Merge branch 'akpm' (patches from Andrew Morton)
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
d320c038 307struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 308EXPORT_SYMBOL(system_wq);
044c782c 309struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 310EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 311struct workqueue_struct *system_long_wq __read_mostly;
d320c038 312EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 313struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 314EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 315struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 316EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
317struct workqueue_struct *system_power_efficient_wq __read_mostly;
318EXPORT_SYMBOL_GPL(system_power_efficient_wq);
319struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
320EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 321
7d19c5ce
TH
322static int worker_thread(void *__worker);
323static void copy_workqueue_attrs(struct workqueue_attrs *to,
324 const struct workqueue_attrs *from);
325
97bd2347
TH
326#define CREATE_TRACE_POINTS
327#include <trace/events/workqueue.h>
328
68e13a67 329#define assert_rcu_or_pool_mutex() \
5bcab335 330 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
331 lockdep_is_held(&wq_pool_mutex), \
332 "sched RCU or wq_pool_mutex should be held")
5bcab335 333
b09f4fd3 334#define assert_rcu_or_wq_mutex(wq) \
76af4d93 335 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 336 lockdep_is_held(&wq->mutex), \
b09f4fd3 337 "sched RCU or wq->mutex should be held")
76af4d93 338
822d8405
TH
339#ifdef CONFIG_LOCKDEP
340#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
341 WARN_ONCE(debug_locks && \
342 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
343 !lockdep_is_held(&(pool)->lock), \
344 "pool->manager_mutex or ->lock should be held")
345#else
346#define assert_manager_or_pool_lock(pool) do { } while (0)
347#endif
348
f02ae73a
TH
349#define for_each_cpu_worker_pool(pool, cpu) \
350 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
351 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 352 (pool)++)
4ce62e9e 353
17116969
TH
354/**
355 * for_each_pool - iterate through all worker_pools in the system
356 * @pool: iteration cursor
611c92a0 357 * @pi: integer used for iteration
fa1b54e6 358 *
68e13a67
LJ
359 * This must be called either with wq_pool_mutex held or sched RCU read
360 * locked. If the pool needs to be used beyond the locking in effect, the
361 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
362 *
363 * The if/else clause exists only for the lockdep assertion and can be
364 * ignored.
17116969 365 */
611c92a0
TH
366#define for_each_pool(pool, pi) \
367 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 368 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 369 else
17116969 370
822d8405
TH
371/**
372 * for_each_pool_worker - iterate through all workers of a worker_pool
373 * @worker: iteration cursor
374 * @wi: integer used for iteration
375 * @pool: worker_pool to iterate workers of
376 *
377 * This must be called with either @pool->manager_mutex or ->lock held.
378 *
379 * The if/else clause exists only for the lockdep assertion and can be
380 * ignored.
381 */
382#define for_each_pool_worker(worker, wi, pool) \
383 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
384 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
385 else
386
49e3cf44
TH
387/**
388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389 * @pwq: iteration cursor
390 * @wq: the target workqueue
76af4d93 391 *
b09f4fd3 392 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
393 * If the pwq needs to be used beyond the locking in effect, the caller is
394 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
395 *
396 * The if/else clause exists only for the lockdep assertion and can be
397 * ignored.
49e3cf44
TH
398 */
399#define for_each_pwq(pwq, wq) \
76af4d93 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 402 else
f3421797 403
dc186ad7
TG
404#ifdef CONFIG_DEBUG_OBJECTS_WORK
405
406static struct debug_obj_descr work_debug_descr;
407
99777288
SG
408static void *work_debug_hint(void *addr)
409{
410 return ((struct work_struct *) addr)->func;
411}
412
dc186ad7
TG
413/*
414 * fixup_init is called when:
415 * - an active object is initialized
416 */
417static int work_fixup_init(void *addr, enum debug_obj_state state)
418{
419 struct work_struct *work = addr;
420
421 switch (state) {
422 case ODEBUG_STATE_ACTIVE:
423 cancel_work_sync(work);
424 debug_object_init(work, &work_debug_descr);
425 return 1;
426 default:
427 return 0;
428 }
429}
430
431/*
432 * fixup_activate is called when:
433 * - an active object is activated
434 * - an unknown object is activated (might be a statically initialized object)
435 */
436static int work_fixup_activate(void *addr, enum debug_obj_state state)
437{
438 struct work_struct *work = addr;
439
440 switch (state) {
441
442 case ODEBUG_STATE_NOTAVAILABLE:
443 /*
444 * This is not really a fixup. The work struct was
445 * statically initialized. We just make sure that it
446 * is tracked in the object tracker.
447 */
22df02bb 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
449 debug_object_init(work, &work_debug_descr);
450 debug_object_activate(work, &work_debug_descr);
451 return 0;
452 }
453 WARN_ON_ONCE(1);
454 return 0;
455
456 case ODEBUG_STATE_ACTIVE:
457 WARN_ON(1);
458
459 default:
460 return 0;
461 }
462}
463
464/*
465 * fixup_free is called when:
466 * - an active object is freed
467 */
468static int work_fixup_free(void *addr, enum debug_obj_state state)
469{
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_free(work, &work_debug_descr);
476 return 1;
477 default:
478 return 0;
479 }
480}
481
482static struct debug_obj_descr work_debug_descr = {
483 .name = "work_struct",
99777288 484 .debug_hint = work_debug_hint,
dc186ad7
TG
485 .fixup_init = work_fixup_init,
486 .fixup_activate = work_fixup_activate,
487 .fixup_free = work_fixup_free,
488};
489
490static inline void debug_work_activate(struct work_struct *work)
491{
492 debug_object_activate(work, &work_debug_descr);
493}
494
495static inline void debug_work_deactivate(struct work_struct *work)
496{
497 debug_object_deactivate(work, &work_debug_descr);
498}
499
500void __init_work(struct work_struct *work, int onstack)
501{
502 if (onstack)
503 debug_object_init_on_stack(work, &work_debug_descr);
504 else
505 debug_object_init(work, &work_debug_descr);
506}
507EXPORT_SYMBOL_GPL(__init_work);
508
509void destroy_work_on_stack(struct work_struct *work)
510{
511 debug_object_free(work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514
515#else
516static inline void debug_work_activate(struct work_struct *work) { }
517static inline void debug_work_deactivate(struct work_struct *work) { }
518#endif
519
9daf9e67
TH
520/* allocate ID and assign it to @pool */
521static int worker_pool_assign_id(struct worker_pool *pool)
522{
523 int ret;
524
68e13a67 525 lockdep_assert_held(&wq_pool_mutex);
5bcab335 526
e68035fb 527 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 528 if (ret >= 0) {
e68035fb 529 pool->id = ret;
229641a6
TH
530 return 0;
531 }
fa1b54e6 532 return ret;
7c3eed5c
TH
533}
534
df2d5ae4
TH
535/**
536 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
537 * @wq: the target workqueue
538 * @node: the node ID
539 *
540 * This must be called either with pwq_lock held or sched RCU read locked.
541 * If the pwq needs to be used beyond the locking in effect, the caller is
542 * responsible for guaranteeing that the pwq stays online.
543 */
544static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
545 int node)
546{
547 assert_rcu_or_wq_mutex(wq);
548 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
549}
550
73f53c4a
TH
551static unsigned int work_color_to_flags(int color)
552{
553 return color << WORK_STRUCT_COLOR_SHIFT;
554}
555
556static int get_work_color(struct work_struct *work)
557{
558 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
559 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
560}
561
562static int work_next_color(int color)
563{
564 return (color + 1) % WORK_NR_COLORS;
565}
1da177e4 566
14441960 567/*
112202d9
TH
568 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
569 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 570 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 571 *
112202d9
TH
572 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
573 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
574 * work->data. These functions should only be called while the work is
575 * owned - ie. while the PENDING bit is set.
7a22ad75 576 *
112202d9 577 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 578 * corresponding to a work. Pool is available once the work has been
112202d9 579 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 580 * available only while the work item is queued.
7a22ad75 581 *
bbb68dfa
TH
582 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
583 * canceled. While being canceled, a work item may have its PENDING set
584 * but stay off timer and worklist for arbitrarily long and nobody should
585 * try to steal the PENDING bit.
14441960 586 */
7a22ad75
TH
587static inline void set_work_data(struct work_struct *work, unsigned long data,
588 unsigned long flags)
365970a1 589{
6183c009 590 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
591 atomic_long_set(&work->data, data | flags | work_static(work));
592}
365970a1 593
112202d9 594static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
595 unsigned long extra_flags)
596{
112202d9
TH
597 set_work_data(work, (unsigned long)pwq,
598 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
599}
600
4468a00f
LJ
601static void set_work_pool_and_keep_pending(struct work_struct *work,
602 int pool_id)
603{
604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
605 WORK_STRUCT_PENDING);
606}
607
7c3eed5c
TH
608static void set_work_pool_and_clear_pending(struct work_struct *work,
609 int pool_id)
7a22ad75 610{
23657bb1
TH
611 /*
612 * The following wmb is paired with the implied mb in
613 * test_and_set_bit(PENDING) and ensures all updates to @work made
614 * here are visible to and precede any updates by the next PENDING
615 * owner.
616 */
617 smp_wmb();
7c3eed5c 618 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 619}
f756d5e2 620
7a22ad75 621static void clear_work_data(struct work_struct *work)
1da177e4 622{
7c3eed5c
TH
623 smp_wmb(); /* see set_work_pool_and_clear_pending() */
624 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
625}
626
112202d9 627static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 628{
e120153d 629 unsigned long data = atomic_long_read(&work->data);
7a22ad75 630
112202d9 631 if (data & WORK_STRUCT_PWQ)
e120153d
TH
632 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
633 else
634 return NULL;
4d707b9f
ON
635}
636
7c3eed5c
TH
637/**
638 * get_work_pool - return the worker_pool a given work was associated with
639 * @work: the work item of interest
640 *
641 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 642 *
68e13a67
LJ
643 * Pools are created and destroyed under wq_pool_mutex, and allows read
644 * access under sched-RCU read lock. As such, this function should be
645 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
646 *
647 * All fields of the returned pool are accessible as long as the above
648 * mentioned locking is in effect. If the returned pool needs to be used
649 * beyond the critical section, the caller is responsible for ensuring the
650 * returned pool is and stays online.
7c3eed5c
TH
651 */
652static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 653{
e120153d 654 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 655 int pool_id;
7a22ad75 656
68e13a67 657 assert_rcu_or_pool_mutex();
fa1b54e6 658
112202d9
TH
659 if (data & WORK_STRUCT_PWQ)
660 return ((struct pool_workqueue *)
7c3eed5c 661 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 662
7c3eed5c
TH
663 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
664 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
665 return NULL;
666
fa1b54e6 667 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
668}
669
670/**
671 * get_work_pool_id - return the worker pool ID a given work is associated with
672 * @work: the work item of interest
673 *
674 * Return the worker_pool ID @work was last associated with.
675 * %WORK_OFFQ_POOL_NONE if none.
676 */
677static int get_work_pool_id(struct work_struct *work)
678{
54d5b7d0
LJ
679 unsigned long data = atomic_long_read(&work->data);
680
112202d9
TH
681 if (data & WORK_STRUCT_PWQ)
682 return ((struct pool_workqueue *)
54d5b7d0 683 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 684
54d5b7d0 685 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
686}
687
bbb68dfa
TH
688static void mark_work_canceling(struct work_struct *work)
689{
7c3eed5c 690 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 691
7c3eed5c
TH
692 pool_id <<= WORK_OFFQ_POOL_SHIFT;
693 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
694}
695
696static bool work_is_canceling(struct work_struct *work)
697{
698 unsigned long data = atomic_long_read(&work->data);
699
112202d9 700 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
701}
702
e22bee78 703/*
3270476a
TH
704 * Policy functions. These define the policies on how the global worker
705 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 706 * they're being called with pool->lock held.
e22bee78
TH
707 */
708
63d95a91 709static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 710{
e19e397a 711 return !atomic_read(&pool->nr_running);
a848e3b6
ON
712}
713
4594bf15 714/*
e22bee78
TH
715 * Need to wake up a worker? Called from anything but currently
716 * running workers.
974271c4
TH
717 *
718 * Note that, because unbound workers never contribute to nr_running, this
706026c2 719 * function will always return %true for unbound pools as long as the
974271c4 720 * worklist isn't empty.
4594bf15 721 */
63d95a91 722static bool need_more_worker(struct worker_pool *pool)
365970a1 723{
63d95a91 724 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 725}
4594bf15 726
e22bee78 727/* Can I start working? Called from busy but !running workers. */
63d95a91 728static bool may_start_working(struct worker_pool *pool)
e22bee78 729{
63d95a91 730 return pool->nr_idle;
e22bee78
TH
731}
732
733/* Do I need to keep working? Called from currently running workers. */
63d95a91 734static bool keep_working(struct worker_pool *pool)
e22bee78 735{
e19e397a
TH
736 return !list_empty(&pool->worklist) &&
737 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
738}
739
740/* Do we need a new worker? Called from manager. */
63d95a91 741static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 742{
63d95a91 743 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 744}
365970a1 745
e22bee78 746/* Do I need to be the manager? */
63d95a91 747static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 748{
63d95a91 749 return need_to_create_worker(pool) ||
11ebea50 750 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
751}
752
753/* Do we have too many workers and should some go away? */
63d95a91 754static bool too_many_workers(struct worker_pool *pool)
e22bee78 755{
34a06bd6 756 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 759
ea1abd61
LJ
760 /*
761 * nr_idle and idle_list may disagree if idle rebinding is in
762 * progress. Never return %true if idle_list is empty.
763 */
764 if (list_empty(&pool->idle_list))
765 return false;
766
e22bee78 767 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
768}
769
4d707b9f 770/*
e22bee78
TH
771 * Wake up functions.
772 */
773
7e11629d 774/* Return the first worker. Safe with preemption disabled */
63d95a91 775static struct worker *first_worker(struct worker_pool *pool)
7e11629d 776{
63d95a91 777 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
778 return NULL;
779
63d95a91 780 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
781}
782
783/**
784 * wake_up_worker - wake up an idle worker
63d95a91 785 * @pool: worker pool to wake worker from
7e11629d 786 *
63d95a91 787 * Wake up the first idle worker of @pool.
7e11629d
TH
788 *
789 * CONTEXT:
d565ed63 790 * spin_lock_irq(pool->lock).
7e11629d 791 */
63d95a91 792static void wake_up_worker(struct worker_pool *pool)
7e11629d 793{
63d95a91 794 struct worker *worker = first_worker(pool);
7e11629d
TH
795
796 if (likely(worker))
797 wake_up_process(worker->task);
798}
799
d302f017 800/**
e22bee78
TH
801 * wq_worker_waking_up - a worker is waking up
802 * @task: task waking up
803 * @cpu: CPU @task is waking up to
804 *
805 * This function is called during try_to_wake_up() when a worker is
806 * being awoken.
807 *
808 * CONTEXT:
809 * spin_lock_irq(rq->lock)
810 */
d84ff051 811void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
812{
813 struct worker *worker = kthread_data(task);
814
36576000 815 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 816 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 817 atomic_inc(&worker->pool->nr_running);
36576000 818 }
e22bee78
TH
819}
820
821/**
822 * wq_worker_sleeping - a worker is going to sleep
823 * @task: task going to sleep
824 * @cpu: CPU in question, must be the current CPU number
825 *
826 * This function is called during schedule() when a busy worker is
827 * going to sleep. Worker on the same cpu can be woken up by
828 * returning pointer to its task.
829 *
830 * CONTEXT:
831 * spin_lock_irq(rq->lock)
832 *
833 * RETURNS:
834 * Worker task on @cpu to wake up, %NULL if none.
835 */
d84ff051 836struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
837{
838 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 839 struct worker_pool *pool;
e22bee78 840
111c225a
TH
841 /*
842 * Rescuers, which may not have all the fields set up like normal
843 * workers, also reach here, let's not access anything before
844 * checking NOT_RUNNING.
845 */
2d64672e 846 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
847 return NULL;
848
111c225a 849 pool = worker->pool;
111c225a 850
e22bee78 851 /* this can only happen on the local cpu */
6183c009
TH
852 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
853 return NULL;
e22bee78
TH
854
855 /*
856 * The counterpart of the following dec_and_test, implied mb,
857 * worklist not empty test sequence is in insert_work().
858 * Please read comment there.
859 *
628c78e7
TH
860 * NOT_RUNNING is clear. This means that we're bound to and
861 * running on the local cpu w/ rq lock held and preemption
862 * disabled, which in turn means that none else could be
d565ed63 863 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 864 * lock is safe.
e22bee78 865 */
e19e397a
TH
866 if (atomic_dec_and_test(&pool->nr_running) &&
867 !list_empty(&pool->worklist))
63d95a91 868 to_wakeup = first_worker(pool);
e22bee78
TH
869 return to_wakeup ? to_wakeup->task : NULL;
870}
871
872/**
873 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 874 * @worker: self
d302f017
TH
875 * @flags: flags to set
876 * @wakeup: wakeup an idle worker if necessary
877 *
e22bee78
TH
878 * Set @flags in @worker->flags and adjust nr_running accordingly. If
879 * nr_running becomes zero and @wakeup is %true, an idle worker is
880 * woken up.
d302f017 881 *
cb444766 882 * CONTEXT:
d565ed63 883 * spin_lock_irq(pool->lock)
d302f017
TH
884 */
885static inline void worker_set_flags(struct worker *worker, unsigned int flags,
886 bool wakeup)
887{
bd7bdd43 888 struct worker_pool *pool = worker->pool;
e22bee78 889
cb444766
TH
890 WARN_ON_ONCE(worker->task != current);
891
e22bee78
TH
892 /*
893 * If transitioning into NOT_RUNNING, adjust nr_running and
894 * wake up an idle worker as necessary if requested by
895 * @wakeup.
896 */
897 if ((flags & WORKER_NOT_RUNNING) &&
898 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 899 if (wakeup) {
e19e397a 900 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 901 !list_empty(&pool->worklist))
63d95a91 902 wake_up_worker(pool);
e22bee78 903 } else
e19e397a 904 atomic_dec(&pool->nr_running);
e22bee78
TH
905 }
906
d302f017
TH
907 worker->flags |= flags;
908}
909
910/**
e22bee78 911 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 912 * @worker: self
d302f017
TH
913 * @flags: flags to clear
914 *
e22bee78 915 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 916 *
cb444766 917 * CONTEXT:
d565ed63 918 * spin_lock_irq(pool->lock)
d302f017
TH
919 */
920static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
921{
63d95a91 922 struct worker_pool *pool = worker->pool;
e22bee78
TH
923 unsigned int oflags = worker->flags;
924
cb444766
TH
925 WARN_ON_ONCE(worker->task != current);
926
d302f017 927 worker->flags &= ~flags;
e22bee78 928
42c025f3
TH
929 /*
930 * If transitioning out of NOT_RUNNING, increment nr_running. Note
931 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
932 * of multiple flags, not a single flag.
933 */
e22bee78
TH
934 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
935 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 936 atomic_inc(&pool->nr_running);
d302f017
TH
937}
938
8cca0eea
TH
939/**
940 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 941 * @pool: pool of interest
8cca0eea
TH
942 * @work: work to find worker for
943 *
c9e7cf27
TH
944 * Find a worker which is executing @work on @pool by searching
945 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
946 * to match, its current execution should match the address of @work and
947 * its work function. This is to avoid unwanted dependency between
948 * unrelated work executions through a work item being recycled while still
949 * being executed.
