workqueue: async worker destruction
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
9625ab17 126 * M: pool->manager_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
3c25a55d
LJ
132 * WQ: wq->mutex protected.
133 *
b5927605 134 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
135 *
136 * MD: wq_mayday_lock protected.
1da177e4 137 */
1da177e4 138
2eaebdb3 139/* struct worker is defined in workqueue_internal.h */
c34056a3 140
bd7bdd43 141struct worker_pool {
d565ed63 142 spinlock_t lock; /* the pool lock */
d84ff051 143 int cpu; /* I: the associated cpu */
f3f90ad4 144 int node; /* I: the associated node ID */
9daf9e67 145 int id; /* I: pool ID */
11ebea50 146 unsigned int flags; /* X: flags */
bd7bdd43
TH
147
148 struct list_head worklist; /* L: list of pending works */
149 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
150
151 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
152 int nr_idle; /* L: currently idle ones */
153
154 struct list_head idle_list; /* X: list of idle workers */
155 struct timer_list idle_timer; /* L: worker idle timeout */
156 struct timer_list mayday_timer; /* L: SOS timer for workers */
157
c5aa87bb 158 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
159 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
160 /* L: hash of busy workers */
161
bc3a1afc 162 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 163 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 164 struct mutex manager_mutex; /* manager exclusion */
9625ab17 165 struct idr worker_idr; /* M: worker IDs and iteration */
60f5a4bc 166 struct completion *detach_completion; /* all workers detached */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @wi: integer used for iteration
368 * @pool: worker_pool to iterate workers of
369 *
9625ab17 370 * This must be called with @pool->manager_mutex.
822d8405
TH
371 *
372 * The if/else clause exists only for the lockdep assertion and can be
373 * ignored.
374 */
375#define for_each_pool_worker(worker, wi, pool) \
376 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
9625ab17 377 if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
822d8405
TH
378 else
379
49e3cf44
TH
380/**
381 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
382 * @pwq: iteration cursor
383 * @wq: the target workqueue
76af4d93 384 *
b09f4fd3 385 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
386 * If the pwq needs to be used beyond the locking in effect, the caller is
387 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
49e3cf44
TH
391 */
392#define for_each_pwq(pwq, wq) \
76af4d93 393 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 394 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 395 else
f3421797 396
dc186ad7
TG
397#ifdef CONFIG_DEBUG_OBJECTS_WORK
398
399static struct debug_obj_descr work_debug_descr;
400
99777288
SG
401static void *work_debug_hint(void *addr)
402{
403 return ((struct work_struct *) addr)->func;
404}
405
dc186ad7
TG
406/*
407 * fixup_init is called when:
408 * - an active object is initialized
409 */
410static int work_fixup_init(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_init(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424/*
425 * fixup_activate is called when:
426 * - an active object is activated
427 * - an unknown object is activated (might be a statically initialized object)
428 */
429static int work_fixup_activate(void *addr, enum debug_obj_state state)
430{
431 struct work_struct *work = addr;
432
433 switch (state) {
434
435 case ODEBUG_STATE_NOTAVAILABLE:
436 /*
437 * This is not really a fixup. The work struct was
438 * statically initialized. We just make sure that it
439 * is tracked in the object tracker.
440 */
22df02bb 441 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
442 debug_object_init(work, &work_debug_descr);
443 debug_object_activate(work, &work_debug_descr);
444 return 0;
445 }
446 WARN_ON_ONCE(1);
447 return 0;
448
449 case ODEBUG_STATE_ACTIVE:
450 WARN_ON(1);
451
452 default:
453 return 0;
454 }
455}
456
457/*
458 * fixup_free is called when:
459 * - an active object is freed
460 */
461static int work_fixup_free(void *addr, enum debug_obj_state state)
462{
463 struct work_struct *work = addr;
464
465 switch (state) {
466 case ODEBUG_STATE_ACTIVE:
467 cancel_work_sync(work);
468 debug_object_free(work, &work_debug_descr);
469 return 1;
470 default:
471 return 0;
472 }
473}
474
475static struct debug_obj_descr work_debug_descr = {
476 .name = "work_struct",
99777288 477 .debug_hint = work_debug_hint,
dc186ad7
TG
478 .fixup_init = work_fixup_init,
479 .fixup_activate = work_fixup_activate,
480 .fixup_free = work_fixup_free,
481};
482
483static inline void debug_work_activate(struct work_struct *work)
484{
485 debug_object_activate(work, &work_debug_descr);
486}
487
488static inline void debug_work_deactivate(struct work_struct *work)
489{
490 debug_object_deactivate(work, &work_debug_descr);
491}
492
493void __init_work(struct work_struct *work, int onstack)
494{
495 if (onstack)
496 debug_object_init_on_stack(work, &work_debug_descr);
497 else
498 debug_object_init(work, &work_debug_descr);
499}
500EXPORT_SYMBOL_GPL(__init_work);
501
502void destroy_work_on_stack(struct work_struct *work)
503{
504 debug_object_free(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(destroy_work_on_stack);
507
ea2e64f2
TG
508void destroy_delayed_work_on_stack(struct delayed_work *work)
509{
510 destroy_timer_on_stack(&work->timer);
511 debug_object_free(&work->work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
514
dc186ad7
TG
515#else
516static inline void debug_work_activate(struct work_struct *work) { }
517static inline void debug_work_deactivate(struct work_struct *work) { }
518#endif
519
4e8b22bd
LB
520/**
521 * worker_pool_assign_id - allocate ID and assing it to @pool
522 * @pool: the pool pointer of interest
523 *
524 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
525 * successfully, -errno on failure.
526 */
9daf9e67
TH
527static int worker_pool_assign_id(struct worker_pool *pool)
528{
529 int ret;
530
68e13a67 531 lockdep_assert_held(&wq_pool_mutex);
5bcab335 532
4e8b22bd
LB
533 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
534 GFP_KERNEL);
229641a6 535 if (ret >= 0) {
e68035fb 536 pool->id = ret;
229641a6
TH
537 return 0;
538 }
fa1b54e6 539 return ret;
7c3eed5c
TH
540}
541
df2d5ae4
TH
542/**
543 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
544 * @wq: the target workqueue
545 * @node: the node ID
546 *
547 * This must be called either with pwq_lock held or sched RCU read locked.
548 * If the pwq needs to be used beyond the locking in effect, the caller is
549 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
550 *
551 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
552 */
553static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
554 int node)
555{
556 assert_rcu_or_wq_mutex(wq);
557 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
558}
559
73f53c4a
TH
560static unsigned int work_color_to_flags(int color)
561{
562 return color << WORK_STRUCT_COLOR_SHIFT;
563}
564
565static int get_work_color(struct work_struct *work)
566{
567 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
568 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
569}
570
571static int work_next_color(int color)
572{
573 return (color + 1) % WORK_NR_COLORS;
574}
1da177e4 575
14441960 576/*
112202d9
TH
577 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
578 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 579 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 580 *
112202d9
TH
581 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
582 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
583 * work->data. These functions should only be called while the work is
584 * owned - ie. while the PENDING bit is set.
7a22ad75 585 *
112202d9 586 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 587 * corresponding to a work. Pool is available once the work has been
112202d9 588 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 589 * available only while the work item is queued.
7a22ad75 590 *
bbb68dfa
TH
591 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
592 * canceled. While being canceled, a work item may have its PENDING set
593 * but stay off timer and worklist for arbitrarily long and nobody should
594 * try to steal the PENDING bit.
14441960 595 */
7a22ad75
TH
596static inline void set_work_data(struct work_struct *work, unsigned long data,
597 unsigned long flags)
365970a1 598{
6183c009 599 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
600 atomic_long_set(&work->data, data | flags | work_static(work));
601}
365970a1 602
112202d9 603static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
604 unsigned long extra_flags)
605{
112202d9
TH
606 set_work_data(work, (unsigned long)pwq,
607 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
608}
609
4468a00f
LJ
610static void set_work_pool_and_keep_pending(struct work_struct *work,
611 int pool_id)
612{
613 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
614 WORK_STRUCT_PENDING);
615}
616
7c3eed5c
TH
617static void set_work_pool_and_clear_pending(struct work_struct *work,
618 int pool_id)
7a22ad75 619{
23657bb1
TH
620 /*
621 * The following wmb is paired with the implied mb in
622 * test_and_set_bit(PENDING) and ensures all updates to @work made
623 * here are visible to and precede any updates by the next PENDING
624 * owner.
625 */
626 smp_wmb();
7c3eed5c 627 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 628}
f756d5e2 629
7a22ad75 630static void clear_work_data(struct work_struct *work)
1da177e4 631{
7c3eed5c
TH
632 smp_wmb(); /* see set_work_pool_and_clear_pending() */
633 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
634}
635
112202d9 636static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 637{
e120153d 638 unsigned long data = atomic_long_read(&work->data);
7a22ad75 639
112202d9 640 if (data & WORK_STRUCT_PWQ)
e120153d
TH
641 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
642 else
643 return NULL;
4d707b9f
ON
644}
645
7c3eed5c
TH
646/**
647 * get_work_pool - return the worker_pool a given work was associated with
648 * @work: the work item of interest
649 *
68e13a67
LJ
650 * Pools are created and destroyed under wq_pool_mutex, and allows read
651 * access under sched-RCU read lock. As such, this function should be
652 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
653 *
654 * All fields of the returned pool are accessible as long as the above
655 * mentioned locking is in effect. If the returned pool needs to be used
656 * beyond the critical section, the caller is responsible for ensuring the
657 * returned pool is and stays online.
d185af30
YB
658 *
659 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
660 */
661static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 662{
e120153d 663 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 664 int pool_id;
7a22ad75 665
68e13a67 666 assert_rcu_or_pool_mutex();
fa1b54e6 667
112202d9
TH
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
7c3eed5c 670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 671
7c3eed5c
TH
672 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
673 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
674 return NULL;
675
fa1b54e6 676 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
677}
678
679/**
680 * get_work_pool_id - return the worker pool ID a given work is associated with
681 * @work: the work item of interest
682 *
d185af30 683 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
684 * %WORK_OFFQ_POOL_NONE if none.
685 */
686static int get_work_pool_id(struct work_struct *work)
687{
54d5b7d0
LJ
688 unsigned long data = atomic_long_read(&work->data);
689
112202d9
TH
690 if (data & WORK_STRUCT_PWQ)
691 return ((struct pool_workqueue *)
54d5b7d0 692 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 693
54d5b7d0 694 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
695}
696
bbb68dfa
TH
697static void mark_work_canceling(struct work_struct *work)
698{
7c3eed5c 699 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 700
7c3eed5c
TH
701 pool_id <<= WORK_OFFQ_POOL_SHIFT;
702 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
703}
704
705static bool work_is_canceling(struct work_struct *work)
706{
707 unsigned long data = atomic_long_read(&work->data);
708
112202d9 709 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
710}
711
e22bee78 712/*
3270476a
TH
713 * Policy functions. These define the policies on how the global worker
714 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 715 * they're being called with pool->lock held.
e22bee78
TH
716 */
717
63d95a91 718static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 719{
e19e397a 720 return !atomic_read(&pool->nr_running);
a848e3b6
ON
721}
722
4594bf15 723/*
e22bee78
TH
724 * Need to wake up a worker? Called from anything but currently
725 * running workers.
974271c4
TH
726 *
727 * Note that, because unbound workers never contribute to nr_running, this
706026c2 728 * function will always return %true for unbound pools as long as the
974271c4 729 * worklist isn't empty.
4594bf15 730 */
63d95a91 731static bool need_more_worker(struct worker_pool *pool)
365970a1 732{
63d95a91 733 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 734}
4594bf15 735
e22bee78 736/* Can I start working? Called from busy but !running workers. */
63d95a91 737static bool may_start_working(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return pool->nr_idle;
e22bee78
TH
740}
741
742/* Do I need to keep working? Called from currently running workers. */
63d95a91 743static bool keep_working(struct worker_pool *pool)
e22bee78 744{
e19e397a
TH
745 return !list_empty(&pool->worklist) &&
746 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
747}
748
749/* Do we need a new worker? Called from manager. */
63d95a91 750static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 751{
63d95a91 752 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 753}
365970a1 754
e22bee78 755/* Do I need to be the manager? */
63d95a91 756static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 757{
63d95a91 758 return need_to_create_worker(pool) ||
11ebea50 759 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
760}
761
762/* Do we have too many workers and should some go away? */
63d95a91 763static bool too_many_workers(struct worker_pool *pool)
e22bee78 764{
34a06bd6 765 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
766 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
767 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 768
ea1abd61
LJ
769 /*
770 * nr_idle and idle_list may disagree if idle rebinding is in
771 * progress. Never return %true if idle_list is empty.
772 */
773 if (list_empty(&pool->idle_list))
774 return false;
775
e22bee78 776 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
777}
778
4d707b9f 779/*
e22bee78
TH
780 * Wake up functions.
781 */
782
7e11629d 783/* Return the first worker. Safe with preemption disabled */
63d95a91 784static struct worker *first_worker(struct worker_pool *pool)
7e11629d 785{
63d95a91 786 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
787 return NULL;
788
63d95a91 789 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
790}
791
792/**
793 * wake_up_worker - wake up an idle worker
63d95a91 794 * @pool: worker pool to wake worker from
7e11629d 795 *
63d95a91 796 * Wake up the first idle worker of @pool.
7e11629d
TH
797 *
798 * CONTEXT:
d565ed63 799 * spin_lock_irq(pool->lock).
7e11629d 800 */
63d95a91 801static void wake_up_worker(struct worker_pool *pool)
7e11629d 802{
63d95a91 803 struct worker *worker = first_worker(pool);
7e11629d
TH
804
805 if (likely(worker))
806 wake_up_process(worker->task);
807}
808
d302f017 809/**
e22bee78
TH
810 * wq_worker_waking_up - a worker is waking up
811 * @task: task waking up
812 * @cpu: CPU @task is waking up to
813 *
814 * This function is called during try_to_wake_up() when a worker is
815 * being awoken.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 */
d84ff051 820void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
821{
822 struct worker *worker = kthread_data(task);
823
36576000 824 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 825 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 826 atomic_inc(&worker->pool->nr_running);
36576000 827 }
e22bee78
TH
828}
829
830/**
831 * wq_worker_sleeping - a worker is going to sleep
832 * @task: task going to sleep
833 * @cpu: CPU in question, must be the current CPU number
834 *
835 * This function is called during schedule() when a busy worker is
836 * going to sleep. Worker on the same cpu can be woken up by
837 * returning pointer to its task.
838 *
839 * CONTEXT:
840 * spin_lock_irq(rq->lock)
841 *
d185af30 842 * Return:
e22bee78
TH
843 * Worker task on @cpu to wake up, %NULL if none.
844 */
d84ff051 845struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 848 struct worker_pool *pool;
e22bee78 849
111c225a
TH
850 /*
851 * Rescuers, which may not have all the fields set up like normal
852 * workers, also reach here, let's not access anything before
853 * checking NOT_RUNNING.
854 */
2d64672e 855 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
856 return NULL;
857
111c225a 858 pool = worker->pool;
111c225a 859
e22bee78 860 /* this can only happen on the local cpu */
6183c009
TH
861 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
862 return NULL;
e22bee78
TH
863
864 /*
865 * The counterpart of the following dec_and_test, implied mb,
866 * worklist not empty test sequence is in insert_work().
867 * Please read comment there.
868 *
628c78e7
TH
869 * NOT_RUNNING is clear. This means that we're bound to and
870 * running on the local cpu w/ rq lock held and preemption
871 * disabled, which in turn means that none else could be
d565ed63 872 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 873 * lock is safe.
e22bee78 874 */
e19e397a
TH
875 if (atomic_dec_and_test(&pool->nr_running) &&
876 !list_empty(&pool->worklist))
63d95a91 877 to_wakeup = first_worker(pool);
e22bee78
TH
878 return to_wakeup ? to_wakeup->task : NULL;
879}
880
881/**
882 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 883 * @worker: self
d302f017
TH
884 * @flags: flags to set
885 * @wakeup: wakeup an idle worker if necessary
886 *
e22bee78
TH
887 * Set @flags in @worker->flags and adjust nr_running accordingly. If
888 * nr_running becomes zero and @wakeup is %true, an idle worker is
889 * woken up.
d302f017 890 *
cb444766 891 * CONTEXT:
d565ed63 892 * spin_lock_irq(pool->lock)
d302f017
TH
893 */
894static inline void worker_set_flags(struct worker *worker, unsigned int flags,
895 bool wakeup)
896{
bd7bdd43 897 struct worker_pool *pool = worker->pool;
e22bee78 898
cb444766
TH
899 WARN_ON_ONCE(worker->task != current);
900
e22bee78
TH
901 /*
902 * If transitioning into NOT_RUNNING, adjust nr_running and
903 * wake up an idle worker as necessary if requested by
904 * @wakeup.
905 */
906 if ((flags & WORKER_NOT_RUNNING) &&
907 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 908 if (wakeup) {
e19e397a 909 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 910 !list_empty(&pool->worklist))
63d95a91 911 wake_up_worker(pool);
e22bee78 912 } else
e19e397a 913 atomic_dec(&pool->nr_running);
e22bee78
TH
914 }
915
d302f017
TH
916 worker->flags |= flags;
917}
918
919/**
e22bee78 920 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 921 * @worker: self
d302f017
TH
922 * @flags: flags to clear
923 *
e22bee78 924 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 925 *
cb444766 926 * CONTEXT:
d565ed63 927 * spin_lock_irq(pool->lock)
d302f017
TH
928 */
929static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
930{
63d95a91 931 struct worker_pool *pool = worker->pool;
e22bee78
TH
932 unsigned int oflags = worker->flags;
933
cb444766
TH
934 WARN_ON_ONCE(worker->task != current);
935
d302f017 936 worker->flags &= ~flags;
e22bee78 937
42c025f3
TH
938 /*
939 * If transitioning out of NOT_RUNNING, increment nr_running. Note
940 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
941 * of multiple flags, not a single flag.
942 */
e22bee78
TH
943 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
944 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 945 atomic_inc(&pool->nr_running);
d302f017
TH
946}
947
8cca0eea
TH
948/**
949 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 950 * @pool: pool of interest
8cca0eea
TH
951 * @work: work to find worker for
952 *
c9e7cf27
TH
953 * Find a worker which is executing @work on @pool by searching
954 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
955 * to match, its current execution should match the address of @work and
956 * its work function. This is to avoid unwanted dependency between
957 * unrelated work executions through a work item being recycled while still
958 * being executed.
959 *
960 * This is a bit tricky. A work item may be freed once its execution
961 * starts and nothing prevents the freed area from being recycled for
962 * another work item. If the same work item address ends up being reused
963 * before the original execution finishes, workqueue will identify the
964 * recycled work item as currently executing and make it wait until the
965 * current execution finishes, introducing an unwanted dependency.
966 *
c5aa87bb
TH
967 * This function checks the work item address and work function to avoid
968 * false positives. Note that this isn't complete as one may construct a
969 * work function which can introduce dependency onto itself through a
970 * recycled work item. Well, if somebody wants to shoot oneself in the
971 * foot that badly, there's only so much we can do, and if such deadlock
972 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
973 *
974 * CONTEXT:
d565ed63 975 * spin_lock_irq(pool->lock).
8cca0eea 976 *
d185af30
YB
977 * Return:
978 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 979 * otherwise.
