workqueues: Introduce new flag WQ_POWER_EFFICIENT for power oriented workqueues
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
d320c038 307struct workqueue_struct *system_wq __read_mostly;
d320c038 308EXPORT_SYMBOL_GPL(system_wq);
044c782c 309struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 310EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 311struct workqueue_struct *system_long_wq __read_mostly;
d320c038 312EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 313struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 314EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 315struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 316EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 317
7d19c5ce
TH
318static int worker_thread(void *__worker);
319static void copy_workqueue_attrs(struct workqueue_attrs *to,
320 const struct workqueue_attrs *from);
321
97bd2347
TH
322#define CREATE_TRACE_POINTS
323#include <trace/events/workqueue.h>
324
68e13a67 325#define assert_rcu_or_pool_mutex() \
5bcab335 326 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
327 lockdep_is_held(&wq_pool_mutex), \
328 "sched RCU or wq_pool_mutex should be held")
5bcab335 329
b09f4fd3 330#define assert_rcu_or_wq_mutex(wq) \
76af4d93 331 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 332 lockdep_is_held(&wq->mutex), \
b09f4fd3 333 "sched RCU or wq->mutex should be held")
76af4d93 334
822d8405
TH
335#ifdef CONFIG_LOCKDEP
336#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
337 WARN_ONCE(debug_locks && \
338 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
339 !lockdep_is_held(&(pool)->lock), \
340 "pool->manager_mutex or ->lock should be held")
341#else
342#define assert_manager_or_pool_lock(pool) do { } while (0)
343#endif
344
f02ae73a
TH
345#define for_each_cpu_worker_pool(pool, cpu) \
346 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
347 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 348 (pool)++)
4ce62e9e 349
17116969
TH
350/**
351 * for_each_pool - iterate through all worker_pools in the system
352 * @pool: iteration cursor
611c92a0 353 * @pi: integer used for iteration
fa1b54e6 354 *
68e13a67
LJ
355 * This must be called either with wq_pool_mutex held or sched RCU read
356 * locked. If the pool needs to be used beyond the locking in effect, the
357 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
358 *
359 * The if/else clause exists only for the lockdep assertion and can be
360 * ignored.
17116969 361 */
611c92a0
TH
362#define for_each_pool(pool, pi) \
363 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 364 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 365 else
17116969 366
822d8405
TH
367/**
368 * for_each_pool_worker - iterate through all workers of a worker_pool
369 * @worker: iteration cursor
370 * @wi: integer used for iteration
371 * @pool: worker_pool to iterate workers of
372 *
373 * This must be called with either @pool->manager_mutex or ->lock held.
374 *
375 * The if/else clause exists only for the lockdep assertion and can be
376 * ignored.
377 */
378#define for_each_pool_worker(worker, wi, pool) \
379 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
380 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
381 else
382
49e3cf44
TH
383/**
384 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
385 * @pwq: iteration cursor
386 * @wq: the target workqueue
76af4d93 387 *
b09f4fd3 388 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
389 * If the pwq needs to be used beyond the locking in effect, the caller is
390 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
49e3cf44
TH
394 */
395#define for_each_pwq(pwq, wq) \
76af4d93 396 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 397 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 398 else
f3421797 399
dc186ad7
TG
400#ifdef CONFIG_DEBUG_OBJECTS_WORK
401
402static struct debug_obj_descr work_debug_descr;
403
99777288
SG
404static void *work_debug_hint(void *addr)
405{
406 return ((struct work_struct *) addr)->func;
407}
408
dc186ad7
TG
409/*
410 * fixup_init is called when:
411 * - an active object is initialized
412 */
413static int work_fixup_init(void *addr, enum debug_obj_state state)
414{
415 struct work_struct *work = addr;
416
417 switch (state) {
418 case ODEBUG_STATE_ACTIVE:
419 cancel_work_sync(work);
420 debug_object_init(work, &work_debug_descr);
421 return 1;
422 default:
423 return 0;
424 }
425}
426
427/*
428 * fixup_activate is called when:
429 * - an active object is activated
430 * - an unknown object is activated (might be a statically initialized object)
431 */
432static int work_fixup_activate(void *addr, enum debug_obj_state state)
433{
434 struct work_struct *work = addr;
435
436 switch (state) {
437
438 case ODEBUG_STATE_NOTAVAILABLE:
439 /*
440 * This is not really a fixup. The work struct was
441 * statically initialized. We just make sure that it
442 * is tracked in the object tracker.
443 */
22df02bb 444 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
445 debug_object_init(work, &work_debug_descr);
446 debug_object_activate(work, &work_debug_descr);
447 return 0;
448 }
449 WARN_ON_ONCE(1);
450 return 0;
451
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
454
455 default:
456 return 0;
457 }
458}
459
460/*
461 * fixup_free is called when:
462 * - an active object is freed
463 */
464static int work_fixup_free(void *addr, enum debug_obj_state state)
465{
466 struct work_struct *work = addr;
467
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 cancel_work_sync(work);
471 debug_object_free(work, &work_debug_descr);
472 return 1;
473 default:
474 return 0;
475 }
476}
477
478static struct debug_obj_descr work_debug_descr = {
479 .name = "work_struct",
99777288 480 .debug_hint = work_debug_hint,
dc186ad7
TG
481 .fixup_init = work_fixup_init,
482 .fixup_activate = work_fixup_activate,
483 .fixup_free = work_fixup_free,
484};
485
486static inline void debug_work_activate(struct work_struct *work)
487{
488 debug_object_activate(work, &work_debug_descr);
489}
490
491static inline void debug_work_deactivate(struct work_struct *work)
492{
493 debug_object_deactivate(work, &work_debug_descr);
494}
495
496void __init_work(struct work_struct *work, int onstack)
497{
498 if (onstack)
499 debug_object_init_on_stack(work, &work_debug_descr);
500 else
501 debug_object_init(work, &work_debug_descr);
502}
503EXPORT_SYMBOL_GPL(__init_work);
504
505void destroy_work_on_stack(struct work_struct *work)
506{
507 debug_object_free(work, &work_debug_descr);
508}
509EXPORT_SYMBOL_GPL(destroy_work_on_stack);
510
511#else
512static inline void debug_work_activate(struct work_struct *work) { }
513static inline void debug_work_deactivate(struct work_struct *work) { }
514#endif
515
9daf9e67
TH
516/* allocate ID and assign it to @pool */
517static int worker_pool_assign_id(struct worker_pool *pool)
518{
519 int ret;
520
68e13a67 521 lockdep_assert_held(&wq_pool_mutex);
5bcab335 522
e68035fb 523 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 524 if (ret >= 0) {
e68035fb 525 pool->id = ret;
229641a6
TH
526 return 0;
527 }
fa1b54e6 528 return ret;
7c3eed5c
TH
529}
530
df2d5ae4
TH
531/**
532 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
533 * @wq: the target workqueue
534 * @node: the node ID
535 *
536 * This must be called either with pwq_lock held or sched RCU read locked.
537 * If the pwq needs to be used beyond the locking in effect, the caller is
538 * responsible for guaranteeing that the pwq stays online.
539 */
540static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
541 int node)
542{
543 assert_rcu_or_wq_mutex(wq);
544 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
545}
546
73f53c4a
TH
547static unsigned int work_color_to_flags(int color)
548{
549 return color << WORK_STRUCT_COLOR_SHIFT;
550}
551
552static int get_work_color(struct work_struct *work)
553{
554 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
555 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
556}
557
558static int work_next_color(int color)
559{
560 return (color + 1) % WORK_NR_COLORS;
561}
1da177e4 562
14441960 563/*
112202d9
TH
564 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
565 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 566 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 567 *
112202d9
TH
568 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
569 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
570 * work->data. These functions should only be called while the work is
571 * owned - ie. while the PENDING bit is set.
7a22ad75 572 *
112202d9 573 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 574 * corresponding to a work. Pool is available once the work has been
112202d9 575 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 576 * available only while the work item is queued.
7a22ad75 577 *
bbb68dfa
TH
578 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
579 * canceled. While being canceled, a work item may have its PENDING set
580 * but stay off timer and worklist for arbitrarily long and nobody should
581 * try to steal the PENDING bit.
14441960 582 */
7a22ad75
TH
583static inline void set_work_data(struct work_struct *work, unsigned long data,
584 unsigned long flags)
365970a1 585{
6183c009 586 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
587 atomic_long_set(&work->data, data | flags | work_static(work));
588}
365970a1 589
112202d9 590static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
591 unsigned long extra_flags)
592{
112202d9
TH
593 set_work_data(work, (unsigned long)pwq,
594 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
595}
596
4468a00f
LJ
597static void set_work_pool_and_keep_pending(struct work_struct *work,
598 int pool_id)
599{
600 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
601 WORK_STRUCT_PENDING);
602}
603
7c3eed5c
TH
604static void set_work_pool_and_clear_pending(struct work_struct *work,
605 int pool_id)
7a22ad75 606{
23657bb1
TH
607 /*
608 * The following wmb is paired with the implied mb in
609 * test_and_set_bit(PENDING) and ensures all updates to @work made
610 * here are visible to and precede any updates by the next PENDING
611 * owner.
612 */
613 smp_wmb();
7c3eed5c 614 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 615}
f756d5e2 616
7a22ad75 617static void clear_work_data(struct work_struct *work)
1da177e4 618{
7c3eed5c
TH
619 smp_wmb(); /* see set_work_pool_and_clear_pending() */
620 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
621}
622
112202d9 623static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 624{
e120153d 625 unsigned long data = atomic_long_read(&work->data);
7a22ad75 626
112202d9 627 if (data & WORK_STRUCT_PWQ)
e120153d
TH
628 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
629 else
630 return NULL;
4d707b9f
ON
631}
632
7c3eed5c
TH
633/**
634 * get_work_pool - return the worker_pool a given work was associated with
635 * @work: the work item of interest
636 *
637 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 638 *
68e13a67
LJ
639 * Pools are created and destroyed under wq_pool_mutex, and allows read
640 * access under sched-RCU read lock. As such, this function should be
641 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
642 *
643 * All fields of the returned pool are accessible as long as the above
644 * mentioned locking is in effect. If the returned pool needs to be used
645 * beyond the critical section, the caller is responsible for ensuring the
646 * returned pool is and stays online.
7c3eed5c
TH
647 */
648static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 649{
e120153d 650 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 651 int pool_id;
7a22ad75 652
68e13a67 653 assert_rcu_or_pool_mutex();
fa1b54e6 654
112202d9
TH
655 if (data & WORK_STRUCT_PWQ)
656 return ((struct pool_workqueue *)
7c3eed5c 657 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 658
7c3eed5c
TH
659 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
660 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
661 return NULL;
662
fa1b54e6 663 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
664}
665
666/**
667 * get_work_pool_id - return the worker pool ID a given work is associated with
668 * @work: the work item of interest
669 *
670 * Return the worker_pool ID @work was last associated with.
671 * %WORK_OFFQ_POOL_NONE if none.
672 */
673static int get_work_pool_id(struct work_struct *work)
674{
54d5b7d0
LJ
675 unsigned long data = atomic_long_read(&work->data);
676
112202d9
TH
677 if (data & WORK_STRUCT_PWQ)
678 return ((struct pool_workqueue *)
54d5b7d0 679 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 680
54d5b7d0 681 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
682}
683
bbb68dfa
TH
684static void mark_work_canceling(struct work_struct *work)
685{
7c3eed5c 686 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 687
7c3eed5c
TH
688 pool_id <<= WORK_OFFQ_POOL_SHIFT;
689 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
690}
691
692static bool work_is_canceling(struct work_struct *work)
693{
694 unsigned long data = atomic_long_read(&work->data);
695
112202d9 696 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
697}
698
e22bee78 699/*
3270476a
TH
700 * Policy functions. These define the policies on how the global worker
701 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 702 * they're being called with pool->lock held.
e22bee78
TH
703 */
704
63d95a91 705static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 706{
e19e397a 707 return !atomic_read(&pool->nr_running);
a848e3b6
ON
708}
709
4594bf15 710/*
e22bee78
TH
711 * Need to wake up a worker? Called from anything but currently
712 * running workers.
974271c4
TH
713 *
714 * Note that, because unbound workers never contribute to nr_running, this
706026c2 715 * function will always return %true for unbound pools as long as the
974271c4 716 * worklist isn't empty.
4594bf15 717 */
63d95a91 718static bool need_more_worker(struct worker_pool *pool)
365970a1 719{
63d95a91 720 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 721}
4594bf15 722
e22bee78 723/* Can I start working? Called from busy but !running workers. */
63d95a91 724static bool may_start_working(struct worker_pool *pool)
e22bee78 725{
63d95a91 726 return pool->nr_idle;
e22bee78
TH
727}
728
729/* Do I need to keep working? Called from currently running workers. */
63d95a91 730static bool keep_working(struct worker_pool *pool)
e22bee78 731{
e19e397a
TH
732 return !list_empty(&pool->worklist) &&
733 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
734}
735
736/* Do we need a new worker? Called from manager. */
63d95a91 737static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 740}
365970a1 741
e22bee78 742/* Do I need to be the manager? */
63d95a91 743static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 744{
63d95a91 745 return need_to_create_worker(pool) ||
11ebea50 746 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
747}
748
749/* Do we have too many workers and should some go away? */
63d95a91 750static bool too_many_workers(struct worker_pool *pool)
e22bee78 751{
34a06bd6 752 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
753 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
754 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 755
ea1abd61
LJ
756 /*
757 * nr_idle and idle_list may disagree if idle rebinding is in
758 * progress. Never return %true if idle_list is empty.
759 */
760 if (list_empty(&pool->idle_list))
761 return false;
762
e22bee78 763 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
764}
765
4d707b9f 766/*
e22bee78
TH
767 * Wake up functions.
768 */
769
7e11629d 770/* Return the first worker. Safe with preemption disabled */
63d95a91 771static struct worker *first_worker(struct worker_pool *pool)
7e11629d 772{
63d95a91 773 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
774 return NULL;
775
63d95a91 776 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
777}
778
779/**
780 * wake_up_worker - wake up an idle worker
63d95a91 781 * @pool: worker pool to wake worker from
7e11629d 782 *
63d95a91 783 * Wake up the first idle worker of @pool.
7e11629d
TH
784 *
785 * CONTEXT:
d565ed63 786 * spin_lock_irq(pool->lock).
7e11629d 787 */
63d95a91 788static void wake_up_worker(struct worker_pool *pool)
7e11629d 789{
63d95a91 790 struct worker *worker = first_worker(pool);
7e11629d
TH
791
792 if (likely(worker))
793 wake_up_process(worker->task);
794}
795
d302f017 796/**
e22bee78
TH
797 * wq_worker_waking_up - a worker is waking up
798 * @task: task waking up
799 * @cpu: CPU @task is waking up to
800 *
801 * This function is called during try_to_wake_up() when a worker is
802 * being awoken.
803 *
804 * CONTEXT:
805 * spin_lock_irq(rq->lock)
806 */
d84ff051 807void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
808{
809 struct worker *worker = kthread_data(task);
810
36576000 811 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 812 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 813 atomic_inc(&worker->pool->nr_running);
36576000 814 }
e22bee78
TH
815}
816
817/**
818 * wq_worker_sleeping - a worker is going to sleep
819 * @task: task going to sleep
820 * @cpu: CPU in question, must be the current CPU number
821 *
822 * This function is called during schedule() when a busy worker is
823 * going to sleep. Worker on the same cpu can be woken up by
824 * returning pointer to its task.
825 *
826 * CONTEXT:
827 * spin_lock_irq(rq->lock)
828 *
829 * RETURNS:
830 * Worker task on @cpu to wake up, %NULL if none.
831 */
d84ff051 832struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
833{
834 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 835 struct worker_pool *pool;
e22bee78 836
111c225a
TH
837 /*
838 * Rescuers, which may not have all the fields set up like normal
839 * workers, also reach here, let's not access anything before
840 * checking NOT_RUNNING.
841 */
2d64672e 842 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
843 return NULL;
844
111c225a 845 pool = worker->pool;
111c225a 846
e22bee78 847 /* this can only happen on the local cpu */
6183c009
TH
848 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
849 return NULL;
e22bee78
TH
850
851 /*
852 * The counterpart of the following dec_and_test, implied mb,
853 * worklist not empty test sequence is in insert_work().
854 * Please read comment there.
855 *
628c78e7
TH
856 * NOT_RUNNING is clear. This means that we're bound to and
857 * running on the local cpu w/ rq lock held and preemption
858 * disabled, which in turn means that none else could be
d565ed63 859 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 860 * lock is safe.
e22bee78 861 */
e19e397a
TH
862 if (atomic_dec_and_test(&pool->nr_running) &&
863 !list_empty(&pool->worklist))
63d95a91 864 to_wakeup = first_worker(pool);
e22bee78
TH
865 return to_wakeup ? to_wakeup->task : NULL;
866}
867
868/**
869 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 870 * @worker: self
d302f017
TH
871 * @flags: flags to set
872 * @wakeup: wakeup an idle worker if necessary
873 *
e22bee78
TH
874 * Set @flags in @worker->flags and adjust nr_running accordingly. If
875 * nr_running becomes zero and @wakeup is %true, an idle worker is
876 * woken up.
d302f017 877 *
cb444766 878 * CONTEXT:
d565ed63 879 * spin_lock_irq(pool->lock)
d302f017
TH
880 */
881static inline void worker_set_flags(struct worker *worker, unsigned int flags,
882 bool wakeup)
883{
bd7bdd43 884 struct worker_pool *pool = worker->pool;
e22bee78 885
cb444766
TH
886 WARN_ON_ONCE(worker->task != current);
887
e22bee78
TH
888 /*
889 * If transitioning into NOT_RUNNING, adjust nr_running and
890 * wake up an idle worker as necessary if requested by
891 * @wakeup.
892 */
893 if ((flags & WORKER_NOT_RUNNING) &&
894 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 895 if (wakeup) {
e19e397a 896 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 897 !list_empty(&pool->worklist))
63d95a91 898 wake_up_worker(pool);
e22bee78 899 } else
e19e397a 900 atomic_dec(&pool->nr_running);
e22bee78
TH
901 }
902
d302f017
TH
903 worker->flags |= flags;
904}
905
906/**
e22bee78 907 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 908 * @worker: self
d302f017
TH
909 * @flags: flags to clear
910 *
e22bee78 911 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 912 *
cb444766 913 * CONTEXT:
d565ed63 914 * spin_lock_irq(pool->lock)
d302f017
TH
915 */
916static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
917{
63d95a91 918 struct worker_pool *pool = worker->pool;
e22bee78
TH
919 unsigned int oflags = worker->flags;
920
cb444766
TH
921 WARN_ON_ONCE(worker->task != current);
922
d302f017 923 worker->flags &= ~flags;
e22bee78 924
42c025f3
TH
925 /*
926 * If transitioning out of NOT_RUNNING, increment nr_running. Note
927 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
928 * of multiple flags, not a single flag.
929 */
e22bee78
TH
930 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
931 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 932 atomic_inc(&pool->nr_running);
d302f017
TH
933}
934
8cca0eea
TH
935/**
936 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 937 * @pool: pool of interest
8cca0eea
TH
938 * @work: work to find worker for
939 *
c9e7cf27
TH
940 * Find a worker which is executing @work on @pool by searching
941 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
942 * to match, its current execution should match the address of @work and
943 * its work function. This is to avoid unwanted dependency between
944 * unrelated work executions through a work item being recycled while still
945 * being executed.
