755 printk_deferred_enter();
5756 show_pwq(pwq);
5757 printk_deferred_exit();
3494fc30 5758 }
55df0933 5759 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
5760 /*
5761 * We could be printing a lot from atomic context, e.g.
55df0933 5762 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
5763 * hard lockup.
5764 */
5765 touch_nmi_watchdog();
3494fc30
TH
5766 }
5767
55df0933
IK
5768}
5769
5770/**
5771 * show_one_worker_pool - dump state of specified worker pool
5772 * @pool: worker pool whose state will be printed
5773 */
5774static void show_one_worker_pool(struct worker_pool *pool)
5775{
5776 struct worker *worker;
5777 bool first = true;
5778 unsigned long flags;
335a42eb 5779 unsigned long hung = 0;
55df0933
IK
5780
5781 raw_spin_lock_irqsave(&pool->lock, flags);
5782 if (pool->nr_workers == pool->nr_idle)
5783 goto next_pool;
335a42eb
PM
5784
5785 /* How long the first pending work is waiting for a worker. */
5786 if (!list_empty(&pool->worklist))
5787 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5788
55df0933
IK
5789 /*
5790 * Defer printing to avoid deadlocks in console drivers that
5791 * queue work while holding locks also taken in their write
5792 * paths.
5793 */
5794 printk_deferred_enter();
5795 pr_info("pool %d:", pool->id);
5796 pr_cont_pool_info(pool);
335a42eb 5797 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
5798 if (pool->manager)
5799 pr_cont(" manager: %d",
5800 task_pid_nr(pool->manager->task));
5801 list_for_each_entry(worker, &pool->idle_list, entry) {
5802 pr_cont(" %s%d", first ? "idle: " : "",
5803 task_pid_nr(worker->task));
5804 first = false;
5805 }
5806 pr_cont("\n");
5807 printk_deferred_exit();
5808next_pool:
5809 raw_spin_unlock_irqrestore(&pool->lock, flags);
5810 /*
5811 * We could be printing a lot from atomic context, e.g.
5812 * sysrq-t -> show_all_workqueues(). Avoid triggering
5813 * hard lockup.
5814 */
5815 touch_nmi_watchdog();
5816
5817}
5818
5819/**
5820 * show_all_workqueues - dump workqueue state
5821 *
704bc669 5822 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
5823 */
5824void show_all_workqueues(void)
5825{
5826 struct workqueue_struct *wq;
5827 struct worker_pool *pool;
5828 int pi;
5829
5830 rcu_read_lock();
5831
5832 pr_info("Showing busy workqueues and worker pools:\n");
5833
5834 list_for_each_entry_rcu(wq, &workqueues, list)
5835 show_one_workqueue(wq);
5836
5837 for_each_pool(pool, pi)
5838 show_one_worker_pool(pool);
5839
24acfb71 5840 rcu_read_unlock();
3494fc30
TH
5841}
5842
704bc669
JL
5843/**
5844 * show_freezable_workqueues - dump freezable workqueue state
5845 *
5846 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5847 * still busy.
5848 */
5849void show_freezable_workqueues(void)
5850{
5851 struct workqueue_struct *wq;
5852
5853 rcu_read_lock();
5854
5855 pr_info("Showing freezable workqueues that are still busy:\n");
5856
5857 list_for_each_entry_rcu(wq, &workqueues, list) {
5858 if (!(wq->flags & WQ_FREEZABLE))
5859 continue;
5860 show_one_workqueue(wq);
5861 }
5862
5863 rcu_read_unlock();
5864}
5865
6b59808b
TH
5866/* used to show worker information through /proc/PID/{comm,stat,status} */
5867void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5868{
6b59808b
TH
5869 int off;
5870
5871 /* always show the actual comm */
5872 off = strscpy(buf, task->comm, size);
5873 if (off < 0)
5874 return;
5875
197f6acc 5876 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
5877 mutex_lock(&wq_pool_attach_mutex);
5878
197f6acc
TH
5879 if (task->flags & PF_WQ_WORKER) {
5880 struct worker *worker = kthread_data(task);
5881 struct worker_pool *pool = worker->pool;
6b59808b 5882
197f6acc 5883 if (pool) {
a9b8a985 5884 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
5885 /*
5886 * ->desc tracks information (wq name or
5887 * set_worker_desc()) for the latest execution. If
5888 * current, prepend '+', otherwise '-'.
5889 */
5890 if (worker->desc[0] != '\0') {
5891 if (worker->current_work)
5892 scnprintf(buf + off, size - off, "+%s",
5893 worker->desc);
5894 else
5895 scnprintf(buf + off, size - off, "-%s",
5896 worker->desc);
5897 }
a9b8a985 5898 raw_spin_unlock_irq(&pool->lock);
6b59808b 5899 }
6b59808b
TH
5900 }
5901
5902 mutex_unlock(&wq_pool_attach_mutex);
5903}
5904
66448bc2
MM
5905#ifdef CONFIG_SMP
5906
db7bccf4
TH
5907/*
5908 * CPU hotplug.
5909 *
e22bee78 5910 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 5911 * are a lot of assumptions on strong associations among work, pwq and
706026c2 5912 * pool which make migrating pending and scheduled works very
e22bee78 5913 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 5914 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
5915 * blocked draining impractical.
5916 *
24647570 5917 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
5918 * running as an unbound one and allowing it to be reattached later if the
5919 * cpu comes back online.
db7bccf4 5920 */
1da177e4 5921
e8b3f8db 5922static void unbind_workers(int cpu)
3af24433 5923{
4ce62e9e 5924 struct worker_pool *pool;
db7bccf4 5925 struct worker *worker;
3af24433 5926
f02ae73a 5927 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 5928 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 5929 raw_spin_lock_irq(&pool->lock);
3af24433 5930
94cf58bb 5931 /*
92f9c5c4 5932 * We've blocked all attach/detach operations. Make all workers
94cf58bb 5933 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 5934 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
5935 * And the preemption disabled section in their sched callbacks
5936 * are guaranteed to see WORKER_UNBOUND since the code here
5937 * is on the same cpu.
94cf58bb 5938 */
da028469 5939 for_each_pool_worker(worker, pool)
c9e7cf27 5940 worker->flags |= WORKER_UNBOUND;
06ba38a9 5941
24647570 5942 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 5943
eb283428 5944 /*
989442d7
LJ
5945 * The handling of nr_running in sched callbacks are disabled
5946 * now. Zap nr_running. After this, nr_running stays zero and
5947 * need_more_worker() and keep_working() are always true as
5948 * long as the worklist is not empty. This pool now behaves as
5949 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
5950 * are served by workers tied to the pool.
