kernel/workqueue: Document wq_worker_last_func() argument
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
669de8bd
BVA
262 char *lock_name;
263 struct lock_class_key key;
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 301static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 303static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 304
e2dca7ad 305static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 306static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 307
ef557180
MG
308/* PL: allowable cpus for unbound wqs and work items */
309static cpumask_var_t wq_unbound_cpumask;
310
311/* CPU where unbound work was last round robin scheduled from this CPU */
312static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 313
f303fccb
TH
314/*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320static bool wq_debug_force_rr_cpu = true;
321#else
322static bool wq_debug_force_rr_cpu = false;
323#endif
324module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
7d19c5ce 326/* the per-cpu worker pools */
25528213 327static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 328
68e13a67 329static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 330
68e13a67 331/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
332static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
c5aa87bb 334/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
335static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
8a2b7538
TH
337/* I: attributes used when instantiating ordered pools on demand */
338static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
d320c038 340struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 341EXPORT_SYMBOL(system_wq);
044c782c 342struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 343EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 344struct workqueue_struct *system_long_wq __read_mostly;
d320c038 345EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 346struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 347EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 348struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 349EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
350struct workqueue_struct *system_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 354
7d19c5ce 355static int worker_thread(void *__worker);
6ba94429 356static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 357
97bd2347
TH
358#define CREATE_TRACE_POINTS
359#include <trace/events/workqueue.h>
360
68e13a67 361#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
5bcab335 365
b09f4fd3 366#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
76af4d93 370
5b95e1af 371#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 376
f02ae73a
TH
377#define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 380 (pool)++)
4ce62e9e 381
17116969
TH
382/**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
611c92a0 385 * @pi: integer used for iteration
fa1b54e6 386 *
68e13a67
LJ
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
17116969 393 */
611c92a0
TH
394#define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 397 else
17116969 398
822d8405
TH
399/**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
822d8405
TH
402 * @pool: worker_pool to iterate workers of
403 *
1258fae7 404 * This must be called with wq_pool_attach_mutex.
822d8405
TH
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
da028469
LJ
409#define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
412 else
413
49e3cf44
TH
414/**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
76af4d93 418 *
b09f4fd3 419 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
49e3cf44
TH
425 */
426#define for_each_pwq(pwq, wq) \
76af4d93 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 429 else
f3421797 430
dc186ad7
TG
431#ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433static struct debug_obj_descr work_debug_descr;
434
99777288
SG
435static void *work_debug_hint(void *addr)
436{
437 return ((struct work_struct *) addr)->func;
438}
439
b9fdac7f
DC
440static bool work_is_static_object(void *addr)
441{
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445}
446
dc186ad7
TG
447/*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
02a982a6 451static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
452{
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
02a982a6 459 return true;
dc186ad7 460 default:
02a982a6 461 return false;
dc186ad7
TG
462 }
463}
464
dc186ad7
TG
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
02a982a6 469static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
02a982a6 477 return true;
dc186ad7 478 default:
02a982a6 479 return false;
dc186ad7
TG
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
99777288 485 .debug_hint = work_debug_hint,
b9fdac7f 486 .is_static_object = work_is_static_object,
dc186ad7 487 .fixup_init = work_fixup_init,
dc186ad7
TG
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
ea2e64f2
TG
516void destroy_delayed_work_on_stack(struct delayed_work *work)
517{
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520}
521EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
dc186ad7
TG
523#else
524static inline void debug_work_activate(struct work_struct *work) { }
525static inline void debug_work_deactivate(struct work_struct *work) { }
526#endif
527
4e8b22bd
LB
528/**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
9daf9e67
TH
535static int worker_pool_assign_id(struct worker_pool *pool)
536{
537 int ret;
538
68e13a67 539 lockdep_assert_held(&wq_pool_mutex);
5bcab335 540
4e8b22bd
LB
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
229641a6 543 if (ret >= 0) {
e68035fb 544 pool->id = ret;
229641a6
TH
545 return 0;
546 }
fa1b54e6 547 return ret;
7c3eed5c
TH
548}
549
df2d5ae4
TH
550/**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
5b95e1af
LJ
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
df2d5ae4
TH
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
559 *
560 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
5b95e1af 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
df2d5ae4
TH
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
73f53c4a
TH
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
1da177e4 594
14441960 595/*
112202d9
TH
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 598 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 599 *
112202d9
TH
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
7a22ad75 604 *
112202d9 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 606 * corresponding to a work. Pool is available once the work has been
112202d9 607 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 608 * available only while the work item is queued.
7a22ad75 609 *
bbb68dfa
TH
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
14441960 614 */
7a22ad75
TH
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
365970a1 617{
6183c009 618 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
365970a1 621
112202d9 622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
623 unsigned long extra_flags)
624{
112202d9
TH
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
627}
628
4468a00f
LJ
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
7c3eed5c
TH
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
7a22ad75 638{
23657bb1
TH
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
7c3eed5c 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
8bdc6201 651 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
7a22ad75 676}
f756d5e2 677
7a22ad75 678static void clear_work_data(struct work_struct *work)
1da177e4 679{
7c3eed5c
TH
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
682}
683
112202d9 684static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 685{
e120153d 686 unsigned long data = atomic_long_read(&work->data);
7a22ad75 687
112202d9 688 if (data & WORK_STRUCT_PWQ)
e120153d
TH
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
4d707b9f
ON
692}
693
7c3eed5c
TH
694/**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
68e13a67
LJ
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
d185af30
YB
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
708 */
709static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 710{
e120153d 711 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 712 int pool_id;
7a22ad75 713
68e13a67 714 assert_rcu_or_pool_mutex();
fa1b54e6 715
112202d9
TH
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
7c3eed5c 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 719
7c3eed5c
TH
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
722 return NULL;
723
fa1b54e6 724 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
725}
726
727/**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
d185af30 731 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734static int get_work_pool_id(struct work_struct *work)
735{
54d5b7d0
LJ
736 unsigned long data = atomic_long_read(&work->data);
737
112202d9
TH
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
54d5b7d0 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 741
54d5b7d0 742 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
743}
744
bbb68dfa
TH
745static void mark_work_canceling(struct work_struct *work)
746{
7c3eed5c 747 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 748
7c3eed5c
TH
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
751}
752
753static bool work_is_canceling(struct work_struct *work)
754{
755 unsigned long data = atomic_long_read(&work->data);
756
112202d9 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
758}
759
e22bee78 760/*
3270476a
TH
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 763 * they're being called with pool->lock held.
e22bee78
TH
764 */
765
63d95a91 766static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 767{
e19e397a 768 return !atomic_read(&pool->nr_running);
a848e3b6
ON
769}
770
4594bf15 771/*
e22bee78
TH
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
974271c4
TH
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
706026c2 776 * function will always return %true for unbound pools as long as the
974271c4 777 * worklist isn't empty.
4594bf15 778 */
63d95a91 779static bool need_more_worker(struct worker_pool *pool)
365970a1 780{
63d95a91 781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 782}
4594bf15 783
e22bee78 784/* Can I start working? Called from busy but !running workers. */
63d95a91 785static bool may_start_working(struct worker_pool *pool)
e22bee78 786{
63d95a91 787 return pool->nr_idle;
e22bee78
TH
788}
789
790/* Do I need to keep working? Called from currently running workers. */
63d95a91 791static bool keep_working(struct worker_pool *pool)
e22bee78 792{
e19e397a
TH
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
795}
796
797/* Do we need a new worker? Called from manager. */
63d95a91 798static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 799{
63d95a91 800 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 801}
365970a1 802
e22bee78 803/* Do we have too many workers and should some go away? */
63d95a91 804static bool too_many_workers(struct worker_pool *pool)
e22bee78 805{
692b4825 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
811}
812
4d707b9f 813/*
e22bee78
TH
814 * Wake up functions.
815 */
816
1037de36
LJ
817/* Return the first idle worker. Safe with preemption disabled */
818static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 819{
63d95a91 820 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
821 return NULL;
822
63d95a91 823 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
824}
825
826/**
827 * wake_up_worker - wake up an idle worker
63d95a91 828 * @pool: worker pool to wake worker from
7e11629d 829 *
63d95a91 830 * Wake up the first idle worker of @pool.
7e11629d
TH
831 *
832 * CONTEXT:
d565ed63 833 * spin_lock_irq(pool->lock).
7e11629d 834 */
63d95a91 835static void wake_up_worker(struct worker_pool *pool)
7e11629d 836{
1037de36 837 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841}
842
d302f017 843/**
e22bee78
TH
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
d84ff051 854void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
855{
856 struct worker *worker = kthread_data(task);
857
36576000 858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 859 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 860 atomic_inc(&worker->pool->nr_running);
36576000 861 }
e22bee78
TH
862}
863
864/**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
e22bee78
TH
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
d185af30 875 * Return:
e22bee78
TH
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
9b7f6597 878struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
879{
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 881 struct worker_pool *pool;
e22bee78 882
111c225a
TH
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
2d64672e 888 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
889 return NULL;
890
111c225a 891 pool = worker->pool;
111c225a 892
e22bee78 893 /* this can only happen on the local cpu */
9b7f6597 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 895 return NULL;
e22bee78
TH
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
628c78e7
TH
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
d565ed63 905 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 906 * lock is safe.
e22bee78 907 */
e19e397a
TH
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
1037de36 910 to_wakeup = first_idle_worker(pool);
e22bee78
TH
911 return to_wakeup ? to_wakeup->task : NULL;
912}
913
1b69ac6b
JW
914/**
915 * wq_worker_last_func - retrieve worker's last work function
8194fe94 916 * @task: Task to retrieve last work function of.
1b69ac6b
JW
917 *
918 * Determine the last function a worker executed. This is called from
919 * the scheduler to get a worker's last known identity.
920 *
921 * CONTEXT:
922 * spin_lock_irq(rq->lock)
923 *
4b047002
JW
924 * This function is called during schedule() when a kworker is going
925 * to sleep. It's used by psi to identify aggregation workers during
926 * dequeuing, to allow periodic aggregation to shut-off when that
927 * worker is the last task in the system or cgroup to go to sleep.
928 *
929 * As this function doesn't involve any workqueue-related locking, it
930 * only returns stable values when called from inside the scheduler's
931 * queuing and dequeuing paths, when @task, which must be a kworker,
932 * is guaranteed to not be processing any works.
933 *
1b69ac6b
JW
934 * Return:
935 * The last work function %current executed as a worker, NULL if it
936 * hasn't executed any work yet.
937 */
938work_func_t wq_worker_last_func(struct task_struct *task)
939{
940 struct worker *worker = kthread_data(task);
941
942 return worker->last_func;
943}
944
e22bee78
TH
945/**
946 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 947 * @worker: self
d302f017 948 * @flags: flags to set
d302f017 949 *
228f1d00 950 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 951 *
cb444766 952 * CONTEXT:
d565ed63 953 * spin_lock_irq(pool->lock)
d302f017 954 */
228f1d00 955static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 956{
bd7bdd43 957 struct worker_pool *pool = worker->pool;
e22bee78 958
cb444766
TH
959 WARN_ON_ONCE(worker->task != current);
960
228f1d00 961 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
962 if ((flags & WORKER_NOT_RUNNING) &&
963 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 964 atomic_dec(&pool->nr_running);
e22bee78
TH
965 }
966
d302f017
TH
967 worker->flags |= flags;
968}
969
970/**
e22bee78 971 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 972 * @worker: self
d302f017
TH
973 * @flags: flags to clear
974 *
e22bee78 975 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 976 *
cb444766 977 * CONTEXT:
d565ed63 978 * spin_lock_irq(pool->lock)
d302f017
TH
979 */
980static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
981{
63d95a91 982 struct worker_pool *pool = worker->pool;
e22bee78
TH
983 unsigned int oflags = worker->flags;
984
cb444766
TH
985 WARN_ON_ONCE(worker->task != current);
986
d302f017 987 worker->flags &= ~flags;
e22bee78 988
42c025f3
TH
989 /*
990 * If transitioning out of NOT_RUNNING, increment nr_running. Note
991 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
992 * of multiple flags, not a single flag.
993 */
e22bee78
TH
994 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
995 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 996 atomic_inc(&pool->nr_running);
d302f017
TH
997}
998
8cca0eea
TH
999/**
1000 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1001 * @pool: pool of interest
8cca0eea
TH
1002 * @work: work to find worker for
1003 *
c9e7cf27
TH
1004 * Find a worker which is executing @work on @pool by searching
1005 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1006 * to match, its current execution should match the address of @work and
1007 * its work function. This is to avoid unwanted dependency between
1008 * unrelated work executions through a work item being recycled while still
1009 * being executed.
1010 *
1011 * This is a bit tricky. A work item may be freed once its execution
1012 * starts and nothing prevents the freed area from being recycled for
1013 * another work item. If the same work item address ends up being reused
1014 * before the original execution finishes, workqueue will identify the
1015 * recycled work item as currently executing and make it wait until the
1016 * current execution finishes, introducing an unwanted dependency.
1017 *
c5aa87bb
TH
1018 * This function checks the work item address and work function to avoid
1019 * false positives. Note that this isn't complete as one may construct a
1020 * work function which can introduce dependency onto itself through a
1021 * recycled work item. Well, if somebody wants to shoot oneself in the
1022 * foot that badly, there's only so much we can do, and if such deadlock
1023 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1024 *
1025 * CONTEXT:
d565ed63 1026 * spin_lock_irq(pool->lock).
8cca0eea 1027 *
d185af30
YB
1028 * Return:
1029 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1030 * otherwise.
4d707b9f 1031 */
c9e7cf27 1032static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1033 struct work_struct *work)
4d707b9f 1034{
42f8570f 1035 struct worker *worker;
42f8570f 1036
b67bfe0d 1037 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1038 (unsigned long)work)
1039 if (worker->current_work == work &&
1040 worker->current_func == work->func)
42f8570f
SL
1041 return worker;
1042
1043 return NULL;
4d707b9f
ON
1044}
1045
bf4ede01
TH
1046/**
1047 * move_linked_works - move linked works to a list
1048 * @work: start of series of works to be scheduled
1049 * @head: target list to append @work to
402dd89d 1050 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1051 *
1052 * Schedule linked works starting from @work to @head. Work series to
1053 * be scheduled starts at @work and includes any consecutive work with
1054 * WORK_STRUCT_LINKED set in its predecessor.
1055 *
1056 * If @nextp is not NULL, it's updated to point to the next work of
1057 * the last scheduled work. This allows move_linked_works() to be
1058 * nested inside outer list_for_each_entry_safe().
1059 *
1060 * CONTEXT:
d565ed63 1061 * spin_lock_irq(pool->lock).
bf4ede01
TH
1062 */
1063static void move_linked_works(struct work_struct *work, struct list_head *head,
1064 struct work_struct **nextp)
1065{
1066 struct work_struct *n;
1067
1068 /*
1069 * Linked worklist will always end before the end of the list,
1070 * use NULL for list head.
1071 */
1072 list_for_each_entry_safe_from(work, n, NULL, entry) {
1073 list_move_tail(&work->entry, head);
1074 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1075 break;
1076 }
1077
1078 /*
1079 * If we're already inside safe list traversal and have moved
1080 * multiple works to the scheduled queue, the next position
1081 * needs to be updated.
1082 */
1083 if (nextp)
1084 *nextp = n;
1085}
1086
8864b4e5
TH
1087/**
1088 * get_pwq - get an extra reference on the specified pool_workqueue
1089 * @pwq: pool_workqueue to get
1090 *
1091 * Obtain an extra reference on @pwq. The caller should guarantee that
1092 * @pwq has positive refcnt and be holding the matching pool->lock.
1093 */
1094static void get_pwq(struct pool_workqueue *pwq)
1095{
1096 lockdep_assert_held(&pwq->pool->lock);
1097 WARN_ON_ONCE(pwq->refcnt <= 0);
1098 pwq->refcnt++;
1099}
1100
1101/**
1102 * put_pwq - put a pool_workqueue reference
1103 * @pwq: pool_workqueue to put
1104 *
1105 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1106 * destruction. The caller should be holding the matching pool->lock.
1107 */
1108static void put_pwq(struct pool_workqueue *pwq)
1109{
1110 lockdep_assert_held(&pwq->pool->lock);
1111 if (likely(--pwq->refcnt))
1112 return;
1113 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1114 return;
1115 /*
1116 * @pwq can't be released under pool->lock, bounce to
1117 * pwq_unbound_release_workfn(). This never recurses on the same
1118 * pool->lock as this path is taken only for unbound workqueues and
1119 * the release work item is scheduled on a per-cpu workqueue. To
1120 * avoid lockdep warning, unbound pool->locks are given lockdep
1121 * subclass of 1 in get_unbound_pool().
1122 */
1123 schedule_work(&pwq->unbound_release_work);
1124}
1125
dce90d47
TH
1126/**
1127 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1128 * @pwq: pool_workqueue to put (can be %NULL)
1129 *
1130 * put_pwq() with locking. This function also allows %NULL @pwq.
1131 */
1132static void put_pwq_unlocked(struct pool_workqueue *pwq)
1133{
1134 if (pwq) {
1135 /*
1136 * As both pwqs and pools are sched-RCU protected, the
1137 * following lock operations are safe.
1138 */
1139 spin_lock_irq(&pwq->pool->lock);
1140 put_pwq(pwq);
1141 spin_unlock_irq(&pwq->pool->lock);
1142 }
1143}
1144
112202d9 1145static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1146{
112202d9 1147 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1148
1149 trace_workqueue_activate_work(work);
82607adc
TH
1150 if (list_empty(&pwq->pool->worklist))
1151 pwq->pool->watchdog_ts = jiffies;
112202d9 1152 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1153 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1154 pwq->nr_active++;
bf4ede01
TH
1155}
1156
112202d9 1157static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1158{
112202d9 1159 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1160 struct work_struct, entry);
1161
112202d9 1162 pwq_activate_delayed_work(work);
3aa62497
LJ
1163}
1164
bf4ede01 1165/**
112202d9
TH
1166 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1167 * @pwq: pwq of interest
bf4ede01 1168 * @color: color of work which left the queue
bf4ede01
TH
1169 *
1170 * A work either has completed or is removed from pending queue,
112202d9 1171 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1172 *
1173 * CONTEXT:
d565ed63 1174 * spin_lock_irq(pool->lock).
bf4ede01 1175 */
112202d9 1176static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1177{
8864b4e5 1178 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1179 if (color == WORK_NO_COLOR)
8864b4e5 1180 goto out_put;
bf4ede01 1181
112202d9 1182 pwq->nr_in_flight[color]--;
bf4ede01 1183
112202d9
TH
1184 pwq->nr_active--;
1185 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1186 /* one down, submit a delayed one */
112202d9
TH
1187 if (pwq->nr_active < pwq->max_active)
1188 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1189 }
1190
1191 /* is flush in progress and are we at the flushing tip? */
112202d9 1192 if (likely(pwq->flush_color != color))
8864b4e5 1193 goto out_put;
bf4ede01
TH
1194
1195 /* are there still in-flight works? */
112202d9 1196 if (pwq->nr_in_flight[color])
8864b4e5 1197 goto out_put;
bf4ede01 1198
112202d9
TH
1199 /* this pwq is done, clear flush_color */
1200 pwq->flush_color = -1;
bf4ede01
TH
1201
1202 /*
112202d9 1203 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1204 * will handle the rest.
1205 */
112202d9
TH
1206 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1207 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1208out_put:
1209 put_pwq(pwq);
bf4ede01
TH
1210}
1211
36e227d2 1212/**
bbb68dfa 1213 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1214 * @work: work item to steal
1215 * @is_dwork: @work is a delayed_work
bbb68dfa 1216 * @flags: place to store irq state
36e227d2
TH
1217 *
1218 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1219 * stable state - idle, on timer or on worklist.
36e227d2 1220 *
d185af30 1221 * Return:
36e227d2
TH
1222 * 1 if @work was pending and we successfully stole PENDING
1223 * 0 if @work was idle and we claimed PENDING
1224 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1225 * -ENOENT if someone else is canceling @work, this state may persist
1226 * for arbitrarily long
36e227d2 1227 *
d185af30 1228 * Note:
bbb68dfa 1229 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1230 * interrupted while holding PENDING and @work off queue, irq must be
1231 * disabled on entry. This, combined with delayed_work->timer being
1232 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1233 *
1234 * On successful return, >= 0, irq is disabled and the caller is
1235 * responsible for releasing it using local_irq_restore(*@flags).
1236 *
e0aecdd8 1237 * This function is safe to call from any context including IRQ handler.
bf4ede01 1238 */
bbb68dfa
TH
1239static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1240 unsigned long *flags)
bf4ede01 1241{
d565ed63 1242 struct worker_pool *pool;
112202d9 1243 struct pool_workqueue *pwq;
bf4ede01 1244
bbb68dfa
TH
1245 local_irq_save(*flags);
1246
36e227d2
TH
1247 /* try to steal the timer if it exists */
1248 if (is_dwork) {
1249 struct delayed_work *dwork = to_delayed_work(work);
1250
e0aecdd8
TH
1251 /*
1252 * dwork->timer is irqsafe. If del_timer() fails, it's
1253 * guaranteed that the timer is not queued anywhere and not
1254 * running on the local CPU.
1255 */
36e227d2
TH
1256 if (likely(del_timer(&dwork->timer)))
1257 return 1;
1258 }
1259
1260 /* try to claim PENDING the normal way */
bf4ede01
TH
1261 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1262 return 0;
1263
1264 /*
1265 * The queueing is in progress, or it is already queued. Try to
1266 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1267 */
d565ed63
TH
1268 pool = get_work_pool(work);
1269 if (!pool)
bbb68dfa 1270 goto fail;
bf4ede01 1271
d565ed63 1272 spin_lock(&pool->lock);
0b3dae68 1273 /*
112202d9
TH
1274 * work->data is guaranteed to point to pwq only while the work
1275 * item is queued on pwq->wq, and both updating work->data to point
1276 * to pwq on queueing and to pool on dequeueing are done under
1277 * pwq->pool->lock. This in turn guarantees that, if work->data
1278 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1279 * item is currently queued on that pool.