946 *
947 * This is a bit tricky. A work item may be freed once its execution
948 * starts and nothing prevents the freed area from being recycled for
949 * another work item. If the same work item address ends up being reused
950 * before the original execution finishes, workqueue will identify the
951 * recycled work item as currently executing and make it wait until the
952 * current execution finishes, introducing an unwanted dependency.
953 *
c5aa87bb
TH
954 * This function checks the work item address and work function to avoid
955 * false positives. Note that this isn't complete as one may construct a
956 * work function which can introduce dependency onto itself through a
957 * recycled work item. Well, if somebody wants to shoot oneself in the
958 * foot that badly, there's only so much we can do, and if such deadlock
959 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
960 *
961 * CONTEXT:
d565ed63 962 * spin_lock_irq(pool->lock).
8cca0eea
TH
963 *
964 * RETURNS:
965 * Pointer to worker which is executing @work if found, NULL
966 * otherwise.
4d707b9f 967 */
c9e7cf27 968static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 969 struct work_struct *work)
4d707b9f 970{
42f8570f 971 struct worker *worker;
42f8570f 972
b67bfe0d 973 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
974 (unsigned long)work)
975 if (worker->current_work == work &&
976 worker->current_func == work->func)
42f8570f
SL
977 return worker;
978
979 return NULL;
4d707b9f
ON
980}
981
bf4ede01
TH
982/**
983 * move_linked_works - move linked works to a list
984 * @work: start of series of works to be scheduled
985 * @head: target list to append @work to
986 * @nextp: out paramter for nested worklist walking
987 *
988 * Schedule linked works starting from @work to @head. Work series to
989 * be scheduled starts at @work and includes any consecutive work with
990 * WORK_STRUCT_LINKED set in its predecessor.
991 *
992 * If @nextp is not NULL, it's updated to point to the next work of
993 * the last scheduled work. This allows move_linked_works() to be
994 * nested inside outer list_for_each_entry_safe().
995 *
996 * CONTEXT:
d565ed63 997 * spin_lock_irq(pool->lock).
bf4ede01
TH
998 */
999static void move_linked_works(struct work_struct *work, struct list_head *head,
1000 struct work_struct **nextp)
1001{
1002 struct work_struct *n;
1003
1004 /*
1005 * Linked worklist will always end before the end of the list,
1006 * use NULL for list head.
1007 */
1008 list_for_each_entry_safe_from(work, n, NULL, entry) {
1009 list_move_tail(&work->entry, head);
1010 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1011 break;
1012 }
1013
1014 /*
1015 * If we're already inside safe list traversal and have moved
1016 * multiple works to the scheduled queue, the next position
1017 * needs to be updated.
1018 */
1019 if (nextp)
1020 *nextp = n;
1021}
1022
8864b4e5
TH
1023/**
1024 * get_pwq - get an extra reference on the specified pool_workqueue
1025 * @pwq: pool_workqueue to get
1026 *
1027 * Obtain an extra reference on @pwq. The caller should guarantee that
1028 * @pwq has positive refcnt and be holding the matching pool->lock.
1029 */
1030static void get_pwq(struct pool_workqueue *pwq)
1031{
1032 lockdep_assert_held(&pwq->pool->lock);
1033 WARN_ON_ONCE(pwq->refcnt <= 0);
1034 pwq->refcnt++;
1035}
1036
1037/**
1038 * put_pwq - put a pool_workqueue reference
1039 * @pwq: pool_workqueue to put
1040 *
1041 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1042 * destruction. The caller should be holding the matching pool->lock.
1043 */
1044static void put_pwq(struct pool_workqueue *pwq)
1045{
1046 lockdep_assert_held(&pwq->pool->lock);
1047 if (likely(--pwq->refcnt))
1048 return;
1049 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1050 return;
1051 /*
1052 * @pwq can't be released under pool->lock, bounce to
1053 * pwq_unbound_release_workfn(). This never recurses on the same
1054 * pool->lock as this path is taken only for unbound workqueues and
1055 * the release work item is scheduled on a per-cpu workqueue. To
1056 * avoid lockdep warning, unbound pool->locks are given lockdep
1057 * subclass of 1 in get_unbound_pool().
1058 */
1059 schedule_work(&pwq->unbound_release_work);
1060}
1061
dce90d47
TH
1062/**
1063 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1064 * @pwq: pool_workqueue to put (can be %NULL)
1065 *
1066 * put_pwq() with locking. This function also allows %NULL @pwq.
1067 */
1068static void put_pwq_unlocked(struct pool_workqueue *pwq)
1069{
1070 if (pwq) {
1071 /*
1072 * As both pwqs and pools are sched-RCU protected, the
1073 * following lock operations are safe.
1074 */
1075 spin_lock_irq(&pwq->pool->lock);
1076 put_pwq(pwq);
1077 spin_unlock_irq(&pwq->pool->lock);
1078 }
1079}
1080
112202d9 1081static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1082{
112202d9 1083 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1084
1085 trace_workqueue_activate_work(work);
112202d9 1086 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1087 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1088 pwq->nr_active++;
bf4ede01
TH
1089}
1090
112202d9 1091static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1092{
112202d9 1093 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1094 struct work_struct, entry);
1095
112202d9 1096 pwq_activate_delayed_work(work);
3aa62497
LJ
1097}
1098
bf4ede01 1099/**
112202d9
TH
1100 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1101 * @pwq: pwq of interest
bf4ede01 1102 * @color: color of work which left the queue
bf4ede01
TH
1103 *
1104 * A work either has completed or is removed from pending queue,
112202d9 1105 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1106 *
1107 * CONTEXT:
d565ed63 1108 * spin_lock_irq(pool->lock).
bf4ede01 1109 */
112202d9 1110static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1111{
8864b4e5 1112 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1113 if (color == WORK_NO_COLOR)
8864b4e5 1114 goto out_put;
bf4ede01 1115
112202d9 1116 pwq->nr_in_flight[color]--;
bf4ede01 1117
112202d9
TH
1118 pwq->nr_active--;
1119 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1120 /* one down, submit a delayed one */
112202d9
TH
1121 if (pwq->nr_active < pwq->max_active)
1122 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1123 }
1124
1125 /* is flush in progress and are we at the flushing tip? */
112202d9 1126 if (likely(pwq->flush_color != color))
8864b4e5 1127 goto out_put;
bf4ede01
TH
1128
1129 /* are there still in-flight works? */
112202d9 1130 if (pwq->nr_in_flight[color])
8864b4e5 1131 goto out_put;
bf4ede01 1132
112202d9
TH
1133 /* this pwq is done, clear flush_color */
1134 pwq->flush_color = -1;
bf4ede01
TH
1135
1136 /*
112202d9 1137 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1138 * will handle the rest.
1139 */
112202d9
TH
1140 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1141 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1142out_put:
1143 put_pwq(pwq);
bf4ede01
TH
1144}
1145
36e227d2 1146/**
bbb68dfa 1147 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1148 * @work: work item to steal
1149 * @is_dwork: @work is a delayed_work
bbb68dfa 1150 * @flags: place to store irq state
36e227d2
TH
1151 *
1152 * Try to grab PENDING bit of @work. This function can handle @work in any
1153 * stable state - idle, on timer or on worklist. Return values are
1154 *
1155 * 1 if @work was pending and we successfully stole PENDING
1156 * 0 if @work was idle and we claimed PENDING
1157 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1158 * -ENOENT if someone else is canceling @work, this state may persist
1159 * for arbitrarily long
36e227d2 1160 *
bbb68dfa 1161 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1162 * interrupted while holding PENDING and @work off queue, irq must be
1163 * disabled on entry. This, combined with delayed_work->timer being
1164 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1165 *
1166 * On successful return, >= 0, irq is disabled and the caller is
1167 * responsible for releasing it using local_irq_restore(*@flags).
1168 *
e0aecdd8 1169 * This function is safe to call from any context including IRQ handler.
bf4ede01 1170 */
bbb68dfa
TH
1171static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1172 unsigned long *flags)
bf4ede01 1173{
d565ed63 1174 struct worker_pool *pool;
112202d9 1175 struct pool_workqueue *pwq;
bf4ede01 1176
bbb68dfa
TH
1177 local_irq_save(*flags);
1178
36e227d2
TH
1179 /* try to steal the timer if it exists */
1180 if (is_dwork) {
1181 struct delayed_work *dwork = to_delayed_work(work);
1182
e0aecdd8
TH
1183 /*
1184 * dwork->timer is irqsafe. If del_timer() fails, it's
1185 * guaranteed that the timer is not queued anywhere and not
1186 * running on the local CPU.
1187 */
36e227d2
TH
1188 if (likely(del_timer(&dwork->timer)))
1189 return 1;
1190 }
1191
1192 /* try to claim PENDING the normal way */
bf4ede01
TH
1193 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1194 return 0;
1195
1196 /*
1197 * The queueing is in progress, or it is already queued. Try to
1198 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1199 */
d565ed63
TH
1200 pool = get_work_pool(work);
1201 if (!pool)
bbb68dfa 1202 goto fail;
bf4ede01 1203
d565ed63 1204 spin_lock(&pool->lock);
0b3dae68 1205 /*
112202d9
TH
1206 * work->data is guaranteed to point to pwq only while the work
1207 * item is queued on pwq->wq, and both updating work->data to point
1208 * to pwq on queueing and to pool on dequeueing are done under
1209 * pwq->pool->lock. This in turn guarantees that, if work->data
1210 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1211 * item is currently queued on that pool.
1212 */
112202d9
TH
1213 pwq = get_work_pwq(work);
1214 if (pwq && pwq->pool == pool) {
16062836
TH
1215 debug_work_deactivate(work);
1216
1217 /*
1218 * A delayed work item cannot be grabbed directly because
1219 * it might have linked NO_COLOR work items which, if left
112202d9 1220 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1221 * management later on and cause stall. Make sure the work
1222 * item is activated before grabbing.
1223 */
1224 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1225 pwq_activate_delayed_work(work);
16062836
TH
1226
1227 list_del_init(&work->entry);
112202d9 1228 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1229
112202d9 1230 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1231 set_work_pool_and_keep_pending(work, pool->id);
1232
1233 spin_unlock(&pool->lock);
1234 return 1;
bf4ede01 1235 }
d565ed63 1236 spin_unlock(&pool->lock);
bbb68dfa
TH
1237fail:
1238 local_irq_restore(*flags);
1239 if (work_is_canceling(work))
1240 return -ENOENT;
1241 cpu_relax();
36e227d2 1242 return -EAGAIN;
bf4ede01
TH
1243}
1244
4690c4ab 1245/**
706026c2 1246 * insert_work - insert a work into a pool
112202d9 1247 * @pwq: pwq @work belongs to
4690c4ab
TH
1248 * @work: work to insert
1249 * @head: insertion point
1250 * @extra_flags: extra WORK_STRUCT_* flags to set
1251 *
112202d9 1252 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1253 * work_struct flags.
4690c4ab
TH
1254 *
1255 * CONTEXT:
d565ed63 1256 * spin_lock_irq(pool->lock).
4690c4ab 1257 */
112202d9
TH
1258static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1259 struct list_head *head, unsigned int extra_flags)
b89deed3 1260{
112202d9 1261 struct worker_pool *pool = pwq->pool;
e22bee78 1262
4690c4ab 1263 /* we own @work, set data and link */
112202d9 1264 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1265 list_add_tail(&work->entry, head);
8864b4e5 1266 get_pwq(pwq);
e22bee78
TH
1267
1268 /*
c5aa87bb
TH
1269 * Ensure either wq_worker_sleeping() sees the above
1270 * list_add_tail() or we see zero nr_running to avoid workers lying
1271 * around lazily while there are works to be processed.
e22bee78
TH
1272 */
1273 smp_mb();
1274
63d95a91
TH
1275 if (__need_more_worker(pool))
1276 wake_up_worker(pool);
b89deed3
ON
1277}
1278
c8efcc25
TH
1279/*
1280 * Test whether @work is being queued from another work executing on the
8d03ecfe 1281 * same workqueue.
c8efcc25
TH
1282 */
1283static bool is_chained_work(struct workqueue_struct *wq)
1284{
8d03ecfe
TH
1285 struct worker *worker;
1286
1287 worker = current_wq_worker();
1288 /*
1289 * Return %true iff I'm a worker execuing a work item on @wq. If
1290 * I'm @worker, it's safe to dereference it without locking.
1291 */
112202d9 1292 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1293}
1294
d84ff051 1295static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1296 struct work_struct *work)
1297{
112202d9 1298 struct pool_workqueue *pwq;
c9178087 1299 struct worker_pool *last_pool;
1e19ffc6 1300 struct list_head *worklist;
8a2e8e5d 1301 unsigned int work_flags;
b75cac93 1302 unsigned int req_cpu = cpu;
8930caba
TH
1303
1304 /*
1305 * While a work item is PENDING && off queue, a task trying to
1306 * steal the PENDING will busy-loop waiting for it to either get
1307 * queued or lose PENDING. Grabbing PENDING and queueing should
1308 * happen with IRQ disabled.
1309 */
1310 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1311
dc186ad7 1312 debug_work_activate(work);
1e19ffc6 1313
c8efcc25 1314 /* if dying, only works from the same workqueue are allowed */
618b01eb 1315 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1316 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1317 return;
9e8cd2f5 1318retry:
df2d5ae4
TH
1319 if (req_cpu == WORK_CPU_UNBOUND)
1320 cpu = raw_smp_processor_id();
1321
c9178087 1322 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1323 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1325 else
1326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1327
c9178087
TH
1328 /*
1329 * If @work was previously on a different pool, it might still be
1330 * running there, in which case the work needs to be queued on that
1331 * pool to guarantee non-reentrancy.
1332 */
1333 last_pool = get_work_pool(work);
1334 if (last_pool && last_pool != pwq->pool) {
1335 struct worker *worker;
18aa9eff 1336
c9178087 1337 spin_lock(&last_pool->lock);
18aa9eff 1338
c9178087 1339 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1340
c9178087
TH
1341 if (worker && worker->current_pwq->wq == wq) {
1342 pwq = worker->current_pwq;
8930caba 1343 } else {
c9178087
TH
1344 /* meh... not running there, queue here */
1345 spin_unlock(&last_pool->lock);
112202d9 1346 spin_lock(&pwq->pool->lock);
8930caba 1347 }
f3421797 1348 } else {
112202d9 1349 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1350 }
1351
9e8cd2f5
TH
1352 /*
1353 * pwq is determined and locked. For unbound pools, we could have
1354 * raced with pwq release and it could already be dead. If its
1355 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1356 * without another pwq replacing it in the numa_pwq_tbl or while
1357 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1358 * make forward-progress.
1359 */
1360 if (unlikely(!pwq->refcnt)) {
1361 if (wq->flags & WQ_UNBOUND) {
1362 spin_unlock(&pwq->pool->lock);
1363 cpu_relax();
1364 goto retry;
1365 }
1366 /* oops */
1367 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1368 wq->name, cpu);
1369 }
1370
112202d9
TH
1371 /* pwq determined, queue */
1372 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1373
f5b2552b 1374 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1375 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1376 return;
1377 }
1e19ffc6 1378
112202d9
TH
1379 pwq->nr_in_flight[pwq->work_color]++;
1380 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1381
112202d9 1382 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1383 trace_workqueue_activate_work(work);
112202d9
TH
1384 pwq->nr_active++;
1385 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1386 } else {
1387 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1388 worklist = &pwq->delayed_works;
8a2e8e5d 1389 }
1e19ffc6 1390
112202d9 1391 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1392
112202d9 1393 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1394}
1395
0fcb78c2 1396/**
c1a220e7
ZR
1397 * queue_work_on - queue work on specific cpu
1398 * @cpu: CPU number to execute work on
0fcb78c2
REB
1399 * @wq: workqueue to use
1400 * @work: work to queue
1401 *
d4283e93 1402 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1403 *
c1a220e7
ZR
1404 * We queue the work to a specific CPU, the caller must ensure it
1405 * can't go away.
1da177e4 1406 */
d4283e93
TH
1407bool queue_work_on(int cpu, struct workqueue_struct *wq,
1408 struct work_struct *work)
1da177e4 1409{
d4283e93 1410 bool ret = false;
8930caba 1411 unsigned long flags;
ef1ca236 1412
8930caba 1413 local_irq_save(flags);
c1a220e7 1414
22df02bb 1415 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1416 __queue_work(cpu, wq, work);
d4283e93 1417 ret = true;
c1a220e7 1418 }
ef1ca236 1419
8930caba 1420 local_irq_restore(flags);
1da177e4
LT
1421 return ret;
1422}
c1a220e7 1423EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1424
d8e794df 1425void delayed_work_timer_fn(unsigned long __data)
1da177e4 1426{
52bad64d 1427 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1428
e0aecdd8 1429 /* should have been called from irqsafe timer with irq already off */
60c057bc 1430 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1431}
1438ade5 1432EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1433
7beb2edf
TH
1434static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1435 struct delayed_work *dwork, unsigned long delay)
1da177e4 1436{
7beb2edf
TH
1437 struct timer_list *timer = &dwork->timer;
1438 struct work_struct *work = &dwork->work;
7beb2edf
TH
1439
1440 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1441 timer->data != (unsigned long)dwork);
fc4b514f
TH
1442 WARN_ON_ONCE(timer_pending(timer));
1443 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1444
8852aac2
TH
1445 /*
1446 * If @delay is 0, queue @dwork->work immediately. This is for
1447 * both optimization and correctness. The earliest @timer can
1448 * expire is on the closest next tick and delayed_work users depend
1449 * on that there's no such delay when @delay is 0.
1450 */
1451 if (!delay) {
1452 __queue_work(cpu, wq, &dwork->work);
1453 return;
1454 }
1455
7beb2edf 1456 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1457
60c057bc 1458 dwork->wq = wq;
1265057f 1459 dwork->cpu = cpu;
7beb2edf
TH
1460 timer->expires = jiffies + delay;
1461
1462 if (unlikely(cpu != WORK_CPU_UNBOUND))
1463 add_timer_on(timer, cpu);
1464 else
1465 add_timer(timer);
1da177e4
LT
1466}
1467
0fcb78c2
REB
1468/**
1469 * queue_delayed_work_on - queue work on specific CPU after delay
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
af9997e4 1472 * @dwork: work to queue
0fcb78c2
REB
1473 * @delay: number of jiffies to wait before queueing
1474 *
715f1300
TH
1475 * Returns %false if @work was already on a queue, %true otherwise. If
1476 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1477 * execution.
0fcb78c2 1478 */
d4283e93
TH
1479bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1481{
52bad64d 1482 struct work_struct *work = &dwork->work;
d4283e93 1483 bool ret = false;
8930caba 1484 unsigned long flags;
7a6bc1cd 1485
8930caba
TH
1486 /* read the comment in __queue_work() */
1487 local_irq_save(flags);
7a6bc1cd 1488
22df02bb 1489 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1490 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1491 ret = true;
7a6bc1cd 1492 }
8a3e77cc 1493
8930caba 1494 local_irq_restore(flags);
7a6bc1cd
VP
1495 return ret;
1496}
ae90dd5d 1497EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1498
8376fe22
TH
1499/**
1500 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1501 * @cpu: CPU number to execute work on
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1507 * modify @dwork's timer so that it expires after @delay. If @delay is
1508 * zero, @work is guaranteed to be scheduled immediately regardless of its
1509 * current state.