5951 */
bc35f7ef 5952 pool->nr_running = 0;
eb283428
LJ
5953
5954 /*
5955 * With concurrency management just turned off, a busy
5956 * worker blocking could lead to lengthy stalls. Kick off
5957 * unbound chain execution of currently pending work items.
5958 */
0219a352 5959 kick_pool(pool);
989442d7 5960
a9b8a985 5961 raw_spin_unlock_irq(&pool->lock);
989442d7 5962
793777bc
VS
5963 for_each_pool_worker(worker, pool)
5964 unbind_worker(worker);
989442d7
LJ
5965
5966 mutex_unlock(&wq_pool_attach_mutex);
eb283428 5967 }
3af24433 5968}
3af24433 5969
bd7c089e
TH
5970/**
5971 * rebind_workers - rebind all workers of a pool to the associated CPU
5972 * @pool: pool of interest
5973 *
a9ab775b 5974 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5975 */
5976static void rebind_workers(struct worker_pool *pool)
5977{
a9ab775b 5978 struct worker *worker;
bd7c089e 5979
1258fae7 5980 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5981
a9ab775b
TH
5982 /*
5983 * Restore CPU affinity of all workers. As all idle workers should
5984 * be on the run-queue of the associated CPU before any local
402dd89d 5985 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5986 * of all workers first and then clear UNBOUND. As we're called
5987 * from CPU_ONLINE, the following shouldn't fail.
5988 */
c63a2e52
VS
5989 for_each_pool_worker(worker, pool) {
5990 kthread_set_per_cpu(worker->task, pool->cpu);
5991 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 5992 pool_allowed_cpus(pool)) < 0);
c63a2e52 5993 }
bd7c089e 5994
a9b8a985 5995 raw_spin_lock_irq(&pool->lock);
f7c17d26 5996
3de5e884 5997 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5998
da028469 5999 for_each_pool_worker(worker, pool) {
a9ab775b 6000 unsigned int worker_flags = worker->flags;
bd7c089e 6001
a9ab775b
TH
6002 /*
6003 * We want to clear UNBOUND but can't directly call
6004 * worker_clr_flags() or adjust nr_running. Atomically
6005 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6006 * @worker will clear REBOUND using worker_clr_flags() when
6007 * it initiates the next execution cycle thus restoring
6008 * concurrency management. Note that when or whether
6009 * @worker clears REBOUND doesn't affect correctness.
6010 *
c95491ed 6011 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 6012 * tested without holding any lock in
6d25be57 6013 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
6014 * fail incorrectly leading to premature concurrency
6015 * management operations.
6016 */
6017 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6018 worker_flags |= WORKER_REBOUND;
6019 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6020 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6021 }
a9ab775b 6022
a9b8a985 6023 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6024}
6025
7dbc725e
TH
6026/**
6027 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6028 * @pool: unbound pool of interest
6029 * @cpu: the CPU which is coming up
6030 *
6031 * An unbound pool may end up with a cpumask which doesn't have any online
6032 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6033 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6034 * online CPU before, cpus_allowed of all its workers should be restored.
6035 */
6036static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6037{
6038 static cpumask_t cpumask;
6039 struct worker *worker;
7dbc725e 6040
1258fae7 6041 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6042
6043 /* is @cpu allowed for @pool? */
6044 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6045 return;
6046
7dbc725e 6047 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6048
6049 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6050 for_each_pool_worker(worker, pool)
d945b5e9 6051 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6052}
6053
7ee681b2
TG
6054int workqueue_prepare_cpu(unsigned int cpu)
6055{
6056 struct worker_pool *pool;
6057
6058 for_each_cpu_worker_pool(pool, cpu) {
6059 if (pool->nr_workers)
6060 continue;
6061 if (!create_worker(pool))
6062 return -ENOMEM;
6063 }
6064 return 0;
6065}
6066
6067int workqueue_online_cpu(unsigned int cpu)
3af24433 6068{
4ce62e9e 6069 struct worker_pool *pool;
4c16bd32 6070 struct workqueue_struct *wq;
7dbc725e 6071 int pi;
3ce63377 6072
7ee681b2 6073 mutex_lock(&wq_pool_mutex);
7dbc725e 6074
7ee681b2 6075 for_each_pool(pool, pi) {
1258fae7 6076 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 6077
7ee681b2
TG
6078 if (pool->cpu == cpu)
6079 rebind_workers(pool);
6080 else if (pool->cpu < 0)
6081 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 6082
1258fae7 6083 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6084 }
6ba94429 6085
fef59c9c 6086 /* update pod affinity of unbound workqueues */
4cbfd3de 6087 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6088 struct workqueue_attrs *attrs = wq->unbound_attrs;
6089
6090 if (attrs) {
6091 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6092 int tcpu;
4cbfd3de 6093
84193c07 6094 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6095 wq_update_pod(wq, tcpu, cpu, true);
5797b1c1
TH
6096
6097 mutex_lock(&wq->mutex);
6098 wq_update_node_max_active(wq, -1);
6099 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6100 }
6101 }
6ba94429 6102
7ee681b2
TG
6103 mutex_unlock(&wq_pool_mutex);
6104 return 0;
6ba94429
FW
6105}
6106
7ee681b2 6107int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6108{
6ba94429
FW
6109 struct workqueue_struct *wq;
6110
7ee681b2 6111 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6112 if (WARN_ON(cpu != smp_processor_id()))
6113 return -1;
6114
6115 unbind_workers(cpu);
7ee681b2 6116
fef59c9c 6117 /* update pod affinity of unbound workqueues */
7ee681b2 6118 mutex_lock(&wq_pool_mutex);
4cbfd3de 6119 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6120 struct workqueue_attrs *attrs = wq->unbound_attrs;
6121
6122 if (attrs) {
6123 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6124 int tcpu;
4cbfd3de 6125
84193c07 6126 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6127 wq_update_pod(wq, tcpu, cpu, false);
5797b1c1
TH
6128
6129 mutex_lock(&wq->mutex);
6130 wq_update_node_max_active(wq, cpu);
6131 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6132 }
6133 }
7ee681b2
TG
6134 mutex_unlock(&wq_pool_mutex);
6135
7ee681b2 6136 return 0;
6ba94429
FW
6137}
6138
6ba94429
FW
6139struct work_for_cpu {
6140 struct work_struct work;
6141 long (*fn)(void *);
6142 void *arg;
6143 long ret;
6144};
6145
6146static void work_for_cpu_fn(struct work_struct *work)
6147{
6148 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6149
6150 wfc->ret = wfc->fn(wfc->arg);
6151}
6152
6153/**
265f3ed0 6154 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6155 * @cpu: the cpu to run on
6156 * @fn: the function to run
6157 * @arg: the function arg
265f3ed0 6158 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6159 *
6160 * It is up to the caller to ensure that the cpu doesn't go offline.