1280 */
112202d9
TH
1281 pwq = get_work_pwq(work);
1282 if (pwq && pwq->pool == pool) {
16062836
TH
1283 debug_work_deactivate(work);
1284
1285 /*
1286 * A delayed work item cannot be grabbed directly because
1287 * it might have linked NO_COLOR work items which, if left
112202d9 1288 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1289 * management later on and cause stall. Make sure the work
1290 * item is activated before grabbing.
1291 */
1292 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1293 pwq_activate_delayed_work(work);
16062836
TH
1294
1295 list_del_init(&work->entry);
9c34a704 1296 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1297
112202d9 1298 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1299 set_work_pool_and_keep_pending(work, pool->id);
1300
1301 spin_unlock(&pool->lock);
1302 return 1;
bf4ede01 1303 }
d565ed63 1304 spin_unlock(&pool->lock);
bbb68dfa
TH
1305fail:
1306 local_irq_restore(*flags);
1307 if (work_is_canceling(work))
1308 return -ENOENT;
1309 cpu_relax();
36e227d2 1310 return -EAGAIN;
bf4ede01
TH
1311}
1312
4690c4ab 1313/**
706026c2 1314 * insert_work - insert a work into a pool
112202d9 1315 * @pwq: pwq @work belongs to
4690c4ab
TH
1316 * @work: work to insert
1317 * @head: insertion point
1318 * @extra_flags: extra WORK_STRUCT_* flags to set
1319 *
112202d9 1320 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1321 * work_struct flags.
4690c4ab
TH
1322 *
1323 * CONTEXT:
d565ed63 1324 * spin_lock_irq(pool->lock).
4690c4ab 1325 */
112202d9
TH
1326static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327 struct list_head *head, unsigned int extra_flags)
b89deed3 1328{
112202d9 1329 struct worker_pool *pool = pwq->pool;
e22bee78 1330
4690c4ab 1331 /* we own @work, set data and link */
112202d9 1332 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1333 list_add_tail(&work->entry, head);
8864b4e5 1334 get_pwq(pwq);
e22bee78
TH
1335
1336 /*
c5aa87bb
TH
1337 * Ensure either wq_worker_sleeping() sees the above
1338 * list_add_tail() or we see zero nr_running to avoid workers lying
1339 * around lazily while there are works to be processed.
e22bee78
TH
1340 */
1341 smp_mb();
1342
63d95a91
TH
1343 if (__need_more_worker(pool))
1344 wake_up_worker(pool);
b89deed3
ON
1345}
1346
c8efcc25
TH
1347/*
1348 * Test whether @work is being queued from another work executing on the
8d03ecfe 1349 * same workqueue.
c8efcc25
TH
1350 */
1351static bool is_chained_work(struct workqueue_struct *wq)
1352{
8d03ecfe
TH
1353 struct worker *worker;
1354
1355 worker = current_wq_worker();
1356 /*
bf393fd4 1357 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1358 * I'm @worker, it's safe to dereference it without locking.
1359 */
112202d9 1360 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1361}
1362
ef557180
MG
1363/*
1364 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1365 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1366 * avoid perturbing sensitive tasks.
1367 */
1368static int wq_select_unbound_cpu(int cpu)
1369{
f303fccb 1370 static bool printed_dbg_warning;
ef557180
MG
1371 int new_cpu;
1372
f303fccb
TH
1373 if (likely(!wq_debug_force_rr_cpu)) {
1374 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1375 return cpu;
1376 } else if (!printed_dbg_warning) {
1377 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1378 printed_dbg_warning = true;
1379 }
1380
ef557180
MG
1381 if (cpumask_empty(wq_unbound_cpumask))
1382 return cpu;
1383
1384 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1385 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1386 if (unlikely(new_cpu >= nr_cpu_ids)) {
1387 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1388 if (unlikely(new_cpu >= nr_cpu_ids))
1389 return cpu;
1390 }
1391 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1392
1393 return new_cpu;
1394}
1395
d84ff051 1396static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1397 struct work_struct *work)
1398{
112202d9 1399 struct pool_workqueue *pwq;
c9178087 1400 struct worker_pool *last_pool;
1e19ffc6 1401 struct list_head *worklist;
8a2e8e5d 1402 unsigned int work_flags;
b75cac93 1403 unsigned int req_cpu = cpu;
8930caba
TH
1404
1405 /*
1406 * While a work item is PENDING && off queue, a task trying to
1407 * steal the PENDING will busy-loop waiting for it to either get
1408 * queued or lose PENDING. Grabbing PENDING and queueing should
1409 * happen with IRQ disabled.
1410 */
8e8eb730 1411 lockdep_assert_irqs_disabled();
1da177e4 1412
dc186ad7 1413 debug_work_activate(work);
1e19ffc6 1414
9ef28a73 1415 /* if draining, only works from the same workqueue are allowed */
618b01eb 1416 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1417 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1418 return;
9e8cd2f5 1419retry:
df2d5ae4 1420 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1421 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1422
c9178087 1423 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1424 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1426 else
1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1428
c9178087
TH
1429 /*
1430 * If @work was previously on a different pool, it might still be
1431 * running there, in which case the work needs to be queued on that
1432 * pool to guarantee non-reentrancy.
1433 */
1434 last_pool = get_work_pool(work);
1435 if (last_pool && last_pool != pwq->pool) {
1436 struct worker *worker;
18aa9eff 1437
c9178087 1438 spin_lock(&last_pool->lock);
18aa9eff 1439
c9178087 1440 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1441
c9178087
TH
1442 if (worker && worker->current_pwq->wq == wq) {
1443 pwq = worker->current_pwq;
8930caba 1444 } else {
c9178087
TH
1445 /* meh... not running there, queue here */
1446 spin_unlock(&last_pool->lock);
112202d9 1447 spin_lock(&pwq->pool->lock);
8930caba 1448 }
f3421797 1449 } else {
112202d9 1450 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1451 }
1452
9e8cd2f5
TH
1453 /*
1454 * pwq is determined and locked. For unbound pools, we could have
1455 * raced with pwq release and it could already be dead. If its
1456 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1457 * without another pwq replacing it in the numa_pwq_tbl or while
1458 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1459 * make forward-progress.
1460 */
1461 if (unlikely(!pwq->refcnt)) {
1462 if (wq->flags & WQ_UNBOUND) {
1463 spin_unlock(&pwq->pool->lock);
1464 cpu_relax();
1465 goto retry;
1466 }
1467 /* oops */
1468 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1469 wq->name, cpu);
1470 }
1471
112202d9
TH
1472 /* pwq determined, queue */
1473 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1474
f5b2552b 1475 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1476 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1477 return;
1478 }
1e19ffc6 1479
112202d9
TH
1480 pwq->nr_in_flight[pwq->work_color]++;
1481 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1482
112202d9 1483 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1484 trace_workqueue_activate_work(work);
112202d9
TH
1485 pwq->nr_active++;
1486 worklist = &pwq->pool->worklist;
82607adc
TH
1487 if (list_empty(worklist))
1488 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1489 } else {
1490 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1491 worklist = &pwq->delayed_works;
8a2e8e5d 1492 }
1e19ffc6 1493
112202d9 1494 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1495
112202d9 1496 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1497}
1498
0fcb78c2 1499/**
c1a220e7
ZR
1500 * queue_work_on - queue work on specific cpu
1501 * @cpu: CPU number to execute work on
0fcb78c2
REB
1502 * @wq: workqueue to use
1503 * @work: work to queue
1504 *
c1a220e7
ZR
1505 * We queue the work to a specific CPU, the caller must ensure it
1506 * can't go away.
d185af30
YB
1507 *
1508 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1509 */
d4283e93
TH
1510bool queue_work_on(int cpu, struct workqueue_struct *wq,
1511 struct work_struct *work)
1da177e4 1512{
d4283e93 1513 bool ret = false;
8930caba 1514 unsigned long flags;
ef1ca236 1515
8930caba 1516 local_irq_save(flags);
c1a220e7 1517
22df02bb 1518 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1519 __queue_work(cpu, wq, work);
d4283e93 1520 ret = true;
c1a220e7 1521 }
ef1ca236 1522
8930caba 1523 local_irq_restore(flags);
1da177e4
LT
1524 return ret;
1525}
ad7b1f84 1526EXPORT_SYMBOL(queue_work_on);
1da177e4 1527
8204e0c1
AD
1528/**
1529 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1530 * @node: NUMA node ID that we want to select a CPU from
1531 *
1532 * This function will attempt to find a "random" cpu available on a given
1533 * node. If there are no CPUs available on the given node it will return
1534 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1535 * available CPU if we need to schedule this work.
1536 */
1537static int workqueue_select_cpu_near(int node)
1538{
1539 int cpu;
1540
1541 /* No point in doing this if NUMA isn't enabled for workqueues */
1542 if (!wq_numa_enabled)
1543 return WORK_CPU_UNBOUND;
1544
1545 /* Delay binding to CPU if node is not valid or online */
1546 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1547 return WORK_CPU_UNBOUND;
1548
1549 /* Use local node/cpu if we are already there */
1550 cpu = raw_smp_processor_id();
1551 if (node == cpu_to_node(cpu))
1552 return cpu;
1553
1554 /* Use "random" otherwise know as "first" online CPU of node */
1555 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1556
1557 /* If CPU is valid return that, otherwise just defer */
1558 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1559}
1560
1561/**
1562 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1563 * @node: NUMA node that we are targeting the work for
1564 * @wq: workqueue to use
1565 * @work: work to queue
1566 *
1567 * We queue the work to a "random" CPU within a given NUMA node. The basic
1568 * idea here is to provide a way to somehow associate work with a given
1569 * NUMA node.
1570 *
1571 * This function will only make a best effort attempt at getting this onto
1572 * the right NUMA node. If no node is requested or the requested node is
1573 * offline then we just fall back to standard queue_work behavior.
1574 *
1575 * Currently the "random" CPU ends up being the first available CPU in the
1576 * intersection of cpu_online_mask and the cpumask of the node, unless we
1577 * are running on the node. In that case we just use the current CPU.
1578 *
1579 * Return: %false if @work was already on a queue, %true otherwise.
1580 */
1581bool queue_work_node(int node, struct workqueue_struct *wq,
1582 struct work_struct *work)
1583{
1584 unsigned long flags;
1585 bool ret = false;
1586
1587 /*
1588 * This current implementation is specific to unbound workqueues.
1589 * Specifically we only return the first available CPU for a given
1590 * node instead of cycling through individual CPUs within the node.
1591 *
1592 * If this is used with a per-cpu workqueue then the logic in
1593 * workqueue_select_cpu_near would need to be updated to allow for
1594 * some round robin type logic.
1595 */
1596 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1597
1598 local_irq_save(flags);
1599
1600 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1601 int cpu = workqueue_select_cpu_near(node);
1602
1603 __queue_work(cpu, wq, work);
1604 ret = true;
1605 }
1606
1607 local_irq_restore(flags);
1608 return ret;
1609}
1610EXPORT_SYMBOL_GPL(queue_work_node);
1611
8c20feb6 1612void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1613{
8c20feb6 1614 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1615
e0aecdd8 1616 /* should have been called from irqsafe timer with irq already off */
60c057bc 1617 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1618}
1438ade5 1619EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1620
7beb2edf
TH
1621static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1622 struct delayed_work *dwork, unsigned long delay)
1da177e4 1623{
7beb2edf
TH
1624 struct timer_list *timer = &dwork->timer;
1625 struct work_struct *work = &dwork->work;
7beb2edf 1626
637fdbae 1627 WARN_ON_ONCE(!wq);
841b86f3 1628 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1629 WARN_ON_ONCE(timer_pending(timer));
1630 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1631
8852aac2
TH
1632 /*
1633 * If @delay is 0, queue @dwork->work immediately. This is for
1634 * both optimization and correctness. The earliest @timer can
1635 * expire is on the closest next tick and delayed_work users depend
1636 * on that there's no such delay when @delay is 0.
1637 */
1638 if (!delay) {
1639 __queue_work(cpu, wq, &dwork->work);
1640 return;
1641 }
1642
60c057bc 1643 dwork->wq = wq;
1265057f 1644 dwork->cpu = cpu;
7beb2edf
TH
1645 timer->expires = jiffies + delay;
1646
041bd12e
TH
1647 if (unlikely(cpu != WORK_CPU_UNBOUND))
1648 add_timer_on(timer, cpu);
1649 else
1650 add_timer(timer);
1da177e4
LT
1651}
1652
0fcb78c2
REB
1653/**
1654 * queue_delayed_work_on - queue work on specific CPU after delay
1655 * @cpu: CPU number to execute work on
1656 * @wq: workqueue to use
af9997e4 1657 * @dwork: work to queue
0fcb78c2
REB
1658 * @delay: number of jiffies to wait before queueing
1659 *
d185af30 1660 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1661 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1662 * execution.
0fcb78c2 1663 */
d4283e93
TH
1664bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1665 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1666{
52bad64d 1667 struct work_struct *work = &dwork->work;
d4283e93 1668 bool ret = false;
8930caba 1669 unsigned long flags;
7a6bc1cd 1670
8930caba
TH
1671 /* read the comment in __queue_work() */
1672 local_irq_save(flags);
7a6bc1cd 1673
22df02bb 1674 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1675 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1676 ret = true;
7a6bc1cd 1677 }
8a3e77cc 1678
8930caba 1679 local_irq_restore(flags);
7a6bc1cd
VP
1680 return ret;
1681}
ad7b1f84 1682EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1683
8376fe22
TH
1684/**
1685 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1686 * @cpu: CPU number to execute work on
1687 * @wq: workqueue to use
1688 * @dwork: work to queue
1689 * @delay: number of jiffies to wait before queueing
1690 *
1691 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1692 * modify @dwork's timer so that it expires after @delay. If @delay is
1693 * zero, @work is guaranteed to be scheduled immediately regardless of its
1694 * current state.
1695 *
d185af30 1696 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1697 * pending and its timer was modified.
1698 *
e0aecdd8 1699 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1700 * See try_to_grab_pending() for details.
1701 */
1702bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1703 struct delayed_work *dwork, unsigned long delay)
1704{
1705 unsigned long flags;
1706 int ret;
c7fc77f7 1707
8376fe22
TH
1708 do {
1709 ret = try_to_grab_pending(&dwork->work, true, &flags);
1710 } while (unlikely(ret == -EAGAIN));
63bc0362 1711
8376fe22
TH
1712 if (likely(ret >= 0)) {
1713 __queue_delayed_work(cpu, wq, dwork, delay);
1714 local_irq_restore(flags);
7a6bc1cd 1715 }
8376fe22
TH
1716
1717 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1718 return ret;
1719}
8376fe22
TH
1720EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1721
05f0fe6b
TH
1722static void rcu_work_rcufn(struct rcu_head *rcu)
1723{
1724 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1725
1726 /* read the comment in __queue_work() */
1727 local_irq_disable();
1728 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1729 local_irq_enable();
1730}
1731
1732/**
1733 * queue_rcu_work - queue work after a RCU grace period
1734 * @wq: workqueue to use
1735 * @rwork: work to queue
1736 *
1737 * Return: %false if @rwork was already pending, %true otherwise. Note
1738 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1739 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1740 * execution may happen before a full RCU grace period has passed.
1741 */
1742bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1743{
1744 struct work_struct *work = &rwork->work;
1745
1746 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1747 rwork->wq = wq;
1748 call_rcu(&rwork->rcu, rcu_work_rcufn);
1749 return true;
1750 }
1751
1752 return false;
1753}
1754EXPORT_SYMBOL(queue_rcu_work);
1755
c8e55f36
TH
1756/**
1757 * worker_enter_idle - enter idle state
1758 * @worker: worker which is entering idle state
1759 *
1760 * @worker is entering idle state. Update stats and idle timer if
1761 * necessary.
1762 *
1763 * LOCKING:
d565ed63 1764 * spin_lock_irq(pool->lock).
c8e55f36
TH
1765 */
1766static void worker_enter_idle(struct worker *worker)
1da177e4 1767{
bd7bdd43 1768 struct worker_pool *pool = worker->pool;
c8e55f36 1769
6183c009
TH
1770 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1771 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1772 (worker->hentry.next || worker->hentry.pprev)))
1773 return;
c8e55f36 1774
051e1850 1775 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1776 worker->flags |= WORKER_IDLE;
bd7bdd43 1777 pool->nr_idle++;
e22bee78 1778 worker->last_active = jiffies;
c8e55f36
TH
1779
1780 /* idle_list is LIFO */
bd7bdd43 1781 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1782
628c78e7
TH
1783 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1784 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1785
544ecf31 1786 /*
e8b3f8db 1787 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1788 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1789 * nr_running, the warning may trigger spuriously. Check iff
1790 * unbind is not in progress.
544ecf31 1791 */
24647570 1792 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1793 pool->nr_workers == pool->nr_idle &&
e19e397a 1794 atomic_read(&pool->nr_running));
c8e55f36
TH
1795}
1796
1797/**
1798 * worker_leave_idle - leave idle state
1799 * @worker: worker which is leaving idle state
1800 *
1801 * @worker is leaving idle state. Update stats.
1802 *
1803 * LOCKING:
d565ed63 1804 * spin_lock_irq(pool->lock).
c8e55f36
TH
1805 */
1806static void worker_leave_idle(struct worker *worker)
1807{
bd7bdd43 1808 struct worker_pool *pool = worker->pool;
c8e55f36 1809
6183c009
TH
1810 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1811 return;
d302f017 1812 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1813 pool->nr_idle--;
c8e55f36
TH
1814 list_del_init(&worker->entry);
1815}
1816
f7537df5 1817static struct worker *alloc_worker(int node)
c34056a3
TH
1818{
1819 struct worker *worker;
1820
f7537df5 1821 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1822 if (worker) {
1823 INIT_LIST_HEAD(&worker->entry);
affee4b2 1824 INIT_LIST_HEAD(&worker->scheduled);
da028469 1825 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1826 /* on creation a worker is in !idle && prep state */
1827 worker->flags = WORKER_PREP;
c8e55f36 1828 }
c34056a3
TH
1829 return worker;
1830}
1831
4736cbf7
LJ
1832/**
1833 * worker_attach_to_pool() - attach a worker to a pool
1834 * @worker: worker to be attached
1835 * @pool: the target pool
1836 *
1837 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1838 * cpu-binding of @worker are kept coordinated with the pool across
1839 * cpu-[un]hotplugs.
1840 */
1841static void worker_attach_to_pool(struct worker *worker,
1842 struct worker_pool *pool)
1843{
1258fae7 1844 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1845
1846 /*
1847 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1848 * online CPUs. It'll be re-applied when any of the CPUs come up.
1849 */
1850 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1851
1852 /*
1258fae7
TH
1853 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854 * stable across this function. See the comments above the flag
1855 * definition for details.
4736cbf7
LJ
1856 */
1857 if (pool->flags & POOL_DISASSOCIATED)
1858 worker->flags |= WORKER_UNBOUND;
1859
1860 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1861 worker->pool = pool;
4736cbf7 1862
1258fae7 1863 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1864}
1865
60f5a4bc
LJ
1866/**
1867 * worker_detach_from_pool() - detach a worker from its pool
1868 * @worker: worker which is attached to its pool
60f5a4bc 1869 *
4736cbf7
LJ
1870 * Undo the attaching which had been done in worker_attach_to_pool(). The
1871 * caller worker shouldn't access to the pool after detached except it has
1872 * other reference to the pool.
60f5a4bc 1873 */
a2d812a2 1874static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1875{
a2d812a2 1876 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1877 struct completion *detach_completion = NULL;
1878
1258fae7 1879 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1880
da028469 1881 list_del(&worker->node);
a2d812a2
TH
1882 worker->pool = NULL;
1883
da028469 1884 if (list_empty(&pool->workers))
60f5a4bc 1885 detach_completion = pool->detach_completion;
1258fae7 1886 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1887
b62c0751
LJ
1888 /* clear leftover flags without pool->lock after it is detached */
1889 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1890
60f5a4bc
LJ
1891 if (detach_completion)
1892 complete(detach_completion);
1893}
1894
c34056a3
TH
1895/**
1896 * create_worker - create a new workqueue worker
63d95a91 1897 * @pool: pool the new worker will belong to
c34056a3 1898 *
051e1850 1899 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1900 *
1901 * CONTEXT:
1902 * Might sleep. Does GFP_KERNEL allocations.
1903 *
d185af30 1904 * Return:
c34056a3
TH
1905 * Pointer to the newly created worker.