1510 *
1511 * Returns %false if @dwork was idle and queued, %true if @dwork was
1512 * pending and its timer was modified.
1513 *
e0aecdd8 1514 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1515 * See try_to_grab_pending() for details.
1516 */
1517bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
1519{
1520 unsigned long flags;
1521 int ret;
c7fc77f7 1522
8376fe22
TH
1523 do {
1524 ret = try_to_grab_pending(&dwork->work, true, &flags);
1525 } while (unlikely(ret == -EAGAIN));
63bc0362 1526
8376fe22
TH
1527 if (likely(ret >= 0)) {
1528 __queue_delayed_work(cpu, wq, dwork, delay);
1529 local_irq_restore(flags);
7a6bc1cd 1530 }
8376fe22
TH
1531
1532 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1533 return ret;
1534}
8376fe22
TH
1535EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1536
c8e55f36
TH
1537/**
1538 * worker_enter_idle - enter idle state
1539 * @worker: worker which is entering idle state
1540 *
1541 * @worker is entering idle state. Update stats and idle timer if
1542 * necessary.
1543 *
1544 * LOCKING:
d565ed63 1545 * spin_lock_irq(pool->lock).
c8e55f36
TH
1546 */
1547static void worker_enter_idle(struct worker *worker)
1da177e4 1548{
bd7bdd43 1549 struct worker_pool *pool = worker->pool;
c8e55f36 1550
6183c009
TH
1551 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1552 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1553 (worker->hentry.next || worker->hentry.pprev)))
1554 return;
c8e55f36 1555
cb444766
TH
1556 /* can't use worker_set_flags(), also called from start_worker() */
1557 worker->flags |= WORKER_IDLE;
bd7bdd43 1558 pool->nr_idle++;
e22bee78 1559 worker->last_active = jiffies;
c8e55f36
TH
1560
1561 /* idle_list is LIFO */
bd7bdd43 1562 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1563
628c78e7
TH
1564 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1565 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1566
544ecf31 1567 /*
706026c2 1568 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1569 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1570 * nr_running, the warning may trigger spuriously. Check iff
1571 * unbind is not in progress.
544ecf31 1572 */
24647570 1573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1574 pool->nr_workers == pool->nr_idle &&
e19e397a 1575 atomic_read(&pool->nr_running));
c8e55f36
TH
1576}
1577
1578/**
1579 * worker_leave_idle - leave idle state
1580 * @worker: worker which is leaving idle state
1581 *
1582 * @worker is leaving idle state. Update stats.
1583 *
1584 * LOCKING:
d565ed63 1585 * spin_lock_irq(pool->lock).
c8e55f36
TH
1586 */
1587static void worker_leave_idle(struct worker *worker)
1588{
bd7bdd43 1589 struct worker_pool *pool = worker->pool;
c8e55f36 1590
6183c009
TH
1591 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1592 return;
d302f017 1593 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1594 pool->nr_idle--;
c8e55f36
TH
1595 list_del_init(&worker->entry);
1596}
1597
e22bee78 1598/**
f36dc67b
LJ
1599 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1600 * @pool: target worker_pool
1601 *
1602 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1603 *
1604 * Works which are scheduled while the cpu is online must at least be
1605 * scheduled to a worker which is bound to the cpu so that if they are
1606 * flushed from cpu callbacks while cpu is going down, they are
1607 * guaranteed to execute on the cpu.
1608 *
f5faa077 1609 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1610 * themselves to the target cpu and may race with cpu going down or
1611 * coming online. kthread_bind() can't be used because it may put the
1612 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1613 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1614 * [dis]associated in the meantime.
1615 *
706026c2 1616 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1617 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1618 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1619 * enters idle state or fetches works without dropping lock, it can
1620 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1621 *
1622 * CONTEXT:
d565ed63 1623 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1624 * held.
1625 *
1626 * RETURNS:
706026c2 1627 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1628 * bound), %false if offline.
1629 */
f36dc67b 1630static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1631__acquires(&pool->lock)
e22bee78 1632{
e22bee78 1633 while (true) {
4e6045f1 1634 /*
e22bee78
TH
1635 * The following call may fail, succeed or succeed
1636 * without actually migrating the task to the cpu if
1637 * it races with cpu hotunplug operation. Verify
24647570 1638 * against POOL_DISASSOCIATED.
4e6045f1 1639 */
24647570 1640 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1641 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1642
d565ed63 1643 spin_lock_irq(&pool->lock);
24647570 1644 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1645 return false;
f5faa077 1646 if (task_cpu(current) == pool->cpu &&
7a4e344c 1647 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1648 return true;
d565ed63 1649 spin_unlock_irq(&pool->lock);
e22bee78 1650
5035b20f
TH
1651 /*
1652 * We've raced with CPU hot[un]plug. Give it a breather
1653 * and retry migration. cond_resched() is required here;
1654 * otherwise, we might deadlock against cpu_stop trying to
1655 * bring down the CPU on non-preemptive kernel.
1656 */
e22bee78 1657 cpu_relax();
5035b20f 1658 cond_resched();
e22bee78
TH
1659 }
1660}
1661
c34056a3
TH
1662static struct worker *alloc_worker(void)
1663{
1664 struct worker *worker;
1665
1666 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1667 if (worker) {
1668 INIT_LIST_HEAD(&worker->entry);
affee4b2 1669 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1670 /* on creation a worker is in !idle && prep state */
1671 worker->flags = WORKER_PREP;
c8e55f36 1672 }
c34056a3
TH
1673 return worker;
1674}
1675
1676/**
1677 * create_worker - create a new workqueue worker
63d95a91 1678 * @pool: pool the new worker will belong to
c34056a3 1679 *
63d95a91 1680 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1681 * can be started by calling start_worker() or destroyed using
1682 * destroy_worker().
1683 *
1684 * CONTEXT:
1685 * Might sleep. Does GFP_KERNEL allocations.
1686 *
1687 * RETURNS:
1688 * Pointer to the newly created worker.
1689 */
bc2ae0f5 1690static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1691{
c34056a3 1692 struct worker *worker = NULL;
f3421797 1693 int id = -1;
e3c916a4 1694 char id_buf[16];
c34056a3 1695
cd549687
TH
1696 lockdep_assert_held(&pool->manager_mutex);
1697
822d8405
TH
1698 /*
1699 * ID is needed to determine kthread name. Allocate ID first
1700 * without installing the pointer.
1701 */
1702 idr_preload(GFP_KERNEL);
d565ed63 1703 spin_lock_irq(&pool->lock);
822d8405
TH
1704
1705 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1706
d565ed63 1707 spin_unlock_irq(&pool->lock);
822d8405
TH
1708 idr_preload_end();
1709 if (id < 0)
1710 goto fail;
c34056a3
TH
1711
1712 worker = alloc_worker();
1713 if (!worker)
1714 goto fail;
1715
bd7bdd43 1716 worker->pool = pool;
c34056a3
TH
1717 worker->id = id;
1718
29c91e99 1719 if (pool->cpu >= 0)
e3c916a4
TH
1720 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1721 pool->attrs->nice < 0 ? "H" : "");
f3421797 1722 else
e3c916a4
TH
1723 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1724
f3f90ad4 1725 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1726 "kworker/%s", id_buf);
c34056a3
TH
1727 if (IS_ERR(worker->task))
1728 goto fail;
1729
c5aa87bb
TH
1730 /*
1731 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1732 * online CPUs. It'll be re-applied when any of the CPUs come up.
1733 */
7a4e344c
TH
1734 set_user_nice(worker->task, pool->attrs->nice);
1735 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1736
14a40ffc
TH
1737 /* prevent userland from meddling with cpumask of workqueue workers */
1738 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1739
1740 /*
1741 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1742 * remains stable across this function. See the comments above the
1743 * flag definition for details.
1744 */
1745 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1746 worker->flags |= WORKER_UNBOUND;
c34056a3 1747
822d8405
TH
1748 /* successful, commit the pointer to idr */
1749 spin_lock_irq(&pool->lock);
1750 idr_replace(&pool->worker_idr, worker, worker->id);
1751 spin_unlock_irq(&pool->lock);
1752
c34056a3 1753 return worker;
822d8405 1754
c34056a3
TH
1755fail:
1756 if (id >= 0) {
d565ed63 1757 spin_lock_irq(&pool->lock);
822d8405 1758 idr_remove(&pool->worker_idr, id);
d565ed63 1759 spin_unlock_irq(&pool->lock);
c34056a3
TH
1760 }
1761 kfree(worker);
1762 return NULL;
1763}
1764
1765/**
1766 * start_worker - start a newly created worker
1767 * @worker: worker to start
1768 *
706026c2 1769 * Make the pool aware of @worker and start it.
c34056a3
TH
1770 *
1771 * CONTEXT:
d565ed63 1772 * spin_lock_irq(pool->lock).
c34056a3
TH
1773 */
1774static void start_worker(struct worker *worker)
1775{
cb444766 1776 worker->flags |= WORKER_STARTED;
bd7bdd43 1777 worker->pool->nr_workers++;
c8e55f36 1778 worker_enter_idle(worker);
c34056a3
TH
1779 wake_up_process(worker->task);
1780}
1781
ebf44d16
TH
1782/**
1783 * create_and_start_worker - create and start a worker for a pool
1784 * @pool: the target pool
1785 *
cd549687 1786 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1787 */
1788static int create_and_start_worker(struct worker_pool *pool)
1789{
1790 struct worker *worker;
1791
cd549687
TH
1792 mutex_lock(&pool->manager_mutex);
1793
ebf44d16
TH
1794 worker = create_worker(pool);
1795 if (worker) {
1796 spin_lock_irq(&pool->lock);
1797 start_worker(worker);
1798 spin_unlock_irq(&pool->lock);
1799 }
1800
cd549687
TH
1801 mutex_unlock(&pool->manager_mutex);
1802
ebf44d16
TH
1803 return worker ? 0 : -ENOMEM;
1804}
1805
c34056a3
TH
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
706026c2 1810 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1811 *
1812 * CONTEXT:
d565ed63 1813 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1814 */
1815static void destroy_worker(struct worker *worker)
1816{
bd7bdd43 1817 struct worker_pool *pool = worker->pool;
c34056a3 1818
cd549687
TH
1819 lockdep_assert_held(&pool->manager_mutex);
1820 lockdep_assert_held(&pool->lock);
1821
c34056a3 1822 /* sanity check frenzy */
6183c009
TH
1823 if (WARN_ON(worker->current_work) ||
1824 WARN_ON(!list_empty(&worker->scheduled)))
1825 return;
c34056a3 1826
c8e55f36 1827 if (worker->flags & WORKER_STARTED)
bd7bdd43 1828 pool->nr_workers--;
c8e55f36 1829 if (worker->flags & WORKER_IDLE)
bd7bdd43 1830 pool->nr_idle--;
c8e55f36
TH
1831
1832 list_del_init(&worker->entry);
cb444766 1833 worker->flags |= WORKER_DIE;
c8e55f36 1834
822d8405
TH
1835 idr_remove(&pool->worker_idr, worker->id);
1836
d565ed63 1837 spin_unlock_irq(&pool->lock);
c8e55f36 1838
c34056a3
TH
1839 kthread_stop(worker->task);
1840 kfree(worker);
1841
d565ed63 1842 spin_lock_irq(&pool->lock);
c34056a3
TH
1843}
1844
63d95a91 1845static void idle_worker_timeout(unsigned long __pool)
e22bee78 1846{
63d95a91 1847 struct worker_pool *pool = (void *)__pool;
e22bee78 1848
d565ed63 1849 spin_lock_irq(&pool->lock);
e22bee78 1850
63d95a91 1851 if (too_many_workers(pool)) {
e22bee78
TH
1852 struct worker *worker;
1853 unsigned long expires;
1854
1855 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1856 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1857 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1858
1859 if (time_before(jiffies, expires))
63d95a91 1860 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1861 else {
1862 /* it's been idle for too long, wake up manager */
11ebea50 1863 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1864 wake_up_worker(pool);
d5abe669 1865 }
e22bee78
TH
1866 }
1867
d565ed63 1868 spin_unlock_irq(&pool->lock);
e22bee78 1869}
d5abe669 1870
493a1724 1871static void send_mayday(struct work_struct *work)
e22bee78 1872{
112202d9
TH
1873 struct pool_workqueue *pwq = get_work_pwq(work);
1874 struct workqueue_struct *wq = pwq->wq;
493a1724 1875
2e109a28 1876 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1877
493008a8 1878 if (!wq->rescuer)
493a1724 1879 return;
e22bee78
TH
1880
1881 /* mayday mayday mayday */
493a1724
TH
1882 if (list_empty(&pwq->mayday_node)) {
1883 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1884 wake_up_process(wq->rescuer->task);
493a1724 1885 }
e22bee78
TH
1886}
1887
706026c2 1888static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1889{
63d95a91 1890 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1891 struct work_struct *work;
1892
2e109a28 1893 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1894 spin_lock(&pool->lock);
e22bee78 1895
63d95a91 1896 if (need_to_create_worker(pool)) {
e22bee78
TH
1897 /*
1898 * We've been trying to create a new worker but
1899 * haven't been successful. We might be hitting an
1900 * allocation deadlock. Send distress signals to
1901 * rescuers.
1902 */
63d95a91 1903 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1904 send_mayday(work);
1da177e4 1905 }
e22bee78 1906
493a1724 1907 spin_unlock(&pool->lock);
2e109a28 1908 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1909
63d95a91 1910 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1911}
1912
e22bee78
TH
1913/**
1914 * maybe_create_worker - create a new worker if necessary
63d95a91 1915 * @pool: pool to create a new worker for
e22bee78 1916 *
63d95a91 1917 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1918 * have at least one idle worker on return from this function. If
1919 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1920 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1921 * possible allocation deadlock.
1922 *
c5aa87bb
TH
1923 * On return, need_to_create_worker() is guaranteed to be %false and
1924 * may_start_working() %true.
e22bee78
TH
1925 *
1926 * LOCKING:
d565ed63 1927 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1928 * multiple times. Does GFP_KERNEL allocations. Called only from
1929 * manager.
1930 *
1931 * RETURNS:
c5aa87bb 1932 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1933 * otherwise.
1934 */
63d95a91 1935static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1936__releases(&pool->lock)
1937__acquires(&pool->lock)
1da177e4 1938{
63d95a91 1939 if (!need_to_create_worker(pool))
e22bee78
TH
1940 return false;
1941restart:
d565ed63 1942 spin_unlock_irq(&pool->lock);
9f9c2364 1943
e22bee78 1944 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1945 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1946
1947 while (true) {
1948 struct worker *worker;
1949
bc2ae0f5 1950 worker = create_worker(pool);
e22bee78 1951 if (worker) {
63d95a91 1952 del_timer_sync(&pool->mayday_timer);
d565ed63 1953 spin_lock_irq(&pool->lock);
e22bee78 1954 start_worker(worker);
6183c009
TH
1955 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1956 goto restart;
e22bee78
TH
1957 return true;
1958 }
1959
63d95a91 1960 if (!need_to_create_worker(pool))
e22bee78 1961 break;
1da177e4 1962
e22bee78
TH
1963 __set_current_state(TASK_INTERRUPTIBLE);
1964 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1965
63d95a91 1966 if (!need_to_create_worker(pool))
e22bee78
TH
1967 break;
1968 }
1969
63d95a91 1970 del_timer_sync(&pool->mayday_timer);
d565ed63 1971 spin_lock_irq(&pool->lock);
63d95a91 1972 if (need_to_create_worker(pool))
e22bee78
TH
1973 goto restart;
1974 return true;
1975}
1976
1977/**
1978 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1979 * @pool: pool to destroy workers for
e22bee78 1980 *
63d95a91 1981 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1982 * IDLE_WORKER_TIMEOUT.
1983 *
1984 * LOCKING:
d565ed63 1985 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1986 * multiple times. Called only from manager.
1987 *
1988 * RETURNS:
c5aa87bb 1989 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1990 * otherwise.
1991 */
63d95a91 1992static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1993{
1994 bool ret = false;
1da177e4 1995
63d95a91 1996 while (too_many_workers(pool)) {
e22bee78
TH
1997 struct worker *worker;
1998 unsigned long expires;
3af24433 1999
63d95a91 2000 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2001 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2002
e22bee78 2003 if (time_before(jiffies, expires)) {
63d95a91 2004 mod_timer(&pool->idle_timer, expires);
3af24433 2005 break;
e22bee78 2006 }
1da177e4 2007
e22bee78
TH
2008 destroy_worker(worker);
2009 ret = true;
1da177e4 2010 }
1e19ffc6 2011
e22bee78 2012 return ret;
1e19ffc6
TH
2013}
2014
73f53c4a 2015/**
e22bee78
TH
2016 * manage_workers - manage worker pool
2017 * @worker: self
73f53c4a 2018 *
706026c2 2019 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2020 * to. At any given time, there can be only zero or one manager per
706026c2 2021 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2022 *
2023 * The caller can safely start processing works on false return. On
2024 * true return, it's guaranteed that need_to_create_worker() is false
2025 * and may_start_working() is true.
73f53c4a
TH
2026 *
2027 * CONTEXT:
d565ed63 2028 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2029 * multiple times. Does GFP_KERNEL allocations.
2030 *
2031 * RETURNS:
d565ed63
TH
2032 * spin_lock_irq(pool->lock) which may be released and regrabbed
2033 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2034 */
e22bee78 2035static bool manage_workers(struct worker *worker)
73f53c4a 2036{
63d95a91 2037 struct worker_pool *pool = worker->pool;
e22bee78 2038 bool ret = false;
73f53c4a 2039
bc3a1afc
TH
2040 /*
2041 * Managership is governed by two mutexes - manager_arb and
2042 * manager_mutex. manager_arb handles arbitration of manager role.
2043 * Anyone who successfully grabs manager_arb wins the arbitration
2044 * and becomes the manager. mutex_trylock() on pool->manager_arb
2045 * failure while holding pool->lock reliably indicates that someone
2046 * else is managing the pool and the worker which failed trylock
2047 * can proceed to executing work items. This means that anyone
2048 * grabbing manager_arb is responsible for actually performing
2049 * manager duties. If manager_arb is grabbed and released without
2050 * actual management, the pool may stall indefinitely.
2051 *
2052 * manager_mutex is used for exclusion of actual management
2053 * operations. The holder of manager_mutex can be sure that none
2054 * of management operations, including creation and destruction of
2055 * workers, won't take place until the mutex is released. Because
2056 * manager_mutex doesn't interfere with manager role arbitration,
2057 * it is guaranteed that the pool's management, while may be
2058 * delayed, won't be disturbed by someone else grabbing
2059 * manager_mutex.
