workqueue: update comments and a warning message
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c5aa87bb 148 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
34a06bd6 152 struct mutex manager_arb; /* manager arbitration */
24647570 153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 154 struct ida worker_ida; /* L: for worker IDs */
e19e397a 155
7a4e344c 156 struct workqueue_attrs *attrs; /* I: worker attributes */
c5aa87bb
TH
157 struct hlist_node hash_node; /* W: unbound_pool_hash node */
158 int refcnt; /* W: refcnt for unbound pools */
7a4e344c 159
e19e397a
TH
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
8b03ae3c
TH
172} ____cacheline_aligned_in_smp;
173
1da177e4 174/*
112202d9
TH
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
1da177e4 179 */
112202d9 180struct pool_workqueue {
bd7bdd43 181 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 182 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
8864b4e5 185 int refcnt; /* L: reference count */
73f53c4a
TH
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
1e19ffc6 188 int nr_active; /* L: nr of active works */
a0a1a5fd 189 int max_active; /* L: max active works */
1e19ffc6 190 struct list_head delayed_works; /* L: delayed works */
75ccf595 191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 192 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
e904e6c2 202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 203
73f53c4a
TH
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
226223ab
TH
213struct wq_device;
214
1da177e4 215/*
c5aa87bb
TH
216 * The externally visible workqueue. It relays the issued work items to
217 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
218 */
219struct workqueue_struct {
9c5a2ba7 220 unsigned int flags; /* W: WQ_* flags */
420c0ddb 221 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 222 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 223 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
112202d9 228 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
493a1724 233 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
234 struct worker *rescuer; /* I: rescue worker */
235
9c5a2ba7 236 int nr_drainers; /* W: drain in progress */
112202d9 237 int saved_max_active; /* W: saved pwq max_active */
226223ab
TH
238
239#ifdef CONFIG_SYSFS
240 struct wq_device *wq_dev; /* I: for sysfs interface */
241#endif
4e6045f1 242#ifdef CONFIG_LOCKDEP
4690c4ab 243 struct lockdep_map lockdep_map;
4e6045f1 244#endif
b196be89 245 char name[]; /* I: workqueue name */
1da177e4
LT
246};
247
e904e6c2
TH
248static struct kmem_cache *pwq_cache;
249
c5aa87bb 250/* W: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
251static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
252
c5aa87bb 253/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
254static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
255
d320c038 256struct workqueue_struct *system_wq __read_mostly;
d320c038 257EXPORT_SYMBOL_GPL(system_wq);
044c782c 258struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 259EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 260struct workqueue_struct *system_long_wq __read_mostly;
d320c038 261EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 262struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 263EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 264struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 265EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 266
97bd2347
TH
267#define CREATE_TRACE_POINTS
268#include <trace/events/workqueue.h>
269
76af4d93
TH
270#define assert_rcu_or_wq_lock() \
271 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
272 lockdep_is_held(&workqueue_lock), \
273 "sched RCU or workqueue lock should be held")
274
f02ae73a
TH
275#define for_each_cpu_worker_pool(pool, cpu) \
276 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
277 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 278 (pool)++)
4ce62e9e 279
b67bfe0d
SL
280#define for_each_busy_worker(worker, i, pool) \
281 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 282
17116969
TH
283/**
284 * for_each_pool - iterate through all worker_pools in the system
285 * @pool: iteration cursor
286 * @id: integer used for iteration
fa1b54e6
TH
287 *
288 * This must be called either with workqueue_lock held or sched RCU read
289 * locked. If the pool needs to be used beyond the locking in effect, the
290 * caller is responsible for guaranteeing that the pool stays online.
291 *
292 * The if/else clause exists only for the lockdep assertion and can be
293 * ignored.
17116969
TH
294 */
295#define for_each_pool(pool, id) \
fa1b54e6
TH
296 idr_for_each_entry(&worker_pool_idr, pool, id) \
297 if (({ assert_rcu_or_wq_lock(); false; })) { } \
298 else
17116969 299
49e3cf44
TH
300/**
301 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
302 * @pwq: iteration cursor
303 * @wq: the target workqueue
76af4d93
TH
304 *
305 * This must be called either with workqueue_lock held or sched RCU read
306 * locked. If the pwq needs to be used beyond the locking in effect, the
307 * caller is responsible for guaranteeing that the pwq stays online.
308 *
309 * The if/else clause exists only for the lockdep assertion and can be
310 * ignored.
49e3cf44
TH
311 */
312#define for_each_pwq(pwq, wq) \
76af4d93
TH
313 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
314 if (({ assert_rcu_or_wq_lock(); false; })) { } \
315 else
f3421797 316
dc186ad7
TG
317#ifdef CONFIG_DEBUG_OBJECTS_WORK
318
319static struct debug_obj_descr work_debug_descr;
320
99777288
SG
321static void *work_debug_hint(void *addr)
322{
323 return ((struct work_struct *) addr)->func;
324}
325
dc186ad7
TG
326/*
327 * fixup_init is called when:
328 * - an active object is initialized
329 */
330static int work_fixup_init(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335 case ODEBUG_STATE_ACTIVE:
336 cancel_work_sync(work);
337 debug_object_init(work, &work_debug_descr);
338 return 1;
339 default:
340 return 0;
341 }
342}
343
344/*
345 * fixup_activate is called when:
346 * - an active object is activated
347 * - an unknown object is activated (might be a statically initialized object)
348 */
349static int work_fixup_activate(void *addr, enum debug_obj_state state)
350{
351 struct work_struct *work = addr;
352
353 switch (state) {
354
355 case ODEBUG_STATE_NOTAVAILABLE:
356 /*
357 * This is not really a fixup. The work struct was
358 * statically initialized. We just make sure that it
359 * is tracked in the object tracker.
360 */
22df02bb 361 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
362 debug_object_init(work, &work_debug_descr);
363 debug_object_activate(work, &work_debug_descr);
364 return 0;
365 }
366 WARN_ON_ONCE(1);
367 return 0;
368
369 case ODEBUG_STATE_ACTIVE:
370 WARN_ON(1);
371
372 default:
373 return 0;
374 }
375}
376
377/*
378 * fixup_free is called when:
379 * - an active object is freed
380 */
381static int work_fixup_free(void *addr, enum debug_obj_state state)
382{
383 struct work_struct *work = addr;
384
385 switch (state) {
386 case ODEBUG_STATE_ACTIVE:
387 cancel_work_sync(work);
388 debug_object_free(work, &work_debug_descr);
389 return 1;
390 default:
391 return 0;
392 }
393}
394
395static struct debug_obj_descr work_debug_descr = {
396 .name = "work_struct",
99777288 397 .debug_hint = work_debug_hint,
dc186ad7
TG
398 .fixup_init = work_fixup_init,
399 .fixup_activate = work_fixup_activate,
400 .fixup_free = work_fixup_free,
401};
402
403static inline void debug_work_activate(struct work_struct *work)
404{
405 debug_object_activate(work, &work_debug_descr);
406}
407
408static inline void debug_work_deactivate(struct work_struct *work)
409{
410 debug_object_deactivate(work, &work_debug_descr);
411}
412
413void __init_work(struct work_struct *work, int onstack)
414{
415 if (onstack)
416 debug_object_init_on_stack(work, &work_debug_descr);
417 else
418 debug_object_init(work, &work_debug_descr);
419}
420EXPORT_SYMBOL_GPL(__init_work);
421
422void destroy_work_on_stack(struct work_struct *work)
423{
424 debug_object_free(work, &work_debug_descr);
425}
426EXPORT_SYMBOL_GPL(destroy_work_on_stack);
427
428#else
429static inline void debug_work_activate(struct work_struct *work) { }
430static inline void debug_work_deactivate(struct work_struct *work) { }
431#endif
432
95402b38
GS
433/* Serializes the accesses to the list of workqueues. */
434static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 435static LIST_HEAD(workqueues);
a0a1a5fd 436static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 437
c5aa87bb 438/* the per-cpu worker pools */
e19e397a 439static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 440 cpu_worker_pools);
f3421797 441
fa1b54e6 442/*
c5aa87bb
TH
443 * R: idr of all pools. Modifications are protected by workqueue_lock.
444 * Read accesses are protected by sched-RCU protected.
fa1b54e6 445 */
9daf9e67
TH
446static DEFINE_IDR(worker_pool_idr);
447
c34056a3 448static int worker_thread(void *__worker);
226223ab
TH
449static void copy_workqueue_attrs(struct workqueue_attrs *to,
450 const struct workqueue_attrs *from);
1da177e4 451
9daf9e67
TH
452/* allocate ID and assign it to @pool */
453static int worker_pool_assign_id(struct worker_pool *pool)
454{
455 int ret;
456
fa1b54e6
TH
457 do {
458 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
459 return -ENOMEM;
9daf9e67 460
fa1b54e6
TH
461 spin_lock_irq(&workqueue_lock);
462 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
463 spin_unlock_irq(&workqueue_lock);
464 } while (ret == -EAGAIN);
9daf9e67 465
fa1b54e6 466 return ret;
7c3eed5c
TH
467}
468
76af4d93
TH
469/**
470 * first_pwq - return the first pool_workqueue of the specified workqueue
471 * @wq: the target workqueue
472 *
473 * This must be called either with workqueue_lock held or sched RCU read
474 * locked. If the pwq needs to be used beyond the locking in effect, the
475 * caller is responsible for guaranteeing that the pwq stays online.
476 */
7fb98ea7 477static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 478{
76af4d93
TH
479 assert_rcu_or_wq_lock();
480 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
481 pwqs_node);
b1f4ec17
ON
482}
483
73f53c4a
TH
484static unsigned int work_color_to_flags(int color)
485{
486 return color << WORK_STRUCT_COLOR_SHIFT;
487}
488
489static int get_work_color(struct work_struct *work)
490{
491 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
492 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
493}
494
495static int work_next_color(int color)
496{
497 return (color + 1) % WORK_NR_COLORS;
498}
1da177e4 499
14441960 500/*
112202d9
TH
501 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
502 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 503 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 504 *
112202d9
TH
505 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
506 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
507 * work->data. These functions should only be called while the work is
508 * owned - ie. while the PENDING bit is set.
7a22ad75 509 *
112202d9 510 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 511 * corresponding to a work. Pool is available once the work has been
112202d9 512 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 513 * available only while the work item is queued.
7a22ad75 514 *
bbb68dfa
TH
515 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
516 * canceled. While being canceled, a work item may have its PENDING set
517 * but stay off timer and worklist for arbitrarily long and nobody should
518 * try to steal the PENDING bit.
14441960 519 */
7a22ad75
TH
520static inline void set_work_data(struct work_struct *work, unsigned long data,
521 unsigned long flags)
365970a1 522{
6183c009 523 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
524 atomic_long_set(&work->data, data | flags | work_static(work));
525}
365970a1 526
112202d9 527static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
528 unsigned long extra_flags)
529{
112202d9
TH
530 set_work_data(work, (unsigned long)pwq,
531 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
532}
533
4468a00f
LJ
534static void set_work_pool_and_keep_pending(struct work_struct *work,
535 int pool_id)
536{
537 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
538 WORK_STRUCT_PENDING);
539}
540
7c3eed5c
TH
541static void set_work_pool_and_clear_pending(struct work_struct *work,
542 int pool_id)
7a22ad75 543{
23657bb1
TH
544 /*
545 * The following wmb is paired with the implied mb in
546 * test_and_set_bit(PENDING) and ensures all updates to @work made
547 * here are visible to and precede any updates by the next PENDING
548 * owner.
549 */
550 smp_wmb();
7c3eed5c 551 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 552}
f756d5e2 553
7a22ad75 554static void clear_work_data(struct work_struct *work)
1da177e4 555{
7c3eed5c
TH
556 smp_wmb(); /* see set_work_pool_and_clear_pending() */
557 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
558}
559
112202d9 560static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 561{
e120153d 562 unsigned long data = atomic_long_read(&work->data);
7a22ad75 563
112202d9 564 if (data & WORK_STRUCT_PWQ)
e120153d
TH
565 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
566 else
567 return NULL;
4d707b9f
ON
568}
569
7c3eed5c
TH
570/**
571 * get_work_pool - return the worker_pool a given work was associated with
572 * @work: the work item of interest
573 *
574 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
575 *
576 * Pools are created and destroyed under workqueue_lock, and allows read
577 * access under sched-RCU read lock. As such, this function should be
578 * called under workqueue_lock or with preemption disabled.
579 *
580 * All fields of the returned pool are accessible as long as the above
581 * mentioned locking is in effect. If the returned pool needs to be used
582 * beyond the critical section, the caller is responsible for ensuring the
583 * returned pool is and stays online.
7c3eed5c
TH
584 */
585static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 588 int pool_id;
7a22ad75 589
fa1b54e6
TH
590 assert_rcu_or_wq_lock();
591
112202d9
TH
592 if (data & WORK_STRUCT_PWQ)
593 return ((struct pool_workqueue *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
fa1b54e6 600 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
601}
602
603/**
604 * get_work_pool_id - return the worker pool ID a given work is associated with
605 * @work: the work item of interest
606 *
607 * Return the worker_pool ID @work was last associated with.
608 * %WORK_OFFQ_POOL_NONE if none.
609 */
610static int get_work_pool_id(struct work_struct *work)
611{
54d5b7d0
LJ
612 unsigned long data = atomic_long_read(&work->data);
613
112202d9
TH
614 if (data & WORK_STRUCT_PWQ)
615 return ((struct pool_workqueue *)
54d5b7d0 616 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 617
54d5b7d0 618 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
619}
620
bbb68dfa
TH
621static void mark_work_canceling(struct work_struct *work)
622{
7c3eed5c 623 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 624
7c3eed5c
TH
625 pool_id <<= WORK_OFFQ_POOL_SHIFT;
626 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
627}
628
629static bool work_is_canceling(struct work_struct *work)
630{
631 unsigned long data = atomic_long_read(&work->data);
632
112202d9 633 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
634}
635
e22bee78 636/*
3270476a
TH
637 * Policy functions. These define the policies on how the global worker
638 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 639 * they're being called with pool->lock held.
e22bee78
TH
640 */
641
63d95a91 642static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 643{
e19e397a 644 return !atomic_read(&pool->nr_running);
a848e3b6
ON
645}
646
4594bf15 647/*
e22bee78
TH
648 * Need to wake up a worker? Called from anything but currently
649 * running workers.
974271c4
TH
650 *
651 * Note that, because unbound workers never contribute to nr_running, this
706026c2 652 * function will always return %true for unbound pools as long as the
974271c4 653 * worklist isn't empty.
4594bf15 654 */
63d95a91 655static bool need_more_worker(struct worker_pool *pool)
365970a1 656{
63d95a91 657 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 658}
4594bf15 659
e22bee78 660/* Can I start working? Called from busy but !running workers. */
63d95a91 661static bool may_start_working(struct worker_pool *pool)
e22bee78 662{
63d95a91 663 return pool->nr_idle;
e22bee78
TH
664}
665
666/* Do I need to keep working? Called from currently running workers. */
63d95a91 667static bool keep_working(struct worker_pool *pool)
e22bee78 668{
e19e397a
TH
669 return !list_empty(&pool->worklist) &&
670 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
671}
672
673/* Do we need a new worker? Called from manager. */
63d95a91 674static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 677}
365970a1 678
e22bee78 679/* Do I need to be the manager? */
63d95a91 680static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_to_create_worker(pool) ||
11ebea50 683 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
684}
685
686/* Do we have too many workers and should some go away? */
63d95a91 687static bool too_many_workers(struct worker_pool *pool)
e22bee78 688{
34a06bd6 689 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 692
ea1abd61
LJ
693 /*
694 * nr_idle and idle_list may disagree if idle rebinding is in
695 * progress. Never return %true if idle_list is empty.
696 */
697 if (list_empty(&pool->idle_list))
698 return false;
699
e22bee78 700 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
701}
702
4d707b9f 703/*
e22bee78
TH
704 * Wake up functions.
705 */
706
7e11629d 707/* Return the first worker. Safe with preemption disabled */
63d95a91 708static struct worker *first_worker(struct worker_pool *pool)
7e11629d 709{
63d95a91 710 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
711 return NULL;
712
63d95a91 713 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
714}
715
716/**
717 * wake_up_worker - wake up an idle worker
63d95a91 718 * @pool: worker pool to wake worker from
7e11629d 719 *
63d95a91 720 * Wake up the first idle worker of @pool.
7e11629d
TH
721 *
722 * CONTEXT:
d565ed63 723 * spin_lock_irq(pool->lock).
7e11629d 724 */
63d95a91 725static void wake_up_worker(struct worker_pool *pool)
7e11629d 726{
63d95a91 727 struct worker *worker = first_worker(pool);
7e11629d
TH
728
729 if (likely(worker))
730 wake_up_process(worker->task);
731}
732
d302f017 733/**
e22bee78
TH
734 * wq_worker_waking_up - a worker is waking up
735 * @task: task waking up
736 * @cpu: CPU @task is waking up to
737 *
738 * This function is called during try_to_wake_up() when a worker is
739 * being awoken.
740 *
741 * CONTEXT:
742 * spin_lock_irq(rq->lock)
743 */
d84ff051 744void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
745{
746 struct worker *worker = kthread_data(task);
747
36576000 748 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 749 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 750 atomic_inc(&worker->pool->nr_running);
36576000 751 }
e22bee78
TH
752}
753
754/**
755 * wq_worker_sleeping - a worker is going to sleep
756 * @task: task going to sleep
757 * @cpu: CPU in question, must be the current CPU number
758 *
759 * This function is called during schedule() when a busy worker is
760 * going to sleep. Worker on the same cpu can be woken up by
761 * returning pointer to its task.
762 *
763 * CONTEXT:
764 * spin_lock_irq(rq->lock)
765 *
766 * RETURNS:
767 * Worker task on @cpu to wake up, %NULL if none.