950 *
951 * This is a bit tricky. A work item may be freed once its execution
952 * starts and nothing prevents the freed area from being recycled for
953 * another work item. If the same work item address ends up being reused
954 * before the original execution finishes, workqueue will identify the
955 * recycled work item as currently executing and make it wait until the
956 * current execution finishes, introducing an unwanted dependency.
957 *
c5aa87bb
TH
958 * This function checks the work item address and work function to avoid
959 * false positives. Note that this isn't complete as one may construct a
960 * work function which can introduce dependency onto itself through a
961 * recycled work item. Well, if somebody wants to shoot oneself in the
962 * foot that badly, there's only so much we can do, and if such deadlock
963 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
964 *
965 * CONTEXT:
d565ed63 966 * spin_lock_irq(pool->lock).
8cca0eea
TH
967 *
968 * RETURNS:
969 * Pointer to worker which is executing @work if found, NULL
970 * otherwise.
4d707b9f 971 */
c9e7cf27 972static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 973 struct work_struct *work)
4d707b9f 974{
42f8570f 975 struct worker *worker;
42f8570f 976
b67bfe0d 977 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
978 (unsigned long)work)
979 if (worker->current_work == work &&
980 worker->current_func == work->func)
42f8570f
SL
981 return worker;
982
983 return NULL;
4d707b9f
ON
984}
985
bf4ede01
TH
986/**
987 * move_linked_works - move linked works to a list
988 * @work: start of series of works to be scheduled
989 * @head: target list to append @work to
990 * @nextp: out paramter for nested worklist walking
991 *
992 * Schedule linked works starting from @work to @head. Work series to
993 * be scheduled starts at @work and includes any consecutive work with
994 * WORK_STRUCT_LINKED set in its predecessor.
995 *
996 * If @nextp is not NULL, it's updated to point to the next work of
997 * the last scheduled work. This allows move_linked_works() to be
998 * nested inside outer list_for_each_entry_safe().
999 *
1000 * CONTEXT:
d565ed63 1001 * spin_lock_irq(pool->lock).
bf4ede01
TH
1002 */
1003static void move_linked_works(struct work_struct *work, struct list_head *head,
1004 struct work_struct **nextp)
1005{
1006 struct work_struct *n;
1007
1008 /*
1009 * Linked worklist will always end before the end of the list,
1010 * use NULL for list head.
1011 */
1012 list_for_each_entry_safe_from(work, n, NULL, entry) {
1013 list_move_tail(&work->entry, head);
1014 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1015 break;
1016 }
1017
1018 /*
1019 * If we're already inside safe list traversal and have moved
1020 * multiple works to the scheduled queue, the next position
1021 * needs to be updated.
1022 */
1023 if (nextp)
1024 *nextp = n;
1025}
1026
8864b4e5
TH
1027/**
1028 * get_pwq - get an extra reference on the specified pool_workqueue
1029 * @pwq: pool_workqueue to get
1030 *
1031 * Obtain an extra reference on @pwq. The caller should guarantee that
1032 * @pwq has positive refcnt and be holding the matching pool->lock.
1033 */
1034static void get_pwq(struct pool_workqueue *pwq)
1035{
1036 lockdep_assert_held(&pwq->pool->lock);
1037 WARN_ON_ONCE(pwq->refcnt <= 0);
1038 pwq->refcnt++;
1039}
1040
1041/**
1042 * put_pwq - put a pool_workqueue reference
1043 * @pwq: pool_workqueue to put
1044 *
1045 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1046 * destruction. The caller should be holding the matching pool->lock.
1047 */
1048static void put_pwq(struct pool_workqueue *pwq)
1049{
1050 lockdep_assert_held(&pwq->pool->lock);
1051 if (likely(--pwq->refcnt))
1052 return;
1053 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1054 return;
1055 /*
1056 * @pwq can't be released under pool->lock, bounce to
1057 * pwq_unbound_release_workfn(). This never recurses on the same
1058 * pool->lock as this path is taken only for unbound workqueues and
1059 * the release work item is scheduled on a per-cpu workqueue. To
1060 * avoid lockdep warning, unbound pool->locks are given lockdep
1061 * subclass of 1 in get_unbound_pool().
1062 */
1063 schedule_work(&pwq->unbound_release_work);
1064}
1065
dce90d47
TH
1066/**
1067 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1068 * @pwq: pool_workqueue to put (can be %NULL)
1069 *
1070 * put_pwq() with locking. This function also allows %NULL @pwq.
1071 */
1072static void put_pwq_unlocked(struct pool_workqueue *pwq)
1073{
1074 if (pwq) {
1075 /*
1076 * As both pwqs and pools are sched-RCU protected, the
1077 * following lock operations are safe.
1078 */
1079 spin_lock_irq(&pwq->pool->lock);
1080 put_pwq(pwq);
1081 spin_unlock_irq(&pwq->pool->lock);
1082 }
1083}
1084
112202d9 1085static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1086{
112202d9 1087 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1088
1089 trace_workqueue_activate_work(work);
112202d9 1090 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1092 pwq->nr_active++;
bf4ede01
TH
1093}
1094
112202d9 1095static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1096{
112202d9 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1098 struct work_struct, entry);
1099
112202d9 1100 pwq_activate_delayed_work(work);
3aa62497
LJ
1101}
1102
bf4ede01 1103/**
112202d9
TH
1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105 * @pwq: pwq of interest
bf4ede01 1106 * @color: color of work which left the queue
bf4ede01
TH
1107 *
1108 * A work either has completed or is removed from pending queue,
112202d9 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1110 *
1111 * CONTEXT:
d565ed63 1112 * spin_lock_irq(pool->lock).
bf4ede01 1113 */
112202d9 1114static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1115{
8864b4e5 1116 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1117 if (color == WORK_NO_COLOR)
8864b4e5 1118 goto out_put;
bf4ede01 1119
112202d9 1120 pwq->nr_in_flight[color]--;
bf4ede01 1121
112202d9
TH
1122 pwq->nr_active--;
1123 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1124 /* one down, submit a delayed one */
112202d9
TH
1125 if (pwq->nr_active < pwq->max_active)
1126 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1127 }
1128
1129 /* is flush in progress and are we at the flushing tip? */
112202d9 1130 if (likely(pwq->flush_color != color))
8864b4e5 1131 goto out_put;
bf4ede01
TH
1132
1133 /* are there still in-flight works? */
112202d9 1134 if (pwq->nr_in_flight[color])
8864b4e5 1135 goto out_put;
bf4ede01 1136
112202d9
TH
1137 /* this pwq is done, clear flush_color */
1138 pwq->flush_color = -1;
bf4ede01
TH
1139
1140 /*
112202d9 1141 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1142 * will handle the rest.
1143 */
112202d9
TH
1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1146out_put:
1147 put_pwq(pwq);
bf4ede01
TH
1148}
1149
36e227d2 1150/**
bbb68dfa 1151 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1152 * @work: work item to steal
1153 * @is_dwork: @work is a delayed_work
bbb68dfa 1154 * @flags: place to store irq state
36e227d2
TH
1155 *
1156 * Try to grab PENDING bit of @work. This function can handle @work in any
1157 * stable state - idle, on timer or on worklist. Return values are
1158 *
1159 * 1 if @work was pending and we successfully stole PENDING
1160 * 0 if @work was idle and we claimed PENDING
1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1162 * -ENOENT if someone else is canceling @work, this state may persist
1163 * for arbitrarily long
36e227d2 1164 *
bbb68dfa 1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1166 * interrupted while holding PENDING and @work off queue, irq must be
1167 * disabled on entry. This, combined with delayed_work->timer being
1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1169 *
1170 * On successful return, >= 0, irq is disabled and the caller is
1171 * responsible for releasing it using local_irq_restore(*@flags).
1172 *
e0aecdd8 1173 * This function is safe to call from any context including IRQ handler.
bf4ede01 1174 */
bbb68dfa
TH
1175static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 unsigned long *flags)
bf4ede01 1177{
d565ed63 1178 struct worker_pool *pool;
112202d9 1179 struct pool_workqueue *pwq;
bf4ede01 1180
bbb68dfa
TH
1181 local_irq_save(*flags);
1182
36e227d2
TH
1183 /* try to steal the timer if it exists */
1184 if (is_dwork) {
1185 struct delayed_work *dwork = to_delayed_work(work);
1186
e0aecdd8
TH
1187 /*
1188 * dwork->timer is irqsafe. If del_timer() fails, it's
1189 * guaranteed that the timer is not queued anywhere and not
1190 * running on the local CPU.
1191 */
36e227d2
TH
1192 if (likely(del_timer(&dwork->timer)))
1193 return 1;
1194 }
1195
1196 /* try to claim PENDING the normal way */
bf4ede01
TH
1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 return 0;
1199
1200 /*
1201 * The queueing is in progress, or it is already queued. Try to
1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 */
d565ed63
TH
1204 pool = get_work_pool(work);
1205 if (!pool)
bbb68dfa 1206 goto fail;
bf4ede01 1207
d565ed63 1208 spin_lock(&pool->lock);
0b3dae68 1209 /*
112202d9
TH
1210 * work->data is guaranteed to point to pwq only while the work
1211 * item is queued on pwq->wq, and both updating work->data to point
1212 * to pwq on queueing and to pool on dequeueing are done under
1213 * pwq->pool->lock. This in turn guarantees that, if work->data
1214 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1215 * item is currently queued on that pool.
1216 */
112202d9
TH
1217 pwq = get_work_pwq(work);
1218 if (pwq && pwq->pool == pool) {
16062836
TH
1219 debug_work_deactivate(work);
1220
1221 /*
1222 * A delayed work item cannot be grabbed directly because
1223 * it might have linked NO_COLOR work items which, if left
112202d9 1224 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1225 * management later on and cause stall. Make sure the work
1226 * item is activated before grabbing.
1227 */
1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1229 pwq_activate_delayed_work(work);
16062836
TH
1230
1231 list_del_init(&work->entry);
112202d9 1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1233
112202d9 1234 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1235 set_work_pool_and_keep_pending(work, pool->id);
1236
1237 spin_unlock(&pool->lock);
1238 return 1;
bf4ede01 1239 }
d565ed63 1240 spin_unlock(&pool->lock);
bbb68dfa
TH
1241fail:
1242 local_irq_restore(*flags);
1243 if (work_is_canceling(work))
1244 return -ENOENT;
1245 cpu_relax();
36e227d2 1246 return -EAGAIN;
bf4ede01
TH
1247}
1248
4690c4ab 1249/**
706026c2 1250 * insert_work - insert a work into a pool
112202d9 1251 * @pwq: pwq @work belongs to
4690c4ab
TH
1252 * @work: work to insert
1253 * @head: insertion point
1254 * @extra_flags: extra WORK_STRUCT_* flags to set
1255 *
112202d9 1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1257 * work_struct flags.
4690c4ab
TH
1258 *
1259 * CONTEXT:
d565ed63 1260 * spin_lock_irq(pool->lock).
4690c4ab 1261 */
112202d9
TH
1262static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 struct list_head *head, unsigned int extra_flags)
b89deed3 1264{
112202d9 1265 struct worker_pool *pool = pwq->pool;
e22bee78 1266
4690c4ab 1267 /* we own @work, set data and link */
112202d9 1268 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1269 list_add_tail(&work->entry, head);
8864b4e5 1270 get_pwq(pwq);
e22bee78
TH
1271
1272 /*
c5aa87bb
TH
1273 * Ensure either wq_worker_sleeping() sees the above
1274 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 * around lazily while there are works to be processed.
e22bee78
TH
1276 */
1277 smp_mb();
1278
63d95a91
TH
1279 if (__need_more_worker(pool))
1280 wake_up_worker(pool);
b89deed3
ON
1281}
1282
c8efcc25
TH
1283/*
1284 * Test whether @work is being queued from another work executing on the
8d03ecfe 1285 * same workqueue.
c8efcc25
TH
1286 */
1287static bool is_chained_work(struct workqueue_struct *wq)
1288{
8d03ecfe
TH
1289 struct worker *worker;
1290
1291 worker = current_wq_worker();
1292 /*
1293 * Return %true iff I'm a worker execuing a work item on @wq. If
1294 * I'm @worker, it's safe to dereference it without locking.
1295 */
112202d9 1296 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1297}
1298
d84ff051 1299static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1300 struct work_struct *work)
1301{
112202d9 1302 struct pool_workqueue *pwq;
c9178087 1303 struct worker_pool *last_pool;
1e19ffc6 1304 struct list_head *worklist;
8a2e8e5d 1305 unsigned int work_flags;
b75cac93 1306 unsigned int req_cpu = cpu;
8930caba
TH
1307
1308 /*
1309 * While a work item is PENDING && off queue, a task trying to
1310 * steal the PENDING will busy-loop waiting for it to either get
1311 * queued or lose PENDING. Grabbing PENDING and queueing should
1312 * happen with IRQ disabled.
1313 */
1314 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1315
dc186ad7 1316 debug_work_activate(work);
1e19ffc6 1317
c8efcc25 1318 /* if dying, only works from the same workqueue are allowed */
618b01eb 1319 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1320 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1321 return;
9e8cd2f5 1322retry:
df2d5ae4
TH
1323 if (req_cpu == WORK_CPU_UNBOUND)
1324 cpu = raw_smp_processor_id();
1325
c9178087 1326 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1327 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1329 else
1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1331
c9178087
TH
1332 /*
1333 * If @work was previously on a different pool, it might still be
1334 * running there, in which case the work needs to be queued on that
1335 * pool to guarantee non-reentrancy.
1336 */
1337 last_pool = get_work_pool(work);
1338 if (last_pool && last_pool != pwq->pool) {
1339 struct worker *worker;
18aa9eff 1340
c9178087 1341 spin_lock(&last_pool->lock);
18aa9eff 1342
c9178087 1343 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1344
c9178087
TH
1345 if (worker && worker->current_pwq->wq == wq) {
1346 pwq = worker->current_pwq;
8930caba 1347 } else {
c9178087
TH
1348 /* meh... not running there, queue here */
1349 spin_unlock(&last_pool->lock);
112202d9 1350 spin_lock(&pwq->pool->lock);
8930caba 1351 }
f3421797 1352 } else {
112202d9 1353 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1354 }
1355
9e8cd2f5
TH
1356 /*
1357 * pwq is determined and locked. For unbound pools, we could have
1358 * raced with pwq release and it could already be dead. If its
1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1360 * without another pwq replacing it in the numa_pwq_tbl or while
1361 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1362 * make forward-progress.
1363 */
1364 if (unlikely(!pwq->refcnt)) {
1365 if (wq->flags & WQ_UNBOUND) {
1366 spin_unlock(&pwq->pool->lock);
1367 cpu_relax();
1368 goto retry;
1369 }
1370 /* oops */
1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 wq->name, cpu);
1373 }
1374
112202d9
TH
1375 /* pwq determined, queue */
1376 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1377
f5b2552b 1378 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1379 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1380 return;
1381 }
1e19ffc6 1382
112202d9
TH
1383 pwq->nr_in_flight[pwq->work_color]++;
1384 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1385
112202d9 1386 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1387 trace_workqueue_activate_work(work);
112202d9
TH
1388 pwq->nr_active++;
1389 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1390 } else {
1391 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1392 worklist = &pwq->delayed_works;
8a2e8e5d 1393 }
1e19ffc6 1394
112202d9 1395 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1396
112202d9 1397 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1398}
1399
0fcb78c2 1400/**
c1a220e7
ZR
1401 * queue_work_on - queue work on specific cpu
1402 * @cpu: CPU number to execute work on
0fcb78c2
REB
1403 * @wq: workqueue to use
1404 * @work: work to queue
1405 *
d4283e93 1406 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1407 *
c1a220e7
ZR
1408 * We queue the work to a specific CPU, the caller must ensure it
1409 * can't go away.
1da177e4 1410 */
d4283e93
TH
1411bool queue_work_on(int cpu, struct workqueue_struct *wq,
1412 struct work_struct *work)
1da177e4 1413{
d4283e93 1414 bool ret = false;
8930caba 1415 unsigned long flags;
ef1ca236 1416
8930caba 1417 local_irq_save(flags);
c1a220e7 1418
22df02bb 1419 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1420 __queue_work(cpu, wq, work);
d4283e93 1421 ret = true;
c1a220e7 1422 }
ef1ca236 1423
8930caba 1424 local_irq_restore(flags);
1da177e4
LT
1425 return ret;
1426}
ad7b1f84 1427EXPORT_SYMBOL(queue_work_on);
1da177e4 1428
d8e794df 1429void delayed_work_timer_fn(unsigned long __data)
1da177e4 1430{
52bad64d 1431 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1432
e0aecdd8 1433 /* should have been called from irqsafe timer with irq already off */
60c057bc 1434 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1435}
1438ade5 1436EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1437
7beb2edf
TH
1438static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1439 struct delayed_work *dwork, unsigned long delay)
1da177e4 1440{
7beb2edf
TH
1441 struct timer_list *timer = &dwork->timer;
1442 struct work_struct *work = &dwork->work;
7beb2edf
TH
1443
1444 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1445 timer->data != (unsigned long)dwork);
fc4b514f
TH
1446 WARN_ON_ONCE(timer_pending(timer));
1447 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1448
8852aac2
TH
1449 /*
1450 * If @delay is 0, queue @dwork->work immediately. This is for
1451 * both optimization and correctness. The earliest @timer can
1452 * expire is on the closest next tick and delayed_work users depend
1453 * on that there's no such delay when @delay is 0.
1454 */
1455 if (!delay) {
1456 __queue_work(cpu, wq, &dwork->work);
1457 return;
1458 }
1459
7beb2edf 1460 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1461
60c057bc 1462 dwork->wq = wq;
1265057f 1463 dwork->cpu = cpu;
7beb2edf
TH
1464 timer->expires = jiffies + delay;
1465
1466 if (unlikely(cpu != WORK_CPU_UNBOUND))
1467 add_timer_on(timer, cpu);
1468 else
1469 add_timer(timer);
1da177e4
LT
1470}
1471
0fcb78c2
REB
1472/**
1473 * queue_delayed_work_on - queue work on specific CPU after delay
1474 * @cpu: CPU number to execute work on
1475 * @wq: workqueue to use
af9997e4 1476 * @dwork: work to queue
0fcb78c2
REB
1477 * @delay: number of jiffies to wait before queueing
1478 *
715f1300
TH
1479 * Returns %false if @work was already on a queue, %true otherwise. If
1480 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1481 * execution.
0fcb78c2 1482 */
d4283e93
TH
1483bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1484 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1485{
52bad64d 1486 struct work_struct *work = &dwork->work;
d4283e93 1487 bool ret = false;
8930caba 1488 unsigned long flags;
7a6bc1cd 1489
8930caba
TH
1490 /* read the comment in __queue_work() */
1491 local_irq_save(flags);
7a6bc1cd 1492
22df02bb 1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1494 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1495 ret = true;
7a6bc1cd 1496 }
8a3e77cc 1497
8930caba 1498 local_irq_restore(flags);
7a6bc1cd
VP
1499 return ret;
1500}
ad7b1f84 1501EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1502
8376fe22
TH
1503/**
1504 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1505 * @cpu: CPU number to execute work on
1506 * @wq: workqueue to use
1507 * @dwork: work to queue
1508 * @delay: number of jiffies to wait before queueing
1509 *
1510 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1511 * modify @dwork's timer so that it expires after @delay. If @delay is
1512 * zero, @work is guaranteed to be scheduled immediately regardless of its
1513 * current state.