2060 */
34a06bd6 2061 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2062 return ret;
1e19ffc6 2063
ee378aa4 2064 /*
bc3a1afc
TH
2065 * With manager arbitration won, manager_mutex would be free in
2066 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2067 */
bc3a1afc 2068 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2069 spin_unlock_irq(&pool->lock);
bc3a1afc 2070 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2071 ret = true;
2072 }
73f53c4a 2073
11ebea50 2074 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2075
2076 /*
e22bee78
TH
2077 * Destroy and then create so that may_start_working() is true
2078 * on return.
73f53c4a 2079 */
63d95a91
TH
2080 ret |= maybe_destroy_workers(pool);
2081 ret |= maybe_create_worker(pool);
e22bee78 2082
bc3a1afc 2083 mutex_unlock(&pool->manager_mutex);
34a06bd6 2084 mutex_unlock(&pool->manager_arb);
e22bee78 2085 return ret;
73f53c4a
TH
2086}
2087
a62428c0
TH
2088/**
2089 * process_one_work - process single work
c34056a3 2090 * @worker: self
a62428c0
TH
2091 * @work: work to process
2092 *
2093 * Process @work. This function contains all the logics necessary to
2094 * process a single work including synchronization against and
2095 * interaction with other workers on the same cpu, queueing and
2096 * flushing. As long as context requirement is met, any worker can
2097 * call this function to process a work.
2098 *
2099 * CONTEXT:
d565ed63 2100 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2101 */
c34056a3 2102static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2103__releases(&pool->lock)
2104__acquires(&pool->lock)
a62428c0 2105{
112202d9 2106 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2107 struct worker_pool *pool = worker->pool;
112202d9 2108 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2109 int work_color;
7e11629d 2110 struct worker *collision;
a62428c0
TH
2111#ifdef CONFIG_LOCKDEP
2112 /*
2113 * It is permissible to free the struct work_struct from
2114 * inside the function that is called from it, this we need to
2115 * take into account for lockdep too. To avoid bogus "held
2116 * lock freed" warnings as well as problems when looking into
2117 * work->lockdep_map, make a copy and use that here.
2118 */
4d82a1de
PZ
2119 struct lockdep_map lockdep_map;
2120
2121 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2122#endif
6fec10a1
TH
2123 /*
2124 * Ensure we're on the correct CPU. DISASSOCIATED test is
2125 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2126 * unbound or a disassociated pool.
6fec10a1 2127 */
5f7dabfd 2128 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2129 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2130 raw_smp_processor_id() != pool->cpu);
25511a47 2131
7e11629d
TH
2132 /*
2133 * A single work shouldn't be executed concurrently by
2134 * multiple workers on a single cpu. Check whether anyone is
2135 * already processing the work. If so, defer the work to the
2136 * currently executing one.
2137 */
c9e7cf27 2138 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2139 if (unlikely(collision)) {
2140 move_linked_works(work, &collision->scheduled, NULL);
2141 return;
2142 }
2143
8930caba 2144 /* claim and dequeue */
a62428c0 2145 debug_work_deactivate(work);
c9e7cf27 2146 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2147 worker->current_work = work;
a2c1c57b 2148 worker->current_func = work->func;
112202d9 2149 worker->current_pwq = pwq;
73f53c4a 2150 work_color = get_work_color(work);
7a22ad75 2151
a62428c0
TH
2152 list_del_init(&work->entry);
2153
fb0e7beb
TH
2154 /*
2155 * CPU intensive works don't participate in concurrency
2156 * management. They're the scheduler's responsibility.
2157 */
2158 if (unlikely(cpu_intensive))
2159 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2160
974271c4 2161 /*
d565ed63 2162 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2163 * executed ASAP. Wake up another worker if necessary.
2164 */
63d95a91
TH
2165 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2166 wake_up_worker(pool);
974271c4 2167
8930caba 2168 /*
7c3eed5c 2169 * Record the last pool and clear PENDING which should be the last
d565ed63 2170 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2171 * PENDING and queued state changes happen together while IRQ is
2172 * disabled.
8930caba 2173 */
7c3eed5c 2174 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2175
d565ed63 2176 spin_unlock_irq(&pool->lock);
a62428c0 2177
112202d9 2178 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2179 lock_map_acquire(&lockdep_map);
e36c886a 2180 trace_workqueue_execute_start(work);
a2c1c57b 2181 worker->current_func(work);
e36c886a
AV
2182 /*
2183 * While we must be careful to not use "work" after this, the trace
2184 * point will only record its address.
2185 */
2186 trace_workqueue_execute_end(work);
a62428c0 2187 lock_map_release(&lockdep_map);
112202d9 2188 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2189
2190 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2191 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2192 " last function: %pf\n",
a2c1c57b
TH
2193 current->comm, preempt_count(), task_pid_nr(current),
2194 worker->current_func);
a62428c0
TH
2195 debug_show_held_locks(current);
2196 dump_stack();
2197 }
2198
d565ed63 2199 spin_lock_irq(&pool->lock);
a62428c0 2200
fb0e7beb
TH
2201 /* clear cpu intensive status */
2202 if (unlikely(cpu_intensive))
2203 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2204
a62428c0 2205 /* we're done with it, release */
42f8570f 2206 hash_del(&worker->hentry);
c34056a3 2207 worker->current_work = NULL;
a2c1c57b 2208 worker->current_func = NULL;
112202d9 2209 worker->current_pwq = NULL;
3d1cb205 2210 worker->desc_valid = false;
112202d9 2211 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2212}
2213
affee4b2
TH
2214/**
2215 * process_scheduled_works - process scheduled works
2216 * @worker: self
2217 *
2218 * Process all scheduled works. Please note that the scheduled list
2219 * may change while processing a work, so this function repeatedly
2220 * fetches a work from the top and executes it.
2221 *
2222 * CONTEXT:
d565ed63 2223 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2224 * multiple times.
2225 */
2226static void process_scheduled_works(struct worker *worker)
1da177e4 2227{
affee4b2
TH
2228 while (!list_empty(&worker->scheduled)) {
2229 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2230 struct work_struct, entry);
c34056a3 2231 process_one_work(worker, work);
1da177e4 2232 }
1da177e4
LT
2233}
2234
4690c4ab
TH
2235/**
2236 * worker_thread - the worker thread function
c34056a3 2237 * @__worker: self
4690c4ab 2238 *
c5aa87bb
TH
2239 * The worker thread function. All workers belong to a worker_pool -
2240 * either a per-cpu one or dynamic unbound one. These workers process all
2241 * work items regardless of their specific target workqueue. The only
2242 * exception is work items which belong to workqueues with a rescuer which
2243 * will be explained in rescuer_thread().
4690c4ab 2244 */
c34056a3 2245static int worker_thread(void *__worker)
1da177e4 2246{
c34056a3 2247 struct worker *worker = __worker;
bd7bdd43 2248 struct worker_pool *pool = worker->pool;
1da177e4 2249
e22bee78
TH
2250 /* tell the scheduler that this is a workqueue worker */
2251 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2252woke_up:
d565ed63 2253 spin_lock_irq(&pool->lock);
1da177e4 2254
a9ab775b
TH
2255 /* am I supposed to die? */
2256 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2257 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2258 WARN_ON_ONCE(!list_empty(&worker->entry));
2259 worker->task->flags &= ~PF_WQ_WORKER;
2260 return 0;
c8e55f36 2261 }
affee4b2 2262
c8e55f36 2263 worker_leave_idle(worker);
db7bccf4 2264recheck:
e22bee78 2265 /* no more worker necessary? */
63d95a91 2266 if (!need_more_worker(pool))
e22bee78
TH
2267 goto sleep;
2268
2269 /* do we need to manage? */
63d95a91 2270 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2271 goto recheck;
2272
c8e55f36
TH
2273 /*
2274 * ->scheduled list can only be filled while a worker is
2275 * preparing to process a work or actually processing it.
2276 * Make sure nobody diddled with it while I was sleeping.
2277 */
6183c009 2278 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2279
e22bee78 2280 /*
a9ab775b
TH
2281 * Finish PREP stage. We're guaranteed to have at least one idle
2282 * worker or that someone else has already assumed the manager
2283 * role. This is where @worker starts participating in concurrency
2284 * management if applicable and concurrency management is restored
2285 * after being rebound. See rebind_workers() for details.
e22bee78 2286 */
a9ab775b 2287 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2288
2289 do {
c8e55f36 2290 struct work_struct *work =
bd7bdd43 2291 list_first_entry(&pool->worklist,
c8e55f36
TH
2292 struct work_struct, entry);
2293
2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2295 /* optimization path, not strictly necessary */
2296 process_one_work(worker, work);
2297 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2298 process_scheduled_works(worker);
c8e55f36
TH
2299 } else {
2300 move_linked_works(work, &worker->scheduled, NULL);
2301 process_scheduled_works(worker);
affee4b2 2302 }
63d95a91 2303 } while (keep_working(pool));
e22bee78
TH
2304
2305 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2306sleep:
63d95a91 2307 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2308 goto recheck;
d313dd85 2309
c8e55f36 2310 /*
d565ed63
TH
2311 * pool->lock is held and there's no work to process and no need to
2312 * manage, sleep. Workers are woken up only while holding
2313 * pool->lock or from local cpu, so setting the current state
2314 * before releasing pool->lock is enough to prevent losing any
2315 * event.
c8e55f36
TH
2316 */
2317 worker_enter_idle(worker);
2318 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2319 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2320 schedule();
2321 goto woke_up;
1da177e4
LT
2322}
2323
e22bee78
TH
2324/**
2325 * rescuer_thread - the rescuer thread function
111c225a 2326 * @__rescuer: self
e22bee78
TH
2327 *
2328 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2329 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2330 *
706026c2 2331 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2332 * worker which uses GFP_KERNEL allocation which has slight chance of
2333 * developing into deadlock if some works currently on the same queue
2334 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2335 * the problem rescuer solves.
2336 *
706026c2
TH
2337 * When such condition is possible, the pool summons rescuers of all
2338 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2339 * those works so that forward progress can be guaranteed.
2340 *
2341 * This should happen rarely.
2342 */
111c225a 2343static int rescuer_thread(void *__rescuer)
e22bee78 2344{
111c225a
TH
2345 struct worker *rescuer = __rescuer;
2346 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2347 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2348
2349 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2350
2351 /*
2352 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2353 * doesn't participate in concurrency management.
2354 */
2355 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2356repeat:
2357 set_current_state(TASK_INTERRUPTIBLE);
2358
412d32e6
MG
2359 if (kthread_should_stop()) {
2360 __set_current_state(TASK_RUNNING);
111c225a 2361 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2362 return 0;
412d32e6 2363 }
e22bee78 2364
493a1724 2365 /* see whether any pwq is asking for help */
2e109a28 2366 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2367
2368 while (!list_empty(&wq->maydays)) {
2369 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2370 struct pool_workqueue, mayday_node);
112202d9 2371 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2372 struct work_struct *work, *n;
2373
2374 __set_current_state(TASK_RUNNING);
493a1724
TH
2375 list_del_init(&pwq->mayday_node);
2376
2e109a28 2377 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2378
2379 /* migrate to the target cpu if possible */
f36dc67b 2380 worker_maybe_bind_and_lock(pool);
b3104104 2381 rescuer->pool = pool;
e22bee78
TH
2382
2383 /*
2384 * Slurp in all works issued via this workqueue and
2385 * process'em.
2386 */
6183c009 2387 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2388 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2389 if (get_work_pwq(work) == pwq)
e22bee78
TH
2390 move_linked_works(work, scheduled, &n);
2391
2392 process_scheduled_works(rescuer);
7576958a
TH
2393
2394 /*
d565ed63 2395 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2396 * regular worker; otherwise, we end up with 0 concurrency
2397 * and stalling the execution.
2398 */
63d95a91
TH
2399 if (keep_working(pool))
2400 wake_up_worker(pool);
7576958a 2401
b3104104 2402 rescuer->pool = NULL;
493a1724 2403 spin_unlock(&pool->lock);
2e109a28 2404 spin_lock(&wq_mayday_lock);
e22bee78
TH
2405 }
2406
2e109a28 2407 spin_unlock_irq(&wq_mayday_lock);
493a1724 2408
111c225a
TH
2409 /* rescuers should never participate in concurrency management */
2410 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2411 schedule();
2412 goto repeat;
1da177e4
LT
2413}
2414
fc2e4d70
ON
2415struct wq_barrier {
2416 struct work_struct work;
2417 struct completion done;
2418};
2419
2420static void wq_barrier_func(struct work_struct *work)
2421{
2422 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2423 complete(&barr->done);
2424}
2425
4690c4ab
TH
2426/**
2427 * insert_wq_barrier - insert a barrier work
112202d9 2428 * @pwq: pwq to insert barrier into
4690c4ab 2429 * @barr: wq_barrier to insert
affee4b2
TH
2430 * @target: target work to attach @barr to
2431 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2432 *
affee4b2
TH
2433 * @barr is linked to @target such that @barr is completed only after
2434 * @target finishes execution. Please note that the ordering
2435 * guarantee is observed only with respect to @target and on the local
2436 * cpu.
2437 *
2438 * Currently, a queued barrier can't be canceled. This is because
2439 * try_to_grab_pending() can't determine whether the work to be
2440 * grabbed is at the head of the queue and thus can't clear LINKED
2441 * flag of the previous work while there must be a valid next work
2442 * after a work with LINKED flag set.
2443 *
2444 * Note that when @worker is non-NULL, @target may be modified
112202d9 2445 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2446 *
2447 * CONTEXT:
d565ed63 2448 * spin_lock_irq(pool->lock).
4690c4ab 2449 */
112202d9 2450static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2451 struct wq_barrier *barr,
2452 struct work_struct *target, struct worker *worker)
fc2e4d70 2453{
affee4b2
TH
2454 struct list_head *head;
2455 unsigned int linked = 0;
2456
dc186ad7 2457 /*
d565ed63 2458 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2459 * as we know for sure that this will not trigger any of the
2460 * checks and call back into the fixup functions where we
2461 * might deadlock.
2462 */
ca1cab37 2463 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2464 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2465 init_completion(&barr->done);
83c22520 2466
affee4b2
TH
2467 /*
2468 * If @target is currently being executed, schedule the
2469 * barrier to the worker; otherwise, put it after @target.
2470 */
2471 if (worker)
2472 head = worker->scheduled.next;
2473 else {
2474 unsigned long *bits = work_data_bits(target);
2475
2476 head = target->entry.next;
2477 /* there can already be other linked works, inherit and set */
2478 linked = *bits & WORK_STRUCT_LINKED;
2479 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2480 }
2481
dc186ad7 2482 debug_work_activate(&barr->work);
112202d9 2483 insert_work(pwq, &barr->work, head,
affee4b2 2484 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2485}
2486
73f53c4a 2487/**
112202d9 2488 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2489 * @wq: workqueue being flushed
2490 * @flush_color: new flush color, < 0 for no-op
2491 * @work_color: new work color, < 0 for no-op
2492 *
112202d9 2493 * Prepare pwqs for workqueue flushing.
73f53c4a 2494 *
112202d9
TH
2495 * If @flush_color is non-negative, flush_color on all pwqs should be
2496 * -1. If no pwq has in-flight commands at the specified color, all
2497 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2498 * has in flight commands, its pwq->flush_color is set to
2499 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2500 * wakeup logic is armed and %true is returned.
2501 *
2502 * The caller should have initialized @wq->first_flusher prior to
2503 * calling this function with non-negative @flush_color. If
2504 * @flush_color is negative, no flush color update is done and %false
2505 * is returned.
2506 *
112202d9 2507 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2508 * work_color which is previous to @work_color and all will be
2509 * advanced to @work_color.
2510 *
2511 * CONTEXT:
3c25a55d 2512 * mutex_lock(wq->mutex).
73f53c4a
TH
2513 *
2514 * RETURNS:
2515 * %true if @flush_color >= 0 and there's something to flush. %false
2516 * otherwise.
2517 */
112202d9 2518static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2519 int flush_color, int work_color)
1da177e4 2520{
73f53c4a 2521 bool wait = false;
49e3cf44 2522 struct pool_workqueue *pwq;
1da177e4 2523
73f53c4a 2524 if (flush_color >= 0) {
6183c009 2525 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2526 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2527 }
2355b70f 2528
49e3cf44 2529 for_each_pwq(pwq, wq) {
112202d9 2530 struct worker_pool *pool = pwq->pool;
fc2e4d70 2531
b09f4fd3 2532 spin_lock_irq(&pool->lock);
83c22520 2533
73f53c4a 2534 if (flush_color >= 0) {
6183c009 2535 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2536
112202d9
TH
2537 if (pwq->nr_in_flight[flush_color]) {
2538 pwq->flush_color = flush_color;
2539 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2540 wait = true;
2541 }
2542 }
1da177e4 2543
73f53c4a 2544 if (work_color >= 0) {
6183c009 2545 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2546 pwq->work_color = work_color;
73f53c4a 2547 }
1da177e4 2548
b09f4fd3 2549 spin_unlock_irq(&pool->lock);
1da177e4 2550 }
2355b70f 2551
112202d9 2552 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2553 complete(&wq->first_flusher->done);
14441960 2554
73f53c4a 2555 return wait;
1da177e4
LT
2556}
2557
0fcb78c2 2558/**
1da177e4 2559 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2560 * @wq: workqueue to flush
1da177e4 2561 *
c5aa87bb
TH
2562 * This function sleeps until all work items which were queued on entry
2563 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2564 */
7ad5b3a5 2565void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2566{
73f53c4a
TH
2567 struct wq_flusher this_flusher = {
2568 .list = LIST_HEAD_INIT(this_flusher.list),
2569 .flush_color = -1,
2570 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2571 };
2572 int next_color;
1da177e4 2573
3295f0ef
IM
2574 lock_map_acquire(&wq->lockdep_map);
2575 lock_map_release(&wq->lockdep_map);
73f53c4a 2576
3c25a55d 2577 mutex_lock(&wq->mutex);
73f53c4a
TH
2578
2579 /*
2580 * Start-to-wait phase
2581 */
2582 next_color = work_next_color(wq->work_color);
2583
2584 if (next_color != wq->flush_color) {
2585 /*
2586 * Color space is not full. The current work_color
2587 * becomes our flush_color and work_color is advanced
2588 * by one.
2589 */
6183c009 2590 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2591 this_flusher.flush_color = wq->work_color;
2592 wq->work_color = next_color;
2593
2594 if (!wq->first_flusher) {
2595 /* no flush in progress, become the first flusher */
6183c009 2596 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2597
2598 wq->first_flusher = &this_flusher;
2599
112202d9 2600 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2601 wq->work_color)) {
2602 /* nothing to flush, done */
2603 wq->flush_color = next_color;
2604 wq->first_flusher = NULL;
2605 goto out_unlock;
2606 }
2607 } else {
2608 /* wait in queue */
6183c009 2609 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2610 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2611 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2612 }
2613 } else {
2614 /*
2615 * Oops, color space is full, wait on overflow queue.
2616 * The next flush completion will assign us
2617 * flush_color and transfer to flusher_queue.
2618 */
2619 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2620 }
2621
3c25a55d 2622 mutex_unlock(&wq->mutex);
73f53c4a
TH
2623
2624 wait_for_completion(&this_flusher.done);
2625
2626 /*
2627 * Wake-up-and-cascade phase
2628 *
2629 * First flushers are responsible for cascading flushes and
2630 * handling overflow. Non-first flushers can simply return.