1906 */
bc2ae0f5 1907static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1908{
c34056a3 1909 struct worker *worker = NULL;
f3421797 1910 int id = -1;
e3c916a4 1911 char id_buf[16];
c34056a3 1912
7cda9aae
LJ
1913 /* ID is needed to determine kthread name */
1914 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1915 if (id < 0)
1916 goto fail;
c34056a3 1917
f7537df5 1918 worker = alloc_worker(pool->node);
c34056a3
TH
1919 if (!worker)
1920 goto fail;
1921
c34056a3
TH
1922 worker->id = id;
1923
29c91e99 1924 if (pool->cpu >= 0)
e3c916a4
TH
1925 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1926 pool->attrs->nice < 0 ? "H" : "");
f3421797 1927 else
e3c916a4
TH
1928 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1929
f3f90ad4 1930 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1931 "kworker/%s", id_buf);
c34056a3
TH
1932 if (IS_ERR(worker->task))
1933 goto fail;
1934
91151228 1935 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1936 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1937
da028469 1938 /* successful, attach the worker to the pool */
4736cbf7 1939 worker_attach_to_pool(worker, pool);
822d8405 1940
051e1850
LJ
1941 /* start the newly created worker */
1942 spin_lock_irq(&pool->lock);
1943 worker->pool->nr_workers++;
1944 worker_enter_idle(worker);
1945 wake_up_process(worker->task);
1946 spin_unlock_irq(&pool->lock);
1947
c34056a3 1948 return worker;
822d8405 1949
c34056a3 1950fail:
9625ab17 1951 if (id >= 0)
7cda9aae 1952 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1953 kfree(worker);
1954 return NULL;
1955}
1956
c34056a3
TH
1957/**
1958 * destroy_worker - destroy a workqueue worker
1959 * @worker: worker to be destroyed
1960 *
73eb7fe7
LJ
1961 * Destroy @worker and adjust @pool stats accordingly. The worker should
1962 * be idle.
c8e55f36
TH
1963 *
1964 * CONTEXT:
60f5a4bc 1965 * spin_lock_irq(pool->lock).
c34056a3
TH
1966 */
1967static void destroy_worker(struct worker *worker)
1968{
bd7bdd43 1969 struct worker_pool *pool = worker->pool;
c34056a3 1970
cd549687
TH
1971 lockdep_assert_held(&pool->lock);
1972
c34056a3 1973 /* sanity check frenzy */
6183c009 1974 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1975 WARN_ON(!list_empty(&worker->scheduled)) ||
1976 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1977 return;
c34056a3 1978
73eb7fe7
LJ
1979 pool->nr_workers--;
1980 pool->nr_idle--;
5bdfff96 1981
c8e55f36 1982 list_del_init(&worker->entry);
cb444766 1983 worker->flags |= WORKER_DIE;
60f5a4bc 1984 wake_up_process(worker->task);
c34056a3
TH
1985}
1986
32a6c723 1987static void idle_worker_timeout(struct timer_list *t)
e22bee78 1988{
32a6c723 1989 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1990
d565ed63 1991 spin_lock_irq(&pool->lock);
e22bee78 1992
3347fc9f 1993 while (too_many_workers(pool)) {
e22bee78
TH
1994 struct worker *worker;
1995 unsigned long expires;
1996
1997 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1998 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1999 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2000
3347fc9f 2001 if (time_before(jiffies, expires)) {
63d95a91 2002 mod_timer(&pool->idle_timer, expires);
3347fc9f 2003 break;
d5abe669 2004 }
3347fc9f
LJ
2005
2006 destroy_worker(worker);
e22bee78
TH
2007 }
2008
d565ed63 2009 spin_unlock_irq(&pool->lock);
e22bee78 2010}
d5abe669 2011
493a1724 2012static void send_mayday(struct work_struct *work)
e22bee78 2013{
112202d9
TH
2014 struct pool_workqueue *pwq = get_work_pwq(work);
2015 struct workqueue_struct *wq = pwq->wq;
493a1724 2016
2e109a28 2017 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2018
493008a8 2019 if (!wq->rescuer)
493a1724 2020 return;
e22bee78
TH
2021
2022 /* mayday mayday mayday */
493a1724 2023 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2024 /*
2025 * If @pwq is for an unbound wq, its base ref may be put at
2026 * any time due to an attribute change. Pin @pwq until the
2027 * rescuer is done with it.
2028 */
2029 get_pwq(pwq);
493a1724 2030 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2031 wake_up_process(wq->rescuer->task);
493a1724 2032 }
e22bee78
TH
2033}
2034
32a6c723 2035static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2036{
32a6c723 2037 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2038 struct work_struct *work;
2039
b2d82909
TH
2040 spin_lock_irq(&pool->lock);
2041 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2042
63d95a91 2043 if (need_to_create_worker(pool)) {
e22bee78
TH
2044 /*
2045 * We've been trying to create a new worker but
2046 * haven't been successful. We might be hitting an
2047 * allocation deadlock. Send distress signals to
2048 * rescuers.
2049 */
63d95a91 2050 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2051 send_mayday(work);
1da177e4 2052 }
e22bee78 2053
b2d82909
TH
2054 spin_unlock(&wq_mayday_lock);
2055 spin_unlock_irq(&pool->lock);
e22bee78 2056
63d95a91 2057 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2058}
2059
e22bee78
TH
2060/**
2061 * maybe_create_worker - create a new worker if necessary
63d95a91 2062 * @pool: pool to create a new worker for
e22bee78 2063 *
63d95a91 2064 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2065 * have at least one idle worker on return from this function. If
2066 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2067 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2068 * possible allocation deadlock.
2069 *
c5aa87bb
TH
2070 * On return, need_to_create_worker() is guaranteed to be %false and
2071 * may_start_working() %true.
e22bee78
TH
2072 *
2073 * LOCKING:
d565ed63 2074 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2075 * multiple times. Does GFP_KERNEL allocations. Called only from
2076 * manager.
e22bee78 2077 */
29187a9e 2078static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2079__releases(&pool->lock)
2080__acquires(&pool->lock)
1da177e4 2081{
e22bee78 2082restart:
d565ed63 2083 spin_unlock_irq(&pool->lock);
9f9c2364 2084
e22bee78 2085 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2086 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2087
2088 while (true) {
051e1850 2089 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2090 break;
1da177e4 2091
e212f361 2092 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2093
63d95a91 2094 if (!need_to_create_worker(pool))
e22bee78
TH
2095 break;
2096 }
2097
63d95a91 2098 del_timer_sync(&pool->mayday_timer);
d565ed63 2099 spin_lock_irq(&pool->lock);
051e1850
LJ
2100 /*
2101 * This is necessary even after a new worker was just successfully
2102 * created as @pool->lock was dropped and the new worker might have
2103 * already become busy.
2104 */
63d95a91 2105 if (need_to_create_worker(pool))
e22bee78 2106 goto restart;
e22bee78
TH
2107}
2108
73f53c4a 2109/**
e22bee78
TH
2110 * manage_workers - manage worker pool
2111 * @worker: self
73f53c4a 2112 *
706026c2 2113 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2114 * to. At any given time, there can be only zero or one manager per
706026c2 2115 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2116 *
2117 * The caller can safely start processing works on false return. On
2118 * true return, it's guaranteed that need_to_create_worker() is false
2119 * and may_start_working() is true.
73f53c4a
TH
2120 *
2121 * CONTEXT:
d565ed63 2122 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2123 * multiple times. Does GFP_KERNEL allocations.
2124 *
d185af30 2125 * Return:
29187a9e
TH
2126 * %false if the pool doesn't need management and the caller can safely
2127 * start processing works, %true if management function was performed and
2128 * the conditions that the caller verified before calling the function may
2129 * no longer be true.
73f53c4a 2130 */
e22bee78 2131static bool manage_workers(struct worker *worker)
73f53c4a 2132{
63d95a91 2133 struct worker_pool *pool = worker->pool;
73f53c4a 2134
692b4825 2135 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2136 return false;
692b4825
TH
2137
2138 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2139 pool->manager = worker;
1e19ffc6 2140
29187a9e 2141 maybe_create_worker(pool);
e22bee78 2142
2607d7a6 2143 pool->manager = NULL;
692b4825
TH
2144 pool->flags &= ~POOL_MANAGER_ACTIVE;
2145 wake_up(&wq_manager_wait);
29187a9e 2146 return true;
73f53c4a
TH
2147}
2148
a62428c0
TH
2149/**
2150 * process_one_work - process single work
c34056a3 2151 * @worker: self
a62428c0
TH
2152 * @work: work to process
2153 *
2154 * Process @work. This function contains all the logics necessary to
2155 * process a single work including synchronization against and
2156 * interaction with other workers on the same cpu, queueing and
2157 * flushing. As long as context requirement is met, any worker can
2158 * call this function to process a work.
2159 *
2160 * CONTEXT:
d565ed63 2161 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2162 */
c34056a3 2163static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2164__releases(&pool->lock)
2165__acquires(&pool->lock)
a62428c0 2166{
112202d9 2167 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2168 struct worker_pool *pool = worker->pool;
112202d9 2169 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2170 int work_color;
7e11629d 2171 struct worker *collision;
a62428c0
TH
2172#ifdef CONFIG_LOCKDEP
2173 /*
2174 * It is permissible to free the struct work_struct from
2175 * inside the function that is called from it, this we need to
2176 * take into account for lockdep too. To avoid bogus "held
2177 * lock freed" warnings as well as problems when looking into
2178 * work->lockdep_map, make a copy and use that here.
2179 */
4d82a1de
PZ
2180 struct lockdep_map lockdep_map;
2181
2182 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2183#endif
807407c0 2184 /* ensure we're on the correct CPU */
85327af6 2185 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2186 raw_smp_processor_id() != pool->cpu);
25511a47 2187
7e11629d
TH
2188 /*
2189 * A single work shouldn't be executed concurrently by
2190 * multiple workers on a single cpu. Check whether anyone is
2191 * already processing the work. If so, defer the work to the
2192 * currently executing one.
2193 */
c9e7cf27 2194 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2195 if (unlikely(collision)) {
2196 move_linked_works(work, &collision->scheduled, NULL);
2197 return;
2198 }
2199
8930caba 2200 /* claim and dequeue */
a62428c0 2201 debug_work_deactivate(work);
c9e7cf27 2202 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2203 worker->current_work = work;
a2c1c57b 2204 worker->current_func = work->func;
112202d9 2205 worker->current_pwq = pwq;
73f53c4a 2206 work_color = get_work_color(work);
7a22ad75 2207
8bf89593
TH
2208 /*
2209 * Record wq name for cmdline and debug reporting, may get
2210 * overridden through set_worker_desc().
2211 */
2212 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2213
a62428c0
TH
2214 list_del_init(&work->entry);
2215
fb0e7beb 2216 /*
228f1d00
LJ
2217 * CPU intensive works don't participate in concurrency management.
2218 * They're the scheduler's responsibility. This takes @worker out
2219 * of concurrency management and the next code block will chain
2220 * execution of the pending work items.
fb0e7beb
TH
2221 */
2222 if (unlikely(cpu_intensive))
228f1d00 2223 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2224
974271c4 2225 /*
a489a03e
LJ
2226 * Wake up another worker if necessary. The condition is always
2227 * false for normal per-cpu workers since nr_running would always
2228 * be >= 1 at this point. This is used to chain execution of the
2229 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2230 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2231 */
a489a03e 2232 if (need_more_worker(pool))
63d95a91 2233 wake_up_worker(pool);
974271c4 2234
8930caba 2235 /*
7c3eed5c 2236 * Record the last pool and clear PENDING which should be the last
d565ed63 2237 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2238 * PENDING and queued state changes happen together while IRQ is
2239 * disabled.
8930caba 2240 */
7c3eed5c 2241 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2242
d565ed63 2243 spin_unlock_irq(&pool->lock);
a62428c0 2244
a1d14934 2245 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2246 lock_map_acquire(&lockdep_map);
e6f3faa7 2247 /*
f52be570
PZ
2248 * Strictly speaking we should mark the invariant state without holding
2249 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2250 *
2251 * However, that would result in:
2252 *
2253 * A(W1)
2254 * WFC(C)
2255 * A(W1)
2256 * C(C)
2257 *
2258 * Which would create W1->C->W1 dependencies, even though there is no
2259 * actual deadlock possible. There are two solutions, using a
2260 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2261 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2262 * these locks.
2263 *
2264 * AFAICT there is no possible deadlock scenario between the
2265 * flush_work() and complete() primitives (except for single-threaded
2266 * workqueues), so hiding them isn't a problem.
2267 */
f52be570 2268 lockdep_invariant_state(true);
e36c886a 2269 trace_workqueue_execute_start(work);
a2c1c57b 2270 worker->current_func(work);
e36c886a
AV
2271 /*
2272 * While we must be careful to not use "work" after this, the trace
2273 * point will only record its address.
2274 */
2275 trace_workqueue_execute_end(work);
a62428c0 2276 lock_map_release(&lockdep_map);
112202d9 2277 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2278
2279 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2280 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2281 " last function: %pf\n",
a2c1c57b
TH
2282 current->comm, preempt_count(), task_pid_nr(current),
2283 worker->current_func);
a62428c0
TH
2284 debug_show_held_locks(current);
2285 dump_stack();
2286 }
2287
b22ce278
TH
2288 /*
2289 * The following prevents a kworker from hogging CPU on !PREEMPT
2290 * kernels, where a requeueing work item waiting for something to
2291 * happen could deadlock with stop_machine as such work item could
2292 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2293 * stop_machine. At the same time, report a quiescent RCU state so
2294 * the same condition doesn't freeze RCU.
b22ce278 2295 */
a7e6425e 2296 cond_resched();
b22ce278 2297
d565ed63 2298 spin_lock_irq(&pool->lock);
a62428c0 2299
fb0e7beb
TH
2300 /* clear cpu intensive status */
2301 if (unlikely(cpu_intensive))
2302 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2303
1b69ac6b
JW
2304 /* tag the worker for identification in schedule() */
2305 worker->last_func = worker->current_func;
2306
a62428c0 2307 /* we're done with it, release */
42f8570f 2308 hash_del(&worker->hentry);
c34056a3 2309 worker->current_work = NULL;
a2c1c57b 2310 worker->current_func = NULL;
112202d9
TH
2311 worker->current_pwq = NULL;
2312 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2313}
2314
affee4b2
TH
2315/**
2316 * process_scheduled_works - process scheduled works
2317 * @worker: self
2318 *
2319 * Process all scheduled works. Please note that the scheduled list
2320 * may change while processing a work, so this function repeatedly
2321 * fetches a work from the top and executes it.
2322 *
2323 * CONTEXT:
d565ed63 2324 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2325 * multiple times.
2326 */
2327static void process_scheduled_works(struct worker *worker)
1da177e4 2328{
affee4b2
TH
2329 while (!list_empty(&worker->scheduled)) {
2330 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2331 struct work_struct, entry);
c34056a3 2332 process_one_work(worker, work);
1da177e4 2333 }
1da177e4
LT
2334}
2335
197f6acc
TH
2336static void set_pf_worker(bool val)
2337{
2338 mutex_lock(&wq_pool_attach_mutex);
2339 if (val)
2340 current->flags |= PF_WQ_WORKER;
2341 else
2342 current->flags &= ~PF_WQ_WORKER;
2343 mutex_unlock(&wq_pool_attach_mutex);
2344}
2345
4690c4ab
TH
2346/**
2347 * worker_thread - the worker thread function
c34056a3 2348 * @__worker: self
4690c4ab 2349 *
c5aa87bb
TH
2350 * The worker thread function. All workers belong to a worker_pool -
2351 * either a per-cpu one or dynamic unbound one. These workers process all
2352 * work items regardless of their specific target workqueue. The only
2353 * exception is work items which belong to workqueues with a rescuer which
2354 * will be explained in rescuer_thread().
d185af30
YB
2355 *
2356 * Return: 0
4690c4ab 2357 */
c34056a3 2358static int worker_thread(void *__worker)
1da177e4 2359{
c34056a3 2360 struct worker *worker = __worker;
bd7bdd43 2361 struct worker_pool *pool = worker->pool;
1da177e4 2362
e22bee78 2363 /* tell the scheduler that this is a workqueue worker */
197f6acc 2364 set_pf_worker(true);
c8e55f36 2365woke_up:
d565ed63 2366 spin_lock_irq(&pool->lock);
1da177e4 2367
a9ab775b
TH
2368 /* am I supposed to die? */
2369 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2370 spin_unlock_irq(&pool->lock);
a9ab775b 2371 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2372 set_pf_worker(false);
60f5a4bc
LJ
2373
2374 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2375 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2376 worker_detach_from_pool(worker);
60f5a4bc 2377 kfree(worker);
a9ab775b 2378 return 0;
c8e55f36 2379 }
affee4b2 2380
c8e55f36 2381 worker_leave_idle(worker);
db7bccf4 2382recheck:
e22bee78 2383 /* no more worker necessary? */
63d95a91 2384 if (!need_more_worker(pool))
e22bee78
TH
2385 goto sleep;
2386
2387 /* do we need to manage? */
63d95a91 2388 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2389 goto recheck;
2390
c8e55f36
TH
2391 /*
2392 * ->scheduled list can only be filled while a worker is
2393 * preparing to process a work or actually processing it.
2394 * Make sure nobody diddled with it while I was sleeping.
2395 */
6183c009 2396 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2397
e22bee78 2398 /*
a9ab775b
TH
2399 * Finish PREP stage. We're guaranteed to have at least one idle
2400 * worker or that someone else has already assumed the manager
2401 * role. This is where @worker starts participating in concurrency
2402 * management if applicable and concurrency management is restored
2403 * after being rebound. See rebind_workers() for details.
e22bee78 2404 */
a9ab775b 2405 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2406
2407 do {
c8e55f36 2408 struct work_struct *work =
bd7bdd43 2409 list_first_entry(&pool->worklist,
c8e55f36
TH
2410 struct work_struct, entry);
2411
82607adc
TH
2412 pool->watchdog_ts = jiffies;
2413
c8e55f36
TH
2414 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2415 /* optimization path, not strictly necessary */
2416 process_one_work(worker, work);
2417 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2418 process_scheduled_works(worker);
c8e55f36
TH
2419 } else {
2420 move_linked_works(work, &worker->scheduled, NULL);
2421 process_scheduled_works(worker);
affee4b2 2422 }
63d95a91 2423 } while (keep_working(pool));
e22bee78 2424
228f1d00 2425 worker_set_flags(worker, WORKER_PREP);
d313dd85 2426sleep:
c8e55f36 2427 /*
d565ed63
TH
2428 * pool->lock is held and there's no work to process and no need to
2429 * manage, sleep. Workers are woken up only while holding
2430 * pool->lock or from local cpu, so setting the current state
2431 * before releasing pool->lock is enough to prevent losing any
2432 * event.
c8e55f36
TH
2433 */
2434 worker_enter_idle(worker);
c5a94a61 2435 __set_current_state(TASK_IDLE);
d565ed63 2436 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2437 schedule();
2438 goto woke_up;
1da177e4
LT
2439}
2440
e22bee78
TH
2441/**
2442 * rescuer_thread - the rescuer thread function
111c225a 2443 * @__rescuer: self
e22bee78
TH
2444 *
2445 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2446 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2447 *
706026c2 2448 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2449 * worker which uses GFP_KERNEL allocation which has slight chance of
2450 * developing into deadlock if some works currently on the same queue
2451 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2452 * the problem rescuer solves.
2453 *
706026c2
TH
2454 * When such condition is possible, the pool summons rescuers of all
2455 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2456 * those works so that forward progress can be guaranteed.
2457 *
2458 * This should happen rarely.
d185af30
YB
2459 *
2460 * Return: 0
e22bee78 2461 */
111c225a 2462static int rescuer_thread(void *__rescuer)
e22bee78 2463{
111c225a
TH
2464 struct worker *rescuer = __rescuer;
2465 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2466 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2467 bool should_stop;
e22bee78
TH
2468
2469 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2470
2471 /*
2472 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2473 * doesn't participate in concurrency management.
2474 */
197f6acc 2475 set_pf_worker(true);
e22bee78 2476repeat:
c5a94a61 2477 set_current_state(TASK_IDLE);
e22bee78 2478
4d595b86
LJ
2479 /*
2480 * By the time the rescuer is requested to stop, the workqueue
2481 * shouldn't have any work pending, but @wq->maydays may still have
2482 * pwq(s) queued. This can happen by non-rescuer workers consuming
2483 * all the work items before the rescuer got to them. Go through
2484 * @wq->maydays processing before acting on should_stop so that the
2485 * list is always empty on exit.
2486 */
2487 should_stop = kthread_should_stop();
e22bee78 2488
493a1724 2489 /* see whether any pwq is asking for help */
2e109a28 2490 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2491
2492 while (!list_empty(&wq->maydays)) {
2493 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2494 struct pool_workqueue, mayday_node);
112202d9 2495 struct worker_pool *pool = pwq->pool;
e22bee78 2496 struct work_struct *work, *n;
82607adc 2497 bool first = true;
e22bee78
TH
2498
2499 __set_current_state(TASK_RUNNING);
493a1724
TH
2500 list_del_init(&pwq->mayday_node);
2501
2e109a28 2502 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2503
51697d39
LJ
2504 worker_attach_to_pool(rescuer, pool);
2505
2506 spin_lock_irq(&pool->lock);
e22bee78
TH
2507
2508 /*
2509 * Slurp in all works issued via this workqueue and
2510 * process'em.
2511 */
0479c8c5 2512 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2513 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2514 if (get_work_pwq(work) == pwq) {
2515 if (first)
2516 pool->watchdog_ts = jiffies;
e22bee78 2517 move_linked_works(work, scheduled, &n);
82607adc
TH
2518 }
2519 first = false;
2520 }
e22bee78 2521
008847f6
N
2522 if (!list_empty(scheduled)) {
2523 process_scheduled_works(rescuer);
2524
2525 /*
2526 * The above execution of rescued work items could
2527 * have created more to rescue through
2528 * pwq_activate_first_delayed() or chained
2529 * queueing. Let's put @pwq back on mayday list so
2530 * that such back-to-back work items, which may be
2531 * being used to relieve memory pressure, don't
2532 * incur MAYDAY_INTERVAL delay inbetween.
2533 */
2534 if (need_to_create_worker(pool)) {
2535 spin_lock(&wq_mayday_lock);
2536 get_pwq(pwq);
2537 list_move_tail(&pwq->mayday_node, &wq->maydays);
2538 spin_unlock(&wq_mayday_lock);
2539 }
2540 }
7576958a 2541
77668c8b
LJ
2542 /*
2543 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2544 * go away while we're still attached to it.
