Revert "workqueue: make wq_subsys const"
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
4cb1ef64 32#include <linux/interrupt.h>
1da177e4
LT
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
1fa44eca 40#include <linux/hardirq.h>
46934023 41#include <linux/mempolicy.h>
341a5958 42#include <linux/freezer.h>
d5abe669 43#include <linux/debug_locks.h>
4e6045f1 44#include <linux/lockdep.h>
c34056a3 45#include <linux/idr.h>
29c91e99 46#include <linux/jhash.h>
42f8570f 47#include <linux/hashtable.h>
76af4d93 48#include <linux/rculist.h>
bce90380 49#include <linux/nodemask.h>
4c16bd32 50#include <linux/moduleparam.h>
3d1cb205 51#include <linux/uaccess.h>
c98a9805 52#include <linux/sched/isolation.h>
cd2440d6 53#include <linux/sched/debug.h>
62635ea8 54#include <linux/nmi.h>
940d71c6 55#include <linux/kvm_para.h>
aa6fde93 56#include <linux/delay.h>
e22bee78 57
ea138446 58#include "workqueue_internal.h"
1da177e4 59
e563d0a7 60enum worker_pool_flags {
24647570
TH
61 /*
62 * worker_pool flags
bc2ae0f5 63 *
24647570 64 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
65 * While associated (!DISASSOCIATED), all workers are bound to the
66 * CPU and none has %WORKER_UNBOUND set and concurrency management
67 * is in effect.
68 *
69 * While DISASSOCIATED, the cpu may be offline and all workers have
70 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 71 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 72 *
bc3a1afc 73 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 74 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 75 * worker_attach_to_pool() is in progress.
4cb1ef64
TH
76 *
77 * As there can only be one concurrent BH execution context per CPU, a
78 * BH pool is per-CPU and always DISASSOCIATED.
bc2ae0f5 79 */
4cb1ef64
TH
80 POOL_BH = 1 << 0, /* is a BH pool */
81 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
24647570 82 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
e563d0a7 83};
db7bccf4 84
e563d0a7 85enum worker_flags {
c8e55f36 86 /* worker flags */
c8e55f36
TH
87 WORKER_DIE = 1 << 1, /* die die die */
88 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 89 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 90 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 91 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 92 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 93
a9ab775b
TH
94 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
95 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 96};
db7bccf4 97
e563d0a7 98enum wq_internal_consts {
e34cdddb 99 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 100
29c91e99 101 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 102 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 103
e22bee78
TH
104 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
105 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
106
3233cdbd
TH
107 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
108 /* call for help after 10ms
109 (min two ticks) */
e22bee78
TH
110 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
111 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
112
113 /*
114 * Rescue workers are used only on emergencies and shared by
8698a745 115 * all cpus. Give MIN_NICE.
e22bee78 116 */
8698a745
DY
117 RESCUER_NICE_LEVEL = MIN_NICE,
118 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 119
31c89007 120 WQ_NAME_LEN = 32,
c8e55f36 121};
1da177e4 122
4cb1ef64
TH
123/*
124 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
125 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
126 * msecs_to_jiffies() can't be an initializer.
127 */
128#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
129#define BH_WORKER_RESTARTS 10
130
1da177e4 131/*
4690c4ab
TH
132 * Structure fields follow one of the following exclusion rules.
133 *
e41e704b
TH
134 * I: Modifiable by initialization/destruction paths and read-only for
135 * everyone else.
4690c4ab 136 *
e22bee78
TH
137 * P: Preemption protected. Disabling preemption is enough and should
138 * only be modified and accessed from the local cpu.
139 *
d565ed63 140 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 141 *
5797b1c1
TH
142 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
143 * reads.
144 *
bdf8b9bf
TH
145 * K: Only modified by worker while holding pool->lock. Can be safely read by
146 * self, while holding pool->lock or from IRQ context if %current is the
147 * kworker.
148 *
149 * S: Only modified by worker self.
150 *
1258fae7 151 * A: wq_pool_attach_mutex protected.
822d8405 152 *
68e13a67 153 * PL: wq_pool_mutex protected.
5bcab335 154 *
24acfb71 155 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 156 *
5b95e1af
LJ
157 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
158 *
159 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 160 * RCU for reads.
5b95e1af 161 *
3c25a55d
LJ
162 * WQ: wq->mutex protected.
163 *
24acfb71 164 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 165 *
a045a272
TH
166 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
167 * with READ_ONCE() without locking.