2631 */
2632 if (wq->first_flusher != &this_flusher)
2633 return;
2634
3c25a55d 2635 mutex_lock(&wq->mutex);
73f53c4a 2636
4ce48b37
TH
2637 /* we might have raced, check again with mutex held */
2638 if (wq->first_flusher != &this_flusher)
2639 goto out_unlock;
2640
73f53c4a
TH
2641 wq->first_flusher = NULL;
2642
6183c009
TH
2643 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2644 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2645
2646 while (true) {
2647 struct wq_flusher *next, *tmp;
2648
2649 /* complete all the flushers sharing the current flush color */
2650 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2651 if (next->flush_color != wq->flush_color)
2652 break;
2653 list_del_init(&next->list);
2654 complete(&next->done);
2655 }
2656
6183c009
TH
2657 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2658 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2659
2660 /* this flush_color is finished, advance by one */
2661 wq->flush_color = work_next_color(wq->flush_color);
2662
2663 /* one color has been freed, handle overflow queue */
2664 if (!list_empty(&wq->flusher_overflow)) {
2665 /*
2666 * Assign the same color to all overflowed
2667 * flushers, advance work_color and append to
2668 * flusher_queue. This is the start-to-wait
2669 * phase for these overflowed flushers.
2670 */
2671 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2672 tmp->flush_color = wq->work_color;
2673
2674 wq->work_color = work_next_color(wq->work_color);
2675
2676 list_splice_tail_init(&wq->flusher_overflow,
2677 &wq->flusher_queue);
112202d9 2678 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2679 }
2680
2681 if (list_empty(&wq->flusher_queue)) {
6183c009 2682 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2683 break;
2684 }
2685
2686 /*
2687 * Need to flush more colors. Make the next flusher
112202d9 2688 * the new first flusher and arm pwqs.
73f53c4a 2689 */
6183c009
TH
2690 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2691 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2692
2693 list_del_init(&next->list);
2694 wq->first_flusher = next;
2695
112202d9 2696 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2697 break;
2698
2699 /*
2700 * Meh... this color is already done, clear first
2701 * flusher and repeat cascading.
2702 */
2703 wq->first_flusher = NULL;
2704 }
2705
2706out_unlock:
3c25a55d 2707 mutex_unlock(&wq->mutex);
1da177e4 2708}
ae90dd5d 2709EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2710
9c5a2ba7
TH
2711/**
2712 * drain_workqueue - drain a workqueue
2713 * @wq: workqueue to drain
2714 *
2715 * Wait until the workqueue becomes empty. While draining is in progress,
2716 * only chain queueing is allowed. IOW, only currently pending or running
2717 * work items on @wq can queue further work items on it. @wq is flushed
2718 * repeatedly until it becomes empty. The number of flushing is detemined
2719 * by the depth of chaining and should be relatively short. Whine if it
2720 * takes too long.
2721 */
2722void drain_workqueue(struct workqueue_struct *wq)
2723{
2724 unsigned int flush_cnt = 0;
49e3cf44 2725 struct pool_workqueue *pwq;
9c5a2ba7
TH
2726
2727 /*
2728 * __queue_work() needs to test whether there are drainers, is much
2729 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2730 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2731 */
87fc741e 2732 mutex_lock(&wq->mutex);
9c5a2ba7 2733 if (!wq->nr_drainers++)
618b01eb 2734 wq->flags |= __WQ_DRAINING;
87fc741e 2735 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2736reflush:
2737 flush_workqueue(wq);
2738
b09f4fd3 2739 mutex_lock(&wq->mutex);
76af4d93 2740
49e3cf44 2741 for_each_pwq(pwq, wq) {
fa2563e4 2742 bool drained;
9c5a2ba7 2743
b09f4fd3 2744 spin_lock_irq(&pwq->pool->lock);
112202d9 2745 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2746 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2747
2748 if (drained)
9c5a2ba7
TH
2749 continue;
2750
2751 if (++flush_cnt == 10 ||
2752 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2753 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2754 wq->name, flush_cnt);
76af4d93 2755
b09f4fd3 2756 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2757 goto reflush;
2758 }
2759
9c5a2ba7 2760 if (!--wq->nr_drainers)
618b01eb 2761 wq->flags &= ~__WQ_DRAINING;
87fc741e 2762 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2763}
2764EXPORT_SYMBOL_GPL(drain_workqueue);
2765
606a5020 2766static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2767{
affee4b2 2768 struct worker *worker = NULL;
c9e7cf27 2769 struct worker_pool *pool;
112202d9 2770 struct pool_workqueue *pwq;
db700897
ON
2771
2772 might_sleep();
fa1b54e6
TH
2773
2774 local_irq_disable();
c9e7cf27 2775 pool = get_work_pool(work);
fa1b54e6
TH
2776 if (!pool) {
2777 local_irq_enable();
baf59022 2778 return false;
fa1b54e6 2779 }
db700897 2780
fa1b54e6 2781 spin_lock(&pool->lock);
0b3dae68 2782 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2783 pwq = get_work_pwq(work);
2784 if (pwq) {
2785 if (unlikely(pwq->pool != pool))
4690c4ab 2786 goto already_gone;
606a5020 2787 } else {
c9e7cf27 2788 worker = find_worker_executing_work(pool, work);
affee4b2 2789 if (!worker)
4690c4ab 2790 goto already_gone;
112202d9 2791 pwq = worker->current_pwq;
606a5020 2792 }
db700897 2793
112202d9 2794 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2795 spin_unlock_irq(&pool->lock);
7a22ad75 2796
e159489b
TH
2797 /*
2798 * If @max_active is 1 or rescuer is in use, flushing another work
2799 * item on the same workqueue may lead to deadlock. Make sure the
2800 * flusher is not running on the same workqueue by verifying write
2801 * access.
2802 */
493008a8 2803 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2804 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2805 else
112202d9
TH
2806 lock_map_acquire_read(&pwq->wq->lockdep_map);
2807 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2808
401a8d04 2809 return true;
4690c4ab 2810already_gone:
d565ed63 2811 spin_unlock_irq(&pool->lock);
401a8d04 2812 return false;
db700897 2813}
baf59022
TH
2814
2815/**
2816 * flush_work - wait for a work to finish executing the last queueing instance
2817 * @work: the work to flush
2818 *
606a5020
TH
2819 * Wait until @work has finished execution. @work is guaranteed to be idle
2820 * on return if it hasn't been requeued since flush started.
baf59022
TH
2821 *
2822 * RETURNS:
2823 * %true if flush_work() waited for the work to finish execution,
2824 * %false if it was already idle.
2825 */
2826bool flush_work(struct work_struct *work)
2827{
2828 struct wq_barrier barr;
2829
0976dfc1
SB
2830 lock_map_acquire(&work->lockdep_map);
2831 lock_map_release(&work->lockdep_map);
2832
606a5020 2833 if (start_flush_work(work, &barr)) {
401a8d04
TH
2834 wait_for_completion(&barr.done);
2835 destroy_work_on_stack(&barr.work);
2836 return true;
606a5020 2837 } else {
401a8d04 2838 return false;
6e84d644 2839 }
6e84d644 2840}
606a5020 2841EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2842
36e227d2 2843static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2844{
bbb68dfa 2845 unsigned long flags;
1f1f642e
ON
2846 int ret;
2847
2848 do {
bbb68dfa
TH
2849 ret = try_to_grab_pending(work, is_dwork, &flags);
2850 /*
2851 * If someone else is canceling, wait for the same event it
2852 * would be waiting for before retrying.
2853 */
2854 if (unlikely(ret == -ENOENT))
606a5020 2855 flush_work(work);
1f1f642e
ON
2856 } while (unlikely(ret < 0));
2857
bbb68dfa
TH
2858 /* tell other tasks trying to grab @work to back off */
2859 mark_work_canceling(work);
2860 local_irq_restore(flags);
2861
606a5020 2862 flush_work(work);
7a22ad75 2863 clear_work_data(work);
1f1f642e
ON
2864 return ret;
2865}
2866
6e84d644 2867/**
401a8d04
TH
2868 * cancel_work_sync - cancel a work and wait for it to finish
2869 * @work: the work to cancel
6e84d644 2870 *
401a8d04
TH
2871 * Cancel @work and wait for its execution to finish. This function
2872 * can be used even if the work re-queues itself or migrates to
2873 * another workqueue. On return from this function, @work is
2874 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2875 *
401a8d04
TH
2876 * cancel_work_sync(&delayed_work->work) must not be used for
2877 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2878 *
401a8d04 2879 * The caller must ensure that the workqueue on which @work was last
6e84d644 2880 * queued can't be destroyed before this function returns.
401a8d04
TH
2881 *
2882 * RETURNS:
2883 * %true if @work was pending, %false otherwise.
6e84d644 2884 */
401a8d04 2885bool cancel_work_sync(struct work_struct *work)
6e84d644 2886{
36e227d2 2887 return __cancel_work_timer(work, false);
b89deed3 2888}
28e53bdd 2889EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2890
6e84d644 2891/**
401a8d04
TH
2892 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2893 * @dwork: the delayed work to flush
6e84d644 2894 *
401a8d04
TH
2895 * Delayed timer is cancelled and the pending work is queued for
2896 * immediate execution. Like flush_work(), this function only
2897 * considers the last queueing instance of @dwork.
1f1f642e 2898 *
401a8d04
TH
2899 * RETURNS:
2900 * %true if flush_work() waited for the work to finish execution,
2901 * %false if it was already idle.
6e84d644 2902 */
401a8d04
TH
2903bool flush_delayed_work(struct delayed_work *dwork)
2904{
8930caba 2905 local_irq_disable();
401a8d04 2906 if (del_timer_sync(&dwork->timer))
60c057bc 2907 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2908 local_irq_enable();
401a8d04
TH
2909 return flush_work(&dwork->work);
2910}
2911EXPORT_SYMBOL(flush_delayed_work);
2912
09383498 2913/**
57b30ae7
TH
2914 * cancel_delayed_work - cancel a delayed work
2915 * @dwork: delayed_work to cancel
09383498 2916 *
57b30ae7
TH
2917 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2918 * and canceled; %false if wasn't pending. Note that the work callback
2919 * function may still be running on return, unless it returns %true and the
2920 * work doesn't re-arm itself. Explicitly flush or use
2921 * cancel_delayed_work_sync() to wait on it.
09383498 2922 *
57b30ae7 2923 * This function is safe to call from any context including IRQ handler.
09383498 2924 */
57b30ae7 2925bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2926{
57b30ae7
TH
2927 unsigned long flags;
2928 int ret;
2929
2930 do {
2931 ret = try_to_grab_pending(&dwork->work, true, &flags);
2932 } while (unlikely(ret == -EAGAIN));
2933
2934 if (unlikely(ret < 0))
2935 return false;
2936
7c3eed5c
TH
2937 set_work_pool_and_clear_pending(&dwork->work,
2938 get_work_pool_id(&dwork->work));
57b30ae7 2939 local_irq_restore(flags);
c0158ca6 2940 return ret;
09383498 2941}
57b30ae7 2942EXPORT_SYMBOL(cancel_delayed_work);
09383498 2943
401a8d04
TH
2944/**
2945 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2946 * @dwork: the delayed work cancel
2947 *
2948 * This is cancel_work_sync() for delayed works.
2949 *
2950 * RETURNS:
2951 * %true if @dwork was pending, %false otherwise.
2952 */
2953bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2954{
36e227d2 2955 return __cancel_work_timer(&dwork->work, true);
6e84d644 2956}
f5a421a4 2957EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2958
b6136773 2959/**
31ddd871 2960 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2961 * @func: the function to call
b6136773 2962 *
31ddd871
TH
2963 * schedule_on_each_cpu() executes @func on each online CPU using the
2964 * system workqueue and blocks until all CPUs have completed.
b6136773 2965 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2966 *
2967 * RETURNS:
2968 * 0 on success, -errno on failure.
b6136773 2969 */
65f27f38 2970int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2971{
2972 int cpu;
38f51568 2973 struct work_struct __percpu *works;
15316ba8 2974
b6136773
AM
2975 works = alloc_percpu(struct work_struct);
2976 if (!works)
15316ba8 2977 return -ENOMEM;
b6136773 2978
93981800
TH
2979 get_online_cpus();
2980
15316ba8 2981 for_each_online_cpu(cpu) {
9bfb1839
IM
2982 struct work_struct *work = per_cpu_ptr(works, cpu);
2983
2984 INIT_WORK(work, func);
b71ab8c2 2985 schedule_work_on(cpu, work);
65a64464 2986 }
93981800
TH
2987
2988 for_each_online_cpu(cpu)
2989 flush_work(per_cpu_ptr(works, cpu));
2990
95402b38 2991 put_online_cpus();
b6136773 2992 free_percpu(works);
15316ba8
CL
2993 return 0;
2994}
2995
eef6a7d5
AS
2996/**
2997 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2998 *
2999 * Forces execution of the kernel-global workqueue and blocks until its
3000 * completion.
3001 *
3002 * Think twice before calling this function! It's very easy to get into
3003 * trouble if you don't take great care. Either of the following situations
3004 * will lead to deadlock:
3005 *
3006 * One of the work items currently on the workqueue needs to acquire
3007 * a lock held by your code or its caller.
3008 *
3009 * Your code is running in the context of a work routine.
3010 *
3011 * They will be detected by lockdep when they occur, but the first might not
3012 * occur very often. It depends on what work items are on the workqueue and
3013 * what locks they need, which you have no control over.
3014 *
3015 * In most situations flushing the entire workqueue is overkill; you merely
3016 * need to know that a particular work item isn't queued and isn't running.
3017 * In such cases you should use cancel_delayed_work_sync() or
3018 * cancel_work_sync() instead.
3019 */
1da177e4
LT
3020void flush_scheduled_work(void)
3021{
d320c038 3022 flush_workqueue(system_wq);
1da177e4 3023}
ae90dd5d 3024EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3025
1fa44eca
JB
3026/**
3027 * execute_in_process_context - reliably execute the routine with user context
3028 * @fn: the function to execute
1fa44eca
JB
3029 * @ew: guaranteed storage for the execute work structure (must
3030 * be available when the work executes)
3031 *
3032 * Executes the function immediately if process context is available,
3033 * otherwise schedules the function for delayed execution.
3034 *
3035 * Returns: 0 - function was executed
3036 * 1 - function was scheduled for execution
3037 */
65f27f38 3038int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3039{
3040 if (!in_interrupt()) {
65f27f38 3041 fn(&ew->work);
1fa44eca
JB
3042 return 0;
3043 }
3044
65f27f38 3045 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3046 schedule_work(&ew->work);
3047
3048 return 1;
3049}
3050EXPORT_SYMBOL_GPL(execute_in_process_context);
3051
226223ab
TH
3052#ifdef CONFIG_SYSFS
3053/*
3054 * Workqueues with WQ_SYSFS flag set is visible to userland via
3055 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3056 * following attributes.
3057 *
3058 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3059 * max_active RW int : maximum number of in-flight work items
3060 *
3061 * Unbound workqueues have the following extra attributes.
3062 *
3063 * id RO int : the associated pool ID
3064 * nice RW int : nice value of the workers
3065 * cpumask RW mask : bitmask of allowed CPUs for the workers
3066 */
3067struct wq_device {
3068 struct workqueue_struct *wq;
3069 struct device dev;
3070};
3071
3072static struct workqueue_struct *dev_to_wq(struct device *dev)
3073{
3074 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3075
3076 return wq_dev->wq;
3077}
3078
3079static ssize_t wq_per_cpu_show(struct device *dev,
3080 struct device_attribute *attr, char *buf)
3081{
3082 struct workqueue_struct *wq = dev_to_wq(dev);
3083
3084 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3085}
3086
3087static ssize_t wq_max_active_show(struct device *dev,
3088 struct device_attribute *attr, char *buf)
3089{
3090 struct workqueue_struct *wq = dev_to_wq(dev);
3091
3092 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3093}
3094
3095static ssize_t wq_max_active_store(struct device *dev,
3096 struct device_attribute *attr,
3097 const char *buf, size_t count)
3098{
3099 struct workqueue_struct *wq = dev_to_wq(dev);
3100 int val;
3101
3102 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3103 return -EINVAL;
3104
3105 workqueue_set_max_active(wq, val);
3106 return count;
3107}
3108
3109static struct device_attribute wq_sysfs_attrs[] = {
3110 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3111 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3112 __ATTR_NULL,
3113};
3114
d55262c4
TH
3115static ssize_t wq_pool_ids_show(struct device *dev,
3116 struct device_attribute *attr, char *buf)
226223ab
TH
3117{
3118 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3119 const char *delim = "";
3120 int node, written = 0;
226223ab
TH
3121
3122 rcu_read_lock_sched();
d55262c4
TH
3123 for_each_node(node) {
3124 written += scnprintf(buf + written, PAGE_SIZE - written,
3125 "%s%d:%d", delim, node,
3126 unbound_pwq_by_node(wq, node)->pool->id);
3127 delim = " ";
3128 }
3129 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3130 rcu_read_unlock_sched();
3131
3132 return written;
3133}
3134
3135static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3136 char *buf)
3137{
3138 struct workqueue_struct *wq = dev_to_wq(dev);
3139 int written;
3140
6029a918
TH
3141 mutex_lock(&wq->mutex);
3142 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3143 mutex_unlock(&wq->mutex);
226223ab
TH
3144
3145 return written;
3146}
3147
3148/* prepare workqueue_attrs for sysfs store operations */
3149static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3150{
3151 struct workqueue_attrs *attrs;
3152
3153 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3154 if (!attrs)
3155 return NULL;
3156
6029a918
TH
3157 mutex_lock(&wq->mutex);
3158 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3159 mutex_unlock(&wq->mutex);
226223ab
TH
3160 return attrs;
3161}
3162
3163static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3164 const char *buf, size_t count)
3165{
3166 struct workqueue_struct *wq = dev_to_wq(dev);
3167 struct workqueue_attrs *attrs;
3168 int ret;
3169
3170 attrs = wq_sysfs_prep_attrs(wq);
3171 if (!attrs)
3172 return -ENOMEM;
3173
3174 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3175 attrs->nice >= -20 && attrs->nice <= 19)
3176 ret = apply_workqueue_attrs(wq, attrs);
3177 else
3178 ret = -EINVAL;
3179
3180 free_workqueue_attrs(attrs);
3181 return ret ?: count;
3182}
3183
3184static ssize_t wq_cpumask_show(struct device *dev,
3185 struct device_attribute *attr, char *buf)
3186{
3187 struct workqueue_struct *wq = dev_to_wq(dev);
3188 int written;
3189
6029a918
TH
3190 mutex_lock(&wq->mutex);
3191 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3192 mutex_unlock(&wq->mutex);
226223ab
TH
3193
3194 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3195 return written;
3196}
3197
3198static ssize_t wq_cpumask_store(struct device *dev,
3199 struct device_attribute *attr,
3200 const char *buf, size_t count)
3201{
3202 struct workqueue_struct *wq = dev_to_wq(dev);
3203 struct workqueue_attrs *attrs;
3204 int ret;
3205
3206 attrs = wq_sysfs_prep_attrs(wq);
3207 if (!attrs)
3208 return -ENOMEM;
3209
3210 ret = cpumask_parse(buf, attrs->cpumask);
3211 if (!ret)
3212 ret = apply_workqueue_attrs(wq, attrs);
3213
3214 free_workqueue_attrs(attrs);
3215 return ret ?: count;
3216}
3217
d55262c4
TH
3218static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3219 char *buf)
3220{
3221 struct workqueue_struct *wq = dev_to_wq(dev);
3222 int written;
3223
3224 mutex_lock(&wq->mutex);
3225 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3226 !wq->unbound_attrs->no_numa);
3227 mutex_unlock(&wq->mutex);
3228
3229 return written;
3230}
3231
3232static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3233 const char *buf, size_t count)
3234{
3235 struct workqueue_struct *wq = dev_to_wq(dev);
3236 struct workqueue_attrs *attrs;
3237 int v, ret;
3238
3239 attrs = wq_sysfs_prep_attrs(wq);
3240 if (!attrs)
3241 return -ENOMEM;
3242
3243 ret = -EINVAL;
3244 if (sscanf(buf, "%d", &v) == 1) {
3245 attrs->no_numa = !v;
3246 ret = apply_workqueue_attrs(wq, attrs);
3247 }
3248
3249 free_workqueue_attrs(attrs);
3250 return ret ?: count;
3251}
3252
226223ab 3253static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3254 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3255 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3256 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3257 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3258 __ATTR_NULL,
3259};
3260
3261static struct bus_type wq_subsys = {
3262 .name = "workqueue",
3263 .dev_attrs = wq_sysfs_attrs,
3264};
3265
3266static int __init wq_sysfs_init(void)
3267{
3268 return subsys_virtual_register(&wq_subsys, NULL);
3269}
3270core_initcall(wq_sysfs_init);
3271
3272static void wq_device_release(struct device *dev)
3273{
3274 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3275
3276 kfree(wq_dev);
3277}
3278
3279/**
3280 * workqueue_sysfs_register - make a workqueue visible in sysfs
3281 * @wq: the workqueue to register
3282 *
3283 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3284 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3285 * which is the preferred method.