77668c8b
LJ
2545 */
2546 put_pwq(pwq);
2547
7576958a 2548 /*
d8ca83e6 2549 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2550 * regular worker; otherwise, we end up with 0 concurrency
2551 * and stalling the execution.
2552 */
d8ca83e6 2553 if (need_more_worker(pool))
63d95a91 2554 wake_up_worker(pool);
7576958a 2555
13b1d625
LJ
2556 spin_unlock_irq(&pool->lock);
2557
a2d812a2 2558 worker_detach_from_pool(rescuer);
13b1d625
LJ
2559
2560 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2561 }
2562
2e109a28 2563 spin_unlock_irq(&wq_mayday_lock);
493a1724 2564
4d595b86
LJ
2565 if (should_stop) {
2566 __set_current_state(TASK_RUNNING);
197f6acc 2567 set_pf_worker(false);
4d595b86
LJ
2568 return 0;
2569 }
2570
111c225a
TH
2571 /* rescuers should never participate in concurrency management */
2572 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2573 schedule();
2574 goto repeat;
1da177e4
LT
2575}
2576
fca839c0
TH
2577/**
2578 * check_flush_dependency - check for flush dependency sanity
2579 * @target_wq: workqueue being flushed
2580 * @target_work: work item being flushed (NULL for workqueue flushes)
2581 *
2582 * %current is trying to flush the whole @target_wq or @target_work on it.
2583 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2584 * reclaiming memory or running on a workqueue which doesn't have
2585 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2586 * a deadlock.
2587 */
2588static void check_flush_dependency(struct workqueue_struct *target_wq,
2589 struct work_struct *target_work)
2590{
2591 work_func_t target_func = target_work ? target_work->func : NULL;
2592 struct worker *worker;
2593
2594 if (target_wq->flags & WQ_MEM_RECLAIM)
2595 return;
2596
2597 worker = current_wq_worker();
2598
2599 WARN_ONCE(current->flags & PF_MEMALLOC,
2600 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2601 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2602 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2603 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2604 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2605 worker->current_pwq->wq->name, worker->current_func,
2606 target_wq->name, target_func);
2607}
2608
fc2e4d70
ON
2609struct wq_barrier {
2610 struct work_struct work;
2611 struct completion done;
2607d7a6 2612 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2613};
2614
2615static void wq_barrier_func(struct work_struct *work)
2616{
2617 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2618 complete(&barr->done);
2619}
2620
4690c4ab
TH
2621/**
2622 * insert_wq_barrier - insert a barrier work
112202d9 2623 * @pwq: pwq to insert barrier into
4690c4ab 2624 * @barr: wq_barrier to insert
affee4b2
TH
2625 * @target: target work to attach @barr to
2626 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2627 *
affee4b2
TH
2628 * @barr is linked to @target such that @barr is completed only after
2629 * @target finishes execution. Please note that the ordering
2630 * guarantee is observed only with respect to @target and on the local
2631 * cpu.
2632 *
2633 * Currently, a queued barrier can't be canceled. This is because
2634 * try_to_grab_pending() can't determine whether the work to be
2635 * grabbed is at the head of the queue and thus can't clear LINKED
2636 * flag of the previous work while there must be a valid next work
2637 * after a work with LINKED flag set.
2638 *
2639 * Note that when @worker is non-NULL, @target may be modified
112202d9 2640 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2641 *
2642 * CONTEXT:
d565ed63 2643 * spin_lock_irq(pool->lock).
4690c4ab 2644 */
112202d9 2645static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2646 struct wq_barrier *barr,
2647 struct work_struct *target, struct worker *worker)
fc2e4d70 2648{
affee4b2
TH
2649 struct list_head *head;
2650 unsigned int linked = 0;
2651
dc186ad7 2652 /*
d565ed63 2653 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2654 * as we know for sure that this will not trigger any of the
2655 * checks and call back into the fixup functions where we
2656 * might deadlock.
2657 */
ca1cab37 2658 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2659 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2660
fd1a5b04
BP
2661 init_completion_map(&barr->done, &target->lockdep_map);
2662
2607d7a6 2663 barr->task = current;
83c22520 2664
affee4b2
TH
2665 /*
2666 * If @target is currently being executed, schedule the
2667 * barrier to the worker; otherwise, put it after @target.
2668 */
2669 if (worker)
2670 head = worker->scheduled.next;
2671 else {
2672 unsigned long *bits = work_data_bits(target);
2673
2674 head = target->entry.next;
2675 /* there can already be other linked works, inherit and set */
2676 linked = *bits & WORK_STRUCT_LINKED;
2677 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2678 }
2679
dc186ad7 2680 debug_work_activate(&barr->work);
112202d9 2681 insert_work(pwq, &barr->work, head,
affee4b2 2682 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2683}
2684
73f53c4a 2685/**
112202d9 2686 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2687 * @wq: workqueue being flushed
2688 * @flush_color: new flush color, < 0 for no-op
2689 * @work_color: new work color, < 0 for no-op
2690 *
112202d9 2691 * Prepare pwqs for workqueue flushing.
73f53c4a 2692 *
112202d9
TH
2693 * If @flush_color is non-negative, flush_color on all pwqs should be
2694 * -1. If no pwq has in-flight commands at the specified color, all
2695 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2696 * has in flight commands, its pwq->flush_color is set to
2697 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2698 * wakeup logic is armed and %true is returned.
2699 *
2700 * The caller should have initialized @wq->first_flusher prior to
2701 * calling this function with non-negative @flush_color. If
2702 * @flush_color is negative, no flush color update is done and %false
2703 * is returned.
2704 *
112202d9 2705 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2706 * work_color which is previous to @work_color and all will be
2707 * advanced to @work_color.
2708 *
2709 * CONTEXT:
3c25a55d 2710 * mutex_lock(wq->mutex).
73f53c4a 2711 *
d185af30 2712 * Return:
73f53c4a
TH
2713 * %true if @flush_color >= 0 and there's something to flush. %false
2714 * otherwise.
2715 */
112202d9 2716static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2717 int flush_color, int work_color)
1da177e4 2718{
73f53c4a 2719 bool wait = false;
49e3cf44 2720 struct pool_workqueue *pwq;
1da177e4 2721
73f53c4a 2722 if (flush_color >= 0) {
6183c009 2723 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2724 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2725 }
2355b70f 2726
49e3cf44 2727 for_each_pwq(pwq, wq) {
112202d9 2728 struct worker_pool *pool = pwq->pool;
fc2e4d70 2729
b09f4fd3 2730 spin_lock_irq(&pool->lock);
83c22520 2731
73f53c4a 2732 if (flush_color >= 0) {
6183c009 2733 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2734
112202d9
TH
2735 if (pwq->nr_in_flight[flush_color]) {
2736 pwq->flush_color = flush_color;
2737 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2738 wait = true;
2739 }
2740 }
1da177e4 2741
73f53c4a 2742 if (work_color >= 0) {
6183c009 2743 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2744 pwq->work_color = work_color;
73f53c4a 2745 }
1da177e4 2746
b09f4fd3 2747 spin_unlock_irq(&pool->lock);
1da177e4 2748 }
2355b70f 2749
112202d9 2750 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2751 complete(&wq->first_flusher->done);
14441960 2752
73f53c4a 2753 return wait;
1da177e4
LT
2754}
2755
0fcb78c2 2756/**
1da177e4 2757 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2758 * @wq: workqueue to flush
1da177e4 2759 *
c5aa87bb
TH
2760 * This function sleeps until all work items which were queued on entry
2761 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2762 */
7ad5b3a5 2763void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2764{
73f53c4a
TH
2765 struct wq_flusher this_flusher = {
2766 .list = LIST_HEAD_INIT(this_flusher.list),
2767 .flush_color = -1,
fd1a5b04 2768 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2769 };
2770 int next_color;
1da177e4 2771
3347fa09
TH
2772 if (WARN_ON(!wq_online))
2773 return;
2774
87915adc
JB
2775 lock_map_acquire(&wq->lockdep_map);
2776 lock_map_release(&wq->lockdep_map);
2777
3c25a55d 2778 mutex_lock(&wq->mutex);
73f53c4a
TH
2779
2780 /*
2781 * Start-to-wait phase
2782 */
2783 next_color = work_next_color(wq->work_color);
2784
2785 if (next_color != wq->flush_color) {
2786 /*
2787 * Color space is not full. The current work_color
2788 * becomes our flush_color and work_color is advanced
2789 * by one.
2790 */
6183c009 2791 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2792 this_flusher.flush_color = wq->work_color;
2793 wq->work_color = next_color;
2794
2795 if (!wq->first_flusher) {
2796 /* no flush in progress, become the first flusher */
6183c009 2797 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2798
2799 wq->first_flusher = &this_flusher;
2800
112202d9 2801 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2802 wq->work_color)) {
2803 /* nothing to flush, done */
2804 wq->flush_color = next_color;
2805 wq->first_flusher = NULL;
2806 goto out_unlock;
2807 }
2808 } else {
2809 /* wait in queue */
6183c009 2810 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2811 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2812 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2813 }
2814 } else {
2815 /*
2816 * Oops, color space is full, wait on overflow queue.
2817 * The next flush completion will assign us
2818 * flush_color and transfer to flusher_queue.
2819 */
2820 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2821 }
2822
fca839c0
TH
2823 check_flush_dependency(wq, NULL);
2824
3c25a55d 2825 mutex_unlock(&wq->mutex);
73f53c4a
TH
2826
2827 wait_for_completion(&this_flusher.done);
2828
2829 /*
2830 * Wake-up-and-cascade phase
2831 *
2832 * First flushers are responsible for cascading flushes and
2833 * handling overflow. Non-first flushers can simply return.
2834 */
2835 if (wq->first_flusher != &this_flusher)
2836 return;
2837
3c25a55d 2838 mutex_lock(&wq->mutex);
73f53c4a 2839
4ce48b37
TH
2840 /* we might have raced, check again with mutex held */
2841 if (wq->first_flusher != &this_flusher)
2842 goto out_unlock;
2843
73f53c4a
TH
2844 wq->first_flusher = NULL;
2845
6183c009
TH
2846 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2847 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2848
2849 while (true) {
2850 struct wq_flusher *next, *tmp;
2851
2852 /* complete all the flushers sharing the current flush color */
2853 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2854 if (next->flush_color != wq->flush_color)
2855 break;
2856 list_del_init(&next->list);
2857 complete(&next->done);
2858 }
2859
6183c009
TH
2860 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2861 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2862
2863 /* this flush_color is finished, advance by one */
2864 wq->flush_color = work_next_color(wq->flush_color);
2865
2866 /* one color has been freed, handle overflow queue */
2867 if (!list_empty(&wq->flusher_overflow)) {
2868 /*
2869 * Assign the same color to all overflowed
2870 * flushers, advance work_color and append to
2871 * flusher_queue. This is the start-to-wait
2872 * phase for these overflowed flushers.
2873 */
2874 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2875 tmp->flush_color = wq->work_color;
2876
2877 wq->work_color = work_next_color(wq->work_color);
2878
2879 list_splice_tail_init(&wq->flusher_overflow,
2880 &wq->flusher_queue);
112202d9 2881 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2882 }
2883
2884 if (list_empty(&wq->flusher_queue)) {
6183c009 2885 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2886 break;
2887 }
2888
2889 /*
2890 * Need to flush more colors. Make the next flusher
112202d9 2891 * the new first flusher and arm pwqs.
73f53c4a 2892 */
6183c009
TH
2893 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2894 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2895
2896 list_del_init(&next->list);
2897 wq->first_flusher = next;
2898
112202d9 2899 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2900 break;
2901
2902 /*
2903 * Meh... this color is already done, clear first
2904 * flusher and repeat cascading.
2905 */
2906 wq->first_flusher = NULL;
2907 }
2908
2909out_unlock:
3c25a55d 2910 mutex_unlock(&wq->mutex);
1da177e4 2911}
1dadafa8 2912EXPORT_SYMBOL(flush_workqueue);
1da177e4 2913
9c5a2ba7
TH
2914/**
2915 * drain_workqueue - drain a workqueue
2916 * @wq: workqueue to drain
2917 *
2918 * Wait until the workqueue becomes empty. While draining is in progress,
2919 * only chain queueing is allowed. IOW, only currently pending or running
2920 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2921 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2922 * by the depth of chaining and should be relatively short. Whine if it
2923 * takes too long.
2924 */
2925void drain_workqueue(struct workqueue_struct *wq)
2926{
2927 unsigned int flush_cnt = 0;
49e3cf44 2928 struct pool_workqueue *pwq;
9c5a2ba7
TH
2929
2930 /*
2931 * __queue_work() needs to test whether there are drainers, is much
2932 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2933 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2934 */
87fc741e 2935 mutex_lock(&wq->mutex);
9c5a2ba7 2936 if (!wq->nr_drainers++)
618b01eb 2937 wq->flags |= __WQ_DRAINING;
87fc741e 2938 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2939reflush:
2940 flush_workqueue(wq);
2941
b09f4fd3 2942 mutex_lock(&wq->mutex);
76af4d93 2943
49e3cf44 2944 for_each_pwq(pwq, wq) {
fa2563e4 2945 bool drained;
9c5a2ba7 2946
b09f4fd3 2947 spin_lock_irq(&pwq->pool->lock);
112202d9 2948 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2949 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2950
2951 if (drained)
9c5a2ba7
TH
2952 continue;
2953
2954 if (++flush_cnt == 10 ||
2955 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2956 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2957 wq->name, flush_cnt);
76af4d93 2958
b09f4fd3 2959 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2960 goto reflush;
2961 }
2962
9c5a2ba7 2963 if (!--wq->nr_drainers)
618b01eb 2964 wq->flags &= ~__WQ_DRAINING;
87fc741e 2965 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2966}
2967EXPORT_SYMBOL_GPL(drain_workqueue);
2968
d6e89786
JB
2969static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2970 bool from_cancel)
db700897 2971{
affee4b2 2972 struct worker *worker = NULL;
c9e7cf27 2973 struct worker_pool *pool;
112202d9 2974 struct pool_workqueue *pwq;
db700897
ON
2975
2976 might_sleep();
fa1b54e6
TH
2977
2978 local_irq_disable();
c9e7cf27 2979 pool = get_work_pool(work);
fa1b54e6
TH
2980 if (!pool) {
2981 local_irq_enable();
baf59022 2982 return false;
fa1b54e6 2983 }
db700897 2984
fa1b54e6 2985 spin_lock(&pool->lock);
0b3dae68 2986 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2987 pwq = get_work_pwq(work);
2988 if (pwq) {
2989 if (unlikely(pwq->pool != pool))
4690c4ab 2990 goto already_gone;
606a5020 2991 } else {
c9e7cf27 2992 worker = find_worker_executing_work(pool, work);
affee4b2 2993 if (!worker)
4690c4ab 2994 goto already_gone;
112202d9 2995 pwq = worker->current_pwq;
606a5020 2996 }
db700897 2997
fca839c0
TH
2998 check_flush_dependency(pwq->wq, work);
2999
112202d9 3000 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3001 spin_unlock_irq(&pool->lock);
7a22ad75 3002
e159489b 3003 /*
a1d14934
PZ
3004 * Force a lock recursion deadlock when using flush_work() inside a
3005 * single-threaded or rescuer equipped workqueue.
3006 *
3007 * For single threaded workqueues the deadlock happens when the work
3008 * is after the work issuing the flush_work(). For rescuer equipped
3009 * workqueues the deadlock happens when the rescuer stalls, blocking
3010 * forward progress.
e159489b 3011 */
d6e89786
JB
3012 if (!from_cancel &&
3013 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3014 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3015 lock_map_release(&pwq->wq->lockdep_map);
3016 }
e159489b 3017
401a8d04 3018 return true;
4690c4ab 3019already_gone:
d565ed63 3020 spin_unlock_irq(&pool->lock);
401a8d04 3021 return false;
db700897 3022}
baf59022 3023
d6e89786
JB
3024static bool __flush_work(struct work_struct *work, bool from_cancel)
3025{
3026 struct wq_barrier barr;
3027
3028 if (WARN_ON(!wq_online))
3029 return false;
3030
4d43d395
TH
3031 if (WARN_ON(!work->func))
3032 return false;
3033
87915adc
JB
3034 if (!from_cancel) {
3035 lock_map_acquire(&work->lockdep_map);
3036 lock_map_release(&work->lockdep_map);
3037 }
3038
d6e89786
JB
3039 if (start_flush_work(work, &barr, from_cancel)) {
3040 wait_for_completion(&barr.done);
3041 destroy_work_on_stack(&barr.work);
3042 return true;
3043 } else {
3044 return false;
3045 }
3046}
3047
baf59022
TH
3048/**
3049 * flush_work - wait for a work to finish executing the last queueing instance
3050 * @work: the work to flush
3051 *
606a5020
TH
3052 * Wait until @work has finished execution. @work is guaranteed to be idle
3053 * on return if it hasn't been requeued since flush started.
baf59022 3054 *
d185af30 3055 * Return:
baf59022
TH
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
3058 */
3059bool flush_work(struct work_struct *work)
3060{
d6e89786 3061 return __flush_work(work, false);
6e84d644 3062}
606a5020 3063EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3064
8603e1b3 3065struct cwt_wait {
ac6424b9 3066 wait_queue_entry_t wait;
8603e1b3
TH
3067 struct work_struct *work;
3068};
3069
ac6424b9 3070static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3071{
3072 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073
3074 if (cwait->work != key)
3075 return 0;
3076 return autoremove_wake_function(wait, mode, sync, key);
3077}
3078
36e227d2 3079static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3080{
8603e1b3 3081 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3082 unsigned long flags;
1f1f642e
ON
3083 int ret;
3084
3085 do {
bbb68dfa
TH
3086 ret = try_to_grab_pending(work, is_dwork, &flags);
3087 /*
8603e1b3
TH
3088 * If someone else is already canceling, wait for it to
3089 * finish. flush_work() doesn't work for PREEMPT_NONE
3090 * because we may get scheduled between @work's completion
3091 * and the other canceling task resuming and clearing
3092 * CANCELING - flush_work() will return false immediately
3093 * as @work is no longer busy, try_to_grab_pending() will
3094 * return -ENOENT as @work is still being canceled and the
3095 * other canceling task won't be able to clear CANCELING as
3096 * we're hogging the CPU.
3097 *
3098 * Let's wait for completion using a waitqueue. As this
3099 * may lead to the thundering herd problem, use a custom
3100 * wake function which matches @work along with exclusive
3101 * wait and wakeup.
bbb68dfa 3102 */
8603e1b3
TH
3103 if (unlikely(ret == -ENOENT)) {
3104 struct cwt_wait cwait;
3105
3106 init_wait(&cwait.wait);
3107 cwait.wait.func = cwt_wakefn;
3108 cwait.work = work;
3109
3110 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111 TASK_UNINTERRUPTIBLE);
3112 if (work_is_canceling(work))
3113 schedule();
3114 finish_wait(&cancel_waitq, &cwait.wait);
3115 }
1f1f642e
ON
3116 } while (unlikely(ret < 0));
3117
bbb68dfa
TH
3118 /* tell other tasks trying to grab @work to back off */
3119 mark_work_canceling(work);
3120 local_irq_restore(flags);
3121
3347fa09
TH
3122 /*
3123 * This allows canceling during early boot. We know that @work
3124 * isn't executing.
3125 */
3126 if (wq_online)
d6e89786 3127 __flush_work(work, true);
3347fa09 3128
7a22ad75 3129 clear_work_data(work);
8603e1b3
TH
3130
3131 /*
3132 * Paired with prepare_to_wait() above so that either
3133 * waitqueue_active() is visible here or !work_is_canceling() is
3134 * visible there.
3135 */
3136 smp_mb();
3137 if (waitqueue_active(&cancel_waitq))
3138 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139
1f1f642e
ON
3140 return ret;
3141}
3142
6e84d644 3143/**
401a8d04
TH
3144 * cancel_work_sync - cancel a work and wait for it to finish
3145 * @work: the work to cancel
6e84d644 3146 *
401a8d04
TH
3147 * Cancel @work and wait for its execution to finish. This function
3148 * can be used even if the work re-queues itself or migrates to
3149 * another workqueue. On return from this function, @work is
3150 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3151 *
401a8d04
TH
3152 * cancel_work_sync(&delayed_work->work) must not be used for
3153 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3154 *
401a8d04 3155 * The caller must ensure that the workqueue on which @work was last
6e84d644 3156 * queued can't be destroyed before this function returns.
401a8d04 3157 *
d185af30 3158 * Return:
401a8d04 3159 * %true if @work was pending, %false otherwise.
6e84d644 3160 */
401a8d04 3161bool cancel_work_sync(struct work_struct *work)
6e84d644 3162{
36e227d2 3163 return __cancel_work_timer(work, false);
b89deed3 3164}
28e53bdd 3165EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3166
6e84d644 3167/**
401a8d04
TH
3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169 * @dwork: the delayed work to flush
6e84d644 3170 *
401a8d04
TH
3171 * Delayed timer is cancelled and the pending work is queued for
3172 * immediate execution. Like flush_work(), this function only
3173 * considers the last queueing instance of @dwork.
1f1f642e 3174 *
d185af30 3175 * Return:
401a8d04
TH
3176 * %true if flush_work() waited for the work to finish execution,
3177 * %false if it was already idle.
6e84d644 3178 */
401a8d04
TH
3179bool flush_delayed_work(struct delayed_work *dwork)
3180{
8930caba 3181 local_irq_disable();
401a8d04 3182 if (del_timer_sync(&dwork->timer))
60c057bc 3183 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3184 local_irq_enable();
401a8d04
TH
3185 return flush_work(&dwork->work);
3186}
3187EXPORT_SYMBOL(flush_delayed_work);
3188
05f0fe6b
TH
3189/**
3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191 * @rwork: the rcu work to flush
3192 *
3193 * Return:
3194 * %true if flush_rcu_work() waited for the work to finish execution,
3195 * %false if it was already idle.