6161 * The caller must not hold any locks which would prevent @fn from completing.
6162 *
6163 * Return: The value @fn returns.
6164 */
265f3ed0
FW
6165long work_on_cpu_key(int cpu, long (*fn)(void *),
6166 void *arg, struct lock_class_key *key)
6ba94429
FW
6167{
6168 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6169
265f3ed0 6170 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6171 schedule_work_on(cpu, &wfc.work);
6172 flush_work(&wfc.work);
6173 destroy_work_on_stack(&wfc.work);
6174 return wfc.ret;
6175}
265f3ed0 6176EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6177
6178/**
265f3ed0 6179 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6180 * @cpu: the cpu to run on
6181 * @fn: the function to run
6182 * @arg: the function argument
265f3ed0 6183 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6184 *
6185 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6186 * any locks which would prevent @fn from completing.
6187 *
6188 * Return: The value @fn returns.
6189 */
265f3ed0
FW
6190long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6191 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6192{
6193 long ret = -ENODEV;
6194
ffd8bea8 6195 cpus_read_lock();
0e8d6a93 6196 if (cpu_online(cpu))
265f3ed0 6197 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6198 cpus_read_unlock();
0e8d6a93
TG
6199 return ret;
6200}
265f3ed0 6201EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6202#endif /* CONFIG_SMP */
6203
6204#ifdef CONFIG_FREEZER
6205
6206/**
6207 * freeze_workqueues_begin - begin freezing workqueues
6208 *
6209 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6210 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6211 * pool->worklist.
6212 *
6213 * CONTEXT:
6214 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6215 */
6216void freeze_workqueues_begin(void)
6217{
6218 struct workqueue_struct *wq;
6ba94429
FW
6219
6220 mutex_lock(&wq_pool_mutex);
6221
6222 WARN_ON_ONCE(workqueue_freezing);
6223 workqueue_freezing = true;
6224
6225 list_for_each_entry(wq, &workqueues, list) {
6226 mutex_lock(&wq->mutex);
a045a272 6227 wq_adjust_max_active(wq);
6ba94429
FW
6228 mutex_unlock(&wq->mutex);
6229 }
6230
6231 mutex_unlock(&wq_pool_mutex);
6232}
6233
6234/**
6235 * freeze_workqueues_busy - are freezable workqueues still busy?
6236 *
6237 * Check whether freezing is complete. This function must be called
6238 * between freeze_workqueues_begin() and thaw_workqueues().
6239 *
6240 * CONTEXT:
6241 * Grabs and releases wq_pool_mutex.
6242 *
6243 * Return:
6244 * %true if some freezable workqueues are still busy. %false if freezing
6245 * is complete.
6246 */
6247bool freeze_workqueues_busy(void)
6248{
6249 bool busy = false;
6250 struct workqueue_struct *wq;
6251 struct pool_workqueue *pwq;
6252
6253 mutex_lock(&wq_pool_mutex);
6254
6255 WARN_ON_ONCE(!workqueue_freezing);
6256
6257 list_for_each_entry(wq, &workqueues, list) {
6258 if (!(wq->flags & WQ_FREEZABLE))
6259 continue;
6260 /*
6261 * nr_active is monotonically decreasing. It's safe
6262 * to peek without lock.
6263 */
24acfb71 6264 rcu_read_lock();
6ba94429
FW
6265 for_each_pwq(pwq, wq) {
6266 WARN_ON_ONCE(pwq->nr_active < 0);
6267 if (pwq->nr_active) {
6268 busy = true;
24acfb71 6269 rcu_read_unlock();
6ba94429
FW
6270 goto out_unlock;
6271 }
6272 }
24acfb71 6273 rcu_read_unlock();
6ba94429
FW
6274 }
6275out_unlock:
6276 mutex_unlock(&wq_pool_mutex);
6277 return busy;
6278}
6279
6280/**
6281 * thaw_workqueues - thaw workqueues
6282 *
6283 * Thaw workqueues. Normal queueing is restored and all collected
6284 * frozen works are transferred to their respective pool worklists.
6285 *
6286 * CONTEXT:
6287 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6288 */
6289void thaw_workqueues(void)
6290{
6291 struct workqueue_struct *wq;
6ba94429
FW
6292
6293 mutex_lock(&wq_pool_mutex);
6294
6295 if (!workqueue_freezing)
6296 goto out_unlock;
6297
6298 workqueue_freezing = false;
6299
6300 /* restore max_active and repopulate worklist */
6301 list_for_each_entry(wq, &workqueues, list) {
6302 mutex_lock(&wq->mutex);
a045a272 6303 wq_adjust_max_active(wq);
6ba94429
FW
6304 mutex_unlock(&wq->mutex);
6305 }
6306
6307out_unlock:
6308 mutex_unlock(&wq_pool_mutex);
6309}
6310#endif /* CONFIG_FREEZER */
6311
99c621ef 6312static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6313{
6314 LIST_HEAD(ctxs);
6315 int ret = 0;
6316 struct workqueue_struct *wq;
6317 struct apply_wqattrs_ctx *ctx, *n;
6318
6319 lockdep_assert_held(&wq_pool_mutex);
6320
6321 list_for_each_entry(wq, &workqueues, list) {
6322 if (!(wq->flags & WQ_UNBOUND))
6323 continue;
ca10d851 6324
042f7df1 6325 /* creating multiple pwqs breaks ordering guarantee */
ca10d851
WL
6326 if (!list_empty(&wq->pwqs)) {
6327 if (wq->flags & __WQ_ORDERED_EXPLICIT)
6328 continue;
6329 wq->flags &= ~__WQ_ORDERED;
6330 }
042f7df1 6331
99c621ef 6332 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6333 if (IS_ERR(ctx)) {
6334 ret = PTR_ERR(ctx);
042f7df1
LJ
6335 break;
6336 }
6337
6338 list_add_tail(&ctx->list, &ctxs);
6339 }
6340
6341 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6342 if (!ret)
6343 apply_wqattrs_commit(ctx);
6344 apply_wqattrs_cleanup(ctx);
6345 }
6346
99c621ef
LJ
6347 if (!ret) {
6348 mutex_lock(&wq_pool_attach_mutex);
6349 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6350 mutex_unlock(&wq_pool_attach_mutex);
6351 }
042f7df1
LJ
6352 return ret;
6353}
6354
fe28f631
WL
6355/**
6356 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6357 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6358 *
6359 * This function can be called from cpuset code to provide a set of isolated
6360 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6361 * either cpus_read_lock or cpus_write_lock.
