async: Use a dedicated unbound workqueue with raised min_active
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
4cb1ef64 32#include <linux/interrupt.h>
1da177e4
LT
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
1fa44eca 40#include <linux/hardirq.h>
46934023 41#include <linux/mempolicy.h>
341a5958 42#include <linux/freezer.h>
d5abe669 43#include <linux/debug_locks.h>
4e6045f1 44#include <linux/lockdep.h>
c34056a3 45#include <linux/idr.h>
29c91e99 46#include <linux/jhash.h>
42f8570f 47#include <linux/hashtable.h>
76af4d93 48#include <linux/rculist.h>
bce90380 49#include <linux/nodemask.h>
4c16bd32 50#include <linux/moduleparam.h>
3d1cb205 51#include <linux/uaccess.h>
c98a9805 52#include <linux/sched/isolation.h>
cd2440d6 53#include <linux/sched/debug.h>
62635ea8 54#include <linux/nmi.h>
940d71c6 55#include <linux/kvm_para.h>
aa6fde93 56#include <linux/delay.h>
e22bee78 57
ea138446 58#include "workqueue_internal.h"
1da177e4 59
e563d0a7 60enum worker_pool_flags {
24647570
TH
61 /*
62 * worker_pool flags
bc2ae0f5 63 *
24647570 64 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
65 * While associated (!DISASSOCIATED), all workers are bound to the
66 * CPU and none has %WORKER_UNBOUND set and concurrency management
67 * is in effect.
68 *
69 * While DISASSOCIATED, the cpu may be offline and all workers have
70 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 71 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 72 *
bc3a1afc 73 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 74 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 75 * worker_attach_to_pool() is in progress.
4cb1ef64
TH
76 *
77 * As there can only be one concurrent BH execution context per CPU, a
78 * BH pool is per-CPU and always DISASSOCIATED.
bc2ae0f5 79 */
4cb1ef64
TH
80 POOL_BH = 1 << 0, /* is a BH pool */
81 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
24647570 82 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
e563d0a7 83};
db7bccf4 84
e563d0a7 85enum worker_flags {
c8e55f36 86 /* worker flags */
c8e55f36
TH
87 WORKER_DIE = 1 << 1, /* die die die */
88 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 89 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 90 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 91 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 92 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 93
a9ab775b
TH
94 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
95 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 96};
db7bccf4 97
e563d0a7 98enum wq_internal_consts {
e34cdddb 99 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 100
29c91e99 101 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 102 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 103
e22bee78
TH
104 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
105 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
106
3233cdbd
TH
107 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
108 /* call for help after 10ms
109 (min two ticks) */
e22bee78
TH
110 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
111 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
112
113 /*
114 * Rescue workers are used only on emergencies and shared by
8698a745 115 * all cpus. Give MIN_NICE.
e22bee78 116 */
8698a745
DY
117 RESCUER_NICE_LEVEL = MIN_NICE,
118 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 119
31c89007 120 WQ_NAME_LEN = 32,
c8e55f36 121};
1da177e4 122
4cb1ef64
TH
123/*
124 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
125 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
126 * msecs_to_jiffies() can't be an initializer.
127 */
128#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
129#define BH_WORKER_RESTARTS 10
130
1da177e4 131/*
4690c4ab
TH
132 * Structure fields follow one of the following exclusion rules.
133 *
e41e704b
TH
134 * I: Modifiable by initialization/destruction paths and read-only for
135 * everyone else.
4690c4ab 136 *
e22bee78
TH
137 * P: Preemption protected. Disabling preemption is enough and should
138 * only be modified and accessed from the local cpu.
139 *
d565ed63 140 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 141 *
5797b1c1
TH
142 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
143 * reads.
144 *
bdf8b9bf
TH
145 * K: Only modified by worker while holding pool->lock. Can be safely read by
146 * self, while holding pool->lock or from IRQ context if %current is the
147 * kworker.
148 *
149 * S: Only modified by worker self.
150 *
1258fae7 151 * A: wq_pool_attach_mutex protected.
822d8405 152 *
68e13a67 153 * PL: wq_pool_mutex protected.
5bcab335 154 *
24acfb71 155 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 156 *
5b95e1af
LJ
157 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
158 *
159 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 160 * RCU for reads.
5b95e1af 161 *
3c25a55d
LJ
162 * WQ: wq->mutex protected.
163 *
24acfb71 164 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 165 *
a045a272
TH
166 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
167 * with READ_ONCE() without locking.
168 *
2e109a28 169 * MD: wq_mayday_lock protected.
cd2440d6
PM
170 *
171 * WD: Used internally by the watchdog.
1da177e4 172 */
1da177e4 173
2eaebdb3 174/* struct worker is defined in workqueue_internal.h */
c34056a3 175
bd7bdd43 176struct worker_pool {
a9b8a985 177 raw_spinlock_t lock; /* the pool lock */
d84ff051 178 int cpu; /* I: the associated cpu */
f3f90ad4 179 int node; /* I: the associated node ID */
9daf9e67 180 int id; /* I: pool ID */
bc8b50c2 181 unsigned int flags; /* L: flags */
bd7bdd43 182
82607adc 183 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 184 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 185
bc35f7ef
LJ
186 /*
187 * The counter is incremented in a process context on the associated CPU
188 * w/ preemption disabled, and decremented or reset in the same context
189 * but w/ pool->lock held. The readers grab pool->lock and are
190 * guaranteed to see if the counter reached zero.
191 */
192 int nr_running;
84f91c62 193
bd7bdd43 194 struct list_head worklist; /* L: list of pending works */
ea1abd61 195
5826cc8f
LJ
196 int nr_workers; /* L: total number of workers */
197 int nr_idle; /* L: currently idle workers */
bd7bdd43 198
2c1f1a91 199 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 200 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
201 struct work_struct idle_cull_work; /* L: worker idle cleanup */
202
203 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 204
c5aa87bb 205 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
206 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
207 /* L: hash of busy workers */
208
2607d7a6 209 struct worker *manager; /* L: purely informational */
92f9c5c4 210 struct list_head workers; /* A: attached workers */
e02b9312 211 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 212 struct completion *detach_completion; /* all workers detached */
e19e397a 213
7cda9aae 214 struct ida worker_ida; /* worker IDs for task name */
e19e397a 215
7a4e344c 216 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
217 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
218 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 219
29c91e99 220 /*
24acfb71 221 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
222 * from get_work_pool().
223 */
224 struct rcu_head rcu;
84f91c62 225};
8b03ae3c 226
725e8ec5
TH
227/*
228 * Per-pool_workqueue statistics. These can be monitored using
229 * tools/workqueue/wq_monitor.py.
230 */
231enum pool_workqueue_stats {
232 PWQ_STAT_STARTED, /* work items started execution */
233 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 234 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 235 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 236 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 237 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
238 PWQ_STAT_MAYDAY, /* maydays to rescuer */
239 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
240
241 PWQ_NR_STATS,
242};
243
1da177e4 244/*
112202d9
TH
245 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
246 * of work_struct->data are used for flags and the remaining high bits
247 * point to the pwq; thus, pwqs need to be aligned at two's power of the
248 * number of flag bits.
1da177e4 249 */
112202d9 250struct pool_workqueue {
bd7bdd43 251 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 252 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
253 int work_color; /* L: current color */
254 int flush_color; /* L: flushing color */
8864b4e5 255 int refcnt; /* L: reference count */
73f53c4a
TH
256 int nr_in_flight[WORK_NR_COLORS];
257 /* L: nr of in_flight works */
4c065dbc 258 bool plugged; /* L: execution suspended */
018f3a13
LJ
259
260 /*
261 * nr_active management and WORK_STRUCT_INACTIVE:
262 *
263 * When pwq->nr_active >= max_active, new work item is queued to
264 * pwq->inactive_works instead of pool->worklist and marked with
265 * WORK_STRUCT_INACTIVE.
266 *
5797b1c1
TH
267 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
268 * nr_active and all work items in pwq->inactive_works are marked with
269 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
270 * in pwq->inactive_works. Some of them are ready to run in
271 * pool->worklist or worker->scheduled. Those work itmes are only struct
272 * wq_barrier which is used for flush_work() and should not participate
273 * in nr_active. For non-barrier work item, it is marked with
274 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 275 */
1e19ffc6 276 int nr_active; /* L: nr of active works */
f97a4a1a 277 struct list_head inactive_works; /* L: inactive works */
5797b1c1 278 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 279 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 280 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 281
725e8ec5
TH
282 u64 stats[PWQ_NR_STATS];
283
8864b4e5 284 /*
967b494e 285 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
286 * and pwq_release_workfn() for details. pool_workqueue itself is also
287 * RCU protected so that the first pwq can be determined without
967b494e 288 * grabbing wq->mutex.
8864b4e5 289 */
687a9aa5 290 struct kthread_work release_work;
8864b4e5 291 struct rcu_head rcu;
e904e6c2 292} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 293
73f53c4a
TH
294/*
295 * Structure used to wait for workqueue flush.
296 */
297struct wq_flusher {
3c25a55d
LJ
298 struct list_head list; /* WQ: list of flushers */
299 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
300 struct completion done; /* flush completion */
301};
302
226223ab
TH
303struct wq_device;
304
91ccc6e7
TH
305/*
306 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
307 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
308 * As sharing a single nr_active across multiple sockets can be very expensive,
309 * the counting and enforcement is per NUMA node.
5797b1c1
TH
310 *
311 * The following struct is used to enforce per-node max_active. When a pwq wants
312 * to start executing a work item, it should increment ->nr using
313 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
314 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
315 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
316 * round-robin order.
91ccc6e7
TH
317 */
318struct wq_node_nr_active {
5797b1c1
TH
319 int max; /* per-node max_active */
320 atomic_t nr; /* per-node nr_active */
321 raw_spinlock_t lock; /* nests inside pool locks */
322 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
323};
324
1da177e4 325/*
c5aa87bb
TH
326 * The externally visible workqueue. It relays the issued work items to
327 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
328 */
329struct workqueue_struct {
3c25a55d 330 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 331 struct list_head list; /* PR: list of all workqueues */
73f53c4a 332
3c25a55d
LJ
333 struct mutex mutex; /* protects this wq */
334 int work_color; /* WQ: current work color */
335 int flush_color; /* WQ: current flush color */
112202d9 336 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
337 struct wq_flusher *first_flusher; /* WQ: first flusher */
338 struct list_head flusher_queue; /* WQ: flush waiters */
339 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 340
2e109a28 341 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 342 struct worker *rescuer; /* MD: rescue worker */
e22bee78 343
87fc741e 344 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
345
346 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 347 int max_active; /* WO: max active works */
5797b1c1 348 int min_active; /* WO: min active works */
a045a272 349 int saved_max_active; /* WQ: saved max_active */
5797b1c1 350 int saved_min_active; /* WQ: saved min_active */
226223ab 351
5b95e1af 352 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 353 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 354
226223ab
TH
355#ifdef CONFIG_SYSFS
356 struct wq_device *wq_dev; /* I: for sysfs interface */
357#endif
4e6045f1 358#ifdef CONFIG_LOCKDEP
669de8bd
BVA
359 char *lock_name;
360 struct lock_class_key key;
4690c4ab 361 struct lockdep_map lockdep_map;
4e6045f1 362#endif
ecf6881f 363 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 364
e2dca7ad 365 /*
24acfb71
TG
366 * Destruction of workqueue_struct is RCU protected to allow walking
367 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
368 * This is used to dump all workqueues from sysrq.
369 */
370 struct rcu_head rcu;
371
2728fd2f
TH
372 /* hot fields used during command issue, aligned to cacheline */
373 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 374 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 375 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
376};
377
e904e6c2
TH
378static struct kmem_cache *pwq_cache;
379
84193c07
TH
380/*
381 * Each pod type describes how CPUs should be grouped for unbound workqueues.
382 * See the comment above workqueue_attrs->affn_scope.
383 */
384struct wq_pod_type {
385 int nr_pods; /* number of pods */
386 cpumask_var_t *pod_cpus; /* pod -> cpus */
387 int *pod_node; /* pod -> node */
388 int *cpu_pod; /* cpu -> pod */
389};
390
391static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
523a301e 392static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
63c5484e
TH
393
394static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
523a301e 395 [WQ_AFFN_DFL] = "default",
63c5484e
TH
396 [WQ_AFFN_CPU] = "cpu",
397 [WQ_AFFN_SMT] = "smt",
398 [WQ_AFFN_CACHE] = "cache",
399 [WQ_AFFN_NUMA] = "numa",
400 [WQ_AFFN_SYSTEM] = "system",
401};
bce90380 402
c5f8cd6c
TH
403static bool wq_topo_initialized __read_mostly = false;
404
616db877
TH
405/*
406 * Per-cpu work items which run for longer than the following threshold are
407 * automatically considered CPU intensive and excluded from concurrency
408 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
409 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
410 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 411 */
aa6fde93 412static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877
TH
413module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
414
cee22a15 415/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 416static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
417module_param_named(power_efficient, wq_power_efficient, bool, 0444);
418
863b710b 419static bool wq_online; /* can kworkers be created yet? */
3347fa09 420
fef59c9c
TH
421/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
422static struct workqueue_attrs *wq_update_pod_attrs_buf;
4c16bd32 423
68e13a67 424static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 425static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 426static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
427/* wait for manager to go away */
428static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 429
e2dca7ad 430static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 431static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 432
99c621ef 433/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
434static cpumask_var_t wq_unbound_cpumask;
435
fe28f631
WL
436/* PL: user requested unbound cpumask via sysfs */
437static cpumask_var_t wq_requested_unbound_cpumask;
438
439/* PL: isolated cpumask to be excluded from unbound cpumask */
440static cpumask_var_t wq_isolated_cpumask;
441
ace3c549 442/* for further constrain wq_unbound_cpumask by cmdline parameter*/
443static struct cpumask wq_cmdline_cpumask __initdata;
444
ef557180
MG
445/* CPU where unbound work was last round robin scheduled from this CPU */
446static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 447
f303fccb
TH
448/*
449 * Local execution of unbound work items is no longer guaranteed. The
450 * following always forces round-robin CPU selection on unbound work items
451 * to uncover usages which depend on it.
452 */
453#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
454static bool wq_debug_force_rr_cpu = true;
455#else
456static bool wq_debug_force_rr_cpu = false;
457#endif
458module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
459
4cb1ef64
TH
460/* the BH worker pools */
461static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
462 bh_worker_pools);
463
7d19c5ce 464/* the per-cpu worker pools */
4cb1ef64
TH
465static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
466 cpu_worker_pools);
7d19c5ce 467
68e13a67 468static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 469
68e13a67 470/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
471static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
472
c5aa87bb 473/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
474static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
475
8a2b7538
TH
476/* I: attributes used when instantiating ordered pools on demand */
477static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
478
967b494e
TH
479/*
480 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
481 * process context while holding a pool lock. Bounce to a dedicated kthread
482 * worker to avoid A-A deadlocks.
483 */
68279f9c 484static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 485
68279f9c 486struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 487EXPORT_SYMBOL(system_wq);
68279f9c 488struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 489EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 490struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 491EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 492struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 493EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 494struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 495EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 496struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 497EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 498struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 499EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
4cb1ef64
TH
500struct workqueue_struct *system_bh_wq;
501EXPORT_SYMBOL_GPL(system_bh_wq);
502struct workqueue_struct *system_bh_highpri_wq;
503EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
d320c038 504
7d19c5ce 505static int worker_thread(void *__worker);
6ba94429 506static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 507static void show_pwq(struct pool_workqueue *pwq);
55df0933 508static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 509
97bd2347
TH
510#define CREATE_TRACE_POINTS
511#include <trace/events/workqueue.h>
512
68e13a67 513#define assert_rcu_or_pool_mutex() \
24acfb71 514 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 515 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 516 "RCU or wq_pool_mutex should be held")
5bcab335 517
5b95e1af 518#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 519 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
520 !lockdep_is_held(&wq->mutex) && \
521 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 522 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 523
4cb1ef64
TH
524#define for_each_bh_worker_pool(pool, cpu) \
525 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
526 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
527 (pool)++)
528
f02ae73a
TH
529#define for_each_cpu_worker_pool(pool, cpu) \
530 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
531 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 532 (pool)++)
4ce62e9e 533
17116969
TH
534/**
535 * for_each_pool - iterate through all worker_pools in the system
536 * @pool: iteration cursor
611c92a0 537 * @pi: integer used for iteration
fa1b54e6 538 *
24acfb71 539 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
540 * locked. If the pool needs to be used beyond the locking in effect, the
541 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
542 *
543 * The if/else clause exists only for the lockdep assertion and can be
544 * ignored.
17116969 545 */
611c92a0
TH
546#define for_each_pool(pool, pi) \
547 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 548 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 549 else
17116969 550
822d8405
TH
551/**
552 * for_each_pool_worker - iterate through all workers of a worker_pool
553 * @worker: iteration cursor
822d8405
TH
554 * @pool: worker_pool to iterate workers of
555 *
1258fae7 556 * This must be called with wq_pool_attach_mutex.
822d8405
TH
557 *
558 * The if/else clause exists only for the lockdep assertion and can be
559 * ignored.
560 */
da028469
LJ
561#define for_each_pool_worker(worker, pool) \
562 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 563 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
564 else
565
49e3cf44
TH
566/**
567 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
568 * @pwq: iteration cursor
569 * @wq: the target workqueue
76af4d93 570 *
24acfb71 571 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
574 *
575 * The if/else clause exists only for the lockdep assertion and can be
576 * ignored.
49e3cf44
TH
577 */
578#define for_each_pwq(pwq, wq) \
49e9d1a9 579 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 580 lockdep_is_held(&(wq->mutex)))
f3421797 581
dc186ad7
TG
582#ifdef CONFIG_DEBUG_OBJECTS_WORK
583
f9e62f31 584static const struct debug_obj_descr work_debug_descr;
dc186ad7 585
99777288
SG
586static void *work_debug_hint(void *addr)
587{
588 return ((struct work_struct *) addr)->func;
589}
590
b9fdac7f
DC
591static bool work_is_static_object(void *addr)
592{
593 struct work_struct *work = addr;
594
595 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
596}
597
dc186ad7
TG
598/*
599 * fixup_init is called when:
600 * - an active object is initialized
601 */
02a982a6 602static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
603{
604 struct work_struct *work = addr;
605
606 switch (state) {
607 case ODEBUG_STATE_ACTIVE:
608 cancel_work_sync(work);
609 debug_object_init(work, &work_debug_descr);
02a982a6 610 return true;
dc186ad7 611 default:
02a982a6 612 return false;
dc186ad7
TG
613 }
614}
615
dc186ad7
TG
616/*
617 * fixup_free is called when:
618 * - an active object is freed
619 */
02a982a6 620static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
621{
622 struct work_struct *work = addr;
623
624 switch (state) {
625 case ODEBUG_STATE_ACTIVE:
626 cancel_work_sync(work);
627 debug_object_free(work, &work_debug_descr);
02a982a6 628 return true;
dc186ad7 629 default:
02a982a6 630 return false;
dc186ad7
TG
631 }
632}
633
f9e62f31 634static const struct debug_obj_descr work_debug_descr = {
dc186ad7 635 .name = "work_struct",
99777288 636 .debug_hint = work_debug_hint,
b9fdac7f 637 .is_static_object = work_is_static_object,
dc186ad7 638 .fixup_init = work_fixup_init,
dc186ad7
TG
639 .fixup_free = work_fixup_free,
640};
641
642static inline void debug_work_activate(struct work_struct *work)
643{
644 debug_object_activate(work, &work_debug_descr);
645}
646
647static inline void debug_work_deactivate(struct work_struct *work)
648{
649 debug_object_deactivate(work, &work_debug_descr);
650}
651
652void __init_work(struct work_struct *work, int onstack)
653{
654 if (onstack)
655 debug_object_init_on_stack(work, &work_debug_descr);
656 else
657 debug_object_init(work, &work_debug_descr);
658}
659EXPORT_SYMBOL_GPL(__init_work);
660
661void destroy_work_on_stack(struct work_struct *work)
662{
663 debug_object_free(work, &work_debug_descr);
664}
665EXPORT_SYMBOL_GPL(destroy_work_on_stack);
666
ea2e64f2
TG
667void destroy_delayed_work_on_stack(struct delayed_work *work)
668{
669 destroy_timer_on_stack(&work->timer);
670 debug_object_free(&work->work, &work_debug_descr);
671}
672EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
673
dc186ad7
TG
674#else
675static inline void debug_work_activate(struct work_struct *work) { }
676static inline void debug_work_deactivate(struct work_struct *work) { }
677#endif
678
4e8b22bd 679/**
67dc8325 680 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
681 * @pool: the pool pointer of interest
682 *
683 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
684 * successfully, -errno on failure.
685 */
9daf9e67
TH
686static int worker_pool_assign_id(struct worker_pool *pool)
687{
688 int ret;
689
68e13a67 690 lockdep_assert_held(&wq_pool_mutex);
5bcab335 691
4e8b22bd
LB
692 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
693 GFP_KERNEL);
229641a6 694 if (ret >= 0) {
e68035fb 695 pool->id = ret;
229641a6
TH
696 return 0;
697 }
fa1b54e6 698 return ret;
7c3eed5c
TH
699}
700
9f66cff2
TH
701static struct pool_workqueue __rcu **
702unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
703{
704 if (cpu >= 0)
705 return per_cpu_ptr(wq->cpu_pwq, cpu);
706 else
707 return &wq->dfl_pwq;
708}
709
710/* @cpu < 0 for dfl_pwq */
711static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
712{
713 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
714 lockdep_is_held(&wq_pool_mutex) ||
715 lockdep_is_held(&wq->mutex));
716}
717
5797b1c1
TH
718/**
719 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
720 * @wq: workqueue of interest
721 *
722 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
723 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
724 * default pwq is always mapped to the pool with the current effective cpumask.
725 */
726static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
727{
728 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
729}
730
73f53c4a
TH
731static unsigned int work_color_to_flags(int color)
732{
733 return color << WORK_STRUCT_COLOR_SHIFT;
734}
735
c4560c2c 736static int get_work_color(unsigned long work_data)
73f53c4a 737{
c4560c2c 738 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
739 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
740}
741
742static int work_next_color(int color)
743{
744 return (color + 1) % WORK_NR_COLORS;
745}
1da177e4 746
14441960 747/*
112202d9
TH
748 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
749 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 750 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 751 *
112202d9
TH
752 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
753 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
754 * work->data. These functions should only be called while the work is
755 * owned - ie. while the PENDING bit is set.
7a22ad75 756 *
112202d9 757 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 758 * corresponding to a work. Pool is available once the work has been
112202d9 759 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 760 * available only while the work item is queued.
7a22ad75 761 *
bbb68dfa
TH
762 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
763 * canceled. While being canceled, a work item may have its PENDING set
764 * but stay off timer and worklist for arbitrarily long and nobody should
765 * try to steal the PENDING bit.
14441960 766 */
7a22ad75
TH
767static inline void set_work_data(struct work_struct *work, unsigned long data,
768 unsigned long flags)
365970a1 769{
6183c009 770 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
771 atomic_long_set(&work->data, data | flags | work_static(work));
772}
365970a1 773
112202d9 774static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
775 unsigned long extra_flags)
776{
112202d9
TH
777 set_work_data(work, (unsigned long)pwq,
778 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
779}
780
4468a00f
LJ
781static void set_work_pool_and_keep_pending(struct work_struct *work,
782 int pool_id)
783{
784 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
785 WORK_STRUCT_PENDING);
786}
787
7c3eed5c
TH
788static void set_work_pool_and_clear_pending(struct work_struct *work,
789 int pool_id)
7a22ad75 790{
23657bb1
TH
791 /*
792 * The following wmb is paired with the implied mb in
793 * test_and_set_bit(PENDING) and ensures all updates to @work made
794 * here are visible to and precede any updates by the next PENDING
795 * owner.
796 */
797 smp_wmb();
7c3eed5c 798 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
799 /*
800 * The following mb guarantees that previous clear of a PENDING bit
801 * will not be reordered with any speculative LOADS or STORES from
802 * work->current_func, which is executed afterwards. This possible
8bdc6201 803 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
804 * the same @work. E.g. consider this case:
805 *
806 * CPU#0 CPU#1
807 * ---------------------------- --------------------------------
808 *
809 * 1 STORE event_indicated
810 * 2 queue_work_on() {
811 * 3 test_and_set_bit(PENDING)
812 * 4 } set_..._and_clear_pending() {
813 * 5 set_work_data() # clear bit
814 * 6 smp_mb()
815 * 7 work->current_func() {
816 * 8 LOAD event_indicated
817 * }
818 *
819 * Without an explicit full barrier speculative LOAD on line 8 can
820 * be executed before CPU#0 does STORE on line 1. If that happens,
821 * CPU#0 observes the PENDING bit is still set and new execution of
822 * a @work is not queued in a hope, that CPU#1 will eventually
823 * finish the queued @work. Meanwhile CPU#1 does not see
824 * event_indicated is set, because speculative LOAD was executed
825 * before actual STORE.
826 */
827 smp_mb();
7a22ad75 828}
f756d5e2 829
7a22ad75 830static void clear_work_data(struct work_struct *work)
1da177e4 831{
7c3eed5c
TH
832 smp_wmb(); /* see set_work_pool_and_clear_pending() */
833 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
834}
835
afa4bb77
LT
836static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
837{
838 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
839}
840
112202d9 841static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 842{
e120153d 843 unsigned long data = atomic_long_read(&work->data);
7a22ad75 844
112202d9 845 if (data & WORK_STRUCT_PWQ)
afa4bb77 846 return work_struct_pwq(data);
e120153d
TH
847 else
848 return NULL;
4d707b9f
ON
849}
850
7c3eed5c
TH
851/**
852 * get_work_pool - return the worker_pool a given work was associated with
853 * @work: the work item of interest
854 *
68e13a67 855 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
856 * access under RCU read lock. As such, this function should be
857 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
858 *
859 * All fields of the returned pool are accessible as long as the above
860 * mentioned locking is in effect. If the returned pool needs to be used
861 * beyond the critical section, the caller is responsible for ensuring the
862 * returned pool is and stays online.
d185af30
YB
863 *
864 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
865 */
866static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 867{
e120153d 868 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 869 int pool_id;
7a22ad75 870
68e13a67 871 assert_rcu_or_pool_mutex();
fa1b54e6 872
112202d9 873 if (data & WORK_STRUCT_PWQ)
afa4bb77 874 return work_struct_pwq(data)->pool;
7a22ad75 875
7c3eed5c
TH
876 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
877 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
878 return NULL;
879
fa1b54e6 880 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
881}
882
883/**
884 * get_work_pool_id - return the worker pool ID a given work is associated with
885 * @work: the work item of interest
886 *
d185af30 887 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
888 * %WORK_OFFQ_POOL_NONE if none.
889 */
890static int get_work_pool_id(struct work_struct *work)
891{
54d5b7d0
LJ
892 unsigned long data = atomic_long_read(&work->data);
893
112202d9 894 if (data & WORK_STRUCT_PWQ)
afa4bb77 895 return work_struct_pwq(data)->pool->id;
7c3eed5c 896
54d5b7d0 897 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
898}
899
bbb68dfa
TH
900static void mark_work_canceling(struct work_struct *work)
901{
7c3eed5c 902 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 903
7c3eed5c
TH
904 pool_id <<= WORK_OFFQ_POOL_SHIFT;
905 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
906}
907
908static bool work_is_canceling(struct work_struct *work)
909{
910 unsigned long data = atomic_long_read(&work->data);
911
112202d9 912 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
913}
914
e22bee78 915/*
3270476a
TH
916 * Policy functions. These define the policies on how the global worker
917 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 918 * they're being called with pool->lock held.
e22bee78
TH
919 */
920
4594bf15 921/*
e22bee78
TH
922 * Need to wake up a worker? Called from anything but currently
923 * running workers.
974271c4
TH
924 *
925 * Note that, because unbound workers never contribute to nr_running, this
706026c2 926 * function will always return %true for unbound pools as long as the
974271c4 927 * worklist isn't empty.
4594bf15 928 */
63d95a91 929static bool need_more_worker(struct worker_pool *pool)
365970a1 930{
0219a352 931 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 932}
4594bf15 933
e22bee78 934/* Can I start working? Called from busy but !running workers. */
63d95a91 935static bool may_start_working(struct worker_pool *pool)
e22bee78 936{
63d95a91 937 return pool->nr_idle;
e22bee78
TH
938}
939
940/* Do I need to keep working? Called from currently running workers. */
63d95a91 941static bool keep_working(struct worker_pool *pool)
e22bee78 942{
bc35f7ef 943 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
944}
945
946/* Do we need a new worker? Called from manager. */
63d95a91 947static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 948{
63d95a91 949 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 950}
365970a1 951
e22bee78 952/* Do we have too many workers and should some go away? */
63d95a91 953static bool too_many_workers(struct worker_pool *pool)
e22bee78 954{
692b4825 955 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
956 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
957 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
958
959 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
960}
961
c54d5046
TH
962/**
963 * worker_set_flags - set worker flags and adjust nr_running accordingly
964 * @worker: self
965 * @flags: flags to set
966 *
967 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
968 */
969static inline void worker_set_flags(struct worker *worker, unsigned int flags)
970{
971 struct worker_pool *pool = worker->pool;
972
bc8b50c2 973 lockdep_assert_held(&pool->lock);
c54d5046
TH
974
975 /* If transitioning into NOT_RUNNING, adjust nr_running. */
976 if ((flags & WORKER_NOT_RUNNING) &&
977 !(worker->flags & WORKER_NOT_RUNNING)) {
978 pool->nr_running--;
979 }
980
981 worker->flags |= flags;
982}
983
984/**
985 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
986 * @worker: self
987 * @flags: flags to clear
988 *
989 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
990 */
991static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992{
993 struct worker_pool *pool = worker->pool;
994 unsigned int oflags = worker->flags;
995
bc8b50c2 996 lockdep_assert_held(&pool->lock);
c54d5046
TH
997
998 worker->flags &= ~flags;
999
1000 /*
1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1003 * of multiple flags, not a single flag.
1004 */
1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 if (!(worker->flags & WORKER_NOT_RUNNING))
1007 pool->nr_running++;
1008}
1009
797e8345
TH
1010/* Return the first idle worker. Called with pool->lock held. */
1011static struct worker *first_idle_worker(struct worker_pool *pool)
1012{
1013 if (unlikely(list_empty(&pool->idle_list)))
1014 return NULL;
1015
1016 return list_first_entry(&pool->idle_list, struct worker, entry);
1017}
1018
1019/**
1020 * worker_enter_idle - enter idle state
1021 * @worker: worker which is entering idle state
1022 *
1023 * @worker is entering idle state. Update stats and idle timer if
1024 * necessary.
1025 *
1026 * LOCKING:
1027 * raw_spin_lock_irq(pool->lock).