3196 */
3197bool flush_rcu_work(struct rcu_work *rwork)
3198{
3199 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200 rcu_barrier();
3201 flush_work(&rwork->work);
3202 return true;
3203 } else {
3204 return flush_work(&rwork->work);
3205 }
3206}
3207EXPORT_SYMBOL(flush_rcu_work);
3208
f72b8792
JA
3209static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210{
3211 unsigned long flags;
3212 int ret;
3213
3214 do {
3215 ret = try_to_grab_pending(work, is_dwork, &flags);
3216 } while (unlikely(ret == -EAGAIN));
3217
3218 if (unlikely(ret < 0))
3219 return false;
3220
3221 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222 local_irq_restore(flags);
3223 return ret;
3224}
3225
09383498 3226/**
57b30ae7
TH
3227 * cancel_delayed_work - cancel a delayed work
3228 * @dwork: delayed_work to cancel
09383498 3229 *
d185af30
YB
3230 * Kill off a pending delayed_work.
3231 *
3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233 * pending.
3234 *
3235 * Note:
3236 * The work callback function may still be running on return, unless
3237 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3238 * use cancel_delayed_work_sync() to wait on it.
09383498 3239 *
57b30ae7 3240 * This function is safe to call from any context including IRQ handler.
09383498 3241 */
57b30ae7 3242bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3243{
f72b8792 3244 return __cancel_work(&dwork->work, true);
09383498 3245}
57b30ae7 3246EXPORT_SYMBOL(cancel_delayed_work);
09383498 3247
401a8d04
TH
3248/**
3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250 * @dwork: the delayed work cancel
3251 *
3252 * This is cancel_work_sync() for delayed works.
3253 *
d185af30 3254 * Return:
401a8d04
TH
3255 * %true if @dwork was pending, %false otherwise.
3256 */
3257bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3258{
36e227d2 3259 return __cancel_work_timer(&dwork->work, true);
6e84d644 3260}
f5a421a4 3261EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3262
b6136773 3263/**
31ddd871 3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3265 * @func: the function to call
b6136773 3266 *
31ddd871
TH
3267 * schedule_on_each_cpu() executes @func on each online CPU using the
3268 * system workqueue and blocks until all CPUs have completed.
b6136773 3269 * schedule_on_each_cpu() is very slow.
31ddd871 3270 *
d185af30 3271 * Return:
31ddd871 3272 * 0 on success, -errno on failure.
b6136773 3273 */
65f27f38 3274int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3275{
3276 int cpu;
38f51568 3277 struct work_struct __percpu *works;
15316ba8 3278
b6136773
AM
3279 works = alloc_percpu(struct work_struct);
3280 if (!works)
15316ba8 3281 return -ENOMEM;
b6136773 3282
93981800
TH
3283 get_online_cpus();
3284
15316ba8 3285 for_each_online_cpu(cpu) {
9bfb1839
IM
3286 struct work_struct *work = per_cpu_ptr(works, cpu);
3287
3288 INIT_WORK(work, func);
b71ab8c2 3289 schedule_work_on(cpu, work);
65a64464 3290 }
93981800
TH
3291
3292 for_each_online_cpu(cpu)
3293 flush_work(per_cpu_ptr(works, cpu));
3294
95402b38 3295 put_online_cpus();
b6136773 3296 free_percpu(works);
15316ba8
CL
3297 return 0;
3298}
3299
1fa44eca
JB
3300/**
3301 * execute_in_process_context - reliably execute the routine with user context
3302 * @fn: the function to execute
1fa44eca
JB
3303 * @ew: guaranteed storage for the execute work structure (must
3304 * be available when the work executes)
3305 *
3306 * Executes the function immediately if process context is available,
3307 * otherwise schedules the function for delayed execution.
3308 *
d185af30 3309 * Return: 0 - function was executed
1fa44eca
JB
3310 * 1 - function was scheduled for execution
3311 */
65f27f38 3312int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3313{
3314 if (!in_interrupt()) {
65f27f38 3315 fn(&ew->work);
1fa44eca
JB
3316 return 0;
3317 }
3318
65f27f38 3319 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3320 schedule_work(&ew->work);
3321
3322 return 1;
3323}
3324EXPORT_SYMBOL_GPL(execute_in_process_context);
3325
6ba94429
FW
3326/**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
226223ab 3329 *
6ba94429 3330 * Undo alloc_workqueue_attrs().
226223ab 3331 */
6ba94429 3332void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3333{
6ba94429
FW
3334 if (attrs) {
3335 free_cpumask_var(attrs->cpumask);
3336 kfree(attrs);
3337 }
226223ab
TH
3338}
3339
6ba94429
FW
3340/**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
3342 * @gfp_mask: allocation mask to use
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it.
3346 *
3347 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348 */
3349struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3350{
6ba94429 3351 struct workqueue_attrs *attrs;
226223ab 3352
6ba94429
FW
3353 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3354 if (!attrs)
3355 goto fail;
3356 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3357 goto fail;
3358
3359 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 return attrs;
3361fail:
3362 free_workqueue_attrs(attrs);
3363 return NULL;
226223ab
TH
3364}
3365
6ba94429
FW
3366static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 const struct workqueue_attrs *from)
226223ab 3368{
6ba94429
FW
3369 to->nice = from->nice;
3370 cpumask_copy(to->cpumask, from->cpumask);
3371 /*
3372 * Unlike hash and equality test, this function doesn't ignore
3373 * ->no_numa as it is used for both pool and wq attrs. Instead,
3374 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 */
3376 to->no_numa = from->no_numa;
226223ab
TH
3377}
3378
6ba94429
FW
3379/* hash value of the content of @attr */
3380static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3381{
6ba94429 3382 u32 hash = 0;
226223ab 3383
6ba94429
FW
3384 hash = jhash_1word(attrs->nice, hash);
3385 hash = jhash(cpumask_bits(attrs->cpumask),
3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 return hash;
226223ab 3388}
226223ab 3389
6ba94429
FW
3390/* content equality test */
3391static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 const struct workqueue_attrs *b)
226223ab 3393{
6ba94429
FW
3394 if (a->nice != b->nice)
3395 return false;
3396 if (!cpumask_equal(a->cpumask, b->cpumask))
3397 return false;
3398 return true;
226223ab
TH
3399}
3400
6ba94429
FW
3401/**
3402 * init_worker_pool - initialize a newly zalloc'd worker_pool
3403 * @pool: worker_pool to initialize
3404 *
402dd89d 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3406 *
3407 * Return: 0 on success, -errno on failure. Even on failure, all fields
3408 * inside @pool proper are initialized and put_unbound_pool() can be called
3409 * on @pool safely to release it.
3410 */
3411static int init_worker_pool(struct worker_pool *pool)
226223ab 3412{
6ba94429
FW
3413 spin_lock_init(&pool->lock);
3414 pool->id = -1;
3415 pool->cpu = -1;
3416 pool->node = NUMA_NO_NODE;
3417 pool->flags |= POOL_DISASSOCIATED;
82607adc 3418 pool->watchdog_ts = jiffies;
6ba94429
FW
3419 INIT_LIST_HEAD(&pool->worklist);
3420 INIT_LIST_HEAD(&pool->idle_list);
3421 hash_init(pool->busy_hash);
226223ab 3422
32a6c723 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3424
32a6c723 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3426
6ba94429 3427 INIT_LIST_HEAD(&pool->workers);
226223ab 3428
6ba94429
FW
3429 ida_init(&pool->worker_ida);
3430 INIT_HLIST_NODE(&pool->hash_node);
3431 pool->refcnt = 1;
226223ab 3432
6ba94429
FW
3433 /* shouldn't fail above this point */
3434 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3435 if (!pool->attrs)
3436 return -ENOMEM;
3437 return 0;
226223ab
TH
3438}
3439
669de8bd
BVA
3440#ifdef CONFIG_LOCKDEP
3441static void wq_init_lockdep(struct workqueue_struct *wq)
3442{
3443 char *lock_name;
3444
3445 lockdep_register_key(&wq->key);
3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 if (!lock_name)
3448 lock_name = wq->name;
69a106c0
QC
3449
3450 wq->lock_name = lock_name;
669de8bd
BVA
3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452}
3453
3454static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455{
3456 lockdep_unregister_key(&wq->key);
3457}
3458
3459static void wq_free_lockdep(struct workqueue_struct *wq)
3460{
3461 if (wq->lock_name != wq->name)
3462 kfree(wq->lock_name);
3463}
3464#else
3465static void wq_init_lockdep(struct workqueue_struct *wq)
3466{
3467}
3468
3469static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470{
3471}
3472
3473static void wq_free_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476#endif
3477
6ba94429 3478static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3479{
6ba94429
FW
3480 struct workqueue_struct *wq =
3481 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3482
669de8bd
BVA
3483 wq_free_lockdep(wq);
3484
6ba94429
FW
3485 if (!(wq->flags & WQ_UNBOUND))
3486 free_percpu(wq->cpu_pwqs);
226223ab 3487 else
6ba94429 3488 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3489
6ba94429
FW
3490 kfree(wq->rescuer);
3491 kfree(wq);
226223ab
TH
3492}
3493
6ba94429 3494static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3495{
6ba94429 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3497
6ba94429
FW
3498 ida_destroy(&pool->worker_ida);
3499 free_workqueue_attrs(pool->attrs);
3500 kfree(pool);
226223ab
TH
3501}
3502
6ba94429
FW
3503/**
3504 * put_unbound_pool - put a worker_pool
3505 * @pool: worker_pool to put
3506 *
3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3508 * safe manner. get_unbound_pool() calls this function on its failure path
3509 * and this function should be able to release pools which went through,
3510 * successfully or not, init_worker_pool().
3511 *
3512 * Should be called with wq_pool_mutex held.
3513 */
3514static void put_unbound_pool(struct worker_pool *pool)
226223ab 3515{
6ba94429
FW
3516 DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 struct worker *worker;
226223ab 3518
6ba94429 3519 lockdep_assert_held(&wq_pool_mutex);
226223ab 3520
6ba94429
FW
3521 if (--pool->refcnt)
3522 return;
226223ab 3523
6ba94429
FW
3524 /* sanity checks */
3525 if (WARN_ON(!(pool->cpu < 0)) ||
3526 WARN_ON(!list_empty(&pool->worklist)))
3527 return;
226223ab 3528
6ba94429
FW
3529 /* release id and unhash */
3530 if (pool->id >= 0)
3531 idr_remove(&worker_pool_idr, pool->id);
3532 hash_del(&pool->hash_node);
d55262c4 3533
6ba94429 3534 /*
692b4825
TH
3535 * Become the manager and destroy all workers. This prevents
3536 * @pool's workers from blocking on attach_mutex. We're the last
3537 * manager and @pool gets freed with the flag set.
6ba94429 3538 */
6ba94429 3539 spin_lock_irq(&pool->lock);
692b4825
TH
3540 wait_event_lock_irq(wq_manager_wait,
3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 pool->flags |= POOL_MANAGER_ACTIVE;
3543
6ba94429
FW
3544 while ((worker = first_idle_worker(pool)))
3545 destroy_worker(worker);
3546 WARN_ON(pool->nr_workers || pool->nr_idle);
3547 spin_unlock_irq(&pool->lock);
d55262c4 3548
1258fae7 3549 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3550 if (!list_empty(&pool->workers))
3551 pool->detach_completion = &detach_completion;
1258fae7 3552 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3553
6ba94429
FW
3554 if (pool->detach_completion)
3555 wait_for_completion(pool->detach_completion);
226223ab 3556
6ba94429
FW
3557 /* shut down the timers */
3558 del_timer_sync(&pool->idle_timer);
3559 del_timer_sync(&pool->mayday_timer);
226223ab 3560
6ba94429 3561 /* sched-RCU protected to allow dereferences from get_work_pool() */
25b00775 3562 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3563}
3564
3565/**
6ba94429
FW
3566 * get_unbound_pool - get a worker_pool with the specified attributes
3567 * @attrs: the attributes of the worker_pool to get
226223ab 3568 *
6ba94429
FW
3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570 * reference count and return it. If there already is a matching
3571 * worker_pool, it will be used; otherwise, this function attempts to
3572 * create a new one.
226223ab 3573 *
6ba94429 3574 * Should be called with wq_pool_mutex held.
226223ab 3575 *
6ba94429
FW
3576 * Return: On success, a worker_pool with the same attributes as @attrs.
3577 * On failure, %NULL.
226223ab 3578 */
6ba94429 3579static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3580{
6ba94429
FW
3581 u32 hash = wqattrs_hash(attrs);
3582 struct worker_pool *pool;
3583 int node;
e2273584 3584 int target_node = NUMA_NO_NODE;
226223ab 3585
6ba94429 3586 lockdep_assert_held(&wq_pool_mutex);
226223ab 3587
6ba94429
FW
3588 /* do we already have a matching pool? */
3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 if (wqattrs_equal(pool->attrs, attrs)) {
3591 pool->refcnt++;
3592 return pool;
3593 }
3594 }
226223ab 3595
e2273584
XP
3596 /* if cpumask is contained inside a NUMA node, we belong to that node */
3597 if (wq_numa_enabled) {
3598 for_each_node(node) {
3599 if (cpumask_subset(attrs->cpumask,
3600 wq_numa_possible_cpumask[node])) {
3601 target_node = node;
3602 break;
3603 }
3604 }
3605 }
3606
6ba94429 3607 /* nope, create a new one */
e2273584 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3609 if (!pool || init_worker_pool(pool) < 0)
3610 goto fail;
3611
3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3613 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3614 pool->node = target_node;
226223ab
TH
3615
3616 /*
6ba94429
FW
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
226223ab 3619 */
6ba94429 3620 pool->attrs->no_numa = false;
226223ab 3621
6ba94429
FW
3622 if (worker_pool_assign_id(pool) < 0)
3623 goto fail;
226223ab 3624
6ba94429 3625 /* create and start the initial worker */
3347fa09 3626 if (wq_online && !create_worker(pool))
6ba94429 3627 goto fail;
226223ab 3628
6ba94429
FW
3629 /* install */
3630 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3631
6ba94429
FW
3632 return pool;
3633fail:
3634 if (pool)
3635 put_unbound_pool(pool);
3636 return NULL;
226223ab 3637}
226223ab 3638
6ba94429 3639static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3640{
6ba94429
FW
3641 kmem_cache_free(pwq_cache,
3642 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3643}
3644
6ba94429
FW
3645/*
3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647 * and needs to be destroyed.
7a4e344c 3648 */
6ba94429 3649static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3650{
6ba94429
FW
3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 unbound_release_work);
3653 struct workqueue_struct *wq = pwq->wq;
3654 struct worker_pool *pool = pwq->pool;
3655 bool is_last;
7a4e344c 3656
6ba94429
FW
3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 return;
7a4e344c 3659
6ba94429
FW
3660 mutex_lock(&wq->mutex);
3661 list_del_rcu(&pwq->pwqs_node);
3662 is_last = list_empty(&wq->pwqs);
3663 mutex_unlock(&wq->mutex);
3664
3665 mutex_lock(&wq_pool_mutex);
3666 put_unbound_pool(pool);
3667 mutex_unlock(&wq_pool_mutex);
3668
25b00775 3669 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3670
2865a8fb 3671 /*
6ba94429
FW
3672 * If we're the last pwq going away, @wq is already dead and no one
3673 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3674 */
669de8bd
BVA
3675 if (is_last) {
3676 wq_unregister_lockdep(wq);
25b00775 3677 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3678 }
29c91e99
TH
3679}
3680
7a4e344c 3681/**
6ba94429
FW
3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 * @pwq: target pool_workqueue
d185af30 3684 *
6ba94429
FW
3685 * If @pwq isn't freezing, set @pwq->max_active to the associated
3686 * workqueue's saved_max_active and activate delayed work items
3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3688 */
6ba94429 3689static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3690{
6ba94429
FW
3691 struct workqueue_struct *wq = pwq->wq;
3692 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3693 unsigned long flags;
4e1a1f9a 3694
6ba94429
FW
3695 /* for @wq->saved_max_active */
3696 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3697
6ba94429
FW
3698 /* fast exit for non-freezable wqs */
3699 if (!freezable && pwq->max_active == wq->saved_max_active)
3700 return;
7a4e344c 3701
3347fa09
TH
3702 /* this function can be called during early boot w/ irq disabled */
3703 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3704
6ba94429
FW
3705 /*
3706 * During [un]freezing, the caller is responsible for ensuring that
3707 * this function is called at least once after @workqueue_freezing
3708 * is updated and visible.
3709 */
3710 if (!freezable || !workqueue_freezing) {
3711 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3712
6ba94429
FW
3713 while (!list_empty(&pwq->delayed_works) &&
3714 pwq->nr_active < pwq->max_active)
3715 pwq_activate_first_delayed(pwq);
e2dca7ad 3716
6ba94429
FW
3717 /*
3718 * Need to kick a worker after thawed or an unbound wq's
3719 * max_active is bumped. It's a slow path. Do it always.
3720 */
3721 wake_up_worker(pwq->pool);
3722 } else {
3723 pwq->max_active = 0;
3724 }
e2dca7ad 3725
3347fa09 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3727}
3728
6ba94429
FW
3729/* initialize newly alloced @pwq which is associated with @wq and @pool */
3730static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 struct worker_pool *pool)
29c91e99 3732{
6ba94429 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3734
6ba94429
FW
3735 memset(pwq, 0, sizeof(*pwq));
3736
3737 pwq->pool = pool;
3738 pwq->wq = wq;
3739 pwq->flush_color = -1;
3740 pwq->refcnt = 1;
3741 INIT_LIST_HEAD(&pwq->delayed_works);
3742 INIT_LIST_HEAD(&pwq->pwqs_node);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3745}
3746
6ba94429
FW
3747/* sync @pwq with the current state of its associated wq and link it */
3748static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3749{
6ba94429 3750 struct workqueue_struct *wq = pwq->wq;
29c91e99 3751
6ba94429 3752 lockdep_assert_held(&wq->mutex);
a892cacc 3753
6ba94429
FW
3754 /* may be called multiple times, ignore if already linked */
3755 if (!list_empty(&pwq->pwqs_node))
29c91e99 3756 return;
29c91e99 3757
6ba94429
FW
3758 /* set the matching work_color */
3759 pwq->work_color = wq->work_color;
29c91e99 3760
6ba94429
FW
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
29c91e99 3763
6ba94429
FW
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766}
29c91e99 3767
6ba94429
FW
3768/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771{
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
60f5a4bc 3774
6ba94429 3775 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3776
6ba94429
FW
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
60f5a4bc 3780
6ba94429
FW
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
29c91e99 3786
6ba94429
FW
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789}
29c91e99 3790
29c91e99 3791/**
30186c6f 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3794 * @node: the target NUMA node
3795 * @cpu_going_down: if >= 0, the CPU to consider as offline
3796 * @cpumask: outarg, the resulting cpumask
29c91e99 3797 *
6ba94429
FW
3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3799 * @cpu_going_down is >= 0, that cpu is considered offline during
3800 * calculation. The result is stored in @cpumask.
a892cacc 3801 *
6ba94429
FW
3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3803 * enabled and @node has online CPUs requested by @attrs, the returned
3804 * cpumask is the intersection of the possible CPUs of @node and
3805 * @attrs->cpumask.
d185af30 3806 *
6ba94429
FW
3807 * The caller is responsible for ensuring that the cpumask of @node stays
3808 * stable.
3809 *
3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811 * %false if equal.
29c91e99 3812 */
6ba94429
FW
3813static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3815{
6ba94429
FW
3816 if (!wq_numa_enabled || attrs->no_numa)
3817 goto use_dfl;
29c91e99 3818
6ba94429
FW
3819 /* does @node have any online CPUs @attrs wants? */
3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 if (cpu_going_down >= 0)
3822 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3823
6ba94429
FW
3824 if (cpumask_empty(cpumask))
3825 goto use_dfl;
4c16bd32
TH
3826
3827 /* yeap, return possible CPUs in @node that @attrs wants */
3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3829
3830 if (cpumask_empty(cpumask)) {
3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 "possible intersect\n");
3833 return false;
3834 }
3835
4c16bd32
TH
3836 return !cpumask_equal(cpumask, attrs->cpumask);
3837
3838use_dfl:
3839 cpumask_copy(cpumask, attrs->cpumask);
3840 return false;
3841}
3842
1befcf30
TH
3843/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 int node,
3846 struct pool_workqueue *pwq)
3847{
3848 struct pool_workqueue *old_pwq;
3849
5b95e1af 3850 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3851 lockdep_assert_held(&wq->mutex);
3852
3853 /* link_pwq() can handle duplicate calls */
3854 link_pwq(pwq);
3855
3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 return old_pwq;
3859}
3860
2d5f0764
LJ
3861/* context to store the prepared attrs & pwqs before applying */
3862struct apply_wqattrs_ctx {
3863 struct workqueue_struct *wq; /* target workqueue */
3864 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3865 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3866 struct pool_workqueue *dfl_pwq;
3867 struct pool_workqueue *pwq_tbl[];
3868};
3869
3870/* free the resources after success or abort */
3871static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872{
3873 if (ctx) {
3874 int node;
3875
3876 for_each_node(node)
3877 put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 put_pwq_unlocked(ctx->dfl_pwq);
3879
3880 free_workqueue_attrs(ctx->attrs);
3881
3882 kfree(ctx);
3883 }
3884}
3885
3886/* allocate the attrs and pwqs for later installation */
3887static struct apply_wqattrs_ctx *
3888apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 const struct workqueue_attrs *attrs)
9e8cd2f5 3890{
2d5f0764 3891 struct apply_wqattrs_ctx *ctx;
4c16bd32 3892 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3893 int node;
9e8cd2f5 3894
2d5f0764 3895 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3896
acafe7e3 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3898
13e2e556 3899 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3900 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3901 if (!ctx || !new_attrs || !tmp_attrs)
3902 goto out_free;
13e2e556 3903
042f7df1
LJ
3904 /*
3905 * Calculate the attrs of the default pwq.