168 *
2e109a28 169 * MD: wq_mayday_lock protected.
cd2440d6
PM
170 *
171 * WD: Used internally by the watchdog.
1da177e4 172 */
1da177e4 173
2eaebdb3 174/* struct worker is defined in workqueue_internal.h */
c34056a3 175
bd7bdd43 176struct worker_pool {
a9b8a985 177 raw_spinlock_t lock; /* the pool lock */
d84ff051 178 int cpu; /* I: the associated cpu */
f3f90ad4 179 int node; /* I: the associated node ID */
9daf9e67 180 int id; /* I: pool ID */
bc8b50c2 181 unsigned int flags; /* L: flags */
bd7bdd43 182
82607adc 183 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 184 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 185
bc35f7ef
LJ
186 /*
187 * The counter is incremented in a process context on the associated CPU
188 * w/ preemption disabled, and decremented or reset in the same context
189 * but w/ pool->lock held. The readers grab pool->lock and are
190 * guaranteed to see if the counter reached zero.
191 */
192 int nr_running;
84f91c62 193
bd7bdd43 194 struct list_head worklist; /* L: list of pending works */
ea1abd61 195
5826cc8f
LJ
196 int nr_workers; /* L: total number of workers */
197 int nr_idle; /* L: currently idle workers */
bd7bdd43 198
2c1f1a91 199 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 200 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
201 struct work_struct idle_cull_work; /* L: worker idle cleanup */
202
203 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 204
c5aa87bb 205 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
206 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
207 /* L: hash of busy workers */
208
2607d7a6 209 struct worker *manager; /* L: purely informational */
92f9c5c4 210 struct list_head workers; /* A: attached workers */
e02b9312 211 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 212 struct completion *detach_completion; /* all workers detached */
e19e397a 213
7cda9aae 214 struct ida worker_ida; /* worker IDs for task name */
e19e397a 215
7a4e344c 216 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
217 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
218 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 219
29c91e99 220 /*
24acfb71 221 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
222 * from get_work_pool().
223 */
224 struct rcu_head rcu;
84f91c62 225};
8b03ae3c 226
725e8ec5
TH
227/*
228 * Per-pool_workqueue statistics. These can be monitored using
229 * tools/workqueue/wq_monitor.py.
230 */
231enum pool_workqueue_stats {
232 PWQ_STAT_STARTED, /* work items started execution */
233 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 234 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 235 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 236 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 237 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
238 PWQ_STAT_MAYDAY, /* maydays to rescuer */
239 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
240
241 PWQ_NR_STATS,
242};
243
1da177e4 244/*
112202d9
TH
245 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
246 * of work_struct->data are used for flags and the remaining high bits
247 * point to the pwq; thus, pwqs need to be aligned at two's power of the
248 * number of flag bits.
1da177e4 249 */
112202d9 250struct pool_workqueue {
bd7bdd43 251 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 252 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
253 int work_color; /* L: current color */
254 int flush_color; /* L: flushing color */
8864b4e5 255 int refcnt; /* L: reference count */
73f53c4a
TH
256 int nr_in_flight[WORK_NR_COLORS];
257 /* L: nr of in_flight works */
018f3a13
LJ
258
259 /*
260 * nr_active management and WORK_STRUCT_INACTIVE:
261 *
262 * When pwq->nr_active >= max_active, new work item is queued to
263 * pwq->inactive_works instead of pool->worklist and marked with
264 * WORK_STRUCT_INACTIVE.
265 *
5797b1c1
TH
266 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
267 * nr_active and all work items in pwq->inactive_works are marked with
268 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
269 * in pwq->inactive_works. Some of them are ready to run in
270 * pool->worklist or worker->scheduled. Those work itmes are only struct
271 * wq_barrier which is used for flush_work() and should not participate
272 * in nr_active. For non-barrier work item, it is marked with
273 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 274 */
1e19ffc6 275 int nr_active; /* L: nr of active works */
f97a4a1a 276 struct list_head inactive_works; /* L: inactive works */
5797b1c1 277 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 278 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 279 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 280
725e8ec5
TH
281 u64 stats[PWQ_NR_STATS];
282
8864b4e5 283 /*
967b494e 284 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
285 * and pwq_release_workfn() for details. pool_workqueue itself is also
286 * RCU protected so that the first pwq can be determined without
967b494e 287 * grabbing wq->mutex.
8864b4e5 288 */
687a9aa5 289 struct kthread_work release_work;
8864b4e5 290 struct rcu_head rcu;
e904e6c2 291} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 292
73f53c4a
TH
293/*
294 * Structure used to wait for workqueue flush.