1028 */
1029static void worker_enter_idle(struct worker *worker)
1030{
1031 struct worker_pool *pool = worker->pool;
1032
1033 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1034 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1035 (worker->hentry.next || worker->hentry.pprev)))
1036 return;
1037
1038 /* can't use worker_set_flags(), also called from create_worker() */
1039 worker->flags |= WORKER_IDLE;
1040 pool->nr_idle++;
1041 worker->last_active = jiffies;
1042
1043 /* idle_list is LIFO */
1044 list_add(&worker->entry, &pool->idle_list);
1045
1046 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1047 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1048
1049 /* Sanity check nr_running. */
1050 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1051}
1052
1053/**
1054 * worker_leave_idle - leave idle state
1055 * @worker: worker which is leaving idle state
1056 *
1057 * @worker is leaving idle state. Update stats.
1058 *
1059 * LOCKING:
1060 * raw_spin_lock_irq(pool->lock).
1061 */
1062static void worker_leave_idle(struct worker *worker)
1063{
1064 struct worker_pool *pool = worker->pool;
1065
1066 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1067 return;
1068 worker_clr_flags(worker, WORKER_IDLE);
1069 pool->nr_idle--;
1070 list_del_init(&worker->entry);
1071}
1072
1073/**
1074 * find_worker_executing_work - find worker which is executing a work
1075 * @pool: pool of interest
1076 * @work: work to find worker for
1077 *
1078 * Find a worker which is executing @work on @pool by searching
1079 * @pool->busy_hash which is keyed by the address of @work. For a worker
1080 * to match, its current execution should match the address of @work and
1081 * its work function. This is to avoid unwanted dependency between
1082 * unrelated work executions through a work item being recycled while still
1083 * being executed.
1084 *
1085 * This is a bit tricky. A work item may be freed once its execution
1086 * starts and nothing prevents the freed area from being recycled for
1087 * another work item. If the same work item address ends up being reused
1088 * before the original execution finishes, workqueue will identify the
1089 * recycled work item as currently executing and make it wait until the
1090 * current execution finishes, introducing an unwanted dependency.
1091 *
1092 * This function checks the work item address and work function to avoid
1093 * false positives. Note that this isn't complete as one may construct a
1094 * work function which can introduce dependency onto itself through a
1095 * recycled work item. Well, if somebody wants to shoot oneself in the
1096 * foot that badly, there's only so much we can do, and if such deadlock
1097 * actually occurs, it should be easy to locate the culprit work function.
1098 *
1099 * CONTEXT:
1100 * raw_spin_lock_irq(pool->lock).
1101 *
1102 * Return:
1103 * Pointer to worker which is executing @work if found, %NULL
1104 * otherwise.
1105 */
1106static struct worker *find_worker_executing_work(struct worker_pool *pool,
1107 struct work_struct *work)
1108{
1109 struct worker *worker;
1110
1111 hash_for_each_possible(pool->busy_hash, worker, hentry,
1112 (unsigned long)work)
1113 if (worker->current_work == work &&
1114 worker->current_func == work->func)
1115 return worker;
1116
1117 return NULL;
1118}
1119
1120/**
1121 * move_linked_works - move linked works to a list
1122 * @work: start of series of works to be scheduled
1123 * @head: target list to append @work to
1124 * @nextp: out parameter for nested worklist walking
1125 *
873eaca6
TH
1126 * Schedule linked works starting from @work to @head. Work series to be
1127 * scheduled starts at @work and includes any consecutive work with
1128 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1129 * @nextp.
797e8345
TH
1130 *
1131 * CONTEXT:
1132 * raw_spin_lock_irq(pool->lock).
1133 */
1134static void move_linked_works(struct work_struct *work, struct list_head *head,
1135 struct work_struct **nextp)
1136{
1137 struct work_struct *n;
1138
1139 /*
1140 * Linked worklist will always end before the end of the list,
1141 * use NULL for list head.
1142 */
1143 list_for_each_entry_safe_from(work, n, NULL, entry) {
1144 list_move_tail(&work->entry, head);
1145 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1146 break;
1147 }
1148
1149 /*
1150 * If we're already inside safe list traversal and have moved
1151 * multiple works to the scheduled queue, the next position
1152 * needs to be updated.
1153 */
1154 if (nextp)
1155 *nextp = n;
1156}
1157
873eaca6
TH
1158/**
1159 * assign_work - assign a work item and its linked work items to a worker
1160 * @work: work to assign
1161 * @worker: worker to assign to
1162 * @nextp: out parameter for nested worklist walking
1163 *
1164 * Assign @work and its linked work items to @worker. If @work is already being
1165 * executed by another worker in the same pool, it'll be punted there.
1166 *
1167 * If @nextp is not NULL, it's updated to point to the next work of the last
1168 * scheduled work. This allows assign_work() to be nested inside
1169 * list_for_each_entry_safe().
1170 *
1171 * Returns %true if @work was successfully assigned to @worker. %false if @work
1172 * was punted to another worker already executing it.
1173 */
1174static bool assign_work(struct work_struct *work, struct worker *worker,
1175 struct work_struct **nextp)
1176{
1177 struct worker_pool *pool = worker->pool;
1178 struct worker *collision;
1179
1180 lockdep_assert_held(&pool->lock);
1181
1182 /*
1183 * A single work shouldn't be executed concurrently by multiple workers.
1184 * __queue_work() ensures that @work doesn't jump to a different pool
1185 * while still running in the previous pool. Here, we should ensure that
1186 * @work is not executed concurrently by multiple workers from the same
1187 * pool. Check whether anyone is already processing the work. If so,
1188 * defer the work to the currently executing one.
1189 */
1190 collision = find_worker_executing_work(pool, work);
1191 if (unlikely(collision)) {
1192 move_linked_works(work, &collision->scheduled, nextp);
1193 return false;
1194 }
1195
1196 move_linked_works(work, &worker->scheduled, nextp);
1197 return true;
1198}
1199
797e8345 1200/**
0219a352
TH
1201 * kick_pool - wake up an idle worker if necessary
1202 * @pool: pool to kick
797e8345 1203 *
0219a352
TH
1204 * @pool may have pending work items. Wake up worker if necessary. Returns
1205 * whether a worker was woken up.
797e8345 1206 */
0219a352 1207static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1208{
1209 struct worker *worker = first_idle_worker(pool);
8639eceb 1210 struct task_struct *p;
797e8345 1211
0219a352
TH
1212 lockdep_assert_held(&pool->lock);
1213
1214 if (!need_more_worker(pool) || !worker)
1215 return false;
1216
4cb1ef64
TH
1217 if (pool->flags & POOL_BH) {
1218 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1219 raise_softirq_irqoff(HI_SOFTIRQ);
1220 else
1221 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1222 return true;
1223 }
1224
8639eceb
TH
1225 p = worker->task;
1226
1227#ifdef CONFIG_SMP
1228 /*
1229 * Idle @worker is about to execute @work and waking up provides an
1230 * opportunity to migrate @worker at a lower cost by setting the task's
1231 * wake_cpu field. Let's see if we want to move @worker to improve
1232 * execution locality.
1233 *
1234 * We're waking the worker that went idle the latest and there's some
1235 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1236 * so, setting the wake_cpu won't do anything. As this is a best-effort
1237 * optimization and the race window is narrow, let's leave as-is for
1238 * now. If this becomes pronounced, we can skip over workers which are
1239 * still on cpu when picking an idle worker.
1240 *
1241 * If @pool has non-strict affinity, @worker might have ended up outside
1242 * its affinity scope. Repatriate.
1243 */
1244 if (!pool->attrs->affn_strict &&
1245 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1246 struct work_struct *work = list_first_entry(&pool->worklist,
1247 struct work_struct, entry);
1248 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1249 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1250 }
1251#endif
1252 wake_up_process(p);
0219a352 1253 return true;
797e8345
TH
1254}
1255
63638450
TH
1256#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1257
1258/*
1259 * Concurrency-managed per-cpu work items that hog CPU for longer than
1260 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1261 * which prevents them from stalling other concurrency-managed work items. If a
1262 * work function keeps triggering this mechanism, it's likely that the work item
1263 * should be using an unbound workqueue instead.
1264 *
1265 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1266 * and report them so that they can be examined and converted to use unbound
1267 * workqueues as appropriate. To avoid flooding the console, each violating work
1268 * function is tracked and reported with exponential backoff.
1269 */
1270#define WCI_MAX_ENTS 128
1271
1272struct wci_ent {
1273 work_func_t func;
1274 atomic64_t cnt;
1275 struct hlist_node hash_node;
1276};
1277
1278static struct wci_ent wci_ents[WCI_MAX_ENTS];
1279static int wci_nr_ents;
1280static DEFINE_RAW_SPINLOCK(wci_lock);
1281static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1282
1283static struct wci_ent *wci_find_ent(work_func_t func)
1284{
1285 struct wci_ent *ent;
1286
1287 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1288 (unsigned long)func) {
1289 if (ent->func == func)
1290 return ent;
1291 }
1292 return NULL;
1293}
1294
1295static void wq_cpu_intensive_report(work_func_t func)
1296{
1297 struct wci_ent *ent;
1298
1299restart:
1300 ent = wci_find_ent(func);
1301 if (ent) {
1302 u64 cnt;
1303
1304 /*
1305 * Start reporting from the fourth time and back off
1306 * exponentially.
1307 */
1308 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1309 if (cnt >= 4 && is_power_of_2(cnt))
1310 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1311 ent->func, wq_cpu_intensive_thresh_us,
1312 atomic64_read(&ent->cnt));
1313 return;
1314 }
1315
1316 /*
1317 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1318 * is exhausted, something went really wrong and we probably made enough
1319 * noise already.
1320 */
1321 if (wci_nr_ents >= WCI_MAX_ENTS)
1322 return;
1323
1324 raw_spin_lock(&wci_lock);
1325
1326 if (wci_nr_ents >= WCI_MAX_ENTS) {
1327 raw_spin_unlock(&wci_lock);
1328 return;
1329 }
1330
1331 if (wci_find_ent(func)) {
1332 raw_spin_unlock(&wci_lock);
1333 goto restart;
1334 }
1335
1336 ent = &wci_ents[wci_nr_ents++];
1337 ent->func = func;
1338 atomic64_set(&ent->cnt, 1);
1339 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1340
1341 raw_spin_unlock(&wci_lock);
1342}
1343
1344#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1345static void wq_cpu_intensive_report(work_func_t func) {}
1346#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1347
d302f017 1348/**
6d25be57 1349 * wq_worker_running - a worker is running again
e22bee78 1350 * @task: task waking up
e22bee78 1351 *
6d25be57 1352 * This function is called when a worker returns from schedule()
e22bee78 1353 */
6d25be57 1354void wq_worker_running(struct task_struct *task)
e22bee78
TH
1355{
1356 struct worker *worker = kthread_data(task);
1357
c8f6219b 1358 if (!READ_ONCE(worker->sleeping))
6d25be57 1359 return;
07edfece
FW
1360
1361 /*
1362 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1363 * and the nr_running increment below, we may ruin the nr_running reset
1364 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1365 * pool. Protect against such race.
1366 */
1367 preempt_disable();
6d25be57 1368 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1369 worker->pool->nr_running++;
07edfece 1370 preempt_enable();
616db877
TH
1371
1372 /*
1373 * CPU intensive auto-detection cares about how long a work item hogged
1374 * CPU without sleeping. Reset the starting timestamp on wakeup.
1375 */
1376 worker->current_at = worker->task->se.sum_exec_runtime;
1377
c8f6219b 1378 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1379}
1380
1381/**
1382 * wq_worker_sleeping - a worker is going to sleep
1383 * @task: task going to sleep
e22bee78 1384 *
6d25be57 1385 * This function is called from schedule() when a busy worker is
ccf45156 1386 * going to sleep.
e22bee78 1387 */
6d25be57 1388void wq_worker_sleeping(struct task_struct *task)
e22bee78 1389{
cc5bff38 1390 struct worker *worker = kthread_data(task);
111c225a 1391 struct worker_pool *pool;
e22bee78 1392
111c225a
TH
1393 /*
1394 * Rescuers, which may not have all the fields set up like normal
1395 * workers, also reach here, let's not access anything before
1396 * checking NOT_RUNNING.
1397 */
2d64672e 1398 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1399 return;
e22bee78 1400
111c225a 1401 pool = worker->pool;
111c225a 1402
62849a96 1403 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1404 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1405 return;
1406
c8f6219b 1407 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1408 raw_spin_lock_irq(&pool->lock);
e22bee78 1409
45c753f5
FW
1410 /*
1411 * Recheck in case unbind_workers() preempted us. We don't
1412 * want to decrement nr_running after the worker is unbound
1413 * and nr_running has been reset.
1414 */
1415 if (worker->flags & WORKER_NOT_RUNNING) {
1416 raw_spin_unlock_irq(&pool->lock);
1417 return;
1418 }
1419
bc35f7ef 1420 pool->nr_running--;
0219a352 1421 if (kick_pool(pool))
725e8ec5 1422 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1423
a9b8a985 1424 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1425}
1426
616db877
TH
1427/**
1428 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1429 * @task: task currently running
1430 *
1431 * Called from scheduler_tick(). We're in the IRQ context and the current
1432 * worker's fields which follow the 'K' locking rule can be accessed safely.
1433 */
1434void wq_worker_tick(struct task_struct *task)
1435{
1436 struct worker *worker = kthread_data(task);
1437 struct pool_workqueue *pwq = worker->current_pwq;
1438 struct worker_pool *pool = worker->pool;
1439
1440 if (!pwq)
1441 return;
1442
8a1dd1e5
TH
1443 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1444
18c8ae81
Z
1445 if (!wq_cpu_intensive_thresh_us)
1446 return;
1447
616db877
TH
1448 /*
1449 * If the current worker is concurrency managed and hogged the CPU for
1450 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1451 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1452 *
1453 * Set @worker->sleeping means that @worker is in the process of
1454 * switching out voluntarily and won't be contributing to
1455 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1456 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1457 * double decrements. The task is releasing the CPU anyway. Let's skip.
1458 * We probably want to make this prettier in the future.
616db877 1459 */
c8f6219b 1460 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1461 worker->task->se.sum_exec_runtime - worker->current_at <
1462 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1463 return;
1464
1465 raw_spin_lock(&pool->lock);
1466
1467 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1468 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1469 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1470
0219a352 1471 if (kick_pool(pool))
616db877 1472 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1473
1474 raw_spin_unlock(&pool->lock);
1475}
1476
1b69ac6b
JW
1477/**
1478 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1479 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1480 *
1481 * Determine the last function a worker executed. This is called from
1482 * the scheduler to get a worker's last known identity.
1483 *
1484 * CONTEXT:
a9b8a985 1485 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1486 *
4b047002
JW
1487 * This function is called during schedule() when a kworker is going
1488 * to sleep. It's used by psi to identify aggregation workers during
1489 * dequeuing, to allow periodic aggregation to shut-off when that
1490 * worker is the last task in the system or cgroup to go to sleep.
1491 *
1492 * As this function doesn't involve any workqueue-related locking, it
1493 * only returns stable values when called from inside the scheduler's
1494 * queuing and dequeuing paths, when @task, which must be a kworker,
1495 * is guaranteed to not be processing any works.
1496 *
1b69ac6b
JW
1497 * Return:
1498 * The last work function %current executed as a worker, NULL if it
1499 * hasn't executed any work yet.
1500 */
1501work_func_t wq_worker_last_func(struct task_struct *task)
1502{
1503 struct worker *worker = kthread_data(task);
1504
1505 return worker->last_func;
1506}
1507
91ccc6e7
TH
1508/**
1509 * wq_node_nr_active - Determine wq_node_nr_active to use
1510 * @wq: workqueue of interest
1511 * @node: NUMA node, can be %NUMA_NO_NODE
1512 *
1513 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1514 *
1515 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1516 *
1517 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1518 *
1519 * - Otherwise, node_nr_active[@node].
1520 */
1521static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1522 int node)
1523{
1524 if (!(wq->flags & WQ_UNBOUND))
1525 return NULL;
1526
1527 if (node == NUMA_NO_NODE)
1528 node = nr_node_ids;
1529
1530 return wq->node_nr_active[node];
1531}
1532
5797b1c1
TH
1533/**
1534 * wq_update_node_max_active - Update per-node max_actives to use
1535 * @wq: workqueue to update
1536 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1537 *
1538 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1539 * distributed among nodes according to the proportions of numbers of online
1540 * cpus. The result is always between @wq->min_active and max_active.
1541 */
1542static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1543{
1544 struct cpumask *effective = unbound_effective_cpumask(wq);
1545 int min_active = READ_ONCE(wq->min_active);
1546 int max_active = READ_ONCE(wq->max_active);
1547 int total_cpus, node;
1548
1549 lockdep_assert_held(&wq->mutex);
1550
c5f8cd6c
TH
1551 if (!wq_topo_initialized)
1552 return;
1553
15930da4 1554 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
5797b1c1
TH
1555 off_cpu = -1;
1556
1557 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1558 if (off_cpu >= 0)
1559 total_cpus--;
1560
1561 for_each_node(node) {
1562 int node_cpus;
1563
1564 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1565 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1566 node_cpus--;
1567
1568 wq_node_nr_active(wq, node)->max =
1569 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1570 min_active, max_active);
1571 }
1572
1573 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1574}
1575
8864b4e5
TH
1576/**
1577 * get_pwq - get an extra reference on the specified pool_workqueue
1578 * @pwq: pool_workqueue to get
1579 *
1580 * Obtain an extra reference on @pwq. The caller should guarantee that
1581 * @pwq has positive refcnt and be holding the matching pool->lock.
1582 */
1583static void get_pwq(struct pool_workqueue *pwq)
1584{
1585 lockdep_assert_held(&pwq->pool->lock);
1586 WARN_ON_ONCE(pwq->refcnt <= 0);
1587 pwq->refcnt++;
1588}
1589
1590/**
1591 * put_pwq - put a pool_workqueue reference
1592 * @pwq: pool_workqueue to put
1593 *
1594 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1595 * destruction. The caller should be holding the matching pool->lock.
1596 */
1597static void put_pwq(struct pool_workqueue *pwq)
1598{
1599 lockdep_assert_held(&pwq->pool->lock);
1600 if (likely(--pwq->refcnt))
1601 return;
8864b4e5 1602 /*
967b494e
TH
1603 * @pwq can't be released under pool->lock, bounce to a dedicated
1604 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1605 */
687a9aa5 1606 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1607}
1608
dce90d47
TH
1609/**
1610 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1611 * @pwq: pool_workqueue to put (can be %NULL)
1612 *
1613 * put_pwq() with locking. This function also allows %NULL @pwq.
1614 */
1615static void put_pwq_unlocked(struct pool_workqueue *pwq)
1616{
1617 if (pwq) {
1618 /*
24acfb71 1619 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1620 * following lock operations are safe.
1621 */
a9b8a985 1622 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1623 put_pwq(pwq);
a9b8a985 1624 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1625 }
1626}
1627
afa87ce8
TH
1628static bool pwq_is_empty(struct pool_workqueue *pwq)
1629{
1630 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1631}
1632
4c638030
TH
1633static void __pwq_activate_work(struct pool_workqueue *pwq,
1634 struct work_struct *work)
bf4ede01 1635{
1c270b79
TH
1636 unsigned long *wdb = work_data_bits(work);
1637
1638 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1639 trace_workqueue_activate_work(work);
82607adc
TH
1640 if (list_empty(&pwq->pool->worklist))
1641 pwq->pool->watchdog_ts = jiffies;
112202d9 1642 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1643 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1644}
1645
1646/**
1647 * pwq_activate_work - Activate a work item if inactive
1648 * @pwq: pool_workqueue @work belongs to
1649 * @work: work item to activate
1650 *
1651 * Returns %true if activated. %false if already active.
1652 */
1653static bool pwq_activate_work(struct pool_workqueue *pwq,
1654 struct work_struct *work)
1655{
1656 struct worker_pool *pool = pwq->pool;
91ccc6e7 1657 struct wq_node_nr_active *nna;
4c638030
TH
1658
1659 lockdep_assert_held(&pool->lock);
1660
1661 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1662 return false;
1663
91ccc6e7
TH
1664 nna = wq_node_nr_active(pwq->wq, pool->node);
1665 if (nna)
1666 atomic_inc(&nna->nr);
1667
112202d9 1668 pwq->nr_active++;
4c638030
TH
1669 __pwq_activate_work(pwq, work);
1670 return true;
bf4ede01
TH
1671}
1672
5797b1c1
TH
1673static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1674{
1675 int max = READ_ONCE(nna->max);
1676
1677 while (true) {
1678 int old, tmp;
1679
1680 old = atomic_read(&nna->nr);
1681 if (old >= max)
1682 return false;
1683 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1684 if (tmp == old)
1685 return true;
1686 }
1687}
1688
1c270b79
TH
1689/**
1690 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1691 * @pwq: pool_workqueue of interest
5797b1c1 1692 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1693 *
1694 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1695 * successfully obtained. %false otherwise.
1696 */
5797b1c1 1697static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1698{
1699 struct workqueue_struct *wq = pwq->wq;
1700 struct worker_pool *pool = pwq->pool;
91ccc6e7 1701 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1702 bool obtained = false;
1c270b79
TH
1703
1704 lockdep_assert_held(&pool->lock);
1705
5797b1c1 1706 if (!nna) {
4cb1ef64 1707 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
5797b1c1
TH
1708 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1709 goto out;
1710 }
1711
4c065dbc
WL
1712 if (unlikely(pwq->plugged))
1713 return false;
1714
5797b1c1
TH
1715 /*
1716 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1717 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1718 * concurrency level. Don't jump the line.
1719 *
1720 * We need to ignore the pending test after max_active has increased as
1721 * pwq_dec_nr_active() can only maintain the concurrency level but not
1722 * increase it. This is indicated by @fill.
1723 */
1724 if (!list_empty(&pwq->pending_node) && likely(!fill))
1725 goto out;
1726
1727 obtained = tryinc_node_nr_active(nna);
1728 if (obtained)
1729 goto out;
1730
1731 /*
1732 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1733 * and try again. The smp_mb() is paired with the implied memory barrier
1734 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1735 * we see the decremented $nna->nr or they see non-empty
1736 * $nna->pending_pwqs.
1737 */
1738 raw_spin_lock(&nna->lock);
1739
1740 if (list_empty(&pwq->pending_node))
1741 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1742 else if (likely(!fill))
1743 goto out_unlock;
1744
1745 smp_mb();
1746
1747 obtained = tryinc_node_nr_active(nna);
1c270b79 1748
5797b1c1
TH
1749 /*
1750 * If @fill, @pwq might have already been pending. Being spuriously
1751 * pending in cold paths doesn't affect anything. Let's leave it be.
1752 */
1753 if (obtained && likely(!fill))
1754 list_del_init(&pwq->pending_node);
1755
1756out_unlock:
1757 raw_spin_unlock(&nna->lock);
1758out:
1759 if (obtained)
1c270b79
TH
1760 pwq->nr_active++;
1761 return obtained;
1762}
1763
1764/**
1765 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1766 * @pwq: pool_workqueue of interest
5797b1c1 1767 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1768 *
1769 * Activate the first inactive work item of @pwq if available and allowed by
1770 * max_active limit.
1771 *
1772 * Returns %true if an inactive work item has been activated. %false if no
1773 * inactive work item is found or max_active limit is reached.
1774 */
5797b1c1 1775static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1776{
1777 struct work_struct *work =
1778 list_first_entry_or_null(&pwq->inactive_works,
1779 struct work_struct, entry);
1780
5797b1c1 1781 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1782 __pwq_activate_work(pwq, work);
1783 return true;
1784 } else {
1785 return false;
1786 }
1787}
1788
4c065dbc 1789/**
516d3dc9
WL
1790 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1791 * @wq: workqueue_struct where its oldest pwq is to be unplugged
4c065dbc 1792 *
516d3dc9
WL
1793 * This function should only be called for ordered workqueues where only the
1794 * oldest pwq is unplugged, the others are plugged to suspend execution to
1795 * ensure proper work item ordering::
4c065dbc
WL
1796 *
1797 * dfl_pwq --------------+ [P] - plugged
1798 * |
1799 * v
1800 * pwqs -> A -> B [P] -> C [P] (newest)
1801 * | | |
1802 * 1 3 5
1803 * | | |
1804 * 2 4 6
516d3dc9
WL
1805 *
1806 * When the oldest pwq is drained and removed, this function should be called
1807 * to unplug the next oldest one to start its work item execution. Note that
1808 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1809 * the list is the oldest.
4c065dbc
WL
1810 */
1811static void unplug_oldest_pwq(struct workqueue_struct *wq)
1812{
1813 struct pool_workqueue *pwq;
1814
1815 lockdep_assert_held(&wq->mutex);
1816
1817 /* Caller should make sure that pwqs isn't empty before calling */
1818 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1819 pwqs_node);
1820 raw_spin_lock_irq(&pwq->pool->lock);
1821 if (pwq->plugged) {
1822 pwq->plugged = false;
1823 if (pwq_activate_first_inactive(pwq, true))
1824 kick_pool(pwq->pool);
1825 }
1826 raw_spin_unlock_irq(&pwq->pool->lock);
1827}
1828
5797b1c1
TH
1829/**
1830 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1831 * @nna: wq_node_nr_active to activate a pending pwq for
1832 * @caller_pool: worker_pool the caller is locking
1833 *
1834 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1835 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1836 */
1837static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1838 struct worker_pool *caller_pool)
1839{
1840 struct worker_pool *locked_pool = caller_pool;
1841 struct pool_workqueue *pwq;
1842 struct work_struct *work;
1843
1844 lockdep_assert_held(&caller_pool->lock);
1845
1846 raw_spin_lock(&nna->lock);
1847retry:
1848 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1849 struct pool_workqueue, pending_node);
1850 if (!pwq)
1851 goto out_unlock;
1852
1853 /*
1854 * If @pwq is for a different pool than @locked_pool, we need to lock
1855 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1856 * / lock dance. For that, we also need to release @nna->lock as it's
1857 * nested inside pool locks.
1858 */
1859 if (pwq->pool != locked_pool) {
1860 raw_spin_unlock(&locked_pool->lock);
1861 locked_pool = pwq->pool;
1862 if (!raw_spin_trylock(&locked_pool->lock)) {
1863 raw_spin_unlock(&nna->lock);
1864 raw_spin_lock(&locked_pool->lock);
1865 raw_spin_lock(&nna->lock);
1866 goto retry;
1867 }
1868 }
1869
1870 /*
1871 * $pwq may not have any inactive work items due to e.g. cancellations.
1872 * Drop it from pending_pwqs and see if there's another one.
1873 */
1874 work = list_first_entry_or_null(&pwq->inactive_works,
1875 struct work_struct, entry);
1876 if (!work) {
1877 list_del_init(&pwq->pending_node);
1878 goto retry;
1879 }
1880
1881 /*
1882 * Acquire an nr_active count and activate the inactive work item. If
1883 * $pwq still has inactive work items, rotate it to the end of the
1884 * pending_pwqs so that we round-robin through them. This means that
1885 * inactive work items are not activated in queueing order which is fine
1886 * given that there has never been any ordering across different pwqs.
1887 */
1888 if (likely(tryinc_node_nr_active(nna))) {
1889 pwq->nr_active++;
1890 __pwq_activate_work(pwq, work);
1891
1892 if (list_empty(&pwq->inactive_works))
1893 list_del_init(&pwq->pending_node);
1894 else
1895 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1896
1897 /* if activating a foreign pool, make sure it's running */
1898 if (pwq->pool != caller_pool)
1899 kick_pool(pwq->pool);
1900 }
1901
1902out_unlock:
1903 raw_spin_unlock(&nna->lock);
1904 if (locked_pool != caller_pool) {
1905 raw_spin_unlock(&locked_pool->lock);
1906 raw_spin_lock(&caller_pool->lock);
1907 }
1908}
1909
1c270b79
TH
1910/**
1911 * pwq_dec_nr_active - Retire an active count
1912 * @pwq: pool_workqueue of interest
1913 *
1914 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1915 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1916 */
1917static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1918{
1c270b79 1919 struct worker_pool *pool = pwq->pool;
91ccc6e7 1920 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1921
1c270b79
TH
1922 lockdep_assert_held(&pool->lock);
1923
91ccc6e7
TH
1924 /*
1925 * @pwq->nr_active should be decremented for both percpu and unbound
1926 * workqueues.
1927 */
1c270b79 1928 pwq->nr_active--;
91ccc6e7
TH
1929
1930 /*
1931 * For a percpu workqueue, it's simple. Just need to kick the first
1932 * inactive work item on @pwq itself.
1933 */
1934 if (!nna) {
5797b1c1 1935 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1936 return;
1937 }
1938
5797b1c1
TH
1939 /*
1940 * If @pwq is for an unbound workqueue, it's more complicated because
1941 * multiple pwqs and pools may be sharing the nr_active count. When a
1942 * pwq needs to wait for an nr_active count, it puts itself on
1943 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1944 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1945 * guarantee that either we see non-empty pending_pwqs or they see
1946 * decremented $nna->nr.
1947 *
1948 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1949 * max_active gets updated. However, it is guaranteed to be equal to or
1950 * larger than @pwq->wq->min_active which is above zero unless freezing.
1951 * This maintains the forward progress guarantee.
1952 */
1953 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1954 return;
1955
1956 if (!list_empty(&nna->pending_pwqs))
1957 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1958}
1959
bf4ede01 1960/**
112202d9
TH
1961 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1962 * @pwq: pwq of interest
c4560c2c 1963 * @work_data: work_data of work which left the queue
bf4ede01
TH
1964 *
1965 * A work either has completed or is removed from pending queue,
112202d9 1966 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1967 *
dd6c3c54
TH
1968 * NOTE:
1969 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1970 * and thus should be called after all other state updates for the in-flight
1971 * work item is complete.
1972 *
bf4ede01 1973 * CONTEXT:
a9b8a985 1974 * raw_spin_lock_irq(pool->lock).
bf4ede01 1975 */
c4560c2c 1976static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1977{
c4560c2c
LJ
1978 int color = get_work_color(work_data);
1979
1c270b79
TH
1980 if (!(work_data & WORK_STRUCT_INACTIVE))
1981 pwq_dec_nr_active(pwq);
018f3a13 1982
112202d9 1983 pwq->nr_in_flight[color]--;
bf4ede01 1984
bf4ede01 1985 /* is flush in progress and are we at the flushing tip? */
112202d9 1986 if (likely(pwq->flush_color != color))
8864b4e5 1987 goto out_put;
bf4ede01
TH
1988
1989 /* are there still in-flight works? */
112202d9 1990 if (pwq->nr_in_flight[color])
8864b4e5 1991 goto out_put;
bf4ede01 1992
112202d9
TH
1993 /* this pwq is done, clear flush_color */
1994 pwq->flush_color = -1;
bf4ede01
TH
1995
1996 /*
112202d9 1997 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1998 * will handle the rest.
1999 */
112202d9
TH
2000 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2001 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
2002out_put:
2003 put_pwq(pwq);
bf4ede01
TH
2004}
2005
36e227d2 2006/**
bbb68dfa 2007 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
2008 * @work: work item to steal
2009 * @is_dwork: @work is a delayed_work
bbb68dfa 2010 * @flags: place to store irq state
36e227d2
TH
2011 *
2012 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 2013 * stable state - idle, on timer or on worklist.