4d707b9f 980 */
c9e7cf27 981static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 982 struct work_struct *work)
4d707b9f 983{
42f8570f 984 struct worker *worker;
42f8570f 985
b67bfe0d 986 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
987 (unsigned long)work)
988 if (worker->current_work == work &&
989 worker->current_func == work->func)
42f8570f
SL
990 return worker;
991
992 return NULL;
4d707b9f
ON
993}
994
bf4ede01
TH
995/**
996 * move_linked_works - move linked works to a list
997 * @work: start of series of works to be scheduled
998 * @head: target list to append @work to
999 * @nextp: out paramter for nested worklist walking
1000 *
1001 * Schedule linked works starting from @work to @head. Work series to
1002 * be scheduled starts at @work and includes any consecutive work with
1003 * WORK_STRUCT_LINKED set in its predecessor.
1004 *
1005 * If @nextp is not NULL, it's updated to point to the next work of
1006 * the last scheduled work. This allows move_linked_works() to be
1007 * nested inside outer list_for_each_entry_safe().
1008 *
1009 * CONTEXT:
d565ed63 1010 * spin_lock_irq(pool->lock).
bf4ede01
TH
1011 */
1012static void move_linked_works(struct work_struct *work, struct list_head *head,
1013 struct work_struct **nextp)
1014{
1015 struct work_struct *n;
1016
1017 /*
1018 * Linked worklist will always end before the end of the list,
1019 * use NULL for list head.
1020 */
1021 list_for_each_entry_safe_from(work, n, NULL, entry) {
1022 list_move_tail(&work->entry, head);
1023 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1024 break;
1025 }
1026
1027 /*
1028 * If we're already inside safe list traversal and have moved
1029 * multiple works to the scheduled queue, the next position
1030 * needs to be updated.
1031 */
1032 if (nextp)
1033 *nextp = n;
1034}
1035
8864b4e5
TH
1036/**
1037 * get_pwq - get an extra reference on the specified pool_workqueue
1038 * @pwq: pool_workqueue to get
1039 *
1040 * Obtain an extra reference on @pwq. The caller should guarantee that
1041 * @pwq has positive refcnt and be holding the matching pool->lock.
1042 */
1043static void get_pwq(struct pool_workqueue *pwq)
1044{
1045 lockdep_assert_held(&pwq->pool->lock);
1046 WARN_ON_ONCE(pwq->refcnt <= 0);
1047 pwq->refcnt++;
1048}
1049
1050/**
1051 * put_pwq - put a pool_workqueue reference
1052 * @pwq: pool_workqueue to put
1053 *
1054 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1055 * destruction. The caller should be holding the matching pool->lock.
1056 */
1057static void put_pwq(struct pool_workqueue *pwq)
1058{
1059 lockdep_assert_held(&pwq->pool->lock);
1060 if (likely(--pwq->refcnt))
1061 return;
1062 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1063 return;
1064 /*
1065 * @pwq can't be released under pool->lock, bounce to
1066 * pwq_unbound_release_workfn(). This never recurses on the same
1067 * pool->lock as this path is taken only for unbound workqueues and
1068 * the release work item is scheduled on a per-cpu workqueue. To
1069 * avoid lockdep warning, unbound pool->locks are given lockdep
1070 * subclass of 1 in get_unbound_pool().
1071 */
1072 schedule_work(&pwq->unbound_release_work);
1073}
1074
dce90d47
TH
1075/**
1076 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1077 * @pwq: pool_workqueue to put (can be %NULL)
1078 *
1079 * put_pwq() with locking. This function also allows %NULL @pwq.
1080 */
1081static void put_pwq_unlocked(struct pool_workqueue *pwq)
1082{
1083 if (pwq) {
1084 /*
1085 * As both pwqs and pools are sched-RCU protected, the
1086 * following lock operations are safe.
1087 */
1088 spin_lock_irq(&pwq->pool->lock);
1089 put_pwq(pwq);
1090 spin_unlock_irq(&pwq->pool->lock);
1091 }
1092}
1093
112202d9 1094static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1095{
112202d9 1096 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1097
1098 trace_workqueue_activate_work(work);
112202d9 1099 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1100 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1101 pwq->nr_active++;
bf4ede01
TH
1102}
1103
112202d9 1104static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1105{
112202d9 1106 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1107 struct work_struct, entry);
1108
112202d9 1109 pwq_activate_delayed_work(work);
3aa62497
LJ
1110}
1111
bf4ede01 1112/**
112202d9
TH
1113 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1114 * @pwq: pwq of interest
bf4ede01 1115 * @color: color of work which left the queue
bf4ede01
TH
1116 *
1117 * A work either has completed or is removed from pending queue,
112202d9 1118 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1119 *
1120 * CONTEXT:
d565ed63 1121 * spin_lock_irq(pool->lock).
bf4ede01 1122 */
112202d9 1123static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1124{
8864b4e5 1125 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1126 if (color == WORK_NO_COLOR)
8864b4e5 1127 goto out_put;
bf4ede01 1128
112202d9 1129 pwq->nr_in_flight[color]--;
bf4ede01 1130
112202d9
TH
1131 pwq->nr_active--;
1132 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1133 /* one down, submit a delayed one */
112202d9
TH
1134 if (pwq->nr_active < pwq->max_active)
1135 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1136 }
1137
1138 /* is flush in progress and are we at the flushing tip? */
112202d9 1139 if (likely(pwq->flush_color != color))
8864b4e5 1140 goto out_put;
bf4ede01
TH
1141
1142 /* are there still in-flight works? */
112202d9 1143 if (pwq->nr_in_flight[color])
8864b4e5 1144 goto out_put;
bf4ede01 1145
112202d9
TH
1146 /* this pwq is done, clear flush_color */
1147 pwq->flush_color = -1;
bf4ede01
TH
1148
1149 /*
112202d9 1150 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1151 * will handle the rest.
1152 */
112202d9
TH
1153 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1154 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1155out_put:
1156 put_pwq(pwq);
bf4ede01
TH
1157}
1158
36e227d2 1159/**
bbb68dfa 1160 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1161 * @work: work item to steal
1162 * @is_dwork: @work is a delayed_work
bbb68dfa 1163 * @flags: place to store irq state
36e227d2
TH
1164 *
1165 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1166 * stable state - idle, on timer or on worklist.
36e227d2 1167 *
d185af30 1168 * Return:
36e227d2
TH
1169 * 1 if @work was pending and we successfully stole PENDING
1170 * 0 if @work was idle and we claimed PENDING
1171 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1172 * -ENOENT if someone else is canceling @work, this state may persist
1173 * for arbitrarily long
36e227d2 1174 *
d185af30 1175 * Note:
bbb68dfa 1176 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1177 * interrupted while holding PENDING and @work off queue, irq must be
1178 * disabled on entry. This, combined with delayed_work->timer being
1179 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1180 *
1181 * On successful return, >= 0, irq is disabled and the caller is
1182 * responsible for releasing it using local_irq_restore(*@flags).
1183 *
e0aecdd8 1184 * This function is safe to call from any context including IRQ handler.
bf4ede01 1185 */
bbb68dfa
TH
1186static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1187 unsigned long *flags)
bf4ede01 1188{
d565ed63 1189 struct worker_pool *pool;
112202d9 1190 struct pool_workqueue *pwq;
bf4ede01 1191
bbb68dfa
TH
1192 local_irq_save(*flags);
1193
36e227d2
TH
1194 /* try to steal the timer if it exists */
1195 if (is_dwork) {
1196 struct delayed_work *dwork = to_delayed_work(work);
1197
e0aecdd8
TH
1198 /*
1199 * dwork->timer is irqsafe. If del_timer() fails, it's
1200 * guaranteed that the timer is not queued anywhere and not
1201 * running on the local CPU.
1202 */
36e227d2
TH
1203 if (likely(del_timer(&dwork->timer)))
1204 return 1;
1205 }
1206
1207 /* try to claim PENDING the normal way */
bf4ede01
TH
1208 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1209 return 0;
1210
1211 /*
1212 * The queueing is in progress, or it is already queued. Try to
1213 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1214 */
d565ed63
TH
1215 pool = get_work_pool(work);
1216 if (!pool)
bbb68dfa 1217 goto fail;
bf4ede01 1218
d565ed63 1219 spin_lock(&pool->lock);
0b3dae68 1220 /*
112202d9
TH
1221 * work->data is guaranteed to point to pwq only while the work
1222 * item is queued on pwq->wq, and both updating work->data to point
1223 * to pwq on queueing and to pool on dequeueing are done under
1224 * pwq->pool->lock. This in turn guarantees that, if work->data
1225 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1226 * item is currently queued on that pool.
1227 */
112202d9
TH
1228 pwq = get_work_pwq(work);
1229 if (pwq && pwq->pool == pool) {
16062836
TH
1230 debug_work_deactivate(work);
1231
1232 /*
1233 * A delayed work item cannot be grabbed directly because
1234 * it might have linked NO_COLOR work items which, if left
112202d9 1235 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1236 * management later on and cause stall. Make sure the work
1237 * item is activated before grabbing.
1238 */
1239 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1240 pwq_activate_delayed_work(work);
16062836
TH
1241
1242 list_del_init(&work->entry);
112202d9 1243 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1244
112202d9 1245 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1246 set_work_pool_and_keep_pending(work, pool->id);
1247
1248 spin_unlock(&pool->lock);
1249 return 1;
bf4ede01 1250 }
d565ed63 1251 spin_unlock(&pool->lock);
bbb68dfa
TH
1252fail:
1253 local_irq_restore(*flags);
1254 if (work_is_canceling(work))
1255 return -ENOENT;
1256 cpu_relax();
36e227d2 1257 return -EAGAIN;
bf4ede01
TH
1258}
1259
4690c4ab 1260/**
706026c2 1261 * insert_work - insert a work into a pool
112202d9 1262 * @pwq: pwq @work belongs to
4690c4ab
TH
1263 * @work: work to insert
1264 * @head: insertion point
1265 * @extra_flags: extra WORK_STRUCT_* flags to set
1266 *
112202d9 1267 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1268 * work_struct flags.
4690c4ab
TH
1269 *
1270 * CONTEXT:
d565ed63 1271 * spin_lock_irq(pool->lock).
4690c4ab 1272 */
112202d9
TH
1273static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1274 struct list_head *head, unsigned int extra_flags)
b89deed3 1275{
112202d9 1276 struct worker_pool *pool = pwq->pool;
e22bee78 1277
4690c4ab 1278 /* we own @work, set data and link */
112202d9 1279 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1280 list_add_tail(&work->entry, head);
8864b4e5 1281 get_pwq(pwq);
e22bee78
TH
1282
1283 /*
c5aa87bb
TH
1284 * Ensure either wq_worker_sleeping() sees the above
1285 * list_add_tail() or we see zero nr_running to avoid workers lying
1286 * around lazily while there are works to be processed.
e22bee78
TH
1287 */
1288 smp_mb();
1289
63d95a91
TH
1290 if (__need_more_worker(pool))
1291 wake_up_worker(pool);
b89deed3
ON
1292}
1293
c8efcc25
TH
1294/*
1295 * Test whether @work is being queued from another work executing on the
8d03ecfe 1296 * same workqueue.
c8efcc25
TH
1297 */
1298static bool is_chained_work(struct workqueue_struct *wq)
1299{
8d03ecfe
TH
1300 struct worker *worker;
1301
1302 worker = current_wq_worker();
1303 /*
1304 * Return %true iff I'm a worker execuing a work item on @wq. If
1305 * I'm @worker, it's safe to dereference it without locking.
1306 */
112202d9 1307 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1308}
1309
d84ff051 1310static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1311 struct work_struct *work)
1312{
112202d9 1313 struct pool_workqueue *pwq;
c9178087 1314 struct worker_pool *last_pool;
1e19ffc6 1315 struct list_head *worklist;
8a2e8e5d 1316 unsigned int work_flags;
b75cac93 1317 unsigned int req_cpu = cpu;
8930caba
TH
1318
1319 /*
1320 * While a work item is PENDING && off queue, a task trying to
1321 * steal the PENDING will busy-loop waiting for it to either get
1322 * queued or lose PENDING. Grabbing PENDING and queueing should
1323 * happen with IRQ disabled.
1324 */
1325 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1326
dc186ad7 1327 debug_work_activate(work);
1e19ffc6 1328
9ef28a73 1329 /* if draining, only works from the same workqueue are allowed */
618b01eb 1330 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1331 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1332 return;
9e8cd2f5 1333retry:
df2d5ae4
TH
1334 if (req_cpu == WORK_CPU_UNBOUND)
1335 cpu = raw_smp_processor_id();
1336
c9178087 1337 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1338 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1339 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1340 else
1341 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1342
c9178087
TH
1343 /*
1344 * If @work was previously on a different pool, it might still be
1345 * running there, in which case the work needs to be queued on that
1346 * pool to guarantee non-reentrancy.
1347 */
1348 last_pool = get_work_pool(work);
1349 if (last_pool && last_pool != pwq->pool) {
1350 struct worker *worker;
18aa9eff 1351
c9178087 1352 spin_lock(&last_pool->lock);
18aa9eff 1353
c9178087 1354 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1355
c9178087
TH
1356 if (worker && worker->current_pwq->wq == wq) {
1357 pwq = worker->current_pwq;
8930caba 1358 } else {
c9178087
TH
1359 /* meh... not running there, queue here */
1360 spin_unlock(&last_pool->lock);
112202d9 1361 spin_lock(&pwq->pool->lock);
8930caba 1362 }
f3421797 1363 } else {
112202d9 1364 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1365 }
1366
9e8cd2f5
TH
1367 /*
1368 * pwq is determined and locked. For unbound pools, we could have
1369 * raced with pwq release and it could already be dead. If its
1370 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1371 * without another pwq replacing it in the numa_pwq_tbl or while
1372 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1373 * make forward-progress.
1374 */
1375 if (unlikely(!pwq->refcnt)) {
1376 if (wq->flags & WQ_UNBOUND) {
1377 spin_unlock(&pwq->pool->lock);
1378 cpu_relax();
1379 goto retry;
1380 }
1381 /* oops */
1382 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1383 wq->name, cpu);
1384 }
1385
112202d9
TH
1386 /* pwq determined, queue */
1387 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1388
f5b2552b 1389 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1390 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1391 return;
1392 }
1e19ffc6 1393
112202d9
TH
1394 pwq->nr_in_flight[pwq->work_color]++;
1395 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1396
112202d9 1397 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1398 trace_workqueue_activate_work(work);
112202d9
TH
1399 pwq->nr_active++;
1400 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1401 } else {
1402 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1403 worklist = &pwq->delayed_works;
8a2e8e5d 1404 }
1e19ffc6 1405
112202d9 1406 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1407
112202d9 1408 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1409}
1410
0fcb78c2 1411/**
c1a220e7
ZR
1412 * queue_work_on - queue work on specific cpu
1413 * @cpu: CPU number to execute work on
0fcb78c2
REB
1414 * @wq: workqueue to use
1415 * @work: work to queue
1416 *
c1a220e7
ZR
1417 * We queue the work to a specific CPU, the caller must ensure it
1418 * can't go away.
d185af30
YB
1419 *
1420 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1421 */
d4283e93
TH
1422bool queue_work_on(int cpu, struct workqueue_struct *wq,
1423 struct work_struct *work)
1da177e4 1424{
d4283e93 1425 bool ret = false;
8930caba 1426 unsigned long flags;
ef1ca236 1427
8930caba 1428 local_irq_save(flags);
c1a220e7 1429
22df02bb 1430 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1431 __queue_work(cpu, wq, work);
d4283e93 1432 ret = true;
c1a220e7 1433 }
ef1ca236 1434
8930caba 1435 local_irq_restore(flags);
1da177e4
LT
1436 return ret;
1437}
ad7b1f84 1438EXPORT_SYMBOL(queue_work_on);
1da177e4 1439
d8e794df 1440void delayed_work_timer_fn(unsigned long __data)
1da177e4 1441{
52bad64d 1442 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1443
e0aecdd8 1444 /* should have been called from irqsafe timer with irq already off */
60c057bc 1445 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1446}
1438ade5 1447EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1448
7beb2edf
TH
1449static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1450 struct delayed_work *dwork, unsigned long delay)
1da177e4 1451{
7beb2edf
TH
1452 struct timer_list *timer = &dwork->timer;
1453 struct work_struct *work = &dwork->work;
7beb2edf
TH
1454
1455 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1456 timer->data != (unsigned long)dwork);
fc4b514f
TH
1457 WARN_ON_ONCE(timer_pending(timer));
1458 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1459
8852aac2
TH
1460 /*
1461 * If @delay is 0, queue @dwork->work immediately. This is for
1462 * both optimization and correctness. The earliest @timer can
1463 * expire is on the closest next tick and delayed_work users depend
1464 * on that there's no such delay when @delay is 0.
1465 */
1466 if (!delay) {
1467 __queue_work(cpu, wq, &dwork->work);
1468 return;
1469 }
1470
7beb2edf 1471 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1472
60c057bc 1473 dwork->wq = wq;
1265057f 1474 dwork->cpu = cpu;
7beb2edf
TH
1475 timer->expires = jiffies + delay;
1476
1477 if (unlikely(cpu != WORK_CPU_UNBOUND))
1478 add_timer_on(timer, cpu);
1479 else
1480 add_timer(timer);
1da177e4
LT
1481}
1482
0fcb78c2
REB
1483/**
1484 * queue_delayed_work_on - queue work on specific CPU after delay
1485 * @cpu: CPU number to execute work on
1486 * @wq: workqueue to use
af9997e4 1487 * @dwork: work to queue
0fcb78c2
REB
1488 * @delay: number of jiffies to wait before queueing
1489 *
d185af30 1490 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1491 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1492 * execution.
0fcb78c2 1493 */
d4283e93
TH
1494bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1495 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1496{
52bad64d 1497 struct work_struct *work = &dwork->work;
d4283e93 1498 bool ret = false;
8930caba 1499 unsigned long flags;
7a6bc1cd 1500
8930caba
TH
1501 /* read the comment in __queue_work() */
1502 local_irq_save(flags);
7a6bc1cd 1503
22df02bb 1504 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1505 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1506 ret = true;
7a6bc1cd 1507 }
8a3e77cc 1508
8930caba 1509 local_irq_restore(flags);
7a6bc1cd
VP
1510 return ret;
1511}
ad7b1f84 1512EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1513
8376fe22
TH
1514/**
1515 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1516 * @cpu: CPU number to execute work on
1517 * @wq: workqueue to use
1518 * @dwork: work to queue
1519 * @delay: number of jiffies to wait before queueing
1520 *
1521 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1522 * modify @dwork's timer so that it expires after @delay. If @delay is
1523 * zero, @work is guaranteed to be scheduled immediately regardless of its
1524 * current state.
1525 *
d185af30 1526 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1527 * pending and its timer was modified.
1528 *
e0aecdd8 1529 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1530 * See try_to_grab_pending() for details.
1531 */
1532bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1533 struct delayed_work *dwork, unsigned long delay)
1534{
1535 unsigned long flags;
1536 int ret;
c7fc77f7 1537
8376fe22
TH
1538 do {
1539 ret = try_to_grab_pending(&dwork->work, true, &flags);
1540 } while (unlikely(ret == -EAGAIN));
63bc0362 1541
8376fe22
TH
1542 if (likely(ret >= 0)) {
1543 __queue_delayed_work(cpu, wq, dwork, delay);
1544 local_irq_restore(flags);
7a6bc1cd 1545 }
8376fe22
TH
1546
1547 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1548 return ret;
1549}
8376fe22
TH
1550EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1551
c8e55f36
TH
1552/**
1553 * worker_enter_idle - enter idle state
1554 * @worker: worker which is entering idle state
1555 *
1556 * @worker is entering idle state. Update stats and idle timer if
1557 * necessary.