3906 * If the user configured cpumask doesn't overlap with the
3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 */
13e2e556 3909 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3911 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3913
4c16bd32
TH
3914 /*
3915 * We may create multiple pwqs with differing cpumasks. Make a
3916 * copy of @new_attrs which will be modified and used to obtain
3917 * pools.
3918 */
3919 copy_workqueue_attrs(tmp_attrs, new_attrs);
3920
4c16bd32
TH
3921 /*
3922 * If something goes wrong during CPU up/down, we'll fall back to
3923 * the default pwq covering whole @attrs->cpumask. Always create
3924 * it even if we don't use it immediately.
3925 */
2d5f0764
LJ
3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 if (!ctx->dfl_pwq)
3928 goto out_free;
4c16bd32
TH
3929
3930 for_each_node(node) {
042f7df1 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 if (!ctx->pwq_tbl[node])
3934 goto out_free;
4c16bd32 3935 } else {
2d5f0764
LJ
3936 ctx->dfl_pwq->refcnt++;
3937 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3938 }
3939 }
3940
042f7df1
LJ
3941 /* save the user configured attrs and sanitize it. */
3942 copy_workqueue_attrs(new_attrs, attrs);
3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3944 ctx->attrs = new_attrs;
042f7df1 3945
2d5f0764
LJ
3946 ctx->wq = wq;
3947 free_workqueue_attrs(tmp_attrs);
3948 return ctx;
3949
3950out_free:
3951 free_workqueue_attrs(tmp_attrs);
3952 free_workqueue_attrs(new_attrs);
3953 apply_wqattrs_cleanup(ctx);
3954 return NULL;
3955}
3956
3957/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959{
3960 int node;
9e8cd2f5 3961
4c16bd32 3962 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3963 mutex_lock(&ctx->wq->mutex);
a892cacc 3964
2d5f0764 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3966
3967 /* save the previous pwq and install the new one */
f147f29e 3968 for_each_node(node)
2d5f0764
LJ
3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 ctx->pwq_tbl[node]);
4c16bd32
TH
3971
3972 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3973 link_pwq(ctx->dfl_pwq);
3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3975
2d5f0764
LJ
3976 mutex_unlock(&ctx->wq->mutex);
3977}
9e8cd2f5 3978
a0111cf6
LJ
3979static void apply_wqattrs_lock(void)
3980{
3981 /* CPUs should stay stable across pwq creations and installations */
3982 get_online_cpus();
3983 mutex_lock(&wq_pool_mutex);
3984}
3985
3986static void apply_wqattrs_unlock(void)
3987{
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
3990}
3991
3992static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3994{
3995 struct apply_wqattrs_ctx *ctx;
4c16bd32 3996
2d5f0764
LJ
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
13e2e556 4000
2d5f0764 4001 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
2d5f0764 4008
2d5f0764 4009 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4010 if (!ctx)
4011 return -ENOMEM;
2d5f0764
LJ
4012
4013 /* the ctx has been prepared successfully, let's commit it */
6201171e 4014 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4015 apply_wqattrs_cleanup(ctx);
4016
6201171e 4017 return 0;
9e8cd2f5
TH
4018}
4019
a0111cf6
LJ
4020/**
4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022 * @wq: the target workqueue
4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024 *
4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4026 * machines, this function maps a separate pwq to each NUMA node with
4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028 * NUMA node it was issued on. Older pwqs are released as in-flight work
4029 * items finish. Note that a work item which repeatedly requeues itself
4030 * back-to-back will stay on its current pwq.
4031 *
4032 * Performs GFP_KERNEL allocations.
4033 *
4034 * Return: 0 on success and -errno on failure.
4035 */
4036int apply_workqueue_attrs(struct workqueue_struct *wq,
4037 const struct workqueue_attrs *attrs)
4038{
4039 int ret;
4040
4041 apply_wqattrs_lock();
4042 ret = apply_workqueue_attrs_locked(wq, attrs);
4043 apply_wqattrs_unlock();
4044
4045 return ret;
4046}
6106c0f8 4047EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 4048
4c16bd32
TH
4049/**
4050 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4051 * @wq: the target workqueue
4052 * @cpu: the CPU coming up or going down
4053 * @online: whether @cpu is coming up or going down
4054 *
4055 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4056 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4057 * @wq accordingly.
4058 *
4059 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4060 * falls back to @wq->dfl_pwq which may not be optimal but is always
4061 * correct.
4062 *
4063 * Note that when the last allowed CPU of a NUMA node goes offline for a
4064 * workqueue with a cpumask spanning multiple nodes, the workers which were
4065 * already executing the work items for the workqueue will lose their CPU
4066 * affinity and may execute on any CPU. This is similar to how per-cpu
4067 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4068 * affinity, it's the user's responsibility to flush the work item from
4069 * CPU_DOWN_PREPARE.
4070 */
4071static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4072 bool online)
4073{
4074 int node = cpu_to_node(cpu);
4075 int cpu_off = online ? -1 : cpu;
4076 struct pool_workqueue *old_pwq = NULL, *pwq;
4077 struct workqueue_attrs *target_attrs;
4078 cpumask_t *cpumask;
4079
4080 lockdep_assert_held(&wq_pool_mutex);
4081
f7142ed4
LJ
4082 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4083 wq->unbound_attrs->no_numa)
4c16bd32
TH
4084 return;
4085
4086 /*
4087 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4088 * Let's use a preallocated one. The following buf is protected by
4089 * CPU hotplug exclusion.
4090 */
4091 target_attrs = wq_update_unbound_numa_attrs_buf;
4092 cpumask = target_attrs->cpumask;
4093
4c16bd32
TH
4094 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4095 pwq = unbound_pwq_by_node(wq, node);
4096
4097 /*
4098 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4099 * different from the default pwq's, we need to compare it to @pwq's
4100 * and create a new one if they don't match. If the target cpumask
4101 * equals the default pwq's, the default pwq should be used.
4c16bd32 4102 */
042f7df1 4103 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4104 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4105 return;
4c16bd32 4106 } else {
534a3fbb 4107 goto use_dfl_pwq;
4c16bd32
TH
4108 }
4109
4c16bd32
TH
4110 /* create a new pwq */
4111 pwq = alloc_unbound_pwq(wq, target_attrs);
4112 if (!pwq) {
2d916033
FF
4113 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4114 wq->name);
77f300b1 4115 goto use_dfl_pwq;
4c16bd32
TH
4116 }
4117
f7142ed4 4118 /* Install the new pwq. */
4c16bd32
TH
4119 mutex_lock(&wq->mutex);
4120 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4121 goto out_unlock;
4122
4123use_dfl_pwq:
f7142ed4 4124 mutex_lock(&wq->mutex);
4c16bd32
TH
4125 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4126 get_pwq(wq->dfl_pwq);
4127 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4128 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4129out_unlock:
4130 mutex_unlock(&wq->mutex);
4131 put_pwq_unlocked(old_pwq);
4132}
4133
30cdf249 4134static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4135{
49e3cf44 4136 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4137 int cpu, ret;
30cdf249
TH
4138
4139 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4140 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4141 if (!wq->cpu_pwqs)
30cdf249
TH
4142 return -ENOMEM;
4143
4144 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4145 struct pool_workqueue *pwq =
4146 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4147 struct worker_pool *cpu_pools =
f02ae73a 4148 per_cpu(cpu_worker_pools, cpu);
f3421797 4149
f147f29e
TH
4150 init_pwq(pwq, wq, &cpu_pools[highpri]);
4151
4152 mutex_lock(&wq->mutex);
1befcf30 4153 link_pwq(pwq);
f147f29e 4154 mutex_unlock(&wq->mutex);
30cdf249 4155 }
9e8cd2f5 4156 return 0;
8a2b7538
TH
4157 } else if (wq->flags & __WQ_ORDERED) {
4158 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4159 /* there should only be single pwq for ordering guarantee */
4160 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4161 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4162 "ordering guarantee broken for workqueue %s\n", wq->name);
4163 return ret;
30cdf249 4164 } else {
9e8cd2f5 4165 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4166 }
0f900049
TH
4167}
4168
f3421797
TH
4169static int wq_clamp_max_active(int max_active, unsigned int flags,
4170 const char *name)
b71ab8c2 4171{
f3421797
TH
4172 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4173
4174 if (max_active < 1 || max_active > lim)
044c782c
VI
4175 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4176 max_active, name, 1, lim);
b71ab8c2 4177
f3421797 4178 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4179}
4180
983c7515
TH
4181/*
4182 * Workqueues which may be used during memory reclaim should have a rescuer
4183 * to guarantee forward progress.
4184 */
4185static int init_rescuer(struct workqueue_struct *wq)
4186{
4187 struct worker *rescuer;
4188 int ret;
4189
4190 if (!(wq->flags & WQ_MEM_RECLAIM))
4191 return 0;
4192
4193 rescuer = alloc_worker(NUMA_NO_NODE);
4194 if (!rescuer)
4195 return -ENOMEM;
4196
4197 rescuer->rescue_wq = wq;
4198 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4199 ret = PTR_ERR_OR_ZERO(rescuer->task);
4200 if (ret) {
4201 kfree(rescuer);
4202 return ret;
4203 }
4204
4205 wq->rescuer = rescuer;
4206 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4207 wake_up_process(rescuer->task);
4208
4209 return 0;
4210}
4211
a2775bbc 4212__printf(1, 4)
669de8bd
BVA
4213struct workqueue_struct *alloc_workqueue(const char *fmt,
4214 unsigned int flags,
4215 int max_active, ...)
1da177e4 4216{
df2d5ae4 4217 size_t tbl_size = 0;
ecf6881f 4218 va_list args;
1da177e4 4219 struct workqueue_struct *wq;
49e3cf44 4220 struct pool_workqueue *pwq;
b196be89 4221
5c0338c6
TH
4222 /*
4223 * Unbound && max_active == 1 used to imply ordered, which is no
4224 * longer the case on NUMA machines due to per-node pools. While
4225 * alloc_ordered_workqueue() is the right way to create an ordered
4226 * workqueue, keep the previous behavior to avoid subtle breakages
4227 * on NUMA.
4228 */
4229 if ((flags & WQ_UNBOUND) && max_active == 1)
4230 flags |= __WQ_ORDERED;
4231
cee22a15
VK
4232 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4233 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4234 flags |= WQ_UNBOUND;
4235
ecf6881f 4236 /* allocate wq and format name */
df2d5ae4 4237 if (flags & WQ_UNBOUND)
ddcb57e2 4238 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4239
4240 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4241 if (!wq)
d2c1d404 4242 return NULL;
b196be89 4243
6029a918
TH
4244 if (flags & WQ_UNBOUND) {
4245 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4246 if (!wq->unbound_attrs)
4247 goto err_free_wq;
4248 }
4249
669de8bd 4250 va_start(args, max_active);
ecf6881f 4251 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4252 va_end(args);
1da177e4 4253
d320c038 4254 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4255 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4256
b196be89 4257 /* init wq */
97e37d7b 4258 wq->flags = flags;
a0a1a5fd 4259 wq->saved_max_active = max_active;
3c25a55d 4260 mutex_init(&wq->mutex);
112202d9 4261 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4262 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4263 INIT_LIST_HEAD(&wq->flusher_queue);
4264 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4265 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4266
669de8bd 4267 wq_init_lockdep(wq);
cce1a165 4268 INIT_LIST_HEAD(&wq->list);
3af24433 4269
30cdf249 4270 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4271 goto err_free_wq;
1537663f 4272
40c17f75 4273 if (wq_online && init_rescuer(wq) < 0)
983c7515 4274 goto err_destroy;
3af24433 4275
226223ab
TH
4276 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4277 goto err_destroy;
4278
a0a1a5fd 4279 /*
68e13a67
LJ
4280 * wq_pool_mutex protects global freeze state and workqueues list.
4281 * Grab it, adjust max_active and add the new @wq to workqueues
4282 * list.
a0a1a5fd 4283 */
68e13a67 4284 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4285
a357fc03 4286 mutex_lock(&wq->mutex);
699ce097
TH
4287 for_each_pwq(pwq, wq)
4288 pwq_adjust_max_active(pwq);
a357fc03 4289 mutex_unlock(&wq->mutex);
a0a1a5fd 4290
e2dca7ad 4291 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4292
68e13a67 4293 mutex_unlock(&wq_pool_mutex);
1537663f 4294
3af24433 4295 return wq;
d2c1d404
TH
4296
4297err_free_wq:
009bb421
BVA
4298 wq_unregister_lockdep(wq);
4299 wq_free_lockdep(wq);
6029a918 4300 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4301 kfree(wq);
4302 return NULL;
4303err_destroy:
4304 destroy_workqueue(wq);
4690c4ab 4305 return NULL;
3af24433 4306}
669de8bd 4307EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4308
3af24433
ON
4309/**
4310 * destroy_workqueue - safely terminate a workqueue
4311 * @wq: target workqueue
4312 *
4313 * Safely destroy a workqueue. All work currently pending will be done first.
4314 */
4315void destroy_workqueue(struct workqueue_struct *wq)
4316{
49e3cf44 4317 struct pool_workqueue *pwq;
4c16bd32 4318 int node;
3af24433 4319
9c5a2ba7
TH
4320 /* drain it before proceeding with destruction */
4321 drain_workqueue(wq);
c8efcc25 4322
6183c009 4323 /* sanity checks */
b09f4fd3 4324 mutex_lock(&wq->mutex);
49e3cf44 4325 for_each_pwq(pwq, wq) {
6183c009
TH
4326 int i;
4327
76af4d93
TH
4328 for (i = 0; i < WORK_NR_COLORS; i++) {
4329 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4330 mutex_unlock(&wq->mutex);
fa07fb6a 4331 show_workqueue_state();
6183c009 4332 return;
76af4d93
TH
4333 }
4334 }
4335
5c529597 4336 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4337 WARN_ON(pwq->nr_active) ||
76af4d93 4338 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4339 mutex_unlock(&wq->mutex);
fa07fb6a 4340 show_workqueue_state();
6183c009 4341 return;
76af4d93 4342 }
6183c009 4343 }
b09f4fd3 4344 mutex_unlock(&wq->mutex);
6183c009 4345
a0a1a5fd
TH
4346 /*
4347 * wq list is used to freeze wq, remove from list after
4348 * flushing is complete in case freeze races us.
4349 */
68e13a67 4350 mutex_lock(&wq_pool_mutex);
e2dca7ad 4351 list_del_rcu(&wq->list);
68e13a67 4352 mutex_unlock(&wq_pool_mutex);
3af24433 4353
226223ab
TH
4354 workqueue_sysfs_unregister(wq);
4355
e2dca7ad 4356 if (wq->rescuer)
e22bee78 4357 kthread_stop(wq->rescuer->task);
e22bee78 4358
8864b4e5 4359 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4360 wq_unregister_lockdep(wq);
8864b4e5
TH
4361 /*
4362 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4363 * schedule RCU free.
8864b4e5 4364 */
25b00775 4365 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4366 } else {
4367 /*
4368 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4369 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4370 * @wq will be freed when the last pwq is released.
8864b4e5 4371 */
4c16bd32
TH
4372 for_each_node(node) {
4373 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4374 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4375 put_pwq_unlocked(pwq);
4376 }
4377
4378 /*
4379 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4380 * put. Don't access it afterwards.
4381 */
4382 pwq = wq->dfl_pwq;
4383 wq->dfl_pwq = NULL;
dce90d47 4384 put_pwq_unlocked(pwq);
29c91e99 4385 }
3af24433
ON
4386}
4387EXPORT_SYMBOL_GPL(destroy_workqueue);
4388
dcd989cb
TH
4389/**
4390 * workqueue_set_max_active - adjust max_active of a workqueue
4391 * @wq: target workqueue
4392 * @max_active: new max_active value.
4393 *
4394 * Set max_active of @wq to @max_active.
4395 *
4396 * CONTEXT:
4397 * Don't call from IRQ context.
4398 */
4399void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4400{
49e3cf44 4401 struct pool_workqueue *pwq;
dcd989cb 4402
8719dcea 4403 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4404 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4405 return;
4406
f3421797 4407 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4408
a357fc03 4409 mutex_lock(&wq->mutex);
dcd989cb 4410
0a94efb5 4411 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4412 wq->saved_max_active = max_active;
4413
699ce097
TH
4414 for_each_pwq(pwq, wq)
4415 pwq_adjust_max_active(pwq);
93981800 4416
a357fc03 4417 mutex_unlock(&wq->mutex);
15316ba8 4418}
dcd989cb 4419EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4420
27d4ee03
LW
4421/**
4422 * current_work - retrieve %current task's work struct
4423 *
4424 * Determine if %current task is a workqueue worker and what it's working on.
4425 * Useful to find out the context that the %current task is running in.
4426 *
4427 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4428 */
4429struct work_struct *current_work(void)
4430{
4431 struct worker *worker = current_wq_worker();
4432
4433 return worker ? worker->current_work : NULL;
4434}
4435EXPORT_SYMBOL(current_work);
4436
e6267616
TH
4437/**
4438 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4439 *
4440 * Determine whether %current is a workqueue rescuer. Can be used from
4441 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4442 *
4443 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4444 */
4445bool current_is_workqueue_rescuer(void)
4446{
4447 struct worker *worker = current_wq_worker();
4448
6a092dfd 4449 return worker && worker->rescue_wq;
e6267616
TH
4450}
4451
eef6a7d5 4452/**
dcd989cb
TH
4453 * workqueue_congested - test whether a workqueue is congested
4454 * @cpu: CPU in question
4455 * @wq: target workqueue
eef6a7d5 4456 *
dcd989cb
TH
4457 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4458 * no synchronization around this function and the test result is
4459 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4460 *
d3251859
TH
4461 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4462 * Note that both per-cpu and unbound workqueues may be associated with
4463 * multiple pool_workqueues which have separate congested states. A
4464 * workqueue being congested on one CPU doesn't mean the workqueue is also
4465 * contested on other CPUs / NUMA nodes.
4466 *
d185af30 4467 * Return:
dcd989cb 4468 * %true if congested, %false otherwise.
eef6a7d5 4469 */
d84ff051 4470bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4471{
7fb98ea7 4472 struct pool_workqueue *pwq;
76af4d93
TH
4473 bool ret;
4474
88109453 4475 rcu_read_lock_sched();
7fb98ea7 4476
d3251859
TH
4477 if (cpu == WORK_CPU_UNBOUND)
4478 cpu = smp_processor_id();
4479
7fb98ea7
TH
4480 if (!(wq->flags & WQ_UNBOUND))
4481 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4482 else
df2d5ae4 4483 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4484
76af4d93 4485 ret = !list_empty(&pwq->delayed_works);
88109453 4486 rcu_read_unlock_sched();
76af4d93
TH
4487
4488 return ret;
1da177e4 4489}
dcd989cb 4490EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4491
dcd989cb
TH
4492/**
4493 * work_busy - test whether a work is currently pending or running
4494 * @work: the work to be tested
4495 *
4496 * Test whether @work is currently pending or running. There is no
4497 * synchronization around this function and the test result is
4498 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4499 *
d185af30 4500 * Return:
dcd989cb
TH
4501 * OR'd bitmask of WORK_BUSY_* bits.
4502 */
4503unsigned int work_busy(struct work_struct *work)
1da177e4 4504{
fa1b54e6 4505 struct worker_pool *pool;
dcd989cb
TH
4506 unsigned long flags;
4507 unsigned int ret = 0;
1da177e4 4508
dcd989cb
TH
4509 if (work_pending(work))
4510 ret |= WORK_BUSY_PENDING;
1da177e4 4511
fa1b54e6
TH
4512 local_irq_save(flags);
4513 pool = get_work_pool(work);
038366c5 4514 if (pool) {
fa1b54e6 4515 spin_lock(&pool->lock);
038366c5
LJ
4516 if (find_worker_executing_work(pool, work))
4517 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4518 spin_unlock(&pool->lock);
038366c5 4519 }
fa1b54e6 4520 local_irq_restore(flags);
1da177e4 4521
dcd989cb 4522 return ret;
1da177e4 4523}
dcd989cb 4524EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4525
3d1cb205
TH
4526/**
4527 * set_worker_desc - set description for the current work item
4528 * @fmt: printf-style format string
4529 * @...: arguments for the format string
4530 *
4531 * This function can be called by a running work function to describe what
4532 * the work item is about. If the worker task gets dumped, this
4533 * information will be printed out together to help debugging. The
4534 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4535 */
4536void set_worker_desc(const char *fmt, ...)
4537{
4538 struct worker *worker = current_wq_worker();
4539 va_list args;
4540
4541 if (worker) {
4542 va_start(args, fmt);
4543 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4544 va_end(args);
3d1cb205
TH
4545 }
4546}
5c750d58 4547EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4548
4549/**
4550 * print_worker_info - print out worker information and description
4551 * @log_lvl: the log level to use when printing
4552 * @task: target task
4553 *
4554 * If @task is a worker and currently executing a work item, print out the
4555 * name of the workqueue being serviced and worker description set with
4556 * set_worker_desc() by the currently executing work item.
4557 *
4558 * This function can be safely called on any task as long as the
4559 * task_struct itself is accessible. While safe, this function isn't
4560 * synchronized and may print out mixups or garbages of limited length.