6362 */
6363int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6364{
6365 cpumask_var_t cpumask;
6366 int ret = 0;
6367
6368 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6369 return -ENOMEM;
6370
6371 lockdep_assert_cpus_held();
6372 mutex_lock(&wq_pool_mutex);
6373
6374 /* Save the current isolated cpumask & export it via sysfs */
6375 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6376
6377 /*
6378 * If the operation fails, it will fall back to
6379 * wq_requested_unbound_cpumask which is initially set to
6380 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6381 * by any subsequent write to workqueue/cpumask sysfs file.
6382 */
6383 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6384 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6385 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6386 ret = workqueue_apply_unbound_cpumask(cpumask);
6387
6388 mutex_unlock(&wq_pool_mutex);
6389 free_cpumask_var(cpumask);
6390 return ret;
6391}
6392
63c5484e
TH
6393static int parse_affn_scope(const char *val)
6394{
6395 int i;
6396
6397 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6398 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6399 return i;
6400 }
6401 return -EINVAL;
6402}
6403
6404static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6405{
523a301e
TH
6406 struct workqueue_struct *wq;
6407 int affn, cpu;
63c5484e
TH
6408
6409 affn = parse_affn_scope(val);
6410 if (affn < 0)
6411 return affn;
523a301e
TH
6412 if (affn == WQ_AFFN_DFL)
6413 return -EINVAL;
6414
6415 cpus_read_lock();
6416 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6417
6418 wq_affn_dfl = affn;
523a301e
TH
6419
6420 list_for_each_entry(wq, &workqueues, list) {
6421 for_each_online_cpu(cpu) {
6422 wq_update_pod(wq, cpu, cpu, true);
6423 }
6424 }
6425
6426 mutex_unlock(&wq_pool_mutex);
6427 cpus_read_unlock();
6428
63c5484e
TH
6429 return 0;
6430}
6431
6432static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6433{
6434 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6435}
6436
6437static const struct kernel_param_ops wq_affn_dfl_ops = {
6438 .set = wq_affn_dfl_set,
6439 .get = wq_affn_dfl_get,
6440};
6441
6442module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6443
6ba94429
FW
6444#ifdef CONFIG_SYSFS
6445/*
6446 * Workqueues with WQ_SYSFS flag set is visible to userland via
6447 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6448 * following attributes.
6449 *
63c5484e
TH
6450 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6451 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6452 *
6453 * Unbound workqueues have the following extra attributes.
6454 *
63c5484e
TH
6455 * nice RW int : nice value of the workers
6456 * cpumask RW mask : bitmask of allowed CPUs for the workers
6457 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 6458 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
6459 */
6460struct wq_device {
6461 struct workqueue_struct *wq;
6462 struct device dev;
6463};
6464
6465static struct workqueue_struct *dev_to_wq(struct device *dev)
6466{
6467 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6468
6469 return wq_dev->wq;
6470}
6471
6472static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6473 char *buf)
6474{
6475 struct workqueue_struct *wq = dev_to_wq(dev);
6476
6477 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6478}
6479static DEVICE_ATTR_RO(per_cpu);
6480
6481static ssize_t max_active_show(struct device *dev,
6482 struct device_attribute *attr, char *buf)
6483{
6484 struct workqueue_struct *wq = dev_to_wq(dev);
6485
6486 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6487}
6488
6489static ssize_t max_active_store(struct device *dev,
6490 struct device_attribute *attr, const char *buf,
6491 size_t count)
6492{
6493 struct workqueue_struct *wq = dev_to_wq(dev);
6494 int val;
6495
6496 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6497 return -EINVAL;
6498
6499 workqueue_set_max_active(wq, val);
6500 return count;
6501}
6502static DEVICE_ATTR_RW(max_active);
6503
6504static struct attribute *wq_sysfs_attrs[] = {
6505 &dev_attr_per_cpu.attr,
6506 &dev_attr_max_active.attr,
6507 NULL,
6508};
6509ATTRIBUTE_GROUPS(wq_sysfs);
6510
49277a5b
WL
6511static void apply_wqattrs_lock(void)
6512{
6513 /* CPUs should stay stable across pwq creations and installations */
6514 cpus_read_lock();
6515 mutex_lock(&wq_pool_mutex);
6516}
6517
6518static void apply_wqattrs_unlock(void)
6519{
6520 mutex_unlock(&wq_pool_mutex);
6521 cpus_read_unlock();
6522}
6523
6ba94429
FW
6524static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6525 char *buf)
6526{
6527 struct workqueue_struct *wq = dev_to_wq(dev);
6528 int written;
6529
6530 mutex_lock(&wq->mutex);
6531 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6532 mutex_unlock(&wq->mutex);
6533
6534 return written;
6535}
6536
6537/* prepare workqueue_attrs for sysfs store operations */
6538static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6539{
6540 struct workqueue_attrs *attrs;
6541
899a94fe
LJ
6542 lockdep_assert_held(&wq_pool_mutex);
6543
be69d00d 6544 attrs = alloc_workqueue_attrs();
6ba94429
FW
6545 if (!attrs)
6546 return NULL;
6547
6ba94429 6548 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
6549 return attrs;
6550}
6551
6552static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6553 const char *buf, size_t count)
6554{
6555 struct workqueue_struct *wq = dev_to_wq(dev);
6556 struct workqueue_attrs *attrs;
d4d3e257
LJ
6557 int ret = -ENOMEM;
6558
6559 apply_wqattrs_lock();
6ba94429
FW
6560
6561 attrs = wq_sysfs_prep_attrs(wq);
6562 if (!attrs)
d4d3e257 6563 goto out_unlock;
6ba94429
FW
6564
6565 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6566 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 6567 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
6568 else
6569 ret = -EINVAL;
6570
d4d3e257
LJ
6571out_unlock:
6572 apply_wqattrs_unlock();
6ba94429
FW
6573 free_workqueue_attrs(attrs);
6574 return ret ?: count;
6575}
6576
6577static ssize_t wq_cpumask_show(struct device *dev,
6578 struct device_attribute *attr, char *buf)
6579{
6580 struct workqueue_struct *wq = dev_to_wq(dev);
6581 int written;
6582
6583 mutex_lock(&wq->mutex);
6584 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6585 cpumask_pr_args(wq->unbound_attrs->cpumask));
6586 mutex_unlock(&wq->mutex);
6587 return written;
6588}
6589
6590static ssize_t wq_cpumask_store(struct device *dev,
6591 struct device_attribute *attr,
6592 const char *buf, size_t count)
6593{
6594 struct workqueue_struct *wq = dev_to_wq(dev);
6595 struct workqueue_attrs *attrs;
d4d3e257
LJ
6596 int ret = -ENOMEM;
6597
6598 apply_wqattrs_lock();
6ba94429
FW
6599
6600 attrs = wq_sysfs_prep_attrs(wq);
6601 if (!attrs)
d4d3e257 6602 goto out_unlock;
6ba94429
FW
6603
6604 ret = cpumask_parse(buf, attrs->cpumask);
6605 if (!ret)
d4d3e257 6606 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 6607
d4d3e257
LJ
6608out_unlock:
6609 apply_wqattrs_unlock();