1558 *
1559 * LOCKING:
d565ed63 1560 * spin_lock_irq(pool->lock).
c8e55f36
TH
1561 */
1562static void worker_enter_idle(struct worker *worker)
1da177e4 1563{
bd7bdd43 1564 struct worker_pool *pool = worker->pool;
c8e55f36 1565
6183c009
TH
1566 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1567 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1568 (worker->hentry.next || worker->hentry.pprev)))
1569 return;
c8e55f36 1570
cb444766
TH
1571 /* can't use worker_set_flags(), also called from start_worker() */
1572 worker->flags |= WORKER_IDLE;
bd7bdd43 1573 pool->nr_idle++;
e22bee78 1574 worker->last_active = jiffies;
c8e55f36
TH
1575
1576 /* idle_list is LIFO */
bd7bdd43 1577 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1578
628c78e7
TH
1579 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1580 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1581
544ecf31 1582 /*
706026c2 1583 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1584 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1585 * nr_running, the warning may trigger spuriously. Check iff
1586 * unbind is not in progress.
544ecf31 1587 */
24647570 1588 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1589 pool->nr_workers == pool->nr_idle &&
e19e397a 1590 atomic_read(&pool->nr_running));
c8e55f36
TH
1591}
1592
1593/**
1594 * worker_leave_idle - leave idle state
1595 * @worker: worker which is leaving idle state
1596 *
1597 * @worker is leaving idle state. Update stats.
1598 *
1599 * LOCKING:
d565ed63 1600 * spin_lock_irq(pool->lock).
c8e55f36
TH
1601 */
1602static void worker_leave_idle(struct worker *worker)
1603{
bd7bdd43 1604 struct worker_pool *pool = worker->pool;
c8e55f36 1605
6183c009
TH
1606 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1607 return;
d302f017 1608 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1609 pool->nr_idle--;
c8e55f36
TH
1610 list_del_init(&worker->entry);
1611}
1612
e22bee78 1613/**
f36dc67b
LJ
1614 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1615 * @pool: target worker_pool
1616 *
1617 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1618 *
1619 * Works which are scheduled while the cpu is online must at least be
1620 * scheduled to a worker which is bound to the cpu so that if they are
1621 * flushed from cpu callbacks while cpu is going down, they are
1622 * guaranteed to execute on the cpu.
1623 *
f5faa077 1624 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1625 * themselves to the target cpu and may race with cpu going down or
1626 * coming online. kthread_bind() can't be used because it may put the
1627 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1628 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1629 * [dis]associated in the meantime.
1630 *
706026c2 1631 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1632 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1633 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1634 * enters idle state or fetches works without dropping lock, it can
1635 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1636 *
1637 * CONTEXT:
d565ed63 1638 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1639 * held.
1640 *
d185af30 1641 * Return:
706026c2 1642 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1643 * bound), %false if offline.
1644 */
f36dc67b 1645static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1646__acquires(&pool->lock)
e22bee78 1647{
e22bee78 1648 while (true) {
4e6045f1 1649 /*
e22bee78
TH
1650 * The following call may fail, succeed or succeed
1651 * without actually migrating the task to the cpu if
1652 * it races with cpu hotunplug operation. Verify
24647570 1653 * against POOL_DISASSOCIATED.
4e6045f1 1654 */
24647570 1655 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1656 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1657
d565ed63 1658 spin_lock_irq(&pool->lock);
24647570 1659 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1660 return false;
f5faa077 1661 if (task_cpu(current) == pool->cpu &&
7a4e344c 1662 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1663 return true;
d565ed63 1664 spin_unlock_irq(&pool->lock);
e22bee78 1665
5035b20f
TH
1666 /*
1667 * We've raced with CPU hot[un]plug. Give it a breather
1668 * and retry migration. cond_resched() is required here;
1669 * otherwise, we might deadlock against cpu_stop trying to
1670 * bring down the CPU on non-preemptive kernel.
1671 */
e22bee78 1672 cpu_relax();
5035b20f 1673 cond_resched();
e22bee78
TH
1674 }
1675}
1676
c34056a3
TH
1677static struct worker *alloc_worker(void)
1678{
1679 struct worker *worker;
1680
1681 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1682 if (worker) {
1683 INIT_LIST_HEAD(&worker->entry);
affee4b2 1684 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1685 /* on creation a worker is in !idle && prep state */
1686 worker->flags = WORKER_PREP;
c8e55f36 1687 }
c34056a3
TH
1688 return worker;
1689}
1690
60f5a4bc
LJ
1691/**
1692 * worker_detach_from_pool() - detach a worker from its pool
1693 * @worker: worker which is attached to its pool
1694 * @pool: the pool @worker is attached to
1695 *
1696 * Undo the attaching which had been done in create_worker(). The caller
1697 * worker shouldn't access to the pool after detached except it has other
1698 * reference to the pool.
1699 */
1700static void worker_detach_from_pool(struct worker *worker,
1701 struct worker_pool *pool)
1702{
1703 struct completion *detach_completion = NULL;
1704
1705 mutex_lock(&pool->manager_mutex);
1706 idr_remove(&pool->worker_idr, worker->id);
1707 if (idr_is_empty(&pool->worker_idr))
1708 detach_completion = pool->detach_completion;
1709 mutex_unlock(&pool->manager_mutex);
1710
1711 if (detach_completion)
1712 complete(detach_completion);
1713}
1714
c34056a3
TH
1715/**
1716 * create_worker - create a new workqueue worker
63d95a91 1717 * @pool: pool the new worker will belong to
c34056a3 1718 *
73eb7fe7
LJ
1719 * Create a new worker which is attached to @pool. The new worker must be
1720 * started by start_worker().
c34056a3
TH
1721 *
1722 * CONTEXT:
1723 * Might sleep. Does GFP_KERNEL allocations.
1724 *
d185af30 1725 * Return:
c34056a3
TH
1726 * Pointer to the newly created worker.
1727 */
bc2ae0f5 1728static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1729{
c34056a3 1730 struct worker *worker = NULL;
f3421797 1731 int id = -1;
e3c916a4 1732 char id_buf[16];
c34056a3 1733
cd549687
TH
1734 lockdep_assert_held(&pool->manager_mutex);
1735
822d8405
TH
1736 /*
1737 * ID is needed to determine kthread name. Allocate ID first
1738 * without installing the pointer.
1739 */
9625ab17 1740 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
822d8405
TH
1741 if (id < 0)
1742 goto fail;
c34056a3
TH
1743
1744 worker = alloc_worker();
1745 if (!worker)
1746 goto fail;
1747
bd7bdd43 1748 worker->pool = pool;
c34056a3
TH
1749 worker->id = id;
1750
29c91e99 1751 if (pool->cpu >= 0)
e3c916a4
TH
1752 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1753 pool->attrs->nice < 0 ? "H" : "");
f3421797 1754 else
e3c916a4
TH
1755 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1756
f3f90ad4 1757 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1758 "kworker/%s", id_buf);
c34056a3
TH
1759 if (IS_ERR(worker->task))
1760 goto fail;
1761
91151228
ON
1762 set_user_nice(worker->task, pool->attrs->nice);
1763
1764 /* prevent userland from meddling with cpumask of workqueue workers */
1765 worker->task->flags |= PF_NO_SETAFFINITY;
1766
c5aa87bb
TH
1767 /*
1768 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1769 * online CPUs. It'll be re-applied when any of the CPUs come up.
1770 */
7a4e344c 1771 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1772
7a4e344c
TH
1773 /*
1774 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1775 * remains stable across this function. See the comments above the
1776 * flag definition for details.
1777 */
1778 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1779 worker->flags |= WORKER_UNBOUND;
c34056a3 1780
822d8405 1781 /* successful, commit the pointer to idr */
822d8405 1782 idr_replace(&pool->worker_idr, worker, worker->id);
822d8405 1783
c34056a3 1784 return worker;
822d8405 1785
c34056a3 1786fail:
9625ab17 1787 if (id >= 0)
822d8405 1788 idr_remove(&pool->worker_idr, id);
c34056a3
TH
1789 kfree(worker);
1790 return NULL;
1791}
1792
1793/**
1794 * start_worker - start a newly created worker
1795 * @worker: worker to start
1796 *
706026c2 1797 * Make the pool aware of @worker and start it.
c34056a3
TH
1798 *
1799 * CONTEXT:
d565ed63 1800 * spin_lock_irq(pool->lock).
c34056a3
TH
1801 */
1802static void start_worker(struct worker *worker)
1803{
bd7bdd43 1804 worker->pool->nr_workers++;
c8e55f36 1805 worker_enter_idle(worker);
c34056a3
TH
1806 wake_up_process(worker->task);
1807}
1808
ebf44d16
TH
1809/**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
cd549687 1813 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1816 */
1817static int create_and_start_worker(struct worker_pool *pool)
1818{
1819 struct worker *worker;
1820
cd549687
TH
1821 mutex_lock(&pool->manager_mutex);
1822
ebf44d16
TH
1823 worker = create_worker(pool);
1824 if (worker) {
1825 spin_lock_irq(&pool->lock);
1826 start_worker(worker);
1827 spin_unlock_irq(&pool->lock);
1828 }
1829
cd549687
TH
1830 mutex_unlock(&pool->manager_mutex);
1831
ebf44d16
TH
1832 return worker ? 0 : -ENOMEM;
1833}
1834
c34056a3
TH
1835/**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
73eb7fe7
LJ
1839 * Destroy @worker and adjust @pool stats accordingly. The worker should
1840 * be idle.
c8e55f36
TH
1841 *
1842 * CONTEXT:
60f5a4bc 1843 * spin_lock_irq(pool->lock).
c34056a3
TH
1844 */
1845static void destroy_worker(struct worker *worker)
1846{
bd7bdd43 1847 struct worker_pool *pool = worker->pool;
c34056a3 1848
cd549687
TH
1849 lockdep_assert_held(&pool->lock);
1850
c34056a3 1851 /* sanity check frenzy */
6183c009 1852 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1853 WARN_ON(!list_empty(&worker->scheduled)) ||
1854 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1855 return;
c34056a3 1856
73eb7fe7
LJ
1857 pool->nr_workers--;
1858 pool->nr_idle--;
c8e55f36
TH
1859
1860 list_del_init(&worker->entry);
cb444766 1861 worker->flags |= WORKER_DIE;
60f5a4bc 1862 wake_up_process(worker->task);
c34056a3
TH
1863}
1864
63d95a91 1865static void idle_worker_timeout(unsigned long __pool)
e22bee78 1866{
63d95a91 1867 struct worker_pool *pool = (void *)__pool;
e22bee78 1868
d565ed63 1869 spin_lock_irq(&pool->lock);
e22bee78 1870
63d95a91 1871 if (too_many_workers(pool)) {
e22bee78
TH
1872 struct worker *worker;
1873 unsigned long expires;
1874
1875 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1876 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1877 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1878
1879 if (time_before(jiffies, expires))
63d95a91 1880 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1881 else {
1882 /* it's been idle for too long, wake up manager */
11ebea50 1883 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1884 wake_up_worker(pool);
d5abe669 1885 }
e22bee78
TH
1886 }
1887
d565ed63 1888 spin_unlock_irq(&pool->lock);
e22bee78 1889}
d5abe669 1890
493a1724 1891static void send_mayday(struct work_struct *work)
e22bee78 1892{
112202d9
TH
1893 struct pool_workqueue *pwq = get_work_pwq(work);
1894 struct workqueue_struct *wq = pwq->wq;
493a1724 1895
2e109a28 1896 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1897
493008a8 1898 if (!wq->rescuer)
493a1724 1899 return;
e22bee78
TH
1900
1901 /* mayday mayday mayday */
493a1724 1902 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1903 /*
1904 * If @pwq is for an unbound wq, its base ref may be put at
1905 * any time due to an attribute change. Pin @pwq until the
1906 * rescuer is done with it.
1907 */
1908 get_pwq(pwq);
493a1724 1909 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1910 wake_up_process(wq->rescuer->task);
493a1724 1911 }
e22bee78
TH
1912}
1913
706026c2 1914static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1915{
63d95a91 1916 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1917 struct work_struct *work;
1918
2e109a28 1919 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1920 spin_lock(&pool->lock);
e22bee78 1921
63d95a91 1922 if (need_to_create_worker(pool)) {
e22bee78
TH
1923 /*
1924 * We've been trying to create a new worker but
1925 * haven't been successful. We might be hitting an
1926 * allocation deadlock. Send distress signals to
1927 * rescuers.
1928 */
63d95a91 1929 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1930 send_mayday(work);
1da177e4 1931 }
e22bee78 1932
493a1724 1933 spin_unlock(&pool->lock);
2e109a28 1934 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1935
63d95a91 1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1937}
1938
e22bee78
TH
1939/**
1940 * maybe_create_worker - create a new worker if necessary
63d95a91 1941 * @pool: pool to create a new worker for
e22bee78 1942 *
63d95a91 1943 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1944 * have at least one idle worker on return from this function. If
1945 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1946 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1947 * possible allocation deadlock.
1948 *
c5aa87bb
TH
1949 * On return, need_to_create_worker() is guaranteed to be %false and
1950 * may_start_working() %true.
e22bee78
TH
1951 *
1952 * LOCKING:
d565ed63 1953 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1954 * multiple times. Does GFP_KERNEL allocations. Called only from
1955 * manager.
1956 *
d185af30 1957 * Return:
c5aa87bb 1958 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1959 * otherwise.
1960 */
63d95a91 1961static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1962__releases(&pool->lock)
1963__acquires(&pool->lock)
1da177e4 1964{
63d95a91 1965 if (!need_to_create_worker(pool))
e22bee78
TH
1966 return false;
1967restart:
d565ed63 1968 spin_unlock_irq(&pool->lock);
9f9c2364 1969
e22bee78 1970 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1971 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1972
1973 while (true) {
1974 struct worker *worker;
1975
bc2ae0f5 1976 worker = create_worker(pool);
e22bee78 1977 if (worker) {
63d95a91 1978 del_timer_sync(&pool->mayday_timer);
d565ed63 1979 spin_lock_irq(&pool->lock);
e22bee78 1980 start_worker(worker);
6183c009
TH
1981 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1982 goto restart;
e22bee78
TH
1983 return true;
1984 }
1985
63d95a91 1986 if (!need_to_create_worker(pool))
e22bee78 1987 break;
1da177e4 1988
e22bee78
TH
1989 __set_current_state(TASK_INTERRUPTIBLE);
1990 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1991
63d95a91 1992 if (!need_to_create_worker(pool))
e22bee78
TH
1993 break;
1994 }
1995
63d95a91 1996 del_timer_sync(&pool->mayday_timer);
d565ed63 1997 spin_lock_irq(&pool->lock);
63d95a91 1998 if (need_to_create_worker(pool))
e22bee78
TH
1999 goto restart;
2000 return true;
2001}
2002
2003/**
2004 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2005 * @pool: pool to destroy workers for
e22bee78 2006 *
63d95a91 2007 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2008 * IDLE_WORKER_TIMEOUT.
2009 *
2010 * LOCKING:
d565ed63 2011 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2012 * multiple times. Called only from manager.
2013 *
d185af30 2014 * Return:
c5aa87bb 2015 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2016 * otherwise.
2017 */
63d95a91 2018static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2019{
2020 bool ret = false;
1da177e4 2021
63d95a91 2022 while (too_many_workers(pool)) {
e22bee78
TH
2023 struct worker *worker;
2024 unsigned long expires;
3af24433 2025
63d95a91 2026 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2027 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2028
e22bee78 2029 if (time_before(jiffies, expires)) {
63d95a91 2030 mod_timer(&pool->idle_timer, expires);
3af24433 2031 break;
e22bee78 2032 }
1da177e4 2033
e22bee78
TH
2034 destroy_worker(worker);
2035 ret = true;
1da177e4 2036 }
1e19ffc6 2037
e22bee78 2038 return ret;
1e19ffc6
TH
2039}
2040
73f53c4a 2041/**
e22bee78
TH
2042 * manage_workers - manage worker pool
2043 * @worker: self
73f53c4a 2044 *
706026c2 2045 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2046 * to. At any given time, there can be only zero or one manager per
706026c2 2047 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2048 *
2049 * The caller can safely start processing works on false return. On
2050 * true return, it's guaranteed that need_to_create_worker() is false
2051 * and may_start_working() is true.
73f53c4a
TH
2052 *
2053 * CONTEXT:
d565ed63 2054 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2055 * multiple times. Does GFP_KERNEL allocations.
2056 *
d185af30 2057 * Return:
2d498db9
L
2058 * %false if the pool don't need management and the caller can safely start
2059 * processing works, %true indicates that the function released pool->lock
2060 * and reacquired it to perform some management function and that the
2061 * conditions that the caller verified while holding the lock before
2062 * calling the function might no longer be true.
73f53c4a 2063 */
e22bee78 2064static bool manage_workers(struct worker *worker)
73f53c4a 2065{
63d95a91 2066 struct worker_pool *pool = worker->pool;
e22bee78 2067 bool ret = false;
73f53c4a 2068
bc3a1afc
TH
2069 /*
2070 * Managership is governed by two mutexes - manager_arb and
2071 * manager_mutex. manager_arb handles arbitration of manager role.
2072 * Anyone who successfully grabs manager_arb wins the arbitration
2073 * and becomes the manager. mutex_trylock() on pool->manager_arb
2074 * failure while holding pool->lock reliably indicates that someone
2075 * else is managing the pool and the worker which failed trylock
2076 * can proceed to executing work items. This means that anyone
2077 * grabbing manager_arb is responsible for actually performing
2078 * manager duties. If manager_arb is grabbed and released without
2079 * actual management, the pool may stall indefinitely.
2080 *
2081 * manager_mutex is used for exclusion of actual management
2082 * operations. The holder of manager_mutex can be sure that none
2083 * of management operations, including creation and destruction of
2084 * workers, won't take place until the mutex is released. Because
2085 * manager_mutex doesn't interfere with manager role arbitration,
2086 * it is guaranteed that the pool's management, while may be
2087 * delayed, won't be disturbed by someone else grabbing
2088 * manager_mutex.
2089 */
34a06bd6 2090 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2091 return ret;
1e19ffc6 2092
ee378aa4 2093 /*
bc3a1afc
TH
2094 * With manager arbitration won, manager_mutex would be free in
2095 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2096 */
bc3a1afc 2097 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2098 spin_unlock_irq(&pool->lock);
bc3a1afc 2099 mutex_lock(&pool->manager_mutex);
8f174b11 2100 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2101 ret = true;
2102 }
73f53c4a 2103
11ebea50 2104 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2105
2106 /*
e22bee78
TH
2107 * Destroy and then create so that may_start_working() is true
2108 * on return.
73f53c4a 2109 */
63d95a91
TH
2110 ret |= maybe_destroy_workers(pool);
2111 ret |= maybe_create_worker(pool);
e22bee78 2112
bc3a1afc 2113 mutex_unlock(&pool->manager_mutex);
34a06bd6 2114 mutex_unlock(&pool->manager_arb);
e22bee78 2115 return ret;
73f53c4a
TH
2116}
2117
a62428c0
TH
2118/**
2119 * process_one_work - process single work
c34056a3 2120 * @worker: self
a62428c0
TH
2121 * @work: work to process
2122 *
2123 * Process @work. This function contains all the logics necessary to
2124 * process a single work including synchronization against and
2125 * interaction with other workers on the same cpu, queueing and
2126 * flushing. As long as context requirement is met, any worker can
2127 * call this function to process a work.
2128 *
2129 * CONTEXT:
d565ed63 2130 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2131 */
c34056a3 2132static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2133__releases(&pool->lock)
2134__acquires(&pool->lock)
a62428c0 2135{
112202d9 2136 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2137 struct worker_pool *pool = worker->pool;
112202d9 2138 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2139 int work_color;
7e11629d 2140 struct worker *collision;
a62428c0
TH
2141#ifdef CONFIG_LOCKDEP
2142 /*
2143 * It is permissible to free the struct work_struct from
2144 * inside the function that is called from it, this we need to
2145 * take into account for lockdep too. To avoid bogus "held
2146 * lock freed" warnings as well as problems when looking into
2147 * work->lockdep_map, make a copy and use that here.