36e227d2 2014 *
d185af30 2015 * Return:
3eb6b31b
MCC
2016 *
2017 * ======== ================================================================
36e227d2
TH
2018 * 1 if @work was pending and we successfully stole PENDING
2019 * 0 if @work was idle and we claimed PENDING
2020 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
2021 * -ENOENT if someone else is canceling @work, this state may persist
2022 * for arbitrarily long
3eb6b31b 2023 * ======== ================================================================
36e227d2 2024 *
d185af30 2025 * Note:
bbb68dfa 2026 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
2027 * interrupted while holding PENDING and @work off queue, irq must be
2028 * disabled on entry. This, combined with delayed_work->timer being
2029 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
2030 *
2031 * On successful return, >= 0, irq is disabled and the caller is
2032 * responsible for releasing it using local_irq_restore(*@flags).
2033 *
e0aecdd8 2034 * This function is safe to call from any context including IRQ handler.
bf4ede01 2035 */
bbb68dfa
TH
2036static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
2037 unsigned long *flags)
bf4ede01 2038{
d565ed63 2039 struct worker_pool *pool;
112202d9 2040 struct pool_workqueue *pwq;
bf4ede01 2041
bbb68dfa
TH
2042 local_irq_save(*flags);
2043
36e227d2
TH
2044 /* try to steal the timer if it exists */
2045 if (is_dwork) {
2046 struct delayed_work *dwork = to_delayed_work(work);
2047
e0aecdd8
TH
2048 /*
2049 * dwork->timer is irqsafe. If del_timer() fails, it's
2050 * guaranteed that the timer is not queued anywhere and not
2051 * running on the local CPU.
2052 */
36e227d2
TH
2053 if (likely(del_timer(&dwork->timer)))
2054 return 1;
2055 }
2056
2057 /* try to claim PENDING the normal way */
bf4ede01
TH
2058 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2059 return 0;
2060
24acfb71 2061 rcu_read_lock();
bf4ede01
TH
2062 /*
2063 * The queueing is in progress, or it is already queued. Try to
2064 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2065 */
d565ed63
TH
2066 pool = get_work_pool(work);
2067 if (!pool)
bbb68dfa 2068 goto fail;
bf4ede01 2069
a9b8a985 2070 raw_spin_lock(&pool->lock);
0b3dae68 2071 /*
112202d9
TH
2072 * work->data is guaranteed to point to pwq only while the work
2073 * item is queued on pwq->wq, and both updating work->data to point
2074 * to pwq on queueing and to pool on dequeueing are done under
2075 * pwq->pool->lock. This in turn guarantees that, if work->data
2076 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
2077 * item is currently queued on that pool.
2078 */
112202d9
TH
2079 pwq = get_work_pwq(work);
2080 if (pwq && pwq->pool == pool) {
c70e1779
TH
2081 unsigned long work_data;
2082
16062836
TH
2083 debug_work_deactivate(work);
2084
2085 /*
018f3a13
LJ
2086 * A cancelable inactive work item must be in the
2087 * pwq->inactive_works since a queued barrier can't be
2088 * canceled (see the comments in insert_wq_barrier()).
2089 *
f97a4a1a 2090 * An inactive work item cannot be grabbed directly because
d812796e 2091 * it might have linked barrier work items which, if left
f97a4a1a 2092 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
2093 * management later on and cause stall. Make sure the work
2094 * item is activated before grabbing.
2095 */
4c638030 2096 pwq_activate_work(pwq, work);
16062836
TH
2097
2098 list_del_init(&work->entry);
16062836 2099
c70e1779
TH
2100 /*
2101 * work->data points to pwq iff queued. Let's point to pool. As
2102 * this destroys work->data needed by the next step, stash it.
2103 */
2104 work_data = *work_data_bits(work);
16062836
TH
2105 set_work_pool_and_keep_pending(work, pool->id);
2106
dd6c3c54 2107 /* must be the last step, see the function comment */
c70e1779 2108 pwq_dec_nr_in_flight(pwq, work_data);
dd6c3c54 2109
a9b8a985 2110 raw_spin_unlock(&pool->lock);
24acfb71 2111 rcu_read_unlock();
16062836 2112 return 1;
bf4ede01 2113 }
a9b8a985 2114 raw_spin_unlock(&pool->lock);
bbb68dfa 2115fail:
24acfb71 2116 rcu_read_unlock();
bbb68dfa
TH
2117 local_irq_restore(*flags);
2118 if (work_is_canceling(work))
2119 return -ENOENT;
2120 cpu_relax();
36e227d2 2121 return -EAGAIN;
bf4ede01
TH
2122}
2123
4690c4ab 2124/**
706026c2 2125 * insert_work - insert a work into a pool
112202d9 2126 * @pwq: pwq @work belongs to
4690c4ab
TH
2127 * @work: work to insert
2128 * @head: insertion point
2129 * @extra_flags: extra WORK_STRUCT_* flags to set
2130 *
112202d9 2131 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2132 * work_struct flags.
4690c4ab
TH
2133 *
2134 * CONTEXT:
a9b8a985 2135 * raw_spin_lock_irq(pool->lock).
4690c4ab 2136 */
112202d9
TH
2137static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2138 struct list_head *head, unsigned int extra_flags)
b89deed3 2139{
fe089f87 2140 debug_work_activate(work);
e22bee78 2141
e89a85d6 2142 /* record the work call stack in order to print it in KASAN reports */
f70da745 2143 kasan_record_aux_stack_noalloc(work);
e89a85d6 2144
4690c4ab 2145 /* we own @work, set data and link */
112202d9 2146 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2147 list_add_tail(&work->entry, head);
8864b4e5 2148 get_pwq(pwq);
b89deed3
ON
2149}
2150
c8efcc25
TH
2151/*
2152 * Test whether @work is being queued from another work executing on the
8d03ecfe 2153 * same workqueue.
c8efcc25
TH
2154 */
2155static bool is_chained_work(struct workqueue_struct *wq)
2156{
8d03ecfe
TH
2157 struct worker *worker;
2158
2159 worker = current_wq_worker();
2160 /*
bf393fd4 2161 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2162 * I'm @worker, it's safe to dereference it without locking.
2163 */
112202d9 2164 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2165}
2166
ef557180
MG
2167/*
2168 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2169 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2170 * avoid perturbing sensitive tasks.
2171 */
2172static int wq_select_unbound_cpu(int cpu)
2173{
2174 int new_cpu;
2175
f303fccb
TH
2176 if (likely(!wq_debug_force_rr_cpu)) {
2177 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2178 return cpu;
a8ec5880
AF
2179 } else {
2180 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2181 }
2182
ef557180
MG
2183 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2184 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2185 if (unlikely(new_cpu >= nr_cpu_ids)) {
2186 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2187 if (unlikely(new_cpu >= nr_cpu_ids))
2188 return cpu;
2189 }
2190 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2191
2192 return new_cpu;
2193}
2194
d84ff051 2195static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2196 struct work_struct *work)
2197{
112202d9 2198 struct pool_workqueue *pwq;
fe089f87 2199 struct worker_pool *last_pool, *pool;
8a2e8e5d 2200 unsigned int work_flags;
b75cac93 2201 unsigned int req_cpu = cpu;
8930caba
TH
2202
2203 /*
2204 * While a work item is PENDING && off queue, a task trying to
2205 * steal the PENDING will busy-loop waiting for it to either get
2206 * queued or lose PENDING. Grabbing PENDING and queueing should
2207 * happen with IRQ disabled.
2208 */
8e8eb730 2209 lockdep_assert_irqs_disabled();
1da177e4 2210
1e19ffc6 2211
33e3f0a3
RC
2212 /*
2213 * For a draining wq, only works from the same workqueue are
2214 * allowed. The __WQ_DESTROYING helps to spot the issue that
2215 * queues a new work item to a wq after destroy_workqueue(wq).
2216 */
2217 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2218 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2219 return;
24acfb71 2220 rcu_read_lock();
9e8cd2f5 2221retry:
c9178087 2222 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2223 if (req_cpu == WORK_CPU_UNBOUND) {
2224 if (wq->flags & WQ_UNBOUND)
aa202f1f 2225 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2226 else
aa202f1f 2227 cpu = raw_smp_processor_id();
aa202f1f 2228 }
dbf2576e 2229
636b927e 2230 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2231 pool = pwq->pool;
2232
c9178087
TH
2233 /*
2234 * If @work was previously on a different pool, it might still be
2235 * running there, in which case the work needs to be queued on that
2236 * pool to guarantee non-reentrancy.
2237 */
2238 last_pool = get_work_pool(work);
fe089f87 2239 if (last_pool && last_pool != pool) {
c9178087 2240 struct worker *worker;
18aa9eff 2241
a9b8a985 2242 raw_spin_lock(&last_pool->lock);
18aa9eff 2243
c9178087 2244 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2245
c9178087
TH
2246 if (worker && worker->current_pwq->wq == wq) {
2247 pwq = worker->current_pwq;
fe089f87
TH
2248 pool = pwq->pool;
2249 WARN_ON_ONCE(pool != last_pool);
8930caba 2250 } else {
c9178087 2251 /* meh... not running there, queue here */
a9b8a985 2252 raw_spin_unlock(&last_pool->lock);
fe089f87 2253 raw_spin_lock(&pool->lock);
8930caba 2254 }
f3421797 2255 } else {
fe089f87 2256 raw_spin_lock(&pool->lock);
502ca9d8
TH
2257 }
2258
9e8cd2f5 2259 /*
636b927e
TH
2260 * pwq is determined and locked. For unbound pools, we could have raced
2261 * with pwq release and it could already be dead. If its refcnt is zero,
2262 * repeat pwq selection. Note that unbound pwqs never die without
2263 * another pwq replacing it in cpu_pwq or while work items are executing
2264 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2265 */
2266 if (unlikely(!pwq->refcnt)) {
2267 if (wq->flags & WQ_UNBOUND) {
fe089f87 2268 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2269 cpu_relax();
2270 goto retry;
2271 }
2272 /* oops */
2273 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2274 wq->name, cpu);
2275 }
2276
112202d9
TH
2277 /* pwq determined, queue */
2278 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2279
24acfb71
TG
2280 if (WARN_ON(!list_empty(&work->entry)))
2281 goto out;
1e19ffc6 2282
112202d9
TH
2283 pwq->nr_in_flight[pwq->work_color]++;
2284 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2285
a045a272
TH
2286 /*
2287 * Limit the number of concurrently active work items to max_active.
2288 * @work must also queue behind existing inactive work items to maintain
2289 * ordering when max_active changes. See wq_adjust_max_active().
2290 */
5797b1c1 2291 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2292 if (list_empty(&pool->worklist))
2293 pool->watchdog_ts = jiffies;
2294
cdadf009 2295 trace_workqueue_activate_work(work);
fe089f87 2296 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2297 kick_pool(pool);
8a2e8e5d 2298 } else {
f97a4a1a 2299 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2300 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2301 }
1e19ffc6 2302
24acfb71 2303out:
fe089f87 2304 raw_spin_unlock(&pool->lock);
24acfb71 2305 rcu_read_unlock();
1da177e4
LT
2306}
2307
0fcb78c2 2308/**
c1a220e7
ZR
2309 * queue_work_on - queue work on specific cpu
2310 * @cpu: CPU number to execute work on
0fcb78c2
REB
2311 * @wq: workqueue to use
2312 * @work: work to queue
2313 *
c1a220e7 2314 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2315 * can't go away. Callers that fail to ensure that the specified
2316 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2317 * But note well that callers specifying a CPU that never has been
2318 * online will get a splat.
d185af30
YB
2319 *
2320 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2321 */
d4283e93
TH
2322bool queue_work_on(int cpu, struct workqueue_struct *wq,
2323 struct work_struct *work)
1da177e4 2324{
d4283e93 2325 bool ret = false;
8930caba 2326 unsigned long flags;
ef1ca236 2327
8930caba 2328 local_irq_save(flags);
c1a220e7 2329
22df02bb 2330 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 2331 __queue_work(cpu, wq, work);
d4283e93 2332 ret = true;
c1a220e7 2333 }
ef1ca236 2334
8930caba 2335 local_irq_restore(flags);
1da177e4
LT
2336 return ret;
2337}
ad7b1f84 2338EXPORT_SYMBOL(queue_work_on);
1da177e4 2339
8204e0c1 2340/**
fef59c9c 2341 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2342 * @node: NUMA node ID that we want to select a CPU from
2343 *
2344 * This function will attempt to find a "random" cpu available on a given
2345 * node. If there are no CPUs available on the given node it will return
2346 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2347 * available CPU if we need to schedule this work.
2348 */
fef59c9c 2349static int select_numa_node_cpu(int node)
8204e0c1
AD
2350{
2351 int cpu;
2352
8204e0c1
AD
2353 /* Delay binding to CPU if node is not valid or online */
2354 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2355 return WORK_CPU_UNBOUND;
2356
2357 /* Use local node/cpu if we are already there */
2358 cpu = raw_smp_processor_id();
2359 if (node == cpu_to_node(cpu))
2360 return cpu;
2361
2362 /* Use "random" otherwise know as "first" online CPU of node */
2363 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2364
2365 /* If CPU is valid return that, otherwise just defer */
2366 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2367}
2368
2369/**
2370 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2371 * @node: NUMA node that we are targeting the work for
2372 * @wq: workqueue to use
2373 * @work: work to queue
2374 *
2375 * We queue the work to a "random" CPU within a given NUMA node. The basic
2376 * idea here is to provide a way to somehow associate work with a given
2377 * NUMA node.
2378 *
2379 * This function will only make a best effort attempt at getting this onto
2380 * the right NUMA node. If no node is requested or the requested node is
2381 * offline then we just fall back to standard queue_work behavior.
2382 *
2383 * Currently the "random" CPU ends up being the first available CPU in the
2384 * intersection of cpu_online_mask and the cpumask of the node, unless we
2385 * are running on the node. In that case we just use the current CPU.
2386 *
2387 * Return: %false if @work was already on a queue, %true otherwise.
2388 */
2389bool queue_work_node(int node, struct workqueue_struct *wq,
2390 struct work_struct *work)
2391{
2392 unsigned long flags;
2393 bool ret = false;
2394
2395 /*
2396 * This current implementation is specific to unbound workqueues.
2397 * Specifically we only return the first available CPU for a given
2398 * node instead of cycling through individual CPUs within the node.
2399 *
2400 * If this is used with a per-cpu workqueue then the logic in
2401 * workqueue_select_cpu_near would need to be updated to allow for
2402 * some round robin type logic.
2403 */
2404 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2405
2406 local_irq_save(flags);
2407
2408 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
fef59c9c 2409 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2410
2411 __queue_work(cpu, wq, work);
2412 ret = true;
2413 }
2414
2415 local_irq_restore(flags);
2416 return ret;
2417}
2418EXPORT_SYMBOL_GPL(queue_work_node);
2419
8c20feb6 2420void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2421{
8c20feb6 2422 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2423
e0aecdd8 2424 /* should have been called from irqsafe timer with irq already off */
60c057bc 2425 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2426}
1438ade5 2427EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2428
7beb2edf
TH
2429static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2430 struct delayed_work *dwork, unsigned long delay)
1da177e4 2431{
7beb2edf
TH
2432 struct timer_list *timer = &dwork->timer;
2433 struct work_struct *work = &dwork->work;
7beb2edf 2434
637fdbae 2435 WARN_ON_ONCE(!wq);
4b243563 2436 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2437 WARN_ON_ONCE(timer_pending(timer));
2438 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2439
8852aac2
TH
2440 /*
2441 * If @delay is 0, queue @dwork->work immediately. This is for
2442 * both optimization and correctness. The earliest @timer can
2443 * expire is on the closest next tick and delayed_work users depend
2444 * on that there's no such delay when @delay is 0.
2445 */
2446 if (!delay) {
2447 __queue_work(cpu, wq, &dwork->work);
2448 return;
2449 }
2450
60c057bc 2451 dwork->wq = wq;
1265057f 2452 dwork->cpu = cpu;
7beb2edf
TH
2453 timer->expires = jiffies + delay;
2454
aae17ebb
LB
2455 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2456 /* If the current cpu is a housekeeping cpu, use it. */
2457 cpu = smp_processor_id();
2458 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2459 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
041bd12e 2460 add_timer_on(timer, cpu);
aae17ebb
LB
2461 } else {
2462 if (likely(cpu == WORK_CPU_UNBOUND))
2463 add_timer(timer);
2464 else
2465 add_timer_on(timer, cpu);
2466 }
1da177e4
LT
2467}
2468
0fcb78c2
REB
2469/**
2470 * queue_delayed_work_on - queue work on specific CPU after delay
2471 * @cpu: CPU number to execute work on
2472 * @wq: workqueue to use
af9997e4 2473 * @dwork: work to queue
0fcb78c2
REB
2474 * @delay: number of jiffies to wait before queueing
2475 *
d185af30 2476 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2477 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2478 * execution.
0fcb78c2 2479 */
d4283e93
TH
2480bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2481 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2482{
52bad64d 2483 struct work_struct *work = &dwork->work;
d4283e93 2484 bool ret = false;
8930caba 2485 unsigned long flags;
7a6bc1cd 2486
8930caba
TH
2487 /* read the comment in __queue_work() */
2488 local_irq_save(flags);
7a6bc1cd 2489
22df02bb 2490 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 2491 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2492 ret = true;
7a6bc1cd 2493 }
8a3e77cc 2494
8930caba 2495 local_irq_restore(flags);
7a6bc1cd
VP
2496 return ret;
2497}
ad7b1f84 2498EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2499
8376fe22
TH
2500/**
2501 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2502 * @cpu: CPU number to execute work on
2503 * @wq: workqueue to use
2504 * @dwork: work to queue
2505 * @delay: number of jiffies to wait before queueing
2506 *
2507 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2508 * modify @dwork's timer so that it expires after @delay. If @delay is
2509 * zero, @work is guaranteed to be scheduled immediately regardless of its
2510 * current state.
2511 *
d185af30 2512 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2513 * pending and its timer was modified.
2514 *
e0aecdd8 2515 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2516 * See try_to_grab_pending() for details.
2517 */
2518bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2519 struct delayed_work *dwork, unsigned long delay)
2520{
2521 unsigned long flags;
2522 int ret;
c7fc77f7 2523
8376fe22
TH
2524 do {
2525 ret = try_to_grab_pending(&dwork->work, true, &flags);
2526 } while (unlikely(ret == -EAGAIN));
63bc0362 2527
8376fe22
TH
2528 if (likely(ret >= 0)) {
2529 __queue_delayed_work(cpu, wq, dwork, delay);
2530 local_irq_restore(flags);
7a6bc1cd 2531 }
8376fe22
TH
2532
2533 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
2534 return ret;
2535}
8376fe22
TH
2536EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2537
05f0fe6b
TH
2538static void rcu_work_rcufn(struct rcu_head *rcu)
2539{
2540 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2541
2542 /* read the comment in __queue_work() */
2543 local_irq_disable();
2544 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2545 local_irq_enable();
2546}
2547
2548/**
2549 * queue_rcu_work - queue work after a RCU grace period
2550 * @wq: workqueue to use
2551 * @rwork: work to queue
2552 *
2553 * Return: %false if @rwork was already pending, %true otherwise. Note
2554 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2555 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2556 * execution may happen before a full RCU grace period has passed.
2557 */
2558bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2559{
2560 struct work_struct *work = &rwork->work;
2561
2562 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2563 rwork->wq = wq;
a7e30c0e 2564 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2565 return true;
2566 }
2567
2568 return false;
2569}
2570EXPORT_SYMBOL(queue_rcu_work);
2571
f7537df5 2572static struct worker *alloc_worker(int node)
c34056a3
TH
2573{
2574 struct worker *worker;
2575
f7537df5 2576 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2577 if (worker) {
2578 INIT_LIST_HEAD(&worker->entry);
affee4b2 2579 INIT_LIST_HEAD(&worker->scheduled);
da028469 2580 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2581 /* on creation a worker is in !idle && prep state */
2582 worker->flags = WORKER_PREP;
c8e55f36 2583 }
c34056a3
TH
2584 return worker;
2585}
2586
9546b29e
TH
2587static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2588{
8639eceb
TH
2589 if (pool->cpu < 0 && pool->attrs->affn_strict)
2590 return pool->attrs->__pod_cpumask;
2591 else
2592 return pool->attrs->cpumask;
9546b29e
TH
2593}
2594
4736cbf7
LJ
2595/**
2596 * worker_attach_to_pool() - attach a worker to a pool
2597 * @worker: worker to be attached
2598 * @pool: the target pool
2599 *
2600 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2601 * cpu-binding of @worker are kept coordinated with the pool across
2602 * cpu-[un]hotplugs.
2603 */
2604static void worker_attach_to_pool(struct worker *worker,
4cb1ef64 2605 struct worker_pool *pool)
4736cbf7 2606{
1258fae7 2607 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2608
4736cbf7 2609 /*
4cb1ef64
TH
2610 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2611 * across this function. See the comments above the flag definition for
2612 * details. BH workers are, while per-CPU, always DISASSOCIATED.
4736cbf7 2613 */
4cb1ef64 2614 if (pool->flags & POOL_DISASSOCIATED) {
4736cbf7 2615 worker->flags |= WORKER_UNBOUND;
4cb1ef64
TH
2616 } else {
2617 WARN_ON_ONCE(pool->flags & POOL_BH);
5c25b5ff 2618 kthread_set_per_cpu(worker->task, pool->cpu);
4cb1ef64 2619 }
4736cbf7 2620
640f17c8 2621 if (worker->rescue_wq)
9546b29e 2622 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2623
4736cbf7 2624 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2625 worker->pool = pool;
4736cbf7 2626
1258fae7 2627 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2628}
2629
60f5a4bc
LJ
2630/**
2631 * worker_detach_from_pool() - detach a worker from its pool
2632 * @worker: worker which is attached to its pool
60f5a4bc 2633 *
4736cbf7
LJ
2634 * Undo the attaching which had been done in worker_attach_to_pool(). The
2635 * caller worker shouldn't access to the pool after detached except it has
2636 * other reference to the pool.
60f5a4bc 2637 */
a2d812a2 2638static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2639{
a2d812a2 2640 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2641 struct completion *detach_completion = NULL;
2642
4cb1ef64
TH
2643 /* there is one permanent BH worker per CPU which should never detach */
2644 WARN_ON_ONCE(pool->flags & POOL_BH);
2645
1258fae7 2646 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2647
5c25b5ff 2648 kthread_set_per_cpu(worker->task, -1);
da028469 2649 list_del(&worker->node);
a2d812a2
TH
2650 worker->pool = NULL;
2651
e02b9312 2652 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2653 detach_completion = pool->detach_completion;
1258fae7 2654 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2655
b62c0751
LJ
2656 /* clear leftover flags without pool->lock after it is detached */
2657 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2658
60f5a4bc
LJ
2659 if (detach_completion)
2660 complete(detach_completion);
2661}
2662
c34056a3
TH
2663/**
2664 * create_worker - create a new workqueue worker
63d95a91 2665 * @pool: pool the new worker will belong to
c34056a3 2666 *
051e1850 2667 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2668 *
2669 * CONTEXT:
2670 * Might sleep. Does GFP_KERNEL allocations.
2671 *
d185af30 2672 * Return:
c34056a3
TH
2673 * Pointer to the newly created worker.
2674 */
bc2ae0f5 2675static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2676{
e441b56f
ZL
2677 struct worker *worker;
2678 int id;
5d9c7a1e 2679 char id_buf[23];
c34056a3 2680
7cda9aae 2681 /* ID is needed to determine kthread name */
e441b56f 2682 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2683 if (id < 0) {
2684 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2685 ERR_PTR(id));
e441b56f 2686 return NULL;
3f0ea0b8 2687 }
c34056a3 2688
f7537df5 2689 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2690 if (!worker) {
2691 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2692 goto fail;
3f0ea0b8 2693 }
c34056a3 2694
c34056a3
TH
2695 worker->id = id;
2696
4cb1ef64
TH
2697 if (!(pool->flags & POOL_BH)) {
2698 if (pool->cpu >= 0)
2699 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2700 pool->attrs->nice < 0 ? "H" : "");
2701 else
2702 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2703
2704 worker->task = kthread_create_on_node(worker_thread, worker,
2705 pool->node, "kworker/%s", id_buf);
2706 if (IS_ERR(worker->task)) {
2707 if (PTR_ERR(worker->task) == -EINTR) {
2708 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2709 id_buf);
2710 } else {
2711 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2712 worker->task);
2713 }
2714 goto fail;
60f54038 2715 }
c34056a3 2716
4cb1ef64
TH
2717 set_user_nice(worker->task, pool->attrs->nice);
2718 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2719 }
91151228 2720
da028469 2721 /* successful, attach the worker to the pool */
4736cbf7 2722 worker_attach_to_pool(worker, pool);
822d8405 2723
051e1850 2724 /* start the newly created worker */
a9b8a985 2725 raw_spin_lock_irq(&pool->lock);
0219a352 2726
051e1850
LJ
2727 worker->pool->nr_workers++;
2728 worker_enter_idle(worker);
0219a352
TH
2729
2730 /*
2731 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2732 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2733 * wake it up explicitly.
0219a352 2734 */
4cb1ef64
TH
2735 if (worker->task)
2736 wake_up_process(worker->task);
0219a352 2737
a9b8a985 2738 raw_spin_unlock_irq(&pool->lock);
051e1850 2739
c34056a3 2740 return worker;
822d8405 2741
c34056a3 2742fail:
e441b56f 2743 ida_free(&pool->worker_ida, id);
c34056a3
TH
2744 kfree(worker);
2745 return NULL;
2746}
2747
793777bc
VS
2748static void unbind_worker(struct worker *worker)
2749{
2750 lockdep_assert_held(&wq_pool_attach_mutex);
2751
2752 kthread_set_per_cpu(worker->task, -1);
2753 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2754 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2755 else
2756 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2757}
2758
e02b9312
VS
2759static void wake_dying_workers(struct list_head *cull_list)
2760{
2761 struct worker *worker, *tmp;
2762
2763 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2764 list_del_init(&worker->entry);
2765 unbind_worker(worker);
2766 /*
2767 * If the worker was somehow already running, then it had to be
2768 * in pool->idle_list when set_worker_dying() happened or we
2769 * wouldn't have gotten here.
2770 *
2771 * Thus, the worker must either have observed the WORKER_DIE
2772 * flag, or have set its state to TASK_IDLE. Either way, the
2773 * below will be observed by the worker and is safe to do
2774 * outside of pool->lock.
2775 */
2776 wake_up_process(worker->task);
2777 }
2778}
2779
c34056a3 2780/**
e02b9312 2781 * set_worker_dying - Tag a worker for destruction
c34056a3 2782 * @worker: worker to be destroyed
e02b9312 2783 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2784 *
e02b9312
VS
2785 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2786 * should be idle.
c8e55f36
TH
2787 *
2788 * CONTEXT:
a9b8a985 2789 * raw_spin_lock_irq(pool->lock).
c34056a3 2790 */
e02b9312 2791static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2792{
bd7bdd43 2793 struct worker_pool *pool = worker->pool;
c34056a3 2794
cd549687 2795 lockdep_assert_held(&pool->lock);
e02b9312 2796 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2797
c34056a3 2798 /* sanity check frenzy */
6183c009 2799 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2800 WARN_ON(!list_empty(&worker->scheduled)) ||
2801 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2802 return;
c34056a3 2803
73eb7fe7
LJ
2804 pool->nr_workers--;
2805 pool->nr_idle--;
5bdfff96 2806
cb444766 2807 worker->flags |= WORKER_DIE;
e02b9312
VS
2808
2809 list_move(&worker->entry, list);
2810 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2811}
2812
3f959aa3
VS
2813/**
2814 * idle_worker_timeout - check if some idle workers can now be deleted.
2815 * @t: The pool's idle_timer that just expired
2816 *
2817 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2818 * worker_leave_idle(), as a worker flicking between idle and active while its
2819 * pool is at the too_many_workers() tipping point would cause too much timer
2820 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2821 * it expire and re-evaluate things from there.
2822 */
32a6c723 2823static void idle_worker_timeout(struct timer_list *t)
e22bee78 2824{
32a6c723 2825 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2826 bool do_cull = false;
2827
2828 if (work_pending(&pool->idle_cull_work))
2829 return;
e22bee78 2830
a9b8a985 2831 raw_spin_lock_irq(&pool->lock);
e22bee78 2832
3f959aa3 2833 if (too_many_workers(pool)) {
e22bee78
TH
2834 struct worker *worker;
2835 unsigned long expires;
2836
2837 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2838 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2839 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2840 do_cull = !time_before(jiffies, expires);
2841
2842 if (!do_cull)
2843 mod_timer(&pool->idle_timer, expires);
2844 }
2845 raw_spin_unlock_irq(&pool->lock);
2846
2847 if (do_cull)
2848 queue_work(system_unbound_wq, &pool->idle_cull_work);
2849}
2850
2851/**
2852 * idle_cull_fn - cull workers that have been idle for too long.
2853 * @work: the pool's work for handling these idle workers
2854 *
2855 * This goes through a pool's idle workers and gets rid of those that have been
2856 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2857 *
2858 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2859 * culled, so this also resets worker affinity. This requires a sleepable
2860 * context, hence the split between timer callback and work item.
3f959aa3
VS
2861 */
2862static void idle_cull_fn(struct work_struct *work)
2863{
2864 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2865 LIST_HEAD(cull_list);
3f959aa3 2866
e02b9312
VS
2867 /*
2868 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2869 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2870 * path. This is required as a previously-preempted worker could run after
2871 * set_worker_dying() has happened but before wake_dying_workers() did.
2872 */
2873 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2874 raw_spin_lock_irq(&pool->lock);
2875
2876 while (too_many_workers(pool)) {
2877 struct worker *worker;
2878 unsigned long expires;
2879
63d95a91 2880 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2881 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2882
3347fc9f 2883 if (time_before(jiffies, expires)) {
63d95a91 2884 mod_timer(&pool->idle_timer, expires);
3347fc9f 2885 break;
d5abe669 2886 }
3347fc9f 2887
e02b9312 2888 set_worker_dying(worker, &cull_list);
e22bee78
TH
2889 }
2890
a9b8a985 2891 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2892 wake_dying_workers(&cull_list);
2893 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2894}
d5abe669 2895
493a1724 2896static void send_mayday(struct work_struct *work)
e22bee78 2897{
112202d9
TH
2898 struct pool_workqueue *pwq = get_work_pwq(work);
2899 struct workqueue_struct *wq = pwq->wq;
493a1724 2900
2e109a28 2901 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2902
493008a8 2903 if (!wq->rescuer)
493a1724 2904 return;
e22bee78
TH
2905
2906 /* mayday mayday mayday */
493a1724 2907 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2908 /*
2909 * If @pwq is for an unbound wq, its base ref may be put at
2910 * any time due to an attribute change. Pin @pwq until the
2911 * rescuer is done with it.
2912 */
2913 get_pwq(pwq);
493a1724 2914 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2915 wake_up_process(wq->rescuer->task);
725e8ec5 2916 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2917 }
e22bee78
TH
2918}
2919
32a6c723 2920static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2921{
32a6c723 2922 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2923 struct work_struct *work;
2924
a9b8a985
SAS
2925 raw_spin_lock_irq(&pool->lock);
2926 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2927
63d95a91 2928 if (need_to_create_worker(pool)) {
e22bee78
TH
2929 /*
2930 * We've been trying to create a new worker but
2931 * haven't been successful. We might be hitting an
2932 * allocation deadlock. Send distress signals to
2933 * rescuers.