6ba94429
FW
6610 free_workqueue_attrs(attrs);
6611 return ret ?: count;
6612}
6613
63c5484e
TH
6614static ssize_t wq_affn_scope_show(struct device *dev,
6615 struct device_attribute *attr, char *buf)
6616{
6617 struct workqueue_struct *wq = dev_to_wq(dev);
6618 int written;
6619
6620 mutex_lock(&wq->mutex);
523a301e
TH
6621 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6622 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6623 wq_affn_names[WQ_AFFN_DFL],
6624 wq_affn_names[wq_affn_dfl]);
6625 else
6626 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6627 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
6628 mutex_unlock(&wq->mutex);
6629
6630 return written;
6631}
6632
6633static ssize_t wq_affn_scope_store(struct device *dev,
6634 struct device_attribute *attr,
6635 const char *buf, size_t count)
6636{
6637 struct workqueue_struct *wq = dev_to_wq(dev);
6638 struct workqueue_attrs *attrs;
6639 int affn, ret = -ENOMEM;
6640
6641 affn = parse_affn_scope(buf);
6642 if (affn < 0)
6643 return affn;
6644
6645 apply_wqattrs_lock();
6646 attrs = wq_sysfs_prep_attrs(wq);
6647 if (attrs) {
6648 attrs->affn_scope = affn;
6649 ret = apply_workqueue_attrs_locked(wq, attrs);
6650 }
6651 apply_wqattrs_unlock();
6652 free_workqueue_attrs(attrs);
6653 return ret ?: count;
6654}
6655
8639eceb
TH
6656static ssize_t wq_affinity_strict_show(struct device *dev,
6657 struct device_attribute *attr, char *buf)
6658{
6659 struct workqueue_struct *wq = dev_to_wq(dev);
6660
6661 return scnprintf(buf, PAGE_SIZE, "%d\n",
6662 wq->unbound_attrs->affn_strict);
6663}
6664
6665static ssize_t wq_affinity_strict_store(struct device *dev,
6666 struct device_attribute *attr,
6667 const char *buf, size_t count)
6668{
6669 struct workqueue_struct *wq = dev_to_wq(dev);
6670 struct workqueue_attrs *attrs;
6671 int v, ret = -ENOMEM;
6672
6673 if (sscanf(buf, "%d", &v) != 1)
6674 return -EINVAL;
6675
6676 apply_wqattrs_lock();
6677 attrs = wq_sysfs_prep_attrs(wq);
6678 if (attrs) {
6679 attrs->affn_strict = (bool)v;
6680 ret = apply_workqueue_attrs_locked(wq, attrs);
6681 }
6682 apply_wqattrs_unlock();
6683 free_workqueue_attrs(attrs);
6684 return ret ?: count;
6685}
6686
6ba94429 6687static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
6688 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6689 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 6690 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 6691 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
6692 __ATTR_NULL,
6693};
8ccad40d 6694
d412ace1 6695static const struct bus_type wq_subsys = {
6ba94429
FW
6696 .name = "workqueue",
6697 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
6698};
6699
49277a5b
WL
6700/**
6701 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6702 * @cpumask: the cpumask to set
6703 *
6704 * The low-level workqueues cpumask is a global cpumask that limits
6705 * the affinity of all unbound workqueues. This function check the @cpumask
6706 * and apply it to all unbound workqueues and updates all pwqs of them.
6707 *
6708 * Return: 0 - Success
6709 * -EINVAL - Invalid @cpumask
6710 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6711 */
6712static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6713{
6714 int ret = -EINVAL;
6715
6716 /*
6717 * Not excluding isolated cpus on purpose.
6718 * If the user wishes to include them, we allow that.
6719 */
6720 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6721 if (!cpumask_empty(cpumask)) {
6722 apply_wqattrs_lock();
6723 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6724 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6725 ret = 0;
6726 goto out_unlock;
6727 }
6728
6729 ret = workqueue_apply_unbound_cpumask(cpumask);
6730
6731out_unlock:
6732 apply_wqattrs_unlock();
6733 }
6734
6735 return ret;
6736}
6737
fe28f631
WL
6738static ssize_t __wq_cpumask_show(struct device *dev,
6739 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
6740{
6741 int written;
6742
042f7df1 6743 mutex_lock(&wq_pool_mutex);
fe28f631 6744 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 6745 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
6746
6747 return written;
6748}
6749
fe28f631
WL
6750static ssize_t wq_unbound_cpumask_show(struct device *dev,
6751 struct device_attribute *attr, char *buf)
6752{
6753 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6754}
6755
6756static ssize_t wq_requested_cpumask_show(struct device *dev,
6757 struct device_attribute *attr, char *buf)
6758{
6759 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6760}
6761
6762static ssize_t wq_isolated_cpumask_show(struct device *dev,
6763 struct device_attribute *attr, char *buf)
6764{
6765 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6766}
6767
042f7df1
LJ
6768static ssize_t wq_unbound_cpumask_store(struct device *dev,
6769 struct device_attribute *attr, const char *buf, size_t count)
6770{
6771 cpumask_var_t cpumask;
6772 int ret;
6773
6774 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6775 return -ENOMEM;
6776
6777 ret = cpumask_parse(buf, cpumask);
6778 if (!ret)
6779 ret = workqueue_set_unbound_cpumask(cpumask);
6780
6781 free_cpumask_var(cpumask);
6782 return ret ? ret : count;
6783}
6784
fe28f631 6785static struct device_attribute wq_sysfs_cpumask_attrs[] = {
042f7df1 6786 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
fe28f631
WL
6787 wq_unbound_cpumask_store),
6788 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6789 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6790 __ATTR_NULL,
6791};
b05a7928 6792
6ba94429 6793static int __init wq_sysfs_init(void)
2d3854a3 6794{
686f6697 6795 struct device *dev_root;
b05a7928
FW
6796 int err;
6797
6798 err = subsys_virtual_register(&wq_subsys, NULL);
6799 if (err)
6800 return err;
6801
686f6697
GKH
6802 dev_root = bus_get_dev_root(&wq_subsys);
6803 if (dev_root) {
fe28f631
WL
6804 struct device_attribute *attr;
6805
6806 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6807 err = device_create_file(dev_root, attr);
6808 if (err)
6809 break;
6810 }
686f6697
GKH
6811 put_device(dev_root);
6812 }
6813 return err;
2d3854a3 6814}
6ba94429 6815core_initcall(wq_sysfs_init);
2d3854a3 6816
6ba94429 6817static void wq_device_release(struct device *dev)
2d3854a3 6818{
6ba94429 6819 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 6820
6ba94429 6821 kfree(wq_dev);
2d3854a3 6822}
a0a1a5fd
TH
6823
6824/**
6ba94429
FW
6825 * workqueue_sysfs_register - make a workqueue visible in sysfs
6826 * @wq: the workqueue to register
a0a1a5fd 6827 *
6ba94429
FW
6828 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6829 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6830 * which is the preferred method.
a0a1a5fd 6831 *
6ba94429
FW
6832 * Workqueue user should use this function directly iff it wants to apply
6833 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6834 * apply_workqueue_attrs() may race against userland updating the
6835 * attributes.