3286 *
3287 * Workqueue user should use this function directly iff it wants to apply
3288 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3289 * apply_workqueue_attrs() may race against userland updating the
3290 * attributes.
3291 *
3292 * Returns 0 on success, -errno on failure.
3293 */
3294int workqueue_sysfs_register(struct workqueue_struct *wq)
3295{
3296 struct wq_device *wq_dev;
3297 int ret;
3298
3299 /*
3300 * Adjusting max_active or creating new pwqs by applyting
3301 * attributes breaks ordering guarantee. Disallow exposing ordered
3302 * workqueues.
3303 */
3304 if (WARN_ON(wq->flags & __WQ_ORDERED))
3305 return -EINVAL;
3306
3307 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3308 if (!wq_dev)
3309 return -ENOMEM;
3310
3311 wq_dev->wq = wq;
3312 wq_dev->dev.bus = &wq_subsys;
3313 wq_dev->dev.init_name = wq->name;
3314 wq_dev->dev.release = wq_device_release;
3315
3316 /*
3317 * unbound_attrs are created separately. Suppress uevent until
3318 * everything is ready.
3319 */
3320 dev_set_uevent_suppress(&wq_dev->dev, true);
3321
3322 ret = device_register(&wq_dev->dev);
3323 if (ret) {
3324 kfree(wq_dev);
3325 wq->wq_dev = NULL;
3326 return ret;
3327 }
3328
3329 if (wq->flags & WQ_UNBOUND) {
3330 struct device_attribute *attr;
3331
3332 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3333 ret = device_create_file(&wq_dev->dev, attr);
3334 if (ret) {
3335 device_unregister(&wq_dev->dev);
3336 wq->wq_dev = NULL;
3337 return ret;
3338 }
3339 }
3340 }
3341
3342 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3343 return 0;
3344}
3345
3346/**
3347 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3348 * @wq: the workqueue to unregister
3349 *
3350 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3351 */
3352static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3353{
3354 struct wq_device *wq_dev = wq->wq_dev;
3355
3356 if (!wq->wq_dev)
3357 return;
3358
3359 wq->wq_dev = NULL;
3360 device_unregister(&wq_dev->dev);
3361}
3362#else /* CONFIG_SYSFS */
3363static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3364#endif /* CONFIG_SYSFS */
3365
7a4e344c
TH
3366/**
3367 * free_workqueue_attrs - free a workqueue_attrs
3368 * @attrs: workqueue_attrs to free
3369 *
3370 * Undo alloc_workqueue_attrs().
3371 */
3372void free_workqueue_attrs(struct workqueue_attrs *attrs)
3373{
3374 if (attrs) {
3375 free_cpumask_var(attrs->cpumask);
3376 kfree(attrs);
3377 }
3378}
3379
3380/**
3381 * alloc_workqueue_attrs - allocate a workqueue_attrs
3382 * @gfp_mask: allocation mask to use
3383 *
3384 * Allocate a new workqueue_attrs, initialize with default settings and
3385 * return it. Returns NULL on failure.
3386 */
3387struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3388{
3389 struct workqueue_attrs *attrs;
3390
3391 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3392 if (!attrs)
3393 goto fail;
3394 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3395 goto fail;
3396
13e2e556 3397 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3398 return attrs;
3399fail:
3400 free_workqueue_attrs(attrs);
3401 return NULL;
3402}
3403
29c91e99
TH
3404static void copy_workqueue_attrs(struct workqueue_attrs *to,
3405 const struct workqueue_attrs *from)
3406{
3407 to->nice = from->nice;
3408 cpumask_copy(to->cpumask, from->cpumask);
3409}
3410
29c91e99
TH
3411/* hash value of the content of @attr */
3412static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3413{
3414 u32 hash = 0;
3415
3416 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3417 hash = jhash(cpumask_bits(attrs->cpumask),
3418 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3419 return hash;
3420}
3421
3422/* content equality test */
3423static bool wqattrs_equal(const struct workqueue_attrs *a,
3424 const struct workqueue_attrs *b)
3425{
3426 if (a->nice != b->nice)
3427 return false;
3428 if (!cpumask_equal(a->cpumask, b->cpumask))
3429 return false;
3430 return true;
3431}
3432
7a4e344c
TH
3433/**
3434 * init_worker_pool - initialize a newly zalloc'd worker_pool
3435 * @pool: worker_pool to initialize
3436 *
3437 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3438 * Returns 0 on success, -errno on failure. Even on failure, all fields
3439 * inside @pool proper are initialized and put_unbound_pool() can be called
3440 * on @pool safely to release it.
7a4e344c
TH
3441 */
3442static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3443{
3444 spin_lock_init(&pool->lock);
29c91e99
TH
3445 pool->id = -1;
3446 pool->cpu = -1;
f3f90ad4 3447 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3448 pool->flags |= POOL_DISASSOCIATED;
3449 INIT_LIST_HEAD(&pool->worklist);
3450 INIT_LIST_HEAD(&pool->idle_list);
3451 hash_init(pool->busy_hash);
3452
3453 init_timer_deferrable(&pool->idle_timer);
3454 pool->idle_timer.function = idle_worker_timeout;
3455 pool->idle_timer.data = (unsigned long)pool;
3456
3457 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3458 (unsigned long)pool);
3459
3460 mutex_init(&pool->manager_arb);
bc3a1afc 3461 mutex_init(&pool->manager_mutex);
822d8405 3462 idr_init(&pool->worker_idr);
7a4e344c 3463
29c91e99
TH
3464 INIT_HLIST_NODE(&pool->hash_node);
3465 pool->refcnt = 1;
3466
3467 /* shouldn't fail above this point */
7a4e344c
TH
3468 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3469 if (!pool->attrs)
3470 return -ENOMEM;
3471 return 0;
4e1a1f9a
TH
3472}
3473
29c91e99
TH
3474static void rcu_free_pool(struct rcu_head *rcu)
3475{
3476 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3477
822d8405 3478 idr_destroy(&pool->worker_idr);
29c91e99
TH
3479 free_workqueue_attrs(pool->attrs);
3480 kfree(pool);
3481}
3482
3483/**
3484 * put_unbound_pool - put a worker_pool
3485 * @pool: worker_pool to put
3486 *
3487 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3488 * safe manner. get_unbound_pool() calls this function on its failure path
3489 * and this function should be able to release pools which went through,
3490 * successfully or not, init_worker_pool().
a892cacc
TH
3491 *
3492 * Should be called with wq_pool_mutex held.
29c91e99
TH
3493 */
3494static void put_unbound_pool(struct worker_pool *pool)
3495{
3496 struct worker *worker;
3497
a892cacc
TH
3498 lockdep_assert_held(&wq_pool_mutex);
3499
3500 if (--pool->refcnt)
29c91e99 3501 return;
29c91e99
TH
3502
3503 /* sanity checks */
3504 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3505 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3506 return;
29c91e99
TH
3507
3508 /* release id and unhash */
3509 if (pool->id >= 0)
3510 idr_remove(&worker_pool_idr, pool->id);
3511 hash_del(&pool->hash_node);
3512
c5aa87bb
TH
3513 /*
3514 * Become the manager and destroy all workers. Grabbing
3515 * manager_arb prevents @pool's workers from blocking on
3516 * manager_mutex.
3517 */
29c91e99 3518 mutex_lock(&pool->manager_arb);
cd549687 3519 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3520 spin_lock_irq(&pool->lock);
3521
3522 while ((worker = first_worker(pool)))
3523 destroy_worker(worker);
3524 WARN_ON(pool->nr_workers || pool->nr_idle);
3525
3526 spin_unlock_irq(&pool->lock);
cd549687 3527 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3528 mutex_unlock(&pool->manager_arb);
3529
3530 /* shut down the timers */
3531 del_timer_sync(&pool->idle_timer);
3532 del_timer_sync(&pool->mayday_timer);
3533
3534 /* sched-RCU protected to allow dereferences from get_work_pool() */
3535 call_rcu_sched(&pool->rcu, rcu_free_pool);
3536}
3537
3538/**
3539 * get_unbound_pool - get a worker_pool with the specified attributes
3540 * @attrs: the attributes of the worker_pool to get
3541 *
3542 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3543 * reference count and return it. If there already is a matching
3544 * worker_pool, it will be used; otherwise, this function attempts to
3545 * create a new one. On failure, returns NULL.
a892cacc
TH
3546 *
3547 * Should be called with wq_pool_mutex held.
29c91e99
TH
3548 */
3549static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3550{
29c91e99
TH
3551 u32 hash = wqattrs_hash(attrs);
3552 struct worker_pool *pool;
f3f90ad4 3553 int node;
29c91e99 3554
a892cacc 3555 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3556
3557 /* do we already have a matching pool? */
29c91e99
TH
3558 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3559 if (wqattrs_equal(pool->attrs, attrs)) {
3560 pool->refcnt++;
3561 goto out_unlock;
3562 }
3563 }
29c91e99
TH
3564
3565 /* nope, create a new one */
3566 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3567 if (!pool || init_worker_pool(pool) < 0)
3568 goto fail;
3569
12ee4fc6
LJ
3570 if (workqueue_freezing)
3571 pool->flags |= POOL_FREEZING;
3572
8864b4e5 3573 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3574 copy_workqueue_attrs(pool->attrs, attrs);
3575
f3f90ad4
TH
3576 /* if cpumask is contained inside a NUMA node, we belong to that node */
3577 if (wq_numa_enabled) {
3578 for_each_node(node) {
3579 if (cpumask_subset(pool->attrs->cpumask,
3580 wq_numa_possible_cpumask[node])) {
3581 pool->node = node;
3582 break;
3583 }
3584 }
3585 }
3586
29c91e99
TH
3587 if (worker_pool_assign_id(pool) < 0)
3588 goto fail;
3589
3590 /* create and start the initial worker */
ebf44d16 3591 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3592 goto fail;
3593
29c91e99 3594 /* install */
29c91e99
TH
3595 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3596out_unlock:
29c91e99
TH
3597 return pool;
3598fail:
29c91e99
TH
3599 if (pool)
3600 put_unbound_pool(pool);
3601 return NULL;
3602}
3603
8864b4e5
TH
3604static void rcu_free_pwq(struct rcu_head *rcu)
3605{
3606 kmem_cache_free(pwq_cache,
3607 container_of(rcu, struct pool_workqueue, rcu));
3608}
3609
3610/*
3611 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3612 * and needs to be destroyed.
3613 */
3614static void pwq_unbound_release_workfn(struct work_struct *work)
3615{
3616 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3617 unbound_release_work);
3618 struct workqueue_struct *wq = pwq->wq;
3619 struct worker_pool *pool = pwq->pool;
bc0caf09 3620 bool is_last;
8864b4e5
TH
3621
3622 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3623 return;
3624
75ccf595 3625 /*
3c25a55d 3626 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3627 * necessary on release but do it anyway. It's easier to verify
3628 * and consistent with the linking path.
3629 */
3c25a55d 3630 mutex_lock(&wq->mutex);
8864b4e5 3631 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3632 is_last = list_empty(&wq->pwqs);
3c25a55d 3633 mutex_unlock(&wq->mutex);
8864b4e5 3634
a892cacc 3635 mutex_lock(&wq_pool_mutex);
8864b4e5 3636 put_unbound_pool(pool);
a892cacc
TH
3637 mutex_unlock(&wq_pool_mutex);
3638
8864b4e5
TH
3639 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3640
3641 /*
3642 * If we're the last pwq going away, @wq is already dead and no one
3643 * is gonna access it anymore. Free it.
3644 */
6029a918
TH
3645 if (is_last) {
3646 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3647 kfree(wq);
6029a918 3648 }
8864b4e5
TH
3649}
3650
0fbd95aa 3651/**
699ce097 3652 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3653 * @pwq: target pool_workqueue
0fbd95aa 3654 *
699ce097
TH
3655 * If @pwq isn't freezing, set @pwq->max_active to the associated
3656 * workqueue's saved_max_active and activate delayed work items
3657 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3658 */
699ce097 3659static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3660{
699ce097
TH
3661 struct workqueue_struct *wq = pwq->wq;
3662 bool freezable = wq->flags & WQ_FREEZABLE;
3663
3664 /* for @wq->saved_max_active */
a357fc03 3665 lockdep_assert_held(&wq->mutex);
699ce097
TH
3666
3667 /* fast exit for non-freezable wqs */
3668 if (!freezable && pwq->max_active == wq->saved_max_active)
3669 return;
3670
a357fc03 3671 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3672
3673 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3674 pwq->max_active = wq->saved_max_active;
0fbd95aa 3675
699ce097
TH
3676 while (!list_empty(&pwq->delayed_works) &&
3677 pwq->nr_active < pwq->max_active)
3678 pwq_activate_first_delayed(pwq);
951a078a
LJ
3679
3680 /*
3681 * Need to kick a worker after thawed or an unbound wq's
3682 * max_active is bumped. It's a slow path. Do it always.
3683 */
3684 wake_up_worker(pwq->pool);
699ce097
TH
3685 } else {
3686 pwq->max_active = 0;
3687 }
3688
a357fc03 3689 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3690}
3691
e50aba9a 3692/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3693static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3694 struct worker_pool *pool)
d2c1d404
TH
3695{
3696 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3697
e50aba9a
TH
3698 memset(pwq, 0, sizeof(*pwq));
3699
d2c1d404
TH
3700 pwq->pool = pool;
3701 pwq->wq = wq;
3702 pwq->flush_color = -1;
8864b4e5 3703 pwq->refcnt = 1;
d2c1d404 3704 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3705 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3706 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3707 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3708}
d2c1d404 3709
f147f29e 3710/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3711static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3712{
3713 struct workqueue_struct *wq = pwq->wq;
3714
3715 lockdep_assert_held(&wq->mutex);
75ccf595 3716
1befcf30
TH
3717 /* may be called multiple times, ignore if already linked */
3718 if (!list_empty(&pwq->pwqs_node))
3719 return;
3720
983ca25e
TH
3721 /*
3722 * Set the matching work_color. This is synchronized with
3c25a55d 3723 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3724 */
75ccf595 3725 pwq->work_color = wq->work_color;
983ca25e
TH
3726
3727 /* sync max_active to the current setting */
3728 pwq_adjust_max_active(pwq);
3729
3730 /* link in @pwq */
9e8cd2f5 3731 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3732}
a357fc03 3733
f147f29e
TH
3734/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3735static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3736 const struct workqueue_attrs *attrs)
3737{
3738 struct worker_pool *pool;
3739 struct pool_workqueue *pwq;
3740
3741 lockdep_assert_held(&wq_pool_mutex);
3742
3743 pool = get_unbound_pool(attrs);
3744 if (!pool)
3745 return NULL;
3746
e50aba9a 3747 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3748 if (!pwq) {
3749 put_unbound_pool(pool);
3750 return NULL;
df2d5ae4 3751 }
6029a918 3752
f147f29e
TH
3753 init_pwq(pwq, wq, pool);
3754 return pwq;
d2c1d404
TH
3755}
3756
4c16bd32
TH
3757/* undo alloc_unbound_pwq(), used only in the error path */
3758static void free_unbound_pwq(struct pool_workqueue *pwq)
3759{
3760 lockdep_assert_held(&wq_pool_mutex);
3761
3762 if (pwq) {
3763 put_unbound_pool(pwq->pool);
cece95df 3764 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3765 }
3766}
3767
3768/**
3769 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3770 * @attrs: the wq_attrs of interest
3771 * @node: the target NUMA node
3772 * @cpu_going_down: if >= 0, the CPU to consider as offline
3773 * @cpumask: outarg, the resulting cpumask
3774 *
3775 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3776 * @cpu_going_down is >= 0, that cpu is considered offline during
3777 * calculation. The result is stored in @cpumask. This function returns
3778 * %true if the resulting @cpumask is different from @attrs->cpumask,
3779 * %false if equal.
3780 *
3781 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3782 * enabled and @node has online CPUs requested by @attrs, the returned
3783 * cpumask is the intersection of the possible CPUs of @node and
3784 * @attrs->cpumask.
3785 *
3786 * The caller is responsible for ensuring that the cpumask of @node stays
3787 * stable.
3788 */
3789static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3790 int cpu_going_down, cpumask_t *cpumask)
3791{
d55262c4 3792 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3793 goto use_dfl;
3794
3795 /* does @node have any online CPUs @attrs wants? */
3796 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3797 if (cpu_going_down >= 0)
3798 cpumask_clear_cpu(cpu_going_down, cpumask);
3799
3800 if (cpumask_empty(cpumask))
3801 goto use_dfl;
3802
3803 /* yeap, return possible CPUs in @node that @attrs wants */
3804 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3805 return !cpumask_equal(cpumask, attrs->cpumask);
3806
3807use_dfl:
3808 cpumask_copy(cpumask, attrs->cpumask);
3809 return false;
3810}
3811
1befcf30
TH
3812/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3813static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3814 int node,
3815 struct pool_workqueue *pwq)
3816{
3817 struct pool_workqueue *old_pwq;
3818
3819 lockdep_assert_held(&wq->mutex);
3820
3821 /* link_pwq() can handle duplicate calls */
3822 link_pwq(pwq);
3823
3824 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3825 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3826 return old_pwq;
3827}
3828
9e8cd2f5
TH
3829/**
3830 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3831 * @wq: the target workqueue
3832 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3833 *
4c16bd32
TH
3834 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3835 * machines, this function maps a separate pwq to each NUMA node with
3836 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3837 * NUMA node it was issued on. Older pwqs are released as in-flight work
3838 * items finish. Note that a work item which repeatedly requeues itself
3839 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3840 *
3841 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3842 * failure.