2934 */
63d95a91 2935 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2936 send_mayday(work);
1da177e4 2937 }
e22bee78 2938
a9b8a985
SAS
2939 raw_spin_unlock(&wq_mayday_lock);
2940 raw_spin_unlock_irq(&pool->lock);
e22bee78 2941
63d95a91 2942 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2943}
2944
e22bee78
TH
2945/**
2946 * maybe_create_worker - create a new worker if necessary
63d95a91 2947 * @pool: pool to create a new worker for
e22bee78 2948 *
63d95a91 2949 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2950 * have at least one idle worker on return from this function. If
2951 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2952 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2953 * possible allocation deadlock.
2954 *
c5aa87bb
TH
2955 * On return, need_to_create_worker() is guaranteed to be %false and
2956 * may_start_working() %true.
e22bee78
TH
2957 *
2958 * LOCKING:
a9b8a985 2959 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2960 * multiple times. Does GFP_KERNEL allocations. Called only from
2961 * manager.
e22bee78 2962 */
29187a9e 2963static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2964__releases(&pool->lock)
2965__acquires(&pool->lock)
1da177e4 2966{
e22bee78 2967restart:
a9b8a985 2968 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2969
e22bee78 2970 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2971 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2972
2973 while (true) {
051e1850 2974 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2975 break;
1da177e4 2976
e212f361 2977 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2978
63d95a91 2979 if (!need_to_create_worker(pool))
e22bee78
TH
2980 break;
2981 }
2982
63d95a91 2983 del_timer_sync(&pool->mayday_timer);
a9b8a985 2984 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2985 /*
2986 * This is necessary even after a new worker was just successfully
2987 * created as @pool->lock was dropped and the new worker might have
2988 * already become busy.
2989 */
63d95a91 2990 if (need_to_create_worker(pool))
e22bee78 2991 goto restart;
e22bee78
TH
2992}
2993
73f53c4a 2994/**
e22bee78
TH
2995 * manage_workers - manage worker pool
2996 * @worker: self
73f53c4a 2997 *
706026c2 2998 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2999 * to. At any given time, there can be only zero or one manager per
706026c2 3000 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
3001 *
3002 * The caller can safely start processing works on false return. On
3003 * true return, it's guaranteed that need_to_create_worker() is false
3004 * and may_start_working() is true.
73f53c4a
TH
3005 *
3006 * CONTEXT:
a9b8a985 3007 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
3008 * multiple times. Does GFP_KERNEL allocations.
3009 *
d185af30 3010 * Return:
29187a9e
TH
3011 * %false if the pool doesn't need management and the caller can safely
3012 * start processing works, %true if management function was performed and
3013 * the conditions that the caller verified before calling the function may
3014 * no longer be true.
73f53c4a 3015 */
e22bee78 3016static bool manage_workers(struct worker *worker)
73f53c4a 3017{
63d95a91 3018 struct worker_pool *pool = worker->pool;
73f53c4a 3019
692b4825 3020 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 3021 return false;
692b4825
TH
3022
3023 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 3024 pool->manager = worker;
1e19ffc6 3025
29187a9e 3026 maybe_create_worker(pool);
e22bee78 3027
2607d7a6 3028 pool->manager = NULL;
692b4825 3029 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 3030 rcuwait_wake_up(&manager_wait);
29187a9e 3031 return true;
73f53c4a
TH
3032}
3033
a62428c0
TH
3034/**
3035 * process_one_work - process single work
c34056a3 3036 * @worker: self
a62428c0
TH
3037 * @work: work to process
3038 *
3039 * Process @work. This function contains all the logics necessary to
3040 * process a single work including synchronization against and
3041 * interaction with other workers on the same cpu, queueing and
3042 * flushing. As long as context requirement is met, any worker can
3043 * call this function to process a work.
3044 *
3045 * CONTEXT:
a9b8a985 3046 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 3047 */
c34056a3 3048static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
3049__releases(&pool->lock)
3050__acquires(&pool->lock)
a62428c0 3051{
112202d9 3052 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 3053 struct worker_pool *pool = worker->pool;
c4560c2c 3054 unsigned long work_data;
c35aea39 3055 int lockdep_start_depth, rcu_start_depth;
a62428c0
TH
3056#ifdef CONFIG_LOCKDEP
3057 /*
3058 * It is permissible to free the struct work_struct from
3059 * inside the function that is called from it, this we need to
3060 * take into account for lockdep too. To avoid bogus "held
3061 * lock freed" warnings as well as problems when looking into
3062 * work->lockdep_map, make a copy and use that here.
3063 */
4d82a1de
PZ
3064 struct lockdep_map lockdep_map;
3065
3066 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 3067#endif
807407c0 3068 /* ensure we're on the correct CPU */
85327af6 3069 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 3070 raw_smp_processor_id() != pool->cpu);
25511a47 3071
8930caba 3072 /* claim and dequeue */
a62428c0 3073 debug_work_deactivate(work);
c9e7cf27 3074 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 3075 worker->current_work = work;
a2c1c57b 3076 worker->current_func = work->func;
112202d9 3077 worker->current_pwq = pwq;
4cb1ef64
TH
3078 if (worker->task)
3079 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 3080 work_data = *work_data_bits(work);
d812796e 3081 worker->current_color = get_work_color(work_data);
7a22ad75 3082
8bf89593
TH
3083 /*
3084 * Record wq name for cmdline and debug reporting, may get
3085 * overridden through set_worker_desc().
3086 */
3087 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3088
a62428c0
TH
3089 list_del_init(&work->entry);
3090
fb0e7beb 3091 /*
228f1d00
LJ
3092 * CPU intensive works don't participate in concurrency management.
3093 * They're the scheduler's responsibility. This takes @worker out
3094 * of concurrency management and the next code block will chain
3095 * execution of the pending work items.
fb0e7beb 3096 */
616db877 3097 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 3098 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3099
974271c4 3100 /*
0219a352
TH
3101 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3102 * since nr_running would always be >= 1 at this point. This is used to
3103 * chain execution of the pending work items for WORKER_NOT_RUNNING
3104 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 3105 */
0219a352 3106 kick_pool(pool);
974271c4 3107
8930caba 3108 /*
7c3eed5c 3109 * Record the last pool and clear PENDING which should be the last
d565ed63 3110 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3111 * PENDING and queued state changes happen together while IRQ is
3112 * disabled.
8930caba 3113 */
7c3eed5c 3114 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 3115
fe48ba7d 3116 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3117 raw_spin_unlock_irq(&pool->lock);
a62428c0 3118
c35aea39
TH
3119 rcu_start_depth = rcu_preempt_depth();
3120 lockdep_start_depth = lockdep_depth(current);
a1d14934 3121 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 3122 lock_map_acquire(&lockdep_map);
e6f3faa7 3123 /*
f52be570
PZ
3124 * Strictly speaking we should mark the invariant state without holding
3125 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3126 *
3127 * However, that would result in:
3128 *
3129 * A(W1)
3130 * WFC(C)
3131 * A(W1)
3132 * C(C)
3133 *
3134 * Which would create W1->C->W1 dependencies, even though there is no
3135 * actual deadlock possible. There are two solutions, using a
3136 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3137 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3138 * these locks.
3139 *
3140 * AFAICT there is no possible deadlock scenario between the
3141 * flush_work() and complete() primitives (except for single-threaded
3142 * workqueues), so hiding them isn't a problem.
3143 */
f52be570 3144 lockdep_invariant_state(true);
e36c886a 3145 trace_workqueue_execute_start(work);
a2c1c57b 3146 worker->current_func(work);
e36c886a
AV
3147 /*
3148 * While we must be careful to not use "work" after this, the trace
3149 * point will only record its address.
3150 */
1c5da0ec 3151 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3152 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3153 lock_map_release(&lockdep_map);
112202d9 3154 lock_map_release(&pwq->wq->lockdep_map);
a62428c0 3155
c35aea39
TH
3156 if (unlikely((worker->task && in_atomic()) ||
3157 lockdep_depth(current) != lockdep_start_depth ||
3158 rcu_preempt_depth() != rcu_start_depth)) {
3159 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3160 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3161 current->comm, task_pid_nr(current), preempt_count(),
3162 lockdep_start_depth, lockdep_depth(current),
3163 rcu_start_depth, rcu_preempt_depth(),
3164 worker->current_func);
a62428c0
TH
3165 debug_show_held_locks(current);
3166 dump_stack();
3167 }
3168
b22ce278 3169 /*
025f50f3 3170 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3171 * kernels, where a requeueing work item waiting for something to
3172 * happen could deadlock with stop_machine as such work item could
3173 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3174 * stop_machine. At the same time, report a quiescent RCU state so
3175 * the same condition doesn't freeze RCU.
b22ce278 3176 */
4cb1ef64
TH
3177 if (worker->task)
3178 cond_resched();
b22ce278 3179
a9b8a985 3180 raw_spin_lock_irq(&pool->lock);
a62428c0 3181
616db877
TH
3182 /*
3183 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3184 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3185 * wq_cpu_intensive_thresh_us. Clear it.
3186 */
3187 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3188
1b69ac6b
JW
3189 /* tag the worker for identification in schedule() */
3190 worker->last_func = worker->current_func;
3191
a62428c0 3192 /* we're done with it, release */
42f8570f 3193 hash_del(&worker->hentry);
c34056a3 3194 worker->current_work = NULL;
a2c1c57b 3195 worker->current_func = NULL;
112202d9 3196 worker->current_pwq = NULL;
d812796e 3197 worker->current_color = INT_MAX;
dd6c3c54
TH
3198
3199 /* must be the last step, see the function comment */
c4560c2c 3200 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3201}
3202
affee4b2
TH
3203/**
3204 * process_scheduled_works - process scheduled works
3205 * @worker: self
3206 *
3207 * Process all scheduled works. Please note that the scheduled list
3208 * may change while processing a work, so this function repeatedly
3209 * fetches a work from the top and executes it.
3210 *
3211 * CONTEXT:
a9b8a985 3212 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3213 * multiple times.
3214 */
3215static void process_scheduled_works(struct worker *worker)
1da177e4 3216{
c0ab017d
TH
3217 struct work_struct *work;
3218 bool first = true;
3219
3220 while ((work = list_first_entry_or_null(&worker->scheduled,
3221 struct work_struct, entry))) {
3222 if (first) {
3223 worker->pool->watchdog_ts = jiffies;
3224 first = false;
3225 }
c34056a3 3226 process_one_work(worker, work);
1da177e4 3227 }
1da177e4
LT
3228}
3229
197f6acc
TH
3230static void set_pf_worker(bool val)
3231{
3232 mutex_lock(&wq_pool_attach_mutex);
3233 if (val)
3234 current->flags |= PF_WQ_WORKER;
3235 else
3236 current->flags &= ~PF_WQ_WORKER;
3237 mutex_unlock(&wq_pool_attach_mutex);
3238}
3239
4690c4ab
TH
3240/**
3241 * worker_thread - the worker thread function
c34056a3 3242 * @__worker: self
4690c4ab 3243 *
c5aa87bb
TH
3244 * The worker thread function. All workers belong to a worker_pool -
3245 * either a per-cpu one or dynamic unbound one. These workers process all
3246 * work items regardless of their specific target workqueue. The only
3247 * exception is work items which belong to workqueues with a rescuer which
3248 * will be explained in rescuer_thread().
d185af30
YB
3249 *
3250 * Return: 0
4690c4ab 3251 */
c34056a3 3252static int worker_thread(void *__worker)
1da177e4 3253{
c34056a3 3254 struct worker *worker = __worker;
bd7bdd43 3255 struct worker_pool *pool = worker->pool;
1da177e4 3256
e22bee78 3257 /* tell the scheduler that this is a workqueue worker */
197f6acc 3258 set_pf_worker(true);
c8e55f36 3259woke_up:
a9b8a985 3260 raw_spin_lock_irq(&pool->lock);
1da177e4 3261
a9ab775b
TH
3262 /* am I supposed to die? */
3263 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3264 raw_spin_unlock_irq(&pool->lock);
197f6acc 3265 set_pf_worker(false);
60f5a4bc
LJ
3266
3267 set_task_comm(worker->task, "kworker/dying");
e441b56f 3268 ida_free(&pool->worker_ida, worker->id);
a2d812a2 3269 worker_detach_from_pool(worker);
e02b9312 3270 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 3271 kfree(worker);
a9ab775b 3272 return 0;
c8e55f36 3273 }
affee4b2 3274
c8e55f36 3275 worker_leave_idle(worker);
db7bccf4 3276recheck:
e22bee78 3277 /* no more worker necessary? */
63d95a91 3278 if (!need_more_worker(pool))
e22bee78
TH
3279 goto sleep;
3280
3281 /* do we need to manage? */
63d95a91 3282 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3283 goto recheck;
3284
c8e55f36
TH
3285 /*
3286 * ->scheduled list can only be filled while a worker is
3287 * preparing to process a work or actually processing it.
3288 * Make sure nobody diddled with it while I was sleeping.
3289 */
6183c009 3290 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3291
e22bee78 3292 /*
a9ab775b
TH
3293 * Finish PREP stage. We're guaranteed to have at least one idle
3294 * worker or that someone else has already assumed the manager
3295 * role. This is where @worker starts participating in concurrency
3296 * management if applicable and concurrency management is restored
3297 * after being rebound. See rebind_workers() for details.
e22bee78 3298 */
a9ab775b 3299 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3300
3301 do {
c8e55f36 3302 struct work_struct *work =
bd7bdd43 3303 list_first_entry(&pool->worklist,
c8e55f36
TH
3304 struct work_struct, entry);
3305
873eaca6
TH
3306 if (assign_work(work, worker, NULL))
3307 process_scheduled_works(worker);
63d95a91 3308 } while (keep_working(pool));
e22bee78 3309
228f1d00 3310 worker_set_flags(worker, WORKER_PREP);
d313dd85 3311sleep:
c8e55f36 3312 /*
d565ed63
TH
3313 * pool->lock is held and there's no work to process and no need to
3314 * manage, sleep. Workers are woken up only while holding
3315 * pool->lock or from local cpu, so setting the current state
3316 * before releasing pool->lock is enough to prevent losing any
3317 * event.
c8e55f36
TH
3318 */
3319 worker_enter_idle(worker);
c5a94a61 3320 __set_current_state(TASK_IDLE);
a9b8a985 3321 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3322 schedule();
3323 goto woke_up;
1da177e4
LT
3324}
3325
e22bee78
TH
3326/**
3327 * rescuer_thread - the rescuer thread function
111c225a 3328 * @__rescuer: self
e22bee78
TH
3329 *
3330 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3331 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3332 *
706026c2 3333 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3334 * worker which uses GFP_KERNEL allocation which has slight chance of
3335 * developing into deadlock if some works currently on the same queue
3336 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3337 * the problem rescuer solves.
3338 *
706026c2
TH
3339 * When such condition is possible, the pool summons rescuers of all
3340 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3341 * those works so that forward progress can be guaranteed.
3342 *
3343 * This should happen rarely.
d185af30
YB
3344 *
3345 * Return: 0
e22bee78 3346 */
111c225a 3347static int rescuer_thread(void *__rescuer)
e22bee78 3348{
111c225a
TH
3349 struct worker *rescuer = __rescuer;
3350 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3351 bool should_stop;
e22bee78
TH
3352
3353 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3354
3355 /*
3356 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3357 * doesn't participate in concurrency management.
3358 */
197f6acc 3359 set_pf_worker(true);
e22bee78 3360repeat:
c5a94a61 3361 set_current_state(TASK_IDLE);
e22bee78 3362
4d595b86
LJ
3363 /*
3364 * By the time the rescuer is requested to stop, the workqueue
3365 * shouldn't have any work pending, but @wq->maydays may still have
3366 * pwq(s) queued. This can happen by non-rescuer workers consuming
3367 * all the work items before the rescuer got to them. Go through
3368 * @wq->maydays processing before acting on should_stop so that the
3369 * list is always empty on exit.
3370 */
3371 should_stop = kthread_should_stop();
e22bee78 3372
493a1724 3373 /* see whether any pwq is asking for help */
a9b8a985 3374 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3375
3376 while (!list_empty(&wq->maydays)) {
3377 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3378 struct pool_workqueue, mayday_node);
112202d9 3379 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3380 struct work_struct *work, *n;
3381
3382 __set_current_state(TASK_RUNNING);
493a1724
TH
3383 list_del_init(&pwq->mayday_node);
3384
a9b8a985 3385 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3386
51697d39
LJ
3387 worker_attach_to_pool(rescuer, pool);
3388
a9b8a985 3389 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3390
3391 /*
3392 * Slurp in all works issued via this workqueue and
3393 * process'em.
3394 */
873eaca6 3395 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3396 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3397 if (get_work_pwq(work) == pwq &&
3398 assign_work(work, rescuer, &n))
725e8ec5 3399 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3400 }
e22bee78 3401
873eaca6 3402 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3403 process_scheduled_works(rescuer);
3404
3405 /*
3406 * The above execution of rescued work items could
3407 * have created more to rescue through
f97a4a1a 3408 * pwq_activate_first_inactive() or chained
008847f6
N
3409 * queueing. Let's put @pwq back on mayday list so
3410 * that such back-to-back work items, which may be
3411 * being used to relieve memory pressure, don't
3412 * incur MAYDAY_INTERVAL delay inbetween.
3413 */
4f3f4cf3 3414 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3415 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3416 /*
3417 * Queue iff we aren't racing destruction
3418 * and somebody else hasn't queued it already.
3419 */
3420 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3421 get_pwq(pwq);
3422 list_add_tail(&pwq->mayday_node, &wq->maydays);
3423 }
a9b8a985 3424 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3425 }
3426 }
7576958a 3427
77668c8b
LJ
3428 /*
3429 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3430 * go away while we're still attached to it.
77668c8b
LJ
3431 */
3432 put_pwq(pwq);
3433
7576958a 3434 /*
0219a352
TH
3435 * Leave this pool. Notify regular workers; otherwise, we end up
3436 * with 0 concurrency and stalling the execution.
7576958a 3437 */
0219a352 3438 kick_pool(pool);
7576958a 3439
a9b8a985 3440 raw_spin_unlock_irq(&pool->lock);
13b1d625 3441
a2d812a2 3442 worker_detach_from_pool(rescuer);
13b1d625 3443
a9b8a985 3444 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3445 }
3446
a9b8a985 3447 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3448
4d595b86
LJ
3449 if (should_stop) {
3450 __set_current_state(TASK_RUNNING);
197f6acc 3451 set_pf_worker(false);
4d595b86
LJ
3452 return 0;
3453 }
3454
111c225a
TH
3455 /* rescuers should never participate in concurrency management */
3456 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3457 schedule();
3458 goto repeat;
1da177e4
LT
3459}
3460
4cb1ef64
TH
3461static void bh_worker(struct worker *worker)
3462{
3463 struct worker_pool *pool = worker->pool;
3464 int nr_restarts = BH_WORKER_RESTARTS;
3465 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3466
3467 raw_spin_lock_irq(&pool->lock);
3468 worker_leave_idle(worker);
3469
3470 /*
3471 * This function follows the structure of worker_thread(). See there for
3472 * explanations on each step.
3473 */
3474 if (!need_more_worker(pool))
3475 goto done;
3476
3477 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3478 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3479
3480 do {
3481 struct work_struct *work =
3482 list_first_entry(&pool->worklist,
3483 struct work_struct, entry);
3484
3485 if (assign_work(work, worker, NULL))
3486 process_scheduled_works(worker);
3487 } while (keep_working(pool) &&
3488 --nr_restarts && time_before(jiffies, end));
3489
3490 worker_set_flags(worker, WORKER_PREP);
3491done:
3492 worker_enter_idle(worker);
3493 kick_pool(pool);
3494 raw_spin_unlock_irq(&pool->lock);
3495}
3496
3497/*
3498 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3499 *
3500 * This is currently called from tasklet[_hi]action() and thus is also called
3501 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3502 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3503 * can be dropped.
3504 *
3505 * After full conversion, we'll add worker->softirq_action, directly use the
3506 * softirq action and obtain the worker pointer from the softirq_action pointer.
3507 */
3508void workqueue_softirq_action(bool highpri)
3509{
3510 struct worker_pool *pool =
3511 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3512 if (need_more_worker(pool))
3513 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3514}
3515
fca839c0
TH
3516/**
3517 * check_flush_dependency - check for flush dependency sanity
3518 * @target_wq: workqueue being flushed
3519 * @target_work: work item being flushed (NULL for workqueue flushes)
3520 *
3521 * %current is trying to flush the whole @target_wq or @target_work on it.
3522 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3523 * reclaiming memory or running on a workqueue which doesn't have
3524 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3525 * a deadlock.
3526 */
3527static void check_flush_dependency(struct workqueue_struct *target_wq,
3528 struct work_struct *target_work)
3529{
3530 work_func_t target_func = target_work ? target_work->func : NULL;
3531 struct worker *worker;
3532
3533 if (target_wq->flags & WQ_MEM_RECLAIM)
3534 return;
3535
3536 worker = current_wq_worker();
3537
3538 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3539 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3540 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3541 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3542 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3543 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3544 worker->current_pwq->wq->name, worker->current_func,
3545 target_wq->name, target_func);
3546}
3547
fc2e4d70
ON
3548struct wq_barrier {
3549 struct work_struct work;
3550 struct completion done;
2607d7a6 3551 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3552};
3553
3554static void wq_barrier_func(struct work_struct *work)
3555{
3556 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3557 complete(&barr->done);
3558}
3559
4690c4ab
TH
3560/**
3561 * insert_wq_barrier - insert a barrier work
112202d9 3562 * @pwq: pwq to insert barrier into
4690c4ab 3563 * @barr: wq_barrier to insert
affee4b2
TH
3564 * @target: target work to attach @barr to
3565 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3566 *
affee4b2
TH
3567 * @barr is linked to @target such that @barr is completed only after
3568 * @target finishes execution. Please note that the ordering
3569 * guarantee is observed only with respect to @target and on the local
3570 * cpu.
3571 *
3572 * Currently, a queued barrier can't be canceled. This is because
3573 * try_to_grab_pending() can't determine whether the work to be
3574 * grabbed is at the head of the queue and thus can't clear LINKED
3575 * flag of the previous work while there must be a valid next work
3576 * after a work with LINKED flag set.
3577 *
3578 * Note that when @worker is non-NULL, @target may be modified
112202d9 3579 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3580 *
3581 * CONTEXT:
a9b8a985 3582 * raw_spin_lock_irq(pool->lock).
4690c4ab 3583 */
112202d9 3584static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3585 struct wq_barrier *barr,
3586 struct work_struct *target, struct worker *worker)
fc2e4d70 3587{
4cb1ef64 3588 static __maybe_unused struct lock_class_key bh_key, thr_key;
d812796e
LJ
3589 unsigned int work_flags = 0;
3590 unsigned int work_color;
affee4b2 3591 struct list_head *head;
affee4b2 3592
dc186ad7 3593 /*
d565ed63 3594 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3595 * as we know for sure that this will not trigger any of the
3596 * checks and call back into the fixup functions where we
3597 * might deadlock.
4cb1ef64
TH
3598 *
3599 * BH and threaded workqueues need separate lockdep keys to avoid
3600 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3601 * usage".
dc186ad7 3602 */
4cb1ef64
TH
3603 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3604 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
22df02bb 3605 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3606
fd1a5b04
BP
3607 init_completion_map(&barr->done, &target->lockdep_map);
3608
2607d7a6 3609 barr->task = current;
83c22520 3610
5797b1c1 3611 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3612 work_flags |= WORK_STRUCT_INACTIVE;
3613
affee4b2
TH
3614 /*
3615 * If @target is currently being executed, schedule the
3616 * barrier to the worker; otherwise, put it after @target.
3617 */
d812796e 3618 if (worker) {
affee4b2 3619 head = worker->scheduled.next;
d812796e
LJ
3620 work_color = worker->current_color;
3621 } else {
affee4b2
TH
3622 unsigned long *bits = work_data_bits(target);
3623
3624 head = target->entry.next;
3625 /* there can already be other linked works, inherit and set */
d21cece0 3626 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3627 work_color = get_work_color(*bits);
affee4b2
TH
3628 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3629 }
3630
d812796e
LJ
3631 pwq->nr_in_flight[work_color]++;
3632 work_flags |= work_color_to_flags(work_color);
3633
d21cece0 3634 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3635}
3636
73f53c4a 3637/**
112202d9 3638 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3639 * @wq: workqueue being flushed
3640 * @flush_color: new flush color, < 0 for no-op
3641 * @work_color: new work color, < 0 for no-op
3642 *
112202d9 3643 * Prepare pwqs for workqueue flushing.
73f53c4a 3644 *
112202d9
TH
3645 * If @flush_color is non-negative, flush_color on all pwqs should be
3646 * -1. If no pwq has in-flight commands at the specified color, all
3647 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3648 * has in flight commands, its pwq->flush_color is set to
3649 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3650 * wakeup logic is armed and %true is returned.
3651 *
3652 * The caller should have initialized @wq->first_flusher prior to
3653 * calling this function with non-negative @flush_color. If
3654 * @flush_color is negative, no flush color update is done and %false
3655 * is returned.
3656 *
112202d9 3657 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3658 * work_color which is previous to @work_color and all will be
3659 * advanced to @work_color.
3660 *
3661 * CONTEXT:
3c25a55d 3662 * mutex_lock(wq->mutex).
73f53c4a 3663 *
d185af30 3664 * Return:
73f53c4a
TH
3665 * %true if @flush_color >= 0 and there's something to flush. %false
3666 * otherwise.
3667 */
112202d9 3668static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3669 int flush_color, int work_color)
1da177e4 3670{
73f53c4a 3671 bool wait = false;
49e3cf44 3672 struct pool_workqueue *pwq;
1da177e4 3673
73f53c4a 3674 if (flush_color >= 0) {
6183c009 3675 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3676 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3677 }
2355b70f 3678
49e3cf44 3679 for_each_pwq(pwq, wq) {
112202d9 3680 struct worker_pool *pool = pwq->pool;
fc2e4d70 3681
a9b8a985 3682 raw_spin_lock_irq(&pool->lock);
83c22520 3683
73f53c4a 3684 if (flush_color >= 0) {
6183c009 3685 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3686
112202d9
TH
3687 if (pwq->nr_in_flight[flush_color]) {
3688 pwq->flush_color = flush_color;
3689 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3690 wait = true;
3691 }
3692 }
1da177e4 3693
73f53c4a 3694 if (work_color >= 0) {
6183c009 3695 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3696 pwq->work_color = work_color;
73f53c4a 3697 }
1da177e4 3698
a9b8a985 3699 raw_spin_unlock_irq(&pool->lock);
1da177e4 3700 }
2355b70f 3701
112202d9 3702 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3703 complete(&wq->first_flusher->done);
14441960 3704
73f53c4a 3705 return wait;
1da177e4
LT
3706}
3707
c35aea39
TH
3708static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3709{
4cb1ef64
TH
3710#ifdef CONFIG_LOCKDEP
3711 if (wq->flags & WQ_BH)
3712 local_bh_disable();
3713
c35aea39
TH
3714 lock_map_acquire(&wq->lockdep_map);
3715 lock_map_release(&wq->lockdep_map);
4cb1ef64
TH
3716
3717 if (wq->flags & WQ_BH)
3718 local_bh_enable();
3719#endif
c35aea39
TH
3720}
3721
3722static void touch_work_lockdep_map(struct work_struct *work,
3723 struct workqueue_struct *wq)
3724{
4cb1ef64
TH
3725#ifdef CONFIG_LOCKDEP
3726 if (wq->flags & WQ_BH)
3727 local_bh_disable();
3728
c35aea39
TH
3729 lock_map_acquire(&work->lockdep_map);
3730 lock_map_release(&work->lockdep_map);
4cb1ef64
TH
3731
3732 if (wq->flags & WQ_BH)
3733 local_bh_enable();
3734#endif
c35aea39
TH
3735}
3736
0fcb78c2 3737/**
c4f135d6 3738 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3739 * @wq: workqueue to flush
1da177e4 3740 *
c5aa87bb
TH
3741 * This function sleeps until all work items which were queued on entry
3742 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3743 */
c4f135d6 3744void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3745{
73f53c4a
TH
3746 struct wq_flusher this_flusher = {
3747 .list = LIST_HEAD_INIT(this_flusher.list),
3748 .flush_color = -1,
fd1a5b04 3749 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3750 };
3751 int next_color;
1da177e4 3752
3347fa09
TH
3753 if (WARN_ON(!wq_online))
3754 return;
3755
c35aea39 3756 touch_wq_lockdep_map(wq);
87915adc 3757
3c25a55d 3758 mutex_lock(&wq->mutex);
73f53c4a
TH
3759
3760 /*
3761 * Start-to-wait phase
3762 */
3763 next_color = work_next_color(wq->work_color);
3764
3765 if (next_color != wq->flush_color) {
3766 /*
3767 * Color space is not full. The current work_color
3768 * becomes our flush_color and work_color is advanced
3769 * by one.
3770 */
6183c009 3771 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3772 this_flusher.flush_color = wq->work_color;
3773 wq->work_color = next_color;
3774
3775 if (!wq->first_flusher) {
3776 /* no flush in progress, become the first flusher */
6183c009 3777 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3778
3779 wq->first_flusher = &this_flusher;
3780
112202d9 3781 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3782 wq->work_color)) {
3783 /* nothing to flush, done */
3784 wq->flush_color = next_color;
3785 wq->first_flusher = NULL;
3786 goto out_unlock;
3787 }
3788 } else {
3789 /* wait in queue */
6183c009 3790 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3791 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3792 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3793 }
3794 } else {
3795 /*
3796 * Oops, color space is full, wait on overflow queue.
3797 * The next flush completion will assign us
3798 * flush_color and transfer to flusher_queue.
3799 */
3800 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3801 }
3802
fca839c0
TH
3803 check_flush_dependency(wq, NULL);
3804
3c25a55d 3805 mutex_unlock(&wq->mutex);
73f53c4a
TH
3806
3807 wait_for_completion(&this_flusher.done);
3808
3809 /*
3810 * Wake-up-and-cascade phase
3811 *
3812 * First flushers are responsible for cascading flushes and
3813 * handling overflow. Non-first flushers can simply return.
3814 */
00d5d15b 3815 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3816 return;
3817
3c25a55d 3818 mutex_lock(&wq->mutex);
73f53c4a 3819
4ce48b37
TH
3820 /* we might have raced, check again with mutex held */
3821 if (wq->first_flusher != &this_flusher)
3822 goto out_unlock;
3823
00d5d15b 3824 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3825
6183c009
TH
3826 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3827 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3828
3829 while (true) {
3830 struct wq_flusher *next, *tmp;
3831
3832 /* complete all the flushers sharing the current flush color */
3833 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3834 if (next->flush_color != wq->flush_color)
3835 break;
3836 list_del_init(&next->list);
3837 complete(&next->done);
3838 }
3839
6183c009
TH
3840 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3841 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3842
3843 /* this flush_color is finished, advance by one */
3844 wq->flush_color = work_next_color(wq->flush_color);
3845
3846 /* one color has been freed, handle overflow queue */
3847 if (!list_empty(&wq->flusher_overflow)) {
3848 /*
3849 * Assign the same color to all overflowed
3850 * flushers, advance work_color and append to
3851 * flusher_queue. This is the start-to-wait
3852 * phase for these overflowed flushers.