768 */
d84ff051 769struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
770{
771 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 772 struct worker_pool *pool;
e22bee78 773
111c225a
TH
774 /*
775 * Rescuers, which may not have all the fields set up like normal
776 * workers, also reach here, let's not access anything before
777 * checking NOT_RUNNING.
778 */
2d64672e 779 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
780 return NULL;
781
111c225a 782 pool = worker->pool;
111c225a 783
e22bee78 784 /* this can only happen on the local cpu */
6183c009
TH
785 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
786 return NULL;
e22bee78
TH
787
788 /*
789 * The counterpart of the following dec_and_test, implied mb,
790 * worklist not empty test sequence is in insert_work().
791 * Please read comment there.
792 *
628c78e7
TH
793 * NOT_RUNNING is clear. This means that we're bound to and
794 * running on the local cpu w/ rq lock held and preemption
795 * disabled, which in turn means that none else could be
d565ed63 796 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 797 * lock is safe.
e22bee78 798 */
e19e397a
TH
799 if (atomic_dec_and_test(&pool->nr_running) &&
800 !list_empty(&pool->worklist))
63d95a91 801 to_wakeup = first_worker(pool);
e22bee78
TH
802 return to_wakeup ? to_wakeup->task : NULL;
803}
804
805/**
806 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 807 * @worker: self
d302f017
TH
808 * @flags: flags to set
809 * @wakeup: wakeup an idle worker if necessary
810 *
e22bee78
TH
811 * Set @flags in @worker->flags and adjust nr_running accordingly. If
812 * nr_running becomes zero and @wakeup is %true, an idle worker is
813 * woken up.
d302f017 814 *
cb444766 815 * CONTEXT:
d565ed63 816 * spin_lock_irq(pool->lock)
d302f017
TH
817 */
818static inline void worker_set_flags(struct worker *worker, unsigned int flags,
819 bool wakeup)
820{
bd7bdd43 821 struct worker_pool *pool = worker->pool;
e22bee78 822
cb444766
TH
823 WARN_ON_ONCE(worker->task != current);
824
e22bee78
TH
825 /*
826 * If transitioning into NOT_RUNNING, adjust nr_running and
827 * wake up an idle worker as necessary if requested by
828 * @wakeup.
829 */
830 if ((flags & WORKER_NOT_RUNNING) &&
831 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 832 if (wakeup) {
e19e397a 833 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 834 !list_empty(&pool->worklist))
63d95a91 835 wake_up_worker(pool);
e22bee78 836 } else
e19e397a 837 atomic_dec(&pool->nr_running);
e22bee78
TH
838 }
839
d302f017
TH
840 worker->flags |= flags;
841}
842
843/**
e22bee78 844 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 845 * @worker: self
d302f017
TH
846 * @flags: flags to clear
847 *
e22bee78 848 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 849 *
cb444766 850 * CONTEXT:
d565ed63 851 * spin_lock_irq(pool->lock)
d302f017
TH
852 */
853static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
854{
63d95a91 855 struct worker_pool *pool = worker->pool;
e22bee78
TH
856 unsigned int oflags = worker->flags;
857
cb444766
TH
858 WARN_ON_ONCE(worker->task != current);
859
d302f017 860 worker->flags &= ~flags;
e22bee78 861
42c025f3
TH
862 /*
863 * If transitioning out of NOT_RUNNING, increment nr_running. Note
864 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
865 * of multiple flags, not a single flag.
866 */
e22bee78
TH
867 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
868 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 869 atomic_inc(&pool->nr_running);
d302f017
TH
870}
871
8cca0eea
TH
872/**
873 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 874 * @pool: pool of interest
8cca0eea
TH
875 * @work: work to find worker for
876 *
c9e7cf27
TH
877 * Find a worker which is executing @work on @pool by searching
878 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
879 * to match, its current execution should match the address of @work and
880 * its work function. This is to avoid unwanted dependency between
881 * unrelated work executions through a work item being recycled while still
882 * being executed.
883 *
884 * This is a bit tricky. A work item may be freed once its execution
885 * starts and nothing prevents the freed area from being recycled for
886 * another work item. If the same work item address ends up being reused
887 * before the original execution finishes, workqueue will identify the
888 * recycled work item as currently executing and make it wait until the
889 * current execution finishes, introducing an unwanted dependency.
890 *
c5aa87bb
TH
891 * This function checks the work item address and work function to avoid
892 * false positives. Note that this isn't complete as one may construct a
893 * work function which can introduce dependency onto itself through a
894 * recycled work item. Well, if somebody wants to shoot oneself in the
895 * foot that badly, there's only so much we can do, and if such deadlock
896 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
897 *
898 * CONTEXT:
d565ed63 899 * spin_lock_irq(pool->lock).
8cca0eea
TH
900 *
901 * RETURNS:
902 * Pointer to worker which is executing @work if found, NULL
903 * otherwise.
4d707b9f 904 */
c9e7cf27 905static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 906 struct work_struct *work)
4d707b9f 907{
42f8570f 908 struct worker *worker;
42f8570f 909
b67bfe0d 910 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
911 (unsigned long)work)
912 if (worker->current_work == work &&
913 worker->current_func == work->func)
42f8570f
SL
914 return worker;
915
916 return NULL;
4d707b9f
ON
917}
918
bf4ede01
TH
919/**
920 * move_linked_works - move linked works to a list
921 * @work: start of series of works to be scheduled
922 * @head: target list to append @work to
923 * @nextp: out paramter for nested worklist walking
924 *
925 * Schedule linked works starting from @work to @head. Work series to
926 * be scheduled starts at @work and includes any consecutive work with
927 * WORK_STRUCT_LINKED set in its predecessor.
928 *
929 * If @nextp is not NULL, it's updated to point to the next work of
930 * the last scheduled work. This allows move_linked_works() to be
931 * nested inside outer list_for_each_entry_safe().
932 *
933 * CONTEXT:
d565ed63 934 * spin_lock_irq(pool->lock).
bf4ede01
TH
935 */
936static void move_linked_works(struct work_struct *work, struct list_head *head,
937 struct work_struct **nextp)
938{
939 struct work_struct *n;
940
941 /*
942 * Linked worklist will always end before the end of the list,
943 * use NULL for list head.
944 */
945 list_for_each_entry_safe_from(work, n, NULL, entry) {
946 list_move_tail(&work->entry, head);
947 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
948 break;
949 }
950
951 /*
952 * If we're already inside safe list traversal and have moved
953 * multiple works to the scheduled queue, the next position
954 * needs to be updated.
955 */
956 if (nextp)
957 *nextp = n;
958}
959
8864b4e5
TH
960/**
961 * get_pwq - get an extra reference on the specified pool_workqueue
962 * @pwq: pool_workqueue to get
963 *
964 * Obtain an extra reference on @pwq. The caller should guarantee that
965 * @pwq has positive refcnt and be holding the matching pool->lock.
966 */
967static void get_pwq(struct pool_workqueue *pwq)
968{
969 lockdep_assert_held(&pwq->pool->lock);
970 WARN_ON_ONCE(pwq->refcnt <= 0);
971 pwq->refcnt++;
972}
973
974/**
975 * put_pwq - put a pool_workqueue reference
976 * @pwq: pool_workqueue to put
977 *
978 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
979 * destruction. The caller should be holding the matching pool->lock.
980 */
981static void put_pwq(struct pool_workqueue *pwq)
982{
983 lockdep_assert_held(&pwq->pool->lock);
984 if (likely(--pwq->refcnt))
985 return;
986 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
987 return;
988 /*
989 * @pwq can't be released under pool->lock, bounce to
990 * pwq_unbound_release_workfn(). This never recurses on the same
991 * pool->lock as this path is taken only for unbound workqueues and
992 * the release work item is scheduled on a per-cpu workqueue. To
993 * avoid lockdep warning, unbound pool->locks are given lockdep
994 * subclass of 1 in get_unbound_pool().
995 */
996 schedule_work(&pwq->unbound_release_work);
997}
998
112202d9 999static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1000{
112202d9 1001 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1002
1003 trace_workqueue_activate_work(work);
112202d9 1004 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1005 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1006 pwq->nr_active++;
bf4ede01
TH
1007}
1008
112202d9 1009static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1010{
112202d9 1011 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1012 struct work_struct, entry);
1013
112202d9 1014 pwq_activate_delayed_work(work);
3aa62497
LJ
1015}
1016
bf4ede01 1017/**
112202d9
TH
1018 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1019 * @pwq: pwq of interest
bf4ede01 1020 * @color: color of work which left the queue
bf4ede01
TH
1021 *
1022 * A work either has completed or is removed from pending queue,
112202d9 1023 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1024 *
1025 * CONTEXT:
d565ed63 1026 * spin_lock_irq(pool->lock).
bf4ede01 1027 */
112202d9 1028static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1029{
8864b4e5 1030 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1031 if (color == WORK_NO_COLOR)
8864b4e5 1032 goto out_put;
bf4ede01 1033
112202d9 1034 pwq->nr_in_flight[color]--;
bf4ede01 1035
112202d9
TH
1036 pwq->nr_active--;
1037 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1038 /* one down, submit a delayed one */
112202d9
TH
1039 if (pwq->nr_active < pwq->max_active)
1040 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1041 }
1042
1043 /* is flush in progress and are we at the flushing tip? */
112202d9 1044 if (likely(pwq->flush_color != color))
8864b4e5 1045 goto out_put;
bf4ede01
TH
1046
1047 /* are there still in-flight works? */
112202d9 1048 if (pwq->nr_in_flight[color])
8864b4e5 1049 goto out_put;
bf4ede01 1050
112202d9
TH
1051 /* this pwq is done, clear flush_color */
1052 pwq->flush_color = -1;
bf4ede01
TH
1053
1054 /*
112202d9 1055 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1056 * will handle the rest.
1057 */
112202d9
TH
1058 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1059 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1060out_put:
1061 put_pwq(pwq);
bf4ede01
TH
1062}
1063
36e227d2 1064/**
bbb68dfa 1065 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1066 * @work: work item to steal
1067 * @is_dwork: @work is a delayed_work
bbb68dfa 1068 * @flags: place to store irq state
36e227d2
TH
1069 *
1070 * Try to grab PENDING bit of @work. This function can handle @work in any
1071 * stable state - idle, on timer or on worklist. Return values are
1072 *
1073 * 1 if @work was pending and we successfully stole PENDING
1074 * 0 if @work was idle and we claimed PENDING
1075 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1076 * -ENOENT if someone else is canceling @work, this state may persist
1077 * for arbitrarily long
36e227d2 1078 *
bbb68dfa 1079 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1080 * interrupted while holding PENDING and @work off queue, irq must be
1081 * disabled on entry. This, combined with delayed_work->timer being
1082 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1083 *
1084 * On successful return, >= 0, irq is disabled and the caller is
1085 * responsible for releasing it using local_irq_restore(*@flags).
1086 *
e0aecdd8 1087 * This function is safe to call from any context including IRQ handler.
bf4ede01 1088 */
bbb68dfa
TH
1089static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1090 unsigned long *flags)
bf4ede01 1091{
d565ed63 1092 struct worker_pool *pool;
112202d9 1093 struct pool_workqueue *pwq;
bf4ede01 1094
bbb68dfa
TH
1095 local_irq_save(*flags);
1096
36e227d2
TH
1097 /* try to steal the timer if it exists */
1098 if (is_dwork) {
1099 struct delayed_work *dwork = to_delayed_work(work);
1100
e0aecdd8
TH
1101 /*
1102 * dwork->timer is irqsafe. If del_timer() fails, it's
1103 * guaranteed that the timer is not queued anywhere and not
1104 * running on the local CPU.
1105 */
36e227d2
TH
1106 if (likely(del_timer(&dwork->timer)))
1107 return 1;
1108 }
1109
1110 /* try to claim PENDING the normal way */
bf4ede01
TH
1111 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1112 return 0;
1113
1114 /*
1115 * The queueing is in progress, or it is already queued. Try to
1116 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1117 */
d565ed63
TH
1118 pool = get_work_pool(work);
1119 if (!pool)
bbb68dfa 1120 goto fail;
bf4ede01 1121
d565ed63 1122 spin_lock(&pool->lock);
0b3dae68 1123 /*
112202d9
TH
1124 * work->data is guaranteed to point to pwq only while the work
1125 * item is queued on pwq->wq, and both updating work->data to point
1126 * to pwq on queueing and to pool on dequeueing are done under
1127 * pwq->pool->lock. This in turn guarantees that, if work->data
1128 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1129 * item is currently queued on that pool.
1130 */
112202d9
TH
1131 pwq = get_work_pwq(work);
1132 if (pwq && pwq->pool == pool) {
16062836
TH
1133 debug_work_deactivate(work);
1134
1135 /*
1136 * A delayed work item cannot be grabbed directly because
1137 * it might have linked NO_COLOR work items which, if left
112202d9 1138 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1139 * management later on and cause stall. Make sure the work
1140 * item is activated before grabbing.
1141 */
1142 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1143 pwq_activate_delayed_work(work);
16062836
TH
1144
1145 list_del_init(&work->entry);
112202d9 1146 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1147
112202d9 1148 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1149 set_work_pool_and_keep_pending(work, pool->id);
1150
1151 spin_unlock(&pool->lock);
1152 return 1;
bf4ede01 1153 }
d565ed63 1154 spin_unlock(&pool->lock);
bbb68dfa
TH
1155fail:
1156 local_irq_restore(*flags);
1157 if (work_is_canceling(work))
1158 return -ENOENT;
1159 cpu_relax();
36e227d2 1160 return -EAGAIN;
bf4ede01
TH
1161}
1162
4690c4ab 1163/**
706026c2 1164 * insert_work - insert a work into a pool
112202d9 1165 * @pwq: pwq @work belongs to
4690c4ab
TH
1166 * @work: work to insert
1167 * @head: insertion point
1168 * @extra_flags: extra WORK_STRUCT_* flags to set
1169 *
112202d9 1170 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1171 * work_struct flags.
4690c4ab
TH
1172 *
1173 * CONTEXT:
d565ed63 1174 * spin_lock_irq(pool->lock).
4690c4ab 1175 */
112202d9
TH
1176static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1177 struct list_head *head, unsigned int extra_flags)
b89deed3 1178{
112202d9 1179 struct worker_pool *pool = pwq->pool;
e22bee78 1180
4690c4ab 1181 /* we own @work, set data and link */
112202d9 1182 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1183 list_add_tail(&work->entry, head);
8864b4e5 1184 get_pwq(pwq);
e22bee78
TH
1185
1186 /*
c5aa87bb
TH
1187 * Ensure either wq_worker_sleeping() sees the above
1188 * list_add_tail() or we see zero nr_running to avoid workers lying
1189 * around lazily while there are works to be processed.
e22bee78
TH
1190 */
1191 smp_mb();
1192
63d95a91
TH
1193 if (__need_more_worker(pool))
1194 wake_up_worker(pool);
b89deed3
ON
1195}
1196
c8efcc25
TH
1197/*
1198 * Test whether @work is being queued from another work executing on the
8d03ecfe 1199 * same workqueue.
c8efcc25
TH
1200 */
1201static bool is_chained_work(struct workqueue_struct *wq)
1202{
8d03ecfe
TH
1203 struct worker *worker;
1204
1205 worker = current_wq_worker();
1206 /*
1207 * Return %true iff I'm a worker execuing a work item on @wq. If
1208 * I'm @worker, it's safe to dereference it without locking.
1209 */
112202d9 1210 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1211}
1212
d84ff051 1213static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1214 struct work_struct *work)
1215{
112202d9 1216 struct pool_workqueue *pwq;
c9178087 1217 struct worker_pool *last_pool;
1e19ffc6 1218 struct list_head *worklist;
8a2e8e5d 1219 unsigned int work_flags;
b75cac93 1220 unsigned int req_cpu = cpu;
8930caba
TH
1221
1222 /*
1223 * While a work item is PENDING && off queue, a task trying to
1224 * steal the PENDING will busy-loop waiting for it to either get
1225 * queued or lose PENDING. Grabbing PENDING and queueing should
1226 * happen with IRQ disabled.
1227 */
1228 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1229
dc186ad7 1230 debug_work_activate(work);
1e19ffc6 1231
c8efcc25 1232 /* if dying, only works from the same workqueue are allowed */
618b01eb 1233 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1234 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1235 return;
9e8cd2f5 1236retry:
c9178087 1237 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1238 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1239 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1240 cpu = raw_smp_processor_id();
7fb98ea7 1241 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1242 } else {
1243 pwq = first_pwq(wq);
1244 }
dbf2576e 1245
c9178087
TH
1246 /*
1247 * If @work was previously on a different pool, it might still be
1248 * running there, in which case the work needs to be queued on that
1249 * pool to guarantee non-reentrancy.
1250 */
1251 last_pool = get_work_pool(work);
1252 if (last_pool && last_pool != pwq->pool) {
1253 struct worker *worker;
18aa9eff 1254
c9178087 1255 spin_lock(&last_pool->lock);
18aa9eff 1256
c9178087 1257 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1258
c9178087
TH
1259 if (worker && worker->current_pwq->wq == wq) {
1260 pwq = worker->current_pwq;
8930caba 1261 } else {
c9178087
TH
1262 /* meh... not running there, queue here */
1263 spin_unlock(&last_pool->lock);
112202d9 1264 spin_lock(&pwq->pool->lock);
8930caba 1265 }
f3421797 1266 } else {
112202d9 1267 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1268 }
1269
9e8cd2f5
TH
1270 /*
1271 * pwq is determined and locked. For unbound pools, we could have
1272 * raced with pwq release and it could already be dead. If its
1273 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1274 * without another pwq replacing it as the first pwq or while a
1275 * work item is executing on it, so the retying is guaranteed to
1276 * make forward-progress.