1514 *
1515 * Returns %false if @dwork was idle and queued, %true if @dwork was
1516 * pending and its timer was modified.
1517 *
e0aecdd8 1518 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1519 * See try_to_grab_pending() for details.
1520 */
1521bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1522 struct delayed_work *dwork, unsigned long delay)
1523{
1524 unsigned long flags;
1525 int ret;
c7fc77f7 1526
8376fe22
TH
1527 do {
1528 ret = try_to_grab_pending(&dwork->work, true, &flags);
1529 } while (unlikely(ret == -EAGAIN));
63bc0362 1530
8376fe22
TH
1531 if (likely(ret >= 0)) {
1532 __queue_delayed_work(cpu, wq, dwork, delay);
1533 local_irq_restore(flags);
7a6bc1cd 1534 }
8376fe22
TH
1535
1536 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1537 return ret;
1538}
8376fe22
TH
1539EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1540
c8e55f36
TH
1541/**
1542 * worker_enter_idle - enter idle state
1543 * @worker: worker which is entering idle state
1544 *
1545 * @worker is entering idle state. Update stats and idle timer if
1546 * necessary.
1547 *
1548 * LOCKING:
d565ed63 1549 * spin_lock_irq(pool->lock).
c8e55f36
TH
1550 */
1551static void worker_enter_idle(struct worker *worker)
1da177e4 1552{
bd7bdd43 1553 struct worker_pool *pool = worker->pool;
c8e55f36 1554
6183c009
TH
1555 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1556 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1557 (worker->hentry.next || worker->hentry.pprev)))
1558 return;
c8e55f36 1559
cb444766
TH
1560 /* can't use worker_set_flags(), also called from start_worker() */
1561 worker->flags |= WORKER_IDLE;
bd7bdd43 1562 pool->nr_idle++;
e22bee78 1563 worker->last_active = jiffies;
c8e55f36
TH
1564
1565 /* idle_list is LIFO */
bd7bdd43 1566 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1567
628c78e7
TH
1568 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1569 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1570
544ecf31 1571 /*
706026c2 1572 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1573 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1574 * nr_running, the warning may trigger spuriously. Check iff
1575 * unbind is not in progress.
544ecf31 1576 */
24647570 1577 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1578 pool->nr_workers == pool->nr_idle &&
e19e397a 1579 atomic_read(&pool->nr_running));
c8e55f36
TH
1580}
1581
1582/**
1583 * worker_leave_idle - leave idle state
1584 * @worker: worker which is leaving idle state
1585 *
1586 * @worker is leaving idle state. Update stats.
1587 *
1588 * LOCKING:
d565ed63 1589 * spin_lock_irq(pool->lock).
c8e55f36
TH
1590 */
1591static void worker_leave_idle(struct worker *worker)
1592{
bd7bdd43 1593 struct worker_pool *pool = worker->pool;
c8e55f36 1594
6183c009
TH
1595 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1596 return;
d302f017 1597 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1598 pool->nr_idle--;
c8e55f36
TH
1599 list_del_init(&worker->entry);
1600}
1601
e22bee78 1602/**
f36dc67b
LJ
1603 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1604 * @pool: target worker_pool
1605 *
1606 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1607 *
1608 * Works which are scheduled while the cpu is online must at least be
1609 * scheduled to a worker which is bound to the cpu so that if they are
1610 * flushed from cpu callbacks while cpu is going down, they are
1611 * guaranteed to execute on the cpu.
1612 *
f5faa077 1613 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1614 * themselves to the target cpu and may race with cpu going down or
1615 * coming online. kthread_bind() can't be used because it may put the
1616 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1617 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1618 * [dis]associated in the meantime.
1619 *
706026c2 1620 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1621 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1622 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1623 * enters idle state or fetches works without dropping lock, it can
1624 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1625 *
1626 * CONTEXT:
d565ed63 1627 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1628 * held.
1629 *
1630 * RETURNS:
706026c2 1631 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1632 * bound), %false if offline.
1633 */
f36dc67b 1634static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1635__acquires(&pool->lock)
e22bee78 1636{
e22bee78 1637 while (true) {
4e6045f1 1638 /*
e22bee78
TH
1639 * The following call may fail, succeed or succeed
1640 * without actually migrating the task to the cpu if
1641 * it races with cpu hotunplug operation. Verify
24647570 1642 * against POOL_DISASSOCIATED.
4e6045f1 1643 */
24647570 1644 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1645 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1646
d565ed63 1647 spin_lock_irq(&pool->lock);
24647570 1648 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1649 return false;
f5faa077 1650 if (task_cpu(current) == pool->cpu &&
7a4e344c 1651 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1652 return true;
d565ed63 1653 spin_unlock_irq(&pool->lock);
e22bee78 1654
5035b20f
TH
1655 /*
1656 * We've raced with CPU hot[un]plug. Give it a breather
1657 * and retry migration. cond_resched() is required here;
1658 * otherwise, we might deadlock against cpu_stop trying to
1659 * bring down the CPU on non-preemptive kernel.
1660 */
e22bee78 1661 cpu_relax();
5035b20f 1662 cond_resched();
e22bee78
TH
1663 }
1664}
1665
c34056a3
TH
1666static struct worker *alloc_worker(void)
1667{
1668 struct worker *worker;
1669
1670 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1671 if (worker) {
1672 INIT_LIST_HEAD(&worker->entry);
affee4b2 1673 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1674 /* on creation a worker is in !idle && prep state */
1675 worker->flags = WORKER_PREP;
c8e55f36 1676 }
c34056a3
TH
1677 return worker;
1678}
1679
1680/**
1681 * create_worker - create a new workqueue worker
63d95a91 1682 * @pool: pool the new worker will belong to
c34056a3 1683 *
63d95a91 1684 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1685 * can be started by calling start_worker() or destroyed using
1686 * destroy_worker().
1687 *
1688 * CONTEXT:
1689 * Might sleep. Does GFP_KERNEL allocations.
1690 *
1691 * RETURNS:
1692 * Pointer to the newly created worker.
1693 */
bc2ae0f5 1694static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1695{
c34056a3 1696 struct worker *worker = NULL;
f3421797 1697 int id = -1;
e3c916a4 1698 char id_buf[16];
c34056a3 1699
cd549687
TH
1700 lockdep_assert_held(&pool->manager_mutex);
1701
822d8405
TH
1702 /*
1703 * ID is needed to determine kthread name. Allocate ID first
1704 * without installing the pointer.
1705 */
1706 idr_preload(GFP_KERNEL);
d565ed63 1707 spin_lock_irq(&pool->lock);
822d8405
TH
1708
1709 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1710
d565ed63 1711 spin_unlock_irq(&pool->lock);
822d8405
TH
1712 idr_preload_end();
1713 if (id < 0)
1714 goto fail;
c34056a3
TH
1715
1716 worker = alloc_worker();
1717 if (!worker)
1718 goto fail;
1719
bd7bdd43 1720 worker->pool = pool;
c34056a3
TH
1721 worker->id = id;
1722
29c91e99 1723 if (pool->cpu >= 0)
e3c916a4
TH
1724 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1725 pool->attrs->nice < 0 ? "H" : "");
f3421797 1726 else
e3c916a4
TH
1727 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1728
f3f90ad4 1729 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1730 "kworker/%s", id_buf);
c34056a3
TH
1731 if (IS_ERR(worker->task))
1732 goto fail;
1733
c5aa87bb
TH
1734 /*
1735 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1736 * online CPUs. It'll be re-applied when any of the CPUs come up.
1737 */
7a4e344c
TH
1738 set_user_nice(worker->task, pool->attrs->nice);
1739 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1740
14a40ffc
TH
1741 /* prevent userland from meddling with cpumask of workqueue workers */
1742 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1743
1744 /*
1745 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1746 * remains stable across this function. See the comments above the
1747 * flag definition for details.
1748 */
1749 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1750 worker->flags |= WORKER_UNBOUND;
c34056a3 1751
822d8405
TH
1752 /* successful, commit the pointer to idr */
1753 spin_lock_irq(&pool->lock);
1754 idr_replace(&pool->worker_idr, worker, worker->id);
1755 spin_unlock_irq(&pool->lock);
1756
c34056a3 1757 return worker;
822d8405 1758
c34056a3
TH
1759fail:
1760 if (id >= 0) {
d565ed63 1761 spin_lock_irq(&pool->lock);
822d8405 1762 idr_remove(&pool->worker_idr, id);
d565ed63 1763 spin_unlock_irq(&pool->lock);
c34056a3
TH
1764 }
1765 kfree(worker);
1766 return NULL;
1767}
1768
1769/**
1770 * start_worker - start a newly created worker
1771 * @worker: worker to start
1772 *
706026c2 1773 * Make the pool aware of @worker and start it.
c34056a3
TH
1774 *
1775 * CONTEXT:
d565ed63 1776 * spin_lock_irq(pool->lock).
c34056a3
TH
1777 */
1778static void start_worker(struct worker *worker)
1779{
cb444766 1780 worker->flags |= WORKER_STARTED;
bd7bdd43 1781 worker->pool->nr_workers++;
c8e55f36 1782 worker_enter_idle(worker);
c34056a3
TH
1783 wake_up_process(worker->task);
1784}
1785
ebf44d16
TH
1786/**
1787 * create_and_start_worker - create and start a worker for a pool
1788 * @pool: the target pool
1789 *
cd549687 1790 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1791 */
1792static int create_and_start_worker(struct worker_pool *pool)
1793{
1794 struct worker *worker;
1795
cd549687
TH
1796 mutex_lock(&pool->manager_mutex);
1797
ebf44d16
TH
1798 worker = create_worker(pool);
1799 if (worker) {
1800 spin_lock_irq(&pool->lock);
1801 start_worker(worker);
1802 spin_unlock_irq(&pool->lock);
1803 }
1804
cd549687
TH
1805 mutex_unlock(&pool->manager_mutex);
1806
ebf44d16
TH
1807 return worker ? 0 : -ENOMEM;
1808}
1809
c34056a3
TH
1810/**
1811 * destroy_worker - destroy a workqueue worker
1812 * @worker: worker to be destroyed
1813 *
706026c2 1814 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1815 *
1816 * CONTEXT:
d565ed63 1817 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1818 */
1819static void destroy_worker(struct worker *worker)
1820{
bd7bdd43 1821 struct worker_pool *pool = worker->pool;
c34056a3 1822
cd549687
TH
1823 lockdep_assert_held(&pool->manager_mutex);
1824 lockdep_assert_held(&pool->lock);
1825
c34056a3 1826 /* sanity check frenzy */
6183c009
TH
1827 if (WARN_ON(worker->current_work) ||
1828 WARN_ON(!list_empty(&worker->scheduled)))
1829 return;
c34056a3 1830
c8e55f36 1831 if (worker->flags & WORKER_STARTED)
bd7bdd43 1832 pool->nr_workers--;
c8e55f36 1833 if (worker->flags & WORKER_IDLE)
bd7bdd43 1834 pool->nr_idle--;
c8e55f36
TH
1835
1836 list_del_init(&worker->entry);
cb444766 1837 worker->flags |= WORKER_DIE;
c8e55f36 1838
822d8405
TH
1839 idr_remove(&pool->worker_idr, worker->id);
1840
d565ed63 1841 spin_unlock_irq(&pool->lock);
c8e55f36 1842
c34056a3
TH
1843 kthread_stop(worker->task);
1844 kfree(worker);
1845
d565ed63 1846 spin_lock_irq(&pool->lock);
c34056a3
TH
1847}
1848
63d95a91 1849static void idle_worker_timeout(unsigned long __pool)
e22bee78 1850{
63d95a91 1851 struct worker_pool *pool = (void *)__pool;
e22bee78 1852
d565ed63 1853 spin_lock_irq(&pool->lock);
e22bee78 1854
63d95a91 1855 if (too_many_workers(pool)) {
e22bee78
TH
1856 struct worker *worker;
1857 unsigned long expires;
1858
1859 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1860 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1861 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1862
1863 if (time_before(jiffies, expires))
63d95a91 1864 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1865 else {
1866 /* it's been idle for too long, wake up manager */
11ebea50 1867 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1868 wake_up_worker(pool);
d5abe669 1869 }
e22bee78
TH
1870 }
1871
d565ed63 1872 spin_unlock_irq(&pool->lock);
e22bee78 1873}
d5abe669 1874
493a1724 1875static void send_mayday(struct work_struct *work)
e22bee78 1876{
112202d9
TH
1877 struct pool_workqueue *pwq = get_work_pwq(work);
1878 struct workqueue_struct *wq = pwq->wq;
493a1724 1879
2e109a28 1880 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1881
493008a8 1882 if (!wq->rescuer)
493a1724 1883 return;
e22bee78
TH
1884
1885 /* mayday mayday mayday */
493a1724
TH
1886 if (list_empty(&pwq->mayday_node)) {
1887 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1888 wake_up_process(wq->rescuer->task);
493a1724 1889 }
e22bee78
TH
1890}
1891
706026c2 1892static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1893{
63d95a91 1894 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1895 struct work_struct *work;
1896
2e109a28 1897 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1898 spin_lock(&pool->lock);
e22bee78 1899
63d95a91 1900 if (need_to_create_worker(pool)) {
e22bee78
TH
1901 /*
1902 * We've been trying to create a new worker but
1903 * haven't been successful. We might be hitting an
1904 * allocation deadlock. Send distress signals to
1905 * rescuers.
1906 */
63d95a91 1907 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1908 send_mayday(work);
1da177e4 1909 }
e22bee78 1910
493a1724 1911 spin_unlock(&pool->lock);
2e109a28 1912 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1913
63d95a91 1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1915}
1916
e22bee78
TH
1917/**
1918 * maybe_create_worker - create a new worker if necessary
63d95a91 1919 * @pool: pool to create a new worker for
e22bee78 1920 *
63d95a91 1921 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1922 * have at least one idle worker on return from this function. If
1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1924 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1925 * possible allocation deadlock.
1926 *
c5aa87bb
TH
1927 * On return, need_to_create_worker() is guaranteed to be %false and
1928 * may_start_working() %true.
e22bee78
TH
1929 *
1930 * LOCKING:
d565ed63 1931 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1932 * multiple times. Does GFP_KERNEL allocations. Called only from
1933 * manager.
1934 *
1935 * RETURNS:
c5aa87bb 1936 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1937 * otherwise.
1938 */
63d95a91 1939static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1940__releases(&pool->lock)
1941__acquires(&pool->lock)
1da177e4 1942{
63d95a91 1943 if (!need_to_create_worker(pool))
e22bee78
TH
1944 return false;
1945restart:
d565ed63 1946 spin_unlock_irq(&pool->lock);
9f9c2364 1947
e22bee78 1948 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1949 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1950
1951 while (true) {
1952 struct worker *worker;
1953
bc2ae0f5 1954 worker = create_worker(pool);
e22bee78 1955 if (worker) {
63d95a91 1956 del_timer_sync(&pool->mayday_timer);
d565ed63 1957 spin_lock_irq(&pool->lock);
e22bee78 1958 start_worker(worker);
6183c009
TH
1959 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1960 goto restart;
e22bee78
TH
1961 return true;
1962 }
1963
63d95a91 1964 if (!need_to_create_worker(pool))
e22bee78 1965 break;
1da177e4 1966
e22bee78
TH
1967 __set_current_state(TASK_INTERRUPTIBLE);
1968 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1969
63d95a91 1970 if (!need_to_create_worker(pool))
e22bee78
TH
1971 break;
1972 }
1973
63d95a91 1974 del_timer_sync(&pool->mayday_timer);
d565ed63 1975 spin_lock_irq(&pool->lock);
63d95a91 1976 if (need_to_create_worker(pool))
e22bee78
TH
1977 goto restart;
1978 return true;
1979}
1980
1981/**
1982 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1983 * @pool: pool to destroy workers for
e22bee78 1984 *
63d95a91 1985 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1986 * IDLE_WORKER_TIMEOUT.
1987 *
1988 * LOCKING:
d565ed63 1989 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1990 * multiple times. Called only from manager.
1991 *
1992 * RETURNS:
c5aa87bb 1993 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1994 * otherwise.
1995 */
63d95a91 1996static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1997{
1998 bool ret = false;
1da177e4 1999
63d95a91 2000 while (too_many_workers(pool)) {
e22bee78
TH
2001 struct worker *worker;
2002 unsigned long expires;
3af24433 2003
63d95a91 2004 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2006
e22bee78 2007 if (time_before(jiffies, expires)) {
63d95a91 2008 mod_timer(&pool->idle_timer, expires);
3af24433 2009 break;
e22bee78 2010 }
1da177e4 2011
e22bee78
TH
2012 destroy_worker(worker);
2013 ret = true;
1da177e4 2014 }
1e19ffc6 2015
e22bee78 2016 return ret;
1e19ffc6
TH
2017}
2018
73f53c4a 2019/**
e22bee78
TH
2020 * manage_workers - manage worker pool
2021 * @worker: self
73f53c4a 2022 *
706026c2 2023 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2024 * to. At any given time, there can be only zero or one manager per
706026c2 2025 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2026 *
2027 * The caller can safely start processing works on false return. On
2028 * true return, it's guaranteed that need_to_create_worker() is false
2029 * and may_start_working() is true.
73f53c4a
TH
2030 *
2031 * CONTEXT:
d565ed63 2032 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2033 * multiple times. Does GFP_KERNEL allocations.
2034 *
2035 * RETURNS:
d565ed63
TH
2036 * spin_lock_irq(pool->lock) which may be released and regrabbed
2037 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2038 */
e22bee78 2039static bool manage_workers(struct worker *worker)
73f53c4a 2040{
63d95a91 2041 struct worker_pool *pool = worker->pool;
e22bee78 2042 bool ret = false;
73f53c4a 2043
bc3a1afc
TH
2044 /*
2045 * Managership is governed by two mutexes - manager_arb and
2046 * manager_mutex. manager_arb handles arbitration of manager role.
2047 * Anyone who successfully grabs manager_arb wins the arbitration
2048 * and becomes the manager. mutex_trylock() on pool->manager_arb
2049 * failure while holding pool->lock reliably indicates that someone
2050 * else is managing the pool and the worker which failed trylock
2051 * can proceed to executing work items. This means that anyone
2052 * grabbing manager_arb is responsible for actually performing
2053 * manager duties. If manager_arb is grabbed and released without
2054 * actual management, the pool may stall indefinitely.
2055 *
2056 * manager_mutex is used for exclusion of actual management
2057 * operations. The holder of manager_mutex can be sure that none
2058 * of management operations, including creation and destruction of
2059 * workers, won't take place until the mutex is released. Because
2060 * manager_mutex doesn't interfere with manager role arbitration,
2061 * it is guaranteed that the pool's management, while may be
2062 * delayed, won't be disturbed by someone else grabbing
2063 * manager_mutex.
2064 */
34a06bd6 2065 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2066 return ret;
1e19ffc6 2067
ee378aa4 2068 /*
bc3a1afc
TH
2069 * With manager arbitration won, manager_mutex would be free in
2070 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2071 */
bc3a1afc 2072 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2073 spin_unlock_irq(&pool->lock);
bc3a1afc 2074 mutex_lock(&pool->manager_mutex);
8f174b11 2075 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2076 ret = true;
2077 }
73f53c4a 2078
11ebea50 2079 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2080
2081 /*
e22bee78
TH
2082 * Destroy and then create so that may_start_working() is true
2083 * on return.