295 */
296struct wq_flusher {
3c25a55d
LJ
297 struct list_head list; /* WQ: list of flushers */
298 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
299 struct completion done; /* flush completion */
300};
301
226223ab
TH
302struct wq_device;
303
91ccc6e7
TH
304/*
305 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
306 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
307 * As sharing a single nr_active across multiple sockets can be very expensive,
308 * the counting and enforcement is per NUMA node.
5797b1c1
TH
309 *
310 * The following struct is used to enforce per-node max_active. When a pwq wants
311 * to start executing a work item, it should increment ->nr using
312 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
313 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
314 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
315 * round-robin order.
91ccc6e7
TH
316 */
317struct wq_node_nr_active {
5797b1c1
TH
318 int max; /* per-node max_active */
319 atomic_t nr; /* per-node nr_active */
320 raw_spinlock_t lock; /* nests inside pool locks */
321 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
322};
323
1da177e4 324/*
c5aa87bb
TH
325 * The externally visible workqueue. It relays the issued work items to
326 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
327 */
328struct workqueue_struct {
3c25a55d 329 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 330 struct list_head list; /* PR: list of all workqueues */
73f53c4a 331
3c25a55d
LJ
332 struct mutex mutex; /* protects this wq */
333 int work_color; /* WQ: current work color */
334 int flush_color; /* WQ: current flush color */
112202d9 335 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
336 struct wq_flusher *first_flusher; /* WQ: first flusher */
337 struct list_head flusher_queue; /* WQ: flush waiters */
338 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 339
2e109a28 340 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 341 struct worker *rescuer; /* MD: rescue worker */
e22bee78 342
87fc741e 343 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
344
345 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 346 int max_active; /* WO: max active works */
5797b1c1 347 int min_active; /* WO: min active works */
a045a272 348 int saved_max_active; /* WQ: saved max_active */
5797b1c1 349 int saved_min_active; /* WQ: saved min_active */
226223ab 350
5b95e1af 351 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 352 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 353
226223ab
TH
354#ifdef CONFIG_SYSFS
355 struct wq_device *wq_dev; /* I: for sysfs interface */
356#endif
4e6045f1 357#ifdef CONFIG_LOCKDEP
669de8bd
BVA
358 char *lock_name;
359 struct lock_class_key key;
4690c4ab 360 struct lockdep_map lockdep_map;
4e6045f1 361#endif
ecf6881f 362 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 363
e2dca7ad 364 /*
24acfb71
TG
365 * Destruction of workqueue_struct is RCU protected to allow walking
366 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
367 * This is used to dump all workqueues from sysrq.
368 */
369 struct rcu_head rcu;
370
2728fd2f
TH
371 /* hot fields used during command issue, aligned to cacheline */
372 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 373 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 374 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
375};
376
e904e6c2
TH
377static struct kmem_cache *pwq_cache;
378
84193c07
TH
379/*
380 * Each pod type describes how CPUs should be grouped for unbound workqueues.
381 * See the comment above workqueue_attrs->affn_scope.
382 */
383struct wq_pod_type {
384 int nr_pods; /* number of pods */
385 cpumask_var_t *pod_cpus; /* pod -> cpus */
386 int *pod_node; /* pod -> node */
387 int *cpu_pod; /* cpu -> pod */
388};
389
390static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
523a301e 391static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
63c5484e
TH
392
393static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
523a301e 394 [WQ_AFFN_DFL] = "default",
63c5484e
TH
395 [WQ_AFFN_CPU] = "cpu",
396 [WQ_AFFN_SMT] = "smt",
397 [WQ_AFFN_CACHE] = "cache",
398 [WQ_AFFN_NUMA] = "numa",
399 [WQ_AFFN_SYSTEM] = "system",
400};
bce90380 401
c5f8cd6c
TH
402static bool wq_topo_initialized __read_mostly = false;
403
616db877
TH
404/*
405 * Per-cpu work items which run for longer than the following threshold are
406 * automatically considered CPU intensive and excluded from concurrency
407 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
409 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 410 */
aa6fde93 411static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877
TH
412module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
413
cee22a15 414/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 415static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
416module_param_named(power_efficient, wq_power_efficient, bool, 0444);
417
863b710b 418static bool wq_online; /* can kworkers be created yet? */
3347fa09 419
fef59c9c
TH
420/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
421static struct workqueue_attrs *wq_update_pod_attrs_buf;
4c16bd32 422
68e13a67 423static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 424static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 425static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
426/* wait for manager to go away */
427static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 428
e2dca7ad 429static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 430static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 431
99c621ef 432/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
433static cpumask_var_t wq_unbound_cpumask;
434
fe28f631
WL
435/* PL: user requested unbound cpumask via sysfs */
436static cpumask_var_t wq_requested_unbound_cpumask;
437
438/* PL: isolated cpumask to be excluded from unbound cpumask */
439static cpumask_var_t wq_isolated_cpumask;
440
ace3c549 441/* for further constrain wq_unbound_cpumask by cmdline parameter*/
442static struct cpumask wq_cmdline_cpumask __initdata;
443
ef557180
MG
444/* CPU where unbound work was last round robin scheduled from this CPU */
445static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 446
f303fccb
TH
447/*
448 * Local execution of unbound work items is no longer guaranteed. The
449 * following always forces round-robin CPU selection on unbound work items
450 * to uncover usages which depend on it.