1277 */
1278 if (unlikely(!pwq->refcnt)) {
1279 if (wq->flags & WQ_UNBOUND) {
1280 spin_unlock(&pwq->pool->lock);
1281 cpu_relax();
1282 goto retry;
1283 }
1284 /* oops */
1285 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1286 wq->name, cpu);
1287 }
1288
112202d9
TH
1289 /* pwq determined, queue */
1290 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1291
f5b2552b 1292 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1293 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1294 return;
1295 }
1e19ffc6 1296
112202d9
TH
1297 pwq->nr_in_flight[pwq->work_color]++;
1298 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1299
112202d9 1300 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1301 trace_workqueue_activate_work(work);
112202d9
TH
1302 pwq->nr_active++;
1303 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1304 } else {
1305 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1306 worklist = &pwq->delayed_works;
8a2e8e5d 1307 }
1e19ffc6 1308
112202d9 1309 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1310
112202d9 1311 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1312}
1313
0fcb78c2 1314/**
c1a220e7
ZR
1315 * queue_work_on - queue work on specific cpu
1316 * @cpu: CPU number to execute work on
0fcb78c2
REB
1317 * @wq: workqueue to use
1318 * @work: work to queue
1319 *
d4283e93 1320 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1321 *
c1a220e7
ZR
1322 * We queue the work to a specific CPU, the caller must ensure it
1323 * can't go away.
1da177e4 1324 */
d4283e93
TH
1325bool queue_work_on(int cpu, struct workqueue_struct *wq,
1326 struct work_struct *work)
1da177e4 1327{
d4283e93 1328 bool ret = false;
8930caba 1329 unsigned long flags;
ef1ca236 1330
8930caba 1331 local_irq_save(flags);
c1a220e7 1332
22df02bb 1333 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1334 __queue_work(cpu, wq, work);
d4283e93 1335 ret = true;
c1a220e7 1336 }
ef1ca236 1337
8930caba 1338 local_irq_restore(flags);
1da177e4
LT
1339 return ret;
1340}
c1a220e7 1341EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1342
c1a220e7 1343/**
0a13c00e 1344 * queue_work - queue work on a workqueue
c1a220e7
ZR
1345 * @wq: workqueue to use
1346 * @work: work to queue
1347 *
d4283e93 1348 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1349 *
0a13c00e
TH
1350 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1351 * it can be processed by another CPU.
c1a220e7 1352 */
d4283e93 1353bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1354{
57469821 1355 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1356}
0a13c00e 1357EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1358
d8e794df 1359void delayed_work_timer_fn(unsigned long __data)
1da177e4 1360{
52bad64d 1361 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1362
e0aecdd8 1363 /* should have been called from irqsafe timer with irq already off */
60c057bc 1364 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1365}
1438ade5 1366EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1367
7beb2edf
TH
1368static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1369 struct delayed_work *dwork, unsigned long delay)
1da177e4 1370{
7beb2edf
TH
1371 struct timer_list *timer = &dwork->timer;
1372 struct work_struct *work = &dwork->work;
7beb2edf
TH
1373
1374 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1375 timer->data != (unsigned long)dwork);
fc4b514f
TH
1376 WARN_ON_ONCE(timer_pending(timer));
1377 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1378
8852aac2
TH
1379 /*
1380 * If @delay is 0, queue @dwork->work immediately. This is for
1381 * both optimization and correctness. The earliest @timer can
1382 * expire is on the closest next tick and delayed_work users depend
1383 * on that there's no such delay when @delay is 0.
1384 */
1385 if (!delay) {
1386 __queue_work(cpu, wq, &dwork->work);
1387 return;
1388 }
1389
7beb2edf 1390 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1391
60c057bc 1392 dwork->wq = wq;
1265057f 1393 dwork->cpu = cpu;
7beb2edf
TH
1394 timer->expires = jiffies + delay;
1395
1396 if (unlikely(cpu != WORK_CPU_UNBOUND))
1397 add_timer_on(timer, cpu);
1398 else
1399 add_timer(timer);
1da177e4
LT
1400}
1401
0fcb78c2
REB
1402/**
1403 * queue_delayed_work_on - queue work on specific CPU after delay
1404 * @cpu: CPU number to execute work on
1405 * @wq: workqueue to use
af9997e4 1406 * @dwork: work to queue
0fcb78c2
REB
1407 * @delay: number of jiffies to wait before queueing
1408 *
715f1300
TH
1409 * Returns %false if @work was already on a queue, %true otherwise. If
1410 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1411 * execution.
0fcb78c2 1412 */
d4283e93
TH
1413bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1415{
52bad64d 1416 struct work_struct *work = &dwork->work;
d4283e93 1417 bool ret = false;
8930caba 1418 unsigned long flags;
7a6bc1cd 1419
8930caba
TH
1420 /* read the comment in __queue_work() */
1421 local_irq_save(flags);
7a6bc1cd 1422
22df02bb 1423 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1424 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1425 ret = true;
7a6bc1cd 1426 }
8a3e77cc 1427
8930caba 1428 local_irq_restore(flags);
7a6bc1cd
VP
1429 return ret;
1430}
ae90dd5d 1431EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1432
0a13c00e
TH
1433/**
1434 * queue_delayed_work - queue work on a workqueue after delay
1435 * @wq: workqueue to use
1436 * @dwork: delayable work to queue
1437 * @delay: number of jiffies to wait before queueing
1438 *
715f1300 1439 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1440 */
d4283e93 1441bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1442 struct delayed_work *dwork, unsigned long delay)
1443{
57469821 1444 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1445}
1446EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1447
8376fe22
TH
1448/**
1449 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1450 * @cpu: CPU number to execute work on
1451 * @wq: workqueue to use
1452 * @dwork: work to queue
1453 * @delay: number of jiffies to wait before queueing
1454 *
1455 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1456 * modify @dwork's timer so that it expires after @delay. If @delay is
1457 * zero, @work is guaranteed to be scheduled immediately regardless of its
1458 * current state.
1459 *
1460 * Returns %false if @dwork was idle and queued, %true if @dwork was
1461 * pending and its timer was modified.
1462 *
e0aecdd8 1463 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1464 * See try_to_grab_pending() for details.
1465 */
1466bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1467 struct delayed_work *dwork, unsigned long delay)
1468{
1469 unsigned long flags;
1470 int ret;
c7fc77f7 1471
8376fe22
TH
1472 do {
1473 ret = try_to_grab_pending(&dwork->work, true, &flags);
1474 } while (unlikely(ret == -EAGAIN));
63bc0362 1475
8376fe22
TH
1476 if (likely(ret >= 0)) {
1477 __queue_delayed_work(cpu, wq, dwork, delay);
1478 local_irq_restore(flags);
7a6bc1cd 1479 }
8376fe22
TH
1480
1481 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1482 return ret;
1483}
8376fe22
TH
1484EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1485
1486/**
1487 * mod_delayed_work - modify delay of or queue a delayed work
1488 * @wq: workqueue to use
1489 * @dwork: work to queue
1490 * @delay: number of jiffies to wait before queueing
1491 *
1492 * mod_delayed_work_on() on local CPU.
1493 */
1494bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1495 unsigned long delay)
1496{
1497 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1498}
1499EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1500
c8e55f36
TH
1501/**
1502 * worker_enter_idle - enter idle state
1503 * @worker: worker which is entering idle state
1504 *
1505 * @worker is entering idle state. Update stats and idle timer if
1506 * necessary.
1507 *
1508 * LOCKING:
d565ed63 1509 * spin_lock_irq(pool->lock).
c8e55f36
TH
1510 */
1511static void worker_enter_idle(struct worker *worker)
1da177e4 1512{
bd7bdd43 1513 struct worker_pool *pool = worker->pool;
c8e55f36 1514
6183c009
TH
1515 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1516 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1517 (worker->hentry.next || worker->hentry.pprev)))
1518 return;
c8e55f36 1519
cb444766
TH
1520 /* can't use worker_set_flags(), also called from start_worker() */
1521 worker->flags |= WORKER_IDLE;
bd7bdd43 1522 pool->nr_idle++;
e22bee78 1523 worker->last_active = jiffies;
c8e55f36
TH
1524
1525 /* idle_list is LIFO */
bd7bdd43 1526 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1527
628c78e7
TH
1528 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1529 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1530
544ecf31 1531 /*
706026c2 1532 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1533 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1534 * nr_running, the warning may trigger spuriously. Check iff
1535 * unbind is not in progress.
544ecf31 1536 */
24647570 1537 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1538 pool->nr_workers == pool->nr_idle &&
e19e397a 1539 atomic_read(&pool->nr_running));
c8e55f36
TH
1540}
1541
1542/**
1543 * worker_leave_idle - leave idle state
1544 * @worker: worker which is leaving idle state
1545 *
1546 * @worker is leaving idle state. Update stats.
1547 *
1548 * LOCKING:
d565ed63 1549 * spin_lock_irq(pool->lock).
c8e55f36
TH
1550 */
1551static void worker_leave_idle(struct worker *worker)
1552{
bd7bdd43 1553 struct worker_pool *pool = worker->pool;
c8e55f36 1554
6183c009
TH
1555 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1556 return;
d302f017 1557 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1558 pool->nr_idle--;
c8e55f36
TH
1559 list_del_init(&worker->entry);
1560}
1561
e22bee78 1562/**
f36dc67b
LJ
1563 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1564 * @pool: target worker_pool
1565 *
1566 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1567 *
1568 * Works which are scheduled while the cpu is online must at least be
1569 * scheduled to a worker which is bound to the cpu so that if they are
1570 * flushed from cpu callbacks while cpu is going down, they are
1571 * guaranteed to execute on the cpu.
1572 *
f5faa077 1573 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1574 * themselves to the target cpu and may race with cpu going down or
1575 * coming online. kthread_bind() can't be used because it may put the
1576 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1577 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1578 * [dis]associated in the meantime.
1579 *
706026c2 1580 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1581 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1582 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1583 * enters idle state or fetches works without dropping lock, it can
1584 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1585 *
1586 * CONTEXT:
d565ed63 1587 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1588 * held.
1589 *
1590 * RETURNS:
706026c2 1591 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1592 * bound), %false if offline.
1593 */
f36dc67b 1594static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1595__acquires(&pool->lock)
e22bee78 1596{
e22bee78 1597 while (true) {
4e6045f1 1598 /*
e22bee78
TH
1599 * The following call may fail, succeed or succeed
1600 * without actually migrating the task to the cpu if
1601 * it races with cpu hotunplug operation. Verify
24647570 1602 * against POOL_DISASSOCIATED.
4e6045f1 1603 */
24647570 1604 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1605 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1606
d565ed63 1607 spin_lock_irq(&pool->lock);
24647570 1608 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1609 return false;
f5faa077 1610 if (task_cpu(current) == pool->cpu &&
7a4e344c 1611 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1612 return true;
d565ed63 1613 spin_unlock_irq(&pool->lock);
e22bee78 1614
5035b20f
TH
1615 /*
1616 * We've raced with CPU hot[un]plug. Give it a breather
1617 * and retry migration. cond_resched() is required here;
1618 * otherwise, we might deadlock against cpu_stop trying to
1619 * bring down the CPU on non-preemptive kernel.
1620 */
e22bee78 1621 cpu_relax();
5035b20f 1622 cond_resched();
e22bee78
TH
1623 }
1624}
1625
25511a47 1626/*
ea1abd61 1627 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1628 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1629 */
1630static void idle_worker_rebind(struct worker *worker)
1631{
5f7dabfd 1632 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1633 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1634 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1635
ea1abd61
LJ
1636 /* rebind complete, become available again */
1637 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1638 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1639}
1640
e22bee78 1641/*
25511a47 1642 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1643 * the associated cpu which is coming back online. This is scheduled by
1644 * cpu up but can race with other cpu hotplug operations and may be
1645 * executed twice without intervening cpu down.
e22bee78 1646 */
25511a47 1647static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1648{
1649 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1650
f36dc67b 1651 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1652 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1653
d565ed63 1654 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1655}
1656
25511a47 1657/**
94cf58bb
TH
1658 * rebind_workers - rebind all workers of a pool to the associated CPU
1659 * @pool: pool of interest
25511a47 1660 *
94cf58bb 1661 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1662 * is different for idle and busy ones.
1663 *
ea1abd61
LJ
1664 * Idle ones will be removed from the idle_list and woken up. They will
1665 * add themselves back after completing rebind. This ensures that the
1666 * idle_list doesn't contain any unbound workers when re-bound busy workers
1667 * try to perform local wake-ups for concurrency management.
25511a47 1668 *
ea1abd61
LJ
1669 * Busy workers can rebind after they finish their current work items.
1670 * Queueing the rebind work item at the head of the scheduled list is
1671 * enough. Note that nr_running will be properly bumped as busy workers
1672 * rebind.
25511a47 1673 *
ea1abd61
LJ
1674 * On return, all non-manager workers are scheduled for rebind - see
1675 * manage_workers() for the manager special case. Any idle worker
1676 * including the manager will not appear on @idle_list until rebind is
1677 * complete, making local wake-ups safe.
25511a47 1678 */
94cf58bb 1679static void rebind_workers(struct worker_pool *pool)
25511a47 1680{
ea1abd61 1681 struct worker *worker, *n;
25511a47
TH
1682 int i;
1683
94cf58bb
TH
1684 lockdep_assert_held(&pool->assoc_mutex);
1685 lockdep_assert_held(&pool->lock);
25511a47 1686
5f7dabfd 1687 /* dequeue and kick idle ones */
94cf58bb
TH
1688 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1689 /*
1690 * idle workers should be off @pool->idle_list until rebind
1691 * is complete to avoid receiving premature local wake-ups.
1692 */
1693 list_del_init(&worker->entry);
25511a47 1694
94cf58bb
TH
1695 /*
1696 * worker_thread() will see the above dequeuing and call
1697 * idle_worker_rebind().
1698 */
1699 wake_up_process(worker->task);
1700 }
25511a47 1701
94cf58bb 1702 /* rebind busy workers */
b67bfe0d 1703 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1704 struct work_struct *rebind_work = &worker->rebind_work;
1705 struct workqueue_struct *wq;
25511a47 1706
94cf58bb
TH
1707 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1708 work_data_bits(rebind_work)))
1709 continue;
25511a47 1710
94cf58bb 1711 debug_work_activate(rebind_work);
90beca5d 1712
94cf58bb
TH
1713 /*
1714 * wq doesn't really matter but let's keep @worker->pool
112202d9 1715 * and @pwq->pool consistent for sanity.
94cf58bb 1716 */
7a4e344c 1717 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1718 wq = system_highpri_wq;
1719 else
1720 wq = system_wq;
1721
7fb98ea7 1722 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1723 worker->scheduled.next,
1724 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1725 }
25511a47
TH
1726}
1727
c34056a3
TH
1728static struct worker *alloc_worker(void)
1729{
1730 struct worker *worker;
1731
1732 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1733 if (worker) {
1734 INIT_LIST_HEAD(&worker->entry);
affee4b2 1735 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1736 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1737 /* on creation a worker is in !idle && prep state */
1738 worker->flags = WORKER_PREP;
c8e55f36 1739 }
c34056a3
TH
1740 return worker;
1741}
1742
1743/**
1744 * create_worker - create a new workqueue worker
63d95a91 1745 * @pool: pool the new worker will belong to
c34056a3 1746 *
63d95a91 1747 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1748 * can be started by calling start_worker() or destroyed using
1749 * destroy_worker().
1750 *
1751 * CONTEXT:
1752 * Might sleep. Does GFP_KERNEL allocations.
1753 *
1754 * RETURNS:
1755 * Pointer to the newly created worker.
1756 */
bc2ae0f5 1757static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1758{
7a4e344c 1759 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1760 struct worker *worker = NULL;
f3421797 1761 int id = -1;
c34056a3 1762
d565ed63 1763 spin_lock_irq(&pool->lock);
bd7bdd43 1764 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1765 spin_unlock_irq(&pool->lock);
bd7bdd43 1766 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1767 goto fail;
d565ed63 1768 spin_lock_irq(&pool->lock);
c34056a3 1769 }
d565ed63 1770 spin_unlock_irq(&pool->lock);
c34056a3
TH
1771
1772 worker = alloc_worker();
1773 if (!worker)
1774 goto fail;
1775
bd7bdd43 1776 worker->pool = pool;
c34056a3
TH
1777 worker->id = id;
1778
29c91e99 1779 if (pool->cpu >= 0)
94dcf29a 1780 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1781 worker, cpu_to_node(pool->cpu),
d84ff051 1782 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1783 else
1784 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1785 "kworker/u%d:%d%s",
1786 pool->id, id, pri);
c34056a3
TH
1787 if (IS_ERR(worker->task))
1788 goto fail;
1789
c5aa87bb
TH
1790 /*
1791 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1792 * online CPUs. It'll be re-applied when any of the CPUs come up.
1793 */
7a4e344c
TH
1794 set_user_nice(worker->task, pool->attrs->nice);
1795 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1796
db7bccf4 1797 /*
7a4e344c
TH
1798 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1799 * cpumask of workqueue workers. This is an abuse. We need
1800 * %PF_NO_SETAFFINITY.
db7bccf4 1801 */
7a4e344c
TH
1802 worker->task->flags |= PF_THREAD_BOUND;
1803
1804 /*
1805 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1806 * remains stable across this function. See the comments above the
1807 * flag definition for details.