73f53c4a 2084 */
63d95a91
TH
2085 ret |= maybe_destroy_workers(pool);
2086 ret |= maybe_create_worker(pool);
e22bee78 2087
bc3a1afc 2088 mutex_unlock(&pool->manager_mutex);
34a06bd6 2089 mutex_unlock(&pool->manager_arb);
e22bee78 2090 return ret;
73f53c4a
TH
2091}
2092
a62428c0
TH
2093/**
2094 * process_one_work - process single work
c34056a3 2095 * @worker: self
a62428c0
TH
2096 * @work: work to process
2097 *
2098 * Process @work. This function contains all the logics necessary to
2099 * process a single work including synchronization against and
2100 * interaction with other workers on the same cpu, queueing and
2101 * flushing. As long as context requirement is met, any worker can
2102 * call this function to process a work.
2103 *
2104 * CONTEXT:
d565ed63 2105 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2106 */
c34056a3 2107static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2108__releases(&pool->lock)
2109__acquires(&pool->lock)
a62428c0 2110{
112202d9 2111 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2112 struct worker_pool *pool = worker->pool;
112202d9 2113 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2114 int work_color;
7e11629d 2115 struct worker *collision;
a62428c0
TH
2116#ifdef CONFIG_LOCKDEP
2117 /*
2118 * It is permissible to free the struct work_struct from
2119 * inside the function that is called from it, this we need to
2120 * take into account for lockdep too. To avoid bogus "held
2121 * lock freed" warnings as well as problems when looking into
2122 * work->lockdep_map, make a copy and use that here.
2123 */
4d82a1de
PZ
2124 struct lockdep_map lockdep_map;
2125
2126 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2127#endif
6fec10a1
TH
2128 /*
2129 * Ensure we're on the correct CPU. DISASSOCIATED test is
2130 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2131 * unbound or a disassociated pool.
6fec10a1 2132 */
5f7dabfd 2133 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2134 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2135 raw_smp_processor_id() != pool->cpu);
25511a47 2136
7e11629d
TH
2137 /*
2138 * A single work shouldn't be executed concurrently by
2139 * multiple workers on a single cpu. Check whether anyone is
2140 * already processing the work. If so, defer the work to the
2141 * currently executing one.
2142 */
c9e7cf27 2143 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2144 if (unlikely(collision)) {
2145 move_linked_works(work, &collision->scheduled, NULL);
2146 return;
2147 }
2148
8930caba 2149 /* claim and dequeue */
a62428c0 2150 debug_work_deactivate(work);
c9e7cf27 2151 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2152 worker->current_work = work;
a2c1c57b 2153 worker->current_func = work->func;
112202d9 2154 worker->current_pwq = pwq;
73f53c4a 2155 work_color = get_work_color(work);
7a22ad75 2156
a62428c0
TH
2157 list_del_init(&work->entry);
2158
fb0e7beb
TH
2159 /*
2160 * CPU intensive works don't participate in concurrency
2161 * management. They're the scheduler's responsibility.
2162 */
2163 if (unlikely(cpu_intensive))
2164 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2165
974271c4 2166 /*
d565ed63 2167 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2168 * executed ASAP. Wake up another worker if necessary.
2169 */
63d95a91
TH
2170 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2171 wake_up_worker(pool);
974271c4 2172
8930caba 2173 /*
7c3eed5c 2174 * Record the last pool and clear PENDING which should be the last
d565ed63 2175 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2176 * PENDING and queued state changes happen together while IRQ is
2177 * disabled.
8930caba 2178 */
7c3eed5c 2179 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2180
d565ed63 2181 spin_unlock_irq(&pool->lock);
a62428c0 2182
112202d9 2183 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2184 lock_map_acquire(&lockdep_map);
e36c886a 2185 trace_workqueue_execute_start(work);
a2c1c57b 2186 worker->current_func(work);
e36c886a
AV
2187 /*
2188 * While we must be careful to not use "work" after this, the trace
2189 * point will only record its address.
2190 */
2191 trace_workqueue_execute_end(work);
a62428c0 2192 lock_map_release(&lockdep_map);
112202d9 2193 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2194
2195 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2196 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2197 " last function: %pf\n",
a2c1c57b
TH
2198 current->comm, preempt_count(), task_pid_nr(current),
2199 worker->current_func);
a62428c0
TH
2200 debug_show_held_locks(current);
2201 dump_stack();
2202 }
2203
d565ed63 2204 spin_lock_irq(&pool->lock);
a62428c0 2205
fb0e7beb
TH
2206 /* clear cpu intensive status */
2207 if (unlikely(cpu_intensive))
2208 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2209
a62428c0 2210 /* we're done with it, release */
42f8570f 2211 hash_del(&worker->hentry);
c34056a3 2212 worker->current_work = NULL;
a2c1c57b 2213 worker->current_func = NULL;
112202d9 2214 worker->current_pwq = NULL;
3d1cb205 2215 worker->desc_valid = false;
112202d9 2216 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2217}
2218
affee4b2
TH
2219/**
2220 * process_scheduled_works - process scheduled works
2221 * @worker: self
2222 *
2223 * Process all scheduled works. Please note that the scheduled list
2224 * may change while processing a work, so this function repeatedly
2225 * fetches a work from the top and executes it.
2226 *
2227 * CONTEXT:
d565ed63 2228 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2229 * multiple times.
2230 */
2231static void process_scheduled_works(struct worker *worker)
1da177e4 2232{
affee4b2
TH
2233 while (!list_empty(&worker->scheduled)) {
2234 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2235 struct work_struct, entry);
c34056a3 2236 process_one_work(worker, work);
1da177e4 2237 }
1da177e4
LT
2238}
2239
4690c4ab
TH
2240/**
2241 * worker_thread - the worker thread function
c34056a3 2242 * @__worker: self
4690c4ab 2243 *
c5aa87bb
TH
2244 * The worker thread function. All workers belong to a worker_pool -
2245 * either a per-cpu one or dynamic unbound one. These workers process all
2246 * work items regardless of their specific target workqueue. The only
2247 * exception is work items which belong to workqueues with a rescuer which
2248 * will be explained in rescuer_thread().
4690c4ab 2249 */
c34056a3 2250static int worker_thread(void *__worker)
1da177e4 2251{
c34056a3 2252 struct worker *worker = __worker;
bd7bdd43 2253 struct worker_pool *pool = worker->pool;
1da177e4 2254
e22bee78
TH
2255 /* tell the scheduler that this is a workqueue worker */
2256 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2257woke_up:
d565ed63 2258 spin_lock_irq(&pool->lock);
1da177e4 2259
a9ab775b
TH
2260 /* am I supposed to die? */
2261 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2262 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2263 WARN_ON_ONCE(!list_empty(&worker->entry));
2264 worker->task->flags &= ~PF_WQ_WORKER;
2265 return 0;
c8e55f36 2266 }
affee4b2 2267
c8e55f36 2268 worker_leave_idle(worker);
db7bccf4 2269recheck:
e22bee78 2270 /* no more worker necessary? */
63d95a91 2271 if (!need_more_worker(pool))
e22bee78
TH
2272 goto sleep;
2273
2274 /* do we need to manage? */
63d95a91 2275 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2276 goto recheck;
2277
c8e55f36
TH
2278 /*
2279 * ->scheduled list can only be filled while a worker is
2280 * preparing to process a work or actually processing it.
2281 * Make sure nobody diddled with it while I was sleeping.
2282 */
6183c009 2283 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2284
e22bee78 2285 /*
a9ab775b
TH
2286 * Finish PREP stage. We're guaranteed to have at least one idle
2287 * worker or that someone else has already assumed the manager
2288 * role. This is where @worker starts participating in concurrency
2289 * management if applicable and concurrency management is restored
2290 * after being rebound. See rebind_workers() for details.
e22bee78 2291 */
a9ab775b 2292 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2293
2294 do {
c8e55f36 2295 struct work_struct *work =
bd7bdd43 2296 list_first_entry(&pool->worklist,
c8e55f36
TH
2297 struct work_struct, entry);
2298
2299 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2300 /* optimization path, not strictly necessary */
2301 process_one_work(worker, work);
2302 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2303 process_scheduled_works(worker);
c8e55f36
TH
2304 } else {
2305 move_linked_works(work, &worker->scheduled, NULL);
2306 process_scheduled_works(worker);
affee4b2 2307 }
63d95a91 2308 } while (keep_working(pool));
e22bee78
TH
2309
2310 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2311sleep:
63d95a91 2312 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2313 goto recheck;
d313dd85 2314
c8e55f36 2315 /*
d565ed63
TH
2316 * pool->lock is held and there's no work to process and no need to
2317 * manage, sleep. Workers are woken up only while holding
2318 * pool->lock or from local cpu, so setting the current state
2319 * before releasing pool->lock is enough to prevent losing any
2320 * event.
c8e55f36
TH
2321 */
2322 worker_enter_idle(worker);
2323 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2324 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2325 schedule();
2326 goto woke_up;
1da177e4
LT
2327}
2328
e22bee78
TH
2329/**
2330 * rescuer_thread - the rescuer thread function
111c225a 2331 * @__rescuer: self
e22bee78
TH
2332 *
2333 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2334 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2335 *
706026c2 2336 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2337 * worker which uses GFP_KERNEL allocation which has slight chance of
2338 * developing into deadlock if some works currently on the same queue
2339 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2340 * the problem rescuer solves.
2341 *
706026c2
TH
2342 * When such condition is possible, the pool summons rescuers of all
2343 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2344 * those works so that forward progress can be guaranteed.
2345 *
2346 * This should happen rarely.
2347 */
111c225a 2348static int rescuer_thread(void *__rescuer)
e22bee78 2349{
111c225a
TH
2350 struct worker *rescuer = __rescuer;
2351 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2352 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2353
2354 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2355
2356 /*
2357 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2358 * doesn't participate in concurrency management.
2359 */
2360 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2361repeat:
2362 set_current_state(TASK_INTERRUPTIBLE);
2363
412d32e6
MG
2364 if (kthread_should_stop()) {
2365 __set_current_state(TASK_RUNNING);
111c225a 2366 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2367 return 0;
412d32e6 2368 }
e22bee78 2369
493a1724 2370 /* see whether any pwq is asking for help */
2e109a28 2371 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2372
2373 while (!list_empty(&wq->maydays)) {
2374 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2375 struct pool_workqueue, mayday_node);
112202d9 2376 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2377 struct work_struct *work, *n;
2378
2379 __set_current_state(TASK_RUNNING);
493a1724
TH
2380 list_del_init(&pwq->mayday_node);
2381
2e109a28 2382 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2383
2384 /* migrate to the target cpu if possible */
f36dc67b 2385 worker_maybe_bind_and_lock(pool);
b3104104 2386 rescuer->pool = pool;
e22bee78
TH
2387
2388 /*
2389 * Slurp in all works issued via this workqueue and
2390 * process'em.
2391 */
6183c009 2392 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2393 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2394 if (get_work_pwq(work) == pwq)
e22bee78
TH
2395 move_linked_works(work, scheduled, &n);
2396
2397 process_scheduled_works(rescuer);
7576958a
TH
2398
2399 /*
d565ed63 2400 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2401 * regular worker; otherwise, we end up with 0 concurrency
2402 * and stalling the execution.
2403 */
63d95a91
TH
2404 if (keep_working(pool))
2405 wake_up_worker(pool);
7576958a 2406
b3104104 2407 rescuer->pool = NULL;
493a1724 2408 spin_unlock(&pool->lock);
2e109a28 2409 spin_lock(&wq_mayday_lock);
e22bee78
TH
2410 }
2411
2e109a28 2412 spin_unlock_irq(&wq_mayday_lock);
493a1724 2413
111c225a
TH
2414 /* rescuers should never participate in concurrency management */
2415 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2416 schedule();
2417 goto repeat;
1da177e4
LT
2418}
2419
fc2e4d70
ON
2420struct wq_barrier {
2421 struct work_struct work;
2422 struct completion done;
2423};
2424
2425static void wq_barrier_func(struct work_struct *work)
2426{
2427 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2428 complete(&barr->done);
2429}
2430
4690c4ab
TH
2431/**
2432 * insert_wq_barrier - insert a barrier work
112202d9 2433 * @pwq: pwq to insert barrier into
4690c4ab 2434 * @barr: wq_barrier to insert
affee4b2
TH
2435 * @target: target work to attach @barr to
2436 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2437 *
affee4b2
TH
2438 * @barr is linked to @target such that @barr is completed only after
2439 * @target finishes execution. Please note that the ordering
2440 * guarantee is observed only with respect to @target and on the local
2441 * cpu.
2442 *
2443 * Currently, a queued barrier can't be canceled. This is because
2444 * try_to_grab_pending() can't determine whether the work to be
2445 * grabbed is at the head of the queue and thus can't clear LINKED
2446 * flag of the previous work while there must be a valid next work
2447 * after a work with LINKED flag set.
2448 *
2449 * Note that when @worker is non-NULL, @target may be modified
112202d9 2450 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2451 *
2452 * CONTEXT:
d565ed63 2453 * spin_lock_irq(pool->lock).
4690c4ab 2454 */
112202d9 2455static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2456 struct wq_barrier *barr,
2457 struct work_struct *target, struct worker *worker)
fc2e4d70 2458{
affee4b2
TH
2459 struct list_head *head;
2460 unsigned int linked = 0;
2461
dc186ad7 2462 /*
d565ed63 2463 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2464 * as we know for sure that this will not trigger any of the
2465 * checks and call back into the fixup functions where we
2466 * might deadlock.
2467 */
ca1cab37 2468 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2469 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2470 init_completion(&barr->done);
83c22520 2471
affee4b2
TH
2472 /*
2473 * If @target is currently being executed, schedule the
2474 * barrier to the worker; otherwise, put it after @target.
2475 */
2476 if (worker)
2477 head = worker->scheduled.next;
2478 else {
2479 unsigned long *bits = work_data_bits(target);
2480
2481 head = target->entry.next;
2482 /* there can already be other linked works, inherit and set */
2483 linked = *bits & WORK_STRUCT_LINKED;
2484 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2485 }
2486
dc186ad7 2487 debug_work_activate(&barr->work);
112202d9 2488 insert_work(pwq, &barr->work, head,
affee4b2 2489 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2490}
2491
73f53c4a 2492/**
112202d9 2493 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2494 * @wq: workqueue being flushed
2495 * @flush_color: new flush color, < 0 for no-op
2496 * @work_color: new work color, < 0 for no-op
2497 *
112202d9 2498 * Prepare pwqs for workqueue flushing.
73f53c4a 2499 *
112202d9
TH
2500 * If @flush_color is non-negative, flush_color on all pwqs should be
2501 * -1. If no pwq has in-flight commands at the specified color, all
2502 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2503 * has in flight commands, its pwq->flush_color is set to
2504 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2505 * wakeup logic is armed and %true is returned.
2506 *
2507 * The caller should have initialized @wq->first_flusher prior to
2508 * calling this function with non-negative @flush_color. If
2509 * @flush_color is negative, no flush color update is done and %false
2510 * is returned.
2511 *
112202d9 2512 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2513 * work_color which is previous to @work_color and all will be
2514 * advanced to @work_color.
2515 *
2516 * CONTEXT:
3c25a55d 2517 * mutex_lock(wq->mutex).
73f53c4a
TH
2518 *
2519 * RETURNS:
2520 * %true if @flush_color >= 0 and there's something to flush. %false
2521 * otherwise.
2522 */
112202d9 2523static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2524 int flush_color, int work_color)
1da177e4 2525{
73f53c4a 2526 bool wait = false;
49e3cf44 2527 struct pool_workqueue *pwq;
1da177e4 2528
73f53c4a 2529 if (flush_color >= 0) {
6183c009 2530 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2531 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2532 }
2355b70f 2533
49e3cf44 2534 for_each_pwq(pwq, wq) {
112202d9 2535 struct worker_pool *pool = pwq->pool;
fc2e4d70 2536
b09f4fd3 2537 spin_lock_irq(&pool->lock);
83c22520 2538
73f53c4a 2539 if (flush_color >= 0) {
6183c009 2540 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2541
112202d9
TH
2542 if (pwq->nr_in_flight[flush_color]) {
2543 pwq->flush_color = flush_color;
2544 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2545 wait = true;
2546 }
2547 }
1da177e4 2548
73f53c4a 2549 if (work_color >= 0) {
6183c009 2550 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2551 pwq->work_color = work_color;
73f53c4a 2552 }
1da177e4 2553
b09f4fd3 2554 spin_unlock_irq(&pool->lock);
1da177e4 2555 }
2355b70f 2556
112202d9 2557 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2558 complete(&wq->first_flusher->done);
14441960 2559
73f53c4a 2560 return wait;
1da177e4
LT
2561}
2562
0fcb78c2 2563/**
1da177e4 2564 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2565 * @wq: workqueue to flush
1da177e4 2566 *
c5aa87bb
TH
2567 * This function sleeps until all work items which were queued on entry
2568 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2569 */
7ad5b3a5 2570void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2571{
73f53c4a
TH
2572 struct wq_flusher this_flusher = {
2573 .list = LIST_HEAD_INIT(this_flusher.list),
2574 .flush_color = -1,
2575 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2576 };
2577 int next_color;
1da177e4 2578
3295f0ef
IM
2579 lock_map_acquire(&wq->lockdep_map);
2580 lock_map_release(&wq->lockdep_map);
73f53c4a 2581
3c25a55d 2582 mutex_lock(&wq->mutex);
73f53c4a
TH
2583
2584 /*
2585 * Start-to-wait phase
2586 */
2587 next_color = work_next_color(wq->work_color);
2588
2589 if (next_color != wq->flush_color) {
2590 /*
2591 * Color space is not full. The current work_color
2592 * becomes our flush_color and work_color is advanced
2593 * by one.
2594 */
6183c009 2595 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2596 this_flusher.flush_color = wq->work_color;
2597 wq->work_color = next_color;
2598
2599 if (!wq->first_flusher) {
2600 /* no flush in progress, become the first flusher */
6183c009 2601 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2602
2603 wq->first_flusher = &this_flusher;
2604
112202d9 2605 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2606 wq->work_color)) {
2607 /* nothing to flush, done */
2608 wq->flush_color = next_color;
2609 wq->first_flusher = NULL;
2610 goto out_unlock;
2611 }
2612 } else {
2613 /* wait in queue */
6183c009 2614 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2615 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2616 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2617 }
2618 } else {
2619 /*
2620 * Oops, color space is full, wait on overflow queue.
2621 * The next flush completion will assign us
2622 * flush_color and transfer to flusher_queue.
2623 */
2624 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2625 }
2626
3c25a55d 2627 mutex_unlock(&wq->mutex);
73f53c4a
TH
2628
2629 wait_for_completion(&this_flusher.done);
2630
2631 /*
2632 * Wake-up-and-cascade phase
2633 *
2634 * First flushers are responsible for cascading flushes and
2635 * handling overflow. Non-first flushers can simply return.