6836 *
6837 * Return: 0 on success, -errno on failure.
a0a1a5fd 6838 */
6ba94429 6839int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 6840{
6ba94429
FW
6841 struct wq_device *wq_dev;
6842 int ret;
a0a1a5fd 6843
6ba94429 6844 /*
402dd89d 6845 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
6846 * attributes breaks ordering guarantee. Disallow exposing ordered
6847 * workqueues.
6848 */
0a94efb5 6849 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 6850 return -EINVAL;
a0a1a5fd 6851
6ba94429
FW
6852 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6853 if (!wq_dev)
6854 return -ENOMEM;
5bcab335 6855
6ba94429
FW
6856 wq_dev->wq = wq;
6857 wq_dev->dev.bus = &wq_subsys;
6ba94429 6858 wq_dev->dev.release = wq_device_release;
23217b44 6859 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 6860
6ba94429
FW
6861 /*
6862 * unbound_attrs are created separately. Suppress uevent until
6863 * everything is ready.
6864 */
6865 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 6866
6ba94429
FW
6867 ret = device_register(&wq_dev->dev);
6868 if (ret) {
537f4146 6869 put_device(&wq_dev->dev);
6ba94429
FW
6870 wq->wq_dev = NULL;
6871 return ret;
6872 }
a0a1a5fd 6873
6ba94429
FW
6874 if (wq->flags & WQ_UNBOUND) {
6875 struct device_attribute *attr;
a0a1a5fd 6876
6ba94429
FW
6877 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6878 ret = device_create_file(&wq_dev->dev, attr);
6879 if (ret) {
6880 device_unregister(&wq_dev->dev);
6881 wq->wq_dev = NULL;
6882 return ret;
a0a1a5fd
TH
6883 }
6884 }
6885 }
6ba94429
FW
6886
6887 dev_set_uevent_suppress(&wq_dev->dev, false);
6888 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6889 return 0;
a0a1a5fd
TH
6890}
6891
6892/**
6ba94429
FW
6893 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6894 * @wq: the workqueue to unregister
a0a1a5fd 6895 *
6ba94429 6896 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 6897 */
6ba94429 6898static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 6899{
6ba94429 6900 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 6901
6ba94429
FW
6902 if (!wq->wq_dev)
6903 return;
a0a1a5fd 6904
6ba94429
FW
6905 wq->wq_dev = NULL;
6906 device_unregister(&wq_dev->dev);
a0a1a5fd 6907}
6ba94429
FW
6908#else /* CONFIG_SYSFS */
6909static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6910#endif /* CONFIG_SYSFS */
a0a1a5fd 6911
82607adc
TH
6912/*
6913 * Workqueue watchdog.
6914 *
6915 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6916 * flush dependency, a concurrency managed work item which stays RUNNING
6917 * indefinitely. Workqueue stalls can be very difficult to debug as the
6918 * usual warning mechanisms don't trigger and internal workqueue state is
6919 * largely opaque.
6920 *
6921 * Workqueue watchdog monitors all worker pools periodically and dumps
6922 * state if some pools failed to make forward progress for a while where
6923 * forward progress is defined as the first item on ->worklist changing.
6924 *
6925 * This mechanism is controlled through the kernel parameter
6926 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6927 * corresponding sysfs parameter file.
6928 */
6929#ifdef CONFIG_WQ_WATCHDOG
6930
82607adc 6931static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 6932static struct timer_list wq_watchdog_timer;
82607adc
TH
6933
6934static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6935static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6936
cd2440d6
PM
6937/*
6938 * Show workers that might prevent the processing of pending work items.
6939 * The only candidates are CPU-bound workers in the running state.
6940 * Pending work items should be handled by another idle worker
6941 * in all other situations.
6942 */
6943static void show_cpu_pool_hog(struct worker_pool *pool)
6944{
6945 struct worker *worker;
6946 unsigned long flags;
6947 int bkt;
6948
6949 raw_spin_lock_irqsave(&pool->lock, flags);
6950
6951 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6952 if (task_is_running(worker->task)) {
6953 /*
6954 * Defer printing to avoid deadlocks in console
6955 * drivers that queue work while holding locks
6956 * also taken in their write paths.
6957 */
6958 printk_deferred_enter();
6959
6960 pr_info("pool %d:\n", pool->id);
6961 sched_show_task(worker->task);
6962
6963 printk_deferred_exit();
6964 }
6965 }
6966
6967 raw_spin_unlock_irqrestore(&pool->lock, flags);
6968}
6969
6970static void show_cpu_pools_hogs(void)
6971{
6972 struct worker_pool *pool;
6973 int pi;
6974
6975 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6976
6977 rcu_read_lock();
6978
6979 for_each_pool(pool, pi) {
6980 if (pool->cpu_stall)
6981 show_cpu_pool_hog(pool);
6982
6983 }
6984
6985 rcu_read_unlock();
6986}
6987
82607adc
TH
6988static void wq_watchdog_reset_touched(void)
6989{
6990 int cpu;
6991
6992 wq_watchdog_touched = jiffies;
6993 for_each_possible_cpu(cpu)
6994 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6995}
6996
5cd79d6a 6997static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
6998{
6999 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7000 bool lockup_detected = false;
cd2440d6 7001 bool cpu_pool_stall = false;
940d71c6 7002 unsigned long now = jiffies;
82607adc
TH
7003 struct worker_pool *pool;
7004 int pi;
7005
7006 if (!thresh)
7007 return;
7008
7009 rcu_read_lock();
7010
7011 for_each_pool(pool, pi) {
7012 unsigned long pool_ts, touched, ts;
7013
cd2440d6 7014 pool->cpu_stall = false;
82607adc
TH
7015 if (list_empty(&pool->worklist))
7016 continue;
7017
940d71c6
SS
7018 /*
7019 * If a virtual machine is stopped by the host it can look to
7020 * the watchdog like a stall.