1808 */
1809 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1810 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1811
1812 return worker;
1813fail:
1814 if (id >= 0) {
d565ed63 1815 spin_lock_irq(&pool->lock);
bd7bdd43 1816 ida_remove(&pool->worker_ida, id);
d565ed63 1817 spin_unlock_irq(&pool->lock);
c34056a3
TH
1818 }
1819 kfree(worker);
1820 return NULL;
1821}
1822
1823/**
1824 * start_worker - start a newly created worker
1825 * @worker: worker to start
1826 *
706026c2 1827 * Make the pool aware of @worker and start it.
c34056a3
TH
1828 *
1829 * CONTEXT:
d565ed63 1830 * spin_lock_irq(pool->lock).
c34056a3
TH
1831 */
1832static void start_worker(struct worker *worker)
1833{
cb444766 1834 worker->flags |= WORKER_STARTED;
bd7bdd43 1835 worker->pool->nr_workers++;
c8e55f36 1836 worker_enter_idle(worker);
c34056a3
TH
1837 wake_up_process(worker->task);
1838}
1839
1840/**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
706026c2 1844 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1845 *
1846 * CONTEXT:
d565ed63 1847 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1848 */
1849static void destroy_worker(struct worker *worker)
1850{
bd7bdd43 1851 struct worker_pool *pool = worker->pool;
c34056a3
TH
1852 int id = worker->id;
1853
1854 /* sanity check frenzy */
6183c009
TH
1855 if (WARN_ON(worker->current_work) ||
1856 WARN_ON(!list_empty(&worker->scheduled)))
1857 return;
c34056a3 1858
c8e55f36 1859 if (worker->flags & WORKER_STARTED)
bd7bdd43 1860 pool->nr_workers--;
c8e55f36 1861 if (worker->flags & WORKER_IDLE)
bd7bdd43 1862 pool->nr_idle--;
c8e55f36
TH
1863
1864 list_del_init(&worker->entry);
cb444766 1865 worker->flags |= WORKER_DIE;
c8e55f36 1866
d565ed63 1867 spin_unlock_irq(&pool->lock);
c8e55f36 1868
c34056a3
TH
1869 kthread_stop(worker->task);
1870 kfree(worker);
1871
d565ed63 1872 spin_lock_irq(&pool->lock);
bd7bdd43 1873 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1874}
1875
63d95a91 1876static void idle_worker_timeout(unsigned long __pool)
e22bee78 1877{
63d95a91 1878 struct worker_pool *pool = (void *)__pool;
e22bee78 1879
d565ed63 1880 spin_lock_irq(&pool->lock);
e22bee78 1881
63d95a91 1882 if (too_many_workers(pool)) {
e22bee78
TH
1883 struct worker *worker;
1884 unsigned long expires;
1885
1886 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1887 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1888 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1889
1890 if (time_before(jiffies, expires))
63d95a91 1891 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1892 else {
1893 /* it's been idle for too long, wake up manager */
11ebea50 1894 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1895 wake_up_worker(pool);
d5abe669 1896 }
e22bee78
TH
1897 }
1898
d565ed63 1899 spin_unlock_irq(&pool->lock);
e22bee78 1900}
d5abe669 1901
493a1724 1902static void send_mayday(struct work_struct *work)
e22bee78 1903{
112202d9
TH
1904 struct pool_workqueue *pwq = get_work_pwq(work);
1905 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1906
1907 lockdep_assert_held(&workqueue_lock);
e22bee78 1908
493008a8 1909 if (!wq->rescuer)
493a1724 1910 return;
e22bee78
TH
1911
1912 /* mayday mayday mayday */
493a1724
TH
1913 if (list_empty(&pwq->mayday_node)) {
1914 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1915 wake_up_process(wq->rescuer->task);
493a1724 1916 }
e22bee78
TH
1917}
1918
706026c2 1919static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1920{
63d95a91 1921 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1922 struct work_struct *work;
1923
493a1724
TH
1924 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1925 spin_lock(&pool->lock);
e22bee78 1926
63d95a91 1927 if (need_to_create_worker(pool)) {
e22bee78
TH
1928 /*
1929 * We've been trying to create a new worker but
1930 * haven't been successful. We might be hitting an
1931 * allocation deadlock. Send distress signals to
1932 * rescuers.
1933 */
63d95a91 1934 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1935 send_mayday(work);
1da177e4 1936 }
e22bee78 1937
493a1724
TH
1938 spin_unlock(&pool->lock);
1939 spin_unlock_irq(&workqueue_lock);
e22bee78 1940
63d95a91 1941 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1942}
1943
e22bee78
TH
1944/**
1945 * maybe_create_worker - create a new worker if necessary
63d95a91 1946 * @pool: pool to create a new worker for
e22bee78 1947 *
63d95a91 1948 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1949 * have at least one idle worker on return from this function. If
1950 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1951 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1952 * possible allocation deadlock.
1953 *
c5aa87bb
TH
1954 * On return, need_to_create_worker() is guaranteed to be %false and
1955 * may_start_working() %true.
e22bee78
TH
1956 *
1957 * LOCKING:
d565ed63 1958 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1959 * multiple times. Does GFP_KERNEL allocations. Called only from
1960 * manager.
1961 *
1962 * RETURNS:
c5aa87bb 1963 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1964 * otherwise.
1965 */
63d95a91 1966static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1967__releases(&pool->lock)
1968__acquires(&pool->lock)
1da177e4 1969{
63d95a91 1970 if (!need_to_create_worker(pool))
e22bee78
TH
1971 return false;
1972restart:
d565ed63 1973 spin_unlock_irq(&pool->lock);
9f9c2364 1974
e22bee78 1975 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1976 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1977
1978 while (true) {
1979 struct worker *worker;
1980
bc2ae0f5 1981 worker = create_worker(pool);
e22bee78 1982 if (worker) {
63d95a91 1983 del_timer_sync(&pool->mayday_timer);
d565ed63 1984 spin_lock_irq(&pool->lock);
e22bee78 1985 start_worker(worker);
6183c009
TH
1986 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1987 goto restart;
e22bee78
TH
1988 return true;
1989 }
1990
63d95a91 1991 if (!need_to_create_worker(pool))
e22bee78 1992 break;
1da177e4 1993
e22bee78
TH
1994 __set_current_state(TASK_INTERRUPTIBLE);
1995 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1996
63d95a91 1997 if (!need_to_create_worker(pool))
e22bee78
TH
1998 break;
1999 }
2000
63d95a91 2001 del_timer_sync(&pool->mayday_timer);
d565ed63 2002 spin_lock_irq(&pool->lock);
63d95a91 2003 if (need_to_create_worker(pool))
e22bee78
TH
2004 goto restart;
2005 return true;
2006}
2007
2008/**
2009 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2010 * @pool: pool to destroy workers for
e22bee78 2011 *
63d95a91 2012 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2013 * IDLE_WORKER_TIMEOUT.
2014 *
2015 * LOCKING:
d565ed63 2016 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2017 * multiple times. Called only from manager.
2018 *
2019 * RETURNS:
c5aa87bb 2020 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2021 * otherwise.
2022 */
63d95a91 2023static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2024{
2025 bool ret = false;
1da177e4 2026
63d95a91 2027 while (too_many_workers(pool)) {
e22bee78
TH
2028 struct worker *worker;
2029 unsigned long expires;
3af24433 2030
63d95a91 2031 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2032 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2033
e22bee78 2034 if (time_before(jiffies, expires)) {
63d95a91 2035 mod_timer(&pool->idle_timer, expires);
3af24433 2036 break;
e22bee78 2037 }
1da177e4 2038
e22bee78
TH
2039 destroy_worker(worker);
2040 ret = true;
1da177e4 2041 }
1e19ffc6 2042
e22bee78 2043 return ret;
1e19ffc6
TH
2044}
2045
73f53c4a 2046/**
e22bee78
TH
2047 * manage_workers - manage worker pool
2048 * @worker: self
73f53c4a 2049 *
706026c2 2050 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2051 * to. At any given time, there can be only zero or one manager per
706026c2 2052 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2053 *
2054 * The caller can safely start processing works on false return. On
2055 * true return, it's guaranteed that need_to_create_worker() is false
2056 * and may_start_working() is true.
73f53c4a
TH
2057 *
2058 * CONTEXT:
d565ed63 2059 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2060 * multiple times. Does GFP_KERNEL allocations.
2061 *
2062 * RETURNS:
d565ed63
TH
2063 * spin_lock_irq(pool->lock) which may be released and regrabbed
2064 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2065 */
e22bee78 2066static bool manage_workers(struct worker *worker)
73f53c4a 2067{
63d95a91 2068 struct worker_pool *pool = worker->pool;
e22bee78 2069 bool ret = false;
73f53c4a 2070
34a06bd6 2071 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2072 return ret;
1e19ffc6 2073
ee378aa4
LJ
2074 /*
2075 * To simplify both worker management and CPU hotplug, hold off
2076 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2077 * grab @pool->manager_arb to achieve this because that can lead to
2078 * idle worker depletion (all become busy thinking someone else is
2079 * managing) which in turn can result in deadlock under extreme
2080 * circumstances. Use @pool->assoc_mutex to synchronize manager
2081 * against CPU hotplug.
ee378aa4 2082 *
b2eb83d1 2083 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2084 * progress. trylock first without dropping @pool->lock.
ee378aa4 2085 */
b2eb83d1 2086 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2087 spin_unlock_irq(&pool->lock);
b2eb83d1 2088 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2089 /*
2090 * CPU hotplug could have happened while we were waiting
b2eb83d1 2091 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2092 * because manager isn't either on idle or busy list, and
706026c2 2093 * @pool's state and ours could have deviated.
ee378aa4 2094 *
b2eb83d1 2095 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2096 * simply try to bind. It will succeed or fail depending
706026c2 2097 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2098 * %WORKER_UNBOUND accordingly.
2099 */
f36dc67b 2100 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2101 worker->flags &= ~WORKER_UNBOUND;
2102 else
2103 worker->flags |= WORKER_UNBOUND;
73f53c4a 2104
ee378aa4
LJ
2105 ret = true;
2106 }
73f53c4a 2107
11ebea50 2108 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2109
2110 /*
e22bee78
TH
2111 * Destroy and then create so that may_start_working() is true
2112 * on return.
73f53c4a 2113 */
63d95a91
TH
2114 ret |= maybe_destroy_workers(pool);
2115 ret |= maybe_create_worker(pool);
e22bee78 2116
b2eb83d1 2117 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2118 mutex_unlock(&pool->manager_arb);
e22bee78 2119 return ret;
73f53c4a
TH
2120}
2121
a62428c0
TH
2122/**
2123 * process_one_work - process single work
c34056a3 2124 * @worker: self
a62428c0
TH
2125 * @work: work to process
2126 *
2127 * Process @work. This function contains all the logics necessary to
2128 * process a single work including synchronization against and
2129 * interaction with other workers on the same cpu, queueing and
2130 * flushing. As long as context requirement is met, any worker can
2131 * call this function to process a work.
2132 *
2133 * CONTEXT:
d565ed63 2134 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2135 */
c34056a3 2136static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2137__releases(&pool->lock)
2138__acquires(&pool->lock)
a62428c0 2139{
112202d9 2140 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2141 struct worker_pool *pool = worker->pool;
112202d9 2142 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2143 int work_color;
7e11629d 2144 struct worker *collision;
a62428c0
TH
2145#ifdef CONFIG_LOCKDEP
2146 /*
2147 * It is permissible to free the struct work_struct from
2148 * inside the function that is called from it, this we need to
2149 * take into account for lockdep too. To avoid bogus "held
2150 * lock freed" warnings as well as problems when looking into
2151 * work->lockdep_map, make a copy and use that here.
2152 */
4d82a1de
PZ
2153 struct lockdep_map lockdep_map;
2154
2155 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2156#endif
6fec10a1
TH
2157 /*
2158 * Ensure we're on the correct CPU. DISASSOCIATED test is
2159 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2160 * unbound or a disassociated pool.
6fec10a1 2161 */
5f7dabfd 2162 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2163 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2164 raw_smp_processor_id() != pool->cpu);
25511a47 2165
7e11629d
TH
2166 /*
2167 * A single work shouldn't be executed concurrently by
2168 * multiple workers on a single cpu. Check whether anyone is
2169 * already processing the work. If so, defer the work to the
2170 * currently executing one.
2171 */
c9e7cf27 2172 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2173 if (unlikely(collision)) {
2174 move_linked_works(work, &collision->scheduled, NULL);
2175 return;
2176 }
2177
8930caba 2178 /* claim and dequeue */
a62428c0 2179 debug_work_deactivate(work);
c9e7cf27 2180 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2181 worker->current_work = work;
a2c1c57b 2182 worker->current_func = work->func;
112202d9 2183 worker->current_pwq = pwq;
73f53c4a 2184 work_color = get_work_color(work);
7a22ad75 2185
a62428c0
TH
2186 list_del_init(&work->entry);
2187
fb0e7beb
TH
2188 /*
2189 * CPU intensive works don't participate in concurrency
2190 * management. They're the scheduler's responsibility.
2191 */
2192 if (unlikely(cpu_intensive))
2193 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2194
974271c4 2195 /*
d565ed63 2196 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2197 * executed ASAP. Wake up another worker if necessary.
2198 */
63d95a91
TH
2199 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2200 wake_up_worker(pool);
974271c4 2201
8930caba 2202 /*
7c3eed5c 2203 * Record the last pool and clear PENDING which should be the last
d565ed63 2204 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2205 * PENDING and queued state changes happen together while IRQ is
2206 * disabled.
8930caba 2207 */
7c3eed5c 2208 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2209
d565ed63 2210 spin_unlock_irq(&pool->lock);
a62428c0 2211
112202d9 2212 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2213 lock_map_acquire(&lockdep_map);
e36c886a 2214 trace_workqueue_execute_start(work);
a2c1c57b 2215 worker->current_func(work);
e36c886a
AV
2216 /*
2217 * While we must be careful to not use "work" after this, the trace
2218 * point will only record its address.
2219 */
2220 trace_workqueue_execute_end(work);
a62428c0 2221 lock_map_release(&lockdep_map);
112202d9 2222 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2223
2224 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2225 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2226 " last function: %pf\n",
a2c1c57b
TH
2227 current->comm, preempt_count(), task_pid_nr(current),
2228 worker->current_func);
a62428c0
TH
2229 debug_show_held_locks(current);
2230 dump_stack();
2231 }
2232
d565ed63 2233 spin_lock_irq(&pool->lock);
a62428c0 2234
fb0e7beb
TH
2235 /* clear cpu intensive status */
2236 if (unlikely(cpu_intensive))
2237 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2238
a62428c0 2239 /* we're done with it, release */
42f8570f 2240 hash_del(&worker->hentry);
c34056a3 2241 worker->current_work = NULL;
a2c1c57b 2242 worker->current_func = NULL;
112202d9
TH
2243 worker->current_pwq = NULL;
2244 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2245}
2246
affee4b2
TH
2247/**
2248 * process_scheduled_works - process scheduled works
2249 * @worker: self
2250 *
2251 * Process all scheduled works. Please note that the scheduled list
2252 * may change while processing a work, so this function repeatedly
2253 * fetches a work from the top and executes it.
2254 *
2255 * CONTEXT:
d565ed63 2256 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2257 * multiple times.
2258 */
2259static void process_scheduled_works(struct worker *worker)
1da177e4 2260{
affee4b2
TH
2261 while (!list_empty(&worker->scheduled)) {
2262 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2263 struct work_struct, entry);
c34056a3 2264 process_one_work(worker, work);
1da177e4 2265 }
1da177e4
LT
2266}
2267
4690c4ab
TH
2268/**
2269 * worker_thread - the worker thread function
c34056a3 2270 * @__worker: self
4690c4ab 2271 *
c5aa87bb
TH
2272 * The worker thread function. All workers belong to a worker_pool -
2273 * either a per-cpu one or dynamic unbound one. These workers process all
2274 * work items regardless of their specific target workqueue. The only
2275 * exception is work items which belong to workqueues with a rescuer which
2276 * will be explained in rescuer_thread().
4690c4ab 2277 */
c34056a3 2278static int worker_thread(void *__worker)
1da177e4 2279{
c34056a3 2280 struct worker *worker = __worker;
bd7bdd43 2281 struct worker_pool *pool = worker->pool;
1da177e4 2282
e22bee78
TH
2283 /* tell the scheduler that this is a workqueue worker */
2284 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2285woke_up:
d565ed63 2286 spin_lock_irq(&pool->lock);
1da177e4 2287
5f7dabfd
LJ
2288 /* we are off idle list if destruction or rebind is requested */
2289 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2290 spin_unlock_irq(&pool->lock);
25511a47 2291
5f7dabfd 2292 /* if DIE is set, destruction is requested */
25511a47
TH
2293 if (worker->flags & WORKER_DIE) {
2294 worker->task->flags &= ~PF_WQ_WORKER;
2295 return 0;
2296 }
2297
5f7dabfd 2298 /* otherwise, rebind */
25511a47
TH
2299 idle_worker_rebind(worker);
2300 goto woke_up;
c8e55f36 2301 }
affee4b2 2302
c8e55f36 2303 worker_leave_idle(worker);
db7bccf4 2304recheck:
e22bee78 2305 /* no more worker necessary? */
63d95a91 2306 if (!need_more_worker(pool))
e22bee78
TH
2307 goto sleep;
2308
2309 /* do we need to manage? */
63d95a91 2310 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2311 goto recheck;
2312
c8e55f36
TH
2313 /*
2314 * ->scheduled list can only be filled while a worker is
2315 * preparing to process a work or actually processing it.
2316 * Make sure nobody diddled with it while I was sleeping.
2317 */
6183c009 2318 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2319
e22bee78
TH
2320 /*
2321 * When control reaches this point, we're guaranteed to have
2322 * at least one idle worker or that someone else has already
2323 * assumed the manager role.