2148 */
4d82a1de
PZ
2149 struct lockdep_map lockdep_map;
2150
2151 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2152#endif
6fec10a1
TH
2153 /*
2154 * Ensure we're on the correct CPU. DISASSOCIATED test is
2155 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2156 * unbound or a disassociated pool.
6fec10a1 2157 */
5f7dabfd 2158 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2159 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2160 raw_smp_processor_id() != pool->cpu);
25511a47 2161
7e11629d
TH
2162 /*
2163 * A single work shouldn't be executed concurrently by
2164 * multiple workers on a single cpu. Check whether anyone is
2165 * already processing the work. If so, defer the work to the
2166 * currently executing one.
2167 */
c9e7cf27 2168 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2169 if (unlikely(collision)) {
2170 move_linked_works(work, &collision->scheduled, NULL);
2171 return;
2172 }
2173
8930caba 2174 /* claim and dequeue */
a62428c0 2175 debug_work_deactivate(work);
c9e7cf27 2176 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2177 worker->current_work = work;
a2c1c57b 2178 worker->current_func = work->func;
112202d9 2179 worker->current_pwq = pwq;
73f53c4a 2180 work_color = get_work_color(work);
7a22ad75 2181
a62428c0
TH
2182 list_del_init(&work->entry);
2183
fb0e7beb
TH
2184 /*
2185 * CPU intensive works don't participate in concurrency
2186 * management. They're the scheduler's responsibility.
2187 */
2188 if (unlikely(cpu_intensive))
2189 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2190
974271c4 2191 /*
d565ed63 2192 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2193 * executed ASAP. Wake up another worker if necessary.
2194 */
63d95a91
TH
2195 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2196 wake_up_worker(pool);
974271c4 2197
8930caba 2198 /*
7c3eed5c 2199 * Record the last pool and clear PENDING which should be the last
d565ed63 2200 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2201 * PENDING and queued state changes happen together while IRQ is
2202 * disabled.
8930caba 2203 */
7c3eed5c 2204 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2205
d565ed63 2206 spin_unlock_irq(&pool->lock);
a62428c0 2207
112202d9 2208 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2209 lock_map_acquire(&lockdep_map);
e36c886a 2210 trace_workqueue_execute_start(work);
a2c1c57b 2211 worker->current_func(work);
e36c886a
AV
2212 /*
2213 * While we must be careful to not use "work" after this, the trace
2214 * point will only record its address.
2215 */
2216 trace_workqueue_execute_end(work);
a62428c0 2217 lock_map_release(&lockdep_map);
112202d9 2218 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2219
2220 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2221 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2222 " last function: %pf\n",
a2c1c57b
TH
2223 current->comm, preempt_count(), task_pid_nr(current),
2224 worker->current_func);
a62428c0
TH
2225 debug_show_held_locks(current);
2226 dump_stack();
2227 }
2228
b22ce278
TH
2229 /*
2230 * The following prevents a kworker from hogging CPU on !PREEMPT
2231 * kernels, where a requeueing work item waiting for something to
2232 * happen could deadlock with stop_machine as such work item could
2233 * indefinitely requeue itself while all other CPUs are trapped in
2234 * stop_machine.
2235 */
2236 cond_resched();
2237
d565ed63 2238 spin_lock_irq(&pool->lock);
a62428c0 2239
fb0e7beb
TH
2240 /* clear cpu intensive status */
2241 if (unlikely(cpu_intensive))
2242 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2243
a62428c0 2244 /* we're done with it, release */
42f8570f 2245 hash_del(&worker->hentry);
c34056a3 2246 worker->current_work = NULL;
a2c1c57b 2247 worker->current_func = NULL;
112202d9 2248 worker->current_pwq = NULL;
3d1cb205 2249 worker->desc_valid = false;
112202d9 2250 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2251}
2252
affee4b2
TH
2253/**
2254 * process_scheduled_works - process scheduled works
2255 * @worker: self
2256 *
2257 * Process all scheduled works. Please note that the scheduled list
2258 * may change while processing a work, so this function repeatedly
2259 * fetches a work from the top and executes it.
2260 *
2261 * CONTEXT:
d565ed63 2262 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2263 * multiple times.
2264 */
2265static void process_scheduled_works(struct worker *worker)
1da177e4 2266{
affee4b2
TH
2267 while (!list_empty(&worker->scheduled)) {
2268 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2269 struct work_struct, entry);
c34056a3 2270 process_one_work(worker, work);
1da177e4 2271 }
1da177e4
LT
2272}
2273
4690c4ab
TH
2274/**
2275 * worker_thread - the worker thread function
c34056a3 2276 * @__worker: self
4690c4ab 2277 *
c5aa87bb
TH
2278 * The worker thread function. All workers belong to a worker_pool -
2279 * either a per-cpu one or dynamic unbound one. These workers process all
2280 * work items regardless of their specific target workqueue. The only
2281 * exception is work items which belong to workqueues with a rescuer which
2282 * will be explained in rescuer_thread().
d185af30
YB
2283 *
2284 * Return: 0
4690c4ab 2285 */
c34056a3 2286static int worker_thread(void *__worker)
1da177e4 2287{
c34056a3 2288 struct worker *worker = __worker;
bd7bdd43 2289 struct worker_pool *pool = worker->pool;
1da177e4 2290
e22bee78
TH
2291 /* tell the scheduler that this is a workqueue worker */
2292 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2293woke_up:
d565ed63 2294 spin_lock_irq(&pool->lock);
1da177e4 2295
a9ab775b
TH
2296 /* am I supposed to die? */
2297 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2298 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2299 WARN_ON_ONCE(!list_empty(&worker->entry));
2300 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2301
2302 set_task_comm(worker->task, "kworker/dying");
2303 worker_detach_from_pool(worker, pool);
2304 kfree(worker);
a9ab775b 2305 return 0;
c8e55f36 2306 }
affee4b2 2307
c8e55f36 2308 worker_leave_idle(worker);
db7bccf4 2309recheck:
e22bee78 2310 /* no more worker necessary? */
63d95a91 2311 if (!need_more_worker(pool))
e22bee78
TH
2312 goto sleep;
2313
2314 /* do we need to manage? */
63d95a91 2315 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2316 goto recheck;
2317
c8e55f36
TH
2318 /*
2319 * ->scheduled list can only be filled while a worker is
2320 * preparing to process a work or actually processing it.
2321 * Make sure nobody diddled with it while I was sleeping.
2322 */
6183c009 2323 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2324
e22bee78 2325 /*
a9ab775b
TH
2326 * Finish PREP stage. We're guaranteed to have at least one idle
2327 * worker or that someone else has already assumed the manager
2328 * role. This is where @worker starts participating in concurrency
2329 * management if applicable and concurrency management is restored
2330 * after being rebound. See rebind_workers() for details.
e22bee78 2331 */
a9ab775b 2332 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2333
2334 do {
c8e55f36 2335 struct work_struct *work =
bd7bdd43 2336 list_first_entry(&pool->worklist,
c8e55f36
TH
2337 struct work_struct, entry);
2338
2339 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2340 /* optimization path, not strictly necessary */
2341 process_one_work(worker, work);
2342 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2343 process_scheduled_works(worker);
c8e55f36
TH
2344 } else {
2345 move_linked_works(work, &worker->scheduled, NULL);
2346 process_scheduled_works(worker);
affee4b2 2347 }
63d95a91 2348 } while (keep_working(pool));
e22bee78
TH
2349
2350 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2351sleep:
63d95a91 2352 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2353 goto recheck;
d313dd85 2354
c8e55f36 2355 /*
d565ed63
TH
2356 * pool->lock is held and there's no work to process and no need to
2357 * manage, sleep. Workers are woken up only while holding
2358 * pool->lock or from local cpu, so setting the current state
2359 * before releasing pool->lock is enough to prevent losing any
2360 * event.
c8e55f36
TH
2361 */
2362 worker_enter_idle(worker);
2363 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2364 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2365 schedule();
2366 goto woke_up;
1da177e4
LT
2367}
2368
e22bee78
TH
2369/**
2370 * rescuer_thread - the rescuer thread function
111c225a 2371 * @__rescuer: self
e22bee78
TH
2372 *
2373 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2374 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2375 *
706026c2 2376 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2377 * worker which uses GFP_KERNEL allocation which has slight chance of
2378 * developing into deadlock if some works currently on the same queue
2379 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2380 * the problem rescuer solves.
2381 *
706026c2
TH
2382 * When such condition is possible, the pool summons rescuers of all
2383 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2384 * those works so that forward progress can be guaranteed.
2385 *
2386 * This should happen rarely.
d185af30
YB
2387 *
2388 * Return: 0
e22bee78 2389 */
111c225a 2390static int rescuer_thread(void *__rescuer)
e22bee78 2391{
111c225a
TH
2392 struct worker *rescuer = __rescuer;
2393 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2394 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2395 bool should_stop;
e22bee78
TH
2396
2397 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2398
2399 /*
2400 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2401 * doesn't participate in concurrency management.
2402 */
2403 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2404repeat:
2405 set_current_state(TASK_INTERRUPTIBLE);
2406
4d595b86
LJ
2407 /*
2408 * By the time the rescuer is requested to stop, the workqueue
2409 * shouldn't have any work pending, but @wq->maydays may still have
2410 * pwq(s) queued. This can happen by non-rescuer workers consuming
2411 * all the work items before the rescuer got to them. Go through
2412 * @wq->maydays processing before acting on should_stop so that the
2413 * list is always empty on exit.
2414 */
2415 should_stop = kthread_should_stop();
e22bee78 2416
493a1724 2417 /* see whether any pwq is asking for help */
2e109a28 2418 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2419
2420 while (!list_empty(&wq->maydays)) {
2421 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2422 struct pool_workqueue, mayday_node);
112202d9 2423 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2424 struct work_struct *work, *n;
2425
2426 __set_current_state(TASK_RUNNING);
493a1724
TH
2427 list_del_init(&pwq->mayday_node);
2428
2e109a28 2429 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2430
2431 /* migrate to the target cpu if possible */
f36dc67b 2432 worker_maybe_bind_and_lock(pool);
b3104104 2433 rescuer->pool = pool;
e22bee78
TH
2434
2435 /*
2436 * Slurp in all works issued via this workqueue and
2437 * process'em.
2438 */
6183c009 2439 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2440 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2441 if (get_work_pwq(work) == pwq)
e22bee78
TH
2442 move_linked_works(work, scheduled, &n);
2443
2444 process_scheduled_works(rescuer);
7576958a 2445
77668c8b
LJ
2446 /*
2447 * Put the reference grabbed by send_mayday(). @pool won't
2448 * go away while we're holding its lock.
2449 */
2450 put_pwq(pwq);
2451
7576958a 2452 /*
d565ed63 2453 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2454 * regular worker; otherwise, we end up with 0 concurrency
2455 * and stalling the execution.
2456 */
63d95a91
TH
2457 if (keep_working(pool))
2458 wake_up_worker(pool);
7576958a 2459
b3104104 2460 rescuer->pool = NULL;
493a1724 2461 spin_unlock(&pool->lock);
2e109a28 2462 spin_lock(&wq_mayday_lock);
e22bee78
TH
2463 }
2464
2e109a28 2465 spin_unlock_irq(&wq_mayday_lock);
493a1724 2466
4d595b86
LJ
2467 if (should_stop) {
2468 __set_current_state(TASK_RUNNING);
2469 rescuer->task->flags &= ~PF_WQ_WORKER;
2470 return 0;
2471 }
2472
111c225a
TH
2473 /* rescuers should never participate in concurrency management */
2474 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2475 schedule();
2476 goto repeat;
1da177e4
LT
2477}
2478
fc2e4d70
ON
2479struct wq_barrier {
2480 struct work_struct work;
2481 struct completion done;
2482};
2483
2484static void wq_barrier_func(struct work_struct *work)
2485{
2486 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2487 complete(&barr->done);
2488}
2489
4690c4ab
TH
2490/**
2491 * insert_wq_barrier - insert a barrier work
112202d9 2492 * @pwq: pwq to insert barrier into
4690c4ab 2493 * @barr: wq_barrier to insert
affee4b2
TH
2494 * @target: target work to attach @barr to
2495 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2496 *
affee4b2
TH
2497 * @barr is linked to @target such that @barr is completed only after
2498 * @target finishes execution. Please note that the ordering
2499 * guarantee is observed only with respect to @target and on the local
2500 * cpu.
2501 *
2502 * Currently, a queued barrier can't be canceled. This is because
2503 * try_to_grab_pending() can't determine whether the work to be
2504 * grabbed is at the head of the queue and thus can't clear LINKED
2505 * flag of the previous work while there must be a valid next work
2506 * after a work with LINKED flag set.
2507 *
2508 * Note that when @worker is non-NULL, @target may be modified
112202d9 2509 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2510 *
2511 * CONTEXT:
d565ed63 2512 * spin_lock_irq(pool->lock).
4690c4ab 2513 */
112202d9 2514static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2515 struct wq_barrier *barr,
2516 struct work_struct *target, struct worker *worker)
fc2e4d70 2517{
affee4b2
TH
2518 struct list_head *head;
2519 unsigned int linked = 0;
2520
dc186ad7 2521 /*
d565ed63 2522 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2523 * as we know for sure that this will not trigger any of the
2524 * checks and call back into the fixup functions where we
2525 * might deadlock.
2526 */
ca1cab37 2527 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2528 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2529 init_completion(&barr->done);
83c22520 2530
affee4b2
TH
2531 /*
2532 * If @target is currently being executed, schedule the
2533 * barrier to the worker; otherwise, put it after @target.
2534 */
2535 if (worker)
2536 head = worker->scheduled.next;
2537 else {
2538 unsigned long *bits = work_data_bits(target);
2539
2540 head = target->entry.next;
2541 /* there can already be other linked works, inherit and set */
2542 linked = *bits & WORK_STRUCT_LINKED;
2543 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2544 }
2545
dc186ad7 2546 debug_work_activate(&barr->work);
112202d9 2547 insert_work(pwq, &barr->work, head,
affee4b2 2548 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2549}
2550
73f53c4a 2551/**
112202d9 2552 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2553 * @wq: workqueue being flushed
2554 * @flush_color: new flush color, < 0 for no-op
2555 * @work_color: new work color, < 0 for no-op
2556 *
112202d9 2557 * Prepare pwqs for workqueue flushing.
73f53c4a 2558 *
112202d9
TH
2559 * If @flush_color is non-negative, flush_color on all pwqs should be
2560 * -1. If no pwq has in-flight commands at the specified color, all
2561 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2562 * has in flight commands, its pwq->flush_color is set to
2563 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2564 * wakeup logic is armed and %true is returned.
2565 *
2566 * The caller should have initialized @wq->first_flusher prior to
2567 * calling this function with non-negative @flush_color. If
2568 * @flush_color is negative, no flush color update is done and %false
2569 * is returned.
2570 *
112202d9 2571 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2572 * work_color which is previous to @work_color and all will be
2573 * advanced to @work_color.
2574 *
2575 * CONTEXT:
3c25a55d 2576 * mutex_lock(wq->mutex).
73f53c4a 2577 *
d185af30 2578 * Return:
73f53c4a
TH
2579 * %true if @flush_color >= 0 and there's something to flush. %false
2580 * otherwise.
2581 */
112202d9 2582static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2583 int flush_color, int work_color)
1da177e4 2584{
73f53c4a 2585 bool wait = false;
49e3cf44 2586 struct pool_workqueue *pwq;
1da177e4 2587
73f53c4a 2588 if (flush_color >= 0) {
6183c009 2589 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2590 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2591 }
2355b70f 2592
49e3cf44 2593 for_each_pwq(pwq, wq) {
112202d9 2594 struct worker_pool *pool = pwq->pool;
fc2e4d70 2595
b09f4fd3 2596 spin_lock_irq(&pool->lock);
83c22520 2597
73f53c4a 2598 if (flush_color >= 0) {
6183c009 2599 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2600
112202d9
TH
2601 if (pwq->nr_in_flight[flush_color]) {
2602 pwq->flush_color = flush_color;
2603 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2604 wait = true;
2605 }
2606 }
1da177e4 2607
73f53c4a 2608 if (work_color >= 0) {
6183c009 2609 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2610 pwq->work_color = work_color;
73f53c4a 2611 }
1da177e4 2612
b09f4fd3 2613 spin_unlock_irq(&pool->lock);
1da177e4 2614 }
2355b70f 2615
112202d9 2616 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2617 complete(&wq->first_flusher->done);
14441960 2618
73f53c4a 2619 return wait;
1da177e4
LT
2620}
2621
0fcb78c2 2622/**
1da177e4 2623 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2624 * @wq: workqueue to flush
1da177e4 2625 *
c5aa87bb
TH
2626 * This function sleeps until all work items which were queued on entry
2627 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2628 */
7ad5b3a5 2629void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2630{
73f53c4a
TH
2631 struct wq_flusher this_flusher = {
2632 .list = LIST_HEAD_INIT(this_flusher.list),
2633 .flush_color = -1,
2634 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2635 };
2636 int next_color;
1da177e4 2637
3295f0ef
IM
2638 lock_map_acquire(&wq->lockdep_map);
2639 lock_map_release(&wq->lockdep_map);
73f53c4a 2640
3c25a55d 2641 mutex_lock(&wq->mutex);
73f53c4a
TH
2642
2643 /*
2644 * Start-to-wait phase
2645 */
2646 next_color = work_next_color(wq->work_color);
2647
2648 if (next_color != wq->flush_color) {
2649 /*
2650 * Color space is not full. The current work_color
2651 * becomes our flush_color and work_color is advanced
2652 * by one.
2653 */
6183c009 2654 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2655 this_flusher.flush_color = wq->work_color;
2656 wq->work_color = next_color;
2657
2658 if (!wq->first_flusher) {
2659 /* no flush in progress, become the first flusher */
6183c009 2660 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2661
2662 wq->first_flusher = &this_flusher;
2663
112202d9 2664 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2665 wq->work_color)) {
2666 /* nothing to flush, done */
2667 wq->flush_color = next_color;
2668 wq->first_flusher = NULL;
2669 goto out_unlock;
2670 }
2671 } else {
2672 /* wait in queue */
6183c009 2673 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2674 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2675 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2676 }
2677 } else {
2678 /*
2679 * Oops, color space is full, wait on overflow queue.
2680 * The next flush completion will assign us
2681 * flush_color and transfer to flusher_queue.
2682 */
2683 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2684 }
2685
3c25a55d 2686 mutex_unlock(&wq->mutex);
73f53c4a
TH
2687
2688 wait_for_completion(&this_flusher.done);
2689
2690 /*
2691 * Wake-up-and-cascade phase
2692 *
2693 * First flushers are responsible for cascading flushes and
2694 * handling overflow. Non-first flushers can simply return.
2695 */
2696 if (wq->first_flusher != &this_flusher)
2697 return;
2698
3c25a55d 2699 mutex_lock(&wq->mutex);
73f53c4a 2700
4ce48b37
TH
2701 /* we might have raced, check again with mutex held */
2702 if (wq->first_flusher != &this_flusher)
2703 goto out_unlock;
2704
73f53c4a
TH
2705 wq->first_flusher = NULL;
2706
6183c009
TH
2707 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2708 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2709
2710 while (true) {
2711 struct wq_flusher *next, *tmp;
2712
2713 /* complete all the flushers sharing the current flush color */
2714 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2715 if (next->flush_color != wq->flush_color)
2716 break;
2717 list_del_init(&next->list);
2718 complete(&next->done);
2719 }
2720
6183c009
TH
2721 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2722 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2723
2724 /* this flush_color is finished, advance by one */
2725 wq->flush_color = work_next_color(wq->flush_color);
2726
2727 /* one color has been freed, handle overflow queue */
2728 if (!list_empty(&wq->flusher_overflow)) {
2729 /*
2730 * Assign the same color to all overflowed
2731 * flushers, advance work_color and append to
2732 * flusher_queue. This is the start-to-wait
2733 * phase for these overflowed flushers.