4561 */
4562void print_worker_info(const char *log_lvl, struct task_struct *task)
4563{
4564 work_func_t *fn = NULL;
4565 char name[WQ_NAME_LEN] = { };
4566 char desc[WORKER_DESC_LEN] = { };
4567 struct pool_workqueue *pwq = NULL;
4568 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4569 struct worker *worker;
4570
4571 if (!(task->flags & PF_WQ_WORKER))
4572 return;
4573
4574 /*
4575 * This function is called without any synchronization and @task
4576 * could be in any state. Be careful with dereferences.
4577 */
e700591a 4578 worker = kthread_probe_data(task);
3d1cb205
TH
4579
4580 /*
8bf89593
TH
4581 * Carefully copy the associated workqueue's workfn, name and desc.
4582 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4583 */
4584 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4585 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4586 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4587 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4588 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4589
4590 if (fn || name[0] || desc[0]) {
4591 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4592 if (strcmp(name, desc))
3d1cb205
TH
4593 pr_cont(" (%s)", desc);
4594 pr_cont("\n");
4595 }
4596}
4597
3494fc30
TH
4598static void pr_cont_pool_info(struct worker_pool *pool)
4599{
4600 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4601 if (pool->node != NUMA_NO_NODE)
4602 pr_cont(" node=%d", pool->node);
4603 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4604}
4605
4606static void pr_cont_work(bool comma, struct work_struct *work)
4607{
4608 if (work->func == wq_barrier_func) {
4609 struct wq_barrier *barr;
4610
4611 barr = container_of(work, struct wq_barrier, work);
4612
4613 pr_cont("%s BAR(%d)", comma ? "," : "",
4614 task_pid_nr(barr->task));
4615 } else {
4616 pr_cont("%s %pf", comma ? "," : "", work->func);
4617 }
4618}
4619
4620static void show_pwq(struct pool_workqueue *pwq)
4621{
4622 struct worker_pool *pool = pwq->pool;
4623 struct work_struct *work;
4624 struct worker *worker;
4625 bool has_in_flight = false, has_pending = false;
4626 int bkt;
4627
4628 pr_info(" pwq %d:", pool->id);
4629 pr_cont_pool_info(pool);
4630
4631 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4632 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4633
4634 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4635 if (worker->current_pwq == pwq) {
4636 has_in_flight = true;
4637 break;
4638 }
4639 }
4640 if (has_in_flight) {
4641 bool comma = false;
4642
4643 pr_info(" in-flight:");
4644 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4645 if (worker->current_pwq != pwq)
4646 continue;
4647
4648 pr_cont("%s %d%s:%pf", comma ? "," : "",
4649 task_pid_nr(worker->task),
4650 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4651 worker->current_func);
4652 list_for_each_entry(work, &worker->scheduled, entry)
4653 pr_cont_work(false, work);
4654 comma = true;
4655 }
4656 pr_cont("\n");
4657 }
4658
4659 list_for_each_entry(work, &pool->worklist, entry) {
4660 if (get_work_pwq(work) == pwq) {
4661 has_pending = true;
4662 break;
4663 }
4664 }
4665 if (has_pending) {
4666 bool comma = false;
4667
4668 pr_info(" pending:");
4669 list_for_each_entry(work, &pool->worklist, entry) {
4670 if (get_work_pwq(work) != pwq)
4671 continue;
4672
4673 pr_cont_work(comma, work);
4674 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4675 }
4676 pr_cont("\n");
4677 }
4678
4679 if (!list_empty(&pwq->delayed_works)) {
4680 bool comma = false;
4681
4682 pr_info(" delayed:");
4683 list_for_each_entry(work, &pwq->delayed_works, entry) {
4684 pr_cont_work(comma, work);
4685 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4686 }
4687 pr_cont("\n");
4688 }
4689}
4690
4691/**
4692 * show_workqueue_state - dump workqueue state
4693 *
7b776af6
RL
4694 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4695 * all busy workqueues and pools.
3494fc30
TH
4696 */
4697void show_workqueue_state(void)
4698{
4699 struct workqueue_struct *wq;
4700 struct worker_pool *pool;
4701 unsigned long flags;
4702 int pi;
4703
4704 rcu_read_lock_sched();
4705
4706 pr_info("Showing busy workqueues and worker pools:\n");
4707
4708 list_for_each_entry_rcu(wq, &workqueues, list) {
4709 struct pool_workqueue *pwq;
4710 bool idle = true;
4711
4712 for_each_pwq(pwq, wq) {
4713 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4714 idle = false;
4715 break;
4716 }
4717 }
4718 if (idle)
4719 continue;
4720
4721 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4722
4723 for_each_pwq(pwq, wq) {
4724 spin_lock_irqsave(&pwq->pool->lock, flags);
4725 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4726 show_pwq(pwq);
4727 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4728 /*
4729 * We could be printing a lot from atomic context, e.g.
4730 * sysrq-t -> show_workqueue_state(). Avoid triggering
4731 * hard lockup.
4732 */
4733 touch_nmi_watchdog();
3494fc30
TH
4734 }
4735 }
4736
4737 for_each_pool(pool, pi) {
4738 struct worker *worker;
4739 bool first = true;
4740
4741 spin_lock_irqsave(&pool->lock, flags);
4742 if (pool->nr_workers == pool->nr_idle)
4743 goto next_pool;
4744
4745 pr_info("pool %d:", pool->id);
4746 pr_cont_pool_info(pool);
82607adc
TH
4747 pr_cont(" hung=%us workers=%d",
4748 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4749 pool->nr_workers);
3494fc30
TH
4750 if (pool->manager)
4751 pr_cont(" manager: %d",
4752 task_pid_nr(pool->manager->task));
4753 list_for_each_entry(worker, &pool->idle_list, entry) {
4754 pr_cont(" %s%d", first ? "idle: " : "",
4755 task_pid_nr(worker->task));
4756 first = false;
4757 }
4758 pr_cont("\n");
4759 next_pool:
4760 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4761 /*
4762 * We could be printing a lot from atomic context, e.g.
4763 * sysrq-t -> show_workqueue_state(). Avoid triggering
4764 * hard lockup.
4765 */
4766 touch_nmi_watchdog();
3494fc30
TH
4767 }
4768
4769 rcu_read_unlock_sched();
4770}
4771
6b59808b
TH
4772/* used to show worker information through /proc/PID/{comm,stat,status} */
4773void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4774{
6b59808b
TH
4775 int off;
4776
4777 /* always show the actual comm */
4778 off = strscpy(buf, task->comm, size);
4779 if (off < 0)
4780 return;
4781
197f6acc 4782 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4783 mutex_lock(&wq_pool_attach_mutex);
4784
197f6acc
TH
4785 if (task->flags & PF_WQ_WORKER) {
4786 struct worker *worker = kthread_data(task);
4787 struct worker_pool *pool = worker->pool;
6b59808b 4788
197f6acc
TH
4789 if (pool) {
4790 spin_lock_irq(&pool->lock);
4791 /*
4792 * ->desc tracks information (wq name or
4793 * set_worker_desc()) for the latest execution. If
4794 * current, prepend '+', otherwise '-'.
4795 */
4796 if (worker->desc[0] != '\0') {
4797 if (worker->current_work)
4798 scnprintf(buf + off, size - off, "+%s",
4799 worker->desc);
4800 else
4801 scnprintf(buf + off, size - off, "-%s",
4802 worker->desc);
4803 }
4804 spin_unlock_irq(&pool->lock);
6b59808b 4805 }
6b59808b
TH
4806 }
4807
4808 mutex_unlock(&wq_pool_attach_mutex);
4809}
4810
66448bc2
MM
4811#ifdef CONFIG_SMP
4812
db7bccf4
TH
4813/*
4814 * CPU hotplug.
4815 *
e22bee78 4816 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4817 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4818 * pool which make migrating pending and scheduled works very
e22bee78 4819 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4820 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4821 * blocked draining impractical.
4822 *
24647570 4823 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4824 * running as an unbound one and allowing it to be reattached later if the
4825 * cpu comes back online.
db7bccf4 4826 */
1da177e4 4827
e8b3f8db 4828static void unbind_workers(int cpu)
3af24433 4829{
4ce62e9e 4830 struct worker_pool *pool;
db7bccf4 4831 struct worker *worker;
3af24433 4832
f02ae73a 4833 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4834 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4835 spin_lock_irq(&pool->lock);
3af24433 4836
94cf58bb 4837 /*
92f9c5c4 4838 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4839 * unbound and set DISASSOCIATED. Before this, all workers
4840 * except for the ones which are still executing works from
4841 * before the last CPU down must be on the cpu. After
4842 * this, they may become diasporas.
4843 */
da028469 4844 for_each_pool_worker(worker, pool)
c9e7cf27 4845 worker->flags |= WORKER_UNBOUND;
06ba38a9 4846
24647570 4847 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4848
94cf58bb 4849 spin_unlock_irq(&pool->lock);
1258fae7 4850 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4851
eb283428
LJ
4852 /*
4853 * Call schedule() so that we cross rq->lock and thus can
4854 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4855 * This is necessary as scheduler callbacks may be invoked
4856 * from other cpus.
4857 */
4858 schedule();
06ba38a9 4859
eb283428
LJ
4860 /*
4861 * Sched callbacks are disabled now. Zap nr_running.
4862 * After this, nr_running stays zero and need_more_worker()
4863 * and keep_working() are always true as long as the
4864 * worklist is not empty. This pool now behaves as an
4865 * unbound (in terms of concurrency management) pool which
4866 * are served by workers tied to the pool.
4867 */
e19e397a 4868 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4869
4870 /*
4871 * With concurrency management just turned off, a busy
4872 * worker blocking could lead to lengthy stalls. Kick off
4873 * unbound chain execution of currently pending work items.
4874 */
4875 spin_lock_irq(&pool->lock);
4876 wake_up_worker(pool);
4877 spin_unlock_irq(&pool->lock);
4878 }
3af24433 4879}
3af24433 4880
bd7c089e
TH
4881/**
4882 * rebind_workers - rebind all workers of a pool to the associated CPU
4883 * @pool: pool of interest
4884 *
a9ab775b 4885 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4886 */
4887static void rebind_workers(struct worker_pool *pool)
4888{
a9ab775b 4889 struct worker *worker;
bd7c089e 4890
1258fae7 4891 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4892
a9ab775b
TH
4893 /*
4894 * Restore CPU affinity of all workers. As all idle workers should
4895 * be on the run-queue of the associated CPU before any local
402dd89d 4896 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4897 * of all workers first and then clear UNBOUND. As we're called
4898 * from CPU_ONLINE, the following shouldn't fail.
4899 */
da028469 4900 for_each_pool_worker(worker, pool)
a9ab775b
TH
4901 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4902 pool->attrs->cpumask) < 0);
bd7c089e 4903
a9ab775b 4904 spin_lock_irq(&pool->lock);
f7c17d26 4905
3de5e884 4906 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4907
da028469 4908 for_each_pool_worker(worker, pool) {
a9ab775b 4909 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4910
4911 /*
a9ab775b
TH
4912 * A bound idle worker should actually be on the runqueue
4913 * of the associated CPU for local wake-ups targeting it to
4914 * work. Kick all idle workers so that they migrate to the
4915 * associated CPU. Doing this in the same loop as
4916 * replacing UNBOUND with REBOUND is safe as no worker will
4917 * be bound before @pool->lock is released.
bd7c089e 4918 */
a9ab775b
TH
4919 if (worker_flags & WORKER_IDLE)
4920 wake_up_process(worker->task);
bd7c089e 4921
a9ab775b
TH
4922 /*
4923 * We want to clear UNBOUND but can't directly call
4924 * worker_clr_flags() or adjust nr_running. Atomically
4925 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4926 * @worker will clear REBOUND using worker_clr_flags() when
4927 * it initiates the next execution cycle thus restoring
4928 * concurrency management. Note that when or whether
4929 * @worker clears REBOUND doesn't affect correctness.
4930 *
c95491ed 4931 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4932 * tested without holding any lock in
4933 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4934 * fail incorrectly leading to premature concurrency
4935 * management operations.
4936 */
4937 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4938 worker_flags |= WORKER_REBOUND;
4939 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4940 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4941 }
a9ab775b
TH
4942
4943 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4944}
4945
7dbc725e
TH
4946/**
4947 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4948 * @pool: unbound pool of interest
4949 * @cpu: the CPU which is coming up
4950 *
4951 * An unbound pool may end up with a cpumask which doesn't have any online
4952 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4953 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4954 * online CPU before, cpus_allowed of all its workers should be restored.
4955 */
4956static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4957{
4958 static cpumask_t cpumask;
4959 struct worker *worker;
7dbc725e 4960
1258fae7 4961 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4962
4963 /* is @cpu allowed for @pool? */
4964 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4965 return;
4966
7dbc725e 4967 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4968
4969 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4970 for_each_pool_worker(worker, pool)
d945b5e9 4971 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4972}
4973
7ee681b2
TG
4974int workqueue_prepare_cpu(unsigned int cpu)
4975{
4976 struct worker_pool *pool;
4977
4978 for_each_cpu_worker_pool(pool, cpu) {
4979 if (pool->nr_workers)
4980 continue;
4981 if (!create_worker(pool))
4982 return -ENOMEM;
4983 }
4984 return 0;
4985}
4986
4987int workqueue_online_cpu(unsigned int cpu)
3af24433 4988{
4ce62e9e 4989 struct worker_pool *pool;
4c16bd32 4990 struct workqueue_struct *wq;
7dbc725e 4991 int pi;
3ce63377 4992
7ee681b2 4993 mutex_lock(&wq_pool_mutex);
7dbc725e 4994
7ee681b2 4995 for_each_pool(pool, pi) {
1258fae7 4996 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4997
7ee681b2
TG
4998 if (pool->cpu == cpu)
4999 rebind_workers(pool);
5000 else if (pool->cpu < 0)
5001 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5002
1258fae7 5003 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5004 }
6ba94429 5005
7ee681b2
TG
5006 /* update NUMA affinity of unbound workqueues */
5007 list_for_each_entry(wq, &workqueues, list)
5008 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5009
7ee681b2
TG
5010 mutex_unlock(&wq_pool_mutex);
5011 return 0;
6ba94429
FW
5012}
5013
7ee681b2 5014int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5015{
6ba94429
FW
5016 struct workqueue_struct *wq;
5017
7ee681b2 5018 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5019 if (WARN_ON(cpu != smp_processor_id()))
5020 return -1;
5021
5022 unbind_workers(cpu);
7ee681b2
TG
5023
5024 /* update NUMA affinity of unbound workqueues */
5025 mutex_lock(&wq_pool_mutex);
5026 list_for_each_entry(wq, &workqueues, list)
5027 wq_update_unbound_numa(wq, cpu, false);
5028 mutex_unlock(&wq_pool_mutex);
5029
7ee681b2 5030 return 0;
6ba94429
FW
5031}
5032
6ba94429
FW
5033struct work_for_cpu {
5034 struct work_struct work;
5035 long (*fn)(void *);
5036 void *arg;
5037 long ret;
5038};
5039
5040static void work_for_cpu_fn(struct work_struct *work)
5041{
5042 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5043
5044 wfc->ret = wfc->fn(wfc->arg);
5045}
5046
5047/**
22aceb31 5048 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5049 * @cpu: the cpu to run on
5050 * @fn: the function to run
5051 * @arg: the function arg
5052 *
5053 * It is up to the caller to ensure that the cpu doesn't go offline.
5054 * The caller must not hold any locks which would prevent @fn from completing.
5055 *
5056 * Return: The value @fn returns.
5057 */
5058long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5059{
5060 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5061
5062 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5063 schedule_work_on(cpu, &wfc.work);
5064 flush_work(&wfc.work);
5065 destroy_work_on_stack(&wfc.work);
5066 return wfc.ret;
5067}
5068EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5069
5070/**
5071 * work_on_cpu_safe - run a function in thread context on a particular cpu
5072 * @cpu: the cpu to run on
5073 * @fn: the function to run
5074 * @arg: the function argument
5075 *
5076 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5077 * any locks which would prevent @fn from completing.
5078 *
5079 * Return: The value @fn returns.
5080 */
5081long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5082{
5083 long ret = -ENODEV;
5084
5085 get_online_cpus();
5086 if (cpu_online(cpu))
5087 ret = work_on_cpu(cpu, fn, arg);
5088 put_online_cpus();
5089 return ret;
5090}
5091EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5092#endif /* CONFIG_SMP */
5093
5094#ifdef CONFIG_FREEZER
5095
5096/**
5097 * freeze_workqueues_begin - begin freezing workqueues
5098 *
5099 * Start freezing workqueues. After this function returns, all freezable
5100 * workqueues will queue new works to their delayed_works list instead of
5101 * pool->worklist.
5102 *
5103 * CONTEXT:
5104 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5105 */
5106void freeze_workqueues_begin(void)
5107{
5108 struct workqueue_struct *wq;
5109 struct pool_workqueue *pwq;
5110
5111 mutex_lock(&wq_pool_mutex);
5112
5113 WARN_ON_ONCE(workqueue_freezing);
5114 workqueue_freezing = true;
5115
5116 list_for_each_entry(wq, &workqueues, list) {
5117 mutex_lock(&wq->mutex);
5118 for_each_pwq(pwq, wq)
5119 pwq_adjust_max_active(pwq);
5120 mutex_unlock(&wq->mutex);
5121 }
5122
5123 mutex_unlock(&wq_pool_mutex);
5124}
5125
5126/**
5127 * freeze_workqueues_busy - are freezable workqueues still busy?
5128 *
5129 * Check whether freezing is complete. This function must be called
5130 * between freeze_workqueues_begin() and thaw_workqueues().
5131 *
5132 * CONTEXT:
5133 * Grabs and releases wq_pool_mutex.
5134 *
5135 * Return:
5136 * %true if some freezable workqueues are still busy. %false if freezing
5137 * is complete.
5138 */
5139bool freeze_workqueues_busy(void)
5140{
5141 bool busy = false;
5142 struct workqueue_struct *wq;
5143 struct pool_workqueue *pwq;
5144
5145 mutex_lock(&wq_pool_mutex);
5146
5147 WARN_ON_ONCE(!workqueue_freezing);
5148
5149 list_for_each_entry(wq, &workqueues, list) {
5150 if (!(wq->flags & WQ_FREEZABLE))
5151 continue;
5152 /*
5153 * nr_active is monotonically decreasing. It's safe
5154 * to peek without lock.
5155 */
5156 rcu_read_lock_sched();
5157 for_each_pwq(pwq, wq) {
5158 WARN_ON_ONCE(pwq->nr_active < 0);
5159 if (pwq->nr_active) {
5160 busy = true;
5161 rcu_read_unlock_sched();
5162 goto out_unlock;
5163 }
5164 }
5165 rcu_read_unlock_sched();
5166 }
5167out_unlock:
5168 mutex_unlock(&wq_pool_mutex);
5169 return busy;
5170}
5171
5172/**
5173 * thaw_workqueues - thaw workqueues
5174 *
5175 * Thaw workqueues. Normal queueing is restored and all collected
5176 * frozen works are transferred to their respective pool worklists.
5177 *
5178 * CONTEXT:
5179 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5180 */
5181void thaw_workqueues(void)
5182{
5183 struct workqueue_struct *wq;
5184 struct pool_workqueue *pwq;
5185
5186 mutex_lock(&wq_pool_mutex);
5187
5188 if (!workqueue_freezing)
5189 goto out_unlock;
5190
5191 workqueue_freezing = false;
5192
5193 /* restore max_active and repopulate worklist */
5194 list_for_each_entry(wq, &workqueues, list) {
5195 mutex_lock(&wq->mutex);
5196 for_each_pwq(pwq, wq)
5197 pwq_adjust_max_active(pwq);
5198 mutex_unlock(&wq->mutex);
5199 }
5200
5201out_unlock:
5202 mutex_unlock(&wq_pool_mutex);
5203}
5204#endif /* CONFIG_FREEZER */
5205
042f7df1
LJ
5206static int workqueue_apply_unbound_cpumask(void)
5207{
5208 LIST_HEAD(ctxs);
5209 int ret = 0;
5210 struct workqueue_struct *wq;
5211 struct apply_wqattrs_ctx *ctx, *n;
5212
5213 lockdep_assert_held(&wq_pool_mutex);
5214
5215 list_for_each_entry(wq, &workqueues, list) {
5216 if (!(wq->flags & WQ_UNBOUND))
5217 continue;
5218 /* creating multiple pwqs breaks ordering guarantee */
5219 if (wq->flags & __WQ_ORDERED)
5220 continue;
5221
5222 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5223 if (!ctx) {
5224 ret = -ENOMEM;
5225 break;
5226 }
5227
5228 list_add_tail(&ctx->list, &ctxs);
5229 }
5230
5231 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5232 if (!ret)
5233 apply_wqattrs_commit(ctx);
5234 apply_wqattrs_cleanup(ctx);
5235 }
5236
5237 return ret;
5238}
5239
5240/**
5241 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5242 * @cpumask: the cpumask to set
5243 *
5244 * The low-level workqueues cpumask is a global cpumask that limits
5245 * the affinity of all unbound workqueues. This function check the @cpumask
5246 * and apply it to all unbound workqueues and updates all pwqs of them.
5247 *
5248 * Retun: 0 - Success
5249 * -EINVAL - Invalid @cpumask
5250 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5251 */
5252int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5253{
5254 int ret = -EINVAL;
5255 cpumask_var_t saved_cpumask;
5256
5257 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5258 return -ENOMEM;
5259
c98a9805
TS
5260 /*
5261 * Not excluding isolated cpus on purpose.
5262 * If the user wishes to include them, we allow that.