2324 */
2325 worker_clr_flags(worker, WORKER_PREP);
2326
2327 do {
c8e55f36 2328 struct work_struct *work =
bd7bdd43 2329 list_first_entry(&pool->worklist,
c8e55f36
TH
2330 struct work_struct, entry);
2331
2332 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2333 /* optimization path, not strictly necessary */
2334 process_one_work(worker, work);
2335 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2336 process_scheduled_works(worker);
c8e55f36
TH
2337 } else {
2338 move_linked_works(work, &worker->scheduled, NULL);
2339 process_scheduled_works(worker);
affee4b2 2340 }
63d95a91 2341 } while (keep_working(pool));
e22bee78
TH
2342
2343 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2344sleep:
63d95a91 2345 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2346 goto recheck;
d313dd85 2347
c8e55f36 2348 /*
d565ed63
TH
2349 * pool->lock is held and there's no work to process and no need to
2350 * manage, sleep. Workers are woken up only while holding
2351 * pool->lock or from local cpu, so setting the current state
2352 * before releasing pool->lock is enough to prevent losing any
2353 * event.
c8e55f36
TH
2354 */
2355 worker_enter_idle(worker);
2356 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2357 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2358 schedule();
2359 goto woke_up;
1da177e4
LT
2360}
2361
e22bee78
TH
2362/**
2363 * rescuer_thread - the rescuer thread function
111c225a 2364 * @__rescuer: self
e22bee78
TH
2365 *
2366 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2367 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2368 *
706026c2 2369 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2370 * worker which uses GFP_KERNEL allocation which has slight chance of
2371 * developing into deadlock if some works currently on the same queue
2372 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2373 * the problem rescuer solves.
2374 *
706026c2
TH
2375 * When such condition is possible, the pool summons rescuers of all
2376 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2377 * those works so that forward progress can be guaranteed.
2378 *
2379 * This should happen rarely.
2380 */
111c225a 2381static int rescuer_thread(void *__rescuer)
e22bee78 2382{
111c225a
TH
2383 struct worker *rescuer = __rescuer;
2384 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2385 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2386
2387 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2388
2389 /*
2390 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2391 * doesn't participate in concurrency management.
2392 */
2393 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2394repeat:
2395 set_current_state(TASK_INTERRUPTIBLE);
2396
412d32e6
MG
2397 if (kthread_should_stop()) {
2398 __set_current_state(TASK_RUNNING);
111c225a 2399 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2400 return 0;
412d32e6 2401 }
e22bee78 2402
493a1724
TH
2403 /* see whether any pwq is asking for help */
2404 spin_lock_irq(&workqueue_lock);
2405
2406 while (!list_empty(&wq->maydays)) {
2407 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2408 struct pool_workqueue, mayday_node);
112202d9 2409 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2410 struct work_struct *work, *n;
2411
2412 __set_current_state(TASK_RUNNING);
493a1724
TH
2413 list_del_init(&pwq->mayday_node);
2414
2415 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2416
2417 /* migrate to the target cpu if possible */
f36dc67b 2418 worker_maybe_bind_and_lock(pool);
b3104104 2419 rescuer->pool = pool;
e22bee78
TH
2420
2421 /*
2422 * Slurp in all works issued via this workqueue and
2423 * process'em.
2424 */
6183c009 2425 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2426 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2427 if (get_work_pwq(work) == pwq)
e22bee78
TH
2428 move_linked_works(work, scheduled, &n);
2429
2430 process_scheduled_works(rescuer);
7576958a
TH
2431
2432 /*
d565ed63 2433 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2434 * regular worker; otherwise, we end up with 0 concurrency
2435 * and stalling the execution.
2436 */
63d95a91
TH
2437 if (keep_working(pool))
2438 wake_up_worker(pool);
7576958a 2439
b3104104 2440 rescuer->pool = NULL;
493a1724
TH
2441 spin_unlock(&pool->lock);
2442 spin_lock(&workqueue_lock);
e22bee78
TH
2443 }
2444
493a1724
TH
2445 spin_unlock_irq(&workqueue_lock);
2446
111c225a
TH
2447 /* rescuers should never participate in concurrency management */
2448 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2449 schedule();
2450 goto repeat;
1da177e4
LT
2451}
2452
fc2e4d70
ON
2453struct wq_barrier {
2454 struct work_struct work;
2455 struct completion done;
2456};
2457
2458static void wq_barrier_func(struct work_struct *work)
2459{
2460 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2461 complete(&barr->done);
2462}
2463
4690c4ab
TH
2464/**
2465 * insert_wq_barrier - insert a barrier work
112202d9 2466 * @pwq: pwq to insert barrier into
4690c4ab 2467 * @barr: wq_barrier to insert
affee4b2
TH
2468 * @target: target work to attach @barr to
2469 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2470 *
affee4b2
TH
2471 * @barr is linked to @target such that @barr is completed only after
2472 * @target finishes execution. Please note that the ordering
2473 * guarantee is observed only with respect to @target and on the local
2474 * cpu.
2475 *
2476 * Currently, a queued barrier can't be canceled. This is because
2477 * try_to_grab_pending() can't determine whether the work to be
2478 * grabbed is at the head of the queue and thus can't clear LINKED
2479 * flag of the previous work while there must be a valid next work
2480 * after a work with LINKED flag set.
2481 *
2482 * Note that when @worker is non-NULL, @target may be modified
112202d9 2483 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2484 *
2485 * CONTEXT:
d565ed63 2486 * spin_lock_irq(pool->lock).
4690c4ab 2487 */
112202d9 2488static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2489 struct wq_barrier *barr,
2490 struct work_struct *target, struct worker *worker)
fc2e4d70 2491{
affee4b2
TH
2492 struct list_head *head;
2493 unsigned int linked = 0;
2494
dc186ad7 2495 /*
d565ed63 2496 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2497 * as we know for sure that this will not trigger any of the
2498 * checks and call back into the fixup functions where we
2499 * might deadlock.
2500 */
ca1cab37 2501 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2502 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2503 init_completion(&barr->done);
83c22520 2504
affee4b2
TH
2505 /*
2506 * If @target is currently being executed, schedule the
2507 * barrier to the worker; otherwise, put it after @target.
2508 */
2509 if (worker)
2510 head = worker->scheduled.next;
2511 else {
2512 unsigned long *bits = work_data_bits(target);
2513
2514 head = target->entry.next;
2515 /* there can already be other linked works, inherit and set */
2516 linked = *bits & WORK_STRUCT_LINKED;
2517 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518 }
2519
dc186ad7 2520 debug_work_activate(&barr->work);
112202d9 2521 insert_work(pwq, &barr->work, head,
affee4b2 2522 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2523}
2524
73f53c4a 2525/**
112202d9 2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
112202d9 2531 * Prepare pwqs for workqueue flushing.
73f53c4a 2532 *
112202d9
TH
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1. If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color. If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
112202d9 2545 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
2550 * mutex_lock(wq->flush_mutex).
2551 *
2552 * RETURNS:
2553 * %true if @flush_color >= 0 and there's something to flush. %false
2554 * otherwise.
2555 */
112202d9 2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2557 int flush_color, int work_color)
1da177e4 2558{
73f53c4a 2559 bool wait = false;
49e3cf44 2560 struct pool_workqueue *pwq;
1da177e4 2561
73f53c4a 2562 if (flush_color >= 0) {
6183c009 2563 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2564 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2565 }
2355b70f 2566
76af4d93
TH
2567 local_irq_disable();
2568
49e3cf44 2569 for_each_pwq(pwq, wq) {
112202d9 2570 struct worker_pool *pool = pwq->pool;
fc2e4d70 2571
76af4d93 2572 spin_lock(&pool->lock);
83c22520 2573
73f53c4a 2574 if (flush_color >= 0) {
6183c009 2575 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2576
112202d9
TH
2577 if (pwq->nr_in_flight[flush_color]) {
2578 pwq->flush_color = flush_color;
2579 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2580 wait = true;
2581 }
2582 }
1da177e4 2583
73f53c4a 2584 if (work_color >= 0) {
6183c009 2585 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2586 pwq->work_color = work_color;
73f53c4a 2587 }
1da177e4 2588
76af4d93 2589 spin_unlock(&pool->lock);
1da177e4 2590 }
2355b70f 2591
76af4d93
TH
2592 local_irq_enable();
2593
112202d9 2594 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2595 complete(&wq->first_flusher->done);
14441960 2596
73f53c4a 2597 return wait;
1da177e4
LT
2598}
2599
0fcb78c2 2600/**
1da177e4 2601 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2602 * @wq: workqueue to flush
1da177e4 2603 *
c5aa87bb
TH
2604 * This function sleeps until all work items which were queued on entry
2605 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2606 */
7ad5b3a5 2607void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2608{
73f53c4a
TH
2609 struct wq_flusher this_flusher = {
2610 .list = LIST_HEAD_INIT(this_flusher.list),
2611 .flush_color = -1,
2612 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2613 };
2614 int next_color;
1da177e4 2615
3295f0ef
IM
2616 lock_map_acquire(&wq->lockdep_map);
2617 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2618
2619 mutex_lock(&wq->flush_mutex);
2620
2621 /*
2622 * Start-to-wait phase
2623 */
2624 next_color = work_next_color(wq->work_color);
2625
2626 if (next_color != wq->flush_color) {
2627 /*
2628 * Color space is not full. The current work_color
2629 * becomes our flush_color and work_color is advanced
2630 * by one.
2631 */
6183c009 2632 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2633 this_flusher.flush_color = wq->work_color;
2634 wq->work_color = next_color;
2635
2636 if (!wq->first_flusher) {
2637 /* no flush in progress, become the first flusher */
6183c009 2638 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2639
2640 wq->first_flusher = &this_flusher;
2641
112202d9 2642 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2643 wq->work_color)) {
2644 /* nothing to flush, done */
2645 wq->flush_color = next_color;
2646 wq->first_flusher = NULL;
2647 goto out_unlock;
2648 }
2649 } else {
2650 /* wait in queue */
6183c009 2651 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2652 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2653 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2654 }
2655 } else {
2656 /*
2657 * Oops, color space is full, wait on overflow queue.
2658 * The next flush completion will assign us
2659 * flush_color and transfer to flusher_queue.
2660 */
2661 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2662 }
2663
2664 mutex_unlock(&wq->flush_mutex);
2665
2666 wait_for_completion(&this_flusher.done);
2667
2668 /*
2669 * Wake-up-and-cascade phase
2670 *
2671 * First flushers are responsible for cascading flushes and
2672 * handling overflow. Non-first flushers can simply return.
2673 */
2674 if (wq->first_flusher != &this_flusher)
2675 return;
2676
2677 mutex_lock(&wq->flush_mutex);
2678
4ce48b37
TH
2679 /* we might have raced, check again with mutex held */
2680 if (wq->first_flusher != &this_flusher)
2681 goto out_unlock;
2682
73f53c4a
TH
2683 wq->first_flusher = NULL;
2684
6183c009
TH
2685 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2686 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2687
2688 while (true) {
2689 struct wq_flusher *next, *tmp;
2690
2691 /* complete all the flushers sharing the current flush color */
2692 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2693 if (next->flush_color != wq->flush_color)
2694 break;
2695 list_del_init(&next->list);
2696 complete(&next->done);
2697 }
2698
6183c009
TH
2699 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2700 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2701
2702 /* this flush_color is finished, advance by one */
2703 wq->flush_color = work_next_color(wq->flush_color);
2704
2705 /* one color has been freed, handle overflow queue */
2706 if (!list_empty(&wq->flusher_overflow)) {
2707 /*
2708 * Assign the same color to all overflowed
2709 * flushers, advance work_color and append to
2710 * flusher_queue. This is the start-to-wait
2711 * phase for these overflowed flushers.
2712 */
2713 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2714 tmp->flush_color = wq->work_color;
2715
2716 wq->work_color = work_next_color(wq->work_color);
2717
2718 list_splice_tail_init(&wq->flusher_overflow,
2719 &wq->flusher_queue);
112202d9 2720 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2721 }
2722
2723 if (list_empty(&wq->flusher_queue)) {
6183c009 2724 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2725 break;
2726 }
2727
2728 /*
2729 * Need to flush more colors. Make the next flusher
112202d9 2730 * the new first flusher and arm pwqs.
73f53c4a 2731 */
6183c009
TH
2732 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2733 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2734
2735 list_del_init(&next->list);
2736 wq->first_flusher = next;
2737
112202d9 2738 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2739 break;
2740
2741 /*
2742 * Meh... this color is already done, clear first
2743 * flusher and repeat cascading.
2744 */
2745 wq->first_flusher = NULL;
2746 }
2747
2748out_unlock:
2749 mutex_unlock(&wq->flush_mutex);
1da177e4 2750}
ae90dd5d 2751EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2752
9c5a2ba7
TH
2753/**
2754 * drain_workqueue - drain a workqueue
2755 * @wq: workqueue to drain
2756 *
2757 * Wait until the workqueue becomes empty. While draining is in progress,
2758 * only chain queueing is allowed. IOW, only currently pending or running
2759 * work items on @wq can queue further work items on it. @wq is flushed
2760 * repeatedly until it becomes empty. The number of flushing is detemined
2761 * by the depth of chaining and should be relatively short. Whine if it
2762 * takes too long.
2763 */
2764void drain_workqueue(struct workqueue_struct *wq)
2765{
2766 unsigned int flush_cnt = 0;
49e3cf44 2767 struct pool_workqueue *pwq;
9c5a2ba7
TH
2768
2769 /*
2770 * __queue_work() needs to test whether there are drainers, is much
2771 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2772 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2773 */
e98d5b16 2774 spin_lock_irq(&workqueue_lock);
9c5a2ba7 2775 if (!wq->nr_drainers++)
618b01eb 2776 wq->flags |= __WQ_DRAINING;
e98d5b16 2777 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2778reflush:
2779 flush_workqueue(wq);
2780
76af4d93
TH
2781 local_irq_disable();
2782
49e3cf44 2783 for_each_pwq(pwq, wq) {
fa2563e4 2784 bool drained;
9c5a2ba7 2785
76af4d93 2786 spin_lock(&pwq->pool->lock);
112202d9 2787 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2788 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2789
2790 if (drained)
9c5a2ba7
TH
2791 continue;
2792
2793 if (++flush_cnt == 10 ||
2794 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2795 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2796 wq->name, flush_cnt);
76af4d93
TH
2797
2798 local_irq_enable();
9c5a2ba7
TH
2799 goto reflush;
2800 }
2801
76af4d93 2802 spin_lock(&workqueue_lock);
9c5a2ba7 2803 if (!--wq->nr_drainers)
618b01eb 2804 wq->flags &= ~__WQ_DRAINING;
76af4d93
TH
2805 spin_unlock(&workqueue_lock);
2806
2807 local_irq_enable();
9c5a2ba7
TH
2808}
2809EXPORT_SYMBOL_GPL(drain_workqueue);
2810
606a5020 2811static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2812{
affee4b2 2813 struct worker *worker = NULL;
c9e7cf27 2814 struct worker_pool *pool;
112202d9 2815 struct pool_workqueue *pwq;
db700897
ON
2816
2817 might_sleep();
fa1b54e6
TH
2818
2819 local_irq_disable();
c9e7cf27 2820 pool = get_work_pool(work);
fa1b54e6
TH
2821 if (!pool) {
2822 local_irq_enable();
baf59022 2823 return false;
fa1b54e6 2824 }
db700897 2825
fa1b54e6 2826 spin_lock(&pool->lock);
0b3dae68 2827 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2828 pwq = get_work_pwq(work);
2829 if (pwq) {
2830 if (unlikely(pwq->pool != pool))
4690c4ab 2831 goto already_gone;
606a5020 2832 } else {
c9e7cf27 2833 worker = find_worker_executing_work(pool, work);
affee4b2 2834 if (!worker)
4690c4ab 2835 goto already_gone;
112202d9 2836 pwq = worker->current_pwq;
606a5020 2837 }
db700897 2838
112202d9 2839 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2840 spin_unlock_irq(&pool->lock);
7a22ad75 2841
e159489b
TH
2842 /*
2843 * If @max_active is 1 or rescuer is in use, flushing another work
2844 * item on the same workqueue may lead to deadlock. Make sure the
2845 * flusher is not running on the same workqueue by verifying write
2846 * access.
2847 */
493008a8 2848 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2849 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2850 else
112202d9
TH
2851 lock_map_acquire_read(&pwq->wq->lockdep_map);
2852 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2853
401a8d04 2854 return true;
4690c4ab 2855already_gone:
d565ed63 2856 spin_unlock_irq(&pool->lock);
401a8d04 2857 return false;
db700897 2858}
baf59022
TH
2859
2860/**
2861 * flush_work - wait for a work to finish executing the last queueing instance
2862 * @work: the work to flush
2863 *
606a5020
TH
2864 * Wait until @work has finished execution. @work is guaranteed to be idle
2865 * on return if it hasn't been requeued since flush started.
baf59022
TH
2866 *
2867 * RETURNS:
2868 * %true if flush_work() waited for the work to finish execution,
2869 * %false if it was already idle.
2870 */
2871bool flush_work(struct work_struct *work)
2872{
2873 struct wq_barrier barr;
2874
0976dfc1
SB
2875 lock_map_acquire(&work->lockdep_map);
2876 lock_map_release(&work->lockdep_map);
2877
606a5020 2878 if (start_flush_work(work, &barr)) {
401a8d04
TH
2879 wait_for_completion(&barr.done);
2880 destroy_work_on_stack(&barr.work);
2881 return true;
606a5020 2882 } else {
401a8d04 2883 return false;
6e84d644 2884 }
6e84d644 2885}
606a5020 2886EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2887
36e227d2 2888static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2889{
bbb68dfa 2890 unsigned long flags;
1f1f642e
ON
2891 int ret;
2892
2893 do {
bbb68dfa
TH
2894 ret = try_to_grab_pending(work, is_dwork, &flags);
2895 /*
2896 * If someone else is canceling, wait for the same event it
2897 * would be waiting for before retrying.