3853 */
3854 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3855 tmp->flush_color = wq->work_color;
3856
3857 wq->work_color = work_next_color(wq->work_color);
3858
3859 list_splice_tail_init(&wq->flusher_overflow,
3860 &wq->flusher_queue);
112202d9 3861 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3862 }
3863
3864 if (list_empty(&wq->flusher_queue)) {
6183c009 3865 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3866 break;
3867 }
3868
3869 /*
3870 * Need to flush more colors. Make the next flusher
112202d9 3871 * the new first flusher and arm pwqs.
73f53c4a 3872 */
6183c009
TH
3873 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3874 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3875
3876 list_del_init(&next->list);
3877 wq->first_flusher = next;
3878
112202d9 3879 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3880 break;
3881
3882 /*
3883 * Meh... this color is already done, clear first
3884 * flusher and repeat cascading.
3885 */
3886 wq->first_flusher = NULL;
3887 }
3888
3889out_unlock:
3c25a55d 3890 mutex_unlock(&wq->mutex);
1da177e4 3891}
c4f135d6 3892EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3893
9c5a2ba7
TH
3894/**
3895 * drain_workqueue - drain a workqueue
3896 * @wq: workqueue to drain
3897 *
3898 * Wait until the workqueue becomes empty. While draining is in progress,
3899 * only chain queueing is allowed. IOW, only currently pending or running
3900 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3901 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3902 * by the depth of chaining and should be relatively short. Whine if it
3903 * takes too long.
3904 */
3905void drain_workqueue(struct workqueue_struct *wq)
3906{
3907 unsigned int flush_cnt = 0;
49e3cf44 3908 struct pool_workqueue *pwq;
9c5a2ba7
TH
3909
3910 /*
3911 * __queue_work() needs to test whether there are drainers, is much
3912 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3913 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3914 */
87fc741e 3915 mutex_lock(&wq->mutex);
9c5a2ba7 3916 if (!wq->nr_drainers++)
618b01eb 3917 wq->flags |= __WQ_DRAINING;
87fc741e 3918 mutex_unlock(&wq->mutex);
9c5a2ba7 3919reflush:
c4f135d6 3920 __flush_workqueue(wq);
9c5a2ba7 3921
b09f4fd3 3922 mutex_lock(&wq->mutex);
76af4d93 3923
49e3cf44 3924 for_each_pwq(pwq, wq) {
fa2563e4 3925 bool drained;
9c5a2ba7 3926
a9b8a985 3927 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 3928 drained = pwq_is_empty(pwq);
a9b8a985 3929 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3930
3931 if (drained)
9c5a2ba7
TH
3932 continue;
3933
3934 if (++flush_cnt == 10 ||
3935 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3936 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3937 wq->name, __func__, flush_cnt);
76af4d93 3938
b09f4fd3 3939 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3940 goto reflush;
3941 }
3942
9c5a2ba7 3943 if (!--wq->nr_drainers)
618b01eb 3944 wq->flags &= ~__WQ_DRAINING;
87fc741e 3945 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3946}
3947EXPORT_SYMBOL_GPL(drain_workqueue);
3948
d6e89786
JB
3949static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3950 bool from_cancel)
db700897 3951{
affee4b2 3952 struct worker *worker = NULL;
c9e7cf27 3953 struct worker_pool *pool;
112202d9 3954 struct pool_workqueue *pwq;
c35aea39 3955 struct workqueue_struct *wq;
db700897
ON
3956
3957 might_sleep();
fa1b54e6 3958
24acfb71 3959 rcu_read_lock();
c9e7cf27 3960 pool = get_work_pool(work);
fa1b54e6 3961 if (!pool) {
24acfb71 3962 rcu_read_unlock();
baf59022 3963 return false;
fa1b54e6 3964 }
db700897 3965
a9b8a985 3966 raw_spin_lock_irq(&pool->lock);
0b3dae68 3967 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3968 pwq = get_work_pwq(work);
3969 if (pwq) {
3970 if (unlikely(pwq->pool != pool))
4690c4ab 3971 goto already_gone;
606a5020 3972 } else {
c9e7cf27 3973 worker = find_worker_executing_work(pool, work);
affee4b2 3974 if (!worker)
4690c4ab 3975 goto already_gone;
112202d9 3976 pwq = worker->current_pwq;
606a5020 3977 }
db700897 3978
c35aea39
TH
3979 wq = pwq->wq;
3980 check_flush_dependency(wq, work);
fca839c0 3981
112202d9 3982 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3983 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3984
c35aea39
TH
3985 touch_work_lockdep_map(work, wq);
3986
e159489b 3987 /*
a1d14934
PZ
3988 * Force a lock recursion deadlock when using flush_work() inside a
3989 * single-threaded or rescuer equipped workqueue.
3990 *
3991 * For single threaded workqueues the deadlock happens when the work
3992 * is after the work issuing the flush_work(). For rescuer equipped
3993 * workqueues the deadlock happens when the rescuer stalls, blocking
3994 * forward progress.
e159489b 3995 */
c35aea39
TH
3996 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
3997 touch_wq_lockdep_map(wq);
3998
24acfb71 3999 rcu_read_unlock();
401a8d04 4000 return true;
4690c4ab 4001already_gone:
a9b8a985 4002 raw_spin_unlock_irq(&pool->lock);
24acfb71 4003 rcu_read_unlock();
401a8d04 4004 return false;
db700897 4005}
baf59022 4006
d6e89786
JB
4007static bool __flush_work(struct work_struct *work, bool from_cancel)
4008{
4009 struct wq_barrier barr;
4010
4011 if (WARN_ON(!wq_online))
4012 return false;
4013
4d43d395
TH
4014 if (WARN_ON(!work->func))
4015 return false;
4016
d6e89786
JB
4017 if (start_flush_work(work, &barr, from_cancel)) {
4018 wait_for_completion(&barr.done);
4019 destroy_work_on_stack(&barr.work);
4020 return true;
4021 } else {
4022 return false;
4023 }
4024}
4025
baf59022
TH
4026/**
4027 * flush_work - wait for a work to finish executing the last queueing instance
4028 * @work: the work to flush
4029 *
606a5020
TH
4030 * Wait until @work has finished execution. @work is guaranteed to be idle
4031 * on return if it hasn't been requeued since flush started.
baf59022 4032 *
d185af30 4033 * Return:
baf59022
TH
4034 * %true if flush_work() waited for the work to finish execution,
4035 * %false if it was already idle.
4036 */
4037bool flush_work(struct work_struct *work)
4038{
d6e89786 4039 return __flush_work(work, false);
6e84d644 4040}
606a5020 4041EXPORT_SYMBOL_GPL(flush_work);
6e84d644 4042
8603e1b3 4043struct cwt_wait {
ac6424b9 4044 wait_queue_entry_t wait;
8603e1b3
TH
4045 struct work_struct *work;
4046};
4047
ac6424b9 4048static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
4049{
4050 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
4051
4052 if (cwait->work != key)
4053 return 0;
4054 return autoremove_wake_function(wait, mode, sync, key);
4055}
4056
36e227d2 4057static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 4058{
8603e1b3 4059 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 4060 unsigned long flags;
1f1f642e
ON
4061 int ret;
4062
4063 do {
bbb68dfa
TH
4064 ret = try_to_grab_pending(work, is_dwork, &flags);
4065 /*
8603e1b3
TH
4066 * If someone else is already canceling, wait for it to
4067 * finish. flush_work() doesn't work for PREEMPT_NONE
4068 * because we may get scheduled between @work's completion
4069 * and the other canceling task resuming and clearing
4070 * CANCELING - flush_work() will return false immediately
4071 * as @work is no longer busy, try_to_grab_pending() will
4072 * return -ENOENT as @work is still being canceled and the
4073 * other canceling task won't be able to clear CANCELING as
4074 * we're hogging the CPU.
4075 *
4076 * Let's wait for completion using a waitqueue. As this
4077 * may lead to the thundering herd problem, use a custom
4078 * wake function which matches @work along with exclusive
4079 * wait and wakeup.
bbb68dfa 4080 */
8603e1b3
TH
4081 if (unlikely(ret == -ENOENT)) {
4082 struct cwt_wait cwait;
4083
4084 init_wait(&cwait.wait);
4085 cwait.wait.func = cwt_wakefn;
4086 cwait.work = work;
4087
4088 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
4089 TASK_UNINTERRUPTIBLE);
4090 if (work_is_canceling(work))
4091 schedule();
4092 finish_wait(&cancel_waitq, &cwait.wait);
4093 }
1f1f642e
ON
4094 } while (unlikely(ret < 0));
4095
bbb68dfa
TH
4096 /* tell other tasks trying to grab @work to back off */
4097 mark_work_canceling(work);
4098 local_irq_restore(flags);
4099
3347fa09
TH
4100 /*
4101 * This allows canceling during early boot. We know that @work
4102 * isn't executing.
4103 */
4104 if (wq_online)
d6e89786 4105 __flush_work(work, true);
3347fa09 4106
7a22ad75 4107 clear_work_data(work);
8603e1b3
TH
4108
4109 /*
4110 * Paired with prepare_to_wait() above so that either
4111 * waitqueue_active() is visible here or !work_is_canceling() is
4112 * visible there.
4113 */
4114 smp_mb();
4115 if (waitqueue_active(&cancel_waitq))
4116 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
4117
1f1f642e
ON
4118 return ret;
4119}
4120
6e84d644 4121/**
401a8d04
TH
4122 * cancel_work_sync - cancel a work and wait for it to finish
4123 * @work: the work to cancel
6e84d644 4124 *
401a8d04
TH
4125 * Cancel @work and wait for its execution to finish. This function
4126 * can be used even if the work re-queues itself or migrates to
4127 * another workqueue. On return from this function, @work is
4128 * guaranteed to be not pending or executing on any CPU.
1f1f642e 4129 *
401a8d04
TH
4130 * cancel_work_sync(&delayed_work->work) must not be used for
4131 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 4132 *
401a8d04 4133 * The caller must ensure that the workqueue on which @work was last
6e84d644 4134 * queued can't be destroyed before this function returns.
401a8d04 4135 *
d185af30 4136 * Return:
401a8d04 4137 * %true if @work was pending, %false otherwise.
6e84d644 4138 */
401a8d04 4139bool cancel_work_sync(struct work_struct *work)
6e84d644 4140{
36e227d2 4141 return __cancel_work_timer(work, false);
b89deed3 4142}
28e53bdd 4143EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 4144
6e84d644 4145/**
401a8d04
TH
4146 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4147 * @dwork: the delayed work to flush
6e84d644 4148 *
401a8d04
TH
4149 * Delayed timer is cancelled and the pending work is queued for
4150 * immediate execution. Like flush_work(), this function only
4151 * considers the last queueing instance of @dwork.
1f1f642e 4152 *
d185af30 4153 * Return:
401a8d04
TH
4154 * %true if flush_work() waited for the work to finish execution,
4155 * %false if it was already idle.
6e84d644 4156 */
401a8d04
TH
4157bool flush_delayed_work(struct delayed_work *dwork)
4158{
8930caba 4159 local_irq_disable();
401a8d04 4160 if (del_timer_sync(&dwork->timer))
60c057bc 4161 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 4162 local_irq_enable();
401a8d04
TH
4163 return flush_work(&dwork->work);
4164}
4165EXPORT_SYMBOL(flush_delayed_work);
4166
05f0fe6b
TH
4167/**
4168 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4169 * @rwork: the rcu work to flush
4170 *
4171 * Return:
4172 * %true if flush_rcu_work() waited for the work to finish execution,
4173 * %false if it was already idle.
4174 */
4175bool flush_rcu_work(struct rcu_work *rwork)
4176{
4177 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4178 rcu_barrier();
4179 flush_work(&rwork->work);
4180 return true;
4181 } else {
4182 return flush_work(&rwork->work);
4183 }
4184}
4185EXPORT_SYMBOL(flush_rcu_work);
4186
f72b8792
JA
4187static bool __cancel_work(struct work_struct *work, bool is_dwork)
4188{
4189 unsigned long flags;
4190 int ret;
4191
4192 do {
4193 ret = try_to_grab_pending(work, is_dwork, &flags);
4194 } while (unlikely(ret == -EAGAIN));
4195
4196 if (unlikely(ret < 0))
4197 return false;
4198
4199 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
4200 local_irq_restore(flags);
4201 return ret;
4202}
4203
73b4b532
AG
4204/*
4205 * See cancel_delayed_work()
4206 */
4207bool cancel_work(struct work_struct *work)
4208{
4209 return __cancel_work(work, false);
4210}
4211EXPORT_SYMBOL(cancel_work);
4212
09383498 4213/**
57b30ae7
TH
4214 * cancel_delayed_work - cancel a delayed work
4215 * @dwork: delayed_work to cancel
09383498 4216 *
d185af30
YB
4217 * Kill off a pending delayed_work.
4218 *
4219 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4220 * pending.
4221 *
4222 * Note:
4223 * The work callback function may still be running on return, unless
4224 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4225 * use cancel_delayed_work_sync() to wait on it.
09383498 4226 *
57b30ae7 4227 * This function is safe to call from any context including IRQ handler.
09383498 4228 */
57b30ae7 4229bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4230{
f72b8792 4231 return __cancel_work(&dwork->work, true);
09383498 4232}
57b30ae7 4233EXPORT_SYMBOL(cancel_delayed_work);
09383498 4234
401a8d04
TH
4235/**
4236 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4237 * @dwork: the delayed work cancel
4238 *
4239 * This is cancel_work_sync() for delayed works.
4240 *
d185af30 4241 * Return:
401a8d04
TH
4242 * %true if @dwork was pending, %false otherwise.
4243 */
4244bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4245{
36e227d2 4246 return __cancel_work_timer(&dwork->work, true);
6e84d644 4247}
f5a421a4 4248EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4249
b6136773 4250/**
31ddd871 4251 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4252 * @func: the function to call
b6136773 4253 *
31ddd871
TH
4254 * schedule_on_each_cpu() executes @func on each online CPU using the
4255 * system workqueue and blocks until all CPUs have completed.
b6136773 4256 * schedule_on_each_cpu() is very slow.
31ddd871 4257 *
d185af30 4258 * Return:
31ddd871 4259 * 0 on success, -errno on failure.
b6136773 4260 */
65f27f38 4261int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4262{
4263 int cpu;
38f51568 4264 struct work_struct __percpu *works;
15316ba8 4265
b6136773
AM
4266 works = alloc_percpu(struct work_struct);
4267 if (!works)
15316ba8 4268 return -ENOMEM;
b6136773 4269
ffd8bea8 4270 cpus_read_lock();
93981800 4271
15316ba8 4272 for_each_online_cpu(cpu) {
9bfb1839
IM
4273 struct work_struct *work = per_cpu_ptr(works, cpu);
4274
4275 INIT_WORK(work, func);
b71ab8c2 4276 schedule_work_on(cpu, work);
65a64464 4277 }
93981800
TH
4278
4279 for_each_online_cpu(cpu)
4280 flush_work(per_cpu_ptr(works, cpu));
4281
ffd8bea8 4282 cpus_read_unlock();
b6136773 4283 free_percpu(works);
15316ba8
CL
4284 return 0;
4285}
4286
1fa44eca
JB
4287/**
4288 * execute_in_process_context - reliably execute the routine with user context
4289 * @fn: the function to execute
1fa44eca
JB
4290 * @ew: guaranteed storage for the execute work structure (must
4291 * be available when the work executes)
4292 *
4293 * Executes the function immediately if process context is available,
4294 * otherwise schedules the function for delayed execution.
4295 *
d185af30 4296 * Return: 0 - function was executed
1fa44eca
JB
4297 * 1 - function was scheduled for execution
4298 */
65f27f38 4299int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4300{
4301 if (!in_interrupt()) {
65f27f38 4302 fn(&ew->work);
1fa44eca
JB
4303 return 0;
4304 }
4305
65f27f38 4306 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4307 schedule_work(&ew->work);
4308
4309 return 1;
4310}
4311EXPORT_SYMBOL_GPL(execute_in_process_context);
4312
6ba94429
FW
4313/**
4314 * free_workqueue_attrs - free a workqueue_attrs
4315 * @attrs: workqueue_attrs to free
226223ab 4316 *
6ba94429 4317 * Undo alloc_workqueue_attrs().
226223ab 4318 */
513c98d0 4319void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4320{
6ba94429
FW
4321 if (attrs) {
4322 free_cpumask_var(attrs->cpumask);
9546b29e 4323 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4324 kfree(attrs);
4325 }
226223ab
TH
4326}
4327
6ba94429
FW
4328/**
4329 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4330 *
4331 * Allocate a new workqueue_attrs, initialize with default settings and
4332 * return it.
4333 *
4334 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4335 */
513c98d0 4336struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4337{
6ba94429 4338 struct workqueue_attrs *attrs;
226223ab 4339
be69d00d 4340 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4341 if (!attrs)
4342 goto fail;
be69d00d 4343 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4344 goto fail;
9546b29e
TH
4345 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4346 goto fail;
6ba94429
FW
4347
4348 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4349 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4350 return attrs;
4351fail:
4352 free_workqueue_attrs(attrs);
4353 return NULL;
226223ab
TH
4354}
4355
6ba94429
FW
4356static void copy_workqueue_attrs(struct workqueue_attrs *to,
4357 const struct workqueue_attrs *from)
226223ab 4358{
6ba94429
FW
4359 to->nice = from->nice;
4360 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4361 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4362 to->affn_strict = from->affn_strict;
84193c07 4363
6ba94429 4364 /*
84193c07
TH
4365 * Unlike hash and equality test, copying shouldn't ignore wq-only
4366 * fields as copying is used for both pool and wq attrs. Instead,
4367 * get_unbound_pool() explicitly clears the fields.
6ba94429 4368 */
84193c07 4369 to->affn_scope = from->affn_scope;
af73f5c9 4370 to->ordered = from->ordered;
226223ab
TH
4371}
4372
5de7a03c
TH
4373/*
4374 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4375 * comments in 'struct workqueue_attrs' definition.
4376 */
4377static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4378{
84193c07 4379 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c
TH
4380 attrs->ordered = false;
4381}
4382
6ba94429
FW
4383/* hash value of the content of @attr */
4384static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4385{
6ba94429 4386 u32 hash = 0;
226223ab 4387
6ba94429
FW
4388 hash = jhash_1word(attrs->nice, hash);
4389 hash = jhash(cpumask_bits(attrs->cpumask),
4390 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
9546b29e
TH
4391 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4392 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
8639eceb 4393 hash = jhash_1word(attrs->affn_strict, hash);
6ba94429 4394 return hash;
226223ab 4395}
226223ab 4396
6ba94429
FW
4397/* content equality test */
4398static bool wqattrs_equal(const struct workqueue_attrs *a,
4399 const struct workqueue_attrs *b)
226223ab 4400{
6ba94429
FW
4401 if (a->nice != b->nice)
4402 return false;
4403 if (!cpumask_equal(a->cpumask, b->cpumask))
4404 return false;
9546b29e
TH
4405 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4406 return false;
8639eceb
TH
4407 if (a->affn_strict != b->affn_strict)
4408 return false;
6ba94429 4409 return true;
226223ab
TH
4410}
4411
0f36ee24
TH
4412/* Update @attrs with actually available CPUs */
4413static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4414 const cpumask_t *unbound_cpumask)
4415{
4416 /*
4417 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4418 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4419 * @unbound_cpumask.
4420 */
4421 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4422 if (unlikely(cpumask_empty(attrs->cpumask)))
4423 cpumask_copy(attrs->cpumask, unbound_cpumask);
4424}
4425
84193c07
TH
4426/* find wq_pod_type to use for @attrs */
4427static const struct wq_pod_type *
4428wqattrs_pod_type(const struct workqueue_attrs *attrs)
4429{
523a301e
TH
4430 enum wq_affn_scope scope;
4431 struct wq_pod_type *pt;
4432
4433 /* to synchronize access to wq_affn_dfl */
4434 lockdep_assert_held(&wq_pool_mutex);
4435
4436 if (attrs->affn_scope == WQ_AFFN_DFL)
4437 scope = wq_affn_dfl;
4438 else
4439 scope = attrs->affn_scope;
4440
4441 pt = &wq_pod_types[scope];
84193c07
TH
4442
4443 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4444 likely(pt->nr_pods))
4445 return pt;
4446
4447 /*
4448 * Before workqueue_init_topology(), only SYSTEM is available which is
4449 * initialized in workqueue_init_early().
4450 */
4451 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4452 BUG_ON(!pt->nr_pods);
4453 return pt;
4454}
4455
6ba94429
FW
4456/**
4457 * init_worker_pool - initialize a newly zalloc'd worker_pool
4458 * @pool: worker_pool to initialize
4459 *
402dd89d 4460 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4461 *
4462 * Return: 0 on success, -errno on failure. Even on failure, all fields
4463 * inside @pool proper are initialized and put_unbound_pool() can be called
4464 * on @pool safely to release it.
4465 */
4466static int init_worker_pool(struct worker_pool *pool)
226223ab 4467{
a9b8a985 4468 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4469 pool->id = -1;
4470 pool->cpu = -1;
4471 pool->node = NUMA_NO_NODE;
4472 pool->flags |= POOL_DISASSOCIATED;
82607adc 4473 pool->watchdog_ts = jiffies;
6ba94429
FW
4474 INIT_LIST_HEAD(&pool->worklist);
4475 INIT_LIST_HEAD(&pool->idle_list);
4476 hash_init(pool->busy_hash);
226223ab 4477
32a6c723 4478 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4479 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4480
32a6c723 4481 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4482
6ba94429 4483 INIT_LIST_HEAD(&pool->workers);
e02b9312 4484 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 4485
6ba94429
FW
4486 ida_init(&pool->worker_ida);
4487 INIT_HLIST_NODE(&pool->hash_node);
4488 pool->refcnt = 1;
226223ab 4489
6ba94429 4490 /* shouldn't fail above this point */
be69d00d 4491 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4492 if (!pool->attrs)
4493 return -ENOMEM;
5de7a03c
TH
4494
4495 wqattrs_clear_for_pool(pool->attrs);
4496
6ba94429 4497 return 0;
226223ab
TH
4498}
4499
669de8bd
BVA
4500#ifdef CONFIG_LOCKDEP
4501static void wq_init_lockdep(struct workqueue_struct *wq)
4502{
4503 char *lock_name;
4504
4505 lockdep_register_key(&wq->key);
4506 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4507 if (!lock_name)
4508 lock_name = wq->name;
69a106c0
QC
4509
4510 wq->lock_name = lock_name;
669de8bd
BVA
4511 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4512}
4513
4514static void wq_unregister_lockdep(struct workqueue_struct *wq)
4515{
4516 lockdep_unregister_key(&wq->key);
4517}
4518
4519static void wq_free_lockdep(struct workqueue_struct *wq)
4520{
4521 if (wq->lock_name != wq->name)
4522 kfree(wq->lock_name);
4523}
4524#else
4525static void wq_init_lockdep(struct workqueue_struct *wq)
4526{
4527}
4528
4529static void wq_unregister_lockdep(struct workqueue_struct *wq)
4530{
4531}
4532
4533static void wq_free_lockdep(struct workqueue_struct *wq)
4534{
4535}
4536#endif
4537
91ccc6e7
TH
4538static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4539{
4540 int node;
4541
4542 for_each_node(node) {
4543 kfree(nna_ar[node]);
4544 nna_ar[node] = NULL;
4545 }
4546
4547 kfree(nna_ar[nr_node_ids]);
4548 nna_ar[nr_node_ids] = NULL;
4549}
4550
4551static void init_node_nr_active(struct wq_node_nr_active *nna)
4552{
c5f8cd6c 4553 nna->max = WQ_DFL_MIN_ACTIVE;
91ccc6e7 4554 atomic_set(&nna->nr, 0);
5797b1c1
TH
4555 raw_spin_lock_init(&nna->lock);
4556 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4557}
4558
4559/*
4560 * Each node's nr_active counter will be accessed mostly from its own node and
4561 * should be allocated in the node.
4562 */
4563static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4564{
4565 struct wq_node_nr_active *nna;
4566 int node;
4567
4568 for_each_node(node) {
4569 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4570 if (!nna)
4571 goto err_free;
4572 init_node_nr_active(nna);
4573 nna_ar[node] = nna;
4574 }
4575
4576 /* [nr_node_ids] is used as the fallback */
4577 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4578 if (!nna)
4579 goto err_free;
4580 init_node_nr_active(nna);
4581 nna_ar[nr_node_ids] = nna;
4582
4583 return 0;
4584
4585err_free:
4586 free_node_nr_active(nna_ar);
4587 return -ENOMEM;
4588}
4589
6ba94429 4590static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4591{
6ba94429
FW
4592 struct workqueue_struct *wq =
4593 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4594
91ccc6e7
TH
4595 if (wq->flags & WQ_UNBOUND)
4596 free_node_nr_active(wq->node_nr_active);
4597
669de8bd 4598 wq_free_lockdep(wq);
636b927e
TH
4599 free_percpu(wq->cpu_pwq);
4600 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4601 kfree(wq);
226223ab
TH
4602}
4603
6ba94429 4604static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4605{
6ba94429 4606 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4607
6ba94429
FW
4608 ida_destroy(&pool->worker_ida);
4609 free_workqueue_attrs(pool->attrs);
4610 kfree(pool);
226223ab
TH
4611}
4612
6ba94429
FW
4613/**
4614 * put_unbound_pool - put a worker_pool
4615 * @pool: worker_pool to put
4616 *
24acfb71 4617 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4618 * safe manner. get_unbound_pool() calls this function on its failure path
4619 * and this function should be able to release pools which went through,
4620 * successfully or not, init_worker_pool().
4621 *
4622 * Should be called with wq_pool_mutex held.
4623 */
4624static void put_unbound_pool(struct worker_pool *pool)
226223ab 4625{
6ba94429
FW
4626 DECLARE_COMPLETION_ONSTACK(detach_completion);
4627 struct worker *worker;
9680540c 4628 LIST_HEAD(cull_list);
e02b9312 4629
6ba94429 4630 lockdep_assert_held(&wq_pool_mutex);
226223ab 4631
6ba94429
FW
4632 if (--pool->refcnt)
4633 return;
226223ab 4634
6ba94429
FW
4635 /* sanity checks */
4636 if (WARN_ON(!(pool->cpu < 0)) ||
4637 WARN_ON(!list_empty(&pool->worklist)))
4638 return;
226223ab 4639
6ba94429
FW
4640 /* release id and unhash */
4641 if (pool->id >= 0)
4642 idr_remove(&worker_pool_idr, pool->id);
4643 hash_del(&pool->hash_node);
d55262c4 4644
6ba94429 4645 /*
692b4825
TH
4646 * Become the manager and destroy all workers. This prevents
4647 * @pool's workers from blocking on attach_mutex. We're the last
4648 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4649 *
4650 * Having a concurrent manager is quite unlikely to happen as we can
4651 * only get here with
4652 * pwq->refcnt == pool->refcnt == 0
4653 * which implies no work queued to the pool, which implies no worker can
4654 * become the manager. However a worker could have taken the role of
4655 * manager before the refcnts dropped to 0, since maybe_create_worker()
4656 * drops pool->lock
6ba94429 4657 */
9ab03be4
VS
4658 while (true) {
4659 rcuwait_wait_event(&manager_wait,
4660 !(pool->flags & POOL_MANAGER_ACTIVE),
4661 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4662
4663 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4664 raw_spin_lock_irq(&pool->lock);
4665 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4666 pool->flags |= POOL_MANAGER_ACTIVE;
4667 break;
4668 }
4669 raw_spin_unlock_irq(&pool->lock);
e02b9312 4670 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4671 }
692b4825 4672
6ba94429 4673 while ((worker = first_idle_worker(pool)))
e02b9312 4674 set_worker_dying(worker, &cull_list);
6ba94429 4675 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4676 raw_spin_unlock_irq(&pool->lock);
d55262c4 4677
e02b9312
VS
4678 wake_dying_workers(&cull_list);
4679
4680 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 4681 pool->detach_completion = &detach_completion;
1258fae7 4682 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4683
6ba94429
FW
4684 if (pool->detach_completion)
4685 wait_for_completion(pool->detach_completion);
226223ab 4686
6ba94429
FW
4687 /* shut down the timers */
4688 del_timer_sync(&pool->idle_timer);
3f959aa3 4689 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4690 del_timer_sync(&pool->mayday_timer);
226223ab 4691
24acfb71 4692 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4693 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4694}
4695
4696/**
6ba94429
FW
4697 * get_unbound_pool - get a worker_pool with the specified attributes
4698 * @attrs: the attributes of the worker_pool to get
226223ab 4699 *
6ba94429
FW
4700 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4701 * reference count and return it. If there already is a matching
4702 * worker_pool, it will be used; otherwise, this function attempts to
4703 * create a new one.
226223ab 4704 *
6ba94429 4705 * Should be called with wq_pool_mutex held.
226223ab 4706 *
6ba94429
FW
4707 * Return: On success, a worker_pool with the same attributes as @attrs.
4708 * On failure, %NULL.
226223ab 4709 */
6ba94429 4710static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4711{
84193c07 4712 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4713 u32 hash = wqattrs_hash(attrs);
4714 struct worker_pool *pool;
84193c07 4715 int pod, node = NUMA_NO_NODE;
226223ab 4716
6ba94429 4717 lockdep_assert_held(&wq_pool_mutex);
226223ab 4718
6ba94429
FW
4719 /* do we already have a matching pool? */
4720 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4721 if (wqattrs_equal(pool->attrs, attrs)) {
4722 pool->refcnt++;
4723 return pool;
4724 }
4725 }
226223ab 4726
9546b29e 4727 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 4728 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 4729 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
4730 node = pt->pod_node[pod];
4731 break;
e2273584
XP
4732 }
4733 }
4734
6ba94429 4735 /* nope, create a new one */
84193c07 4736 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
4737 if (!pool || init_worker_pool(pool) < 0)
4738 goto fail;
4739
84193c07 4740 pool->node = node;
5de7a03c
TH
4741 copy_workqueue_attrs(pool->attrs, attrs);
4742 wqattrs_clear_for_pool(pool->attrs);
226223ab 4743
6ba94429
FW
4744 if (worker_pool_assign_id(pool) < 0)
4745 goto fail;
226223ab 4746
6ba94429 4747 /* create and start the initial worker */
3347fa09 4748 if (wq_online && !create_worker(pool))
6ba94429 4749 goto fail;
226223ab 4750
6ba94429
FW
4751 /* install */
4752 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 4753
6ba94429
FW
4754 return pool;
4755fail:
4756 if (pool)
4757 put_unbound_pool(pool);
4758 return NULL;
226223ab 4759}
226223ab 4760
6ba94429 4761static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 4762{
6ba94429
FW
4763 kmem_cache_free(pwq_cache,
4764 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
4765}
4766
6ba94429 4767/*
967b494e
TH
4768 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4769 * refcnt and needs to be destroyed.