3843 */
3844int apply_workqueue_attrs(struct workqueue_struct *wq,
3845 const struct workqueue_attrs *attrs)
3846{
4c16bd32
TH
3847 struct workqueue_attrs *new_attrs, *tmp_attrs;
3848 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3849 int node, ret;
9e8cd2f5 3850
8719dcea 3851 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3852 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3853 return -EINVAL;
3854
8719dcea
TH
3855 /* creating multiple pwqs breaks ordering guarantee */
3856 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3857 return -EINVAL;
3858
4c16bd32 3859 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3860 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3861 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3862 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3863 goto enomem;
3864
4c16bd32 3865 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3866 copy_workqueue_attrs(new_attrs, attrs);
3867 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3868
4c16bd32
TH
3869 /*
3870 * We may create multiple pwqs with differing cpumasks. Make a
3871 * copy of @new_attrs which will be modified and used to obtain
3872 * pools.
3873 */
3874 copy_workqueue_attrs(tmp_attrs, new_attrs);
3875
3876 /*
3877 * CPUs should stay stable across pwq creations and installations.
3878 * Pin CPUs, determine the target cpumask for each node and create
3879 * pwqs accordingly.
3880 */
3881 get_online_cpus();
3882
a892cacc 3883 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3884
3885 /*
3886 * If something goes wrong during CPU up/down, we'll fall back to
3887 * the default pwq covering whole @attrs->cpumask. Always create
3888 * it even if we don't use it immediately.
3889 */
3890 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3891 if (!dfl_pwq)
3892 goto enomem_pwq;
3893
3894 for_each_node(node) {
3895 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3896 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3897 if (!pwq_tbl[node])
3898 goto enomem_pwq;
3899 } else {
3900 dfl_pwq->refcnt++;
3901 pwq_tbl[node] = dfl_pwq;
3902 }
3903 }
3904
f147f29e 3905 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3906
4c16bd32 3907 /* all pwqs have been created successfully, let's install'em */
f147f29e 3908 mutex_lock(&wq->mutex);
a892cacc 3909
f147f29e 3910 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3911
3912 /* save the previous pwq and install the new one */
f147f29e 3913 for_each_node(node)
4c16bd32
TH
3914 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3915
3916 /* @dfl_pwq might not have been used, ensure it's linked */
3917 link_pwq(dfl_pwq);
3918 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3919
3920 mutex_unlock(&wq->mutex);
9e8cd2f5 3921
4c16bd32
TH
3922 /* put the old pwqs */
3923 for_each_node(node)
3924 put_pwq_unlocked(pwq_tbl[node]);
3925 put_pwq_unlocked(dfl_pwq);
3926
3927 put_online_cpus();
4862125b
TH
3928 ret = 0;
3929 /* fall through */
3930out_free:
4c16bd32 3931 free_workqueue_attrs(tmp_attrs);
4862125b 3932 free_workqueue_attrs(new_attrs);
4c16bd32 3933 kfree(pwq_tbl);
4862125b 3934 return ret;
13e2e556 3935
4c16bd32
TH
3936enomem_pwq:
3937 free_unbound_pwq(dfl_pwq);
3938 for_each_node(node)
3939 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3940 free_unbound_pwq(pwq_tbl[node]);
3941 mutex_unlock(&wq_pool_mutex);
3942 put_online_cpus();
13e2e556 3943enomem:
4862125b
TH
3944 ret = -ENOMEM;
3945 goto out_free;
9e8cd2f5
TH
3946}
3947
4c16bd32
TH
3948/**
3949 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3950 * @wq: the target workqueue
3951 * @cpu: the CPU coming up or going down
3952 * @online: whether @cpu is coming up or going down
3953 *
3954 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3955 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3956 * @wq accordingly.
3957 *
3958 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3959 * falls back to @wq->dfl_pwq which may not be optimal but is always
3960 * correct.
3961 *
3962 * Note that when the last allowed CPU of a NUMA node goes offline for a
3963 * workqueue with a cpumask spanning multiple nodes, the workers which were
3964 * already executing the work items for the workqueue will lose their CPU
3965 * affinity and may execute on any CPU. This is similar to how per-cpu
3966 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3967 * affinity, it's the user's responsibility to flush the work item from
3968 * CPU_DOWN_PREPARE.
3969 */
3970static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3971 bool online)
3972{
3973 int node = cpu_to_node(cpu);
3974 int cpu_off = online ? -1 : cpu;
3975 struct pool_workqueue *old_pwq = NULL, *pwq;
3976 struct workqueue_attrs *target_attrs;
3977 cpumask_t *cpumask;
3978
3979 lockdep_assert_held(&wq_pool_mutex);
3980
3981 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3982 return;
3983
3984 /*
3985 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3986 * Let's use a preallocated one. The following buf is protected by
3987 * CPU hotplug exclusion.
3988 */
3989 target_attrs = wq_update_unbound_numa_attrs_buf;
3990 cpumask = target_attrs->cpumask;
3991
3992 mutex_lock(&wq->mutex);
d55262c4
TH
3993 if (wq->unbound_attrs->no_numa)
3994 goto out_unlock;
4c16bd32
TH
3995
3996 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3997 pwq = unbound_pwq_by_node(wq, node);
3998
3999 /*
4000 * Let's determine what needs to be done. If the target cpumask is
4001 * different from wq's, we need to compare it to @pwq's and create
4002 * a new one if they don't match. If the target cpumask equals
4003 * wq's, the default pwq should be used. If @pwq is already the
4004 * default one, nothing to do; otherwise, install the default one.
4005 */
4006 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4007 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4008 goto out_unlock;
4009 } else {
4010 if (pwq == wq->dfl_pwq)
4011 goto out_unlock;
4012 else
4013 goto use_dfl_pwq;
4014 }
4015
4016 mutex_unlock(&wq->mutex);
4017
4018 /* create a new pwq */
4019 pwq = alloc_unbound_pwq(wq, target_attrs);
4020 if (!pwq) {
4021 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4022 wq->name);
4023 goto out_unlock;
4024 }
4025
4026 /*
4027 * Install the new pwq. As this function is called only from CPU
4028 * hotplug callbacks and applying a new attrs is wrapped with
4029 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4030 * inbetween.
4031 */
4032 mutex_lock(&wq->mutex);
4033 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4034 goto out_unlock;
4035
4036use_dfl_pwq:
4037 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4038 get_pwq(wq->dfl_pwq);
4039 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4040 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4041out_unlock:
4042 mutex_unlock(&wq->mutex);
4043 put_pwq_unlocked(old_pwq);
4044}
4045
30cdf249 4046static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4047{
49e3cf44 4048 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
4049 int cpu;
4050
4051 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4052 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4053 if (!wq->cpu_pwqs)
30cdf249
TH
4054 return -ENOMEM;
4055
4056 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4057 struct pool_workqueue *pwq =
4058 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4059 struct worker_pool *cpu_pools =
f02ae73a 4060 per_cpu(cpu_worker_pools, cpu);
f3421797 4061
f147f29e
TH
4062 init_pwq(pwq, wq, &cpu_pools[highpri]);
4063
4064 mutex_lock(&wq->mutex);
1befcf30 4065 link_pwq(pwq);
f147f29e 4066 mutex_unlock(&wq->mutex);
30cdf249 4067 }
9e8cd2f5 4068 return 0;
30cdf249 4069 } else {
9e8cd2f5 4070 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4071 }
0f900049
TH
4072}
4073
f3421797
TH
4074static int wq_clamp_max_active(int max_active, unsigned int flags,
4075 const char *name)
b71ab8c2 4076{
f3421797
TH
4077 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4078
4079 if (max_active < 1 || max_active > lim)
044c782c
VI
4080 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4081 max_active, name, 1, lim);
b71ab8c2 4082
f3421797 4083 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4084}
4085
b196be89 4086struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4087 unsigned int flags,
4088 int max_active,
4089 struct lock_class_key *key,
b196be89 4090 const char *lock_name, ...)
1da177e4 4091{
df2d5ae4 4092 size_t tbl_size = 0;
ecf6881f 4093 va_list args;
1da177e4 4094 struct workqueue_struct *wq;
49e3cf44 4095 struct pool_workqueue *pwq;
b196be89 4096
cee22a15
VK
4097 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4098 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4099 flags |= WQ_UNBOUND;
4100
ecf6881f 4101 /* allocate wq and format name */
df2d5ae4
TH
4102 if (flags & WQ_UNBOUND)
4103 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4104
4105 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4106 if (!wq)
d2c1d404 4107 return NULL;
b196be89 4108
6029a918
TH
4109 if (flags & WQ_UNBOUND) {
4110 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4111 if (!wq->unbound_attrs)
4112 goto err_free_wq;
4113 }
4114
ecf6881f
TH
4115 va_start(args, lock_name);
4116 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4117 va_end(args);
1da177e4 4118
d320c038 4119 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4120 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4121
b196be89 4122 /* init wq */
97e37d7b 4123 wq->flags = flags;
a0a1a5fd 4124 wq->saved_max_active = max_active;
3c25a55d 4125 mutex_init(&wq->mutex);
112202d9 4126 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4127 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4128 INIT_LIST_HEAD(&wq->flusher_queue);
4129 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4130 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4131
eb13ba87 4132 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4133 INIT_LIST_HEAD(&wq->list);
3af24433 4134
30cdf249 4135 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4136 goto err_free_wq;
1537663f 4137
493008a8
TH
4138 /*
4139 * Workqueues which may be used during memory reclaim should
4140 * have a rescuer to guarantee forward progress.
4141 */
4142 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4143 struct worker *rescuer;
4144
d2c1d404 4145 rescuer = alloc_worker();
e22bee78 4146 if (!rescuer)
d2c1d404 4147 goto err_destroy;
e22bee78 4148
111c225a
TH
4149 rescuer->rescue_wq = wq;
4150 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4151 wq->name);
d2c1d404
TH
4152 if (IS_ERR(rescuer->task)) {
4153 kfree(rescuer);
4154 goto err_destroy;
4155 }
e22bee78 4156
d2c1d404 4157 wq->rescuer = rescuer;
14a40ffc 4158 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4159 wake_up_process(rescuer->task);
3af24433
ON
4160 }
4161
226223ab
TH
4162 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4163 goto err_destroy;
4164
a0a1a5fd 4165 /*
68e13a67
LJ
4166 * wq_pool_mutex protects global freeze state and workqueues list.
4167 * Grab it, adjust max_active and add the new @wq to workqueues
4168 * list.
a0a1a5fd 4169 */
68e13a67 4170 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4171
a357fc03 4172 mutex_lock(&wq->mutex);
699ce097
TH
4173 for_each_pwq(pwq, wq)
4174 pwq_adjust_max_active(pwq);
a357fc03 4175 mutex_unlock(&wq->mutex);
a0a1a5fd 4176
1537663f 4177 list_add(&wq->list, &workqueues);
a0a1a5fd 4178
68e13a67 4179 mutex_unlock(&wq_pool_mutex);
1537663f 4180
3af24433 4181 return wq;
d2c1d404
TH
4182
4183err_free_wq:
6029a918 4184 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4185 kfree(wq);
4186 return NULL;
4187err_destroy:
4188 destroy_workqueue(wq);
4690c4ab 4189 return NULL;
3af24433 4190}
d320c038 4191EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4192
3af24433
ON
4193/**
4194 * destroy_workqueue - safely terminate a workqueue
4195 * @wq: target workqueue
4196 *
4197 * Safely destroy a workqueue. All work currently pending will be done first.
4198 */
4199void destroy_workqueue(struct workqueue_struct *wq)
4200{
49e3cf44 4201 struct pool_workqueue *pwq;
4c16bd32 4202 int node;
3af24433 4203
9c5a2ba7
TH
4204 /* drain it before proceeding with destruction */
4205 drain_workqueue(wq);
c8efcc25 4206
6183c009 4207 /* sanity checks */
b09f4fd3 4208 mutex_lock(&wq->mutex);
49e3cf44 4209 for_each_pwq(pwq, wq) {
6183c009
TH
4210 int i;
4211
76af4d93
TH
4212 for (i = 0; i < WORK_NR_COLORS; i++) {
4213 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4214 mutex_unlock(&wq->mutex);
6183c009 4215 return;
76af4d93
TH
4216 }
4217 }
4218
5c529597 4219 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4220 WARN_ON(pwq->nr_active) ||
76af4d93 4221 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4222 mutex_unlock(&wq->mutex);
6183c009 4223 return;
76af4d93 4224 }
6183c009 4225 }
b09f4fd3 4226 mutex_unlock(&wq->mutex);
6183c009 4227
a0a1a5fd
TH
4228 /*
4229 * wq list is used to freeze wq, remove from list after
4230 * flushing is complete in case freeze races us.
4231 */
68e13a67 4232 mutex_lock(&wq_pool_mutex);
d2c1d404 4233 list_del_init(&wq->list);
68e13a67 4234 mutex_unlock(&wq_pool_mutex);
3af24433 4235
226223ab
TH
4236 workqueue_sysfs_unregister(wq);
4237
493008a8 4238 if (wq->rescuer) {
e22bee78 4239 kthread_stop(wq->rescuer->task);
8d9df9f0 4240 kfree(wq->rescuer);
493008a8 4241 wq->rescuer = NULL;
e22bee78
TH
4242 }
4243
8864b4e5
TH
4244 if (!(wq->flags & WQ_UNBOUND)) {
4245 /*
4246 * The base ref is never dropped on per-cpu pwqs. Directly
4247 * free the pwqs and wq.
4248 */
4249 free_percpu(wq->cpu_pwqs);
4250 kfree(wq);
4251 } else {
4252 /*
4253 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4254 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4255 * @wq will be freed when the last pwq is released.
8864b4e5 4256 */
4c16bd32
TH
4257 for_each_node(node) {
4258 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4259 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4260 put_pwq_unlocked(pwq);
4261 }
4262
4263 /*
4264 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4265 * put. Don't access it afterwards.
4266 */
4267 pwq = wq->dfl_pwq;
4268 wq->dfl_pwq = NULL;
dce90d47 4269 put_pwq_unlocked(pwq);
29c91e99 4270 }
3af24433
ON
4271}
4272EXPORT_SYMBOL_GPL(destroy_workqueue);
4273
dcd989cb
TH
4274/**
4275 * workqueue_set_max_active - adjust max_active of a workqueue
4276 * @wq: target workqueue
4277 * @max_active: new max_active value.
4278 *
4279 * Set max_active of @wq to @max_active.
4280 *
4281 * CONTEXT:
4282 * Don't call from IRQ context.
4283 */
4284void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4285{
49e3cf44 4286 struct pool_workqueue *pwq;
dcd989cb 4287
8719dcea
TH
4288 /* disallow meddling with max_active for ordered workqueues */
4289 if (WARN_ON(wq->flags & __WQ_ORDERED))
4290 return;
4291
f3421797 4292 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4293
a357fc03 4294 mutex_lock(&wq->mutex);
dcd989cb
TH
4295
4296 wq->saved_max_active = max_active;
4297
699ce097
TH
4298 for_each_pwq(pwq, wq)
4299 pwq_adjust_max_active(pwq);
93981800 4300
a357fc03 4301 mutex_unlock(&wq->mutex);
15316ba8 4302}
dcd989cb 4303EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4304
e6267616
TH
4305/**
4306 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4307 *
4308 * Determine whether %current is a workqueue rescuer. Can be used from
4309 * work functions to determine whether it's being run off the rescuer task.
4310 */
4311bool current_is_workqueue_rescuer(void)
4312{
4313 struct worker *worker = current_wq_worker();
4314
6a092dfd 4315 return worker && worker->rescue_wq;
e6267616
TH
4316}
4317
eef6a7d5 4318/**
dcd989cb
TH
4319 * workqueue_congested - test whether a workqueue is congested
4320 * @cpu: CPU in question
4321 * @wq: target workqueue
eef6a7d5 4322 *
dcd989cb
TH
4323 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4324 * no synchronization around this function and the test result is
4325 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4326 *
dcd989cb
TH
4327 * RETURNS:
4328 * %true if congested, %false otherwise.
eef6a7d5 4329 */
d84ff051 4330bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4331{
7fb98ea7 4332 struct pool_workqueue *pwq;
76af4d93
TH
4333 bool ret;
4334
88109453 4335 rcu_read_lock_sched();
7fb98ea7
TH
4336
4337 if (!(wq->flags & WQ_UNBOUND))
4338 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4339 else
df2d5ae4 4340 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4341
76af4d93 4342 ret = !list_empty(&pwq->delayed_works);
88109453 4343 rcu_read_unlock_sched();
76af4d93
TH
4344
4345 return ret;
1da177e4 4346}
dcd989cb 4347EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4348
dcd989cb
TH
4349/**
4350 * work_busy - test whether a work is currently pending or running
4351 * @work: the work to be tested
4352 *
4353 * Test whether @work is currently pending or running. There is no
4354 * synchronization around this function and the test result is
4355 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4356 *
4357 * RETURNS:
4358 * OR'd bitmask of WORK_BUSY_* bits.
4359 */
4360unsigned int work_busy(struct work_struct *work)
1da177e4 4361{
fa1b54e6 4362 struct worker_pool *pool;
dcd989cb
TH
4363 unsigned long flags;
4364 unsigned int ret = 0;
1da177e4 4365
dcd989cb
TH
4366 if (work_pending(work))
4367 ret |= WORK_BUSY_PENDING;
1da177e4 4368
fa1b54e6
TH
4369 local_irq_save(flags);
4370 pool = get_work_pool(work);
038366c5 4371 if (pool) {
fa1b54e6 4372 spin_lock(&pool->lock);
038366c5
LJ
4373 if (find_worker_executing_work(pool, work))
4374 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4375 spin_unlock(&pool->lock);
038366c5 4376 }
fa1b54e6 4377 local_irq_restore(flags);
1da177e4 4378
dcd989cb 4379 return ret;
1da177e4 4380}
dcd989cb 4381EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4382
3d1cb205
TH
4383/**
4384 * set_worker_desc - set description for the current work item
4385 * @fmt: printf-style format string
4386 * @...: arguments for the format string
4387 *
4388 * This function can be called by a running work function to describe what
4389 * the work item is about. If the worker task gets dumped, this
4390 * information will be printed out together to help debugging. The
4391 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4392 */
4393void set_worker_desc(const char *fmt, ...)
4394{
4395 struct worker *worker = current_wq_worker();
4396 va_list args;
4397
4398 if (worker) {
4399 va_start(args, fmt);
4400 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4401 va_end(args);
4402 worker->desc_valid = true;
4403 }
4404}
4405
4406/**
4407 * print_worker_info - print out worker information and description
4408 * @log_lvl: the log level to use when printing
4409 * @task: target task
4410 *
4411 * If @task is a worker and currently executing a work item, print out the
4412 * name of the workqueue being serviced and worker description set with
4413 * set_worker_desc() by the currently executing work item.