2898 */
2899 if (unlikely(ret == -ENOENT))
606a5020 2900 flush_work(work);
1f1f642e
ON
2901 } while (unlikely(ret < 0));
2902
bbb68dfa
TH
2903 /* tell other tasks trying to grab @work to back off */
2904 mark_work_canceling(work);
2905 local_irq_restore(flags);
2906
606a5020 2907 flush_work(work);
7a22ad75 2908 clear_work_data(work);
1f1f642e
ON
2909 return ret;
2910}
2911
6e84d644 2912/**
401a8d04
TH
2913 * cancel_work_sync - cancel a work and wait for it to finish
2914 * @work: the work to cancel
6e84d644 2915 *
401a8d04
TH
2916 * Cancel @work and wait for its execution to finish. This function
2917 * can be used even if the work re-queues itself or migrates to
2918 * another workqueue. On return from this function, @work is
2919 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2920 *
401a8d04
TH
2921 * cancel_work_sync(&delayed_work->work) must not be used for
2922 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2923 *
401a8d04 2924 * The caller must ensure that the workqueue on which @work was last
6e84d644 2925 * queued can't be destroyed before this function returns.
401a8d04
TH
2926 *
2927 * RETURNS:
2928 * %true if @work was pending, %false otherwise.
6e84d644 2929 */
401a8d04 2930bool cancel_work_sync(struct work_struct *work)
6e84d644 2931{
36e227d2 2932 return __cancel_work_timer(work, false);
b89deed3 2933}
28e53bdd 2934EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2935
6e84d644 2936/**
401a8d04
TH
2937 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2938 * @dwork: the delayed work to flush
6e84d644 2939 *
401a8d04
TH
2940 * Delayed timer is cancelled and the pending work is queued for
2941 * immediate execution. Like flush_work(), this function only
2942 * considers the last queueing instance of @dwork.
1f1f642e 2943 *
401a8d04
TH
2944 * RETURNS:
2945 * %true if flush_work() waited for the work to finish execution,
2946 * %false if it was already idle.
6e84d644 2947 */
401a8d04
TH
2948bool flush_delayed_work(struct delayed_work *dwork)
2949{
8930caba 2950 local_irq_disable();
401a8d04 2951 if (del_timer_sync(&dwork->timer))
60c057bc 2952 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2953 local_irq_enable();
401a8d04
TH
2954 return flush_work(&dwork->work);
2955}
2956EXPORT_SYMBOL(flush_delayed_work);
2957
09383498 2958/**
57b30ae7
TH
2959 * cancel_delayed_work - cancel a delayed work
2960 * @dwork: delayed_work to cancel
09383498 2961 *
57b30ae7
TH
2962 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2963 * and canceled; %false if wasn't pending. Note that the work callback
2964 * function may still be running on return, unless it returns %true and the
2965 * work doesn't re-arm itself. Explicitly flush or use
2966 * cancel_delayed_work_sync() to wait on it.
09383498 2967 *
57b30ae7 2968 * This function is safe to call from any context including IRQ handler.
09383498 2969 */
57b30ae7 2970bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2971{
57b30ae7
TH
2972 unsigned long flags;
2973 int ret;
2974
2975 do {
2976 ret = try_to_grab_pending(&dwork->work, true, &flags);
2977 } while (unlikely(ret == -EAGAIN));
2978
2979 if (unlikely(ret < 0))
2980 return false;
2981
7c3eed5c
TH
2982 set_work_pool_and_clear_pending(&dwork->work,
2983 get_work_pool_id(&dwork->work));
57b30ae7 2984 local_irq_restore(flags);
c0158ca6 2985 return ret;
09383498 2986}
57b30ae7 2987EXPORT_SYMBOL(cancel_delayed_work);
09383498 2988
401a8d04
TH
2989/**
2990 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2991 * @dwork: the delayed work cancel
2992 *
2993 * This is cancel_work_sync() for delayed works.
2994 *
2995 * RETURNS:
2996 * %true if @dwork was pending, %false otherwise.
2997 */
2998bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2999{
36e227d2 3000 return __cancel_work_timer(&dwork->work, true);
6e84d644 3001}
f5a421a4 3002EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3003
0fcb78c2 3004/**
c1a220e7
ZR
3005 * schedule_work_on - put work task on a specific cpu
3006 * @cpu: cpu to put the work task on
3007 * @work: job to be done
3008 *
3009 * This puts a job on a specific cpu
3010 */
d4283e93 3011bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3012{
d320c038 3013 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3014}
3015EXPORT_SYMBOL(schedule_work_on);
3016
0fcb78c2 3017/**
0fcb78c2
REB
3018 * schedule_work - put work task in global workqueue
3019 * @work: job to be done
0fcb78c2 3020 *
d4283e93
TH
3021 * Returns %false if @work was already on the kernel-global workqueue and
3022 * %true otherwise.
5b0f437d
BVA
3023 *
3024 * This puts a job in the kernel-global workqueue if it was not already
3025 * queued and leaves it in the same position on the kernel-global
3026 * workqueue otherwise.
0fcb78c2 3027 */
d4283e93 3028bool schedule_work(struct work_struct *work)
1da177e4 3029{
d320c038 3030 return queue_work(system_wq, work);
1da177e4 3031}
ae90dd5d 3032EXPORT_SYMBOL(schedule_work);
1da177e4 3033
0fcb78c2
REB
3034/**
3035 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3036 * @cpu: cpu to use
52bad64d 3037 * @dwork: job to be done
0fcb78c2
REB
3038 * @delay: number of jiffies to wait
3039 *
3040 * After waiting for a given time this puts a job in the kernel-global
3041 * workqueue on the specified CPU.
3042 */
d4283e93
TH
3043bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3044 unsigned long delay)
1da177e4 3045{
d320c038 3046 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3047}
ae90dd5d 3048EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3049
0fcb78c2
REB
3050/**
3051 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3052 * @dwork: job to be done
3053 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3054 *
3055 * After waiting for a given time this puts a job in the kernel-global
3056 * workqueue.
3057 */
d4283e93 3058bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3059{
d320c038 3060 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3061}
ae90dd5d 3062EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3063
b6136773 3064/**
31ddd871 3065 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3066 * @func: the function to call
b6136773 3067 *
31ddd871
TH
3068 * schedule_on_each_cpu() executes @func on each online CPU using the
3069 * system workqueue and blocks until all CPUs have completed.
b6136773 3070 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3071 *
3072 * RETURNS:
3073 * 0 on success, -errno on failure.
b6136773 3074 */
65f27f38 3075int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3076{
3077 int cpu;
38f51568 3078 struct work_struct __percpu *works;
15316ba8 3079
b6136773
AM
3080 works = alloc_percpu(struct work_struct);
3081 if (!works)
15316ba8 3082 return -ENOMEM;
b6136773 3083
93981800
TH
3084 get_online_cpus();
3085
15316ba8 3086 for_each_online_cpu(cpu) {
9bfb1839
IM
3087 struct work_struct *work = per_cpu_ptr(works, cpu);
3088
3089 INIT_WORK(work, func);
b71ab8c2 3090 schedule_work_on(cpu, work);
65a64464 3091 }
93981800
TH
3092
3093 for_each_online_cpu(cpu)
3094 flush_work(per_cpu_ptr(works, cpu));
3095
95402b38 3096 put_online_cpus();
b6136773 3097 free_percpu(works);
15316ba8
CL
3098 return 0;
3099}
3100
eef6a7d5
AS
3101/**
3102 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3103 *
3104 * Forces execution of the kernel-global workqueue and blocks until its
3105 * completion.
3106 *
3107 * Think twice before calling this function! It's very easy to get into
3108 * trouble if you don't take great care. Either of the following situations
3109 * will lead to deadlock:
3110 *
3111 * One of the work items currently on the workqueue needs to acquire
3112 * a lock held by your code or its caller.
3113 *
3114 * Your code is running in the context of a work routine.
3115 *
3116 * They will be detected by lockdep when they occur, but the first might not
3117 * occur very often. It depends on what work items are on the workqueue and
3118 * what locks they need, which you have no control over.
3119 *
3120 * In most situations flushing the entire workqueue is overkill; you merely
3121 * need to know that a particular work item isn't queued and isn't running.
3122 * In such cases you should use cancel_delayed_work_sync() or
3123 * cancel_work_sync() instead.
3124 */
1da177e4
LT
3125void flush_scheduled_work(void)
3126{
d320c038 3127 flush_workqueue(system_wq);
1da177e4 3128}
ae90dd5d 3129EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3130
1fa44eca
JB
3131/**
3132 * execute_in_process_context - reliably execute the routine with user context
3133 * @fn: the function to execute
1fa44eca
JB
3134 * @ew: guaranteed storage for the execute work structure (must
3135 * be available when the work executes)
3136 *
3137 * Executes the function immediately if process context is available,
3138 * otherwise schedules the function for delayed execution.
3139 *
3140 * Returns: 0 - function was executed
3141 * 1 - function was scheduled for execution
3142 */
65f27f38 3143int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3144{
3145 if (!in_interrupt()) {
65f27f38 3146 fn(&ew->work);
1fa44eca
JB
3147 return 0;
3148 }
3149
65f27f38 3150 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3151 schedule_work(&ew->work);
3152
3153 return 1;
3154}
3155EXPORT_SYMBOL_GPL(execute_in_process_context);
3156
1da177e4
LT
3157int keventd_up(void)
3158{
d320c038 3159 return system_wq != NULL;
1da177e4
LT
3160}
3161
226223ab
TH
3162#ifdef CONFIG_SYSFS
3163/*
3164 * Workqueues with WQ_SYSFS flag set is visible to userland via
3165 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3166 * following attributes.
3167 *
3168 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3169 * max_active RW int : maximum number of in-flight work items
3170 *
3171 * Unbound workqueues have the following extra attributes.
3172 *
3173 * id RO int : the associated pool ID
3174 * nice RW int : nice value of the workers
3175 * cpumask RW mask : bitmask of allowed CPUs for the workers
3176 */
3177struct wq_device {
3178 struct workqueue_struct *wq;
3179 struct device dev;
3180};
3181
3182static struct workqueue_struct *dev_to_wq(struct device *dev)
3183{
3184 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3185
3186 return wq_dev->wq;
3187}
3188
3189static ssize_t wq_per_cpu_show(struct device *dev,
3190 struct device_attribute *attr, char *buf)
3191{
3192 struct workqueue_struct *wq = dev_to_wq(dev);
3193
3194 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3195}
3196
3197static ssize_t wq_max_active_show(struct device *dev,
3198 struct device_attribute *attr, char *buf)
3199{
3200 struct workqueue_struct *wq = dev_to_wq(dev);
3201
3202 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3203}
3204
3205static ssize_t wq_max_active_store(struct device *dev,
3206 struct device_attribute *attr,
3207 const char *buf, size_t count)
3208{
3209 struct workqueue_struct *wq = dev_to_wq(dev);
3210 int val;
3211
3212 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3213 return -EINVAL;
3214
3215 workqueue_set_max_active(wq, val);
3216 return count;
3217}
3218
3219static struct device_attribute wq_sysfs_attrs[] = {
3220 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3221 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3222 __ATTR_NULL,
3223};
3224
3225static ssize_t wq_pool_id_show(struct device *dev,
3226 struct device_attribute *attr, char *buf)
3227{
3228 struct workqueue_struct *wq = dev_to_wq(dev);
3229 struct worker_pool *pool;
3230 int written;
3231
3232 rcu_read_lock_sched();
3233 pool = first_pwq(wq)->pool;
3234 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3235 rcu_read_unlock_sched();
3236
3237 return written;
3238}
3239
3240static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3241 char *buf)
3242{
3243 struct workqueue_struct *wq = dev_to_wq(dev);
3244 int written;
3245
3246 rcu_read_lock_sched();
3247 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3248 first_pwq(wq)->pool->attrs->nice);
3249 rcu_read_unlock_sched();
3250
3251 return written;
3252}
3253
3254/* prepare workqueue_attrs for sysfs store operations */
3255static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3256{
3257 struct workqueue_attrs *attrs;
3258
3259 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3260 if (!attrs)
3261 return NULL;
3262
3263 rcu_read_lock_sched();
3264 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3265 rcu_read_unlock_sched();
3266 return attrs;
3267}
3268
3269static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3270 const char *buf, size_t count)
3271{
3272 struct workqueue_struct *wq = dev_to_wq(dev);
3273 struct workqueue_attrs *attrs;
3274 int ret;
3275
3276 attrs = wq_sysfs_prep_attrs(wq);
3277 if (!attrs)
3278 return -ENOMEM;
3279
3280 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3281 attrs->nice >= -20 && attrs->nice <= 19)
3282 ret = apply_workqueue_attrs(wq, attrs);
3283 else
3284 ret = -EINVAL;
3285
3286 free_workqueue_attrs(attrs);
3287 return ret ?: count;
3288}
3289
3290static ssize_t wq_cpumask_show(struct device *dev,
3291 struct device_attribute *attr, char *buf)
3292{
3293 struct workqueue_struct *wq = dev_to_wq(dev);
3294 int written;
3295
3296 rcu_read_lock_sched();
3297 written = cpumask_scnprintf(buf, PAGE_SIZE,
3298 first_pwq(wq)->pool->attrs->cpumask);
3299 rcu_read_unlock_sched();
3300
3301 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3302 return written;
3303}
3304
3305static ssize_t wq_cpumask_store(struct device *dev,
3306 struct device_attribute *attr,
3307 const char *buf, size_t count)
3308{
3309 struct workqueue_struct *wq = dev_to_wq(dev);
3310 struct workqueue_attrs *attrs;
3311 int ret;
3312
3313 attrs = wq_sysfs_prep_attrs(wq);
3314 if (!attrs)
3315 return -ENOMEM;
3316
3317 ret = cpumask_parse(buf, attrs->cpumask);
3318 if (!ret)
3319 ret = apply_workqueue_attrs(wq, attrs);
3320
3321 free_workqueue_attrs(attrs);
3322 return ret ?: count;
3323}
3324
3325static struct device_attribute wq_sysfs_unbound_attrs[] = {
3326 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3327 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3328 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3329 __ATTR_NULL,
3330};
3331
3332static struct bus_type wq_subsys = {
3333 .name = "workqueue",
3334 .dev_attrs = wq_sysfs_attrs,
3335};
3336
3337static int __init wq_sysfs_init(void)
3338{
3339 return subsys_virtual_register(&wq_subsys, NULL);
3340}
3341core_initcall(wq_sysfs_init);
3342
3343static void wq_device_release(struct device *dev)
3344{
3345 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3346
3347 kfree(wq_dev);
3348}
3349
3350/**
3351 * workqueue_sysfs_register - make a workqueue visible in sysfs
3352 * @wq: the workqueue to register
3353 *
3354 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3355 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3356 * which is the preferred method.
3357 *
3358 * Workqueue user should use this function directly iff it wants to apply
3359 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3360 * apply_workqueue_attrs() may race against userland updating the
3361 * attributes.
3362 *
3363 * Returns 0 on success, -errno on failure.
3364 */
3365int workqueue_sysfs_register(struct workqueue_struct *wq)
3366{
3367 struct wq_device *wq_dev;
3368 int ret;
3369
3370 /*
3371 * Adjusting max_active or creating new pwqs by applyting
3372 * attributes breaks ordering guarantee. Disallow exposing ordered
3373 * workqueues.
3374 */
3375 if (WARN_ON(wq->flags & __WQ_ORDERED))
3376 return -EINVAL;
3377
3378 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3379 if (!wq_dev)
3380 return -ENOMEM;
3381
3382 wq_dev->wq = wq;
3383 wq_dev->dev.bus = &wq_subsys;
3384 wq_dev->dev.init_name = wq->name;
3385 wq_dev->dev.release = wq_device_release;
3386
3387 /*
3388 * unbound_attrs are created separately. Suppress uevent until
3389 * everything is ready.
3390 */
3391 dev_set_uevent_suppress(&wq_dev->dev, true);
3392
3393 ret = device_register(&wq_dev->dev);
3394 if (ret) {
3395 kfree(wq_dev);
3396 wq->wq_dev = NULL;
3397 return ret;
3398 }
3399
3400 if (wq->flags & WQ_UNBOUND) {
3401 struct device_attribute *attr;
3402
3403 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3404 ret = device_create_file(&wq_dev->dev, attr);
3405 if (ret) {
3406 device_unregister(&wq_dev->dev);
3407 wq->wq_dev = NULL;
3408 return ret;
3409 }
3410 }
3411 }
3412
3413 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3414 return 0;
3415}
3416
3417/**
3418 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3419 * @wq: the workqueue to unregister
3420 *
3421 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3422 */
3423static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3424{
3425 struct wq_device *wq_dev = wq->wq_dev;
3426
3427 if (!wq->wq_dev)
3428 return;
3429
3430 wq->wq_dev = NULL;
3431 device_unregister(&wq_dev->dev);
3432}
3433#else /* CONFIG_SYSFS */
3434static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3435#endif /* CONFIG_SYSFS */
3436
7a4e344c
TH
3437/**
3438 * free_workqueue_attrs - free a workqueue_attrs
3439 * @attrs: workqueue_attrs to free
3440 *
3441 * Undo alloc_workqueue_attrs().
3442 */
3443void free_workqueue_attrs(struct workqueue_attrs *attrs)
3444{
3445 if (attrs) {
3446 free_cpumask_var(attrs->cpumask);
3447 kfree(attrs);
3448 }
3449}
3450
3451/**
3452 * alloc_workqueue_attrs - allocate a workqueue_attrs
3453 * @gfp_mask: allocation mask to use
3454 *
3455 * Allocate a new workqueue_attrs, initialize with default settings and
3456 * return it. Returns NULL on failure.