451 */
452#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
453static bool wq_debug_force_rr_cpu = true;
454#else
455static bool wq_debug_force_rr_cpu = false;
456#endif
457module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
458
4cb1ef64
TH
459/* the BH worker pools */
460static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
461 bh_worker_pools);
462
7d19c5ce 463/* the per-cpu worker pools */
4cb1ef64
TH
464static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
465 cpu_worker_pools);
7d19c5ce 466
68e13a67 467static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 468
68e13a67 469/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
470static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
471
c5aa87bb 472/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
473static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
474
8a2b7538
TH
475/* I: attributes used when instantiating ordered pools on demand */
476static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
477
967b494e
TH
478/*
479 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
480 * process context while holding a pool lock. Bounce to a dedicated kthread
481 * worker to avoid A-A deadlocks.
482 */
68279f9c 483static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 484
68279f9c 485struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 486EXPORT_SYMBOL(system_wq);
68279f9c 487struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 488EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 489struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 490EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 491struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 492EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 493struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 494EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 495struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 496EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 497struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 498EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
4cb1ef64
TH
499struct workqueue_struct *system_bh_wq;
500EXPORT_SYMBOL_GPL(system_bh_wq);
501struct workqueue_struct *system_bh_highpri_wq;
502EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
d320c038 503
7d19c5ce 504static int worker_thread(void *__worker);
6ba94429 505static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 506static void show_pwq(struct pool_workqueue *pwq);
55df0933 507static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 508
97bd2347
TH
509#define CREATE_TRACE_POINTS
510#include <trace/events/workqueue.h>
511
68e13a67 512#define assert_rcu_or_pool_mutex() \
24acfb71 513 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 514 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 515 "RCU or wq_pool_mutex should be held")
5bcab335 516
5b95e1af 517#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 518 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
519 !lockdep_is_held(&wq->mutex) && \
520 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 521 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 522
4cb1ef64
TH
523#define for_each_bh_worker_pool(pool, cpu) \
524 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
525 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
526 (pool)++)
527
f02ae73a
TH
528#define for_each_cpu_worker_pool(pool, cpu) \
529 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
530 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 531 (pool)++)
4ce62e9e 532
17116969
TH
533/**
534 * for_each_pool - iterate through all worker_pools in the system
535 * @pool: iteration cursor
611c92a0 536 * @pi: integer used for iteration
fa1b54e6 537 *
24acfb71 538 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
539 * locked. If the pool needs to be used beyond the locking in effect, the
540 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
541 *
542 * The if/else clause exists only for the lockdep assertion and can be
543 * ignored.
17116969 544 */
611c92a0
TH
545#define for_each_pool(pool, pi) \
546 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 547 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 548 else
17116969 549
822d8405
TH
550/**
551 * for_each_pool_worker - iterate through all workers of a worker_pool
552 * @worker: iteration cursor
822d8405
TH
553 * @pool: worker_pool to iterate workers of
554 *
1258fae7 555 * This must be called with wq_pool_attach_mutex.
822d8405
TH
556 *
557 * The if/else clause exists only for the lockdep assertion and can be
558 * ignored.
559 */
da028469
LJ
560#define for_each_pool_worker(worker, pool) \
561 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 562 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
563 else
564
49e3cf44
TH
565/**
566 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
567 * @pwq: iteration cursor
568 * @wq: the target workqueue
76af4d93 569 *
24acfb71 570 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
571 * If the pwq needs to be used beyond the locking in effect, the caller is
572 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
573 *
574 * The if/else clause exists only for the lockdep assertion and can be
575 * ignored.