2734 */
2735 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2736 tmp->flush_color = wq->work_color;
2737
2738 wq->work_color = work_next_color(wq->work_color);
2739
2740 list_splice_tail_init(&wq->flusher_overflow,
2741 &wq->flusher_queue);
112202d9 2742 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2743 }
2744
2745 if (list_empty(&wq->flusher_queue)) {
6183c009 2746 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2747 break;
2748 }
2749
2750 /*
2751 * Need to flush more colors. Make the next flusher
112202d9 2752 * the new first flusher and arm pwqs.
73f53c4a 2753 */
6183c009
TH
2754 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2755 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2756
2757 list_del_init(&next->list);
2758 wq->first_flusher = next;
2759
112202d9 2760 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2761 break;
2762
2763 /*
2764 * Meh... this color is already done, clear first
2765 * flusher and repeat cascading.
2766 */
2767 wq->first_flusher = NULL;
2768 }
2769
2770out_unlock:
3c25a55d 2771 mutex_unlock(&wq->mutex);
1da177e4 2772}
ae90dd5d 2773EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2774
9c5a2ba7
TH
2775/**
2776 * drain_workqueue - drain a workqueue
2777 * @wq: workqueue to drain
2778 *
2779 * Wait until the workqueue becomes empty. While draining is in progress,
2780 * only chain queueing is allowed. IOW, only currently pending or running
2781 * work items on @wq can queue further work items on it. @wq is flushed
2782 * repeatedly until it becomes empty. The number of flushing is detemined
2783 * by the depth of chaining and should be relatively short. Whine if it
2784 * takes too long.
2785 */
2786void drain_workqueue(struct workqueue_struct *wq)
2787{
2788 unsigned int flush_cnt = 0;
49e3cf44 2789 struct pool_workqueue *pwq;
9c5a2ba7
TH
2790
2791 /*
2792 * __queue_work() needs to test whether there are drainers, is much
2793 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2794 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2795 */
87fc741e 2796 mutex_lock(&wq->mutex);
9c5a2ba7 2797 if (!wq->nr_drainers++)
618b01eb 2798 wq->flags |= __WQ_DRAINING;
87fc741e 2799 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2800reflush:
2801 flush_workqueue(wq);
2802
b09f4fd3 2803 mutex_lock(&wq->mutex);
76af4d93 2804
49e3cf44 2805 for_each_pwq(pwq, wq) {
fa2563e4 2806 bool drained;
9c5a2ba7 2807
b09f4fd3 2808 spin_lock_irq(&pwq->pool->lock);
112202d9 2809 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2810 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2811
2812 if (drained)
9c5a2ba7
TH
2813 continue;
2814
2815 if (++flush_cnt == 10 ||
2816 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2817 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2818 wq->name, flush_cnt);
76af4d93 2819
b09f4fd3 2820 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2821 goto reflush;
2822 }
2823
9c5a2ba7 2824 if (!--wq->nr_drainers)
618b01eb 2825 wq->flags &= ~__WQ_DRAINING;
87fc741e 2826 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2827}
2828EXPORT_SYMBOL_GPL(drain_workqueue);
2829
606a5020 2830static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2831{
affee4b2 2832 struct worker *worker = NULL;
c9e7cf27 2833 struct worker_pool *pool;
112202d9 2834 struct pool_workqueue *pwq;
db700897
ON
2835
2836 might_sleep();
fa1b54e6
TH
2837
2838 local_irq_disable();
c9e7cf27 2839 pool = get_work_pool(work);
fa1b54e6
TH
2840 if (!pool) {
2841 local_irq_enable();
baf59022 2842 return false;
fa1b54e6 2843 }
db700897 2844
fa1b54e6 2845 spin_lock(&pool->lock);
0b3dae68 2846 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2847 pwq = get_work_pwq(work);
2848 if (pwq) {
2849 if (unlikely(pwq->pool != pool))
4690c4ab 2850 goto already_gone;
606a5020 2851 } else {
c9e7cf27 2852 worker = find_worker_executing_work(pool, work);
affee4b2 2853 if (!worker)
4690c4ab 2854 goto already_gone;
112202d9 2855 pwq = worker->current_pwq;
606a5020 2856 }
db700897 2857
112202d9 2858 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2859 spin_unlock_irq(&pool->lock);
7a22ad75 2860
e159489b
TH
2861 /*
2862 * If @max_active is 1 or rescuer is in use, flushing another work
2863 * item on the same workqueue may lead to deadlock. Make sure the
2864 * flusher is not running on the same workqueue by verifying write
2865 * access.
2866 */
493008a8 2867 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2868 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2869 else
112202d9
TH
2870 lock_map_acquire_read(&pwq->wq->lockdep_map);
2871 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2872
401a8d04 2873 return true;
4690c4ab 2874already_gone:
d565ed63 2875 spin_unlock_irq(&pool->lock);
401a8d04 2876 return false;
db700897 2877}
baf59022
TH
2878
2879/**
2880 * flush_work - wait for a work to finish executing the last queueing instance
2881 * @work: the work to flush
2882 *
606a5020
TH
2883 * Wait until @work has finished execution. @work is guaranteed to be idle
2884 * on return if it hasn't been requeued since flush started.
baf59022 2885 *
d185af30 2886 * Return:
baf59022
TH
2887 * %true if flush_work() waited for the work to finish execution,
2888 * %false if it was already idle.
2889 */
2890bool flush_work(struct work_struct *work)
2891{
12997d1a
BH
2892 struct wq_barrier barr;
2893
0976dfc1
SB
2894 lock_map_acquire(&work->lockdep_map);
2895 lock_map_release(&work->lockdep_map);
2896
12997d1a
BH
2897 if (start_flush_work(work, &barr)) {
2898 wait_for_completion(&barr.done);
2899 destroy_work_on_stack(&barr.work);
2900 return true;
2901 } else {
2902 return false;
2903 }
6e84d644 2904}
606a5020 2905EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2906
36e227d2 2907static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2908{
bbb68dfa 2909 unsigned long flags;
1f1f642e
ON
2910 int ret;
2911
2912 do {
bbb68dfa
TH
2913 ret = try_to_grab_pending(work, is_dwork, &flags);
2914 /*
2915 * If someone else is canceling, wait for the same event it
2916 * would be waiting for before retrying.
2917 */
2918 if (unlikely(ret == -ENOENT))
606a5020 2919 flush_work(work);
1f1f642e
ON
2920 } while (unlikely(ret < 0));
2921
bbb68dfa
TH
2922 /* tell other tasks trying to grab @work to back off */
2923 mark_work_canceling(work);
2924 local_irq_restore(flags);
2925
606a5020 2926 flush_work(work);
7a22ad75 2927 clear_work_data(work);
1f1f642e
ON
2928 return ret;
2929}
2930
6e84d644 2931/**
401a8d04
TH
2932 * cancel_work_sync - cancel a work and wait for it to finish
2933 * @work: the work to cancel
6e84d644 2934 *
401a8d04
TH
2935 * Cancel @work and wait for its execution to finish. This function
2936 * can be used even if the work re-queues itself or migrates to
2937 * another workqueue. On return from this function, @work is
2938 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2939 *
401a8d04
TH
2940 * cancel_work_sync(&delayed_work->work) must not be used for
2941 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2942 *
401a8d04 2943 * The caller must ensure that the workqueue on which @work was last
6e84d644 2944 * queued can't be destroyed before this function returns.
401a8d04 2945 *
d185af30 2946 * Return:
401a8d04 2947 * %true if @work was pending, %false otherwise.
6e84d644 2948 */
401a8d04 2949bool cancel_work_sync(struct work_struct *work)
6e84d644 2950{
36e227d2 2951 return __cancel_work_timer(work, false);
b89deed3 2952}
28e53bdd 2953EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2954
6e84d644 2955/**
401a8d04
TH
2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957 * @dwork: the delayed work to flush
6e84d644 2958 *
401a8d04
TH
2959 * Delayed timer is cancelled and the pending work is queued for
2960 * immediate execution. Like flush_work(), this function only
2961 * considers the last queueing instance of @dwork.
1f1f642e 2962 *
d185af30 2963 * Return:
401a8d04
TH
2964 * %true if flush_work() waited for the work to finish execution,
2965 * %false if it was already idle.
6e84d644 2966 */
401a8d04
TH
2967bool flush_delayed_work(struct delayed_work *dwork)
2968{
8930caba 2969 local_irq_disable();
401a8d04 2970 if (del_timer_sync(&dwork->timer))
60c057bc 2971 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2972 local_irq_enable();
401a8d04
TH
2973 return flush_work(&dwork->work);
2974}
2975EXPORT_SYMBOL(flush_delayed_work);
2976
09383498 2977/**
57b30ae7
TH
2978 * cancel_delayed_work - cancel a delayed work
2979 * @dwork: delayed_work to cancel
09383498 2980 *
d185af30
YB
2981 * Kill off a pending delayed_work.
2982 *
2983 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2984 * pending.
2985 *
2986 * Note:
2987 * The work callback function may still be running on return, unless
2988 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2989 * use cancel_delayed_work_sync() to wait on it.
09383498 2990 *
57b30ae7 2991 * This function is safe to call from any context including IRQ handler.
09383498 2992 */
57b30ae7 2993bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2994{
57b30ae7
TH
2995 unsigned long flags;
2996 int ret;
2997
2998 do {
2999 ret = try_to_grab_pending(&dwork->work, true, &flags);
3000 } while (unlikely(ret == -EAGAIN));
3001
3002 if (unlikely(ret < 0))
3003 return false;
3004
7c3eed5c
TH
3005 set_work_pool_and_clear_pending(&dwork->work,
3006 get_work_pool_id(&dwork->work));
57b30ae7 3007 local_irq_restore(flags);
c0158ca6 3008 return ret;
09383498 3009}
57b30ae7 3010EXPORT_SYMBOL(cancel_delayed_work);
09383498 3011
401a8d04
TH
3012/**
3013 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3014 * @dwork: the delayed work cancel
3015 *
3016 * This is cancel_work_sync() for delayed works.
3017 *
d185af30 3018 * Return:
401a8d04
TH
3019 * %true if @dwork was pending, %false otherwise.
3020 */
3021bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3022{
36e227d2 3023 return __cancel_work_timer(&dwork->work, true);
6e84d644 3024}
f5a421a4 3025EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3026
b6136773 3027/**
31ddd871 3028 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3029 * @func: the function to call
b6136773 3030 *
31ddd871
TH
3031 * schedule_on_each_cpu() executes @func on each online CPU using the
3032 * system workqueue and blocks until all CPUs have completed.
b6136773 3033 * schedule_on_each_cpu() is very slow.
31ddd871 3034 *
d185af30 3035 * Return:
31ddd871 3036 * 0 on success, -errno on failure.
b6136773 3037 */
65f27f38 3038int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3039{
3040 int cpu;
38f51568 3041 struct work_struct __percpu *works;
15316ba8 3042
b6136773
AM
3043 works = alloc_percpu(struct work_struct);
3044 if (!works)
15316ba8 3045 return -ENOMEM;
b6136773 3046
93981800
TH
3047 get_online_cpus();
3048
15316ba8 3049 for_each_online_cpu(cpu) {
9bfb1839
IM
3050 struct work_struct *work = per_cpu_ptr(works, cpu);
3051
3052 INIT_WORK(work, func);
b71ab8c2 3053 schedule_work_on(cpu, work);
65a64464 3054 }
93981800
TH
3055
3056 for_each_online_cpu(cpu)
3057 flush_work(per_cpu_ptr(works, cpu));
3058
95402b38 3059 put_online_cpus();
b6136773 3060 free_percpu(works);
15316ba8
CL
3061 return 0;
3062}
3063
eef6a7d5
AS
3064/**
3065 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3066 *
3067 * Forces execution of the kernel-global workqueue and blocks until its
3068 * completion.
3069 *
3070 * Think twice before calling this function! It's very easy to get into
3071 * trouble if you don't take great care. Either of the following situations
3072 * will lead to deadlock:
3073 *
3074 * One of the work items currently on the workqueue needs to acquire
3075 * a lock held by your code or its caller.
3076 *
3077 * Your code is running in the context of a work routine.
3078 *
3079 * They will be detected by lockdep when they occur, but the first might not
3080 * occur very often. It depends on what work items are on the workqueue and
3081 * what locks they need, which you have no control over.
3082 *
3083 * In most situations flushing the entire workqueue is overkill; you merely
3084 * need to know that a particular work item isn't queued and isn't running.
3085 * In such cases you should use cancel_delayed_work_sync() or
3086 * cancel_work_sync() instead.
3087 */
1da177e4
LT
3088void flush_scheduled_work(void)
3089{
d320c038 3090 flush_workqueue(system_wq);
1da177e4 3091}
ae90dd5d 3092EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3093
1fa44eca
JB
3094/**
3095 * execute_in_process_context - reliably execute the routine with user context
3096 * @fn: the function to execute
1fa44eca
JB
3097 * @ew: guaranteed storage for the execute work structure (must
3098 * be available when the work executes)
3099 *
3100 * Executes the function immediately if process context is available,
3101 * otherwise schedules the function for delayed execution.
3102 *
d185af30 3103 * Return: 0 - function was executed
1fa44eca
JB
3104 * 1 - function was scheduled for execution
3105 */
65f27f38 3106int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3107{
3108 if (!in_interrupt()) {
65f27f38 3109 fn(&ew->work);
1fa44eca
JB
3110 return 0;
3111 }
3112
65f27f38 3113 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3114 schedule_work(&ew->work);
3115
3116 return 1;
3117}
3118EXPORT_SYMBOL_GPL(execute_in_process_context);
3119
226223ab
TH
3120#ifdef CONFIG_SYSFS
3121/*
3122 * Workqueues with WQ_SYSFS flag set is visible to userland via
3123 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3124 * following attributes.
3125 *
3126 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3127 * max_active RW int : maximum number of in-flight work items
3128 *
3129 * Unbound workqueues have the following extra attributes.
3130 *
3131 * id RO int : the associated pool ID
3132 * nice RW int : nice value of the workers
3133 * cpumask RW mask : bitmask of allowed CPUs for the workers
3134 */
3135struct wq_device {
3136 struct workqueue_struct *wq;
3137 struct device dev;
3138};
3139
3140static struct workqueue_struct *dev_to_wq(struct device *dev)
3141{
3142 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3143
3144 return wq_dev->wq;
3145}
3146
1a6661da
GKH
3147static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3148 char *buf)
226223ab
TH
3149{
3150 struct workqueue_struct *wq = dev_to_wq(dev);
3151
3152 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3153}
1a6661da 3154static DEVICE_ATTR_RO(per_cpu);
226223ab 3155
1a6661da
GKH
3156static ssize_t max_active_show(struct device *dev,
3157 struct device_attribute *attr, char *buf)
226223ab
TH
3158{
3159 struct workqueue_struct *wq = dev_to_wq(dev);
3160
3161 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3162}
3163
1a6661da
GKH
3164static ssize_t max_active_store(struct device *dev,
3165 struct device_attribute *attr, const char *buf,
3166 size_t count)
226223ab
TH
3167{
3168 struct workqueue_struct *wq = dev_to_wq(dev);
3169 int val;
3170
3171 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3172 return -EINVAL;
3173
3174 workqueue_set_max_active(wq, val);
3175 return count;
3176}
1a6661da 3177static DEVICE_ATTR_RW(max_active);
226223ab 3178
1a6661da
GKH
3179static struct attribute *wq_sysfs_attrs[] = {
3180 &dev_attr_per_cpu.attr,
3181 &dev_attr_max_active.attr,
3182 NULL,
226223ab 3183};
1a6661da 3184ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3185
d55262c4
TH
3186static ssize_t wq_pool_ids_show(struct device *dev,
3187 struct device_attribute *attr, char *buf)
226223ab
TH
3188{
3189 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3190 const char *delim = "";
3191 int node, written = 0;
226223ab
TH
3192
3193 rcu_read_lock_sched();
d55262c4
TH
3194 for_each_node(node) {
3195 written += scnprintf(buf + written, PAGE_SIZE - written,
3196 "%s%d:%d", delim, node,
3197 unbound_pwq_by_node(wq, node)->pool->id);
3198 delim = " ";
3199 }
3200 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3201 rcu_read_unlock_sched();
3202
3203 return written;
3204}
3205
3206static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3207 char *buf)
3208{
3209 struct workqueue_struct *wq = dev_to_wq(dev);
3210 int written;
3211
6029a918
TH
3212 mutex_lock(&wq->mutex);
3213 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3214 mutex_unlock(&wq->mutex);
226223ab
TH
3215
3216 return written;
3217}
3218
3219/* prepare workqueue_attrs for sysfs store operations */
3220static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3221{
3222 struct workqueue_attrs *attrs;
3223
3224 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3225 if (!attrs)
3226 return NULL;
3227
6029a918
TH
3228 mutex_lock(&wq->mutex);
3229 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3230 mutex_unlock(&wq->mutex);
226223ab
TH
3231 return attrs;
3232}
3233
3234static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3235 const char *buf, size_t count)
3236{
3237 struct workqueue_struct *wq = dev_to_wq(dev);
3238 struct workqueue_attrs *attrs;
3239 int ret;
3240
3241 attrs = wq_sysfs_prep_attrs(wq);
3242 if (!attrs)
3243 return -ENOMEM;
3244
3245 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3246 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3247 ret = apply_workqueue_attrs(wq, attrs);
3248 else
3249 ret = -EINVAL;
3250
3251 free_workqueue_attrs(attrs);
3252 return ret ?: count;
3253}
3254
3255static ssize_t wq_cpumask_show(struct device *dev,
3256 struct device_attribute *attr, char *buf)
3257{
3258 struct workqueue_struct *wq = dev_to_wq(dev);
3259 int written;
3260
6029a918
TH
3261 mutex_lock(&wq->mutex);
3262 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3263 mutex_unlock(&wq->mutex);
226223ab
TH
3264
3265 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3266 return written;
3267}
3268
3269static ssize_t wq_cpumask_store(struct device *dev,
3270 struct device_attribute *attr,
3271 const char *buf, size_t count)
3272{
3273 struct workqueue_struct *wq = dev_to_wq(dev);
3274 struct workqueue_attrs *attrs;
3275 int ret;
3276
3277 attrs = wq_sysfs_prep_attrs(wq);
3278 if (!attrs)
3279 return -ENOMEM;
3280
3281 ret = cpumask_parse(buf, attrs->cpumask);
3282 if (!ret)
3283 ret = apply_workqueue_attrs(wq, attrs);
3284
3285 free_workqueue_attrs(attrs);
3286 return ret ?: count;
3287}
3288
d55262c4
TH
3289static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3290 char *buf)
3291{
3292 struct workqueue_struct *wq = dev_to_wq(dev);
3293 int written;
3294
3295 mutex_lock(&wq->mutex);
3296 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3297 !wq->unbound_attrs->no_numa);
3298 mutex_unlock(&wq->mutex);
3299
3300 return written;
3301}
3302
3303static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3304 const char *buf, size_t count)
3305{
3306 struct workqueue_struct *wq = dev_to_wq(dev);
3307 struct workqueue_attrs *attrs;
3308 int v, ret;
3309
3310 attrs = wq_sysfs_prep_attrs(wq);
3311 if (!attrs)
3312 return -ENOMEM;
3313
3314 ret = -EINVAL;
3315 if (sscanf(buf, "%d", &v) == 1) {
3316 attrs->no_numa = !v;
3317 ret = apply_workqueue_attrs(wq, attrs);
3318 }
3319
3320 free_workqueue_attrs(attrs);
3321 return ret ?: count;
3322}
3323
226223ab 3324static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3325 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3326 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3327 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3328 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3329 __ATTR_NULL,
3330};
3331
3332static struct bus_type wq_subsys = {
3333 .name = "workqueue",
1a6661da 3334 .dev_groups = wq_sysfs_groups,
226223ab
TH
3335};
3336
3337static int __init wq_sysfs_init(void)
3338{
3339 return subsys_virtual_register(&wq_subsys, NULL);
3340}
3341core_initcall(wq_sysfs_init);
3342
3343static void wq_device_release(struct device *dev)
3344{
3345 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3346
3347 kfree(wq_dev);
3348}
3349
3350/**
3351 * workqueue_sysfs_register - make a workqueue visible in sysfs
3352 * @wq: the workqueue to register
3353 *
3354 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3355 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3356 * which is the preferred method.