7a4e344c 4770 */
687a9aa5 4771static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 4772{
6ba94429 4773 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 4774 release_work);
6ba94429
FW
4775 struct workqueue_struct *wq = pwq->wq;
4776 struct worker_pool *pool = pwq->pool;
b42b0bdd 4777 bool is_last = false;
7a4e344c 4778
b42b0bdd 4779 /*
687a9aa5 4780 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
4781 * @wq, and @wq is invalid to access.
4782 */
4783 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
4784 mutex_lock(&wq->mutex);
4785 list_del_rcu(&pwq->pwqs_node);
4786 is_last = list_empty(&wq->pwqs);
4c065dbc
WL
4787
4788 /*
4789 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4790 */
4791 if (!is_last && (wq->flags & __WQ_ORDERED))
4792 unplug_oldest_pwq(wq);
4793
b42b0bdd
YY
4794 mutex_unlock(&wq->mutex);
4795 }
6ba94429 4796
687a9aa5
TH
4797 if (wq->flags & WQ_UNBOUND) {
4798 mutex_lock(&wq_pool_mutex);
4799 put_unbound_pool(pool);
4800 mutex_unlock(&wq_pool_mutex);
4801 }
6ba94429 4802
5797b1c1
TH
4803 if (!list_empty(&pwq->pending_node)) {
4804 struct wq_node_nr_active *nna =
4805 wq_node_nr_active(pwq->wq, pwq->pool->node);
4806
4807 raw_spin_lock_irq(&nna->lock);
4808 list_del_init(&pwq->pending_node);
4809 raw_spin_unlock_irq(&nna->lock);
4810 }
4811
25b00775 4812 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 4813
2865a8fb 4814 /*
6ba94429
FW
4815 * If we're the last pwq going away, @wq is already dead and no one
4816 * is gonna access it anymore. Schedule RCU free.
2865a8fb 4817 */
669de8bd
BVA
4818 if (is_last) {
4819 wq_unregister_lockdep(wq);
25b00775 4820 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 4821 }
29c91e99
TH
4822}
4823
67dc8325 4824/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
4825static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4826 struct worker_pool *pool)
29c91e99 4827{
6ba94429 4828 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 4829
6ba94429
FW
4830 memset(pwq, 0, sizeof(*pwq));
4831
4832 pwq->pool = pool;
4833 pwq->wq = wq;
4834 pwq->flush_color = -1;
4835 pwq->refcnt = 1;
f97a4a1a 4836 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 4837 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
4838 INIT_LIST_HEAD(&pwq->pwqs_node);
4839 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 4840 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
4841}
4842
6ba94429
FW
4843/* sync @pwq with the current state of its associated wq and link it */
4844static void link_pwq(struct pool_workqueue *pwq)
29c91e99 4845{
6ba94429 4846 struct workqueue_struct *wq = pwq->wq;
29c91e99 4847
6ba94429 4848 lockdep_assert_held(&wq->mutex);
a892cacc 4849
6ba94429
FW
4850 /* may be called multiple times, ignore if already linked */
4851 if (!list_empty(&pwq->pwqs_node))
29c91e99 4852 return;
29c91e99 4853
6ba94429
FW
4854 /* set the matching work_color */
4855 pwq->work_color = wq->work_color;
29c91e99 4856
6ba94429 4857 /* link in @pwq */
26fb7e3d 4858 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
6ba94429 4859}
29c91e99 4860
6ba94429
FW
4861/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4862static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4863 const struct workqueue_attrs *attrs)
4864{
4865 struct worker_pool *pool;
4866 struct pool_workqueue *pwq;
60f5a4bc 4867
6ba94429 4868 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 4869
6ba94429
FW
4870 pool = get_unbound_pool(attrs);
4871 if (!pool)
4872 return NULL;
60f5a4bc 4873
6ba94429
FW
4874 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4875 if (!pwq) {
4876 put_unbound_pool(pool);
4877 return NULL;
4878 }
29c91e99 4879
6ba94429
FW
4880 init_pwq(pwq, wq, pool);
4881 return pwq;
4882}
29c91e99 4883
29c91e99 4884/**
fef59c9c 4885 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 4886 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 4887 * @cpu: the target CPU
6ba94429 4888 * @cpu_going_down: if >= 0, the CPU to consider as offline
29c91e99 4889 *
fef59c9c
TH
4890 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4891 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
9546b29e 4892 * The result is stored in @attrs->__pod_cpumask.
a892cacc 4893 *
fef59c9c
TH
4894 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4895 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4896 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 4897 *
fef59c9c 4898 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 4899 */
9546b29e
TH
4900static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4901 int cpu_going_down)
29c91e99 4902{
84193c07
TH
4903 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4904 int pod = pt->cpu_pod[cpu];
29c91e99 4905
fef59c9c 4906 /* does @pod have any online CPUs @attrs wants? */
9546b29e
TH
4907 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4908 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
6ba94429 4909 if (cpu_going_down >= 0)
9546b29e 4910 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
29c91e99 4911
9546b29e
TH
4912 if (cpumask_empty(attrs->__pod_cpumask)) {
4913 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
4914 return;
4915 }
4c16bd32 4916
fef59c9c 4917 /* yeap, return possible CPUs in @pod that @attrs wants */
9546b29e 4918 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 4919
9546b29e 4920 if (cpumask_empty(attrs->__pod_cpumask))
1ad0f0a7
MB
4921 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4922 "possible intersect\n");
4c16bd32
TH
4923}
4924
9f66cff2 4925/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
4926static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4927 int cpu, struct pool_workqueue *pwq)
1befcf30 4928{
9f66cff2 4929 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
4930 struct pool_workqueue *old_pwq;
4931
5b95e1af 4932 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4933 lockdep_assert_held(&wq->mutex);
4934
4935 /* link_pwq() can handle duplicate calls */
4936 link_pwq(pwq);
4937
9f66cff2
TH
4938 old_pwq = rcu_access_pointer(*slot);
4939 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
4940 return old_pwq;
4941}
4942
2d5f0764
LJ
4943/* context to store the prepared attrs & pwqs before applying */
4944struct apply_wqattrs_ctx {
4945 struct workqueue_struct *wq; /* target workqueue */
4946 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4947 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4948 struct pool_workqueue *dfl_pwq;
4949 struct pool_workqueue *pwq_tbl[];
4950};
4951
4952/* free the resources after success or abort */
4953static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4954{
4955 if (ctx) {
636b927e 4956 int cpu;
2d5f0764 4957
636b927e
TH
4958 for_each_possible_cpu(cpu)
4959 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
4960 put_pwq_unlocked(ctx->dfl_pwq);
4961
4962 free_workqueue_attrs(ctx->attrs);
4963
4964 kfree(ctx);
4965 }
4966}
4967
4968/* allocate the attrs and pwqs for later installation */
4969static struct apply_wqattrs_ctx *
4970apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4971 const struct workqueue_attrs *attrs,
4972 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4973{
2d5f0764 4974 struct apply_wqattrs_ctx *ctx;
9546b29e 4975 struct workqueue_attrs *new_attrs;
636b927e 4976 int cpu;
9e8cd2f5 4977
2d5f0764 4978 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4979
84193c07
TH
4980 if (WARN_ON(attrs->affn_scope < 0 ||
4981 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4982 return ERR_PTR(-EINVAL);
4983
636b927e 4984 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 4985
be69d00d 4986 new_attrs = alloc_workqueue_attrs();
9546b29e 4987 if (!ctx || !new_attrs)
2d5f0764 4988 goto out_free;
13e2e556 4989
4c16bd32
TH
4990 /*
4991 * If something goes wrong during CPU up/down, we'll fall back to
4992 * the default pwq covering whole @attrs->cpumask. Always create
4993 * it even if we don't use it immediately.
4994 */
0f36ee24
TH
4995 copy_workqueue_attrs(new_attrs, attrs);
4996 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 4997 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
4998 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4999 if (!ctx->dfl_pwq)
5000 goto out_free;
4c16bd32 5001
636b927e 5002 for_each_possible_cpu(cpu) {
af73f5c9 5003 if (new_attrs->ordered) {
2d5f0764 5004 ctx->dfl_pwq->refcnt++;
636b927e
TH
5005 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5006 } else {
9546b29e
TH
5007 wq_calc_pod_cpumask(new_attrs, cpu, -1);
5008 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
5009 if (!ctx->pwq_tbl[cpu])
5010 goto out_free;
4c16bd32
TH
5011 }
5012 }
5013
042f7df1
LJ
5014 /* save the user configured attrs and sanitize it. */
5015 copy_workqueue_attrs(new_attrs, attrs);
5016 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 5017 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 5018 ctx->attrs = new_attrs;
042f7df1 5019
4c065dbc
WL
5020 /*
5021 * For initialized ordered workqueues, there should only be one pwq
5022 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5023 * of newly queued work items until execution of older work items in
5024 * the old pwq's have completed.
5025 */
5026 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5027 ctx->dfl_pwq->plugged = true;
5028
2d5f0764 5029 ctx->wq = wq;
2d5f0764
LJ
5030 return ctx;
5031
5032out_free:
2d5f0764
LJ
5033 free_workqueue_attrs(new_attrs);
5034 apply_wqattrs_cleanup(ctx);
84193c07 5035 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
5036}
5037
5038/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5039static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5040{
636b927e 5041 int cpu;
9e8cd2f5 5042
4c16bd32 5043 /* all pwqs have been created successfully, let's install'em */
2d5f0764 5044 mutex_lock(&ctx->wq->mutex);
a892cacc 5045
2d5f0764 5046 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 5047
9f66cff2 5048 /* save the previous pwqs and install the new ones */
636b927e
TH
5049 for_each_possible_cpu(cpu)
5050 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5051 ctx->pwq_tbl[cpu]);
9f66cff2 5052 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 5053
5797b1c1
TH
5054 /* update node_nr_active->max */
5055 wq_update_node_max_active(ctx->wq, -1);
5056
d64f2fa0
JL
5057 /* rescuer needs to respect wq cpumask changes */
5058 if (ctx->wq->rescuer)
5059 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5060 unbound_effective_cpumask(ctx->wq));
5061
2d5f0764
LJ
5062 mutex_unlock(&ctx->wq->mutex);
5063}
9e8cd2f5 5064
a0111cf6
LJ
5065static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5066 const struct workqueue_attrs *attrs)
2d5f0764
LJ
5067{
5068 struct apply_wqattrs_ctx *ctx;
4c16bd32 5069
2d5f0764
LJ
5070 /* only unbound workqueues can change attributes */
5071 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5072 return -EINVAL;
13e2e556 5073
99c621ef 5074 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
5075 if (IS_ERR(ctx))
5076 return PTR_ERR(ctx);
2d5f0764
LJ
5077
5078 /* the ctx has been prepared successfully, let's commit it */
6201171e 5079 apply_wqattrs_commit(ctx);
2d5f0764
LJ
5080 apply_wqattrs_cleanup(ctx);
5081
6201171e 5082 return 0;
9e8cd2f5
TH
5083}
5084
a0111cf6
LJ
5085/**
5086 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5087 * @wq: the target workqueue
5088 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5089 *
fef59c9c
TH
5090 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5091 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5092 * work items are affine to the pod it was issued on. Older pwqs are released as
5093 * in-flight work items finish. Note that a work item which repeatedly requeues
5094 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
5095 *
5096 * Performs GFP_KERNEL allocations.
5097 *
ffd8bea8 5098 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 5099 *
a0111cf6
LJ
5100 * Return: 0 on success and -errno on failure.
5101 */
513c98d0 5102int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
5103 const struct workqueue_attrs *attrs)
5104{
5105 int ret;
5106
509b3204
DJ
5107 lockdep_assert_cpus_held();
5108
5109 mutex_lock(&wq_pool_mutex);
a0111cf6 5110 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 5111 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
5112
5113 return ret;
5114}
5115
4c16bd32 5116/**
fef59c9c 5117 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 5118 * @wq: the target workqueue
4cbfd3de
TH
5119 * @cpu: the CPU to update pool association for
5120 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
5121 * @online: whether @cpu is coming up or going down
5122 *
5123 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 5124 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
5125 * @wq accordingly.
5126 *
fef59c9c
TH
5127 *
5128 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5129 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5130 *
5131 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5132 * with a cpumask spanning multiple pods, the workers which were already
5133 * executing the work items for the workqueue will lose their CPU affinity and
5134 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5135 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5136 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 5137 */
fef59c9c
TH
5138static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5139 int hotplug_cpu, bool online)
4c16bd32 5140{
4cbfd3de 5141 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
5142 struct pool_workqueue *old_pwq = NULL, *pwq;
5143 struct workqueue_attrs *target_attrs;
4c16bd32
TH
5144
5145 lockdep_assert_held(&wq_pool_mutex);
5146
84193c07 5147 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
5148 return;
5149
5150 /*
5151 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5152 * Let's use a preallocated one. The following buf is protected by
5153 * CPU hotplug exclusion.
5154 */
fef59c9c 5155 target_attrs = wq_update_pod_attrs_buf;
4c16bd32 5156
4c16bd32 5157 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 5158 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 5159
636b927e 5160 /* nothing to do if the target cpumask matches the current pwq */
9546b29e 5161 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
9f66cff2 5162 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 5163 return;
4c16bd32 5164
4c16bd32
TH
5165 /* create a new pwq */
5166 pwq = alloc_unbound_pwq(wq, target_attrs);
5167 if (!pwq) {
fef59c9c 5168 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 5169 wq->name);
77f300b1 5170 goto use_dfl_pwq;
4c16bd32
TH
5171 }
5172
f7142ed4 5173 /* Install the new pwq. */
4c16bd32 5174 mutex_lock(&wq->mutex);
636b927e 5175 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5176 goto out_unlock;
5177
5178use_dfl_pwq:
f7142ed4 5179 mutex_lock(&wq->mutex);
9f66cff2
TH
5180 pwq = unbound_pwq(wq, -1);
5181 raw_spin_lock_irq(&pwq->pool->lock);
5182 get_pwq(pwq);
5183 raw_spin_unlock_irq(&pwq->pool->lock);
5184 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5185out_unlock:
5186 mutex_unlock(&wq->mutex);
5187 put_pwq_unlocked(old_pwq);
5188}
5189
30cdf249 5190static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 5191{
49e3cf44 5192 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 5193 int cpu, ret;
30cdf249 5194
636b927e
TH
5195 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5196 if (!wq->cpu_pwq)
5197 goto enomem;
30cdf249 5198
636b927e 5199 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 5200 for_each_possible_cpu(cpu) {
4cb1ef64
TH
5201 struct pool_workqueue **pwq_p;
5202 struct worker_pool __percpu *pools;
5203 struct worker_pool *pool;
5204
5205 if (wq->flags & WQ_BH)
5206 pools = bh_worker_pools;
5207 else
5208 pools = cpu_worker_pools;
5209
5210 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5211 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
5212
5213 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5214 pool->node);
5215 if (!*pwq_p)
5216 goto enomem;
f3421797 5217
687a9aa5 5218 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
5219
5220 mutex_lock(&wq->mutex);
687a9aa5 5221 link_pwq(*pwq_p);
f147f29e 5222 mutex_unlock(&wq->mutex);
30cdf249 5223 }
9e8cd2f5 5224 return 0;
509b3204
DJ
5225 }
5226
ffd8bea8 5227 cpus_read_lock();
509b3204 5228 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5229 struct pool_workqueue *dfl_pwq;
5230
8a2b7538
TH
5231 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5232 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5233 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5234 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5235 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5236 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5237 } else {
509b3204 5238 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5239 }
ffd8bea8 5240 cpus_read_unlock();
509b3204 5241
64344553
Z
5242 /* for unbound pwq, flush the pwq_release_worker ensures that the
5243 * pwq_release_workfn() completes before calling kfree(wq).
5244 */
5245 if (ret)
5246 kthread_flush_worker(pwq_release_worker);
5247
509b3204 5248 return ret;
687a9aa5
TH
5249
5250enomem:
5251 if (wq->cpu_pwq) {
7b42f401
Z
5252 for_each_possible_cpu(cpu) {
5253 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5254
5255 if (pwq)
5256 kmem_cache_free(pwq_cache, pwq);
5257 }
687a9aa5
TH
5258 free_percpu(wq->cpu_pwq);
5259 wq->cpu_pwq = NULL;
5260 }
5261 return -ENOMEM;
0f900049
TH
5262}
5263
f3421797
TH
5264static int wq_clamp_max_active(int max_active, unsigned int flags,
5265 const char *name)
b71ab8c2 5266{
636b927e 5267 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5268 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5269 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5270
636b927e 5271 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5272}
5273
983c7515
TH
5274/*
5275 * Workqueues which may be used during memory reclaim should have a rescuer
5276 * to guarantee forward progress.
5277 */
5278static int init_rescuer(struct workqueue_struct *wq)
5279{
5280 struct worker *rescuer;
b92b36ea 5281 int ret;
983c7515
TH
5282
5283 if (!(wq->flags & WQ_MEM_RECLAIM))
5284 return 0;
5285
5286 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5287 if (!rescuer) {
5288 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5289 wq->name);
983c7515 5290 return -ENOMEM;
4c0736a7 5291 }
983c7515
TH
5292
5293 rescuer->rescue_wq = wq;
b6a46f72 5294 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
f187b697 5295 if (IS_ERR(rescuer->task)) {
b92b36ea 5296 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5297 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5298 wq->name, ERR_PTR(ret));
983c7515 5299 kfree(rescuer);
b92b36ea 5300 return ret;
983c7515
TH
5301 }
5302
5303 wq->rescuer = rescuer;
85f0ab43 5304 if (wq->flags & WQ_UNBOUND)
49584bb8 5305 kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
85f0ab43
JL
5306 else
5307 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5308 wake_up_process(rescuer->task);
5309
5310 return 0;
5311}
5312
a045a272
TH
5313/**
5314 * wq_adjust_max_active - update a wq's max_active to the current setting
5315 * @wq: target workqueue
5316 *
5317 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5318 * activate inactive work items accordingly. If @wq is freezing, clear
5319 * @wq->max_active to zero.
5320 */
5321static void wq_adjust_max_active(struct workqueue_struct *wq)
5322{
c5404d4e 5323 bool activated;
5797b1c1 5324 int new_max, new_min;
a045a272
TH
5325
5326 lockdep_assert_held(&wq->mutex);
5327
5328 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5329 new_max = 0;
5330 new_min = 0;
5331 } else {
5332 new_max = wq->saved_max_active;
5333 new_min = wq->saved_min_active;
a045a272
TH
5334 }
5335
5797b1c1 5336 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5337 return;
5338
5339 /*
5797b1c1 5340 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5341 * active work items are allowed. This doesn't break work item ordering
5342 * because new work items are always queued behind existing inactive
5343 * work items if there are any.
5344 */
5797b1c1
TH
5345 WRITE_ONCE(wq->max_active, new_max);
5346 WRITE_ONCE(wq->min_active, new_min);
5347
5348 if (wq->flags & WQ_UNBOUND)
5349 wq_update_node_max_active(wq, -1);
5350
5351 if (new_max == 0)
5352 return;
a045a272 5353
c5404d4e
TH
5354 /*
5355 * Round-robin through pwq's activating the first inactive work item
5356 * until max_active is filled.
5357 */
5358 do {
5359 struct pool_workqueue *pwq;
a045a272 5360
c5404d4e
TH
5361 activated = false;
5362 for_each_pwq(pwq, wq) {
5363 unsigned long flags;
a045a272 5364
c5404d4e
TH
5365 /* can be called during early boot w/ irq disabled */
5366 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5797b1c1 5367 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5368 activated = true;
5369 kick_pool(pwq->pool);
5370 }
5371 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5372 }
5373 } while (activated);
a045a272
TH
5374}
5375
a2775bbc 5376__printf(1, 4)
669de8bd
BVA
5377struct workqueue_struct *alloc_workqueue(const char *fmt,
5378 unsigned int flags,
5379 int max_active, ...)
1da177e4 5380{
ecf6881f 5381 va_list args;
1da177e4 5382 struct workqueue_struct *wq;
91ccc6e7
TH
5383 size_t wq_size;
5384 int name_len;
b196be89 5385
4cb1ef64
TH
5386 if (flags & WQ_BH) {
5387 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5388 return NULL;
5389 if (WARN_ON_ONCE(max_active))
5390 return NULL;
5391 }
5392
cee22a15
VK
5393 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5394 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5395 flags |= WQ_UNBOUND;
5396
ecf6881f 5397 /* allocate wq and format name */
91ccc6e7
TH
5398 if (flags & WQ_UNBOUND)
5399 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5400 else
5401 wq_size = sizeof(*wq);
5402
5403 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5404 if (!wq)
d2c1d404 5405 return NULL;
b196be89 5406
6029a918 5407 if (flags & WQ_UNBOUND) {
be69d00d 5408 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5409 if (!wq->unbound_attrs)
5410 goto err_free_wq;
5411 }
5412
669de8bd 5413 va_start(args, max_active);
91ccc6e7 5414 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 5415 va_end(args);
1da177e4 5416
91ccc6e7
TH
5417 if (name_len >= WQ_NAME_LEN)
5418 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5419 wq->name);
31c89007 5420
4cb1ef64
TH
5421 if (flags & WQ_BH) {
5422 /*
5423 * BH workqueues always share a single execution context per CPU
5424 * and don't impose any max_active limit.
5425 */
5426 max_active = INT_MAX;
5427 } else {
5428 max_active = max_active ?: WQ_DFL_ACTIVE;
5429 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5430 }
3af24433 5431
b196be89 5432 /* init wq */
97e37d7b 5433 wq->flags = flags;
a045a272 5434 wq->max_active = max_active;
5797b1c1
TH
5435 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5436 wq->saved_max_active = wq->max_active;
5437 wq->saved_min_active = wq->min_active;
3c25a55d 5438 mutex_init(&wq->mutex);
112202d9 5439 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5440 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5441 INIT_LIST_HEAD(&wq->flusher_queue);
5442 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5443 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5444
669de8bd 5445 wq_init_lockdep(wq);
cce1a165 5446 INIT_LIST_HEAD(&wq->list);
3af24433 5447
91ccc6e7
TH
5448 if (flags & WQ_UNBOUND) {
5449 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5450 goto err_unreg_lockdep;
5451 }
5452
30cdf249 5453 if (alloc_and_link_pwqs(wq) < 0)
91ccc6e7 5454 goto err_free_node_nr_active;
1537663f 5455
40c17f75 5456 if (wq_online && init_rescuer(wq) < 0)
983c7515 5457 goto err_destroy;
3af24433 5458
226223ab
TH
5459 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5460 goto err_destroy;
5461
a0a1a5fd 5462 /*
68e13a67
LJ
5463 * wq_pool_mutex protects global freeze state and workqueues list.
5464 * Grab it, adjust max_active and add the new @wq to workqueues
5465 * list.
a0a1a5fd 5466 */
68e13a67 5467 mutex_lock(&wq_pool_mutex);
a0a1a5fd 5468
a357fc03 5469 mutex_lock(&wq->mutex);
a045a272 5470 wq_adjust_max_active(wq);
a357fc03 5471 mutex_unlock(&wq->mutex);
a0a1a5fd 5472
e2dca7ad 5473 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5474
68e13a67 5475 mutex_unlock(&wq_pool_mutex);
1537663f 5476
3af24433 5477 return wq;
d2c1d404 5478
91ccc6e7
TH
5479err_free_node_nr_active:
5480 if (wq->flags & WQ_UNBOUND)
5481 free_node_nr_active(wq->node_nr_active);
82efcab3 5482err_unreg_lockdep:
009bb421
BVA
5483 wq_unregister_lockdep(wq);
5484 wq_free_lockdep(wq);
82efcab3 5485err_free_wq:
6029a918 5486 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5487 kfree(wq);
5488 return NULL;
5489err_destroy:
5490 destroy_workqueue(wq);
4690c4ab 5491 return NULL;
3af24433 5492}
669de8bd 5493EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5494
c29eb853
TH
5495static bool pwq_busy(struct pool_workqueue *pwq)
5496{
5497 int i;
5498
5499 for (i = 0; i < WORK_NR_COLORS; i++)
5500 if (pwq->nr_in_flight[i])
5501 return true;
5502
9f66cff2 5503 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5504 return true;
afa87ce8 5505 if (!pwq_is_empty(pwq))
c29eb853
TH
5506 return true;
5507
5508 return false;
5509}
5510
3af24433
ON
5511/**
5512 * destroy_workqueue - safely terminate a workqueue
5513 * @wq: target workqueue
5514 *
5515 * Safely destroy a workqueue. All work currently pending will be done first.
5516 */
5517void destroy_workqueue(struct workqueue_struct *wq)
5518{
49e3cf44 5519 struct pool_workqueue *pwq;
636b927e 5520 int cpu;
3af24433 5521
def98c84
TH
5522 /*
5523 * Remove it from sysfs first so that sanity check failure doesn't
5524 * lead to sysfs name conflicts.
5525 */
5526 workqueue_sysfs_unregister(wq);
5527
33e3f0a3
RC
5528 /* mark the workqueue destruction is in progress */
5529 mutex_lock(&wq->mutex);
5530 wq->flags |= __WQ_DESTROYING;
5531 mutex_unlock(&wq->mutex);
5532
9c5a2ba7
TH
5533 /* drain it before proceeding with destruction */
5534 drain_workqueue(wq);
c8efcc25 5535
def98c84
TH
5536 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5537 if (wq->rescuer) {
5538 struct worker *rescuer = wq->rescuer;
5539
5540 /* this prevents new queueing */
a9b8a985 5541 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5542 wq->rescuer = NULL;
a9b8a985 5543 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5544
5545 /* rescuer will empty maydays list before exiting */
5546 kthread_stop(rescuer->task);
8efe1223 5547 kfree(rescuer);
def98c84
TH
5548 }
5549
c29eb853
TH
5550 /*
5551 * Sanity checks - grab all the locks so that we wait for all
5552 * in-flight operations which may do put_pwq().
5553 */
5554 mutex_lock(&wq_pool_mutex);
b09f4fd3 5555 mutex_lock(&wq->mutex);
49e3cf44 5556 for_each_pwq(pwq, wq) {
a9b8a985 5557 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5558 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5559 pr_warn("%s: %s has the following busy pwq\n",
5560 __func__, wq->name);
c29eb853 5561 show_pwq(pwq);
a9b8a985 5562 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5563 mutex_unlock(&wq->mutex);
c29eb853 5564 mutex_unlock(&wq_pool_mutex);
55df0933 5565 show_one_workqueue(wq);
6183c009 5566 return;
76af4d93 5567 }
a9b8a985 5568 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5569 }
b09f4fd3 5570 mutex_unlock(&wq->mutex);
6183c009 5571
a0a1a5fd
TH
5572 /*
5573 * wq list is used to freeze wq, remove from list after
5574 * flushing is complete in case freeze races us.
5575 */
e2dca7ad 5576 list_del_rcu(&wq->list);
68e13a67 5577 mutex_unlock(&wq_pool_mutex);
3af24433 5578
636b927e
TH
5579 /*
5580 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5581 * to put the base refs. @wq will be auto-destroyed from the last
5582 * pwq_put. RCU read lock prevents @wq from going away from under us.
5583 */
5584 rcu_read_lock();
4c16bd32 5585
636b927e 5586 for_each_possible_cpu(cpu) {
9f66cff2
TH
5587 put_pwq_unlocked(unbound_pwq(wq, cpu));
5588 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5589 }
636b927e 5590
9f66cff2
TH
5591 put_pwq_unlocked(unbound_pwq(wq, -1));
5592 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5593
5594 rcu_read_unlock();
3af24433
ON
5595}
5596EXPORT_SYMBOL_GPL(destroy_workqueue);
5597
dcd989cb
TH
5598/**
5599 * workqueue_set_max_active - adjust max_active of a workqueue
5600 * @wq: target workqueue
5601 * @max_active: new max_active value.
5602 *
5797b1c1
TH
5603 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5604 * comment.
dcd989cb
TH
5605 *
5606 * CONTEXT:
5607 * Don't call from IRQ context.
5608 */
5609void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5610{
4cb1ef64
TH
5611 /* max_active doesn't mean anything for BH workqueues */
5612 if (WARN_ON(wq->flags & WQ_BH))
5613 return;
8719dcea 5614 /* disallow meddling with max_active for ordered workqueues */
3bc1e711 5615 if (WARN_ON(wq->flags & __WQ_ORDERED))
8719dcea
TH
5616 return;
5617
f3421797 5618 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5619
a357fc03 5620 mutex_lock(&wq->mutex);
dcd989cb
TH
5621
5622 wq->saved_max_active = max_active;
5797b1c1
TH
5623 if (wq->flags & WQ_UNBOUND)
5624 wq->saved_min_active = min(wq->saved_min_active, max_active);
5625
a045a272 5626 wq_adjust_max_active(wq);
93981800 5627
a357fc03 5628 mutex_unlock(&wq->mutex);
15316ba8 5629}
dcd989cb 5630EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5631
8f172181
TH
5632/**
5633 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5634 * @wq: target unbound workqueue
5635 * @min_active: new min_active value
5636 *
5637 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5638 * unbound workqueue is not guaranteed to be able to process max_active
5639 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5640 * able to process min_active number of interdependent work items which is
5641 * %WQ_DFL_MIN_ACTIVE by default.
5642 *
5643 * Use this function to adjust the min_active value between 0 and the current
5644 * max_active.
5645 */
5646void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5647{
5648 /* min_active is only meaningful for non-ordered unbound workqueues */
5649 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5650 WQ_UNBOUND))
5651 return;
5652
5653 mutex_lock(&wq->mutex);
5654 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5655 wq_adjust_max_active(wq);
5656 mutex_unlock(&wq->mutex);
5657}
5658
27d4ee03
LW
5659/**
5660 * current_work - retrieve %current task's work struct
5661 *
5662 * Determine if %current task is a workqueue worker and what it's working on.
5663 * Useful to find out the context that the %current task is running in.
5664 *
5665 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5666 */
5667struct work_struct *current_work(void)
5668{
5669 struct worker *worker = current_wq_worker();
5670
5671 return worker ? worker->current_work : NULL;
5672}
5673EXPORT_SYMBOL(current_work);
5674
e6267616
TH
5675/**
5676 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5677 *
5678 * Determine whether %current is a workqueue rescuer. Can be used from
5679 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5680 *
5681 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5682 */
5683bool current_is_workqueue_rescuer(void)
5684{
5685 struct worker *worker = current_wq_worker();
5686
6a092dfd 5687 return worker && worker->rescue_wq;
e6267616
TH
5688}
5689
eef6a7d5 5690/**
dcd989cb
TH
5691 * workqueue_congested - test whether a workqueue is congested
5692 * @cpu: CPU in question
5693 * @wq: target workqueue
eef6a7d5 5694 *
dcd989cb
TH
5695 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5696 * no synchronization around this function and the test result is
5697 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5698 *
d3251859 5699 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5700 *
5701 * With the exception of ordered workqueues, all workqueues have per-cpu
5702 * pool_workqueues, each with its own congested state. A workqueue being
5703 * congested on one CPU doesn't mean that the workqueue is contested on any
5704 * other CPUs.
d3251859 5705 *
d185af30 5706 * Return:
dcd989cb 5707 * %true if congested, %false otherwise.
eef6a7d5 5708 */
d84ff051 5709bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 5710{
7fb98ea7 5711 struct pool_workqueue *pwq;
76af4d93
TH
5712 bool ret;
5713
24acfb71
TG
5714 rcu_read_lock();
5715 preempt_disable();
7fb98ea7 5716
d3251859
TH
5717 if (cpu == WORK_CPU_UNBOUND)
5718 cpu = smp_processor_id();
5719
636b927e 5720 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 5721 ret = !list_empty(&pwq->inactive_works);
636b927e 5722
24acfb71
TG
5723 preempt_enable();
5724 rcu_read_unlock();
76af4d93
TH
5725
5726 return ret;
1da177e4 5727}
dcd989cb 5728EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 5729
dcd989cb
TH
5730/**
5731 * work_busy - test whether a work is currently pending or running
5732 * @work: the work to be tested
5733 *
5734 * Test whether @work is currently pending or running. There is no
5735 * synchronization around this function and the test result is
5736 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 5737 *
d185af30 5738 * Return:
dcd989cb
TH
5739 * OR'd bitmask of WORK_BUSY_* bits.