49e3cf44
TH
576 */
577#define for_each_pwq(pwq, wq) \
49e9d1a9 578 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 579 lockdep_is_held(&(wq->mutex)))
f3421797 580
dc186ad7
TG
581#ifdef CONFIG_DEBUG_OBJECTS_WORK
582
f9e62f31 583static const struct debug_obj_descr work_debug_descr;
dc186ad7 584
99777288
SG
585static void *work_debug_hint(void *addr)
586{
587 return ((struct work_struct *) addr)->func;
588}
589
b9fdac7f
DC
590static bool work_is_static_object(void *addr)
591{
592 struct work_struct *work = addr;
593
594 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
595}
596
dc186ad7
TG
597/*
598 * fixup_init is called when:
599 * - an active object is initialized
600 */
02a982a6 601static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
602{
603 struct work_struct *work = addr;
604
605 switch (state) {
606 case ODEBUG_STATE_ACTIVE:
607 cancel_work_sync(work);
608 debug_object_init(work, &work_debug_descr);
02a982a6 609 return true;
dc186ad7 610 default:
02a982a6 611 return false;
dc186ad7
TG
612 }
613}
614
dc186ad7
TG
615/*
616 * fixup_free is called when:
617 * - an active object is freed
618 */
02a982a6 619static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
620{
621 struct work_struct *work = addr;
622
623 switch (state) {
624 case ODEBUG_STATE_ACTIVE:
625 cancel_work_sync(work);
626 debug_object_free(work, &work_debug_descr);
02a982a6 627 return true;
dc186ad7 628 default:
02a982a6 629 return false;
dc186ad7
TG
630 }
631}
632
f9e62f31 633static const struct debug_obj_descr work_debug_descr = {
dc186ad7 634 .name = "work_struct",
99777288 635 .debug_hint = work_debug_hint,
b9fdac7f 636 .is_static_object = work_is_static_object,
dc186ad7 637 .fixup_init = work_fixup_init,
dc186ad7
TG
638 .fixup_free = work_fixup_free,
639};
640
641static inline void debug_work_activate(struct work_struct *work)
642{
643 debug_object_activate(work, &work_debug_descr);
644}
645
646static inline void debug_work_deactivate(struct work_struct *work)
647{
648 debug_object_deactivate(work, &work_debug_descr);
649}
650
651void __init_work(struct work_struct *work, int onstack)
652{
653 if (onstack)
654 debug_object_init_on_stack(work, &work_debug_descr);
655 else
656 debug_object_init(work, &work_debug_descr);
657}
658EXPORT_SYMBOL_GPL(__init_work);
659
660void destroy_work_on_stack(struct work_struct *work)
661{
662 debug_object_free(work, &work_debug_descr);
663}
664EXPORT_SYMBOL_GPL(destroy_work_on_stack);
665
ea2e64f2
TG
666void destroy_delayed_work_on_stack(struct delayed_work *work)
667{
668 destroy_timer_on_stack(&work->timer);
669 debug_object_free(&work->work, &work_debug_descr);
670}
671EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
672
dc186ad7
TG
673#else
674static inline void debug_work_activate(struct work_struct *work) { }
675static inline void debug_work_deactivate(struct work_struct *work) { }
676#endif
677
4e8b22bd 678/**
67dc8325 679 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
680 * @pool: the pool pointer of interest
681 *
682 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
683 * successfully, -errno on failure.
684 */
9daf9e67
TH
685static int worker_pool_assign_id(struct worker_pool *pool)
686{
687 int ret;
688
68e13a67 689 lockdep_assert_held(&wq_pool_mutex);
5bcab335 690
4e8b22bd
LB
691 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
692 GFP_KERNEL);
229641a6 693 if (ret >= 0) {
e68035fb 694 pool->id = ret;
229641a6
TH
695 return 0;
696 }
fa1b54e6 697 return ret;
7c3eed5c
TH
698}
699
9f66cff2
TH
700static struct pool_workqueue __rcu **
701unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
702{
703 if (cpu >= 0)
704 return per_cpu_ptr(wq->cpu_pwq, cpu);
705 else
706 return &wq->dfl_pwq;
707}
708
709/* @cpu < 0 for dfl_pwq */
710static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
711{
712 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
713 lockdep_is_held(&wq_pool_mutex) ||
714 lockdep_is_held(&wq->mutex));
715}
716
5797b1c1
TH
717/**
718 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
719 * @wq: workqueue of interest
720 *
721 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
722 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
723 * default pwq is always mapped to the pool with the current effective cpumask.