3357 *
3358 * Workqueue user should use this function directly iff it wants to apply
3359 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3360 * apply_workqueue_attrs() may race against userland updating the
3361 * attributes.
3362 *
d185af30 3363 * Return: 0 on success, -errno on failure.
226223ab
TH
3364 */
3365int workqueue_sysfs_register(struct workqueue_struct *wq)
3366{
3367 struct wq_device *wq_dev;
3368 int ret;
3369
3370 /*
3371 * Adjusting max_active or creating new pwqs by applyting
3372 * attributes breaks ordering guarantee. Disallow exposing ordered
3373 * workqueues.
3374 */
3375 if (WARN_ON(wq->flags & __WQ_ORDERED))
3376 return -EINVAL;
3377
3378 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3379 if (!wq_dev)
3380 return -ENOMEM;
3381
3382 wq_dev->wq = wq;
3383 wq_dev->dev.bus = &wq_subsys;
3384 wq_dev->dev.init_name = wq->name;
3385 wq_dev->dev.release = wq_device_release;
3386
3387 /*
3388 * unbound_attrs are created separately. Suppress uevent until
3389 * everything is ready.
3390 */
3391 dev_set_uevent_suppress(&wq_dev->dev, true);
3392
3393 ret = device_register(&wq_dev->dev);
3394 if (ret) {
3395 kfree(wq_dev);
3396 wq->wq_dev = NULL;
3397 return ret;
3398 }
3399
3400 if (wq->flags & WQ_UNBOUND) {
3401 struct device_attribute *attr;
3402
3403 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3404 ret = device_create_file(&wq_dev->dev, attr);
3405 if (ret) {
3406 device_unregister(&wq_dev->dev);
3407 wq->wq_dev = NULL;
3408 return ret;
3409 }
3410 }
3411 }
3412
3413 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3414 return 0;
3415}
3416
3417/**
3418 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3419 * @wq: the workqueue to unregister
3420 *
3421 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3422 */
3423static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3424{
3425 struct wq_device *wq_dev = wq->wq_dev;
3426
3427 if (!wq->wq_dev)
3428 return;
3429
3430 wq->wq_dev = NULL;
3431 device_unregister(&wq_dev->dev);
3432}
3433#else /* CONFIG_SYSFS */
3434static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3435#endif /* CONFIG_SYSFS */
3436
7a4e344c
TH
3437/**
3438 * free_workqueue_attrs - free a workqueue_attrs
3439 * @attrs: workqueue_attrs to free
3440 *
3441 * Undo alloc_workqueue_attrs().
3442 */
3443void free_workqueue_attrs(struct workqueue_attrs *attrs)
3444{
3445 if (attrs) {
3446 free_cpumask_var(attrs->cpumask);
3447 kfree(attrs);
3448 }
3449}
3450
3451/**
3452 * alloc_workqueue_attrs - allocate a workqueue_attrs
3453 * @gfp_mask: allocation mask to use
3454 *
3455 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3456 * return it.
3457 *
3458 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3459 */
3460struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3461{
3462 struct workqueue_attrs *attrs;
3463
3464 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3465 if (!attrs)
3466 goto fail;
3467 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3468 goto fail;
3469
13e2e556 3470 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3471 return attrs;
3472fail:
3473 free_workqueue_attrs(attrs);
3474 return NULL;
3475}
3476
29c91e99
TH
3477static void copy_workqueue_attrs(struct workqueue_attrs *to,
3478 const struct workqueue_attrs *from)
3479{
3480 to->nice = from->nice;
3481 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3482 /*
3483 * Unlike hash and equality test, this function doesn't ignore
3484 * ->no_numa as it is used for both pool and wq attrs. Instead,
3485 * get_unbound_pool() explicitly clears ->no_numa after copying.
3486 */
3487 to->no_numa = from->no_numa;
29c91e99
TH
3488}
3489
29c91e99
TH
3490/* hash value of the content of @attr */
3491static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3492{
3493 u32 hash = 0;
3494
3495 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3496 hash = jhash(cpumask_bits(attrs->cpumask),
3497 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3498 return hash;
3499}
3500
3501/* content equality test */
3502static bool wqattrs_equal(const struct workqueue_attrs *a,
3503 const struct workqueue_attrs *b)
3504{
3505 if (a->nice != b->nice)
3506 return false;
3507 if (!cpumask_equal(a->cpumask, b->cpumask))
3508 return false;
3509 return true;
3510}
3511
7a4e344c
TH
3512/**
3513 * init_worker_pool - initialize a newly zalloc'd worker_pool
3514 * @pool: worker_pool to initialize
3515 *
3516 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3517 *
3518 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3519 * inside @pool proper are initialized and put_unbound_pool() can be called
3520 * on @pool safely to release it.
7a4e344c
TH
3521 */
3522static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3523{
3524 spin_lock_init(&pool->lock);
29c91e99
TH
3525 pool->id = -1;
3526 pool->cpu = -1;
f3f90ad4 3527 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3528 pool->flags |= POOL_DISASSOCIATED;
3529 INIT_LIST_HEAD(&pool->worklist);
3530 INIT_LIST_HEAD(&pool->idle_list);
3531 hash_init(pool->busy_hash);
3532
3533 init_timer_deferrable(&pool->idle_timer);
3534 pool->idle_timer.function = idle_worker_timeout;
3535 pool->idle_timer.data = (unsigned long)pool;
3536
3537 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3538 (unsigned long)pool);
3539
3540 mutex_init(&pool->manager_arb);
bc3a1afc 3541 mutex_init(&pool->manager_mutex);
822d8405 3542 idr_init(&pool->worker_idr);
7a4e344c 3543
29c91e99
TH
3544 INIT_HLIST_NODE(&pool->hash_node);
3545 pool->refcnt = 1;
3546
3547 /* shouldn't fail above this point */
7a4e344c
TH
3548 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3549 if (!pool->attrs)
3550 return -ENOMEM;
3551 return 0;
4e1a1f9a
TH
3552}
3553
29c91e99
TH
3554static void rcu_free_pool(struct rcu_head *rcu)
3555{
3556 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3557
822d8405 3558 idr_destroy(&pool->worker_idr);
29c91e99
TH
3559 free_workqueue_attrs(pool->attrs);
3560 kfree(pool);
3561}
3562
3563/**
3564 * put_unbound_pool - put a worker_pool
3565 * @pool: worker_pool to put
3566 *
3567 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3568 * safe manner. get_unbound_pool() calls this function on its failure path
3569 * and this function should be able to release pools which went through,
3570 * successfully or not, init_worker_pool().
a892cacc
TH
3571 *
3572 * Should be called with wq_pool_mutex held.
29c91e99
TH
3573 */
3574static void put_unbound_pool(struct worker_pool *pool)
3575{
60f5a4bc 3576 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3577 struct worker *worker;
3578
a892cacc
TH
3579 lockdep_assert_held(&wq_pool_mutex);
3580
3581 if (--pool->refcnt)
29c91e99 3582 return;
29c91e99
TH
3583
3584 /* sanity checks */
3585 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3586 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3587 return;
29c91e99
TH
3588
3589 /* release id and unhash */
3590 if (pool->id >= 0)
3591 idr_remove(&worker_pool_idr, pool->id);
3592 hash_del(&pool->hash_node);
3593
c5aa87bb
TH
3594 /*
3595 * Become the manager and destroy all workers. Grabbing
3596 * manager_arb prevents @pool's workers from blocking on
3597 * manager_mutex.
3598 */
29c91e99 3599 mutex_lock(&pool->manager_arb);
29c91e99 3600
60f5a4bc 3601 spin_lock_irq(&pool->lock);
29c91e99
TH
3602 while ((worker = first_worker(pool)))
3603 destroy_worker(worker);
3604 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3605 spin_unlock_irq(&pool->lock);
60f5a4bc
LJ
3606
3607 mutex_lock(&pool->manager_mutex);
3608 if (!idr_is_empty(&pool->worker_idr))
3609 pool->detach_completion = &detach_completion;
cd549687 3610 mutex_unlock(&pool->manager_mutex);
60f5a4bc
LJ
3611
3612 if (pool->detach_completion)
3613 wait_for_completion(pool->detach_completion);
3614
29c91e99
TH
3615 mutex_unlock(&pool->manager_arb);
3616
3617 /* shut down the timers */
3618 del_timer_sync(&pool->idle_timer);
3619 del_timer_sync(&pool->mayday_timer);
3620
3621 /* sched-RCU protected to allow dereferences from get_work_pool() */
3622 call_rcu_sched(&pool->rcu, rcu_free_pool);
3623}
3624
3625/**
3626 * get_unbound_pool - get a worker_pool with the specified attributes
3627 * @attrs: the attributes of the worker_pool to get
3628 *
3629 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3630 * reference count and return it. If there already is a matching
3631 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3632 * create a new one.
a892cacc
TH
3633 *
3634 * Should be called with wq_pool_mutex held.
d185af30
YB
3635 *
3636 * Return: On success, a worker_pool with the same attributes as @attrs.
3637 * On failure, %NULL.
29c91e99
TH
3638 */
3639static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3640{
29c91e99
TH
3641 u32 hash = wqattrs_hash(attrs);
3642 struct worker_pool *pool;
f3f90ad4 3643 int node;
29c91e99 3644
a892cacc 3645 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3646
3647 /* do we already have a matching pool? */
29c91e99
TH
3648 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3649 if (wqattrs_equal(pool->attrs, attrs)) {
3650 pool->refcnt++;
3651 goto out_unlock;
3652 }
3653 }
29c91e99
TH
3654
3655 /* nope, create a new one */
3656 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3657 if (!pool || init_worker_pool(pool) < 0)
3658 goto fail;
3659
12ee4fc6
LJ
3660 if (workqueue_freezing)
3661 pool->flags |= POOL_FREEZING;
3662
8864b4e5 3663 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3664 copy_workqueue_attrs(pool->attrs, attrs);
3665
2865a8fb
SL
3666 /*
3667 * no_numa isn't a worker_pool attribute, always clear it. See
3668 * 'struct workqueue_attrs' comments for detail.
3669 */
3670 pool->attrs->no_numa = false;
3671
f3f90ad4
TH
3672 /* if cpumask is contained inside a NUMA node, we belong to that node */
3673 if (wq_numa_enabled) {
3674 for_each_node(node) {
3675 if (cpumask_subset(pool->attrs->cpumask,
3676 wq_numa_possible_cpumask[node])) {
3677 pool->node = node;
3678 break;
3679 }
3680 }
3681 }
3682
29c91e99
TH
3683 if (worker_pool_assign_id(pool) < 0)
3684 goto fail;
3685
3686 /* create and start the initial worker */
ebf44d16 3687 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3688 goto fail;
3689
29c91e99 3690 /* install */
29c91e99
TH
3691 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3692out_unlock:
29c91e99
TH
3693 return pool;
3694fail:
29c91e99
TH
3695 if (pool)
3696 put_unbound_pool(pool);
3697 return NULL;
3698}
3699
8864b4e5
TH
3700static void rcu_free_pwq(struct rcu_head *rcu)
3701{
3702 kmem_cache_free(pwq_cache,
3703 container_of(rcu, struct pool_workqueue, rcu));
3704}
3705
3706/*
3707 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3708 * and needs to be destroyed.
3709 */
3710static void pwq_unbound_release_workfn(struct work_struct *work)
3711{
3712 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3713 unbound_release_work);
3714 struct workqueue_struct *wq = pwq->wq;
3715 struct worker_pool *pool = pwq->pool;
bc0caf09 3716 bool is_last;
8864b4e5
TH
3717
3718 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3719 return;
3720
75ccf595 3721 /*
3c25a55d 3722 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3723 * necessary on release but do it anyway. It's easier to verify
3724 * and consistent with the linking path.
3725 */
3c25a55d 3726 mutex_lock(&wq->mutex);
8864b4e5 3727 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3728 is_last = list_empty(&wq->pwqs);
3c25a55d 3729 mutex_unlock(&wq->mutex);
8864b4e5 3730
a892cacc 3731 mutex_lock(&wq_pool_mutex);
8864b4e5 3732 put_unbound_pool(pool);
a892cacc
TH
3733 mutex_unlock(&wq_pool_mutex);
3734
8864b4e5
TH
3735 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3736
3737 /*
3738 * If we're the last pwq going away, @wq is already dead and no one
3739 * is gonna access it anymore. Free it.
3740 */
6029a918
TH
3741 if (is_last) {
3742 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3743 kfree(wq);
6029a918 3744 }
8864b4e5
TH
3745}
3746
0fbd95aa 3747/**
699ce097 3748 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3749 * @pwq: target pool_workqueue
0fbd95aa 3750 *
699ce097
TH
3751 * If @pwq isn't freezing, set @pwq->max_active to the associated
3752 * workqueue's saved_max_active and activate delayed work items
3753 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3754 */
699ce097 3755static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3756{
699ce097
TH
3757 struct workqueue_struct *wq = pwq->wq;
3758 bool freezable = wq->flags & WQ_FREEZABLE;
3759
3760 /* for @wq->saved_max_active */
a357fc03 3761 lockdep_assert_held(&wq->mutex);
699ce097
TH
3762
3763 /* fast exit for non-freezable wqs */
3764 if (!freezable && pwq->max_active == wq->saved_max_active)
3765 return;
3766
a357fc03 3767 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3768
3769 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3770 pwq->max_active = wq->saved_max_active;
0fbd95aa 3771
699ce097
TH
3772 while (!list_empty(&pwq->delayed_works) &&
3773 pwq->nr_active < pwq->max_active)
3774 pwq_activate_first_delayed(pwq);
951a078a
LJ
3775
3776 /*
3777 * Need to kick a worker after thawed or an unbound wq's
3778 * max_active is bumped. It's a slow path. Do it always.
3779 */
3780 wake_up_worker(pwq->pool);
699ce097
TH
3781 } else {
3782 pwq->max_active = 0;
3783 }
3784
a357fc03 3785 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3786}
3787
e50aba9a 3788/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3789static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3790 struct worker_pool *pool)
d2c1d404
TH
3791{
3792 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3793
e50aba9a
TH
3794 memset(pwq, 0, sizeof(*pwq));
3795
d2c1d404
TH
3796 pwq->pool = pool;
3797 pwq->wq = wq;
3798 pwq->flush_color = -1;
8864b4e5 3799 pwq->refcnt = 1;
d2c1d404 3800 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3801 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3802 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3803 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3804}
d2c1d404 3805
f147f29e 3806/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3807static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3808{
3809 struct workqueue_struct *wq = pwq->wq;
3810
3811 lockdep_assert_held(&wq->mutex);
75ccf595 3812
1befcf30
TH
3813 /* may be called multiple times, ignore if already linked */
3814 if (!list_empty(&pwq->pwqs_node))
3815 return;
3816
983ca25e
TH
3817 /*
3818 * Set the matching work_color. This is synchronized with
3c25a55d 3819 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3820 */
75ccf595 3821 pwq->work_color = wq->work_color;
983ca25e
TH
3822
3823 /* sync max_active to the current setting */
3824 pwq_adjust_max_active(pwq);
3825
3826 /* link in @pwq */
9e8cd2f5 3827 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3828}
a357fc03 3829
f147f29e
TH
3830/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3831static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3832 const struct workqueue_attrs *attrs)
3833{
3834 struct worker_pool *pool;
3835 struct pool_workqueue *pwq;
3836
3837 lockdep_assert_held(&wq_pool_mutex);
3838
3839 pool = get_unbound_pool(attrs);
3840 if (!pool)
3841 return NULL;
3842
e50aba9a 3843 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3844 if (!pwq) {
3845 put_unbound_pool(pool);
3846 return NULL;
df2d5ae4 3847 }
6029a918 3848
f147f29e
TH
3849 init_pwq(pwq, wq, pool);
3850 return pwq;
d2c1d404
TH
3851}
3852
4c16bd32
TH
3853/* undo alloc_unbound_pwq(), used only in the error path */
3854static void free_unbound_pwq(struct pool_workqueue *pwq)
3855{
3856 lockdep_assert_held(&wq_pool_mutex);
3857
3858 if (pwq) {
3859 put_unbound_pool(pwq->pool);
cece95df 3860 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3861 }
3862}
3863
3864/**
3865 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3866 * @attrs: the wq_attrs of interest
3867 * @node: the target NUMA node
3868 * @cpu_going_down: if >= 0, the CPU to consider as offline
3869 * @cpumask: outarg, the resulting cpumask
3870 *
3871 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3872 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3873 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3874 *
3875 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3876 * enabled and @node has online CPUs requested by @attrs, the returned
3877 * cpumask is the intersection of the possible CPUs of @node and
3878 * @attrs->cpumask.
3879 *
3880 * The caller is responsible for ensuring that the cpumask of @node stays
3881 * stable.
d185af30
YB
3882 *
3883 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3884 * %false if equal.
4c16bd32
TH
3885 */
3886static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3887 int cpu_going_down, cpumask_t *cpumask)
3888{
d55262c4 3889 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3890 goto use_dfl;
3891
3892 /* does @node have any online CPUs @attrs wants? */
3893 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3894 if (cpu_going_down >= 0)
3895 cpumask_clear_cpu(cpu_going_down, cpumask);
3896
3897 if (cpumask_empty(cpumask))
3898 goto use_dfl;
3899
3900 /* yeap, return possible CPUs in @node that @attrs wants */
3901 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3902 return !cpumask_equal(cpumask, attrs->cpumask);
3903
3904use_dfl:
3905 cpumask_copy(cpumask, attrs->cpumask);
3906 return false;
3907}
3908
1befcf30
TH
3909/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3910static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3911 int node,
3912 struct pool_workqueue *pwq)
3913{
3914 struct pool_workqueue *old_pwq;
3915
3916 lockdep_assert_held(&wq->mutex);
3917
3918 /* link_pwq() can handle duplicate calls */
3919 link_pwq(pwq);
3920
3921 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3922 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3923 return old_pwq;
3924}
3925
9e8cd2f5
TH
3926/**
3927 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3928 * @wq: the target workqueue
3929 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3930 *
4c16bd32
TH
3931 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3932 * machines, this function maps a separate pwq to each NUMA node with
3933 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3934 * NUMA node it was issued on. Older pwqs are released as in-flight work
3935 * items finish. Note that a work item which repeatedly requeues itself
3936 * back-to-back will stay on its current pwq.
9e8cd2f5 3937 *
d185af30
YB
3938 * Performs GFP_KERNEL allocations.