2636 */
2637 if (wq->first_flusher != &this_flusher)
2638 return;
2639
3c25a55d 2640 mutex_lock(&wq->mutex);
73f53c4a 2641
4ce48b37
TH
2642 /* we might have raced, check again with mutex held */
2643 if (wq->first_flusher != &this_flusher)
2644 goto out_unlock;
2645
73f53c4a
TH
2646 wq->first_flusher = NULL;
2647
6183c009
TH
2648 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2650
2651 while (true) {
2652 struct wq_flusher *next, *tmp;
2653
2654 /* complete all the flushers sharing the current flush color */
2655 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2656 if (next->flush_color != wq->flush_color)
2657 break;
2658 list_del_init(&next->list);
2659 complete(&next->done);
2660 }
2661
6183c009
TH
2662 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2663 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2664
2665 /* this flush_color is finished, advance by one */
2666 wq->flush_color = work_next_color(wq->flush_color);
2667
2668 /* one color has been freed, handle overflow queue */
2669 if (!list_empty(&wq->flusher_overflow)) {
2670 /*
2671 * Assign the same color to all overflowed
2672 * flushers, advance work_color and append to
2673 * flusher_queue. This is the start-to-wait
2674 * phase for these overflowed flushers.
2675 */
2676 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2677 tmp->flush_color = wq->work_color;
2678
2679 wq->work_color = work_next_color(wq->work_color);
2680
2681 list_splice_tail_init(&wq->flusher_overflow,
2682 &wq->flusher_queue);
112202d9 2683 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2684 }
2685
2686 if (list_empty(&wq->flusher_queue)) {
6183c009 2687 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2688 break;
2689 }
2690
2691 /*
2692 * Need to flush more colors. Make the next flusher
112202d9 2693 * the new first flusher and arm pwqs.
73f53c4a 2694 */
6183c009
TH
2695 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2696 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2697
2698 list_del_init(&next->list);
2699 wq->first_flusher = next;
2700
112202d9 2701 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2702 break;
2703
2704 /*
2705 * Meh... this color is already done, clear first
2706 * flusher and repeat cascading.
2707 */
2708 wq->first_flusher = NULL;
2709 }
2710
2711out_unlock:
3c25a55d 2712 mutex_unlock(&wq->mutex);
1da177e4 2713}
ae90dd5d 2714EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2715
9c5a2ba7
TH
2716/**
2717 * drain_workqueue - drain a workqueue
2718 * @wq: workqueue to drain
2719 *
2720 * Wait until the workqueue becomes empty. While draining is in progress,
2721 * only chain queueing is allowed. IOW, only currently pending or running
2722 * work items on @wq can queue further work items on it. @wq is flushed
2723 * repeatedly until it becomes empty. The number of flushing is detemined
2724 * by the depth of chaining and should be relatively short. Whine if it
2725 * takes too long.
2726 */
2727void drain_workqueue(struct workqueue_struct *wq)
2728{
2729 unsigned int flush_cnt = 0;
49e3cf44 2730 struct pool_workqueue *pwq;
9c5a2ba7
TH
2731
2732 /*
2733 * __queue_work() needs to test whether there are drainers, is much
2734 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2735 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2736 */
87fc741e 2737 mutex_lock(&wq->mutex);
9c5a2ba7 2738 if (!wq->nr_drainers++)
618b01eb 2739 wq->flags |= __WQ_DRAINING;
87fc741e 2740 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2741reflush:
2742 flush_workqueue(wq);
2743
b09f4fd3 2744 mutex_lock(&wq->mutex);
76af4d93 2745
49e3cf44 2746 for_each_pwq(pwq, wq) {
fa2563e4 2747 bool drained;
9c5a2ba7 2748
b09f4fd3 2749 spin_lock_irq(&pwq->pool->lock);
112202d9 2750 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2751 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2752
2753 if (drained)
9c5a2ba7
TH
2754 continue;
2755
2756 if (++flush_cnt == 10 ||
2757 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2758 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2759 wq->name, flush_cnt);
76af4d93 2760
b09f4fd3 2761 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2762 goto reflush;
2763 }
2764
9c5a2ba7 2765 if (!--wq->nr_drainers)
618b01eb 2766 wq->flags &= ~__WQ_DRAINING;
87fc741e 2767 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2768}
2769EXPORT_SYMBOL_GPL(drain_workqueue);
2770
606a5020 2771static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2772{
affee4b2 2773 struct worker *worker = NULL;
c9e7cf27 2774 struct worker_pool *pool;
112202d9 2775 struct pool_workqueue *pwq;
db700897
ON
2776
2777 might_sleep();
fa1b54e6
TH
2778
2779 local_irq_disable();
c9e7cf27 2780 pool = get_work_pool(work);
fa1b54e6
TH
2781 if (!pool) {
2782 local_irq_enable();
baf59022 2783 return false;
fa1b54e6 2784 }
db700897 2785
fa1b54e6 2786 spin_lock(&pool->lock);
0b3dae68 2787 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2788 pwq = get_work_pwq(work);
2789 if (pwq) {
2790 if (unlikely(pwq->pool != pool))
4690c4ab 2791 goto already_gone;
606a5020 2792 } else {
c9e7cf27 2793 worker = find_worker_executing_work(pool, work);
affee4b2 2794 if (!worker)
4690c4ab 2795 goto already_gone;
112202d9 2796 pwq = worker->current_pwq;
606a5020 2797 }
db700897 2798
112202d9 2799 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2800 spin_unlock_irq(&pool->lock);
7a22ad75 2801
e159489b
TH
2802 /*
2803 * If @max_active is 1 or rescuer is in use, flushing another work
2804 * item on the same workqueue may lead to deadlock. Make sure the
2805 * flusher is not running on the same workqueue by verifying write
2806 * access.
2807 */
493008a8 2808 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2809 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2810 else
112202d9
TH
2811 lock_map_acquire_read(&pwq->wq->lockdep_map);
2812 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2813
401a8d04 2814 return true;
4690c4ab 2815already_gone:
d565ed63 2816 spin_unlock_irq(&pool->lock);
401a8d04 2817 return false;
db700897 2818}
baf59022 2819
c2fda509
LJ
2820static bool __flush_work(struct work_struct *work)
2821{
2822 struct wq_barrier barr;
2823
2824 if (start_flush_work(work, &barr)) {
2825 wait_for_completion(&barr.done);
2826 destroy_work_on_stack(&barr.work);
2827 return true;
2828 } else {
2829 return false;
2830 }
2831}
2832
baf59022
TH
2833/**
2834 * flush_work - wait for a work to finish executing the last queueing instance
2835 * @work: the work to flush
2836 *
606a5020
TH
2837 * Wait until @work has finished execution. @work is guaranteed to be idle
2838 * on return if it hasn't been requeued since flush started.
baf59022
TH
2839 *
2840 * RETURNS:
2841 * %true if flush_work() waited for the work to finish execution,
2842 * %false if it was already idle.
2843 */
2844bool flush_work(struct work_struct *work)
2845{
0976dfc1
SB
2846 lock_map_acquire(&work->lockdep_map);
2847 lock_map_release(&work->lockdep_map);
2848
c2fda509 2849 return __flush_work(work);
6e84d644 2850}
606a5020 2851EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2852
36e227d2 2853static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2854{
bbb68dfa 2855 unsigned long flags;
1f1f642e
ON
2856 int ret;
2857
2858 do {
bbb68dfa
TH
2859 ret = try_to_grab_pending(work, is_dwork, &flags);
2860 /*
2861 * If someone else is canceling, wait for the same event it
2862 * would be waiting for before retrying.
2863 */
2864 if (unlikely(ret == -ENOENT))
606a5020 2865 flush_work(work);
1f1f642e
ON
2866 } while (unlikely(ret < 0));
2867
bbb68dfa
TH
2868 /* tell other tasks trying to grab @work to back off */
2869 mark_work_canceling(work);
2870 local_irq_restore(flags);
2871
606a5020 2872 flush_work(work);
7a22ad75 2873 clear_work_data(work);
1f1f642e
ON
2874 return ret;
2875}
2876
6e84d644 2877/**
401a8d04
TH
2878 * cancel_work_sync - cancel a work and wait for it to finish
2879 * @work: the work to cancel
6e84d644 2880 *
401a8d04
TH
2881 * Cancel @work and wait for its execution to finish. This function
2882 * can be used even if the work re-queues itself or migrates to
2883 * another workqueue. On return from this function, @work is
2884 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2885 *
401a8d04
TH
2886 * cancel_work_sync(&delayed_work->work) must not be used for
2887 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2888 *
401a8d04 2889 * The caller must ensure that the workqueue on which @work was last
6e84d644 2890 * queued can't be destroyed before this function returns.
401a8d04
TH
2891 *
2892 * RETURNS:
2893 * %true if @work was pending, %false otherwise.
6e84d644 2894 */
401a8d04 2895bool cancel_work_sync(struct work_struct *work)
6e84d644 2896{
36e227d2 2897 return __cancel_work_timer(work, false);
b89deed3 2898}
28e53bdd 2899EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2900
6e84d644 2901/**
401a8d04
TH
2902 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2903 * @dwork: the delayed work to flush
6e84d644 2904 *
401a8d04
TH
2905 * Delayed timer is cancelled and the pending work is queued for
2906 * immediate execution. Like flush_work(), this function only
2907 * considers the last queueing instance of @dwork.
1f1f642e 2908 *
401a8d04
TH
2909 * RETURNS:
2910 * %true if flush_work() waited for the work to finish execution,
2911 * %false if it was already idle.
6e84d644 2912 */
401a8d04
TH
2913bool flush_delayed_work(struct delayed_work *dwork)
2914{
8930caba 2915 local_irq_disable();
401a8d04 2916 if (del_timer_sync(&dwork->timer))
60c057bc 2917 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2918 local_irq_enable();
401a8d04
TH
2919 return flush_work(&dwork->work);
2920}
2921EXPORT_SYMBOL(flush_delayed_work);
2922
09383498 2923/**
57b30ae7
TH
2924 * cancel_delayed_work - cancel a delayed work
2925 * @dwork: delayed_work to cancel
09383498 2926 *
57b30ae7
TH
2927 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2928 * and canceled; %false if wasn't pending. Note that the work callback
2929 * function may still be running on return, unless it returns %true and the
2930 * work doesn't re-arm itself. Explicitly flush or use
2931 * cancel_delayed_work_sync() to wait on it.
09383498 2932 *
57b30ae7 2933 * This function is safe to call from any context including IRQ handler.
09383498 2934 */
57b30ae7 2935bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2936{
57b30ae7
TH
2937 unsigned long flags;
2938 int ret;
2939
2940 do {
2941 ret = try_to_grab_pending(&dwork->work, true, &flags);
2942 } while (unlikely(ret == -EAGAIN));
2943
2944 if (unlikely(ret < 0))
2945 return false;
2946
7c3eed5c
TH
2947 set_work_pool_and_clear_pending(&dwork->work,
2948 get_work_pool_id(&dwork->work));
57b30ae7 2949 local_irq_restore(flags);
c0158ca6 2950 return ret;
09383498 2951}
57b30ae7 2952EXPORT_SYMBOL(cancel_delayed_work);
09383498 2953
401a8d04
TH
2954/**
2955 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2956 * @dwork: the delayed work cancel
2957 *
2958 * This is cancel_work_sync() for delayed works.
2959 *
2960 * RETURNS:
2961 * %true if @dwork was pending, %false otherwise.
2962 */
2963bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2964{
36e227d2 2965 return __cancel_work_timer(&dwork->work, true);
6e84d644 2966}
f5a421a4 2967EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2968
b6136773 2969/**
31ddd871 2970 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2971 * @func: the function to call
b6136773 2972 *
31ddd871
TH
2973 * schedule_on_each_cpu() executes @func on each online CPU using the
2974 * system workqueue and blocks until all CPUs have completed.
b6136773 2975 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2976 *
2977 * RETURNS:
2978 * 0 on success, -errno on failure.
b6136773 2979 */
65f27f38 2980int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2981{
2982 int cpu;
38f51568 2983 struct work_struct __percpu *works;
15316ba8 2984
b6136773
AM
2985 works = alloc_percpu(struct work_struct);
2986 if (!works)
15316ba8 2987 return -ENOMEM;
b6136773 2988
93981800
TH
2989 get_online_cpus();
2990
15316ba8 2991 for_each_online_cpu(cpu) {
9bfb1839
IM
2992 struct work_struct *work = per_cpu_ptr(works, cpu);
2993
2994 INIT_WORK(work, func);
b71ab8c2 2995 schedule_work_on(cpu, work);
65a64464 2996 }
93981800
TH
2997
2998 for_each_online_cpu(cpu)
2999 flush_work(per_cpu_ptr(works, cpu));
3000
95402b38 3001 put_online_cpus();
b6136773 3002 free_percpu(works);
15316ba8
CL
3003 return 0;
3004}
3005
eef6a7d5
AS
3006/**
3007 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3008 *
3009 * Forces execution of the kernel-global workqueue and blocks until its
3010 * completion.
3011 *
3012 * Think twice before calling this function! It's very easy to get into
3013 * trouble if you don't take great care. Either of the following situations
3014 * will lead to deadlock:
3015 *
3016 * One of the work items currently on the workqueue needs to acquire
3017 * a lock held by your code or its caller.
3018 *
3019 * Your code is running in the context of a work routine.
3020 *
3021 * They will be detected by lockdep when they occur, but the first might not
3022 * occur very often. It depends on what work items are on the workqueue and
3023 * what locks they need, which you have no control over.
3024 *
3025 * In most situations flushing the entire workqueue is overkill; you merely
3026 * need to know that a particular work item isn't queued and isn't running.
3027 * In such cases you should use cancel_delayed_work_sync() or
3028 * cancel_work_sync() instead.
3029 */
1da177e4
LT
3030void flush_scheduled_work(void)
3031{
d320c038 3032 flush_workqueue(system_wq);
1da177e4 3033}
ae90dd5d 3034EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3035
1fa44eca
JB
3036/**
3037 * execute_in_process_context - reliably execute the routine with user context
3038 * @fn: the function to execute
1fa44eca
JB
3039 * @ew: guaranteed storage for the execute work structure (must
3040 * be available when the work executes)
3041 *
3042 * Executes the function immediately if process context is available,
3043 * otherwise schedules the function for delayed execution.
3044 *
3045 * Returns: 0 - function was executed
3046 * 1 - function was scheduled for execution
3047 */
65f27f38 3048int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3049{
3050 if (!in_interrupt()) {
65f27f38 3051 fn(&ew->work);
1fa44eca
JB
3052 return 0;
3053 }
3054
65f27f38 3055 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3056 schedule_work(&ew->work);
3057
3058 return 1;
3059}
3060EXPORT_SYMBOL_GPL(execute_in_process_context);
3061
226223ab
TH
3062#ifdef CONFIG_SYSFS
3063/*
3064 * Workqueues with WQ_SYSFS flag set is visible to userland via
3065 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3066 * following attributes.
3067 *
3068 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3069 * max_active RW int : maximum number of in-flight work items
3070 *
3071 * Unbound workqueues have the following extra attributes.
3072 *
3073 * id RO int : the associated pool ID
3074 * nice RW int : nice value of the workers
3075 * cpumask RW mask : bitmask of allowed CPUs for the workers
3076 */
3077struct wq_device {
3078 struct workqueue_struct *wq;
3079 struct device dev;
3080};
3081
3082static struct workqueue_struct *dev_to_wq(struct device *dev)
3083{
3084 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3085
3086 return wq_dev->wq;
3087}
3088
3089static ssize_t wq_per_cpu_show(struct device *dev,
3090 struct device_attribute *attr, char *buf)
3091{
3092 struct workqueue_struct *wq = dev_to_wq(dev);
3093
3094 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3095}
3096
3097static ssize_t wq_max_active_show(struct device *dev,
3098 struct device_attribute *attr, char *buf)
3099{
3100 struct workqueue_struct *wq = dev_to_wq(dev);
3101
3102 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3103}
3104
3105static ssize_t wq_max_active_store(struct device *dev,
3106 struct device_attribute *attr,
3107 const char *buf, size_t count)
3108{
3109 struct workqueue_struct *wq = dev_to_wq(dev);
3110 int val;
3111
3112 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3113 return -EINVAL;
3114
3115 workqueue_set_max_active(wq, val);
3116 return count;
3117}
3118
3119static struct device_attribute wq_sysfs_attrs[] = {
3120 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3121 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3122 __ATTR_NULL,
3123};
3124
d55262c4
TH
3125static ssize_t wq_pool_ids_show(struct device *dev,
3126 struct device_attribute *attr, char *buf)
226223ab
TH
3127{
3128 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3129 const char *delim = "";
3130 int node, written = 0;
226223ab
TH
3131
3132 rcu_read_lock_sched();
d55262c4
TH
3133 for_each_node(node) {
3134 written += scnprintf(buf + written, PAGE_SIZE - written,
3135 "%s%d:%d", delim, node,
3136 unbound_pwq_by_node(wq, node)->pool->id);
3137 delim = " ";
3138 }
3139 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3140 rcu_read_unlock_sched();
3141
3142 return written;
3143}
3144
3145static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3146 char *buf)
3147{
3148 struct workqueue_struct *wq = dev_to_wq(dev);
3149 int written;
3150
6029a918
TH
3151 mutex_lock(&wq->mutex);
3152 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3153 mutex_unlock(&wq->mutex);
226223ab
TH
3154
3155 return written;
3156}
3157
3158/* prepare workqueue_attrs for sysfs store operations */
3159static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3160{
3161 struct workqueue_attrs *attrs;
3162
3163 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3164 if (!attrs)
3165 return NULL;
3166
6029a918
TH
3167 mutex_lock(&wq->mutex);
3168 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3169 mutex_unlock(&wq->mutex);
226223ab
TH
3170 return attrs;
3171}
3172
3173static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3174 const char *buf, size_t count)
3175{
3176 struct workqueue_struct *wq = dev_to_wq(dev);
3177 struct workqueue_attrs *attrs;
3178 int ret;
3179
3180 attrs = wq_sysfs_prep_attrs(wq);
3181 if (!attrs)
3182 return -ENOMEM;
3183
3184 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3185 attrs->nice >= -20 && attrs->nice <= 19)
3186 ret = apply_workqueue_attrs(wq, attrs);
3187 else
3188 ret = -EINVAL;
3189
3190 free_workqueue_attrs(attrs);
3191 return ret ?: count;
3192}
3193
3194static ssize_t wq_cpumask_show(struct device *dev,
3195 struct device_attribute *attr, char *buf)
3196{
3197 struct workqueue_struct *wq = dev_to_wq(dev);
3198 int written;
3199
6029a918
TH
3200 mutex_lock(&wq->mutex);
3201 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3202 mutex_unlock(&wq->mutex);
226223ab
TH
3203
3204 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3205 return written;
3206}
3207
3208static ssize_t wq_cpumask_store(struct device *dev,
3209 struct device_attribute *attr,
3210 const char *buf, size_t count)
3211{
3212 struct workqueue_struct *wq = dev_to_wq(dev);
3213 struct workqueue_attrs *attrs;
3214 int ret;
3215
3216 attrs = wq_sysfs_prep_attrs(wq);
3217 if (!attrs)
3218 return -ENOMEM;
3219
3220 ret = cpumask_parse(buf, attrs->cpumask);
3221 if (!ret)
3222 ret = apply_workqueue_attrs(wq, attrs);
3223
3224 free_workqueue_attrs(attrs);
3225 return ret ?: count;
3226}
3227
d55262c4
TH
3228static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3229 char *buf)
3230{
3231 struct workqueue_struct *wq = dev_to_wq(dev);
3232 int written;
3233
3234 mutex_lock(&wq->mutex);
3235 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3236 !wq->unbound_attrs->no_numa);
3237 mutex_unlock(&wq->mutex);
3238
3239 return written;
3240}
3241
3242static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3243 const char *buf, size_t count)
3244{
3245 struct workqueue_struct *wq = dev_to_wq(dev);
3246 struct workqueue_attrs *attrs;
3247 int v, ret;
3248
3249 attrs = wq_sysfs_prep_attrs(wq);
3250 if (!attrs)
3251 return -ENOMEM;
3252
3253 ret = -EINVAL;
3254 if (sscanf(buf, "%d", &v) == 1) {
3255 attrs->no_numa = !v;
3256 ret = apply_workqueue_attrs(wq, attrs);
3257 }
3258
3259 free_workqueue_attrs(attrs);
3260 return ret ?: count;
3261}
3262
226223ab 3263static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3264 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3265 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3266 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3267 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3268 __ATTR_NULL,
3269};
3270
3271static struct bus_type wq_subsys = {
3272 .name = "workqueue",
3273 .dev_attrs = wq_sysfs_attrs,
3274};
3275
3276static int __init wq_sysfs_init(void)
3277{
3278 return subsys_virtual_register(&wq_subsys, NULL);
3279}
3280core_initcall(wq_sysfs_init);
3281
3282static void wq_device_release(struct device *dev)
3283{
3284 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3285
3286 kfree(wq_dev);
3287}
3288
3289/**
3290 * workqueue_sysfs_register - make a workqueue visible in sysfs
3291 * @wq: the workqueue to register
3292 *
3293 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3294 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3295 * which is the preferred method.