724 */
725static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
726{
727 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
728}
729
73f53c4a
TH
730static unsigned int work_color_to_flags(int color)
731{
732 return color << WORK_STRUCT_COLOR_SHIFT;
733}
734
c4560c2c 735static int get_work_color(unsigned long work_data)
73f53c4a 736{
c4560c2c 737 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
738 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
739}
740
741static int work_next_color(int color)
742{
743 return (color + 1) % WORK_NR_COLORS;
744}
1da177e4 745
14441960 746/*
112202d9
TH
747 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
748 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 749 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 750 *
112202d9
TH
751 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
752 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
753 * work->data. These functions should only be called while the work is
754 * owned - ie. while the PENDING bit is set.
7a22ad75 755 *
112202d9 756 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 757 * corresponding to a work. Pool is available once the work has been
112202d9 758 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 759 * available only while the work item is queued.
7a22ad75 760 *
bbb68dfa
TH
761 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
762 * canceled. While being canceled, a work item may have its PENDING set
763 * but stay off timer and worklist for arbitrarily long and nobody should
764 * try to steal the PENDING bit.
14441960 765 */
7a22ad75
TH
766static inline void set_work_data(struct work_struct *work, unsigned long data,
767 unsigned long flags)
365970a1 768{
6183c009 769 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
770 atomic_long_set(&work->data, data | flags | work_static(work));
771}
365970a1 772
112202d9 773static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
774 unsigned long extra_flags)
775{
112202d9
TH
776 set_work_data(work, (unsigned long)pwq,
777 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
778}
779
4468a00f
LJ
780static void set_work_pool_and_keep_pending(struct work_struct *work,
781 int pool_id)
782{
783 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
784 WORK_STRUCT_PENDING);
785}
786
7c3eed5c
TH
787static void set_work_pool_and_clear_pending(struct work_struct *work,
788 int pool_id)
7a22ad75 789{
23657bb1
TH
790 /*
791 * The following wmb is paired with the implied mb in
792 * test_and_set_bit(PENDING) and ensures all updates to @work made
793 * here are visible to and precede any updates by the next PENDING
794 * owner.
795 */
796 smp_wmb();
7c3eed5c 797 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
798 /*
799 * The following mb guarantees that previous clear of a PENDING bit
800 * will not be reordered with any speculative LOADS or STORES from
801 * work->current_func, which is executed afterwards. This possible
8bdc6201 802 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
803 * the same @work. E.g. consider this case:
804 *
805 * CPU#0 CPU#1
806 * ---------------------------- --------------------------------
807 *
808 * 1 STORE event_indicated
809 * 2 queue_work_on() {
810 * 3 test_and_set_bit(PENDING)
811 * 4 } set_..._and_clear_pending() {
812 * 5 set_work_data() # clear bit
813 * 6 smp_mb()
814 * 7 work->current_func() {
815 * 8 LOAD event_indicated
816 * }
817 *
818 * Without an explicit full barrier speculative LOAD on line 8 can
819 * be executed before CPU#0 does STORE on line 1. If that happens,
820 * CPU#0 observes the PENDING bit is still set and new execution of
821 * a @work is not queued in a hope, that CPU#1 will eventually
822 * finish the queued @work. Meanwhile CPU#1 does not see
823 * event_indicated is set, because speculative LOAD was executed
824 * before actual STORE.
825 */
826 smp_mb();
7a22ad75 827}
f756d5e2 828
7a22ad75 829static void clear_work_data(struct work_struct *work)
1da177e4 830{
7c3eed5c
TH
831 smp_wmb(); /* see set_work_pool_and_clear_pending() */
832 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
833}
834
afa4bb77
LT
835static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
836{
837 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
838}
839
112202d9 840static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 841{
e120153d 842 unsigned long data = atomic_long_read(&work->data);
7a22ad75 843
112202d9 844 if (data & WORK_STRUCT_PWQ)
afa4bb77 845 return work_struct_pwq(data);
e120153d
TH
846 else
847 return NULL;
4d707b9f
ON
848}
849
7c3eed5c
TH
850/**
851 * get_work_pool - return the worker_pool a given work was associated with
852 * @work: the work item of interest
853 *
68e13a67 854 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
855 * access under RCU read lock. As such, this function should be
856 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
857 *
858 * All fields of the returned pool are accessible as long as the above
859 * mentioned locking is in effect. If the returned pool needs to be used
860 * beyond the critical section, the caller is responsible for ensuring the
861 * returned pool is and stays online.