7021 */
7022 kvm_check_and_clear_guest_paused();
7023
82607adc 7024 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7025 if (pool->cpu >= 0)
7026 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7027 else
7028 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7029 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7030
7031 if (time_after(pool_ts, touched))
7032 ts = pool_ts;
7033 else
7034 ts = touched;
7035
82607adc 7036 /* did we stall? */
940d71c6 7037 if (time_after(now, ts + thresh)) {
82607adc 7038 lockup_detected = true;
cd2440d6
PM
7039 if (pool->cpu >= 0) {
7040 pool->cpu_stall = true;
7041 cpu_pool_stall = true;
7042 }
82607adc
TH
7043 pr_emerg("BUG: workqueue lockup - pool");
7044 pr_cont_pool_info(pool);
7045 pr_cont(" stuck for %us!\n",
940d71c6 7046 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7047 }
cd2440d6
PM
7048
7049
82607adc
TH
7050 }
7051
7052 rcu_read_unlock();
7053
7054 if (lockup_detected)
55df0933 7055 show_all_workqueues();
82607adc 7056
cd2440d6
PM
7057 if (cpu_pool_stall)
7058 show_cpu_pools_hogs();
7059
82607adc
TH
7060 wq_watchdog_reset_touched();
7061 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7062}
7063
cb9d7fd5 7064notrace void wq_watchdog_touch(int cpu)
82607adc
TH
7065{
7066 if (cpu >= 0)
7067 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
7068
7069 wq_watchdog_touched = jiffies;
82607adc
TH
7070}
7071
7072static void wq_watchdog_set_thresh(unsigned long thresh)
7073{
7074 wq_watchdog_thresh = 0;
7075 del_timer_sync(&wq_watchdog_timer);
7076
7077 if (thresh) {
7078 wq_watchdog_thresh = thresh;
7079 wq_watchdog_reset_touched();
7080 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7081 }
7082}
7083
7084static int wq_watchdog_param_set_thresh(const char *val,
7085 const struct kernel_param *kp)
7086{
7087 unsigned long thresh;
7088 int ret;
7089
7090 ret = kstrtoul(val, 0, &thresh);
7091 if (ret)
7092 return ret;
7093
7094 if (system_wq)
7095 wq_watchdog_set_thresh(thresh);
7096 else
7097 wq_watchdog_thresh = thresh;
7098
7099 return 0;
7100}
7101
7102static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7103 .set = wq_watchdog_param_set_thresh,
7104 .get = param_get_ulong,
7105};
7106
7107module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7108 0644);
7109
7110static void wq_watchdog_init(void)
7111{
5cd79d6a 7112 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7113 wq_watchdog_set_thresh(wq_watchdog_thresh);
7114}
7115
7116#else /* CONFIG_WQ_WATCHDOG */
7117
7118static inline void wq_watchdog_init(void) { }
7119
7120#endif /* CONFIG_WQ_WATCHDOG */
7121
4a6c5607
TH
7122static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7123{
7124 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7125 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7126 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7127 return;
7128 }
7129
7130 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7131}
7132
3347fa09
TH
7133/**
7134 * workqueue_init_early - early init for workqueue subsystem
7135 *
2930155b
TH
7136 * This is the first step of three-staged workqueue subsystem initialization and
7137 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7138 * up. It sets up all the data structures and system workqueues and allows early
7139 * boot code to create workqueues and queue/cancel work items. Actual work item
7140 * execution starts only after kthreads can be created and scheduled right
7141 * before early initcalls.
3347fa09 7142 */
2333e829 7143void __init workqueue_init_early(void)
1da177e4 7144{
84193c07 7145 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c
TH
7146 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7147 int i, cpu;
c34056a3 7148
10cdb157 7149 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7150
b05a7928 7151 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7152 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7153 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7154
4a6c5607
TH
7155 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7156 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7157 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7158 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7159 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7160
fe28f631 7161 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7162
e904e6c2
TH
7163 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7164
2930155b
TH
7165 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7166 BUG_ON(!wq_update_pod_attrs_buf);
7167
7bd20b6b
MT
7168 /*
7169 * If nohz_full is enabled, set power efficient workqueue as unbound.
7170 * This allows workqueue items to be moved to HK CPUs.
7171 */
7172 if (housekeeping_enabled(HK_TYPE_TICK))
7173 wq_power_efficient = true;
7174
84193c07
TH
7175 /* initialize WQ_AFFN_SYSTEM pods */
7176 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7177 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7178 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7179 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7180
7181 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7182
84193c07
TH
7183 pt->nr_pods = 1;
7184 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7185 pt->pod_node[0] = NUMA_NO_NODE;
7186 pt->cpu_pod[0] = 0;
7187
706026c2 7188 /* initialize CPU pools */
29c91e99 7189 for_each_possible_cpu(cpu) {
4ce62e9e 7190 struct worker_pool *pool;
8b03ae3c 7191
7a4e344c 7192 i = 0;
f02ae73a 7193 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 7194 BUG_ON(init_worker_pool(pool));
ec22ca5e 7195 pool->cpu = cpu;
29c91e99 7196 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
9546b29e 7197 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7a4e344c 7198 pool->attrs->nice = std_nice[i++];
8639eceb 7199 pool->attrs->affn_strict = true;
f3f90ad4 7200 pool->node = cpu_to_node(cpu);
7a4e344c 7201
9daf9e67 7202 /* alloc pool ID */
68e13a67 7203 mutex_lock(&wq_pool_mutex);
9daf9e67 7204 BUG_ON(worker_pool_assign_id(pool));
68e13a67 7205 mutex_unlock(&wq_pool_mutex);
4ce62e9e 7206 }
8b03ae3c
TH
7207 }
7208
8a2b7538 7209 /* create default unbound and ordered wq attrs */
29c91e99
TH
7210 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7211 struct workqueue_attrs *attrs;
7212
be69d00d 7213 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7214 attrs->nice = std_nice[i];
29c91e99 7215 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7216
7217 /*
7218 * An ordered wq should have only one pwq as ordering is
7219 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7220 */
be69d00d 7221 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7222 attrs->nice = std_nice[i];
af73f5c9 7223 attrs->ordered = true;
8a2b7538 7224 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7225 }
7226
d320c038 7227 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7228 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7229 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7230 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7231 WQ_MAX_ACTIVE);
24d51add
TH
7232 system_freezable_wq = alloc_workqueue("events_freezable",
7233 WQ_FREEZABLE, 0);
0668106c
VK
7234 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7235 WQ_POWER_EFFICIENT, 0);
8318d6a6 7236 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7237 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7238 0);
1aabe902 7239 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7240 !system_unbound_wq || !system_freezable_wq ||
7241 !system_power_efficient_wq ||
7242 !system_freezable_power_efficient_wq);
3347fa09
TH
7243}
7244
aa6fde93
TH
7245static void __init wq_cpu_intensive_thresh_init(void)
7246{
7247 unsigned long thresh;
7248 unsigned long bogo;
7249
dd64c873
Z
7250 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7251 BUG_ON(IS_ERR(pwq_release_worker));
7252
aa6fde93
TH
7253 /* if the user set it to a specific value, keep it */
7254 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7255 return;
7256
7257 /*
7258 * The default of 10ms is derived from the fact that most modern (as of
7259 * 2023) processors can do a lot in 10ms and that it's just below what
7260 * most consider human-perceivable. However, the kernel also runs on a
7261 * lot slower CPUs including microcontrollers where the threshold is way
7262 * too low.