5740 */
5741unsigned int work_busy(struct work_struct *work)
1da177e4 5742{
fa1b54e6 5743 struct worker_pool *pool;
dcd989cb
TH
5744 unsigned long flags;
5745 unsigned int ret = 0;
1da177e4 5746
dcd989cb
TH
5747 if (work_pending(work))
5748 ret |= WORK_BUSY_PENDING;
1da177e4 5749
24acfb71 5750 rcu_read_lock();
fa1b54e6 5751 pool = get_work_pool(work);
038366c5 5752 if (pool) {
a9b8a985 5753 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
5754 if (find_worker_executing_work(pool, work))
5755 ret |= WORK_BUSY_RUNNING;
a9b8a985 5756 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 5757 }
24acfb71 5758 rcu_read_unlock();
1da177e4 5759
dcd989cb 5760 return ret;
1da177e4 5761}
dcd989cb 5762EXPORT_SYMBOL_GPL(work_busy);
1da177e4 5763
3d1cb205
TH
5764/**
5765 * set_worker_desc - set description for the current work item
5766 * @fmt: printf-style format string
5767 * @...: arguments for the format string
5768 *
5769 * This function can be called by a running work function to describe what
5770 * the work item is about. If the worker task gets dumped, this
5771 * information will be printed out together to help debugging. The
5772 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5773 */
5774void set_worker_desc(const char *fmt, ...)
5775{
5776 struct worker *worker = current_wq_worker();
5777 va_list args;
5778
5779 if (worker) {
5780 va_start(args, fmt);
5781 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5782 va_end(args);
3d1cb205
TH
5783 }
5784}
5c750d58 5785EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
5786
5787/**
5788 * print_worker_info - print out worker information and description
5789 * @log_lvl: the log level to use when printing
5790 * @task: target task
5791 *
5792 * If @task is a worker and currently executing a work item, print out the
5793 * name of the workqueue being serviced and worker description set with
5794 * set_worker_desc() by the currently executing work item.
5795 *
5796 * This function can be safely called on any task as long as the
5797 * task_struct itself is accessible. While safe, this function isn't
5798 * synchronized and may print out mixups or garbages of limited length.
5799 */
5800void print_worker_info(const char *log_lvl, struct task_struct *task)
5801{
5802 work_func_t *fn = NULL;
5803 char name[WQ_NAME_LEN] = { };
5804 char desc[WORKER_DESC_LEN] = { };
5805 struct pool_workqueue *pwq = NULL;
5806 struct workqueue_struct *wq = NULL;
3d1cb205
TH
5807 struct worker *worker;
5808
5809 if (!(task->flags & PF_WQ_WORKER))
5810 return;
5811
5812 /*
5813 * This function is called without any synchronization and @task
5814 * could be in any state. Be careful with dereferences.
5815 */
e700591a 5816 worker = kthread_probe_data(task);
3d1cb205
TH
5817
5818 /*
8bf89593
TH
5819 * Carefully copy the associated workqueue's workfn, name and desc.
5820 * Keep the original last '\0' in case the original is garbage.
3d1cb205 5821 */
fe557319
CH
5822 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5823 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5824 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5825 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5826 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
5827
5828 if (fn || name[0] || desc[0]) {
d75f773c 5829 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 5830 if (strcmp(name, desc))
3d1cb205
TH
5831 pr_cont(" (%s)", desc);
5832 pr_cont("\n");
5833 }
5834}
5835
3494fc30
TH
5836static void pr_cont_pool_info(struct worker_pool *pool)
5837{
5838 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5839 if (pool->node != NUMA_NO_NODE)
5840 pr_cont(" node=%d", pool->node);
4cb1ef64
TH
5841 pr_cont(" flags=0x%x", pool->flags);
5842 if (pool->flags & POOL_BH)
5843 pr_cont(" bh%s",
5844 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5845 else
5846 pr_cont(" nice=%d", pool->attrs->nice);
5847}
5848
5849static void pr_cont_worker_id(struct worker *worker)
5850{
5851 struct worker_pool *pool = worker->pool;
5852
5853 if (pool->flags & WQ_BH)
5854 pr_cont("bh%s",
5855 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5856 else
5857 pr_cont("%d%s", task_pid_nr(worker->task),
5858 worker->rescue_wq ? "(RESCUER)" : "");
3494fc30
TH
5859}
5860
c76feb0d
PM
5861struct pr_cont_work_struct {
5862 bool comma;
5863 work_func_t func;
5864 long ctr;
5865};
5866
5867static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5868{
5869 if (!pcwsp->ctr)
5870 goto out_record;
5871 if (func == pcwsp->func) {
5872 pcwsp->ctr++;
5873 return;
5874 }
5875 if (pcwsp->ctr == 1)
5876 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5877 else
5878 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5879 pcwsp->ctr = 0;
5880out_record:
5881 if ((long)func == -1L)
5882 return;
5883 pcwsp->comma = comma;
5884 pcwsp->func = func;
5885 pcwsp->ctr = 1;
5886}
5887
5888static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
5889{
5890 if (work->func == wq_barrier_func) {
5891 struct wq_barrier *barr;
5892
5893 barr = container_of(work, struct wq_barrier, work);
5894
c76feb0d 5895 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
5896 pr_cont("%s BAR(%d)", comma ? "," : "",
5897 task_pid_nr(barr->task));
5898 } else {
c76feb0d
PM
5899 if (!comma)
5900 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5901 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
5902 }
5903}
5904
5905static void show_pwq(struct pool_workqueue *pwq)
5906{
c76feb0d 5907 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
5908 struct worker_pool *pool = pwq->pool;
5909 struct work_struct *work;
5910 struct worker *worker;
5911 bool has_in_flight = false, has_pending = false;
5912 int bkt;
5913
5914 pr_info(" pwq %d:", pool->id);
5915 pr_cont_pool_info(pool);
5916
a045a272
TH
5917 pr_cont(" active=%d refcnt=%d%s\n",
5918 pwq->nr_active, pwq->refcnt,
3494fc30
TH
5919 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5920
5921 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5922 if (worker->current_pwq == pwq) {
5923 has_in_flight = true;
5924 break;
5925 }
5926 }
5927 if (has_in_flight) {
5928 bool comma = false;
5929
5930 pr_info(" in-flight:");
5931 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5932 if (worker->current_pwq != pwq)
5933 continue;
5934
4cb1ef64
TH
5935 pr_cont(" %s", comma ? "," : "");
5936 pr_cont_worker_id(worker);
5937 pr_cont(":%ps", worker->current_func);
3494fc30 5938 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
5939 pr_cont_work(false, work, &pcws);
5940 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5941 comma = true;
5942 }
5943 pr_cont("\n");
5944 }
5945
5946 list_for_each_entry(work, &pool->worklist, entry) {
5947 if (get_work_pwq(work) == pwq) {
5948 has_pending = true;
5949 break;
5950 }
5951 }
5952 if (has_pending) {
5953 bool comma = false;
5954
5955 pr_info(" pending:");
5956 list_for_each_entry(work, &pool->worklist, entry) {
5957 if (get_work_pwq(work) != pwq)
5958 continue;
5959
c76feb0d 5960 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5961 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5962 }
c76feb0d 5963 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5964 pr_cont("\n");
5965 }
5966
f97a4a1a 5967 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
5968 bool comma = false;
5969
f97a4a1a
LJ
5970 pr_info(" inactive:");
5971 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 5972 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5973 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5974 }
c76feb0d 5975 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5976 pr_cont("\n");
5977 }
5978}
5979
5980/**
55df0933
IK
5981 * show_one_workqueue - dump state of specified workqueue
5982 * @wq: workqueue whose state will be printed
3494fc30 5983 */
55df0933 5984void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 5985{
55df0933
IK
5986 struct pool_workqueue *pwq;
5987 bool idle = true;
3494fc30 5988 unsigned long flags;
3494fc30 5989
55df0933 5990 for_each_pwq(pwq, wq) {
afa87ce8 5991 if (!pwq_is_empty(pwq)) {
55df0933
IK
5992 idle = false;
5993 break;
3494fc30 5994 }
55df0933
IK
5995 }
5996 if (idle) /* Nothing to print for idle workqueue */
5997 return;
3494fc30 5998
55df0933 5999 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 6000
55df0933
IK
6001 for_each_pwq(pwq, wq) {
6002 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
afa87ce8 6003 if (!pwq_is_empty(pwq)) {
62635ea8 6004 /*
55df0933
IK
6005 * Defer printing to avoid deadlocks in console
6006 * drivers that queue work while holding locks
6007 * also taken in their write paths.
62635ea8 6008 */
55df0933
IK
6009 printk_deferred_enter();
6010 show_pwq(pwq);
6011 printk_deferred_exit();
3494fc30 6012 }
55df0933 6013 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
6014 /*
6015 * We could be printing a lot from atomic context, e.g.
55df0933 6016 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
6017 * hard lockup.
6018 */
6019 touch_nmi_watchdog();
3494fc30
TH
6020 }
6021
55df0933
IK
6022}
6023
6024/**
6025 * show_one_worker_pool - dump state of specified worker pool
6026 * @pool: worker pool whose state will be printed
6027 */
6028static void show_one_worker_pool(struct worker_pool *pool)
6029{
6030 struct worker *worker;
6031 bool first = true;
6032 unsigned long flags;
335a42eb 6033 unsigned long hung = 0;
55df0933
IK
6034
6035 raw_spin_lock_irqsave(&pool->lock, flags);
6036 if (pool->nr_workers == pool->nr_idle)
6037 goto next_pool;
335a42eb
PM
6038
6039 /* How long the first pending work is waiting for a worker. */
6040 if (!list_empty(&pool->worklist))
6041 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6042
55df0933
IK
6043 /*
6044 * Defer printing to avoid deadlocks in console drivers that
6045 * queue work while holding locks also taken in their write
6046 * paths.
6047 */
6048 printk_deferred_enter();
6049 pr_info("pool %d:", pool->id);
6050 pr_cont_pool_info(pool);
335a42eb 6051 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
6052 if (pool->manager)
6053 pr_cont(" manager: %d",
6054 task_pid_nr(pool->manager->task));
6055 list_for_each_entry(worker, &pool->idle_list, entry) {
4cb1ef64
TH
6056 pr_cont(" %s", first ? "idle: " : "");
6057 pr_cont_worker_id(worker);
55df0933
IK
6058 first = false;
6059 }
6060 pr_cont("\n");
6061 printk_deferred_exit();
6062next_pool:
6063 raw_spin_unlock_irqrestore(&pool->lock, flags);
6064 /*
6065 * We could be printing a lot from atomic context, e.g.
6066 * sysrq-t -> show_all_workqueues(). Avoid triggering
6067 * hard lockup.
6068 */
6069 touch_nmi_watchdog();
6070
6071}
6072
6073/**
6074 * show_all_workqueues - dump workqueue state
6075 *
704bc669 6076 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
6077 */
6078void show_all_workqueues(void)
6079{
6080 struct workqueue_struct *wq;
6081 struct worker_pool *pool;
6082 int pi;
6083
6084 rcu_read_lock();
6085
6086 pr_info("Showing busy workqueues and worker pools:\n");
6087
6088 list_for_each_entry_rcu(wq, &workqueues, list)
6089 show_one_workqueue(wq);
6090
6091 for_each_pool(pool, pi)
6092 show_one_worker_pool(pool);
6093
24acfb71 6094 rcu_read_unlock();
3494fc30
TH
6095}
6096
704bc669
JL
6097/**
6098 * show_freezable_workqueues - dump freezable workqueue state
6099 *
6100 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6101 * still busy.
6102 */
6103void show_freezable_workqueues(void)
6104{
6105 struct workqueue_struct *wq;
6106
6107 rcu_read_lock();
6108
6109 pr_info("Showing freezable workqueues that are still busy:\n");
6110
6111 list_for_each_entry_rcu(wq, &workqueues, list) {
6112 if (!(wq->flags & WQ_FREEZABLE))
6113 continue;
6114 show_one_workqueue(wq);
6115 }
6116
6117 rcu_read_unlock();
6118}
6119
6b59808b
TH
6120/* used to show worker information through /proc/PID/{comm,stat,status} */
6121void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6122{
6b59808b
TH
6123 int off;
6124
6125 /* always show the actual comm */
6126 off = strscpy(buf, task->comm, size);
6127 if (off < 0)
6128 return;
6129
197f6acc 6130 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
6131 mutex_lock(&wq_pool_attach_mutex);
6132
197f6acc
TH
6133 if (task->flags & PF_WQ_WORKER) {
6134 struct worker *worker = kthread_data(task);
6135 struct worker_pool *pool = worker->pool;
6b59808b 6136
197f6acc 6137 if (pool) {
a9b8a985 6138 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
6139 /*
6140 * ->desc tracks information (wq name or
6141 * set_worker_desc()) for the latest execution. If
6142 * current, prepend '+', otherwise '-'.
6143 */
6144 if (worker->desc[0] != '\0') {
6145 if (worker->current_work)
6146 scnprintf(buf + off, size - off, "+%s",
6147 worker->desc);
6148 else
6149 scnprintf(buf + off, size - off, "-%s",
6150 worker->desc);
6151 }
a9b8a985 6152 raw_spin_unlock_irq(&pool->lock);
6b59808b 6153 }
6b59808b
TH
6154 }
6155
6156 mutex_unlock(&wq_pool_attach_mutex);
6157}
6158
66448bc2
MM
6159#ifdef CONFIG_SMP
6160
db7bccf4
TH
6161/*
6162 * CPU hotplug.
6163 *
e22bee78 6164 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 6165 * are a lot of assumptions on strong associations among work, pwq and
706026c2 6166 * pool which make migrating pending and scheduled works very
e22bee78 6167 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 6168 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
6169 * blocked draining impractical.
6170 *
24647570 6171 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
6172 * running as an unbound one and allowing it to be reattached later if the
6173 * cpu comes back online.
db7bccf4 6174 */
1da177e4 6175
e8b3f8db 6176static void unbind_workers(int cpu)
3af24433 6177{
4ce62e9e 6178 struct worker_pool *pool;
db7bccf4 6179 struct worker *worker;
3af24433 6180
f02ae73a 6181 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 6182 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 6183 raw_spin_lock_irq(&pool->lock);
3af24433 6184
94cf58bb 6185 /*
92f9c5c4 6186 * We've blocked all attach/detach operations. Make all workers
94cf58bb 6187 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 6188 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
6189 * And the preemption disabled section in their sched callbacks
6190 * are guaranteed to see WORKER_UNBOUND since the code here
6191 * is on the same cpu.
94cf58bb 6192 */
da028469 6193 for_each_pool_worker(worker, pool)
c9e7cf27 6194 worker->flags |= WORKER_UNBOUND;
06ba38a9 6195
24647570 6196 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 6197
eb283428 6198 /*
989442d7
LJ
6199 * The handling of nr_running in sched callbacks are disabled
6200 * now. Zap nr_running. After this, nr_running stays zero and
6201 * need_more_worker() and keep_working() are always true as
6202 * long as the worklist is not empty. This pool now behaves as
6203 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
6204 * are served by workers tied to the pool.
6205 */
bc35f7ef 6206 pool->nr_running = 0;
eb283428
LJ
6207
6208 /*
6209 * With concurrency management just turned off, a busy
6210 * worker blocking could lead to lengthy stalls. Kick off
6211 * unbound chain execution of currently pending work items.
6212 */
0219a352 6213 kick_pool(pool);
989442d7 6214
a9b8a985 6215 raw_spin_unlock_irq(&pool->lock);
989442d7 6216
793777bc
VS
6217 for_each_pool_worker(worker, pool)
6218 unbind_worker(worker);
989442d7
LJ
6219
6220 mutex_unlock(&wq_pool_attach_mutex);
eb283428 6221 }
3af24433 6222}
3af24433 6223
bd7c089e
TH
6224/**
6225 * rebind_workers - rebind all workers of a pool to the associated CPU
6226 * @pool: pool of interest
6227 *
a9ab775b 6228 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
6229 */
6230static void rebind_workers(struct worker_pool *pool)
6231{
a9ab775b 6232 struct worker *worker;
bd7c089e 6233
1258fae7 6234 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 6235
a9ab775b
TH
6236 /*
6237 * Restore CPU affinity of all workers. As all idle workers should
6238 * be on the run-queue of the associated CPU before any local
402dd89d 6239 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
6240 * of all workers first and then clear UNBOUND. As we're called
6241 * from CPU_ONLINE, the following shouldn't fail.
6242 */
c63a2e52
VS
6243 for_each_pool_worker(worker, pool) {
6244 kthread_set_per_cpu(worker->task, pool->cpu);
6245 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 6246 pool_allowed_cpus(pool)) < 0);
c63a2e52 6247 }
bd7c089e 6248
a9b8a985 6249 raw_spin_lock_irq(&pool->lock);
f7c17d26 6250
3de5e884 6251 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 6252
da028469 6253 for_each_pool_worker(worker, pool) {
a9ab775b 6254 unsigned int worker_flags = worker->flags;
bd7c089e 6255
a9ab775b
TH
6256 /*
6257 * We want to clear UNBOUND but can't directly call
6258 * worker_clr_flags() or adjust nr_running. Atomically
6259 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6260 * @worker will clear REBOUND using worker_clr_flags() when
6261 * it initiates the next execution cycle thus restoring
6262 * concurrency management. Note that when or whether
6263 * @worker clears REBOUND doesn't affect correctness.
6264 *
c95491ed 6265 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 6266 * tested without holding any lock in
6d25be57 6267 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
6268 * fail incorrectly leading to premature concurrency
6269 * management operations.
6270 */
6271 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6272 worker_flags |= WORKER_REBOUND;
6273 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6274 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6275 }
a9ab775b 6276
a9b8a985 6277 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6278}
6279
7dbc725e
TH
6280/**
6281 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6282 * @pool: unbound pool of interest
6283 * @cpu: the CPU which is coming up
6284 *
6285 * An unbound pool may end up with a cpumask which doesn't have any online
6286 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6287 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6288 * online CPU before, cpus_allowed of all its workers should be restored.
6289 */
6290static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6291{
6292 static cpumask_t cpumask;
6293 struct worker *worker;
7dbc725e 6294
1258fae7 6295 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6296
6297 /* is @cpu allowed for @pool? */
6298 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6299 return;
6300
7dbc725e 6301 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6302
6303 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6304 for_each_pool_worker(worker, pool)
d945b5e9 6305 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6306}
6307
7ee681b2
TG
6308int workqueue_prepare_cpu(unsigned int cpu)
6309{
6310 struct worker_pool *pool;
6311
6312 for_each_cpu_worker_pool(pool, cpu) {
6313 if (pool->nr_workers)
6314 continue;
6315 if (!create_worker(pool))
6316 return -ENOMEM;
6317 }
6318 return 0;
6319}
6320
6321int workqueue_online_cpu(unsigned int cpu)
3af24433 6322{
4ce62e9e 6323 struct worker_pool *pool;
4c16bd32 6324 struct workqueue_struct *wq;
7dbc725e 6325 int pi;
3ce63377 6326
7ee681b2 6327 mutex_lock(&wq_pool_mutex);
7dbc725e 6328
7ee681b2 6329 for_each_pool(pool, pi) {
4cb1ef64
TH
6330 /* BH pools aren't affected by hotplug */
6331 if (pool->flags & POOL_BH)
6332 continue;
94cf58bb 6333
4cb1ef64 6334 mutex_lock(&wq_pool_attach_mutex);
7ee681b2
TG
6335 if (pool->cpu == cpu)
6336 rebind_workers(pool);
6337 else if (pool->cpu < 0)
6338 restore_unbound_workers_cpumask(pool, cpu);
1258fae7 6339 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6340 }
6ba94429 6341
fef59c9c 6342 /* update pod affinity of unbound workqueues */
4cbfd3de 6343 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6344 struct workqueue_attrs *attrs = wq->unbound_attrs;
6345
6346 if (attrs) {
6347 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6348 int tcpu;
4cbfd3de 6349
84193c07 6350 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6351 wq_update_pod(wq, tcpu, cpu, true);
5797b1c1
TH
6352
6353 mutex_lock(&wq->mutex);
6354 wq_update_node_max_active(wq, -1);
6355 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6356 }
6357 }
6ba94429 6358
7ee681b2
TG
6359 mutex_unlock(&wq_pool_mutex);
6360 return 0;
6ba94429
FW
6361}
6362
7ee681b2 6363int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6364{
6ba94429
FW
6365 struct workqueue_struct *wq;
6366
7ee681b2 6367 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6368 if (WARN_ON(cpu != smp_processor_id()))
6369 return -1;
6370
6371 unbind_workers(cpu);
7ee681b2 6372
fef59c9c 6373 /* update pod affinity of unbound workqueues */
7ee681b2 6374 mutex_lock(&wq_pool_mutex);
4cbfd3de 6375 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6376 struct workqueue_attrs *attrs = wq->unbound_attrs;
6377
6378 if (attrs) {
6379 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6380 int tcpu;
4cbfd3de 6381
84193c07 6382 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6383 wq_update_pod(wq, tcpu, cpu, false);
5797b1c1
TH
6384
6385 mutex_lock(&wq->mutex);
6386 wq_update_node_max_active(wq, cpu);
6387 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6388 }
6389 }
7ee681b2
TG
6390 mutex_unlock(&wq_pool_mutex);
6391
7ee681b2 6392 return 0;
6ba94429
FW
6393}
6394
6ba94429
FW
6395struct work_for_cpu {
6396 struct work_struct work;
6397 long (*fn)(void *);
6398 void *arg;
6399 long ret;
6400};
6401
6402static void work_for_cpu_fn(struct work_struct *work)
6403{
6404 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6405
6406 wfc->ret = wfc->fn(wfc->arg);
6407}
6408
6409/**
265f3ed0 6410 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6411 * @cpu: the cpu to run on
6412 * @fn: the function to run
6413 * @arg: the function arg
265f3ed0 6414 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6415 *
6416 * It is up to the caller to ensure that the cpu doesn't go offline.
6417 * The caller must not hold any locks which would prevent @fn from completing.
6418 *
6419 * Return: The value @fn returns.
6420 */
265f3ed0
FW
6421long work_on_cpu_key(int cpu, long (*fn)(void *),
6422 void *arg, struct lock_class_key *key)
6ba94429
FW
6423{
6424 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6425
265f3ed0 6426 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6427 schedule_work_on(cpu, &wfc.work);
6428 flush_work(&wfc.work);
6429 destroy_work_on_stack(&wfc.work);
6430 return wfc.ret;
6431}
265f3ed0 6432EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6433
6434/**
265f3ed0 6435 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6436 * @cpu: the cpu to run on
6437 * @fn: the function to run
6438 * @arg: the function argument
265f3ed0 6439 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6440 *
6441 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6442 * any locks which would prevent @fn from completing.
6443 *
6444 * Return: The value @fn returns.
6445 */
265f3ed0
FW
6446long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6447 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6448{
6449 long ret = -ENODEV;
6450
ffd8bea8 6451 cpus_read_lock();
0e8d6a93 6452 if (cpu_online(cpu))
265f3ed0 6453 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6454 cpus_read_unlock();
0e8d6a93
TG
6455 return ret;
6456}
265f3ed0 6457EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6458#endif /* CONFIG_SMP */
6459
6460#ifdef CONFIG_FREEZER
6461
6462/**
6463 * freeze_workqueues_begin - begin freezing workqueues
6464 *
6465 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6466 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6467 * pool->worklist.
6468 *
6469 * CONTEXT:
6470 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6471 */
6472void freeze_workqueues_begin(void)
6473{
6474 struct workqueue_struct *wq;
6ba94429
FW
6475
6476 mutex_lock(&wq_pool_mutex);
6477
6478 WARN_ON_ONCE(workqueue_freezing);
6479 workqueue_freezing = true;
6480
6481 list_for_each_entry(wq, &workqueues, list) {
6482 mutex_lock(&wq->mutex);
a045a272 6483 wq_adjust_max_active(wq);
6ba94429
FW
6484 mutex_unlock(&wq->mutex);
6485 }
6486
6487 mutex_unlock(&wq_pool_mutex);
6488}
6489
6490/**
6491 * freeze_workqueues_busy - are freezable workqueues still busy?
6492 *
6493 * Check whether freezing is complete. This function must be called
6494 * between freeze_workqueues_begin() and thaw_workqueues().
6495 *
6496 * CONTEXT:
6497 * Grabs and releases wq_pool_mutex.
6498 *
6499 * Return:
6500 * %true if some freezable workqueues are still busy. %false if freezing
6501 * is complete.
6502 */
6503bool freeze_workqueues_busy(void)
6504{
6505 bool busy = false;
6506 struct workqueue_struct *wq;
6507 struct pool_workqueue *pwq;
6508
6509 mutex_lock(&wq_pool_mutex);
6510
6511 WARN_ON_ONCE(!workqueue_freezing);
6512
6513 list_for_each_entry(wq, &workqueues, list) {
6514 if (!(wq->flags & WQ_FREEZABLE))
6515 continue;
6516 /*
6517 * nr_active is monotonically decreasing. It's safe
6518 * to peek without lock.
6519 */
24acfb71 6520 rcu_read_lock();
6ba94429
FW
6521 for_each_pwq(pwq, wq) {
6522 WARN_ON_ONCE(pwq->nr_active < 0);
6523 if (pwq->nr_active) {
6524 busy = true;
24acfb71 6525 rcu_read_unlock();
6ba94429
FW
6526 goto out_unlock;
6527 }
6528 }
24acfb71 6529 rcu_read_unlock();
6ba94429
FW
6530 }
6531out_unlock:
6532 mutex_unlock(&wq_pool_mutex);
6533 return busy;
6534}
6535
6536/**
6537 * thaw_workqueues - thaw workqueues
6538 *
6539 * Thaw workqueues. Normal queueing is restored and all collected
6540 * frozen works are transferred to their respective pool worklists.
6541 *
6542 * CONTEXT:
6543 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6544 */
6545void thaw_workqueues(void)
6546{
6547 struct workqueue_struct *wq;
6ba94429
FW
6548
6549 mutex_lock(&wq_pool_mutex);
6550
6551 if (!workqueue_freezing)
6552 goto out_unlock;
6553
6554 workqueue_freezing = false;
6555
6556 /* restore max_active and repopulate worklist */
6557 list_for_each_entry(wq, &workqueues, list) {
6558 mutex_lock(&wq->mutex);
a045a272 6559 wq_adjust_max_active(wq);
6ba94429
FW
6560 mutex_unlock(&wq->mutex);
6561 }
6562
6563out_unlock:
6564 mutex_unlock(&wq_pool_mutex);
6565}
6566#endif /* CONFIG_FREEZER */
6567
99c621ef 6568static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6569{
6570 LIST_HEAD(ctxs);
6571 int ret = 0;
6572 struct workqueue_struct *wq;
6573 struct apply_wqattrs_ctx *ctx, *n;
6574
6575 lockdep_assert_held(&wq_pool_mutex);
6576
6577 list_for_each_entry(wq, &workqueues, list) {
8eb17dc1 6578 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
042f7df1 6579 continue;
042f7df1 6580
99c621ef 6581 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6582 if (IS_ERR(ctx)) {
6583 ret = PTR_ERR(ctx);
042f7df1
LJ
6584 break;
6585 }
6586
6587 list_add_tail(&ctx->list, &ctxs);
6588 }
6589
6590 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6591 if (!ret)
6592 apply_wqattrs_commit(ctx);
6593 apply_wqattrs_cleanup(ctx);
6594 }
6595
99c621ef
LJ
6596 if (!ret) {
6597 mutex_lock(&wq_pool_attach_mutex);
6598 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6599 mutex_unlock(&wq_pool_attach_mutex);
6600 }
042f7df1
LJ
6601 return ret;
6602}
6603
fe28f631
WL
6604/**
6605 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6606 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6607 *
6608 * This function can be called from cpuset code to provide a set of isolated
6609 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6610 * either cpus_read_lock or cpus_write_lock.
6611 */
6612int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6613{
6614 cpumask_var_t cpumask;
6615 int ret = 0;
6616
6617 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6618 return -ENOMEM;
6619
6620 lockdep_assert_cpus_held();
6621 mutex_lock(&wq_pool_mutex);
6622
6623 /* Save the current isolated cpumask & export it via sysfs */
6624 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6625
6626 /*
6627 * If the operation fails, it will fall back to
6628 * wq_requested_unbound_cpumask which is initially set to
6629 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6630 * by any subsequent write to workqueue/cpumask sysfs file.
6631 */
6632 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6633 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6634 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6635 ret = workqueue_apply_unbound_cpumask(cpumask);
6636
6637 mutex_unlock(&wq_pool_mutex);
6638 free_cpumask_var(cpumask);
6639 return ret;
6640}
6641
63c5484e
TH
6642static int parse_affn_scope(const char *val)
6643{
6644 int i;
6645
6646 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6647 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6648 return i;
6649 }
6650 return -EINVAL;
6651}
6652
6653static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6654{
523a301e
TH
6655 struct workqueue_struct *wq;
6656 int affn, cpu;
63c5484e
TH
6657
6658 affn = parse_affn_scope(val);
6659 if (affn < 0)
6660 return affn;
523a301e
TH
6661 if (affn == WQ_AFFN_DFL)
6662 return -EINVAL;
6663
6664 cpus_read_lock();
6665 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6666
6667 wq_affn_dfl = affn;
523a301e
TH
6668
6669 list_for_each_entry(wq, &workqueues, list) {
6670 for_each_online_cpu(cpu) {
6671 wq_update_pod(wq, cpu, cpu, true);
6672 }
6673 }
6674
6675 mutex_unlock(&wq_pool_mutex);
6676 cpus_read_unlock();
6677
63c5484e
TH
6678 return 0;
6679}
6680
6681static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6682{
6683 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6684}
6685
6686static const struct kernel_param_ops wq_affn_dfl_ops = {
6687 .set = wq_affn_dfl_set,
6688 .get = wq_affn_dfl_get,
6689};
6690
6691module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6692
6ba94429
FW
6693#ifdef CONFIG_SYSFS
6694/*
6695 * Workqueues with WQ_SYSFS flag set is visible to userland via
6696 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6697 * following attributes.
6698 *
63c5484e
TH
6699 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6700 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6701 *
6702 * Unbound workqueues have the following extra attributes.