3296 *
3297 * Workqueue user should use this function directly iff it wants to apply
3298 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3299 * apply_workqueue_attrs() may race against userland updating the
3300 * attributes.
3301 *
3302 * Returns 0 on success, -errno on failure.
3303 */
3304int workqueue_sysfs_register(struct workqueue_struct *wq)
3305{
3306 struct wq_device *wq_dev;
3307 int ret;
3308
3309 /*
3310 * Adjusting max_active or creating new pwqs by applyting
3311 * attributes breaks ordering guarantee. Disallow exposing ordered
3312 * workqueues.
3313 */
3314 if (WARN_ON(wq->flags & __WQ_ORDERED))
3315 return -EINVAL;
3316
3317 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3318 if (!wq_dev)
3319 return -ENOMEM;
3320
3321 wq_dev->wq = wq;
3322 wq_dev->dev.bus = &wq_subsys;
3323 wq_dev->dev.init_name = wq->name;
3324 wq_dev->dev.release = wq_device_release;
3325
3326 /*
3327 * unbound_attrs are created separately. Suppress uevent until
3328 * everything is ready.
3329 */
3330 dev_set_uevent_suppress(&wq_dev->dev, true);
3331
3332 ret = device_register(&wq_dev->dev);
3333 if (ret) {
3334 kfree(wq_dev);
3335 wq->wq_dev = NULL;
3336 return ret;
3337 }
3338
3339 if (wq->flags & WQ_UNBOUND) {
3340 struct device_attribute *attr;
3341
3342 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3343 ret = device_create_file(&wq_dev->dev, attr);
3344 if (ret) {
3345 device_unregister(&wq_dev->dev);
3346 wq->wq_dev = NULL;
3347 return ret;
3348 }
3349 }
3350 }
3351
3352 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3353 return 0;
3354}
3355
3356/**
3357 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3358 * @wq: the workqueue to unregister
3359 *
3360 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3361 */
3362static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3363{
3364 struct wq_device *wq_dev = wq->wq_dev;
3365
3366 if (!wq->wq_dev)
3367 return;
3368
3369 wq->wq_dev = NULL;
3370 device_unregister(&wq_dev->dev);
3371}
3372#else /* CONFIG_SYSFS */
3373static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3374#endif /* CONFIG_SYSFS */
3375
7a4e344c
TH
3376/**
3377 * free_workqueue_attrs - free a workqueue_attrs
3378 * @attrs: workqueue_attrs to free
3379 *
3380 * Undo alloc_workqueue_attrs().
3381 */
3382void free_workqueue_attrs(struct workqueue_attrs *attrs)
3383{
3384 if (attrs) {
3385 free_cpumask_var(attrs->cpumask);
3386 kfree(attrs);
3387 }
3388}
3389
3390/**
3391 * alloc_workqueue_attrs - allocate a workqueue_attrs
3392 * @gfp_mask: allocation mask to use
3393 *
3394 * Allocate a new workqueue_attrs, initialize with default settings and
3395 * return it. Returns NULL on failure.
3396 */
3397struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3398{
3399 struct workqueue_attrs *attrs;
3400
3401 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3402 if (!attrs)
3403 goto fail;
3404 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3405 goto fail;
3406
13e2e556 3407 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3408 return attrs;
3409fail:
3410 free_workqueue_attrs(attrs);
3411 return NULL;
3412}
3413
29c91e99
TH
3414static void copy_workqueue_attrs(struct workqueue_attrs *to,
3415 const struct workqueue_attrs *from)
3416{
3417 to->nice = from->nice;
3418 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3419 /*
3420 * Unlike hash and equality test, this function doesn't ignore
3421 * ->no_numa as it is used for both pool and wq attrs. Instead,
3422 * get_unbound_pool() explicitly clears ->no_numa after copying.
3423 */
3424 to->no_numa = from->no_numa;
29c91e99
TH
3425}
3426
29c91e99
TH
3427/* hash value of the content of @attr */
3428static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3429{
3430 u32 hash = 0;
3431
3432 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3433 hash = jhash(cpumask_bits(attrs->cpumask),
3434 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3435 return hash;
3436}
3437
3438/* content equality test */
3439static bool wqattrs_equal(const struct workqueue_attrs *a,
3440 const struct workqueue_attrs *b)
3441{
3442 if (a->nice != b->nice)
3443 return false;
3444 if (!cpumask_equal(a->cpumask, b->cpumask))
3445 return false;
3446 return true;
3447}
3448
7a4e344c
TH
3449/**
3450 * init_worker_pool - initialize a newly zalloc'd worker_pool
3451 * @pool: worker_pool to initialize
3452 *
3453 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3454 * Returns 0 on success, -errno on failure. Even on failure, all fields
3455 * inside @pool proper are initialized and put_unbound_pool() can be called
3456 * on @pool safely to release it.
7a4e344c
TH
3457 */
3458static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3459{
3460 spin_lock_init(&pool->lock);
29c91e99
TH
3461 pool->id = -1;
3462 pool->cpu = -1;
f3f90ad4 3463 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3464 pool->flags |= POOL_DISASSOCIATED;
3465 INIT_LIST_HEAD(&pool->worklist);
3466 INIT_LIST_HEAD(&pool->idle_list);
3467 hash_init(pool->busy_hash);
3468
3469 init_timer_deferrable(&pool->idle_timer);
3470 pool->idle_timer.function = idle_worker_timeout;
3471 pool->idle_timer.data = (unsigned long)pool;
3472
3473 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3474 (unsigned long)pool);
3475
3476 mutex_init(&pool->manager_arb);
bc3a1afc 3477 mutex_init(&pool->manager_mutex);
822d8405 3478 idr_init(&pool->worker_idr);
7a4e344c 3479
29c91e99
TH
3480 INIT_HLIST_NODE(&pool->hash_node);
3481 pool->refcnt = 1;
3482
3483 /* shouldn't fail above this point */
7a4e344c
TH
3484 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3485 if (!pool->attrs)
3486 return -ENOMEM;
3487 return 0;
4e1a1f9a
TH
3488}
3489
29c91e99
TH
3490static void rcu_free_pool(struct rcu_head *rcu)
3491{
3492 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3493
822d8405 3494 idr_destroy(&pool->worker_idr);
29c91e99
TH
3495 free_workqueue_attrs(pool->attrs);
3496 kfree(pool);
3497}
3498
3499/**
3500 * put_unbound_pool - put a worker_pool
3501 * @pool: worker_pool to put
3502 *
3503 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3504 * safe manner. get_unbound_pool() calls this function on its failure path
3505 * and this function should be able to release pools which went through,
3506 * successfully or not, init_worker_pool().
a892cacc
TH
3507 *
3508 * Should be called with wq_pool_mutex held.
29c91e99
TH
3509 */
3510static void put_unbound_pool(struct worker_pool *pool)
3511{
3512 struct worker *worker;
3513
a892cacc
TH
3514 lockdep_assert_held(&wq_pool_mutex);
3515
3516 if (--pool->refcnt)
29c91e99 3517 return;
29c91e99
TH
3518
3519 /* sanity checks */
3520 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3521 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3522 return;
29c91e99
TH
3523
3524 /* release id and unhash */
3525 if (pool->id >= 0)
3526 idr_remove(&worker_pool_idr, pool->id);
3527 hash_del(&pool->hash_node);
3528
c5aa87bb
TH
3529 /*
3530 * Become the manager and destroy all workers. Grabbing
3531 * manager_arb prevents @pool's workers from blocking on
3532 * manager_mutex.
3533 */
29c91e99 3534 mutex_lock(&pool->manager_arb);
cd549687 3535 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3536 spin_lock_irq(&pool->lock);
3537
3538 while ((worker = first_worker(pool)))
3539 destroy_worker(worker);
3540 WARN_ON(pool->nr_workers || pool->nr_idle);
3541
3542 spin_unlock_irq(&pool->lock);
cd549687 3543 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3544 mutex_unlock(&pool->manager_arb);
3545
3546 /* shut down the timers */
3547 del_timer_sync(&pool->idle_timer);
3548 del_timer_sync(&pool->mayday_timer);
3549
3550 /* sched-RCU protected to allow dereferences from get_work_pool() */
3551 call_rcu_sched(&pool->rcu, rcu_free_pool);
3552}
3553
3554/**
3555 * get_unbound_pool - get a worker_pool with the specified attributes
3556 * @attrs: the attributes of the worker_pool to get
3557 *
3558 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3559 * reference count and return it. If there already is a matching
3560 * worker_pool, it will be used; otherwise, this function attempts to
3561 * create a new one. On failure, returns NULL.
a892cacc
TH
3562 *
3563 * Should be called with wq_pool_mutex held.
29c91e99
TH
3564 */
3565static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3566{
29c91e99
TH
3567 u32 hash = wqattrs_hash(attrs);
3568 struct worker_pool *pool;
f3f90ad4 3569 int node;
29c91e99 3570
a892cacc 3571 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3572
3573 /* do we already have a matching pool? */
29c91e99
TH
3574 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3575 if (wqattrs_equal(pool->attrs, attrs)) {
3576 pool->refcnt++;
3577 goto out_unlock;
3578 }
3579 }
29c91e99
TH
3580
3581 /* nope, create a new one */
3582 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3583 if (!pool || init_worker_pool(pool) < 0)
3584 goto fail;
3585
12ee4fc6
LJ
3586 if (workqueue_freezing)
3587 pool->flags |= POOL_FREEZING;
3588
8864b4e5 3589 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3590 copy_workqueue_attrs(pool->attrs, attrs);
3591
2865a8fb
SL
3592 /*
3593 * no_numa isn't a worker_pool attribute, always clear it. See
3594 * 'struct workqueue_attrs' comments for detail.
3595 */
3596 pool->attrs->no_numa = false;
3597
f3f90ad4
TH
3598 /* if cpumask is contained inside a NUMA node, we belong to that node */
3599 if (wq_numa_enabled) {
3600 for_each_node(node) {
3601 if (cpumask_subset(pool->attrs->cpumask,
3602 wq_numa_possible_cpumask[node])) {
3603 pool->node = node;
3604 break;
3605 }
3606 }
3607 }
3608
29c91e99
TH
3609 if (worker_pool_assign_id(pool) < 0)
3610 goto fail;
3611
3612 /* create and start the initial worker */
ebf44d16 3613 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3614 goto fail;
3615
29c91e99 3616 /* install */
29c91e99
TH
3617 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3618out_unlock:
29c91e99
TH
3619 return pool;
3620fail:
29c91e99
TH
3621 if (pool)
3622 put_unbound_pool(pool);
3623 return NULL;
3624}
3625
8864b4e5
TH
3626static void rcu_free_pwq(struct rcu_head *rcu)
3627{
3628 kmem_cache_free(pwq_cache,
3629 container_of(rcu, struct pool_workqueue, rcu));
3630}
3631
3632/*
3633 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3634 * and needs to be destroyed.
3635 */
3636static void pwq_unbound_release_workfn(struct work_struct *work)
3637{
3638 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3639 unbound_release_work);
3640 struct workqueue_struct *wq = pwq->wq;
3641 struct worker_pool *pool = pwq->pool;
bc0caf09 3642 bool is_last;
8864b4e5
TH
3643
3644 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3645 return;
3646
75ccf595 3647 /*
3c25a55d 3648 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3649 * necessary on release but do it anyway. It's easier to verify
3650 * and consistent with the linking path.
3651 */
3c25a55d 3652 mutex_lock(&wq->mutex);
8864b4e5 3653 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3654 is_last = list_empty(&wq->pwqs);
3c25a55d 3655 mutex_unlock(&wq->mutex);
8864b4e5 3656
a892cacc 3657 mutex_lock(&wq_pool_mutex);
8864b4e5 3658 put_unbound_pool(pool);
a892cacc
TH
3659 mutex_unlock(&wq_pool_mutex);
3660
8864b4e5
TH
3661 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3662
3663 /*
3664 * If we're the last pwq going away, @wq is already dead and no one
3665 * is gonna access it anymore. Free it.
3666 */
6029a918
TH
3667 if (is_last) {
3668 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3669 kfree(wq);
6029a918 3670 }
8864b4e5
TH
3671}
3672
0fbd95aa 3673/**
699ce097 3674 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3675 * @pwq: target pool_workqueue
0fbd95aa 3676 *
699ce097
TH
3677 * If @pwq isn't freezing, set @pwq->max_active to the associated
3678 * workqueue's saved_max_active and activate delayed work items
3679 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3680 */
699ce097 3681static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3682{
699ce097
TH
3683 struct workqueue_struct *wq = pwq->wq;
3684 bool freezable = wq->flags & WQ_FREEZABLE;
3685
3686 /* for @wq->saved_max_active */
a357fc03 3687 lockdep_assert_held(&wq->mutex);
699ce097
TH
3688
3689 /* fast exit for non-freezable wqs */
3690 if (!freezable && pwq->max_active == wq->saved_max_active)
3691 return;
3692
a357fc03 3693 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3694
3695 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3696 pwq->max_active = wq->saved_max_active;
0fbd95aa 3697
699ce097
TH
3698 while (!list_empty(&pwq->delayed_works) &&
3699 pwq->nr_active < pwq->max_active)
3700 pwq_activate_first_delayed(pwq);
951a078a
LJ
3701
3702 /*
3703 * Need to kick a worker after thawed or an unbound wq's
3704 * max_active is bumped. It's a slow path. Do it always.
3705 */
3706 wake_up_worker(pwq->pool);
699ce097
TH
3707 } else {
3708 pwq->max_active = 0;
3709 }
3710
a357fc03 3711 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3712}
3713
e50aba9a 3714/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3715static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3716 struct worker_pool *pool)
d2c1d404
TH
3717{
3718 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3719
e50aba9a
TH
3720 memset(pwq, 0, sizeof(*pwq));
3721
d2c1d404
TH
3722 pwq->pool = pool;
3723 pwq->wq = wq;
3724 pwq->flush_color = -1;
8864b4e5 3725 pwq->refcnt = 1;
d2c1d404 3726 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3727 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3728 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3729 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3730}
d2c1d404 3731
f147f29e 3732/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3733static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3734{
3735 struct workqueue_struct *wq = pwq->wq;
3736
3737 lockdep_assert_held(&wq->mutex);
75ccf595 3738
1befcf30
TH
3739 /* may be called multiple times, ignore if already linked */
3740 if (!list_empty(&pwq->pwqs_node))
3741 return;
3742
983ca25e
TH
3743 /*
3744 * Set the matching work_color. This is synchronized with
3c25a55d 3745 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3746 */
75ccf595 3747 pwq->work_color = wq->work_color;
983ca25e
TH
3748
3749 /* sync max_active to the current setting */
3750 pwq_adjust_max_active(pwq);
3751
3752 /* link in @pwq */
9e8cd2f5 3753 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3754}
a357fc03 3755
f147f29e
TH
3756/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3757static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3758 const struct workqueue_attrs *attrs)
3759{
3760 struct worker_pool *pool;
3761 struct pool_workqueue *pwq;
3762
3763 lockdep_assert_held(&wq_pool_mutex);
3764
3765 pool = get_unbound_pool(attrs);
3766 if (!pool)
3767 return NULL;
3768
e50aba9a 3769 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3770 if (!pwq) {
3771 put_unbound_pool(pool);
3772 return NULL;
df2d5ae4 3773 }
6029a918 3774
f147f29e
TH
3775 init_pwq(pwq, wq, pool);
3776 return pwq;
d2c1d404
TH
3777}
3778
4c16bd32
TH
3779/* undo alloc_unbound_pwq(), used only in the error path */
3780static void free_unbound_pwq(struct pool_workqueue *pwq)
3781{
3782 lockdep_assert_held(&wq_pool_mutex);
3783
3784 if (pwq) {
3785 put_unbound_pool(pwq->pool);
cece95df 3786 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3787 }
3788}
3789
3790/**
3791 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3792 * @attrs: the wq_attrs of interest
3793 * @node: the target NUMA node
3794 * @cpu_going_down: if >= 0, the CPU to consider as offline
3795 * @cpumask: outarg, the resulting cpumask
3796 *
3797 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3798 * @cpu_going_down is >= 0, that cpu is considered offline during
3799 * calculation. The result is stored in @cpumask. This function returns
3800 * %true if the resulting @cpumask is different from @attrs->cpumask,
3801 * %false if equal.
3802 *
3803 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3804 * enabled and @node has online CPUs requested by @attrs, the returned
3805 * cpumask is the intersection of the possible CPUs of @node and
3806 * @attrs->cpumask.
3807 *
3808 * The caller is responsible for ensuring that the cpumask of @node stays
3809 * stable.
3810 */
3811static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3812 int cpu_going_down, cpumask_t *cpumask)
3813{
d55262c4 3814 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3815 goto use_dfl;
3816
3817 /* does @node have any online CPUs @attrs wants? */
3818 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3819 if (cpu_going_down >= 0)
3820 cpumask_clear_cpu(cpu_going_down, cpumask);
3821
3822 if (cpumask_empty(cpumask))
3823 goto use_dfl;
3824
3825 /* yeap, return possible CPUs in @node that @attrs wants */
3826 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3827 return !cpumask_equal(cpumask, attrs->cpumask);
3828
3829use_dfl:
3830 cpumask_copy(cpumask, attrs->cpumask);
3831 return false;
3832}
3833
1befcf30
TH
3834/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3835static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3836 int node,
3837 struct pool_workqueue *pwq)
3838{
3839 struct pool_workqueue *old_pwq;
3840
3841 lockdep_assert_held(&wq->mutex);
3842
3843 /* link_pwq() can handle duplicate calls */
3844 link_pwq(pwq);
3845
3846 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3847 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3848 return old_pwq;
3849}
3850
9e8cd2f5
TH
3851/**
3852 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3853 * @wq: the target workqueue
3854 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3855 *
4c16bd32
TH
3856 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3857 * machines, this function maps a separate pwq to each NUMA node with
3858 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3859 * NUMA node it was issued on. Older pwqs are released as in-flight work
3860 * items finish. Note that a work item which repeatedly requeues itself
3861 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3862 *
3863 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3864 * failure.