7263 *
7264 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7265 * This is by no means accurate but it doesn't have to be. The mechanism
7266 * is still useful even when the threshold is fully scaled up. Also, as
7267 * the reports would usually be applicable to everyone, some machines
7268 * operating on longer thresholds won't significantly diminish their
7269 * usefulness.
7270 */
7271 thresh = 10 * USEC_PER_MSEC;
7272
7273 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7274 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7275 if (bogo < 4000)
7276 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7277
7278 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7279 loops_per_jiffy, bogo, thresh);
7280
7281 wq_cpu_intensive_thresh_us = thresh;
7282}
7283
3347fa09
TH
7284/**
7285 * workqueue_init - bring workqueue subsystem fully online
7286 *
2930155b
TH
7287 * This is the second step of three-staged workqueue subsystem initialization
7288 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7289 * been created and work items queued on them, but there are no kworkers
7290 * executing the work items yet. Populate the worker pools with the initial
7291 * workers and enable future kworker creations.
3347fa09 7292 */
2333e829 7293void __init workqueue_init(void)
3347fa09 7294{
2186d9f9 7295 struct workqueue_struct *wq;
3347fa09
TH
7296 struct worker_pool *pool;
7297 int cpu, bkt;
7298
aa6fde93
TH
7299 wq_cpu_intensive_thresh_init();
7300
2186d9f9
TH
7301 mutex_lock(&wq_pool_mutex);
7302
2930155b
TH
7303 /*
7304 * Per-cpu pools created earlier could be missing node hint. Fix them
7305 * up. Also, create a rescuer for workqueues that requested it.
7306 */
2186d9f9
TH
7307 for_each_possible_cpu(cpu) {
7308 for_each_cpu_worker_pool(pool, cpu) {
7309 pool->node = cpu_to_node(cpu);
7310 }
7311 }
7312
40c17f75 7313 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7314 WARN(init_rescuer(wq),
7315 "workqueue: failed to create early rescuer for %s",
7316 wq->name);
7317 }
2186d9f9
TH
7318
7319 mutex_unlock(&wq_pool_mutex);
7320
3347fa09
TH
7321 /* create the initial workers */
7322 for_each_online_cpu(cpu) {
7323 for_each_cpu_worker_pool(pool, cpu) {
7324 pool->flags &= ~POOL_DISASSOCIATED;
7325 BUG_ON(!create_worker(pool));
7326 }
7327 }
7328
7329 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7330 BUG_ON(!create_worker(pool));
7331
7332 wq_online = true;
82607adc 7333 wq_watchdog_init();
1da177e4 7334}
c4f135d6 7335
025e1684
TH
7336/*
7337 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7338 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7339 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7340 */
7341static void __init init_pod_type(struct wq_pod_type *pt,
7342 bool (*cpus_share_pod)(int, int))
7343{
7344 int cur, pre, cpu, pod;
7345
7346 pt->nr_pods = 0;
7347
7348 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7349 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7350 BUG_ON(!pt->cpu_pod);
7351
7352 for_each_possible_cpu(cur) {
7353 for_each_possible_cpu(pre) {
7354 if (pre >= cur) {
7355 pt->cpu_pod[cur] = pt->nr_pods++;
7356 break;
7357 }
7358 if (cpus_share_pod(cur, pre)) {
7359 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7360 break;
7361 }
7362 }
7363 }
7364
7365 /* init the rest to match @pt->cpu_pod[] */
7366 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7367 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7368 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7369
7370 for (pod = 0; pod < pt->nr_pods; pod++)
7371 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7372
7373 for_each_possible_cpu(cpu) {
7374 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7375 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7376 }
7377}
7378
63c5484e
TH
7379static bool __init cpus_dont_share(int cpu0, int cpu1)
7380{
7381 return false;
7382}
7383
7384static bool __init cpus_share_smt(int cpu0, int cpu1)
7385{
7386#ifdef CONFIG_SCHED_SMT
7387 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7388#else
7389 return false;
7390#endif
7391}
7392
025e1684
TH
7393static bool __init cpus_share_numa(int cpu0, int cpu1)
7394{
7395 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7396}
7397
2930155b
TH
7398/**
7399 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7400 *
7401 * This is the third step of there-staged workqueue subsystem initialization and
7402 * invoked after SMP and topology information are fully initialized. It
7403 * initializes the unbound CPU pods accordingly.
7404 */
7405void __init workqueue_init_topology(void)
a86feae6 7406{
2930155b 7407 struct workqueue_struct *wq;
025e1684 7408 int cpu;
a86feae6 7409
63c5484e
TH
7410 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7411 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7412 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7413 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7414
c5f8cd6c
TH
7415 wq_topo_initialized = true;
7416
2930155b 7417 mutex_lock(&wq_pool_mutex);
a86feae6 7418
2930155b
TH
7419 /*
7420 * Workqueues allocated earlier would have all CPUs sharing the default
7421 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7422 * combinations to apply per-pod sharing.
7423 */
7424 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 7425 for_each_online_cpu(cpu)
2930155b 7426 wq_update_pod(wq, cpu, cpu, true);
5797b1c1
TH
7427 if (wq->flags & WQ_UNBOUND) {
7428 mutex_lock(&wq->mutex);
7429 wq_update_node_max_active(wq, -1);
7430 mutex_unlock(&wq->mutex);
2930155b
TH
7431 }
7432 }
7433
7434 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
7435}
7436
20bdedaf
TH
7437void __warn_flushing_systemwide_wq(void)
7438{
7439 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7440 dump_stack();
7441}
c4f135d6 7442EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 7443
7444static int __init workqueue_unbound_cpus_setup(char *str)
7445{
7446 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7447 cpumask_clear(&wq_cmdline_cpumask);
7448 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7449 }
7450
7451 return 1;
7452}
7453__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);