5263 */
042f7df1
LJ
5264 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5265 if (!cpumask_empty(cpumask)) {
a0111cf6 5266 apply_wqattrs_lock();
042f7df1
LJ
5267
5268 /* save the old wq_unbound_cpumask. */
5269 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5270
5271 /* update wq_unbound_cpumask at first and apply it to wqs. */
5272 cpumask_copy(wq_unbound_cpumask, cpumask);
5273 ret = workqueue_apply_unbound_cpumask();
5274
5275 /* restore the wq_unbound_cpumask when failed. */
5276 if (ret < 0)
5277 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5278
a0111cf6 5279 apply_wqattrs_unlock();
042f7df1 5280 }
042f7df1
LJ
5281
5282 free_cpumask_var(saved_cpumask);
5283 return ret;
5284}
5285
6ba94429
FW
5286#ifdef CONFIG_SYSFS
5287/*
5288 * Workqueues with WQ_SYSFS flag set is visible to userland via
5289 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5290 * following attributes.
5291 *
5292 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5293 * max_active RW int : maximum number of in-flight work items
5294 *
5295 * Unbound workqueues have the following extra attributes.
5296 *
9a19b463 5297 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5298 * nice RW int : nice value of the workers
5299 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5300 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5301 */
5302struct wq_device {
5303 struct workqueue_struct *wq;
5304 struct device dev;
5305};
5306
5307static struct workqueue_struct *dev_to_wq(struct device *dev)
5308{
5309 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5310
5311 return wq_dev->wq;
5312}
5313
5314static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5315 char *buf)
5316{
5317 struct workqueue_struct *wq = dev_to_wq(dev);
5318
5319 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5320}
5321static DEVICE_ATTR_RO(per_cpu);
5322
5323static ssize_t max_active_show(struct device *dev,
5324 struct device_attribute *attr, char *buf)
5325{
5326 struct workqueue_struct *wq = dev_to_wq(dev);
5327
5328 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5329}
5330
5331static ssize_t max_active_store(struct device *dev,
5332 struct device_attribute *attr, const char *buf,
5333 size_t count)
5334{
5335 struct workqueue_struct *wq = dev_to_wq(dev);
5336 int val;
5337
5338 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5339 return -EINVAL;
5340
5341 workqueue_set_max_active(wq, val);
5342 return count;
5343}
5344static DEVICE_ATTR_RW(max_active);
5345
5346static struct attribute *wq_sysfs_attrs[] = {
5347 &dev_attr_per_cpu.attr,
5348 &dev_attr_max_active.attr,
5349 NULL,
5350};
5351ATTRIBUTE_GROUPS(wq_sysfs);
5352
5353static ssize_t wq_pool_ids_show(struct device *dev,
5354 struct device_attribute *attr, char *buf)
5355{
5356 struct workqueue_struct *wq = dev_to_wq(dev);
5357 const char *delim = "";
5358 int node, written = 0;
5359
5360 rcu_read_lock_sched();
5361 for_each_node(node) {
5362 written += scnprintf(buf + written, PAGE_SIZE - written,
5363 "%s%d:%d", delim, node,
5364 unbound_pwq_by_node(wq, node)->pool->id);
5365 delim = " ";
5366 }
5367 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5368 rcu_read_unlock_sched();
5369
5370 return written;
5371}
5372
5373static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5374 char *buf)
5375{
5376 struct workqueue_struct *wq = dev_to_wq(dev);
5377 int written;
5378
5379 mutex_lock(&wq->mutex);
5380 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5381 mutex_unlock(&wq->mutex);
5382
5383 return written;
5384}
5385
5386/* prepare workqueue_attrs for sysfs store operations */
5387static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5388{
5389 struct workqueue_attrs *attrs;
5390
899a94fe
LJ
5391 lockdep_assert_held(&wq_pool_mutex);
5392
6ba94429
FW
5393 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5394 if (!attrs)
5395 return NULL;
5396
6ba94429 5397 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5398 return attrs;
5399}
5400
5401static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5402 const char *buf, size_t count)
5403{
5404 struct workqueue_struct *wq = dev_to_wq(dev);
5405 struct workqueue_attrs *attrs;
d4d3e257
LJ
5406 int ret = -ENOMEM;
5407
5408 apply_wqattrs_lock();
6ba94429
FW
5409
5410 attrs = wq_sysfs_prep_attrs(wq);
5411 if (!attrs)
d4d3e257 5412 goto out_unlock;
6ba94429
FW
5413
5414 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5415 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5416 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5417 else
5418 ret = -EINVAL;
5419
d4d3e257
LJ
5420out_unlock:
5421 apply_wqattrs_unlock();
6ba94429
FW
5422 free_workqueue_attrs(attrs);
5423 return ret ?: count;
5424}
5425
5426static ssize_t wq_cpumask_show(struct device *dev,
5427 struct device_attribute *attr, char *buf)
5428{
5429 struct workqueue_struct *wq = dev_to_wq(dev);
5430 int written;
5431
5432 mutex_lock(&wq->mutex);
5433 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5434 cpumask_pr_args(wq->unbound_attrs->cpumask));
5435 mutex_unlock(&wq->mutex);
5436 return written;
5437}
5438
5439static ssize_t wq_cpumask_store(struct device *dev,
5440 struct device_attribute *attr,
5441 const char *buf, size_t count)
5442{
5443 struct workqueue_struct *wq = dev_to_wq(dev);
5444 struct workqueue_attrs *attrs;
d4d3e257
LJ
5445 int ret = -ENOMEM;
5446
5447 apply_wqattrs_lock();
6ba94429
FW
5448
5449 attrs = wq_sysfs_prep_attrs(wq);
5450 if (!attrs)
d4d3e257 5451 goto out_unlock;
6ba94429
FW
5452
5453 ret = cpumask_parse(buf, attrs->cpumask);
5454 if (!ret)
d4d3e257 5455 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5456
d4d3e257
LJ
5457out_unlock:
5458 apply_wqattrs_unlock();
6ba94429
FW
5459 free_workqueue_attrs(attrs);
5460 return ret ?: count;
5461}
5462
5463static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5464 char *buf)
5465{
5466 struct workqueue_struct *wq = dev_to_wq(dev);
5467 int written;
7dbc725e 5468
6ba94429
FW
5469 mutex_lock(&wq->mutex);
5470 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5471 !wq->unbound_attrs->no_numa);
5472 mutex_unlock(&wq->mutex);
4c16bd32 5473
6ba94429 5474 return written;
65758202
TH
5475}
5476
6ba94429
FW
5477static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5478 const char *buf, size_t count)
65758202 5479{
6ba94429
FW
5480 struct workqueue_struct *wq = dev_to_wq(dev);
5481 struct workqueue_attrs *attrs;
d4d3e257
LJ
5482 int v, ret = -ENOMEM;
5483
5484 apply_wqattrs_lock();
4c16bd32 5485
6ba94429
FW
5486 attrs = wq_sysfs_prep_attrs(wq);
5487 if (!attrs)
d4d3e257 5488 goto out_unlock;
4c16bd32 5489
6ba94429
FW
5490 ret = -EINVAL;
5491 if (sscanf(buf, "%d", &v) == 1) {
5492 attrs->no_numa = !v;
d4d3e257 5493 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5494 }
6ba94429 5495
d4d3e257
LJ
5496out_unlock:
5497 apply_wqattrs_unlock();
6ba94429
FW
5498 free_workqueue_attrs(attrs);
5499 return ret ?: count;
65758202
TH
5500}
5501
6ba94429
FW
5502static struct device_attribute wq_sysfs_unbound_attrs[] = {
5503 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5504 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5505 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5506 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5507 __ATTR_NULL,
5508};
8ccad40d 5509
6ba94429
FW
5510static struct bus_type wq_subsys = {
5511 .name = "workqueue",
5512 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5513};
5514
b05a7928
FW
5515static ssize_t wq_unbound_cpumask_show(struct device *dev,
5516 struct device_attribute *attr, char *buf)
5517{
5518 int written;
5519
042f7df1 5520 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5521 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5522 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5523 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5524
5525 return written;
5526}
5527
042f7df1
LJ
5528static ssize_t wq_unbound_cpumask_store(struct device *dev,
5529 struct device_attribute *attr, const char *buf, size_t count)
5530{
5531 cpumask_var_t cpumask;
5532 int ret;
5533
5534 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5535 return -ENOMEM;
5536
5537 ret = cpumask_parse(buf, cpumask);
5538 if (!ret)
5539 ret = workqueue_set_unbound_cpumask(cpumask);
5540
5541 free_cpumask_var(cpumask);
5542 return ret ? ret : count;
5543}
5544
b05a7928 5545static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5546 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5547 wq_unbound_cpumask_store);
b05a7928 5548
6ba94429 5549static int __init wq_sysfs_init(void)
2d3854a3 5550{
b05a7928
FW
5551 int err;
5552
5553 err = subsys_virtual_register(&wq_subsys, NULL);
5554 if (err)
5555 return err;
5556
5557 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5558}
6ba94429 5559core_initcall(wq_sysfs_init);
2d3854a3 5560
6ba94429 5561static void wq_device_release(struct device *dev)
2d3854a3 5562{
6ba94429 5563 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5564
6ba94429 5565 kfree(wq_dev);
2d3854a3 5566}
a0a1a5fd
TH
5567
5568/**
6ba94429
FW
5569 * workqueue_sysfs_register - make a workqueue visible in sysfs
5570 * @wq: the workqueue to register
a0a1a5fd 5571 *
6ba94429
FW
5572 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5573 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5574 * which is the preferred method.
a0a1a5fd 5575 *
6ba94429
FW
5576 * Workqueue user should use this function directly iff it wants to apply
5577 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5578 * apply_workqueue_attrs() may race against userland updating the
5579 * attributes.
5580 *
5581 * Return: 0 on success, -errno on failure.
a0a1a5fd 5582 */
6ba94429 5583int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5584{
6ba94429
FW
5585 struct wq_device *wq_dev;
5586 int ret;
a0a1a5fd 5587
6ba94429 5588 /*
402dd89d 5589 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5590 * attributes breaks ordering guarantee. Disallow exposing ordered
5591 * workqueues.
5592 */
0a94efb5 5593 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5594 return -EINVAL;
a0a1a5fd 5595
6ba94429
FW
5596 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5597 if (!wq_dev)
5598 return -ENOMEM;
5bcab335 5599
6ba94429
FW
5600 wq_dev->wq = wq;
5601 wq_dev->dev.bus = &wq_subsys;
6ba94429 5602 wq_dev->dev.release = wq_device_release;
23217b44 5603 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5604
6ba94429
FW
5605 /*
5606 * unbound_attrs are created separately. Suppress uevent until
5607 * everything is ready.
5608 */
5609 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5610
6ba94429
FW
5611 ret = device_register(&wq_dev->dev);
5612 if (ret) {
537f4146 5613 put_device(&wq_dev->dev);
6ba94429
FW
5614 wq->wq_dev = NULL;
5615 return ret;
5616 }
a0a1a5fd 5617
6ba94429
FW
5618 if (wq->flags & WQ_UNBOUND) {
5619 struct device_attribute *attr;
a0a1a5fd 5620
6ba94429
FW
5621 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5622 ret = device_create_file(&wq_dev->dev, attr);
5623 if (ret) {
5624 device_unregister(&wq_dev->dev);
5625 wq->wq_dev = NULL;
5626 return ret;
a0a1a5fd
TH
5627 }
5628 }
5629 }
6ba94429
FW
5630
5631 dev_set_uevent_suppress(&wq_dev->dev, false);
5632 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5633 return 0;
a0a1a5fd
TH
5634}
5635
5636/**
6ba94429
FW
5637 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5638 * @wq: the workqueue to unregister
a0a1a5fd 5639 *
6ba94429 5640 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5641 */
6ba94429 5642static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5643{
6ba94429 5644 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5645
6ba94429
FW
5646 if (!wq->wq_dev)
5647 return;
a0a1a5fd 5648
6ba94429
FW
5649 wq->wq_dev = NULL;
5650 device_unregister(&wq_dev->dev);
a0a1a5fd 5651}
6ba94429
FW
5652#else /* CONFIG_SYSFS */
5653static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5654#endif /* CONFIG_SYSFS */
a0a1a5fd 5655
82607adc
TH
5656/*
5657 * Workqueue watchdog.
5658 *
5659 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5660 * flush dependency, a concurrency managed work item which stays RUNNING
5661 * indefinitely. Workqueue stalls can be very difficult to debug as the
5662 * usual warning mechanisms don't trigger and internal workqueue state is
5663 * largely opaque.
5664 *
5665 * Workqueue watchdog monitors all worker pools periodically and dumps
5666 * state if some pools failed to make forward progress for a while where
5667 * forward progress is defined as the first item on ->worklist changing.
5668 *
5669 * This mechanism is controlled through the kernel parameter
5670 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5671 * corresponding sysfs parameter file.
5672 */
5673#ifdef CONFIG_WQ_WATCHDOG
5674
82607adc 5675static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5676static struct timer_list wq_watchdog_timer;
82607adc
TH
5677
5678static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5679static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5680
5681static void wq_watchdog_reset_touched(void)
5682{
5683 int cpu;
5684
5685 wq_watchdog_touched = jiffies;
5686 for_each_possible_cpu(cpu)
5687 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5688}
5689
5cd79d6a 5690static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5691{
5692 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5693 bool lockup_detected = false;
5694 struct worker_pool *pool;
5695 int pi;
5696
5697 if (!thresh)
5698 return;
5699
5700 rcu_read_lock();
5701
5702 for_each_pool(pool, pi) {
5703 unsigned long pool_ts, touched, ts;
5704
5705 if (list_empty(&pool->worklist))
5706 continue;
5707
5708 /* get the latest of pool and touched timestamps */
5709 pool_ts = READ_ONCE(pool->watchdog_ts);
5710 touched = READ_ONCE(wq_watchdog_touched);
5711
5712 if (time_after(pool_ts, touched))
5713 ts = pool_ts;
5714 else
5715 ts = touched;
5716
5717 if (pool->cpu >= 0) {
5718 unsigned long cpu_touched =
5719 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5720 pool->cpu));
5721 if (time_after(cpu_touched, ts))
5722 ts = cpu_touched;
5723 }
5724
5725 /* did we stall? */
5726 if (time_after(jiffies, ts + thresh)) {
5727 lockup_detected = true;
5728 pr_emerg("BUG: workqueue lockup - pool");
5729 pr_cont_pool_info(pool);
5730 pr_cont(" stuck for %us!\n",
5731 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5732 }
5733 }
5734
5735 rcu_read_unlock();
5736
5737 if (lockup_detected)
5738 show_workqueue_state();
5739
5740 wq_watchdog_reset_touched();
5741 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5742}
5743
cb9d7fd5 5744notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5745{
5746 if (cpu >= 0)
5747 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5748 else
5749 wq_watchdog_touched = jiffies;
5750}
5751
5752static void wq_watchdog_set_thresh(unsigned long thresh)
5753{
5754 wq_watchdog_thresh = 0;
5755 del_timer_sync(&wq_watchdog_timer);
5756
5757 if (thresh) {
5758 wq_watchdog_thresh = thresh;
5759 wq_watchdog_reset_touched();
5760 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5761 }
5762}
5763
5764static int wq_watchdog_param_set_thresh(const char *val,
5765 const struct kernel_param *kp)
5766{
5767 unsigned long thresh;
5768 int ret;
5769
5770 ret = kstrtoul(val, 0, &thresh);
5771 if (ret)
5772 return ret;
5773
5774 if (system_wq)
5775 wq_watchdog_set_thresh(thresh);
5776 else
5777 wq_watchdog_thresh = thresh;
5778
5779 return 0;
5780}
5781
5782static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5783 .set = wq_watchdog_param_set_thresh,
5784 .get = param_get_ulong,
5785};
5786
5787module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5788 0644);
5789
5790static void wq_watchdog_init(void)
5791{
5cd79d6a 5792 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5793 wq_watchdog_set_thresh(wq_watchdog_thresh);
5794}
5795
5796#else /* CONFIG_WQ_WATCHDOG */
5797
5798static inline void wq_watchdog_init(void) { }
5799
5800#endif /* CONFIG_WQ_WATCHDOG */
5801
bce90380
TH
5802static void __init wq_numa_init(void)
5803{
5804 cpumask_var_t *tbl;
5805 int node, cpu;
5806
bce90380
TH
5807 if (num_possible_nodes() <= 1)
5808 return;
5809
d55262c4
TH
5810 if (wq_disable_numa) {
5811 pr_info("workqueue: NUMA affinity support disabled\n");
5812 return;
5813 }
5814
4c16bd32
TH
5815 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5816 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5817
bce90380
TH
5818 /*
5819 * We want masks of possible CPUs of each node which isn't readily
5820 * available. Build one from cpu_to_node() which should have been
5821 * fully initialized by now.
5822 */
6396bb22 5823 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5824 BUG_ON(!tbl);
5825
5826 for_each_node(node)
5a6024f1 5827 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5828 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5829
5830 for_each_possible_cpu(cpu) {
5831 node = cpu_to_node(cpu);
5832 if (WARN_ON(node == NUMA_NO_NODE)) {
5833 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5834 /* happens iff arch is bonkers, let's just proceed */
5835 return;
5836 }
5837 cpumask_set_cpu(cpu, tbl[node]);
5838 }
5839
5840 wq_numa_possible_cpumask = tbl;
5841 wq_numa_enabled = true;
5842}
5843
3347fa09
TH
5844/**
5845 * workqueue_init_early - early init for workqueue subsystem
5846 *
5847 * This is the first half of two-staged workqueue subsystem initialization
5848 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5849 * idr are up. It sets up all the data structures and system workqueues
5850 * and allows early boot code to create workqueues and queue/cancel work
5851 * items. Actual work item execution starts only after kthreads can be
5852 * created and scheduled right before early initcalls.
5853 */
5854int __init workqueue_init_early(void)
1da177e4 5855{
7a4e344c 5856 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5857 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5858 int i, cpu;
c34056a3 5859
e904e6c2
TH
5860 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5861
b05a7928 5862 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5863 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5864
e904e6c2
TH
5865 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5866
706026c2 5867 /* initialize CPU pools */
29c91e99 5868 for_each_possible_cpu(cpu) {
4ce62e9e 5869 struct worker_pool *pool;
8b03ae3c 5870
7a4e344c 5871 i = 0;
f02ae73a 5872 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5873 BUG_ON(init_worker_pool(pool));
ec22ca5e 5874 pool->cpu = cpu;
29c91e99 5875 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5876 pool->attrs->nice = std_nice[i++];
f3f90ad4 5877 pool->node = cpu_to_node(cpu);
7a4e344c 5878
9daf9e67 5879 /* alloc pool ID */
68e13a67 5880 mutex_lock(&wq_pool_mutex);
9daf9e67 5881 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5882 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5883 }
8b03ae3c
TH
5884 }
5885
8a2b7538 5886 /* create default unbound and ordered wq attrs */
29c91e99
TH
5887 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5888 struct workqueue_attrs *attrs;
5889
5890 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5891 attrs->nice = std_nice[i];
29c91e99 5892 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5893
5894 /*
5895 * An ordered wq should have only one pwq as ordering is
5896 * guaranteed by max_active which is enforced by pwqs.
5897 * Turn off NUMA so that dfl_pwq is used for all nodes.
5898 */
5899 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5900 attrs->nice = std_nice[i];
5901 attrs->no_numa = true;
5902 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5903 }
5904
d320c038 5905 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5906 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5907 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5908 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5909 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5910 system_freezable_wq = alloc_workqueue("events_freezable",
5911 WQ_FREEZABLE, 0);
0668106c
VK
5912 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5913 WQ_POWER_EFFICIENT, 0);
5914 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5915 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5916 0);
1aabe902 5917 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5918 !system_unbound_wq || !system_freezable_wq ||
5919 !system_power_efficient_wq ||
5920 !system_freezable_power_efficient_wq);
82607adc 5921
3347fa09
TH
5922 return 0;
5923}
5924
5925/**
5926 * workqueue_init - bring workqueue subsystem fully online
5927 *
5928 * This is the latter half of two-staged workqueue subsystem initialization
5929 * and invoked as soon as kthreads can be created and scheduled.
5930 * Workqueues have been created and work items queued on them, but there
5931 * are no kworkers executing the work items yet. Populate the worker pools
5932 * with the initial workers and enable future kworker creations.
5933 */
5934int __init workqueue_init(void)
5935{
2186d9f9 5936 struct workqueue_struct *wq;
3347fa09
TH
5937 struct worker_pool *pool;
5938 int cpu, bkt;
5939
2186d9f9
TH
5940 /*
5941 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5942 * CPU to node mapping may not be available that early on some
5943 * archs such as power and arm64. As per-cpu pools created
5944 * previously could be missing node hint and unbound pools NUMA
5945 * affinity, fix them up.
40c17f75
TH
5946 *
5947 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5948 */
5949 wq_numa_init();
5950
5951 mutex_lock(&wq_pool_mutex);
5952
5953 for_each_possible_cpu(cpu) {
5954 for_each_cpu_worker_pool(pool, cpu) {
5955 pool->node = cpu_to_node(cpu);
5956 }
5957 }
5958
40c17f75 5959 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5960 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5961 WARN(init_rescuer(wq),
5962 "workqueue: failed to create early rescuer for %s",
5963 wq->name);
5964 }
2186d9f9
TH
5965
5966 mutex_unlock(&wq_pool_mutex);
5967
3347fa09
TH
5968 /* create the initial workers */
5969 for_each_online_cpu(cpu) {
5970 for_each_cpu_worker_pool(pool, cpu) {
5971 pool->flags &= ~POOL_DISASSOCIATED;
5972 BUG_ON(!create_worker(pool));
5973 }
5974 }
5975
5976 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5977 BUG_ON(!create_worker(pool));
5978
5979 wq_online = true;
82607adc
TH
5980 wq_watchdog_init();
5981
6ee0578b 5982 return 0;
1da177e4 5983}