3865 */
3866int apply_workqueue_attrs(struct workqueue_struct *wq,
3867 const struct workqueue_attrs *attrs)
3868{
4c16bd32
TH
3869 struct workqueue_attrs *new_attrs, *tmp_attrs;
3870 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3871 int node, ret;
9e8cd2f5 3872
8719dcea 3873 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3874 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3875 return -EINVAL;
3876
8719dcea
TH
3877 /* creating multiple pwqs breaks ordering guarantee */
3878 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3879 return -EINVAL;
3880
4c16bd32 3881 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3882 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3883 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3884 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3885 goto enomem;
3886
4c16bd32 3887 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3888 copy_workqueue_attrs(new_attrs, attrs);
3889 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3890
4c16bd32
TH
3891 /*
3892 * We may create multiple pwqs with differing cpumasks. Make a
3893 * copy of @new_attrs which will be modified and used to obtain
3894 * pools.
3895 */
3896 copy_workqueue_attrs(tmp_attrs, new_attrs);
3897
3898 /*
3899 * CPUs should stay stable across pwq creations and installations.
3900 * Pin CPUs, determine the target cpumask for each node and create
3901 * pwqs accordingly.
3902 */
3903 get_online_cpus();
3904
a892cacc 3905 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3906
3907 /*
3908 * If something goes wrong during CPU up/down, we'll fall back to
3909 * the default pwq covering whole @attrs->cpumask. Always create
3910 * it even if we don't use it immediately.
3911 */
3912 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3913 if (!dfl_pwq)
3914 goto enomem_pwq;
3915
3916 for_each_node(node) {
3917 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3918 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3919 if (!pwq_tbl[node])
3920 goto enomem_pwq;
3921 } else {
3922 dfl_pwq->refcnt++;
3923 pwq_tbl[node] = dfl_pwq;
3924 }
3925 }
3926
f147f29e 3927 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3928
4c16bd32 3929 /* all pwqs have been created successfully, let's install'em */
f147f29e 3930 mutex_lock(&wq->mutex);
a892cacc 3931
f147f29e 3932 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3933
3934 /* save the previous pwq and install the new one */
f147f29e 3935 for_each_node(node)
4c16bd32
TH
3936 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3937
3938 /* @dfl_pwq might not have been used, ensure it's linked */
3939 link_pwq(dfl_pwq);
3940 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3941
3942 mutex_unlock(&wq->mutex);
9e8cd2f5 3943
4c16bd32
TH
3944 /* put the old pwqs */
3945 for_each_node(node)
3946 put_pwq_unlocked(pwq_tbl[node]);
3947 put_pwq_unlocked(dfl_pwq);
3948
3949 put_online_cpus();
4862125b
TH
3950 ret = 0;
3951 /* fall through */
3952out_free:
4c16bd32 3953 free_workqueue_attrs(tmp_attrs);
4862125b 3954 free_workqueue_attrs(new_attrs);
4c16bd32 3955 kfree(pwq_tbl);
4862125b 3956 return ret;
13e2e556 3957
4c16bd32
TH
3958enomem_pwq:
3959 free_unbound_pwq(dfl_pwq);
3960 for_each_node(node)
3961 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3962 free_unbound_pwq(pwq_tbl[node]);
3963 mutex_unlock(&wq_pool_mutex);
3964 put_online_cpus();
13e2e556 3965enomem:
4862125b
TH
3966 ret = -ENOMEM;
3967 goto out_free;
9e8cd2f5
TH
3968}
3969
4c16bd32
TH
3970/**
3971 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3972 * @wq: the target workqueue
3973 * @cpu: the CPU coming up or going down
3974 * @online: whether @cpu is coming up or going down
3975 *
3976 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3977 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3978 * @wq accordingly.
3979 *
3980 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3981 * falls back to @wq->dfl_pwq which may not be optimal but is always
3982 * correct.
3983 *
3984 * Note that when the last allowed CPU of a NUMA node goes offline for a
3985 * workqueue with a cpumask spanning multiple nodes, the workers which were
3986 * already executing the work items for the workqueue will lose their CPU
3987 * affinity and may execute on any CPU. This is similar to how per-cpu
3988 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3989 * affinity, it's the user's responsibility to flush the work item from
3990 * CPU_DOWN_PREPARE.
3991 */
3992static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3993 bool online)
3994{
3995 int node = cpu_to_node(cpu);
3996 int cpu_off = online ? -1 : cpu;
3997 struct pool_workqueue *old_pwq = NULL, *pwq;
3998 struct workqueue_attrs *target_attrs;
3999 cpumask_t *cpumask;
4000
4001 lockdep_assert_held(&wq_pool_mutex);
4002
4003 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4004 return;
4005
4006 /*
4007 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4008 * Let's use a preallocated one. The following buf is protected by
4009 * CPU hotplug exclusion.
4010 */
4011 target_attrs = wq_update_unbound_numa_attrs_buf;
4012 cpumask = target_attrs->cpumask;
4013
4014 mutex_lock(&wq->mutex);
d55262c4
TH
4015 if (wq->unbound_attrs->no_numa)
4016 goto out_unlock;
4c16bd32
TH
4017
4018 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4019 pwq = unbound_pwq_by_node(wq, node);
4020
4021 /*
4022 * Let's determine what needs to be done. If the target cpumask is
4023 * different from wq's, we need to compare it to @pwq's and create
4024 * a new one if they don't match. If the target cpumask equals
4025 * wq's, the default pwq should be used. If @pwq is already the
4026 * default one, nothing to do; otherwise, install the default one.
4027 */
4028 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4029 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4030 goto out_unlock;
4031 } else {
4032 if (pwq == wq->dfl_pwq)
4033 goto out_unlock;
4034 else
4035 goto use_dfl_pwq;
4036 }
4037
4038 mutex_unlock(&wq->mutex);
4039
4040 /* create a new pwq */
4041 pwq = alloc_unbound_pwq(wq, target_attrs);
4042 if (!pwq) {
4043 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4044 wq->name);
4045 goto out_unlock;
4046 }
4047
4048 /*
4049 * Install the new pwq. As this function is called only from CPU
4050 * hotplug callbacks and applying a new attrs is wrapped with
4051 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4052 * inbetween.
4053 */
4054 mutex_lock(&wq->mutex);
4055 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4056 goto out_unlock;
4057
4058use_dfl_pwq:
4059 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4060 get_pwq(wq->dfl_pwq);
4061 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4062 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4063out_unlock:
4064 mutex_unlock(&wq->mutex);
4065 put_pwq_unlocked(old_pwq);
4066}
4067
30cdf249 4068static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4069{
49e3cf44 4070 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
4071 int cpu;
4072
4073 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4074 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4075 if (!wq->cpu_pwqs)
30cdf249
TH
4076 return -ENOMEM;
4077
4078 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4079 struct pool_workqueue *pwq =
4080 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4081 struct worker_pool *cpu_pools =
f02ae73a 4082 per_cpu(cpu_worker_pools, cpu);
f3421797 4083
f147f29e
TH
4084 init_pwq(pwq, wq, &cpu_pools[highpri]);
4085
4086 mutex_lock(&wq->mutex);
1befcf30 4087 link_pwq(pwq);
f147f29e 4088 mutex_unlock(&wq->mutex);
30cdf249 4089 }
9e8cd2f5 4090 return 0;
30cdf249 4091 } else {
9e8cd2f5 4092 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4093 }
0f900049
TH
4094}
4095
f3421797
TH
4096static int wq_clamp_max_active(int max_active, unsigned int flags,
4097 const char *name)
b71ab8c2 4098{
f3421797
TH
4099 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4100
4101 if (max_active < 1 || max_active > lim)
044c782c
VI
4102 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4103 max_active, name, 1, lim);
b71ab8c2 4104
f3421797 4105 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4106}
4107
b196be89 4108struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4109 unsigned int flags,
4110 int max_active,
4111 struct lock_class_key *key,
b196be89 4112 const char *lock_name, ...)
1da177e4 4113{
df2d5ae4 4114 size_t tbl_size = 0;
ecf6881f 4115 va_list args;
1da177e4 4116 struct workqueue_struct *wq;
49e3cf44 4117 struct pool_workqueue *pwq;
b196be89 4118
cee22a15
VK
4119 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4120 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4121 flags |= WQ_UNBOUND;
4122
ecf6881f 4123 /* allocate wq and format name */
df2d5ae4
TH
4124 if (flags & WQ_UNBOUND)
4125 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4126
4127 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4128 if (!wq)
d2c1d404 4129 return NULL;
b196be89 4130
6029a918
TH
4131 if (flags & WQ_UNBOUND) {
4132 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4133 if (!wq->unbound_attrs)
4134 goto err_free_wq;
4135 }
4136
ecf6881f
TH
4137 va_start(args, lock_name);
4138 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4139 va_end(args);
1da177e4 4140
d320c038 4141 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4142 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4143
b196be89 4144 /* init wq */
97e37d7b 4145 wq->flags = flags;
a0a1a5fd 4146 wq->saved_max_active = max_active;
3c25a55d 4147 mutex_init(&wq->mutex);
112202d9 4148 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4149 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4150 INIT_LIST_HEAD(&wq->flusher_queue);
4151 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4152 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4153
eb13ba87 4154 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4155 INIT_LIST_HEAD(&wq->list);
3af24433 4156
30cdf249 4157 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4158 goto err_free_wq;
1537663f 4159
493008a8
TH
4160 /*
4161 * Workqueues which may be used during memory reclaim should
4162 * have a rescuer to guarantee forward progress.
4163 */
4164 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4165 struct worker *rescuer;
4166
d2c1d404 4167 rescuer = alloc_worker();
e22bee78 4168 if (!rescuer)
d2c1d404 4169 goto err_destroy;
e22bee78 4170
111c225a
TH
4171 rescuer->rescue_wq = wq;
4172 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4173 wq->name);
d2c1d404
TH
4174 if (IS_ERR(rescuer->task)) {
4175 kfree(rescuer);
4176 goto err_destroy;
4177 }
e22bee78 4178
d2c1d404 4179 wq->rescuer = rescuer;
14a40ffc 4180 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4181 wake_up_process(rescuer->task);
3af24433
ON
4182 }
4183
226223ab
TH
4184 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4185 goto err_destroy;
4186
a0a1a5fd 4187 /*
68e13a67
LJ
4188 * wq_pool_mutex protects global freeze state and workqueues list.
4189 * Grab it, adjust max_active and add the new @wq to workqueues
4190 * list.
a0a1a5fd 4191 */
68e13a67 4192 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4193
a357fc03 4194 mutex_lock(&wq->mutex);
699ce097
TH
4195 for_each_pwq(pwq, wq)
4196 pwq_adjust_max_active(pwq);
a357fc03 4197 mutex_unlock(&wq->mutex);
a0a1a5fd 4198
1537663f 4199 list_add(&wq->list, &workqueues);
a0a1a5fd 4200
68e13a67 4201 mutex_unlock(&wq_pool_mutex);
1537663f 4202
3af24433 4203 return wq;
d2c1d404
TH
4204
4205err_free_wq:
6029a918 4206 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4207 kfree(wq);
4208 return NULL;
4209err_destroy:
4210 destroy_workqueue(wq);
4690c4ab 4211 return NULL;
3af24433 4212}
d320c038 4213EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4214
3af24433
ON
4215/**
4216 * destroy_workqueue - safely terminate a workqueue
4217 * @wq: target workqueue
4218 *
4219 * Safely destroy a workqueue. All work currently pending will be done first.
4220 */
4221void destroy_workqueue(struct workqueue_struct *wq)
4222{
49e3cf44 4223 struct pool_workqueue *pwq;
4c16bd32 4224 int node;
3af24433 4225
9c5a2ba7
TH
4226 /* drain it before proceeding with destruction */
4227 drain_workqueue(wq);
c8efcc25 4228
6183c009 4229 /* sanity checks */
b09f4fd3 4230 mutex_lock(&wq->mutex);
49e3cf44 4231 for_each_pwq(pwq, wq) {
6183c009
TH
4232 int i;
4233
76af4d93
TH
4234 for (i = 0; i < WORK_NR_COLORS; i++) {
4235 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4236 mutex_unlock(&wq->mutex);
6183c009 4237 return;
76af4d93
TH
4238 }
4239 }
4240
5c529597 4241 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4242 WARN_ON(pwq->nr_active) ||
76af4d93 4243 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4244 mutex_unlock(&wq->mutex);
6183c009 4245 return;
76af4d93 4246 }
6183c009 4247 }
b09f4fd3 4248 mutex_unlock(&wq->mutex);
6183c009 4249
a0a1a5fd
TH
4250 /*
4251 * wq list is used to freeze wq, remove from list after
4252 * flushing is complete in case freeze races us.
4253 */
68e13a67 4254 mutex_lock(&wq_pool_mutex);
d2c1d404 4255 list_del_init(&wq->list);
68e13a67 4256 mutex_unlock(&wq_pool_mutex);
3af24433 4257
226223ab
TH
4258 workqueue_sysfs_unregister(wq);
4259
493008a8 4260 if (wq->rescuer) {
e22bee78 4261 kthread_stop(wq->rescuer->task);
8d9df9f0 4262 kfree(wq->rescuer);
493008a8 4263 wq->rescuer = NULL;
e22bee78
TH
4264 }
4265
8864b4e5
TH
4266 if (!(wq->flags & WQ_UNBOUND)) {
4267 /*
4268 * The base ref is never dropped on per-cpu pwqs. Directly
4269 * free the pwqs and wq.
4270 */
4271 free_percpu(wq->cpu_pwqs);
4272 kfree(wq);
4273 } else {
4274 /*
4275 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4276 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4277 * @wq will be freed when the last pwq is released.
8864b4e5 4278 */
4c16bd32
TH
4279 for_each_node(node) {
4280 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4281 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4282 put_pwq_unlocked(pwq);
4283 }
4284
4285 /*
4286 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4287 * put. Don't access it afterwards.
4288 */
4289 pwq = wq->dfl_pwq;
4290 wq->dfl_pwq = NULL;
dce90d47 4291 put_pwq_unlocked(pwq);
29c91e99 4292 }
3af24433
ON
4293}
4294EXPORT_SYMBOL_GPL(destroy_workqueue);
4295
dcd989cb
TH
4296/**
4297 * workqueue_set_max_active - adjust max_active of a workqueue
4298 * @wq: target workqueue
4299 * @max_active: new max_active value.
4300 *
4301 * Set max_active of @wq to @max_active.
4302 *
4303 * CONTEXT:
4304 * Don't call from IRQ context.
4305 */
4306void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4307{
49e3cf44 4308 struct pool_workqueue *pwq;
dcd989cb 4309
8719dcea
TH
4310 /* disallow meddling with max_active for ordered workqueues */
4311 if (WARN_ON(wq->flags & __WQ_ORDERED))
4312 return;
4313
f3421797 4314 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4315
a357fc03 4316 mutex_lock(&wq->mutex);
dcd989cb
TH
4317
4318 wq->saved_max_active = max_active;
4319
699ce097
TH
4320 for_each_pwq(pwq, wq)
4321 pwq_adjust_max_active(pwq);
93981800 4322
a357fc03 4323 mutex_unlock(&wq->mutex);
15316ba8 4324}
dcd989cb 4325EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4326
e6267616
TH
4327/**
4328 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4329 *
4330 * Determine whether %current is a workqueue rescuer. Can be used from
4331 * work functions to determine whether it's being run off the rescuer task.
4332 */
4333bool current_is_workqueue_rescuer(void)
4334{
4335 struct worker *worker = current_wq_worker();
4336
6a092dfd 4337 return worker && worker->rescue_wq;
e6267616
TH
4338}
4339
eef6a7d5 4340/**
dcd989cb
TH
4341 * workqueue_congested - test whether a workqueue is congested
4342 * @cpu: CPU in question
4343 * @wq: target workqueue
eef6a7d5 4344 *
dcd989cb
TH
4345 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4346 * no synchronization around this function and the test result is
4347 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4348 *
d3251859
TH
4349 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4350 * Note that both per-cpu and unbound workqueues may be associated with
4351 * multiple pool_workqueues which have separate congested states. A
4352 * workqueue being congested on one CPU doesn't mean the workqueue is also
4353 * contested on other CPUs / NUMA nodes.
4354 *
dcd989cb
TH
4355 * RETURNS:
4356 * %true if congested, %false otherwise.
eef6a7d5 4357 */
d84ff051 4358bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4359{
7fb98ea7 4360 struct pool_workqueue *pwq;
76af4d93
TH
4361 bool ret;
4362
88109453 4363 rcu_read_lock_sched();
7fb98ea7 4364
d3251859
TH
4365 if (cpu == WORK_CPU_UNBOUND)
4366 cpu = smp_processor_id();
4367
7fb98ea7
TH
4368 if (!(wq->flags & WQ_UNBOUND))
4369 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4370 else
df2d5ae4 4371 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4372
76af4d93 4373 ret = !list_empty(&pwq->delayed_works);
88109453 4374 rcu_read_unlock_sched();
76af4d93
TH
4375
4376 return ret;
1da177e4 4377}
dcd989cb 4378EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4379
dcd989cb
TH
4380/**
4381 * work_busy - test whether a work is currently pending or running
4382 * @work: the work to be tested
4383 *
4384 * Test whether @work is currently pending or running. There is no
4385 * synchronization around this function and the test result is
4386 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4387 *
4388 * RETURNS:
4389 * OR'd bitmask of WORK_BUSY_* bits.
4390 */
4391unsigned int work_busy(struct work_struct *work)
1da177e4 4392{
fa1b54e6 4393 struct worker_pool *pool;
dcd989cb
TH
4394 unsigned long flags;
4395 unsigned int ret = 0;
1da177e4 4396
dcd989cb
TH
4397 if (work_pending(work))
4398 ret |= WORK_BUSY_PENDING;
1da177e4 4399
fa1b54e6
TH
4400 local_irq_save(flags);
4401 pool = get_work_pool(work);
038366c5 4402 if (pool) {
fa1b54e6 4403 spin_lock(&pool->lock);
038366c5
LJ
4404 if (find_worker_executing_work(pool, work))
4405 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4406 spin_unlock(&pool->lock);
038366c5 4407 }
fa1b54e6 4408 local_irq_restore(flags);
1da177e4 4409
dcd989cb 4410 return ret;
1da177e4 4411}
dcd989cb 4412EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4413
3d1cb205
TH
4414/**
4415 * set_worker_desc - set description for the current work item
4416 * @fmt: printf-style format string
4417 * @...: arguments for the format string
4418 *
4419 * This function can be called by a running work function to describe what
4420 * the work item is about. If the worker task gets dumped, this
4421 * information will be printed out together to help debugging. The
4422 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4423 */
4424void set_worker_desc(const char *fmt, ...)
4425{
4426 struct worker *worker = current_wq_worker();
4427 va_list args;
4428
4429 if (worker) {
4430 va_start(args, fmt);
4431 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4432 va_end(args);
4433 worker->desc_valid = true;
4434 }
4435}
4436
4437/**
4438 * print_worker_info - print out worker information and description
4439 * @log_lvl: the log level to use when printing
4440 * @task: target task
4441 *
4442 * If @task is a worker and currently executing a work item, print out the
4443 * name of the workqueue being serviced and worker description set with
4444 * set_worker_desc() by the currently executing work item.
4445 *
4446 * This function can be safely called on any task as long as the
4447 * task_struct itself is accessible. While safe, this function isn't
4448 * synchronized and may print out mixups or garbages of limited length.