3939 *
3940 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3941 */
3942int apply_workqueue_attrs(struct workqueue_struct *wq,
3943 const struct workqueue_attrs *attrs)
3944{
4c16bd32
TH
3945 struct workqueue_attrs *new_attrs, *tmp_attrs;
3946 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3947 int node, ret;
9e8cd2f5 3948
8719dcea 3949 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3950 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3951 return -EINVAL;
3952
8719dcea
TH
3953 /* creating multiple pwqs breaks ordering guarantee */
3954 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3955 return -EINVAL;
3956
4c16bd32 3957 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3958 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3959 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3960 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3961 goto enomem;
3962
4c16bd32 3963 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3964 copy_workqueue_attrs(new_attrs, attrs);
3965 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3966
4c16bd32
TH
3967 /*
3968 * We may create multiple pwqs with differing cpumasks. Make a
3969 * copy of @new_attrs which will be modified and used to obtain
3970 * pools.
3971 */
3972 copy_workqueue_attrs(tmp_attrs, new_attrs);
3973
3974 /*
3975 * CPUs should stay stable across pwq creations and installations.
3976 * Pin CPUs, determine the target cpumask for each node and create
3977 * pwqs accordingly.
3978 */
3979 get_online_cpus();
3980
a892cacc 3981 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3982
3983 /*
3984 * If something goes wrong during CPU up/down, we'll fall back to
3985 * the default pwq covering whole @attrs->cpumask. Always create
3986 * it even if we don't use it immediately.
3987 */
3988 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3989 if (!dfl_pwq)
3990 goto enomem_pwq;
3991
3992 for_each_node(node) {
3993 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3994 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3995 if (!pwq_tbl[node])
3996 goto enomem_pwq;
3997 } else {
3998 dfl_pwq->refcnt++;
3999 pwq_tbl[node] = dfl_pwq;
4000 }
4001 }
4002
f147f29e 4003 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 4004
4c16bd32 4005 /* all pwqs have been created successfully, let's install'em */
f147f29e 4006 mutex_lock(&wq->mutex);
a892cacc 4007
f147f29e 4008 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
4009
4010 /* save the previous pwq and install the new one */
f147f29e 4011 for_each_node(node)
4c16bd32
TH
4012 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4013
4014 /* @dfl_pwq might not have been used, ensure it's linked */
4015 link_pwq(dfl_pwq);
4016 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4017
4018 mutex_unlock(&wq->mutex);
9e8cd2f5 4019
4c16bd32
TH
4020 /* put the old pwqs */
4021 for_each_node(node)
4022 put_pwq_unlocked(pwq_tbl[node]);
4023 put_pwq_unlocked(dfl_pwq);
4024
4025 put_online_cpus();
4862125b
TH
4026 ret = 0;
4027 /* fall through */
4028out_free:
4c16bd32 4029 free_workqueue_attrs(tmp_attrs);
4862125b 4030 free_workqueue_attrs(new_attrs);
4c16bd32 4031 kfree(pwq_tbl);
4862125b 4032 return ret;
13e2e556 4033
4c16bd32
TH
4034enomem_pwq:
4035 free_unbound_pwq(dfl_pwq);
4036 for_each_node(node)
4037 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4038 free_unbound_pwq(pwq_tbl[node]);
4039 mutex_unlock(&wq_pool_mutex);
4040 put_online_cpus();
13e2e556 4041enomem:
4862125b
TH
4042 ret = -ENOMEM;
4043 goto out_free;
9e8cd2f5
TH
4044}
4045
4c16bd32
TH
4046/**
4047 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4048 * @wq: the target workqueue
4049 * @cpu: the CPU coming up or going down
4050 * @online: whether @cpu is coming up or going down
4051 *
4052 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4053 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4054 * @wq accordingly.
4055 *
4056 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4057 * falls back to @wq->dfl_pwq which may not be optimal but is always
4058 * correct.
4059 *
4060 * Note that when the last allowed CPU of a NUMA node goes offline for a
4061 * workqueue with a cpumask spanning multiple nodes, the workers which were
4062 * already executing the work items for the workqueue will lose their CPU
4063 * affinity and may execute on any CPU. This is similar to how per-cpu
4064 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4065 * affinity, it's the user's responsibility to flush the work item from
4066 * CPU_DOWN_PREPARE.
4067 */
4068static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4069 bool online)
4070{
4071 int node = cpu_to_node(cpu);
4072 int cpu_off = online ? -1 : cpu;
4073 struct pool_workqueue *old_pwq = NULL, *pwq;
4074 struct workqueue_attrs *target_attrs;
4075 cpumask_t *cpumask;
4076
4077 lockdep_assert_held(&wq_pool_mutex);
4078
4079 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4080 return;
4081
4082 /*
4083 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4084 * Let's use a preallocated one. The following buf is protected by
4085 * CPU hotplug exclusion.
4086 */
4087 target_attrs = wq_update_unbound_numa_attrs_buf;
4088 cpumask = target_attrs->cpumask;
4089
4090 mutex_lock(&wq->mutex);
d55262c4
TH
4091 if (wq->unbound_attrs->no_numa)
4092 goto out_unlock;
4c16bd32
TH
4093
4094 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4095 pwq = unbound_pwq_by_node(wq, node);
4096
4097 /*
4098 * Let's determine what needs to be done. If the target cpumask is
4099 * different from wq's, we need to compare it to @pwq's and create
4100 * a new one if they don't match. If the target cpumask equals
534a3fbb 4101 * wq's, the default pwq should be used.
4c16bd32
TH
4102 */
4103 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4104 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4105 goto out_unlock;
4106 } else {
534a3fbb 4107 goto use_dfl_pwq;
4c16bd32
TH
4108 }
4109
4110 mutex_unlock(&wq->mutex);
4111
4112 /* create a new pwq */
4113 pwq = alloc_unbound_pwq(wq, target_attrs);
4114 if (!pwq) {
2d916033
FF
4115 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4116 wq->name);
77f300b1
DY
4117 mutex_lock(&wq->mutex);
4118 goto use_dfl_pwq;
4c16bd32
TH
4119 }
4120
4121 /*
4122 * Install the new pwq. As this function is called only from CPU
4123 * hotplug callbacks and applying a new attrs is wrapped with
4124 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4125 * inbetween.
4126 */
4127 mutex_lock(&wq->mutex);
4128 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4129 goto out_unlock;
4130
4131use_dfl_pwq:
4132 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4133 get_pwq(wq->dfl_pwq);
4134 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4135 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4136out_unlock:
4137 mutex_unlock(&wq->mutex);
4138 put_pwq_unlocked(old_pwq);
4139}
4140
30cdf249 4141static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4142{
49e3cf44 4143 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4144 int cpu, ret;
30cdf249
TH
4145
4146 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4147 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4148 if (!wq->cpu_pwqs)
30cdf249
TH
4149 return -ENOMEM;
4150
4151 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4152 struct pool_workqueue *pwq =
4153 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4154 struct worker_pool *cpu_pools =
f02ae73a 4155 per_cpu(cpu_worker_pools, cpu);
f3421797 4156
f147f29e
TH
4157 init_pwq(pwq, wq, &cpu_pools[highpri]);
4158
4159 mutex_lock(&wq->mutex);
1befcf30 4160 link_pwq(pwq);
f147f29e 4161 mutex_unlock(&wq->mutex);
30cdf249 4162 }
9e8cd2f5 4163 return 0;
8a2b7538
TH
4164 } else if (wq->flags & __WQ_ORDERED) {
4165 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4166 /* there should only be single pwq for ordering guarantee */
4167 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4168 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4169 "ordering guarantee broken for workqueue %s\n", wq->name);
4170 return ret;
30cdf249 4171 } else {
9e8cd2f5 4172 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4173 }
0f900049
TH
4174}
4175
f3421797
TH
4176static int wq_clamp_max_active(int max_active, unsigned int flags,
4177 const char *name)
b71ab8c2 4178{
f3421797
TH
4179 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4180
4181 if (max_active < 1 || max_active > lim)
044c782c
VI
4182 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4183 max_active, name, 1, lim);
b71ab8c2 4184
f3421797 4185 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4186}
4187
b196be89 4188struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4189 unsigned int flags,
4190 int max_active,
4191 struct lock_class_key *key,
b196be89 4192 const char *lock_name, ...)
1da177e4 4193{
df2d5ae4 4194 size_t tbl_size = 0;
ecf6881f 4195 va_list args;
1da177e4 4196 struct workqueue_struct *wq;
49e3cf44 4197 struct pool_workqueue *pwq;
b196be89 4198
cee22a15
VK
4199 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4200 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4201 flags |= WQ_UNBOUND;
4202
ecf6881f 4203 /* allocate wq and format name */
df2d5ae4
TH
4204 if (flags & WQ_UNBOUND)
4205 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4206
4207 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4208 if (!wq)
d2c1d404 4209 return NULL;
b196be89 4210
6029a918
TH
4211 if (flags & WQ_UNBOUND) {
4212 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4213 if (!wq->unbound_attrs)
4214 goto err_free_wq;
4215 }
4216
ecf6881f
TH
4217 va_start(args, lock_name);
4218 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4219 va_end(args);
1da177e4 4220
d320c038 4221 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4222 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4223
b196be89 4224 /* init wq */
97e37d7b 4225 wq->flags = flags;
a0a1a5fd 4226 wq->saved_max_active = max_active;
3c25a55d 4227 mutex_init(&wq->mutex);
112202d9 4228 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4229 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4230 INIT_LIST_HEAD(&wq->flusher_queue);
4231 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4232 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4233
eb13ba87 4234 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4235 INIT_LIST_HEAD(&wq->list);
3af24433 4236
30cdf249 4237 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4238 goto err_free_wq;
1537663f 4239
493008a8
TH
4240 /*
4241 * Workqueues which may be used during memory reclaim should
4242 * have a rescuer to guarantee forward progress.
4243 */
4244 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4245 struct worker *rescuer;
4246
d2c1d404 4247 rescuer = alloc_worker();
e22bee78 4248 if (!rescuer)
d2c1d404 4249 goto err_destroy;
e22bee78 4250
111c225a
TH
4251 rescuer->rescue_wq = wq;
4252 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4253 wq->name);
d2c1d404
TH
4254 if (IS_ERR(rescuer->task)) {
4255 kfree(rescuer);
4256 goto err_destroy;
4257 }
e22bee78 4258
d2c1d404 4259 wq->rescuer = rescuer;
14a40ffc 4260 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4261 wake_up_process(rescuer->task);
3af24433
ON
4262 }
4263
226223ab
TH
4264 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4265 goto err_destroy;
4266
a0a1a5fd 4267 /*
68e13a67
LJ
4268 * wq_pool_mutex protects global freeze state and workqueues list.
4269 * Grab it, adjust max_active and add the new @wq to workqueues
4270 * list.
a0a1a5fd 4271 */
68e13a67 4272 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4273
a357fc03 4274 mutex_lock(&wq->mutex);
699ce097
TH
4275 for_each_pwq(pwq, wq)
4276 pwq_adjust_max_active(pwq);
a357fc03 4277 mutex_unlock(&wq->mutex);
a0a1a5fd 4278
1537663f 4279 list_add(&wq->list, &workqueues);
a0a1a5fd 4280
68e13a67 4281 mutex_unlock(&wq_pool_mutex);
1537663f 4282
3af24433 4283 return wq;
d2c1d404
TH
4284
4285err_free_wq:
6029a918 4286 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4287 kfree(wq);
4288 return NULL;
4289err_destroy:
4290 destroy_workqueue(wq);
4690c4ab 4291 return NULL;
3af24433 4292}
d320c038 4293EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4294
3af24433
ON
4295/**
4296 * destroy_workqueue - safely terminate a workqueue
4297 * @wq: target workqueue
4298 *
4299 * Safely destroy a workqueue. All work currently pending will be done first.
4300 */
4301void destroy_workqueue(struct workqueue_struct *wq)
4302{
49e3cf44 4303 struct pool_workqueue *pwq;
4c16bd32 4304 int node;
3af24433 4305
9c5a2ba7
TH
4306 /* drain it before proceeding with destruction */
4307 drain_workqueue(wq);
c8efcc25 4308
6183c009 4309 /* sanity checks */
b09f4fd3 4310 mutex_lock(&wq->mutex);
49e3cf44 4311 for_each_pwq(pwq, wq) {
6183c009
TH
4312 int i;
4313
76af4d93
TH
4314 for (i = 0; i < WORK_NR_COLORS; i++) {
4315 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4316 mutex_unlock(&wq->mutex);
6183c009 4317 return;
76af4d93
TH
4318 }
4319 }
4320
5c529597 4321 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4322 WARN_ON(pwq->nr_active) ||
76af4d93 4323 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4324 mutex_unlock(&wq->mutex);
6183c009 4325 return;
76af4d93 4326 }
6183c009 4327 }
b09f4fd3 4328 mutex_unlock(&wq->mutex);
6183c009 4329
a0a1a5fd
TH
4330 /*
4331 * wq list is used to freeze wq, remove from list after
4332 * flushing is complete in case freeze races us.
4333 */
68e13a67 4334 mutex_lock(&wq_pool_mutex);
d2c1d404 4335 list_del_init(&wq->list);
68e13a67 4336 mutex_unlock(&wq_pool_mutex);
3af24433 4337
226223ab
TH
4338 workqueue_sysfs_unregister(wq);
4339
493008a8 4340 if (wq->rescuer) {
e22bee78 4341 kthread_stop(wq->rescuer->task);
8d9df9f0 4342 kfree(wq->rescuer);
493008a8 4343 wq->rescuer = NULL;
e22bee78
TH
4344 }
4345
8864b4e5
TH
4346 if (!(wq->flags & WQ_UNBOUND)) {
4347 /*
4348 * The base ref is never dropped on per-cpu pwqs. Directly
4349 * free the pwqs and wq.
4350 */
4351 free_percpu(wq->cpu_pwqs);
4352 kfree(wq);
4353 } else {
4354 /*
4355 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4356 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4357 * @wq will be freed when the last pwq is released.
8864b4e5 4358 */
4c16bd32
TH
4359 for_each_node(node) {
4360 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4361 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4362 put_pwq_unlocked(pwq);
4363 }
4364
4365 /*
4366 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4367 * put. Don't access it afterwards.
4368 */
4369 pwq = wq->dfl_pwq;
4370 wq->dfl_pwq = NULL;
dce90d47 4371 put_pwq_unlocked(pwq);
29c91e99 4372 }
3af24433
ON
4373}
4374EXPORT_SYMBOL_GPL(destroy_workqueue);
4375
dcd989cb
TH
4376/**
4377 * workqueue_set_max_active - adjust max_active of a workqueue
4378 * @wq: target workqueue
4379 * @max_active: new max_active value.
4380 *
4381 * Set max_active of @wq to @max_active.
4382 *
4383 * CONTEXT:
4384 * Don't call from IRQ context.
4385 */
4386void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4387{
49e3cf44 4388 struct pool_workqueue *pwq;
dcd989cb 4389
8719dcea
TH
4390 /* disallow meddling with max_active for ordered workqueues */
4391 if (WARN_ON(wq->flags & __WQ_ORDERED))
4392 return;
4393
f3421797 4394 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4395
a357fc03 4396 mutex_lock(&wq->mutex);
dcd989cb
TH
4397
4398 wq->saved_max_active = max_active;
4399
699ce097
TH
4400 for_each_pwq(pwq, wq)
4401 pwq_adjust_max_active(pwq);
93981800 4402
a357fc03 4403 mutex_unlock(&wq->mutex);
15316ba8 4404}
dcd989cb 4405EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4406
e6267616
TH
4407/**
4408 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4409 *
4410 * Determine whether %current is a workqueue rescuer. Can be used from
4411 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4412 *
4413 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4414 */
4415bool current_is_workqueue_rescuer(void)
4416{
4417 struct worker *worker = current_wq_worker();
4418
6a092dfd 4419 return worker && worker->rescue_wq;
e6267616
TH
4420}
4421
eef6a7d5 4422/**
dcd989cb
TH
4423 * workqueue_congested - test whether a workqueue is congested
4424 * @cpu: CPU in question
4425 * @wq: target workqueue
eef6a7d5 4426 *
dcd989cb
TH
4427 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4428 * no synchronization around this function and the test result is
4429 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4430 *
d3251859
TH
4431 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4432 * Note that both per-cpu and unbound workqueues may be associated with
4433 * multiple pool_workqueues which have separate congested states. A
4434 * workqueue being congested on one CPU doesn't mean the workqueue is also
4435 * contested on other CPUs / NUMA nodes.
4436 *
d185af30 4437 * Return:
dcd989cb 4438 * %true if congested, %false otherwise.
eef6a7d5 4439 */
d84ff051 4440bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4441{
7fb98ea7 4442 struct pool_workqueue *pwq;
76af4d93
TH
4443 bool ret;
4444
88109453 4445 rcu_read_lock_sched();
7fb98ea7 4446
d3251859
TH
4447 if (cpu == WORK_CPU_UNBOUND)
4448 cpu = smp_processor_id();
4449
7fb98ea7
TH
4450 if (!(wq->flags & WQ_UNBOUND))
4451 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4452 else
df2d5ae4 4453 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4454
76af4d93 4455 ret = !list_empty(&pwq->delayed_works);
88109453 4456 rcu_read_unlock_sched();
76af4d93
TH
4457
4458 return ret;
1da177e4 4459}
dcd989cb 4460EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4461
dcd989cb
TH
4462/**
4463 * work_busy - test whether a work is currently pending or running
4464 * @work: the work to be tested
4465 *
4466 * Test whether @work is currently pending or running. There is no
4467 * synchronization around this function and the test result is
4468 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4469 *
d185af30 4470 * Return:
dcd989cb
TH
4471 * OR'd bitmask of WORK_BUSY_* bits.
4472 */
4473unsigned int work_busy(struct work_struct *work)
1da177e4 4474{
fa1b54e6 4475 struct worker_pool *pool;
dcd989cb
TH
4476 unsigned long flags;
4477 unsigned int ret = 0;
1da177e4 4478
dcd989cb
TH
4479 if (work_pending(work))
4480 ret |= WORK_BUSY_PENDING;
1da177e4 4481
fa1b54e6
TH
4482 local_irq_save(flags);
4483 pool = get_work_pool(work);
038366c5 4484 if (pool) {
fa1b54e6 4485 spin_lock(&pool->lock);
038366c5
LJ
4486 if (find_worker_executing_work(pool, work))
4487 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4488 spin_unlock(&pool->lock);
038366c5 4489 }
fa1b54e6 4490 local_irq_restore(flags);
1da177e4 4491
dcd989cb 4492 return ret;
1da177e4 4493}
dcd989cb 4494EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4495
3d1cb205
TH
4496/**
4497 * set_worker_desc - set description for the current work item
4498 * @fmt: printf-style format string
4499 * @...: arguments for the format string
4500 *
4501 * This function can be called by a running work function to describe what
4502 * the work item is about. If the worker task gets dumped, this
4503 * information will be printed out together to help debugging. The
4504 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4505 */
4506void set_worker_desc(const char *fmt, ...)
4507{
4508 struct worker *worker = current_wq_worker();
4509 va_list args;
4510
4511 if (worker) {
4512 va_start(args, fmt);
4513 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4514 va_end(args);
4515 worker->desc_valid = true;
4516 }
4517}
4518
4519/**
4520 * print_worker_info - print out worker information and description
4521 * @log_lvl: the log level to use when printing
4522 * @task: target task
4523 *
4524 * If @task is a worker and currently executing a work item, print out the
4525 * name of the workqueue being serviced and worker description set with
4526 * set_worker_desc() by the currently executing work item.
4527 *
4528 * This function can be safely called on any task as long as the
4529 * task_struct itself is accessible. While safe, this function isn't
4530 * synchronized and may print out mixups or garbages of limited length.