3457 */
3458struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3459{
3460 struct workqueue_attrs *attrs;
3461
3462 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3463 if (!attrs)
3464 goto fail;
3465 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3466 goto fail;
3467
3468 cpumask_setall(attrs->cpumask);
3469 return attrs;
3470fail:
3471 free_workqueue_attrs(attrs);
3472 return NULL;
3473}
3474
29c91e99
TH
3475static void copy_workqueue_attrs(struct workqueue_attrs *to,
3476 const struct workqueue_attrs *from)
3477{
3478 to->nice = from->nice;
3479 cpumask_copy(to->cpumask, from->cpumask);
3480}
3481
3482/*
3483 * Hacky implementation of jhash of bitmaps which only considers the
3484 * specified number of bits. We probably want a proper implementation in
3485 * include/linux/jhash.h.
3486 */
3487static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3488{
3489 int nr_longs = bits / BITS_PER_LONG;
3490 int nr_leftover = bits % BITS_PER_LONG;
3491 unsigned long leftover = 0;
3492
3493 if (nr_longs)
3494 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3495 if (nr_leftover) {
3496 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3497 hash = jhash(&leftover, sizeof(long), hash);
3498 }
3499 return hash;
3500}
3501
3502/* hash value of the content of @attr */
3503static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3504{
3505 u32 hash = 0;
3506
3507 hash = jhash_1word(attrs->nice, hash);
3508 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3509 return hash;
3510}
3511
3512/* content equality test */
3513static bool wqattrs_equal(const struct workqueue_attrs *a,
3514 const struct workqueue_attrs *b)
3515{
3516 if (a->nice != b->nice)
3517 return false;
3518 if (!cpumask_equal(a->cpumask, b->cpumask))
3519 return false;
3520 return true;
3521}
3522
7a4e344c
TH
3523/**
3524 * init_worker_pool - initialize a newly zalloc'd worker_pool
3525 * @pool: worker_pool to initialize
3526 *
3527 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3528 * Returns 0 on success, -errno on failure. Even on failure, all fields
3529 * inside @pool proper are initialized and put_unbound_pool() can be called
3530 * on @pool safely to release it.
7a4e344c
TH
3531 */
3532static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3533{
3534 spin_lock_init(&pool->lock);
29c91e99
TH
3535 pool->id = -1;
3536 pool->cpu = -1;
4e1a1f9a
TH
3537 pool->flags |= POOL_DISASSOCIATED;
3538 INIT_LIST_HEAD(&pool->worklist);
3539 INIT_LIST_HEAD(&pool->idle_list);
3540 hash_init(pool->busy_hash);
3541
3542 init_timer_deferrable(&pool->idle_timer);
3543 pool->idle_timer.function = idle_worker_timeout;
3544 pool->idle_timer.data = (unsigned long)pool;
3545
3546 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3547 (unsigned long)pool);
3548
3549 mutex_init(&pool->manager_arb);
3550 mutex_init(&pool->assoc_mutex);
3551 ida_init(&pool->worker_ida);
7a4e344c 3552
29c91e99
TH
3553 INIT_HLIST_NODE(&pool->hash_node);
3554 pool->refcnt = 1;
3555
3556 /* shouldn't fail above this point */
7a4e344c
TH
3557 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3558 if (!pool->attrs)
3559 return -ENOMEM;
3560 return 0;
4e1a1f9a
TH
3561}
3562
29c91e99
TH
3563static void rcu_free_pool(struct rcu_head *rcu)
3564{
3565 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3566
3567 ida_destroy(&pool->worker_ida);
3568 free_workqueue_attrs(pool->attrs);
3569 kfree(pool);
3570}
3571
3572/**
3573 * put_unbound_pool - put a worker_pool
3574 * @pool: worker_pool to put
3575 *
3576 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3577 * safe manner. get_unbound_pool() calls this function on its failure path
3578 * and this function should be able to release pools which went through,
3579 * successfully or not, init_worker_pool().
29c91e99
TH
3580 */
3581static void put_unbound_pool(struct worker_pool *pool)
3582{
3583 struct worker *worker;
3584
3585 spin_lock_irq(&workqueue_lock);
3586 if (--pool->refcnt) {
3587 spin_unlock_irq(&workqueue_lock);
3588 return;
3589 }
3590
3591 /* sanity checks */
3592 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3593 WARN_ON(!list_empty(&pool->worklist))) {
3594 spin_unlock_irq(&workqueue_lock);
3595 return;
3596 }
3597
3598 /* release id and unhash */
3599 if (pool->id >= 0)
3600 idr_remove(&worker_pool_idr, pool->id);
3601 hash_del(&pool->hash_node);
3602
3603 spin_unlock_irq(&workqueue_lock);
3604
c5aa87bb
TH
3605 /*
3606 * Become the manager and destroy all workers. Grabbing
3607 * manager_arb prevents @pool's workers from blocking on
3608 * manager_mutex.
3609 */
29c91e99
TH
3610 mutex_lock(&pool->manager_arb);
3611 spin_lock_irq(&pool->lock);
3612
3613 while ((worker = first_worker(pool)))
3614 destroy_worker(worker);
3615 WARN_ON(pool->nr_workers || pool->nr_idle);
3616
3617 spin_unlock_irq(&pool->lock);
3618 mutex_unlock(&pool->manager_arb);
3619
3620 /* shut down the timers */
3621 del_timer_sync(&pool->idle_timer);
3622 del_timer_sync(&pool->mayday_timer);
3623
3624 /* sched-RCU protected to allow dereferences from get_work_pool() */
3625 call_rcu_sched(&pool->rcu, rcu_free_pool);
3626}
3627
3628/**
3629 * get_unbound_pool - get a worker_pool with the specified attributes
3630 * @attrs: the attributes of the worker_pool to get
3631 *
3632 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3633 * reference count and return it. If there already is a matching
3634 * worker_pool, it will be used; otherwise, this function attempts to
3635 * create a new one. On failure, returns NULL.
3636 */
3637static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3638{
3639 static DEFINE_MUTEX(create_mutex);
3640 u32 hash = wqattrs_hash(attrs);
3641 struct worker_pool *pool;
3642 struct worker *worker;
3643
3644 mutex_lock(&create_mutex);
3645
3646 /* do we already have a matching pool? */
3647 spin_lock_irq(&workqueue_lock);
3648 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3649 if (wqattrs_equal(pool->attrs, attrs)) {
3650 pool->refcnt++;
3651 goto out_unlock;
3652 }
3653 }
3654 spin_unlock_irq(&workqueue_lock);
3655
3656 /* nope, create a new one */
3657 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3658 if (!pool || init_worker_pool(pool) < 0)
3659 goto fail;
3660
8864b4e5 3661 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3662 copy_workqueue_attrs(pool->attrs, attrs);
3663
3664 if (worker_pool_assign_id(pool) < 0)
3665 goto fail;
3666
3667 /* create and start the initial worker */
3668 worker = create_worker(pool);
3669 if (!worker)
3670 goto fail;
3671
3672 spin_lock_irq(&pool->lock);
3673 start_worker(worker);
3674 spin_unlock_irq(&pool->lock);
3675
3676 /* install */
3677 spin_lock_irq(&workqueue_lock);
3678 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3679out_unlock:
3680 spin_unlock_irq(&workqueue_lock);
3681 mutex_unlock(&create_mutex);
3682 return pool;
3683fail:
3684 mutex_unlock(&create_mutex);
3685 if (pool)
3686 put_unbound_pool(pool);
3687 return NULL;
3688}
3689
8864b4e5
TH
3690static void rcu_free_pwq(struct rcu_head *rcu)
3691{
3692 kmem_cache_free(pwq_cache,
3693 container_of(rcu, struct pool_workqueue, rcu));
3694}
3695
3696/*
3697 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3698 * and needs to be destroyed.
3699 */
3700static void pwq_unbound_release_workfn(struct work_struct *work)
3701{
3702 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3703 unbound_release_work);
3704 struct workqueue_struct *wq = pwq->wq;
3705 struct worker_pool *pool = pwq->pool;
3706
3707 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3708 return;
3709
75ccf595
TH
3710 /*
3711 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3712 * necessary on release but do it anyway. It's easier to verify
3713 * and consistent with the linking path.
3714 */
3715 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3716 spin_lock_irq(&workqueue_lock);
3717 list_del_rcu(&pwq->pwqs_node);
3718 spin_unlock_irq(&workqueue_lock);
75ccf595 3719 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3720
3721 put_unbound_pool(pool);
3722 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3723
3724 /*
3725 * If we're the last pwq going away, @wq is already dead and no one
3726 * is gonna access it anymore. Free it.
3727 */
3728 if (list_empty(&wq->pwqs))
3729 kfree(wq);
3730}
3731
0fbd95aa 3732/**
699ce097 3733 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3734 * @pwq: target pool_workqueue
0fbd95aa 3735 *
699ce097
TH
3736 * If @pwq isn't freezing, set @pwq->max_active to the associated
3737 * workqueue's saved_max_active and activate delayed work items
3738 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3739 */
699ce097 3740static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3741{
699ce097
TH
3742 struct workqueue_struct *wq = pwq->wq;
3743 bool freezable = wq->flags & WQ_FREEZABLE;
3744
3745 /* for @wq->saved_max_active */
3746 lockdep_assert_held(&workqueue_lock);
3747
3748 /* fast exit for non-freezable wqs */
3749 if (!freezable && pwq->max_active == wq->saved_max_active)
3750 return;
3751
3752 spin_lock(&pwq->pool->lock);
3753
3754 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3755 pwq->max_active = wq->saved_max_active;
0fbd95aa 3756
699ce097
TH
3757 while (!list_empty(&pwq->delayed_works) &&
3758 pwq->nr_active < pwq->max_active)
3759 pwq_activate_first_delayed(pwq);
3760 } else {
3761 pwq->max_active = 0;
3762 }
3763
3764 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3765}
3766
d2c1d404
TH
3767static void init_and_link_pwq(struct pool_workqueue *pwq,
3768 struct workqueue_struct *wq,
9e8cd2f5
TH
3769 struct worker_pool *pool,
3770 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3771{
3772 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3773
3774 pwq->pool = pool;
3775 pwq->wq = wq;
3776 pwq->flush_color = -1;
8864b4e5 3777 pwq->refcnt = 1;
d2c1d404
TH
3778 INIT_LIST_HEAD(&pwq->delayed_works);
3779 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3780 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3781
75ccf595
TH
3782 mutex_lock(&wq->flush_mutex);
3783 spin_lock_irq(&workqueue_lock);
3784
983ca25e
TH
3785 /*
3786 * Set the matching work_color. This is synchronized with
3787 * flush_mutex to avoid confusing flush_workqueue().
3788 */
9e8cd2f5
TH
3789 if (p_last_pwq)
3790 *p_last_pwq = first_pwq(wq);
75ccf595 3791 pwq->work_color = wq->work_color;
983ca25e
TH
3792
3793 /* sync max_active to the current setting */
3794 pwq_adjust_max_active(pwq);
3795
3796 /* link in @pwq */
9e8cd2f5 3797 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3798
3799 spin_unlock_irq(&workqueue_lock);
3800 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3801}
3802
9e8cd2f5
TH
3803/**
3804 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3805 * @wq: the target workqueue
3806 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3807 *
3808 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3809 * current attributes, a new pwq is created and made the first pwq which
3810 * will serve all new work items. Older pwqs are released as in-flight
3811 * work items finish. Note that a work item which repeatedly requeues
3812 * itself back-to-back will stay on its current pwq.
3813 *
3814 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3815 * failure.
3816 */
3817int apply_workqueue_attrs(struct workqueue_struct *wq,
3818 const struct workqueue_attrs *attrs)
3819{
3820 struct pool_workqueue *pwq, *last_pwq;
3821 struct worker_pool *pool;
3822
8719dcea 3823 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3824 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3825 return -EINVAL;
3826
8719dcea
TH
3827 /* creating multiple pwqs breaks ordering guarantee */
3828 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3829 return -EINVAL;
3830
9e8cd2f5
TH
3831 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3832 if (!pwq)
3833 return -ENOMEM;
3834
3835 pool = get_unbound_pool(attrs);
3836 if (!pool) {
3837 kmem_cache_free(pwq_cache, pwq);
3838 return -ENOMEM;
3839 }
3840
3841 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3842 if (last_pwq) {
3843 spin_lock_irq(&last_pwq->pool->lock);
3844 put_pwq(last_pwq);
3845 spin_unlock_irq(&last_pwq->pool->lock);
3846 }
3847
3848 return 0;
3849}
3850
30cdf249 3851static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3852{
49e3cf44 3853 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3854 int cpu;
3855
3856 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3857 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3858 if (!wq->cpu_pwqs)
30cdf249
TH
3859 return -ENOMEM;
3860
3861 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3862 struct pool_workqueue *pwq =
3863 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3864 struct worker_pool *cpu_pools =
f02ae73a 3865 per_cpu(cpu_worker_pools, cpu);
f3421797 3866
9e8cd2f5 3867 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3868 }
9e8cd2f5 3869 return 0;
30cdf249 3870 } else {
9e8cd2f5 3871 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3872 }
0f900049
TH
3873}
3874
f3421797
TH
3875static int wq_clamp_max_active(int max_active, unsigned int flags,
3876 const char *name)
b71ab8c2 3877{
f3421797
TH
3878 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3879
3880 if (max_active < 1 || max_active > lim)
044c782c
VI
3881 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3882 max_active, name, 1, lim);
b71ab8c2 3883
f3421797 3884 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3885}
3886
b196be89 3887struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3888 unsigned int flags,
3889 int max_active,
3890 struct lock_class_key *key,
b196be89 3891 const char *lock_name, ...)
1da177e4 3892{
b196be89 3893 va_list args, args1;
1da177e4 3894 struct workqueue_struct *wq;
49e3cf44 3895 struct pool_workqueue *pwq;
b196be89
TH
3896 size_t namelen;
3897
3898 /* determine namelen, allocate wq and format name */
3899 va_start(args, lock_name);
3900 va_copy(args1, args);
3901 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3902
3903 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3904 if (!wq)
d2c1d404 3905 return NULL;
b196be89
TH
3906
3907 vsnprintf(wq->name, namelen, fmt, args1);
3908 va_end(args);
3909 va_end(args1);
1da177e4 3910
d320c038 3911 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3912 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3913
b196be89 3914 /* init wq */
97e37d7b 3915 wq->flags = flags;
a0a1a5fd 3916 wq->saved_max_active = max_active;
73f53c4a 3917 mutex_init(&wq->flush_mutex);
112202d9 3918 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3919 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3920 INIT_LIST_HEAD(&wq->flusher_queue);
3921 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3922 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3923
eb13ba87 3924 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3925 INIT_LIST_HEAD(&wq->list);
3af24433 3926
30cdf249 3927 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3928 goto err_free_wq;
1537663f 3929
493008a8
TH
3930 /*
3931 * Workqueues which may be used during memory reclaim should
3932 * have a rescuer to guarantee forward progress.
3933 */
3934 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3935 struct worker *rescuer;
3936
d2c1d404 3937 rescuer = alloc_worker();
e22bee78 3938 if (!rescuer)
d2c1d404 3939 goto err_destroy;
e22bee78 3940
111c225a
TH
3941 rescuer->rescue_wq = wq;
3942 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3943 wq->name);
d2c1d404
TH
3944 if (IS_ERR(rescuer->task)) {
3945 kfree(rescuer);
3946 goto err_destroy;
3947 }
e22bee78 3948
d2c1d404 3949 wq->rescuer = rescuer;
e22bee78
TH
3950 rescuer->task->flags |= PF_THREAD_BOUND;
3951 wake_up_process(rescuer->task);
3af24433
ON
3952 }
3953
226223ab
TH
3954 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3955 goto err_destroy;
3956
a0a1a5fd 3957 /*
699ce097
TH
3958 * workqueue_lock protects global freeze state and workqueues list.
3959 * Grab it, adjust max_active and add the new workqueue to
3960 * workqueues list.
a0a1a5fd 3961 */
e98d5b16 3962 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3963
699ce097
TH
3964 for_each_pwq(pwq, wq)
3965 pwq_adjust_max_active(pwq);
a0a1a5fd 3966
1537663f 3967 list_add(&wq->list, &workqueues);
a0a1a5fd 3968
e98d5b16 3969 spin_unlock_irq(&workqueue_lock);
1537663f 3970
3af24433 3971 return wq;
d2c1d404
TH
3972
3973err_free_wq:
3974 kfree(wq);
3975 return NULL;
3976err_destroy:
3977 destroy_workqueue(wq);
4690c4ab 3978 return NULL;
3af24433 3979}
d320c038 3980EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3981
3af24433
ON
3982/**
3983 * destroy_workqueue - safely terminate a workqueue
3984 * @wq: target workqueue
3985 *
3986 * Safely destroy a workqueue. All work currently pending will be done first.
3987 */
3988void destroy_workqueue(struct workqueue_struct *wq)
3989{
49e3cf44 3990 struct pool_workqueue *pwq;
3af24433 3991
9c5a2ba7
TH
3992 /* drain it before proceeding with destruction */
3993 drain_workqueue(wq);
c8efcc25 3994
76af4d93
TH
3995 spin_lock_irq(&workqueue_lock);
3996
6183c009 3997 /* sanity checks */
49e3cf44 3998 for_each_pwq(pwq, wq) {
6183c009
TH
3999 int i;
4000
76af4d93
TH
4001 for (i = 0; i < WORK_NR_COLORS; i++) {
4002 if (WARN_ON(pwq->nr_in_flight[i])) {
4003 spin_unlock_irq(&workqueue_lock);
6183c009 4004 return;
76af4d93
TH
4005 }
4006 }
4007
8864b4e5
TH
4008 if (WARN_ON(pwq->refcnt > 1) ||
4009 WARN_ON(pwq->nr_active) ||
76af4d93
TH
4010 WARN_ON(!list_empty(&pwq->delayed_works))) {
4011 spin_unlock_irq(&workqueue_lock);
6183c009 4012 return;
76af4d93 4013 }
6183c009
TH
4014 }
4015
a0a1a5fd
TH
4016 /*
4017 * wq list is used to freeze wq, remove from list after
4018 * flushing is complete in case freeze races us.