6703 *
63c5484e
TH
6704 * nice RW int : nice value of the workers
6705 * cpumask RW mask : bitmask of allowed CPUs for the workers
6706 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 6707 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
6708 */
6709struct wq_device {
6710 struct workqueue_struct *wq;
6711 struct device dev;
6712};
6713
6714static struct workqueue_struct *dev_to_wq(struct device *dev)
6715{
6716 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6717
6718 return wq_dev->wq;
6719}
6720
6721static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6722 char *buf)
6723{
6724 struct workqueue_struct *wq = dev_to_wq(dev);
6725
6726 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6727}
6728static DEVICE_ATTR_RO(per_cpu);
6729
6730static ssize_t max_active_show(struct device *dev,
6731 struct device_attribute *attr, char *buf)
6732{
6733 struct workqueue_struct *wq = dev_to_wq(dev);
6734
6735 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6736}
6737
6738static ssize_t max_active_store(struct device *dev,
6739 struct device_attribute *attr, const char *buf,
6740 size_t count)
6741{
6742 struct workqueue_struct *wq = dev_to_wq(dev);
6743 int val;
6744
6745 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6746 return -EINVAL;
6747
6748 workqueue_set_max_active(wq, val);
6749 return count;
6750}
6751static DEVICE_ATTR_RW(max_active);
6752
6753static struct attribute *wq_sysfs_attrs[] = {
6754 &dev_attr_per_cpu.attr,
6755 &dev_attr_max_active.attr,
6756 NULL,
6757};
6758ATTRIBUTE_GROUPS(wq_sysfs);
6759
49277a5b
WL
6760static void apply_wqattrs_lock(void)
6761{
6762 /* CPUs should stay stable across pwq creations and installations */
6763 cpus_read_lock();
6764 mutex_lock(&wq_pool_mutex);
6765}
6766
6767static void apply_wqattrs_unlock(void)
6768{
6769 mutex_unlock(&wq_pool_mutex);
6770 cpus_read_unlock();
6771}
6772
6ba94429
FW
6773static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6774 char *buf)
6775{
6776 struct workqueue_struct *wq = dev_to_wq(dev);
6777 int written;
6778
6779 mutex_lock(&wq->mutex);
6780 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6781 mutex_unlock(&wq->mutex);
6782
6783 return written;
6784}
6785
6786/* prepare workqueue_attrs for sysfs store operations */
6787static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6788{
6789 struct workqueue_attrs *attrs;
6790
899a94fe
LJ
6791 lockdep_assert_held(&wq_pool_mutex);
6792
be69d00d 6793 attrs = alloc_workqueue_attrs();
6ba94429
FW
6794 if (!attrs)
6795 return NULL;
6796
6ba94429 6797 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
6798 return attrs;
6799}
6800
6801static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6802 const char *buf, size_t count)
6803{
6804 struct workqueue_struct *wq = dev_to_wq(dev);
6805 struct workqueue_attrs *attrs;
d4d3e257
LJ
6806 int ret = -ENOMEM;
6807
6808 apply_wqattrs_lock();
6ba94429
FW
6809
6810 attrs = wq_sysfs_prep_attrs(wq);
6811 if (!attrs)
d4d3e257 6812 goto out_unlock;
6ba94429
FW
6813
6814 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6815 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 6816 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
6817 else
6818 ret = -EINVAL;
6819
d4d3e257
LJ
6820out_unlock:
6821 apply_wqattrs_unlock();
6ba94429
FW
6822 free_workqueue_attrs(attrs);
6823 return ret ?: count;
6824}
6825
6826static ssize_t wq_cpumask_show(struct device *dev,
6827 struct device_attribute *attr, char *buf)
6828{
6829 struct workqueue_struct *wq = dev_to_wq(dev);
6830 int written;
6831
6832 mutex_lock(&wq->mutex);
6833 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6834 cpumask_pr_args(wq->unbound_attrs->cpumask));
6835 mutex_unlock(&wq->mutex);
6836 return written;
6837}
6838
6839static ssize_t wq_cpumask_store(struct device *dev,
6840 struct device_attribute *attr,
6841 const char *buf, size_t count)
6842{
6843 struct workqueue_struct *wq = dev_to_wq(dev);
6844 struct workqueue_attrs *attrs;
d4d3e257
LJ
6845 int ret = -ENOMEM;
6846
6847 apply_wqattrs_lock();
6ba94429
FW
6848
6849 attrs = wq_sysfs_prep_attrs(wq);
6850 if (!attrs)
d4d3e257 6851 goto out_unlock;
6ba94429
FW
6852
6853 ret = cpumask_parse(buf, attrs->cpumask);
6854 if (!ret)
d4d3e257 6855 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 6856
d4d3e257
LJ
6857out_unlock:
6858 apply_wqattrs_unlock();
6ba94429
FW
6859 free_workqueue_attrs(attrs);
6860 return ret ?: count;
6861}
6862
63c5484e
TH
6863static ssize_t wq_affn_scope_show(struct device *dev,
6864 struct device_attribute *attr, char *buf)
6865{
6866 struct workqueue_struct *wq = dev_to_wq(dev);
6867 int written;
6868
6869 mutex_lock(&wq->mutex);
523a301e
TH
6870 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6871 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6872 wq_affn_names[WQ_AFFN_DFL],
6873 wq_affn_names[wq_affn_dfl]);
6874 else
6875 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6876 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
6877 mutex_unlock(&wq->mutex);
6878
6879 return written;
6880}
6881
6882static ssize_t wq_affn_scope_store(struct device *dev,
6883 struct device_attribute *attr,
6884 const char *buf, size_t count)
6885{
6886 struct workqueue_struct *wq = dev_to_wq(dev);
6887 struct workqueue_attrs *attrs;
6888 int affn, ret = -ENOMEM;
6889
6890 affn = parse_affn_scope(buf);
6891 if (affn < 0)
6892 return affn;
6893
6894 apply_wqattrs_lock();
6895 attrs = wq_sysfs_prep_attrs(wq);
6896 if (attrs) {
6897 attrs->affn_scope = affn;
6898 ret = apply_workqueue_attrs_locked(wq, attrs);
6899 }
6900 apply_wqattrs_unlock();
6901 free_workqueue_attrs(attrs);
6902 return ret ?: count;
6903}
6904
8639eceb
TH
6905static ssize_t wq_affinity_strict_show(struct device *dev,
6906 struct device_attribute *attr, char *buf)
6907{
6908 struct workqueue_struct *wq = dev_to_wq(dev);
6909
6910 return scnprintf(buf, PAGE_SIZE, "%d\n",
6911 wq->unbound_attrs->affn_strict);
6912}
6913
6914static ssize_t wq_affinity_strict_store(struct device *dev,
6915 struct device_attribute *attr,
6916 const char *buf, size_t count)
6917{
6918 struct workqueue_struct *wq = dev_to_wq(dev);
6919 struct workqueue_attrs *attrs;
6920 int v, ret = -ENOMEM;
6921
6922 if (sscanf(buf, "%d", &v) != 1)
6923 return -EINVAL;
6924
6925 apply_wqattrs_lock();
6926 attrs = wq_sysfs_prep_attrs(wq);
6927 if (attrs) {
6928 attrs->affn_strict = (bool)v;
6929 ret = apply_workqueue_attrs_locked(wq, attrs);
6930 }
6931 apply_wqattrs_unlock();
6932 free_workqueue_attrs(attrs);
6933 return ret ?: count;
6934}
6935
6ba94429 6936static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
6937 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6938 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 6939 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 6940 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
6941 __ATTR_NULL,
6942};
8ccad40d 6943
4f19b8e0 6944static struct bus_type wq_subsys = {
6ba94429
FW
6945 .name = "workqueue",
6946 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
6947};
6948
49277a5b
WL
6949/**
6950 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6951 * @cpumask: the cpumask to set
6952 *
6953 * The low-level workqueues cpumask is a global cpumask that limits
6954 * the affinity of all unbound workqueues. This function check the @cpumask
6955 * and apply it to all unbound workqueues and updates all pwqs of them.
6956 *
6957 * Return: 0 - Success
6958 * -EINVAL - Invalid @cpumask
6959 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6960 */
6961static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6962{
6963 int ret = -EINVAL;
6964
6965 /*
6966 * Not excluding isolated cpus on purpose.
6967 * If the user wishes to include them, we allow that.
6968 */
6969 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6970 if (!cpumask_empty(cpumask)) {
6971 apply_wqattrs_lock();
6972 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6973 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6974 ret = 0;
6975 goto out_unlock;
6976 }
6977
6978 ret = workqueue_apply_unbound_cpumask(cpumask);
6979
6980out_unlock:
6981 apply_wqattrs_unlock();
6982 }
6983
6984 return ret;
6985}
6986
fe28f631
WL
6987static ssize_t __wq_cpumask_show(struct device *dev,
6988 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
6989{
6990 int written;
6991
042f7df1 6992 mutex_lock(&wq_pool_mutex);
fe28f631 6993 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 6994 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
6995
6996 return written;
6997}
6998
fe28f631
WL
6999static ssize_t wq_unbound_cpumask_show(struct device *dev,
7000 struct device_attribute *attr, char *buf)
7001{
7002 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7003}
7004
7005static ssize_t wq_requested_cpumask_show(struct device *dev,
7006 struct device_attribute *attr, char *buf)
7007{
7008 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7009}
7010
7011static ssize_t wq_isolated_cpumask_show(struct device *dev,
7012 struct device_attribute *attr, char *buf)
7013{
7014 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7015}
7016
042f7df1
LJ
7017static ssize_t wq_unbound_cpumask_store(struct device *dev,
7018 struct device_attribute *attr, const char *buf, size_t count)
7019{
7020 cpumask_var_t cpumask;
7021 int ret;
7022
7023 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7024 return -ENOMEM;
7025
7026 ret = cpumask_parse(buf, cpumask);
7027 if (!ret)
7028 ret = workqueue_set_unbound_cpumask(cpumask);
7029
7030 free_cpumask_var(cpumask);
7031 return ret ? ret : count;
7032}
7033
fe28f631 7034static struct device_attribute wq_sysfs_cpumask_attrs[] = {
042f7df1 7035 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
fe28f631
WL
7036 wq_unbound_cpumask_store),
7037 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7038 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7039 __ATTR_NULL,
7040};
b05a7928 7041
6ba94429 7042static int __init wq_sysfs_init(void)
2d3854a3 7043{
686f6697 7044 struct device *dev_root;
b05a7928
FW
7045 int err;
7046
7047 err = subsys_virtual_register(&wq_subsys, NULL);
7048 if (err)
7049 return err;
7050
686f6697
GKH
7051 dev_root = bus_get_dev_root(&wq_subsys);
7052 if (dev_root) {
fe28f631
WL
7053 struct device_attribute *attr;
7054
7055 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7056 err = device_create_file(dev_root, attr);
7057 if (err)
7058 break;
7059 }
686f6697
GKH
7060 put_device(dev_root);
7061 }
7062 return err;
2d3854a3 7063}
6ba94429 7064core_initcall(wq_sysfs_init);
2d3854a3 7065
6ba94429 7066static void wq_device_release(struct device *dev)
2d3854a3 7067{
6ba94429 7068 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 7069
6ba94429 7070 kfree(wq_dev);
2d3854a3 7071}
a0a1a5fd
TH
7072
7073/**
6ba94429
FW
7074 * workqueue_sysfs_register - make a workqueue visible in sysfs
7075 * @wq: the workqueue to register
a0a1a5fd 7076 *
6ba94429
FW
7077 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7078 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7079 * which is the preferred method.
a0a1a5fd 7080 *
6ba94429
FW
7081 * Workqueue user should use this function directly iff it wants to apply
7082 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7083 * apply_workqueue_attrs() may race against userland updating the
7084 * attributes.
7085 *
7086 * Return: 0 on success, -errno on failure.
a0a1a5fd 7087 */
6ba94429 7088int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 7089{
6ba94429
FW
7090 struct wq_device *wq_dev;
7091 int ret;
a0a1a5fd 7092
6ba94429 7093 /*
4c065dbc
WL
7094 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7095 * ordered workqueues.
6ba94429 7096 */
3bc1e711 7097 if (WARN_ON(wq->flags & __WQ_ORDERED))
6ba94429 7098 return -EINVAL;
a0a1a5fd 7099
6ba94429
FW
7100 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7101 if (!wq_dev)
7102 return -ENOMEM;
5bcab335 7103
6ba94429
FW
7104 wq_dev->wq = wq;
7105 wq_dev->dev.bus = &wq_subsys;
6ba94429 7106 wq_dev->dev.release = wq_device_release;
23217b44 7107 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 7108
6ba94429
FW
7109 /*
7110 * unbound_attrs are created separately. Suppress uevent until
7111 * everything is ready.
7112 */
7113 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 7114
6ba94429
FW
7115 ret = device_register(&wq_dev->dev);
7116 if (ret) {
537f4146 7117 put_device(&wq_dev->dev);
6ba94429
FW
7118 wq->wq_dev = NULL;
7119 return ret;
7120 }
a0a1a5fd 7121
6ba94429
FW
7122 if (wq->flags & WQ_UNBOUND) {
7123 struct device_attribute *attr;
a0a1a5fd 7124
6ba94429
FW
7125 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7126 ret = device_create_file(&wq_dev->dev, attr);
7127 if (ret) {
7128 device_unregister(&wq_dev->dev);
7129 wq->wq_dev = NULL;
7130 return ret;
a0a1a5fd
TH
7131 }
7132 }
7133 }
6ba94429
FW
7134
7135 dev_set_uevent_suppress(&wq_dev->dev, false);
7136 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7137 return 0;
a0a1a5fd
TH
7138}
7139
7140/**
6ba94429
FW
7141 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7142 * @wq: the workqueue to unregister
a0a1a5fd 7143 *
6ba94429 7144 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 7145 */
6ba94429 7146static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 7147{
6ba94429 7148 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 7149
6ba94429
FW
7150 if (!wq->wq_dev)
7151 return;
a0a1a5fd 7152
6ba94429
FW
7153 wq->wq_dev = NULL;
7154 device_unregister(&wq_dev->dev);
a0a1a5fd 7155}
6ba94429
FW
7156#else /* CONFIG_SYSFS */
7157static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7158#endif /* CONFIG_SYSFS */
a0a1a5fd 7159
82607adc
TH
7160/*
7161 * Workqueue watchdog.
7162 *
7163 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7164 * flush dependency, a concurrency managed work item which stays RUNNING
7165 * indefinitely. Workqueue stalls can be very difficult to debug as the
7166 * usual warning mechanisms don't trigger and internal workqueue state is
7167 * largely opaque.
7168 *
7169 * Workqueue watchdog monitors all worker pools periodically and dumps
7170 * state if some pools failed to make forward progress for a while where
7171 * forward progress is defined as the first item on ->worklist changing.
7172 *
7173 * This mechanism is controlled through the kernel parameter
7174 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7175 * corresponding sysfs parameter file.
7176 */
7177#ifdef CONFIG_WQ_WATCHDOG
7178
82607adc 7179static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 7180static struct timer_list wq_watchdog_timer;
82607adc
TH
7181
7182static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7183static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7184
cd2440d6
PM
7185/*
7186 * Show workers that might prevent the processing of pending work items.
7187 * The only candidates are CPU-bound workers in the running state.
7188 * Pending work items should be handled by another idle worker
7189 * in all other situations.
7190 */
7191static void show_cpu_pool_hog(struct worker_pool *pool)
7192{
7193 struct worker *worker;
7194 unsigned long flags;
7195 int bkt;
7196
7197 raw_spin_lock_irqsave(&pool->lock, flags);
7198
7199 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7200 if (task_is_running(worker->task)) {
7201 /*
7202 * Defer printing to avoid deadlocks in console
7203 * drivers that queue work while holding locks
7204 * also taken in their write paths.
7205 */
7206 printk_deferred_enter();
7207
7208 pr_info("pool %d:\n", pool->id);
7209 sched_show_task(worker->task);
7210
7211 printk_deferred_exit();
7212 }
7213 }
7214
7215 raw_spin_unlock_irqrestore(&pool->lock, flags);
7216}
7217
7218static void show_cpu_pools_hogs(void)
7219{
7220 struct worker_pool *pool;
7221 int pi;
7222
7223 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7224
7225 rcu_read_lock();
7226
7227 for_each_pool(pool, pi) {
7228 if (pool->cpu_stall)
7229 show_cpu_pool_hog(pool);
7230
7231 }
7232
7233 rcu_read_unlock();
7234}
7235
82607adc
TH
7236static void wq_watchdog_reset_touched(void)
7237{
7238 int cpu;
7239
7240 wq_watchdog_touched = jiffies;
7241 for_each_possible_cpu(cpu)
7242 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7243}
7244
5cd79d6a 7245static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
7246{
7247 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7248 bool lockup_detected = false;
cd2440d6 7249 bool cpu_pool_stall = false;
940d71c6 7250 unsigned long now = jiffies;
82607adc
TH
7251 struct worker_pool *pool;
7252 int pi;
7253
7254 if (!thresh)
7255 return;
7256
7257 rcu_read_lock();
7258
7259 for_each_pool(pool, pi) {
7260 unsigned long pool_ts, touched, ts;
7261
cd2440d6 7262 pool->cpu_stall = false;
82607adc
TH
7263 if (list_empty(&pool->worklist))
7264 continue;
7265
940d71c6
SS
7266 /*
7267 * If a virtual machine is stopped by the host it can look to
7268 * the watchdog like a stall.
7269 */
7270 kvm_check_and_clear_guest_paused();
7271
82607adc 7272 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7273 if (pool->cpu >= 0)
7274 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7275 else
7276 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7277 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7278
7279 if (time_after(pool_ts, touched))
7280 ts = pool_ts;
7281 else
7282 ts = touched;
7283
82607adc 7284 /* did we stall? */
940d71c6 7285 if (time_after(now, ts + thresh)) {
82607adc 7286 lockup_detected = true;
4cb1ef64 7287 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
cd2440d6
PM
7288 pool->cpu_stall = true;
7289 cpu_pool_stall = true;
7290 }
82607adc
TH
7291 pr_emerg("BUG: workqueue lockup - pool");
7292 pr_cont_pool_info(pool);
7293 pr_cont(" stuck for %us!\n",
940d71c6 7294 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7295 }
cd2440d6
PM
7296
7297
82607adc
TH
7298 }
7299
7300 rcu_read_unlock();
7301
7302 if (lockup_detected)
55df0933 7303 show_all_workqueues();
82607adc 7304
cd2440d6
PM
7305 if (cpu_pool_stall)
7306 show_cpu_pools_hogs();
7307
82607adc
TH
7308 wq_watchdog_reset_touched();
7309 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7310}
7311
cb9d7fd5 7312notrace void wq_watchdog_touch(int cpu)
82607adc
TH
7313{
7314 if (cpu >= 0)
7315 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
7316
7317 wq_watchdog_touched = jiffies;
82607adc
TH
7318}
7319
7320static void wq_watchdog_set_thresh(unsigned long thresh)
7321{
7322 wq_watchdog_thresh = 0;
7323 del_timer_sync(&wq_watchdog_timer);
7324
7325 if (thresh) {
7326 wq_watchdog_thresh = thresh;
7327 wq_watchdog_reset_touched();
7328 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7329 }
7330}
7331
7332static int wq_watchdog_param_set_thresh(const char *val,
7333 const struct kernel_param *kp)
7334{
7335 unsigned long thresh;
7336 int ret;
7337
7338 ret = kstrtoul(val, 0, &thresh);
7339 if (ret)
7340 return ret;
7341
7342 if (system_wq)
7343 wq_watchdog_set_thresh(thresh);
7344 else
7345 wq_watchdog_thresh = thresh;
7346
7347 return 0;
7348}
7349
7350static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7351 .set = wq_watchdog_param_set_thresh,
7352 .get = param_get_ulong,
7353};
7354
7355module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7356 0644);
7357
7358static void wq_watchdog_init(void)
7359{
5cd79d6a 7360 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7361 wq_watchdog_set_thresh(wq_watchdog_thresh);
7362}
7363
7364#else /* CONFIG_WQ_WATCHDOG */
7365
7366static inline void wq_watchdog_init(void) { }
7367
7368#endif /* CONFIG_WQ_WATCHDOG */
7369
4a6c5607
TH
7370static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7371{
7372 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7373 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7374 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7375 return;
7376 }
7377
7378 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7379}
7380
2fcdb1b4
TH
7381static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7382{
7383 BUG_ON(init_worker_pool(pool));
7384 pool->cpu = cpu;
7385 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7386 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7387 pool->attrs->nice = nice;
7388 pool->attrs->affn_strict = true;
7389 pool->node = cpu_to_node(cpu);
7390
7391 /* alloc pool ID */
7392 mutex_lock(&wq_pool_mutex);
7393 BUG_ON(worker_pool_assign_id(pool));
7394 mutex_unlock(&wq_pool_mutex);
7395}
7396
3347fa09
TH
7397/**
7398 * workqueue_init_early - early init for workqueue subsystem
7399 *
2930155b
TH
7400 * This is the first step of three-staged workqueue subsystem initialization and
7401 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7402 * up. It sets up all the data structures and system workqueues and allows early
7403 * boot code to create workqueues and queue/cancel work items. Actual work item
7404 * execution starts only after kthreads can be created and scheduled right
7405 * before early initcalls.
3347fa09 7406 */
2333e829 7407void __init workqueue_init_early(void)
1da177e4 7408{
84193c07 7409 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c
TH
7410 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7411 int i, cpu;
c34056a3 7412
10cdb157 7413 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7414
b05a7928 7415 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7416 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7417 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7418
4a6c5607
TH
7419 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7420 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7421 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7422 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7423 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7424
fe28f631 7425 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7426
e904e6c2
TH
7427 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7428
2930155b
TH
7429 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7430 BUG_ON(!wq_update_pod_attrs_buf);
7431
7bd20b6b
MT
7432 /*
7433 * If nohz_full is enabled, set power efficient workqueue as unbound.
7434 * This allows workqueue items to be moved to HK CPUs.
7435 */
7436 if (housekeeping_enabled(HK_TYPE_TICK))
7437 wq_power_efficient = true;
7438
84193c07
TH
7439 /* initialize WQ_AFFN_SYSTEM pods */
7440 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7441 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7442 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7443 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7444
7445 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7446
84193c07
TH
7447 pt->nr_pods = 1;
7448 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7449 pt->pod_node[0] = NUMA_NO_NODE;
7450 pt->cpu_pod[0] = 0;
7451
4cb1ef64 7452 /* initialize BH and CPU pools */
29c91e99 7453 for_each_possible_cpu(cpu) {
4ce62e9e 7454 struct worker_pool *pool;
8b03ae3c 7455
4cb1ef64
TH
7456 i = 0;
7457 for_each_bh_worker_pool(pool, cpu) {
7458 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7459 pool->flags |= POOL_BH;
7460 }
7461
7a4e344c 7462 i = 0;
2fcdb1b4
TH
7463 for_each_cpu_worker_pool(pool, cpu)
7464 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
8b03ae3c
TH
7465 }
7466
8a2b7538 7467 /* create default unbound and ordered wq attrs */
29c91e99
TH
7468 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7469 struct workqueue_attrs *attrs;
7470
be69d00d 7471 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7472 attrs->nice = std_nice[i];
29c91e99 7473 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7474
7475 /*
7476 * An ordered wq should have only one pwq as ordering is
7477 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7478 */
be69d00d 7479 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7480 attrs->nice = std_nice[i];
af73f5c9 7481 attrs->ordered = true;
8a2b7538 7482 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7483 }
7484
d320c038 7485 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7486 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7487 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7488 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7489 WQ_MAX_ACTIVE);
24d51add
TH
7490 system_freezable_wq = alloc_workqueue("events_freezable",
7491 WQ_FREEZABLE, 0);
0668106c
VK
7492 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7493 WQ_POWER_EFFICIENT, 0);
8318d6a6 7494 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7495 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7496 0);
4cb1ef64
TH
7497 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7498 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7499 WQ_BH | WQ_HIGHPRI, 0);
1aabe902 7500 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7501 !system_unbound_wq || !system_freezable_wq ||
7502 !system_power_efficient_wq ||
4cb1ef64
TH
7503 !system_freezable_power_efficient_wq ||
7504 !system_bh_wq || !system_bh_highpri_wq);
3347fa09
TH
7505}
7506
aa6fde93
TH
7507static void __init wq_cpu_intensive_thresh_init(void)
7508{
7509 unsigned long thresh;
7510 unsigned long bogo;
7511
dd64c873
Z
7512 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7513 BUG_ON(IS_ERR(pwq_release_worker));
7514
aa6fde93
TH
7515 /* if the user set it to a specific value, keep it */
7516 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7517 return;
7518
7519 /*
7520 * The default of 10ms is derived from the fact that most modern (as of
7521 * 2023) processors can do a lot in 10ms and that it's just below what
7522 * most consider human-perceivable. However, the kernel also runs on a
7523 * lot slower CPUs including microcontrollers where the threshold is way
7524 * too low.
7525 *
7526 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7527 * This is by no means accurate but it doesn't have to be. The mechanism
7528 * is still useful even when the threshold is fully scaled up. Also, as
7529 * the reports would usually be applicable to everyone, some machines
7530 * operating on longer thresholds won't significantly diminish their
7531 * usefulness.
7532 */
7533 thresh = 10 * USEC_PER_MSEC;
7534
7535 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7536 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7537 if (bogo < 4000)
7538 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7539
7540 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7541 loops_per_jiffy, bogo, thresh);
7542
7543 wq_cpu_intensive_thresh_us = thresh;
7544}
7545
3347fa09
TH
7546/**
7547 * workqueue_init - bring workqueue subsystem fully online
7548 *
2930155b
TH
7549 * This is the second step of three-staged workqueue subsystem initialization
7550 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7551 * been created and work items queued on them, but there are no kworkers
7552 * executing the work items yet. Populate the worker pools with the initial
7553 * workers and enable future kworker creations.
3347fa09 7554 */
2333e829 7555void __init workqueue_init(void)
3347fa09 7556{
2186d9f9 7557 struct workqueue_struct *wq;
3347fa09
TH
7558 struct worker_pool *pool;
7559 int cpu, bkt;
7560
aa6fde93
TH
7561 wq_cpu_intensive_thresh_init();
7562
2186d9f9
TH
7563 mutex_lock(&wq_pool_mutex);
7564
2930155b
TH
7565 /*
7566 * Per-cpu pools created earlier could be missing node hint. Fix them
7567 * up. Also, create a rescuer for workqueues that requested it.
7568 */
2186d9f9 7569 for_each_possible_cpu(cpu) {
4cb1ef64
TH
7570 for_each_bh_worker_pool(pool, cpu)
7571 pool->node = cpu_to_node(cpu);
7572 for_each_cpu_worker_pool(pool, cpu)
2186d9f9 7573 pool->node = cpu_to_node(cpu);
2186d9f9
TH
7574 }
7575
40c17f75 7576 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7577 WARN(init_rescuer(wq),
7578 "workqueue: failed to create early rescuer for %s",
7579 wq->name);
7580 }
2186d9f9
TH
7581
7582 mutex_unlock(&wq_pool_mutex);
7583
4cb1ef64
TH
7584 /*
7585 * Create the initial workers. A BH pool has one pseudo worker that
7586 * represents the shared BH execution context and thus doesn't get
7587 * affected by hotplug events. Create the BH pseudo workers for all
7588 * possible CPUs here.
7589 */
7590 for_each_possible_cpu(cpu)
7591 for_each_bh_worker_pool(pool, cpu)
7592 BUG_ON(!create_worker(pool));
7593
3347fa09
TH
7594 for_each_online_cpu(cpu) {
7595 for_each_cpu_worker_pool(pool, cpu) {
7596 pool->flags &= ~POOL_DISASSOCIATED;
7597 BUG_ON(!create_worker(pool));
7598 }
7599 }
7600
7601 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7602 BUG_ON(!create_worker(pool));
7603
7604 wq_online = true;
82607adc 7605 wq_watchdog_init();
1da177e4 7606}
c4f135d6 7607
025e1684
TH
7608/*
7609 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7610 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7611 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7612 */
7613static void __init init_pod_type(struct wq_pod_type *pt,
7614 bool (*cpus_share_pod)(int, int))
7615{
7616 int cur, pre, cpu, pod;
7617
7618 pt->nr_pods = 0;
7619
7620 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7621 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7622 BUG_ON(!pt->cpu_pod);
7623
7624 for_each_possible_cpu(cur) {
7625 for_each_possible_cpu(pre) {
7626 if (pre >= cur) {
7627 pt->cpu_pod[cur] = pt->nr_pods++;
7628 break;
7629 }
7630 if (cpus_share_pod(cur, pre)) {
7631 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7632 break;
7633 }
7634 }
7635 }
7636
7637 /* init the rest to match @pt->cpu_pod[] */
7638 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7639 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7640 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7641
7642 for (pod = 0; pod < pt->nr_pods; pod++)
7643 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7644
7645 for_each_possible_cpu(cpu) {
7646 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7647 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7648 }
7649}
7650
63c5484e
TH
7651static bool __init cpus_dont_share(int cpu0, int cpu1)
7652{
7653 return false;
7654}
7655
7656static bool __init cpus_share_smt(int cpu0, int cpu1)
7657{
7658#ifdef CONFIG_SCHED_SMT
7659 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7660#else
7661 return false;
7662#endif
7663}
7664
025e1684
TH
7665static bool __init cpus_share_numa(int cpu0, int cpu1)
7666{
7667 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7668}
7669
2930155b
TH
7670/**
7671 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7672 *
96068b60 7673 * This is the third step of three-staged workqueue subsystem initialization and
2930155b
TH
7674 * invoked after SMP and topology information are fully initialized. It
7675 * initializes the unbound CPU pods accordingly.
7676 */
7677void __init workqueue_init_topology(void)
a86feae6 7678{
2930155b 7679 struct workqueue_struct *wq;
025e1684 7680 int cpu;
a86feae6 7681
63c5484e
TH
7682 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7683 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7684 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7685 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7686
c5f8cd6c
TH
7687 wq_topo_initialized = true;
7688
2930155b 7689 mutex_lock(&wq_pool_mutex);
a86feae6 7690
2930155b
TH
7691 /*
7692 * Workqueues allocated earlier would have all CPUs sharing the default
7693 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7694 * combinations to apply per-pod sharing.
7695 */
7696 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 7697 for_each_online_cpu(cpu)
2930155b 7698 wq_update_pod(wq, cpu, cpu, true);
5797b1c1
TH
7699 if (wq->flags & WQ_UNBOUND) {
7700 mutex_lock(&wq->mutex);
7701 wq_update_node_max_active(wq, -1);
7702 mutex_unlock(&wq->mutex);
2930155b
TH
7703 }
7704 }
7705
7706 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
7707}
7708
20bdedaf
TH
7709void __warn_flushing_systemwide_wq(void)
7710{
7711 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7712 dump_stack();
7713}
c4f135d6 7714EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 7715
7716static int __init workqueue_unbound_cpus_setup(char *str)
7717{
7718 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7719 cpumask_clear(&wq_cmdline_cpumask);
7720 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7721 }
7722
7723 return 1;
7724}
7725__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);