4531 */
4532void print_worker_info(const char *log_lvl, struct task_struct *task)
4533{
4534 work_func_t *fn = NULL;
4535 char name[WQ_NAME_LEN] = { };
4536 char desc[WORKER_DESC_LEN] = { };
4537 struct pool_workqueue *pwq = NULL;
4538 struct workqueue_struct *wq = NULL;
4539 bool desc_valid = false;
4540 struct worker *worker;
4541
4542 if (!(task->flags & PF_WQ_WORKER))
4543 return;
4544
4545 /*
4546 * This function is called without any synchronization and @task
4547 * could be in any state. Be careful with dereferences.
4548 */
4549 worker = probe_kthread_data(task);
4550
4551 /*
4552 * Carefully copy the associated workqueue's workfn and name. Keep
4553 * the original last '\0' in case the original contains garbage.
4554 */
4555 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4556 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4557 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4558 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4559
4560 /* copy worker description */
4561 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4562 if (desc_valid)
4563 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4564
4565 if (fn || name[0] || desc[0]) {
2d916033 4566 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4567 if (desc[0])
4568 pr_cont(" (%s)", desc);
4569 pr_cont("\n");
4570 }
4571}
4572
db7bccf4
TH
4573/*
4574 * CPU hotplug.
4575 *
e22bee78 4576 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4577 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4578 * pool which make migrating pending and scheduled works very
e22bee78 4579 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4580 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4581 * blocked draining impractical.
4582 *
24647570 4583 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4584 * running as an unbound one and allowing it to be reattached later if the
4585 * cpu comes back online.
db7bccf4 4586 */
1da177e4 4587
706026c2 4588static void wq_unbind_fn(struct work_struct *work)
3af24433 4589{
38db41d9 4590 int cpu = smp_processor_id();
4ce62e9e 4591 struct worker_pool *pool;
db7bccf4 4592 struct worker *worker;
a9ab775b 4593 int wi;
3af24433 4594
f02ae73a 4595 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4596 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4597
bc3a1afc 4598 mutex_lock(&pool->manager_mutex);
94cf58bb 4599 spin_lock_irq(&pool->lock);
3af24433 4600
94cf58bb 4601 /*
bc3a1afc 4602 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4603 * unbound and set DISASSOCIATED. Before this, all workers
4604 * except for the ones which are still executing works from
4605 * before the last CPU down must be on the cpu. After
4606 * this, they may become diasporas.
4607 */
a9ab775b 4608 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4609 worker->flags |= WORKER_UNBOUND;
06ba38a9 4610
24647570 4611 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4612
94cf58bb 4613 spin_unlock_irq(&pool->lock);
bc3a1afc 4614 mutex_unlock(&pool->manager_mutex);
628c78e7 4615
eb283428
LJ
4616 /*
4617 * Call schedule() so that we cross rq->lock and thus can
4618 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4619 * This is necessary as scheduler callbacks may be invoked
4620 * from other cpus.
4621 */
4622 schedule();
06ba38a9 4623
eb283428
LJ
4624 /*
4625 * Sched callbacks are disabled now. Zap nr_running.
4626 * After this, nr_running stays zero and need_more_worker()
4627 * and keep_working() are always true as long as the
4628 * worklist is not empty. This pool now behaves as an
4629 * unbound (in terms of concurrency management) pool which
4630 * are served by workers tied to the pool.
4631 */
e19e397a 4632 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4633
4634 /*
4635 * With concurrency management just turned off, a busy
4636 * worker blocking could lead to lengthy stalls. Kick off
4637 * unbound chain execution of currently pending work items.
4638 */
4639 spin_lock_irq(&pool->lock);
4640 wake_up_worker(pool);
4641 spin_unlock_irq(&pool->lock);
4642 }
3af24433 4643}
3af24433 4644
bd7c089e
TH
4645/**
4646 * rebind_workers - rebind all workers of a pool to the associated CPU
4647 * @pool: pool of interest
4648 *
a9ab775b 4649 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4650 */
4651static void rebind_workers(struct worker_pool *pool)
4652{
a9ab775b
TH
4653 struct worker *worker;
4654 int wi;
bd7c089e
TH
4655
4656 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4657
a9ab775b
TH
4658 /*
4659 * Restore CPU affinity of all workers. As all idle workers should
4660 * be on the run-queue of the associated CPU before any local
4661 * wake-ups for concurrency management happen, restore CPU affinty
4662 * of all workers first and then clear UNBOUND. As we're called
4663 * from CPU_ONLINE, the following shouldn't fail.
4664 */
4665 for_each_pool_worker(worker, wi, pool)
4666 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4667 pool->attrs->cpumask) < 0);
bd7c089e 4668
a9ab775b 4669 spin_lock_irq(&pool->lock);
bd7c089e 4670
a9ab775b
TH
4671 for_each_pool_worker(worker, wi, pool) {
4672 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4673
4674 /*
a9ab775b
TH
4675 * A bound idle worker should actually be on the runqueue
4676 * of the associated CPU for local wake-ups targeting it to
4677 * work. Kick all idle workers so that they migrate to the
4678 * associated CPU. Doing this in the same loop as
4679 * replacing UNBOUND with REBOUND is safe as no worker will
4680 * be bound before @pool->lock is released.
bd7c089e 4681 */
a9ab775b
TH
4682 if (worker_flags & WORKER_IDLE)
4683 wake_up_process(worker->task);
bd7c089e 4684
a9ab775b
TH
4685 /*
4686 * We want to clear UNBOUND but can't directly call
4687 * worker_clr_flags() or adjust nr_running. Atomically
4688 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4689 * @worker will clear REBOUND using worker_clr_flags() when
4690 * it initiates the next execution cycle thus restoring
4691 * concurrency management. Note that when or whether
4692 * @worker clears REBOUND doesn't affect correctness.
4693 *
4694 * ACCESS_ONCE() is necessary because @worker->flags may be
4695 * tested without holding any lock in
4696 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4697 * fail incorrectly leading to premature concurrency
4698 * management operations.
4699 */
4700 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4701 worker_flags |= WORKER_REBOUND;
4702 worker_flags &= ~WORKER_UNBOUND;
4703 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4704 }
a9ab775b
TH
4705
4706 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4707}
4708
7dbc725e
TH
4709/**
4710 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4711 * @pool: unbound pool of interest
4712 * @cpu: the CPU which is coming up
4713 *
4714 * An unbound pool may end up with a cpumask which doesn't have any online
4715 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4716 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4717 * online CPU before, cpus_allowed of all its workers should be restored.
4718 */
4719static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4720{
4721 static cpumask_t cpumask;
4722 struct worker *worker;
4723 int wi;
4724
4725 lockdep_assert_held(&pool->manager_mutex);
4726
4727 /* is @cpu allowed for @pool? */
4728 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4729 return;
4730
4731 /* is @cpu the only online CPU? */
4732 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4733 if (cpumask_weight(&cpumask) != 1)
4734 return;
4735
4736 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4737 for_each_pool_worker(worker, wi, pool)
4738 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4739 pool->attrs->cpumask) < 0);
4740}
4741
8db25e78
TH
4742/*
4743 * Workqueues should be brought up before normal priority CPU notifiers.
4744 * This will be registered high priority CPU notifier.
4745 */
0db0628d 4746static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4747 unsigned long action,
4748 void *hcpu)
3af24433 4749{
d84ff051 4750 int cpu = (unsigned long)hcpu;
4ce62e9e 4751 struct worker_pool *pool;
4c16bd32 4752 struct workqueue_struct *wq;
7dbc725e 4753 int pi;
3ce63377 4754
8db25e78 4755 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4756 case CPU_UP_PREPARE:
f02ae73a 4757 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4758 if (pool->nr_workers)
4759 continue;
ebf44d16 4760 if (create_and_start_worker(pool) < 0)
3ce63377 4761 return NOTIFY_BAD;
3af24433 4762 }
8db25e78 4763 break;
3af24433 4764
db7bccf4
TH
4765 case CPU_DOWN_FAILED:
4766 case CPU_ONLINE:
68e13a67 4767 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4768
4769 for_each_pool(pool, pi) {
bc3a1afc 4770 mutex_lock(&pool->manager_mutex);
94cf58bb 4771
7dbc725e
TH
4772 if (pool->cpu == cpu) {
4773 spin_lock_irq(&pool->lock);
4774 pool->flags &= ~POOL_DISASSOCIATED;
4775 spin_unlock_irq(&pool->lock);
a9ab775b 4776
7dbc725e
TH
4777 rebind_workers(pool);
4778 } else if (pool->cpu < 0) {
4779 restore_unbound_workers_cpumask(pool, cpu);
4780 }
94cf58bb 4781
bc3a1afc 4782 mutex_unlock(&pool->manager_mutex);
94cf58bb 4783 }
7dbc725e 4784
4c16bd32
TH
4785 /* update NUMA affinity of unbound workqueues */
4786 list_for_each_entry(wq, &workqueues, list)
4787 wq_update_unbound_numa(wq, cpu, true);
4788
68e13a67 4789 mutex_unlock(&wq_pool_mutex);
db7bccf4 4790 break;
00dfcaf7 4791 }
65758202
TH
4792 return NOTIFY_OK;
4793}
4794
4795/*
4796 * Workqueues should be brought down after normal priority CPU notifiers.
4797 * This will be registered as low priority CPU notifier.
4798 */
0db0628d 4799static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4800 unsigned long action,
4801 void *hcpu)
4802{
d84ff051 4803 int cpu = (unsigned long)hcpu;
8db25e78 4804 struct work_struct unbind_work;
4c16bd32 4805 struct workqueue_struct *wq;
8db25e78 4806
65758202
TH
4807 switch (action & ~CPU_TASKS_FROZEN) {
4808 case CPU_DOWN_PREPARE:
4c16bd32 4809 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4810 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4811 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4812
4813 /* update NUMA affinity of unbound workqueues */
4814 mutex_lock(&wq_pool_mutex);
4815 list_for_each_entry(wq, &workqueues, list)
4816 wq_update_unbound_numa(wq, cpu, false);
4817 mutex_unlock(&wq_pool_mutex);
4818
4819 /* wait for per-cpu unbinding to finish */
8db25e78 4820 flush_work(&unbind_work);
440a1136 4821 destroy_work_on_stack(&unbind_work);
8db25e78 4822 break;
65758202
TH
4823 }
4824 return NOTIFY_OK;
4825}
4826
2d3854a3 4827#ifdef CONFIG_SMP
8ccad40d 4828
2d3854a3 4829struct work_for_cpu {
ed48ece2 4830 struct work_struct work;
2d3854a3
RR
4831 long (*fn)(void *);
4832 void *arg;
4833 long ret;
4834};
4835
ed48ece2 4836static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4837{
ed48ece2
TH
4838 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4839
2d3854a3
RR
4840 wfc->ret = wfc->fn(wfc->arg);
4841}
4842
4843/**
4844 * work_on_cpu - run a function in user context on a particular cpu
4845 * @cpu: the cpu to run on
4846 * @fn: the function to run
4847 * @arg: the function arg
4848 *
31ad9081 4849 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4850 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4851 *
4852 * Return: The value @fn returns.
2d3854a3 4853 */
d84ff051 4854long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4855{
ed48ece2 4856 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4857
ed48ece2
TH
4858 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4859 schedule_work_on(cpu, &wfc.work);
12997d1a 4860 flush_work(&wfc.work);
440a1136 4861 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4862 return wfc.ret;
4863}
4864EXPORT_SYMBOL_GPL(work_on_cpu);
4865#endif /* CONFIG_SMP */
4866
a0a1a5fd
TH
4867#ifdef CONFIG_FREEZER
4868
4869/**
4870 * freeze_workqueues_begin - begin freezing workqueues
4871 *
58a69cb4 4872 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4873 * workqueues will queue new works to their delayed_works list instead of
706026c2 4874 * pool->worklist.
a0a1a5fd
TH
4875 *
4876 * CONTEXT:
a357fc03 4877 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4878 */
4879void freeze_workqueues_begin(void)
4880{
17116969 4881 struct worker_pool *pool;
24b8a847
TH
4882 struct workqueue_struct *wq;
4883 struct pool_workqueue *pwq;
611c92a0 4884 int pi;
a0a1a5fd 4885
68e13a67 4886 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4887
6183c009 4888 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4889 workqueue_freezing = true;
4890
24b8a847 4891 /* set FREEZING */
611c92a0 4892 for_each_pool(pool, pi) {
5bcab335 4893 spin_lock_irq(&pool->lock);
17116969
TH
4894 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4895 pool->flags |= POOL_FREEZING;
5bcab335 4896 spin_unlock_irq(&pool->lock);
24b8a847 4897 }
a0a1a5fd 4898
24b8a847 4899 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4900 mutex_lock(&wq->mutex);
699ce097
TH
4901 for_each_pwq(pwq, wq)
4902 pwq_adjust_max_active(pwq);
a357fc03 4903 mutex_unlock(&wq->mutex);
a0a1a5fd 4904 }
5bcab335 4905
68e13a67 4906 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4907}
4908
4909/**
58a69cb4 4910 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4911 *
4912 * Check whether freezing is complete. This function must be called
4913 * between freeze_workqueues_begin() and thaw_workqueues().
4914 *
4915 * CONTEXT:
68e13a67 4916 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4917 *
d185af30 4918 * Return:
58a69cb4
TH
4919 * %true if some freezable workqueues are still busy. %false if freezing
4920 * is complete.
a0a1a5fd
TH
4921 */
4922bool freeze_workqueues_busy(void)
4923{
a0a1a5fd 4924 bool busy = false;
24b8a847
TH
4925 struct workqueue_struct *wq;
4926 struct pool_workqueue *pwq;
a0a1a5fd 4927
68e13a67 4928 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4929
6183c009 4930 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4931
24b8a847
TH
4932 list_for_each_entry(wq, &workqueues, list) {
4933 if (!(wq->flags & WQ_FREEZABLE))
4934 continue;
a0a1a5fd
TH
4935 /*
4936 * nr_active is monotonically decreasing. It's safe
4937 * to peek without lock.
4938 */
88109453 4939 rcu_read_lock_sched();
24b8a847 4940 for_each_pwq(pwq, wq) {
6183c009 4941 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4942 if (pwq->nr_active) {
a0a1a5fd 4943 busy = true;
88109453 4944 rcu_read_unlock_sched();
a0a1a5fd
TH
4945 goto out_unlock;
4946 }
4947 }
88109453 4948 rcu_read_unlock_sched();
a0a1a5fd
TH
4949 }
4950out_unlock:
68e13a67 4951 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4952 return busy;
4953}
4954
4955/**
4956 * thaw_workqueues - thaw workqueues
4957 *
4958 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4959 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4960 *
4961 * CONTEXT:
a357fc03 4962 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4963 */
4964void thaw_workqueues(void)
4965{
24b8a847
TH
4966 struct workqueue_struct *wq;
4967 struct pool_workqueue *pwq;
4968 struct worker_pool *pool;
611c92a0 4969 int pi;
a0a1a5fd 4970
68e13a67 4971 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4972
4973 if (!workqueue_freezing)
4974 goto out_unlock;
4975
24b8a847 4976 /* clear FREEZING */
611c92a0 4977 for_each_pool(pool, pi) {
5bcab335 4978 spin_lock_irq(&pool->lock);
24b8a847
TH
4979 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4980 pool->flags &= ~POOL_FREEZING;
5bcab335 4981 spin_unlock_irq(&pool->lock);
24b8a847 4982 }
8b03ae3c 4983
24b8a847
TH
4984 /* restore max_active and repopulate worklist */
4985 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4986 mutex_lock(&wq->mutex);
699ce097
TH
4987 for_each_pwq(pwq, wq)
4988 pwq_adjust_max_active(pwq);
a357fc03 4989 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4990 }
4991
4992 workqueue_freezing = false;
4993out_unlock:
68e13a67 4994 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4995}
4996#endif /* CONFIG_FREEZER */
4997
bce90380
TH
4998static void __init wq_numa_init(void)
4999{
5000 cpumask_var_t *tbl;
5001 int node, cpu;
5002
5003 /* determine NUMA pwq table len - highest node id + 1 */
5004 for_each_node(node)
5005 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5006
5007 if (num_possible_nodes() <= 1)
5008 return;
5009
d55262c4
TH
5010 if (wq_disable_numa) {
5011 pr_info("workqueue: NUMA affinity support disabled\n");
5012 return;
5013 }
5014
4c16bd32
TH
5015 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5016 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5017
bce90380
TH
5018 /*
5019 * We want masks of possible CPUs of each node which isn't readily
5020 * available. Build one from cpu_to_node() which should have been
5021 * fully initialized by now.
5022 */
5023 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5024 BUG_ON(!tbl);
5025
5026 for_each_node(node)
1be0c25d
TH
5027 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5028 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5029
5030 for_each_possible_cpu(cpu) {
5031 node = cpu_to_node(cpu);
5032 if (WARN_ON(node == NUMA_NO_NODE)) {
5033 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5034 /* happens iff arch is bonkers, let's just proceed */
5035 return;
5036 }
5037 cpumask_set_cpu(cpu, tbl[node]);
5038 }
5039
5040 wq_numa_possible_cpumask = tbl;
5041 wq_numa_enabled = true;
5042}
5043
6ee0578b 5044static int __init init_workqueues(void)
1da177e4 5045{
7a4e344c
TH
5046 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5047 int i, cpu;
c34056a3 5048
e904e6c2
TH
5049 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5050
5051 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5052
65758202 5053 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5054 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5055
bce90380
TH
5056 wq_numa_init();
5057
706026c2 5058 /* initialize CPU pools */
29c91e99 5059 for_each_possible_cpu(cpu) {
4ce62e9e 5060 struct worker_pool *pool;
8b03ae3c 5061
7a4e344c 5062 i = 0;
f02ae73a 5063 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5064 BUG_ON(init_worker_pool(pool));
ec22ca5e 5065 pool->cpu = cpu;
29c91e99 5066 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5067 pool->attrs->nice = std_nice[i++];
f3f90ad4 5068 pool->node = cpu_to_node(cpu);
7a4e344c 5069
9daf9e67 5070 /* alloc pool ID */
68e13a67 5071 mutex_lock(&wq_pool_mutex);
9daf9e67 5072 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5073 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5074 }
8b03ae3c
TH
5075 }
5076
e22bee78 5077 /* create the initial worker */
29c91e99 5078 for_each_online_cpu(cpu) {
4ce62e9e 5079 struct worker_pool *pool;
e22bee78 5080
f02ae73a 5081 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5082 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5083 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5084 }
e22bee78
TH
5085 }
5086
8a2b7538 5087 /* create default unbound and ordered wq attrs */
29c91e99
TH
5088 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5089 struct workqueue_attrs *attrs;
5090
5091 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5092 attrs->nice = std_nice[i];
29c91e99 5093 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5094
5095 /*
5096 * An ordered wq should have only one pwq as ordering is
5097 * guaranteed by max_active which is enforced by pwqs.
5098 * Turn off NUMA so that dfl_pwq is used for all nodes.
5099 */
5100 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5101 attrs->nice = std_nice[i];
5102 attrs->no_numa = true;
5103 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5104 }
5105
d320c038 5106 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5107 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5108 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5109 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5110 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5111 system_freezable_wq = alloc_workqueue("events_freezable",
5112 WQ_FREEZABLE, 0);
0668106c
VK
5113 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5114 WQ_POWER_EFFICIENT, 0);
5115 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5116 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5117 0);
1aabe902 5118 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5119 !system_unbound_wq || !system_freezable_wq ||
5120 !system_power_efficient_wq ||
5121 !system_freezable_power_efficient_wq);
6ee0578b 5122 return 0;
1da177e4 5123}
6ee0578b 5124early_initcall(init_workqueues);