4414 *
4415 * This function can be safely called on any task as long as the
4416 * task_struct itself is accessible. While safe, this function isn't
4417 * synchronized and may print out mixups or garbages of limited length.
4418 */
4419void print_worker_info(const char *log_lvl, struct task_struct *task)
4420{
4421 work_func_t *fn = NULL;
4422 char name[WQ_NAME_LEN] = { };
4423 char desc[WORKER_DESC_LEN] = { };
4424 struct pool_workqueue *pwq = NULL;
4425 struct workqueue_struct *wq = NULL;
4426 bool desc_valid = false;
4427 struct worker *worker;
4428
4429 if (!(task->flags & PF_WQ_WORKER))
4430 return;
4431
4432 /*
4433 * This function is called without any synchronization and @task
4434 * could be in any state. Be careful with dereferences.
4435 */
4436 worker = probe_kthread_data(task);
4437
4438 /*
4439 * Carefully copy the associated workqueue's workfn and name. Keep
4440 * the original last '\0' in case the original contains garbage.
4441 */
4442 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4443 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4444 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4445 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4446
4447 /* copy worker description */
4448 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4449 if (desc_valid)
4450 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4451
4452 if (fn || name[0] || desc[0]) {
4453 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4454 if (desc[0])
4455 pr_cont(" (%s)", desc);
4456 pr_cont("\n");
4457 }
4458}
4459
db7bccf4
TH
4460/*
4461 * CPU hotplug.
4462 *
e22bee78 4463 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4464 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4465 * pool which make migrating pending and scheduled works very
e22bee78 4466 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4467 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4468 * blocked draining impractical.
4469 *
24647570 4470 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4471 * running as an unbound one and allowing it to be reattached later if the
4472 * cpu comes back online.
db7bccf4 4473 */
1da177e4 4474
706026c2 4475static void wq_unbind_fn(struct work_struct *work)
3af24433 4476{
38db41d9 4477 int cpu = smp_processor_id();
4ce62e9e 4478 struct worker_pool *pool;
db7bccf4 4479 struct worker *worker;
a9ab775b 4480 int wi;
3af24433 4481
f02ae73a 4482 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4483 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4484
bc3a1afc 4485 mutex_lock(&pool->manager_mutex);
94cf58bb 4486 spin_lock_irq(&pool->lock);
3af24433 4487
94cf58bb 4488 /*
bc3a1afc 4489 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4490 * unbound and set DISASSOCIATED. Before this, all workers
4491 * except for the ones which are still executing works from
4492 * before the last CPU down must be on the cpu. After
4493 * this, they may become diasporas.
4494 */
a9ab775b 4495 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4496 worker->flags |= WORKER_UNBOUND;
06ba38a9 4497
24647570 4498 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4499
94cf58bb 4500 spin_unlock_irq(&pool->lock);
bc3a1afc 4501 mutex_unlock(&pool->manager_mutex);
628c78e7 4502
eb283428
LJ
4503 /*
4504 * Call schedule() so that we cross rq->lock and thus can
4505 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4506 * This is necessary as scheduler callbacks may be invoked
4507 * from other cpus.
4508 */
4509 schedule();
06ba38a9 4510
eb283428
LJ
4511 /*
4512 * Sched callbacks are disabled now. Zap nr_running.
4513 * After this, nr_running stays zero and need_more_worker()
4514 * and keep_working() are always true as long as the
4515 * worklist is not empty. This pool now behaves as an
4516 * unbound (in terms of concurrency management) pool which
4517 * are served by workers tied to the pool.
4518 */
e19e397a 4519 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4520
4521 /*
4522 * With concurrency management just turned off, a busy
4523 * worker blocking could lead to lengthy stalls. Kick off
4524 * unbound chain execution of currently pending work items.
4525 */
4526 spin_lock_irq(&pool->lock);
4527 wake_up_worker(pool);
4528 spin_unlock_irq(&pool->lock);
4529 }
3af24433 4530}
3af24433 4531
bd7c089e
TH
4532/**
4533 * rebind_workers - rebind all workers of a pool to the associated CPU
4534 * @pool: pool of interest
4535 *
a9ab775b 4536 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4537 */
4538static void rebind_workers(struct worker_pool *pool)
4539{
a9ab775b
TH
4540 struct worker *worker;
4541 int wi;
bd7c089e
TH
4542
4543 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4544
a9ab775b
TH
4545 /*
4546 * Restore CPU affinity of all workers. As all idle workers should
4547 * be on the run-queue of the associated CPU before any local
4548 * wake-ups for concurrency management happen, restore CPU affinty
4549 * of all workers first and then clear UNBOUND. As we're called
4550 * from CPU_ONLINE, the following shouldn't fail.
4551 */
4552 for_each_pool_worker(worker, wi, pool)
4553 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554 pool->attrs->cpumask) < 0);
bd7c089e 4555
a9ab775b 4556 spin_lock_irq(&pool->lock);
bd7c089e 4557
a9ab775b
TH
4558 for_each_pool_worker(worker, wi, pool) {
4559 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4560
4561 /*
a9ab775b
TH
4562 * A bound idle worker should actually be on the runqueue
4563 * of the associated CPU for local wake-ups targeting it to
4564 * work. Kick all idle workers so that they migrate to the
4565 * associated CPU. Doing this in the same loop as
4566 * replacing UNBOUND with REBOUND is safe as no worker will
4567 * be bound before @pool->lock is released.
bd7c089e 4568 */
a9ab775b
TH
4569 if (worker_flags & WORKER_IDLE)
4570 wake_up_process(worker->task);
bd7c089e 4571
a9ab775b
TH
4572 /*
4573 * We want to clear UNBOUND but can't directly call
4574 * worker_clr_flags() or adjust nr_running. Atomically
4575 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4576 * @worker will clear REBOUND using worker_clr_flags() when
4577 * it initiates the next execution cycle thus restoring
4578 * concurrency management. Note that when or whether
4579 * @worker clears REBOUND doesn't affect correctness.
4580 *
4581 * ACCESS_ONCE() is necessary because @worker->flags may be
4582 * tested without holding any lock in
4583 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4584 * fail incorrectly leading to premature concurrency
4585 * management operations.
4586 */
4587 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4588 worker_flags |= WORKER_REBOUND;
4589 worker_flags &= ~WORKER_UNBOUND;
4590 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4591 }
a9ab775b
TH
4592
4593 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4594}
4595
7dbc725e
TH
4596/**
4597 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4598 * @pool: unbound pool of interest
4599 * @cpu: the CPU which is coming up
4600 *
4601 * An unbound pool may end up with a cpumask which doesn't have any online
4602 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4603 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4604 * online CPU before, cpus_allowed of all its workers should be restored.
4605 */
4606static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4607{
4608 static cpumask_t cpumask;
4609 struct worker *worker;
4610 int wi;
4611
4612 lockdep_assert_held(&pool->manager_mutex);
4613
4614 /* is @cpu allowed for @pool? */
4615 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4616 return;
4617
4618 /* is @cpu the only online CPU? */
4619 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4620 if (cpumask_weight(&cpumask) != 1)
4621 return;
4622
4623 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4624 for_each_pool_worker(worker, wi, pool)
4625 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4626 pool->attrs->cpumask) < 0);
4627}
4628
8db25e78
TH
4629/*
4630 * Workqueues should be brought up before normal priority CPU notifiers.
4631 * This will be registered high priority CPU notifier.
4632 */
9fdf9b73 4633static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4634 unsigned long action,
4635 void *hcpu)
3af24433 4636{
d84ff051 4637 int cpu = (unsigned long)hcpu;
4ce62e9e 4638 struct worker_pool *pool;
4c16bd32 4639 struct workqueue_struct *wq;
7dbc725e 4640 int pi;
3ce63377 4641
8db25e78 4642 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4643 case CPU_UP_PREPARE:
f02ae73a 4644 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4645 if (pool->nr_workers)
4646 continue;
ebf44d16 4647 if (create_and_start_worker(pool) < 0)
3ce63377 4648 return NOTIFY_BAD;
3af24433 4649 }
8db25e78 4650 break;
3af24433 4651
db7bccf4
TH
4652 case CPU_DOWN_FAILED:
4653 case CPU_ONLINE:
68e13a67 4654 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4655
4656 for_each_pool(pool, pi) {
bc3a1afc 4657 mutex_lock(&pool->manager_mutex);
94cf58bb 4658
7dbc725e
TH
4659 if (pool->cpu == cpu) {
4660 spin_lock_irq(&pool->lock);
4661 pool->flags &= ~POOL_DISASSOCIATED;
4662 spin_unlock_irq(&pool->lock);
a9ab775b 4663
7dbc725e
TH
4664 rebind_workers(pool);
4665 } else if (pool->cpu < 0) {
4666 restore_unbound_workers_cpumask(pool, cpu);
4667 }
94cf58bb 4668
bc3a1afc 4669 mutex_unlock(&pool->manager_mutex);
94cf58bb 4670 }
7dbc725e 4671
4c16bd32
TH
4672 /* update NUMA affinity of unbound workqueues */
4673 list_for_each_entry(wq, &workqueues, list)
4674 wq_update_unbound_numa(wq, cpu, true);
4675
68e13a67 4676 mutex_unlock(&wq_pool_mutex);
db7bccf4 4677 break;
00dfcaf7 4678 }
65758202
TH
4679 return NOTIFY_OK;
4680}
4681
4682/*
4683 * Workqueues should be brought down after normal priority CPU notifiers.
4684 * This will be registered as low priority CPU notifier.
4685 */
9fdf9b73 4686static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4687 unsigned long action,
4688 void *hcpu)
4689{
d84ff051 4690 int cpu = (unsigned long)hcpu;
8db25e78 4691 struct work_struct unbind_work;
4c16bd32 4692 struct workqueue_struct *wq;
8db25e78 4693
65758202
TH
4694 switch (action & ~CPU_TASKS_FROZEN) {
4695 case CPU_DOWN_PREPARE:
4c16bd32 4696 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4697 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4698 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4699
4700 /* update NUMA affinity of unbound workqueues */
4701 mutex_lock(&wq_pool_mutex);
4702 list_for_each_entry(wq, &workqueues, list)
4703 wq_update_unbound_numa(wq, cpu, false);
4704 mutex_unlock(&wq_pool_mutex);
4705
4706 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4707 flush_work(&unbind_work);
4708 break;
65758202
TH
4709 }
4710 return NOTIFY_OK;
4711}
4712
2d3854a3 4713#ifdef CONFIG_SMP
8ccad40d 4714
2d3854a3 4715struct work_for_cpu {
ed48ece2 4716 struct work_struct work;
2d3854a3
RR
4717 long (*fn)(void *);
4718 void *arg;
4719 long ret;
4720};
4721
ed48ece2 4722static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4723{
ed48ece2
TH
4724 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4725
2d3854a3
RR
4726 wfc->ret = wfc->fn(wfc->arg);
4727}
4728
4729/**
4730 * work_on_cpu - run a function in user context on a particular cpu
4731 * @cpu: the cpu to run on
4732 * @fn: the function to run
4733 * @arg: the function arg
4734 *
31ad9081
RR
4735 * This will return the value @fn returns.
4736 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4737 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4738 */
d84ff051 4739long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4740{
ed48ece2 4741 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4742
ed48ece2
TH
4743 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4744 schedule_work_on(cpu, &wfc.work);
4745 flush_work(&wfc.work);
2d3854a3
RR
4746 return wfc.ret;
4747}
4748EXPORT_SYMBOL_GPL(work_on_cpu);
4749#endif /* CONFIG_SMP */
4750
a0a1a5fd
TH
4751#ifdef CONFIG_FREEZER
4752
4753/**
4754 * freeze_workqueues_begin - begin freezing workqueues
4755 *
58a69cb4 4756 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4757 * workqueues will queue new works to their delayed_works list instead of
706026c2 4758 * pool->worklist.
a0a1a5fd
TH
4759 *
4760 * CONTEXT:
a357fc03 4761 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4762 */
4763void freeze_workqueues_begin(void)
4764{
17116969 4765 struct worker_pool *pool;
24b8a847
TH
4766 struct workqueue_struct *wq;
4767 struct pool_workqueue *pwq;
611c92a0 4768 int pi;
a0a1a5fd 4769
68e13a67 4770 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4771
6183c009 4772 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4773 workqueue_freezing = true;
4774
24b8a847 4775 /* set FREEZING */
611c92a0 4776 for_each_pool(pool, pi) {
5bcab335 4777 spin_lock_irq(&pool->lock);
17116969
TH
4778 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4779 pool->flags |= POOL_FREEZING;
5bcab335 4780 spin_unlock_irq(&pool->lock);
24b8a847 4781 }
a0a1a5fd 4782
24b8a847 4783 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4784 mutex_lock(&wq->mutex);
699ce097
TH
4785 for_each_pwq(pwq, wq)
4786 pwq_adjust_max_active(pwq);
a357fc03 4787 mutex_unlock(&wq->mutex);
a0a1a5fd 4788 }
5bcab335 4789
68e13a67 4790 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4791}
4792
4793/**
58a69cb4 4794 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4795 *
4796 * Check whether freezing is complete. This function must be called
4797 * between freeze_workqueues_begin() and thaw_workqueues().
4798 *
4799 * CONTEXT:
68e13a67 4800 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4801 *
4802 * RETURNS:
58a69cb4
TH
4803 * %true if some freezable workqueues are still busy. %false if freezing
4804 * is complete.
a0a1a5fd
TH
4805 */
4806bool freeze_workqueues_busy(void)
4807{
a0a1a5fd 4808 bool busy = false;
24b8a847
TH
4809 struct workqueue_struct *wq;
4810 struct pool_workqueue *pwq;
a0a1a5fd 4811
68e13a67 4812 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4813
6183c009 4814 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4815
24b8a847
TH
4816 list_for_each_entry(wq, &workqueues, list) {
4817 if (!(wq->flags & WQ_FREEZABLE))
4818 continue;
a0a1a5fd
TH
4819 /*
4820 * nr_active is monotonically decreasing. It's safe
4821 * to peek without lock.
4822 */
88109453 4823 rcu_read_lock_sched();
24b8a847 4824 for_each_pwq(pwq, wq) {
6183c009 4825 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4826 if (pwq->nr_active) {
a0a1a5fd 4827 busy = true;
88109453 4828 rcu_read_unlock_sched();
a0a1a5fd
TH
4829 goto out_unlock;
4830 }
4831 }
88109453 4832 rcu_read_unlock_sched();
a0a1a5fd
TH
4833 }
4834out_unlock:
68e13a67 4835 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4836 return busy;
4837}
4838
4839/**
4840 * thaw_workqueues - thaw workqueues
4841 *
4842 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4843 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4844 *
4845 * CONTEXT:
a357fc03 4846 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4847 */
4848void thaw_workqueues(void)
4849{
24b8a847
TH
4850 struct workqueue_struct *wq;
4851 struct pool_workqueue *pwq;
4852 struct worker_pool *pool;
611c92a0 4853 int pi;
a0a1a5fd 4854
68e13a67 4855 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4856
4857 if (!workqueue_freezing)
4858 goto out_unlock;
4859
24b8a847 4860 /* clear FREEZING */
611c92a0 4861 for_each_pool(pool, pi) {
5bcab335 4862 spin_lock_irq(&pool->lock);
24b8a847
TH
4863 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4864 pool->flags &= ~POOL_FREEZING;
5bcab335 4865 spin_unlock_irq(&pool->lock);
24b8a847 4866 }
8b03ae3c 4867
24b8a847
TH
4868 /* restore max_active and repopulate worklist */
4869 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4870 mutex_lock(&wq->mutex);
699ce097
TH
4871 for_each_pwq(pwq, wq)
4872 pwq_adjust_max_active(pwq);
a357fc03 4873 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4874 }
4875
4876 workqueue_freezing = false;
4877out_unlock:
68e13a67 4878 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4879}
4880#endif /* CONFIG_FREEZER */
4881
bce90380
TH
4882static void __init wq_numa_init(void)
4883{
4884 cpumask_var_t *tbl;
4885 int node, cpu;
4886
4887 /* determine NUMA pwq table len - highest node id + 1 */
4888 for_each_node(node)
4889 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4890
4891 if (num_possible_nodes() <= 1)
4892 return;
4893
d55262c4
TH
4894 if (wq_disable_numa) {
4895 pr_info("workqueue: NUMA affinity support disabled\n");
4896 return;
4897 }
4898
4c16bd32
TH
4899 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4900 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4901
bce90380
TH
4902 /*
4903 * We want masks of possible CPUs of each node which isn't readily
4904 * available. Build one from cpu_to_node() which should have been
4905 * fully initialized by now.
4906 */
4907 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4908 BUG_ON(!tbl);
4909
4910 for_each_node(node)
4911 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4912
4913 for_each_possible_cpu(cpu) {
4914 node = cpu_to_node(cpu);
4915 if (WARN_ON(node == NUMA_NO_NODE)) {
4916 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4917 /* happens iff arch is bonkers, let's just proceed */
4918 return;
4919 }
4920 cpumask_set_cpu(cpu, tbl[node]);
4921 }
4922
4923 wq_numa_possible_cpumask = tbl;
4924 wq_numa_enabled = true;
4925}
4926
6ee0578b 4927static int __init init_workqueues(void)
1da177e4 4928{
7a4e344c
TH
4929 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4930 int i, cpu;
c34056a3 4931
7c3eed5c
TH
4932 /* make sure we have enough bits for OFFQ pool ID */
4933 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4934 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4935
e904e6c2
TH
4936 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4937
4938 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4939
65758202 4940 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4941 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4942
bce90380
TH
4943 wq_numa_init();
4944
706026c2 4945 /* initialize CPU pools */
29c91e99 4946 for_each_possible_cpu(cpu) {
4ce62e9e 4947 struct worker_pool *pool;
8b03ae3c 4948
7a4e344c 4949 i = 0;
f02ae73a 4950 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4951 BUG_ON(init_worker_pool(pool));
ec22ca5e 4952 pool->cpu = cpu;
29c91e99 4953 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4954 pool->attrs->nice = std_nice[i++];
f3f90ad4 4955 pool->node = cpu_to_node(cpu);
7a4e344c 4956
9daf9e67 4957 /* alloc pool ID */
68e13a67 4958 mutex_lock(&wq_pool_mutex);
9daf9e67 4959 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4960 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4961 }
8b03ae3c
TH
4962 }
4963
e22bee78 4964 /* create the initial worker */
29c91e99 4965 for_each_online_cpu(cpu) {
4ce62e9e 4966 struct worker_pool *pool;
e22bee78 4967
f02ae73a 4968 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4969 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4970 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4971 }
e22bee78
TH
4972 }
4973
29c91e99
TH
4974 /* create default unbound wq attrs */
4975 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4976 struct workqueue_attrs *attrs;
4977
4978 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4979 attrs->nice = std_nice[i];
29c91e99
TH
4980 unbound_std_wq_attrs[i] = attrs;
4981 }
4982
d320c038 4983 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4984 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4985 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4986 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4987 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4988 system_freezable_wq = alloc_workqueue("events_freezable",
4989 WQ_FREEZABLE, 0);
1aabe902 4990 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4991 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4992 return 0;
1da177e4 4993}
6ee0578b 4994early_initcall(init_workqueues);