d185af30
YB
862 *
863 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
864 */
865static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 866{
e120153d 867 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 868 int pool_id;
7a22ad75 869
68e13a67 870 assert_rcu_or_pool_mutex();
fa1b54e6 871
112202d9 872 if (data & WORK_STRUCT_PWQ)
afa4bb77 873 return work_struct_pwq(data)->pool;
7a22ad75 874
7c3eed5c
TH
875 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
876 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
877 return NULL;
878
fa1b54e6 879 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
880}
881
882/**
883 * get_work_pool_id - return the worker pool ID a given work is associated with
884 * @work: the work item of interest
885 *
d185af30 886 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
887 * %WORK_OFFQ_POOL_NONE if none.
888 */
889static int get_work_pool_id(struct work_struct *work)
890{
54d5b7d0
LJ
891 unsigned long data = atomic_long_read(&work->data);
892
112202d9 893 if (data & WORK_STRUCT_PWQ)
afa4bb77 894 return work_struct_pwq(data)->pool->id;
7c3eed5c 895
54d5b7d0 896 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
897}
898
bbb68dfa
TH
899static void mark_work_canceling(struct work_struct *work)
900{
7c3eed5c 901 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 902
7c3eed5c
TH
903 pool_id <<= WORK_OFFQ_POOL_SHIFT;
904 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
905}
906
907static bool work_is_canceling(struct work_struct *work)
908{
909 unsigned long data = atomic_long_read(&work->data);
910
112202d9 911 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
912}
913
e22bee78 914/*
3270476a
TH
915 * Policy functions. These define the policies on how the global worker
916 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 917 * they're being called with pool->lock held.
e22bee78
TH
918 */
919
4594bf15 920/*
e22bee78
TH
921 * Need to wake up a worker? Called from anything but currently
922 * running workers.
974271c4
TH
923 *
924 * Note that, because unbound workers never contribute to nr_running, this
706026c2 925 * function will always return %true for unbound pools as long as the
974271c4 926 * worklist isn't empty.
4594bf15 927 */
63d95a91 928static bool need_more_worker(struct worker_pool *pool)
365970a1 929{
0219a352 930 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 931}
4594bf15 932
e22bee78 933/* Can I start working? Called from busy but !running workers. */
63d95a91 934static bool may_start_working(struct worker_pool *pool)
e22bee78 935{
63d95a91 936 return pool->nr_idle;
e22bee78
TH
937}
938
939/* Do I need to keep working? Called from currently running workers. */
63d95a91 940static bool keep_working(struct worker_pool *pool)
e22bee78 941{
bc35f7ef 942 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
943}
944
945/* Do we need a new worker? Called from manager. */
63d95a91 946static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 947{
63d95a91 948 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 949}
365970a1 950
e22bee78 951/* Do we have too many workers and should some go away? */
63d95a91 952static bool too_many_workers(struct worker_pool *pool)
e22bee78 953{
692b4825 954 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
955 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
956 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
957
958 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
959}
960
c54d5046
TH
961/**
962 * worker_set_flags - set worker flags and adjust nr_running accordingly
963 * @worker: self
964 * @flags: flags to set
965 *
966 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
967 */
968static inline void worker_set_flags(struct worker *worker, unsigned int flags)
969{
970 struct worker_pool *pool = worker->pool;
971
bc8b50c2 972 lockdep_assert_held(&pool->lock);
c54d5046
TH
973
974 /* If transitioning into NOT_RUNNING, adjust nr_running. */
975 if ((flags & WORKER_NOT_RUNNING) &&
976 !(worker->flags & WORKER_NOT_RUNNING)) {
977 pool->nr_running--;
978 }
979
980 worker->flags |= flags;
981}
982
983/**
984 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
985 * @worker: self
986 * @flags: flags to clear
987 *
988 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
989 */
990static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
991{
992 struct worker_pool *pool = worker->pool;
993 unsigned int oflags = worker->flags;
994
bc8b50c2 995 lockdep_assert_held(&pool->lock);
c54d5046
TH
996
997 worker->flags &= ~flags;
998
999 /*
1000 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1001 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1002 * of multiple flags, not a single flag.