4019 */
d2c1d404 4020 list_del_init(&wq->list);
76af4d93 4021
e98d5b16 4022 spin_unlock_irq(&workqueue_lock);
3af24433 4023
226223ab
TH
4024 workqueue_sysfs_unregister(wq);
4025
493008a8 4026 if (wq->rescuer) {
e22bee78 4027 kthread_stop(wq->rescuer->task);
8d9df9f0 4028 kfree(wq->rescuer);
493008a8 4029 wq->rescuer = NULL;
e22bee78
TH
4030 }
4031
8864b4e5
TH
4032 if (!(wq->flags & WQ_UNBOUND)) {
4033 /*
4034 * The base ref is never dropped on per-cpu pwqs. Directly
4035 * free the pwqs and wq.
4036 */
4037 free_percpu(wq->cpu_pwqs);
4038 kfree(wq);
4039 } else {
4040 /*
4041 * We're the sole accessor of @wq at this point. Directly
4042 * access the first pwq and put the base ref. As both pwqs
4043 * and pools are sched-RCU protected, the lock operations
4044 * are safe. @wq will be freed when the last pwq is
4045 * released.
4046 */
29c91e99
TH
4047 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
4048 pwqs_node);
8864b4e5
TH
4049 spin_lock_irq(&pwq->pool->lock);
4050 put_pwq(pwq);
4051 spin_unlock_irq(&pwq->pool->lock);
29c91e99 4052 }
3af24433
ON
4053}
4054EXPORT_SYMBOL_GPL(destroy_workqueue);
4055
dcd989cb
TH
4056/**
4057 * workqueue_set_max_active - adjust max_active of a workqueue
4058 * @wq: target workqueue
4059 * @max_active: new max_active value.
4060 *
4061 * Set max_active of @wq to @max_active.
4062 *
4063 * CONTEXT:
4064 * Don't call from IRQ context.
4065 */
4066void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4067{
49e3cf44 4068 struct pool_workqueue *pwq;
dcd989cb 4069
8719dcea
TH
4070 /* disallow meddling with max_active for ordered workqueues */
4071 if (WARN_ON(wq->flags & __WQ_ORDERED))
4072 return;
4073
f3421797 4074 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4075
e98d5b16 4076 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
4077
4078 wq->saved_max_active = max_active;
4079
699ce097
TH
4080 for_each_pwq(pwq, wq)
4081 pwq_adjust_max_active(pwq);
93981800 4082
e98d5b16 4083 spin_unlock_irq(&workqueue_lock);
15316ba8 4084}
dcd989cb 4085EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4086
e6267616
TH
4087/**
4088 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4089 *
4090 * Determine whether %current is a workqueue rescuer. Can be used from
4091 * work functions to determine whether it's being run off the rescuer task.
4092 */
4093bool current_is_workqueue_rescuer(void)
4094{
4095 struct worker *worker = current_wq_worker();
4096
4097 return worker && worker == worker->current_pwq->wq->rescuer;
4098}
4099
eef6a7d5 4100/**
dcd989cb
TH
4101 * workqueue_congested - test whether a workqueue is congested
4102 * @cpu: CPU in question
4103 * @wq: target workqueue
eef6a7d5 4104 *
dcd989cb
TH
4105 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4106 * no synchronization around this function and the test result is
4107 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4108 *
dcd989cb
TH
4109 * RETURNS:
4110 * %true if congested, %false otherwise.
eef6a7d5 4111 */
d84ff051 4112bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4113{
7fb98ea7 4114 struct pool_workqueue *pwq;
76af4d93
TH
4115 bool ret;
4116
4117 preempt_disable();
7fb98ea7
TH
4118
4119 if (!(wq->flags & WQ_UNBOUND))
4120 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4121 else
4122 pwq = first_pwq(wq);
dcd989cb 4123
76af4d93
TH
4124 ret = !list_empty(&pwq->delayed_works);
4125 preempt_enable();
4126
4127 return ret;
1da177e4 4128}
dcd989cb 4129EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4130
dcd989cb
TH
4131/**
4132 * work_busy - test whether a work is currently pending or running
4133 * @work: the work to be tested
4134 *
4135 * Test whether @work is currently pending or running. There is no
4136 * synchronization around this function and the test result is
4137 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4138 *
4139 * RETURNS:
4140 * OR'd bitmask of WORK_BUSY_* bits.
4141 */
4142unsigned int work_busy(struct work_struct *work)
1da177e4 4143{
fa1b54e6 4144 struct worker_pool *pool;
dcd989cb
TH
4145 unsigned long flags;
4146 unsigned int ret = 0;
1da177e4 4147
dcd989cb
TH
4148 if (work_pending(work))
4149 ret |= WORK_BUSY_PENDING;
1da177e4 4150
fa1b54e6
TH
4151 local_irq_save(flags);
4152 pool = get_work_pool(work);
038366c5 4153 if (pool) {
fa1b54e6 4154 spin_lock(&pool->lock);
038366c5
LJ
4155 if (find_worker_executing_work(pool, work))
4156 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4157 spin_unlock(&pool->lock);
038366c5 4158 }
fa1b54e6 4159 local_irq_restore(flags);
1da177e4 4160
dcd989cb 4161 return ret;
1da177e4 4162}
dcd989cb 4163EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4164
db7bccf4
TH
4165/*
4166 * CPU hotplug.
4167 *
e22bee78 4168 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4169 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4170 * pool which make migrating pending and scheduled works very
e22bee78 4171 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4172 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4173 * blocked draining impractical.
4174 *
24647570 4175 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4176 * running as an unbound one and allowing it to be reattached later if the
4177 * cpu comes back online.
db7bccf4 4178 */
1da177e4 4179
706026c2 4180static void wq_unbind_fn(struct work_struct *work)
3af24433 4181{
38db41d9 4182 int cpu = smp_processor_id();
4ce62e9e 4183 struct worker_pool *pool;
db7bccf4 4184 struct worker *worker;
db7bccf4 4185 int i;
3af24433 4186
f02ae73a 4187 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4188 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4189
94cf58bb
TH
4190 mutex_lock(&pool->assoc_mutex);
4191 spin_lock_irq(&pool->lock);
3af24433 4192
94cf58bb
TH
4193 /*
4194 * We've claimed all manager positions. Make all workers
4195 * unbound and set DISASSOCIATED. Before this, all workers
4196 * except for the ones which are still executing works from
4197 * before the last CPU down must be on the cpu. After
4198 * this, they may become diasporas.
4199 */
4ce62e9e 4200 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 4201 worker->flags |= WORKER_UNBOUND;
3af24433 4202
b67bfe0d 4203 for_each_busy_worker(worker, i, pool)
c9e7cf27 4204 worker->flags |= WORKER_UNBOUND;
06ba38a9 4205
24647570 4206 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4207
94cf58bb
TH
4208 spin_unlock_irq(&pool->lock);
4209 mutex_unlock(&pool->assoc_mutex);
4210 }
628c78e7 4211
e22bee78 4212 /*
403c821d 4213 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4214 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4215 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4216 */
e22bee78 4217 schedule();
06ba38a9 4218
e22bee78 4219 /*
628c78e7
TH
4220 * Sched callbacks are disabled now. Zap nr_running. After this,
4221 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4222 * are always true as long as the worklist is not empty. Pools on
4223 * @cpu now behave as unbound (in terms of concurrency management)
4224 * pools which are served by workers tied to the CPU.
628c78e7
TH
4225 *
4226 * On return from this function, the current worker would trigger
4227 * unbound chain execution of pending work items if other workers
4228 * didn't already.
e22bee78 4229 */
f02ae73a 4230 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4231 atomic_set(&pool->nr_running, 0);
3af24433 4232}
3af24433 4233
8db25e78
TH
4234/*
4235 * Workqueues should be brought up before normal priority CPU notifiers.
4236 * This will be registered high priority CPU notifier.
4237 */
9fdf9b73 4238static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4239 unsigned long action,
4240 void *hcpu)
3af24433 4241{
d84ff051 4242 int cpu = (unsigned long)hcpu;
4ce62e9e 4243 struct worker_pool *pool;
3ce63377 4244
8db25e78 4245 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4246 case CPU_UP_PREPARE:
f02ae73a 4247 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4248 struct worker *worker;
4249
4250 if (pool->nr_workers)
4251 continue;
4252
4253 worker = create_worker(pool);
4254 if (!worker)
4255 return NOTIFY_BAD;
4256
d565ed63 4257 spin_lock_irq(&pool->lock);
3ce63377 4258 start_worker(worker);
d565ed63 4259 spin_unlock_irq(&pool->lock);
3af24433 4260 }
8db25e78 4261 break;
3af24433 4262
db7bccf4
TH
4263 case CPU_DOWN_FAILED:
4264 case CPU_ONLINE:
f02ae73a 4265 for_each_cpu_worker_pool(pool, cpu) {
94cf58bb
TH
4266 mutex_lock(&pool->assoc_mutex);
4267 spin_lock_irq(&pool->lock);
4268
24647570 4269 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
4270 rebind_workers(pool);
4271
4272 spin_unlock_irq(&pool->lock);
4273 mutex_unlock(&pool->assoc_mutex);
4274 }
db7bccf4 4275 break;
00dfcaf7 4276 }
65758202
TH
4277 return NOTIFY_OK;
4278}
4279
4280/*
4281 * Workqueues should be brought down after normal priority CPU notifiers.
4282 * This will be registered as low priority CPU notifier.
4283 */
9fdf9b73 4284static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4285 unsigned long action,
4286 void *hcpu)
4287{
d84ff051 4288 int cpu = (unsigned long)hcpu;
8db25e78
TH
4289 struct work_struct unbind_work;
4290
65758202
TH
4291 switch (action & ~CPU_TASKS_FROZEN) {
4292 case CPU_DOWN_PREPARE:
8db25e78 4293 /* unbinding should happen on the local CPU */
706026c2 4294 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4295 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4296 flush_work(&unbind_work);
4297 break;
65758202
TH
4298 }
4299 return NOTIFY_OK;
4300}
4301
2d3854a3 4302#ifdef CONFIG_SMP
8ccad40d 4303
2d3854a3 4304struct work_for_cpu {
ed48ece2 4305 struct work_struct work;
2d3854a3
RR
4306 long (*fn)(void *);
4307 void *arg;
4308 long ret;
4309};
4310
ed48ece2 4311static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4312{
ed48ece2
TH
4313 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4314
2d3854a3
RR
4315 wfc->ret = wfc->fn(wfc->arg);
4316}
4317
4318/**
4319 * work_on_cpu - run a function in user context on a particular cpu
4320 * @cpu: the cpu to run on
4321 * @fn: the function to run
4322 * @arg: the function arg
4323 *
31ad9081
RR
4324 * This will return the value @fn returns.
4325 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4326 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4327 */
d84ff051 4328long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4329{
ed48ece2 4330 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4331
ed48ece2
TH
4332 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4333 schedule_work_on(cpu, &wfc.work);
4334 flush_work(&wfc.work);
2d3854a3
RR
4335 return wfc.ret;
4336}
4337EXPORT_SYMBOL_GPL(work_on_cpu);
4338#endif /* CONFIG_SMP */
4339
a0a1a5fd
TH
4340#ifdef CONFIG_FREEZER
4341
4342/**
4343 * freeze_workqueues_begin - begin freezing workqueues
4344 *
58a69cb4 4345 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4346 * workqueues will queue new works to their delayed_works list instead of
706026c2 4347 * pool->worklist.
a0a1a5fd
TH
4348 *
4349 * CONTEXT:
d565ed63 4350 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4351 */
4352void freeze_workqueues_begin(void)
4353{
17116969 4354 struct worker_pool *pool;
24b8a847
TH
4355 struct workqueue_struct *wq;
4356 struct pool_workqueue *pwq;
17116969 4357 int id;
a0a1a5fd 4358
e98d5b16 4359 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4360
6183c009 4361 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4362 workqueue_freezing = true;
4363
24b8a847 4364 /* set FREEZING */
17116969 4365 for_each_pool(pool, id) {
17116969 4366 spin_lock(&pool->lock);
17116969
TH
4367 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4368 pool->flags |= POOL_FREEZING;
24b8a847
TH
4369 spin_unlock(&pool->lock);
4370 }
a0a1a5fd 4371
24b8a847
TH
4372 /* suppress further executions by setting max_active to zero */
4373 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4374 for_each_pwq(pwq, wq)
4375 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4376 }
4377
e98d5b16 4378 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4379}
4380
4381/**
58a69cb4 4382 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4383 *
4384 * Check whether freezing is complete. This function must be called
4385 * between freeze_workqueues_begin() and thaw_workqueues().
4386 *
4387 * CONTEXT:
4388 * Grabs and releases workqueue_lock.
4389 *
4390 * RETURNS:
58a69cb4
TH
4391 * %true if some freezable workqueues are still busy. %false if freezing
4392 * is complete.
a0a1a5fd
TH
4393 */
4394bool freeze_workqueues_busy(void)
4395{
a0a1a5fd 4396 bool busy = false;
24b8a847
TH
4397 struct workqueue_struct *wq;
4398 struct pool_workqueue *pwq;
a0a1a5fd 4399
e98d5b16 4400 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4401
6183c009 4402 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4403
24b8a847
TH
4404 list_for_each_entry(wq, &workqueues, list) {
4405 if (!(wq->flags & WQ_FREEZABLE))
4406 continue;
a0a1a5fd
TH
4407 /*
4408 * nr_active is monotonically decreasing. It's safe
4409 * to peek without lock.
4410 */
24b8a847 4411 for_each_pwq(pwq, wq) {
6183c009 4412 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4413 if (pwq->nr_active) {
a0a1a5fd
TH
4414 busy = true;
4415 goto out_unlock;
4416 }
4417 }
4418 }
4419out_unlock:
e98d5b16 4420 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4421 return busy;
4422}
4423
4424/**
4425 * thaw_workqueues - thaw workqueues
4426 *
4427 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4428 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4429 *
4430 * CONTEXT:
d565ed63 4431 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4432 */
4433void thaw_workqueues(void)
4434{
24b8a847
TH
4435 struct workqueue_struct *wq;
4436 struct pool_workqueue *pwq;
4437 struct worker_pool *pool;
4438 int id;
a0a1a5fd 4439
e98d5b16 4440 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4441
4442 if (!workqueue_freezing)
4443 goto out_unlock;
4444
24b8a847
TH
4445 /* clear FREEZING */
4446 for_each_pool(pool, id) {
4447 spin_lock(&pool->lock);
4448 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4449 pool->flags &= ~POOL_FREEZING;
4450 spin_unlock(&pool->lock);
4451 }
8b03ae3c 4452
24b8a847
TH
4453 /* restore max_active and repopulate worklist */
4454 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4455 for_each_pwq(pwq, wq)
4456 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4457 }
4458
24b8a847
TH
4459 /* kick workers */
4460 for_each_pool(pool, id) {
4461 spin_lock(&pool->lock);
4462 wake_up_worker(pool);
4463 spin_unlock(&pool->lock);
4464 }
4465
a0a1a5fd
TH
4466 workqueue_freezing = false;
4467out_unlock:
e98d5b16 4468 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4469}
4470#endif /* CONFIG_FREEZER */
4471
6ee0578b 4472static int __init init_workqueues(void)
1da177e4 4473{
7a4e344c
TH
4474 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4475 int i, cpu;
c34056a3 4476
7c3eed5c
TH
4477 /* make sure we have enough bits for OFFQ pool ID */
4478 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4479 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4480
e904e6c2
TH
4481 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4482
4483 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4484
65758202 4485 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4486 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4487
706026c2 4488 /* initialize CPU pools */
29c91e99 4489 for_each_possible_cpu(cpu) {
4ce62e9e 4490 struct worker_pool *pool;
8b03ae3c 4491
7a4e344c 4492 i = 0;
f02ae73a 4493 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4494 BUG_ON(init_worker_pool(pool));
ec22ca5e 4495 pool->cpu = cpu;
29c91e99 4496 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4497 pool->attrs->nice = std_nice[i++];
4498
9daf9e67
TH
4499 /* alloc pool ID */
4500 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4501 }
8b03ae3c
TH
4502 }
4503
e22bee78 4504 /* create the initial worker */
29c91e99 4505 for_each_online_cpu(cpu) {
4ce62e9e 4506 struct worker_pool *pool;
e22bee78 4507
f02ae73a 4508 for_each_cpu_worker_pool(pool, cpu) {
4ce62e9e
TH
4509 struct worker *worker;
4510
29c91e99 4511 pool->flags &= ~POOL_DISASSOCIATED;
24647570 4512
bc2ae0f5 4513 worker = create_worker(pool);
4ce62e9e 4514 BUG_ON(!worker);
d565ed63 4515 spin_lock_irq(&pool->lock);
4ce62e9e 4516 start_worker(worker);
d565ed63 4517 spin_unlock_irq(&pool->lock);
4ce62e9e 4518 }
e22bee78
TH
4519 }
4520
29c91e99
TH
4521 /* create default unbound wq attrs */
4522 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4523 struct workqueue_attrs *attrs;
4524
4525 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4526
4527 attrs->nice = std_nice[i];
4528 cpumask_setall(attrs->cpumask);
4529
4530 unbound_std_wq_attrs[i] = attrs;
4531 }
4532
d320c038 4533 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4534 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4535 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4536 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4537 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4538 system_freezable_wq = alloc_workqueue("events_freezable",
4539 WQ_FREEZABLE, 0);
1aabe902 4540 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4541 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4542 return 0;
1da177e4 4543}
6ee0578b 4544early_initcall(init_workqueues);