4449 */
4450void print_worker_info(const char *log_lvl, struct task_struct *task)
4451{
4452 work_func_t *fn = NULL;
4453 char name[WQ_NAME_LEN] = { };
4454 char desc[WORKER_DESC_LEN] = { };
4455 struct pool_workqueue *pwq = NULL;
4456 struct workqueue_struct *wq = NULL;
4457 bool desc_valid = false;
4458 struct worker *worker;
4459
4460 if (!(task->flags & PF_WQ_WORKER))
4461 return;
4462
4463 /*
4464 * This function is called without any synchronization and @task
4465 * could be in any state. Be careful with dereferences.
4466 */
4467 worker = probe_kthread_data(task);
4468
4469 /*
4470 * Carefully copy the associated workqueue's workfn and name. Keep
4471 * the original last '\0' in case the original contains garbage.
4472 */
4473 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4474 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4475 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4476 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4477
4478 /* copy worker description */
4479 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4480 if (desc_valid)
4481 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4482
4483 if (fn || name[0] || desc[0]) {
4484 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4485 if (desc[0])
4486 pr_cont(" (%s)", desc);
4487 pr_cont("\n");
4488 }
4489}
4490
db7bccf4
TH
4491/*
4492 * CPU hotplug.
4493 *
e22bee78 4494 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4495 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4496 * pool which make migrating pending and scheduled works very
e22bee78 4497 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4498 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4499 * blocked draining impractical.
4500 *
24647570 4501 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4502 * running as an unbound one and allowing it to be reattached later if the
4503 * cpu comes back online.
db7bccf4 4504 */
1da177e4 4505
706026c2 4506static void wq_unbind_fn(struct work_struct *work)
3af24433 4507{
38db41d9 4508 int cpu = smp_processor_id();
4ce62e9e 4509 struct worker_pool *pool;
db7bccf4 4510 struct worker *worker;
a9ab775b 4511 int wi;
3af24433 4512
f02ae73a 4513 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4514 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4515
bc3a1afc 4516 mutex_lock(&pool->manager_mutex);
94cf58bb 4517 spin_lock_irq(&pool->lock);
3af24433 4518
94cf58bb 4519 /*
bc3a1afc 4520 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4521 * unbound and set DISASSOCIATED. Before this, all workers
4522 * except for the ones which are still executing works from
4523 * before the last CPU down must be on the cpu. After
4524 * this, they may become diasporas.
4525 */
a9ab775b 4526 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4527 worker->flags |= WORKER_UNBOUND;
06ba38a9 4528
24647570 4529 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4530
94cf58bb 4531 spin_unlock_irq(&pool->lock);
bc3a1afc 4532 mutex_unlock(&pool->manager_mutex);
628c78e7 4533
eb283428
LJ
4534 /*
4535 * Call schedule() so that we cross rq->lock and thus can
4536 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4537 * This is necessary as scheduler callbacks may be invoked
4538 * from other cpus.
4539 */
4540 schedule();
06ba38a9 4541
eb283428
LJ
4542 /*
4543 * Sched callbacks are disabled now. Zap nr_running.
4544 * After this, nr_running stays zero and need_more_worker()
4545 * and keep_working() are always true as long as the
4546 * worklist is not empty. This pool now behaves as an
4547 * unbound (in terms of concurrency management) pool which
4548 * are served by workers tied to the pool.
4549 */
e19e397a 4550 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4551
4552 /*
4553 * With concurrency management just turned off, a busy
4554 * worker blocking could lead to lengthy stalls. Kick off
4555 * unbound chain execution of currently pending work items.
4556 */
4557 spin_lock_irq(&pool->lock);
4558 wake_up_worker(pool);
4559 spin_unlock_irq(&pool->lock);
4560 }
3af24433 4561}
3af24433 4562
bd7c089e
TH
4563/**
4564 * rebind_workers - rebind all workers of a pool to the associated CPU
4565 * @pool: pool of interest
4566 *
a9ab775b 4567 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4568 */
4569static void rebind_workers(struct worker_pool *pool)
4570{
a9ab775b
TH
4571 struct worker *worker;
4572 int wi;
bd7c089e
TH
4573
4574 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4575
a9ab775b
TH
4576 /*
4577 * Restore CPU affinity of all workers. As all idle workers should
4578 * be on the run-queue of the associated CPU before any local
4579 * wake-ups for concurrency management happen, restore CPU affinty
4580 * of all workers first and then clear UNBOUND. As we're called
4581 * from CPU_ONLINE, the following shouldn't fail.
4582 */
4583 for_each_pool_worker(worker, wi, pool)
4584 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4585 pool->attrs->cpumask) < 0);
bd7c089e 4586
a9ab775b 4587 spin_lock_irq(&pool->lock);
bd7c089e 4588
a9ab775b
TH
4589 for_each_pool_worker(worker, wi, pool) {
4590 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4591
4592 /*
a9ab775b
TH
4593 * A bound idle worker should actually be on the runqueue
4594 * of the associated CPU for local wake-ups targeting it to
4595 * work. Kick all idle workers so that they migrate to the
4596 * associated CPU. Doing this in the same loop as
4597 * replacing UNBOUND with REBOUND is safe as no worker will
4598 * be bound before @pool->lock is released.
bd7c089e 4599 */
a9ab775b
TH
4600 if (worker_flags & WORKER_IDLE)
4601 wake_up_process(worker->task);
bd7c089e 4602
a9ab775b
TH
4603 /*
4604 * We want to clear UNBOUND but can't directly call
4605 * worker_clr_flags() or adjust nr_running. Atomically
4606 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4607 * @worker will clear REBOUND using worker_clr_flags() when
4608 * it initiates the next execution cycle thus restoring
4609 * concurrency management. Note that when or whether
4610 * @worker clears REBOUND doesn't affect correctness.
4611 *
4612 * ACCESS_ONCE() is necessary because @worker->flags may be
4613 * tested without holding any lock in
4614 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4615 * fail incorrectly leading to premature concurrency
4616 * management operations.
4617 */
4618 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4619 worker_flags |= WORKER_REBOUND;
4620 worker_flags &= ~WORKER_UNBOUND;
4621 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4622 }
a9ab775b
TH
4623
4624 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4625}
4626
7dbc725e
TH
4627/**
4628 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4629 * @pool: unbound pool of interest
4630 * @cpu: the CPU which is coming up
4631 *
4632 * An unbound pool may end up with a cpumask which doesn't have any online
4633 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4634 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4635 * online CPU before, cpus_allowed of all its workers should be restored.
4636 */
4637static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4638{
4639 static cpumask_t cpumask;
4640 struct worker *worker;
4641 int wi;
4642
4643 lockdep_assert_held(&pool->manager_mutex);
4644
4645 /* is @cpu allowed for @pool? */
4646 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4647 return;
4648
4649 /* is @cpu the only online CPU? */
4650 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4651 if (cpumask_weight(&cpumask) != 1)
4652 return;
4653
4654 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4655 for_each_pool_worker(worker, wi, pool)
4656 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4657 pool->attrs->cpumask) < 0);
4658}
4659
8db25e78
TH
4660/*
4661 * Workqueues should be brought up before normal priority CPU notifiers.
4662 * This will be registered high priority CPU notifier.
4663 */
0db0628d 4664static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4665 unsigned long action,
4666 void *hcpu)
3af24433 4667{
d84ff051 4668 int cpu = (unsigned long)hcpu;
4ce62e9e 4669 struct worker_pool *pool;
4c16bd32 4670 struct workqueue_struct *wq;
7dbc725e 4671 int pi;
3ce63377 4672
8db25e78 4673 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4674 case CPU_UP_PREPARE:
f02ae73a 4675 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4676 if (pool->nr_workers)
4677 continue;
ebf44d16 4678 if (create_and_start_worker(pool) < 0)
3ce63377 4679 return NOTIFY_BAD;
3af24433 4680 }
8db25e78 4681 break;
3af24433 4682
db7bccf4
TH
4683 case CPU_DOWN_FAILED:
4684 case CPU_ONLINE:
68e13a67 4685 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4686
4687 for_each_pool(pool, pi) {
bc3a1afc 4688 mutex_lock(&pool->manager_mutex);
94cf58bb 4689
7dbc725e
TH
4690 if (pool->cpu == cpu) {
4691 spin_lock_irq(&pool->lock);
4692 pool->flags &= ~POOL_DISASSOCIATED;
4693 spin_unlock_irq(&pool->lock);
a9ab775b 4694
7dbc725e
TH
4695 rebind_workers(pool);
4696 } else if (pool->cpu < 0) {
4697 restore_unbound_workers_cpumask(pool, cpu);
4698 }
94cf58bb 4699
bc3a1afc 4700 mutex_unlock(&pool->manager_mutex);
94cf58bb 4701 }
7dbc725e 4702
4c16bd32
TH
4703 /* update NUMA affinity of unbound workqueues */
4704 list_for_each_entry(wq, &workqueues, list)
4705 wq_update_unbound_numa(wq, cpu, true);
4706
68e13a67 4707 mutex_unlock(&wq_pool_mutex);
db7bccf4 4708 break;
00dfcaf7 4709 }
65758202
TH
4710 return NOTIFY_OK;
4711}
4712
4713/*
4714 * Workqueues should be brought down after normal priority CPU notifiers.
4715 * This will be registered as low priority CPU notifier.
4716 */
0db0628d 4717static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4718 unsigned long action,
4719 void *hcpu)
4720{
d84ff051 4721 int cpu = (unsigned long)hcpu;
8db25e78 4722 struct work_struct unbind_work;
4c16bd32 4723 struct workqueue_struct *wq;
8db25e78 4724
65758202
TH
4725 switch (action & ~CPU_TASKS_FROZEN) {
4726 case CPU_DOWN_PREPARE:
4c16bd32 4727 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4728 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4729 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4730
4731 /* update NUMA affinity of unbound workqueues */
4732 mutex_lock(&wq_pool_mutex);
4733 list_for_each_entry(wq, &workqueues, list)
4734 wq_update_unbound_numa(wq, cpu, false);
4735 mutex_unlock(&wq_pool_mutex);
4736
4737 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4738 flush_work(&unbind_work);
4739 break;
65758202
TH
4740 }
4741 return NOTIFY_OK;
4742}
4743
2d3854a3 4744#ifdef CONFIG_SMP
8ccad40d 4745
2d3854a3 4746struct work_for_cpu {
ed48ece2 4747 struct work_struct work;
2d3854a3
RR
4748 long (*fn)(void *);
4749 void *arg;
4750 long ret;
4751};
4752
ed48ece2 4753static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4754{
ed48ece2
TH
4755 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4756
2d3854a3
RR
4757 wfc->ret = wfc->fn(wfc->arg);
4758}
4759
4760/**
4761 * work_on_cpu - run a function in user context on a particular cpu
4762 * @cpu: the cpu to run on
4763 * @fn: the function to run
4764 * @arg: the function arg
4765 *
31ad9081
RR
4766 * This will return the value @fn returns.
4767 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4768 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4769 */
d84ff051 4770long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4771{
ed48ece2 4772 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4773
ed48ece2
TH
4774 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4775 schedule_work_on(cpu, &wfc.work);
c2fda509
LJ
4776
4777 /*
4778 * The work item is on-stack and can't lead to deadlock through
4779 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4780 * when work_on_cpu()s are nested.
4781 */
4782 __flush_work(&wfc.work);
4783
2d3854a3
RR
4784 return wfc.ret;
4785}
4786EXPORT_SYMBOL_GPL(work_on_cpu);
4787#endif /* CONFIG_SMP */
4788
a0a1a5fd
TH
4789#ifdef CONFIG_FREEZER
4790
4791/**
4792 * freeze_workqueues_begin - begin freezing workqueues
4793 *
58a69cb4 4794 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4795 * workqueues will queue new works to their delayed_works list instead of
706026c2 4796 * pool->worklist.
a0a1a5fd
TH
4797 *
4798 * CONTEXT:
a357fc03 4799 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4800 */
4801void freeze_workqueues_begin(void)
4802{
17116969 4803 struct worker_pool *pool;
24b8a847
TH
4804 struct workqueue_struct *wq;
4805 struct pool_workqueue *pwq;
611c92a0 4806 int pi;
a0a1a5fd 4807
68e13a67 4808 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4809
6183c009 4810 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4811 workqueue_freezing = true;
4812
24b8a847 4813 /* set FREEZING */
611c92a0 4814 for_each_pool(pool, pi) {
5bcab335 4815 spin_lock_irq(&pool->lock);
17116969
TH
4816 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4817 pool->flags |= POOL_FREEZING;
5bcab335 4818 spin_unlock_irq(&pool->lock);
24b8a847 4819 }
a0a1a5fd 4820
24b8a847 4821 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4822 mutex_lock(&wq->mutex);
699ce097
TH
4823 for_each_pwq(pwq, wq)
4824 pwq_adjust_max_active(pwq);
a357fc03 4825 mutex_unlock(&wq->mutex);
a0a1a5fd 4826 }
5bcab335 4827
68e13a67 4828 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4829}
4830
4831/**
58a69cb4 4832 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4833 *
4834 * Check whether freezing is complete. This function must be called
4835 * between freeze_workqueues_begin() and thaw_workqueues().
4836 *
4837 * CONTEXT:
68e13a67 4838 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4839 *
4840 * RETURNS:
58a69cb4
TH
4841 * %true if some freezable workqueues are still busy. %false if freezing
4842 * is complete.
a0a1a5fd
TH
4843 */
4844bool freeze_workqueues_busy(void)
4845{
a0a1a5fd 4846 bool busy = false;
24b8a847
TH
4847 struct workqueue_struct *wq;
4848 struct pool_workqueue *pwq;
a0a1a5fd 4849
68e13a67 4850 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4851
6183c009 4852 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4853
24b8a847
TH
4854 list_for_each_entry(wq, &workqueues, list) {
4855 if (!(wq->flags & WQ_FREEZABLE))
4856 continue;
a0a1a5fd
TH
4857 /*
4858 * nr_active is monotonically decreasing. It's safe
4859 * to peek without lock.
4860 */
88109453 4861 rcu_read_lock_sched();
24b8a847 4862 for_each_pwq(pwq, wq) {
6183c009 4863 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4864 if (pwq->nr_active) {
a0a1a5fd 4865 busy = true;
88109453 4866 rcu_read_unlock_sched();
a0a1a5fd
TH
4867 goto out_unlock;
4868 }
4869 }
88109453 4870 rcu_read_unlock_sched();
a0a1a5fd
TH
4871 }
4872out_unlock:
68e13a67 4873 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4874 return busy;
4875}
4876
4877/**
4878 * thaw_workqueues - thaw workqueues
4879 *
4880 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4881 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4882 *
4883 * CONTEXT:
a357fc03 4884 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4885 */
4886void thaw_workqueues(void)
4887{
24b8a847
TH
4888 struct workqueue_struct *wq;
4889 struct pool_workqueue *pwq;
4890 struct worker_pool *pool;
611c92a0 4891 int pi;
a0a1a5fd 4892
68e13a67 4893 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4894
4895 if (!workqueue_freezing)
4896 goto out_unlock;
4897
24b8a847 4898 /* clear FREEZING */
611c92a0 4899 for_each_pool(pool, pi) {
5bcab335 4900 spin_lock_irq(&pool->lock);
24b8a847
TH
4901 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4902 pool->flags &= ~POOL_FREEZING;
5bcab335 4903 spin_unlock_irq(&pool->lock);
24b8a847 4904 }
8b03ae3c 4905
24b8a847
TH
4906 /* restore max_active and repopulate worklist */
4907 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4908 mutex_lock(&wq->mutex);
699ce097
TH
4909 for_each_pwq(pwq, wq)
4910 pwq_adjust_max_active(pwq);
a357fc03 4911 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4912 }
4913
4914 workqueue_freezing = false;
4915out_unlock:
68e13a67 4916 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4917}
4918#endif /* CONFIG_FREEZER */
4919
bce90380
TH
4920static void __init wq_numa_init(void)
4921{
4922 cpumask_var_t *tbl;
4923 int node, cpu;
4924
4925 /* determine NUMA pwq table len - highest node id + 1 */
4926 for_each_node(node)
4927 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4928
4929 if (num_possible_nodes() <= 1)
4930 return;
4931
d55262c4
TH
4932 if (wq_disable_numa) {
4933 pr_info("workqueue: NUMA affinity support disabled\n");
4934 return;
4935 }
4936
4c16bd32
TH
4937 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4938 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4939
bce90380
TH
4940 /*
4941 * We want masks of possible CPUs of each node which isn't readily
4942 * available. Build one from cpu_to_node() which should have been
4943 * fully initialized by now.
4944 */
4945 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4946 BUG_ON(!tbl);
4947
4948 for_each_node(node)
1be0c25d
TH
4949 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4950 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4951
4952 for_each_possible_cpu(cpu) {
4953 node = cpu_to_node(cpu);
4954 if (WARN_ON(node == NUMA_NO_NODE)) {
4955 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4956 /* happens iff arch is bonkers, let's just proceed */
4957 return;
4958 }
4959 cpumask_set_cpu(cpu, tbl[node]);
4960 }
4961
4962 wq_numa_possible_cpumask = tbl;
4963 wq_numa_enabled = true;
4964}
4965
6ee0578b 4966static int __init init_workqueues(void)
1da177e4 4967{
7a4e344c
TH
4968 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4969 int i, cpu;
c34056a3 4970
7c3eed5c
TH
4971 /* make sure we have enough bits for OFFQ pool ID */
4972 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4973 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4974
e904e6c2
TH
4975 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4976
4977 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4978
65758202 4979 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4980 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4981
bce90380
TH
4982 wq_numa_init();
4983
706026c2 4984 /* initialize CPU pools */
29c91e99 4985 for_each_possible_cpu(cpu) {
4ce62e9e 4986 struct worker_pool *pool;
8b03ae3c 4987
7a4e344c 4988 i = 0;
f02ae73a 4989 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4990 BUG_ON(init_worker_pool(pool));
ec22ca5e 4991 pool->cpu = cpu;
29c91e99 4992 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4993 pool->attrs->nice = std_nice[i++];
f3f90ad4 4994 pool->node = cpu_to_node(cpu);
7a4e344c 4995
9daf9e67 4996 /* alloc pool ID */
68e13a67 4997 mutex_lock(&wq_pool_mutex);
9daf9e67 4998 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4999 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5000 }
8b03ae3c
TH
5001 }
5002
e22bee78 5003 /* create the initial worker */
29c91e99 5004 for_each_online_cpu(cpu) {
4ce62e9e 5005 struct worker_pool *pool;
e22bee78 5006
f02ae73a 5007 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5008 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5009 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5010 }
e22bee78
TH
5011 }
5012
29c91e99
TH
5013 /* create default unbound wq attrs */
5014 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5015 struct workqueue_attrs *attrs;
5016
5017 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5018 attrs->nice = std_nice[i];
29c91e99
TH
5019 unbound_std_wq_attrs[i] = attrs;
5020 }
5021
d320c038 5022 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5023 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5024 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5025 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5026 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5027 system_freezable_wq = alloc_workqueue("events_freezable",
5028 WQ_FREEZABLE, 0);
0668106c
VK
5029 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5030 WQ_POWER_EFFICIENT, 0);
5031 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5032 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5033 0);
1aabe902 5034 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5035 !system_unbound_wq || !system_freezable_wq ||
5036 !system_power_efficient_wq ||
5037 !system_freezable_power_efficient_wq);
6ee0578b 5038 return 0;
1da177e4 5039}
6ee0578b 5040early_initcall(init_workqueues);