1003 */
1004 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1005 if (!(worker->flags & WORKER_NOT_RUNNING))
1006 pool->nr_running++;
1007}
1008
797e8345
TH
1009/* Return the first idle worker. Called with pool->lock held. */
1010static struct worker *first_idle_worker(struct worker_pool *pool)
1011{
1012 if (unlikely(list_empty(&pool->idle_list)))
1013 return NULL;
1014
1015 return list_first_entry(&pool->idle_list, struct worker, entry);
1016}
1017
1018/**
1019 * worker_enter_idle - enter idle state
1020 * @worker: worker which is entering idle state
1021 *
1022 * @worker is entering idle state. Update stats and idle timer if
1023 * necessary.
1024 *
1025 * LOCKING:
1026 * raw_spin_lock_irq(pool->lock).
1027 */
1028static void worker_enter_idle(struct worker *worker)
1029{
1030 struct worker_pool *pool = worker->pool;
1031
1032 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1033 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1034 (worker->hentry.next || worker->hentry.pprev)))
1035 return;
1036
1037 /* can't use worker_set_flags(), also called from create_worker() */
1038 worker->flags |= WORKER_IDLE;
1039 pool->nr_idle++;
1040 worker->last_active = jiffies;
1041
1042 /* idle_list is LIFO */
1043 list_add(&worker->entry, &pool->idle_list);
1044
1045 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1046 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1047
1048 /* Sanity check nr_running. */
1049 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1050}
1051
1052/**
1053 * worker_leave_idle - leave idle state
1054 * @worker: worker which is leaving idle state
1055 *
1056 * @worker is leaving idle state. Update stats.
1057 *
1058 * LOCKING:
1059 * raw_spin_lock_irq(pool->lock).
1060 */
1061static void worker_leave_idle(struct worker *worker)
1062{
1063 struct worker_pool *pool = worker->pool;
1064
1065 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1066 return;
1067 worker_clr_flags(worker, WORKER_IDLE);
1068 pool->nr_idle--;
1069 list_del_init(&worker->entry);
1070}
1071
1072/**
1073 * find_worker_executing_work - find worker which is executing a work
1074 * @pool: pool of interest
1075 * @work: work to find worker for
1076 *
1077 * Find a worker which is executing @work on @pool by searching
1078 * @pool->busy_hash which is keyed by the address of @work. For a worker
1079 * to match, its current execution should match the address of @work and
1080 * its work function. This is to avoid unwanted dependency between
1081 * unrelated work executions through a work item being recycled while still
1082 * being executed.
1083 *
1084 * This is a bit tricky. A work item may be freed once its execution
1085 * starts and nothing prevents the freed area from being recycled for
1086 * another work item. If the same work item address ends up being reused
1087 * before the original execution finishes, workqueue will identify the
1088 * recycled work item as currently executing and make it wait until the
1089 * current execution finishes, introducing an unwanted dependency.
1090 *
1091 * This function checks the work item address and work function to avoid
1092 * false positives. Note that this isn't complete as one may construct a
1093 * work function which can introduce dependency onto itself through a
1094 * recycled work item. Well, if somebody wants to shoot oneself in the
1095 * foot that badly, there's only so much we can do, and if such deadlock
1096 * actually occurs, it should be easy to locate the culprit work function.
1097 *
1098 * CONTEXT:
1099 * raw_spin_lock_irq(pool->lock).
1100 *
1101 * Return:
1102 * Pointer to worker which is executing @work if found, %NULL
1103 * otherwise.
1104 */
1105static struct worker *find_worker_executing_work(struct worker_pool *pool,
1106 struct work_struct *work)
1107{
1108 struct worker *worker;
1109
1110 hash_for_each_possible(pool->busy_hash, worker, hentry,
1111 (unsigned long)work)
1112 if (worker->current_work == work &&
1113 worker->current_func == work->func)
1114 return worker;
1115
1116 return NULL;
1117}
1118
1119/**
1120 * move_linked_works - move linked works to a list
1121 * @work: start of series of works to be scheduled
1122 * @head: target list to append @work to
1123 * @nextp: out parameter for nested worklist walking
1124 *
873eaca6
TH
1125 * Schedule linked works starting from @work to @head. Work series to be
1126 * scheduled starts at @work and includes any consecutive work with
1127 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1128 * @nextp.
797e8345
TH
1129 *
1130 * CONTEXT:
1131 * raw_spin_lock_irq(pool->lock).
1132 */
1133static void move_linked_works(struct work_struct *work, struct list_head *head,
1134 struct work_struct **nextp)
1135{
1136 struct work_struct *n;
1137
1138 /*
1139 * Linked worklist will always end before the end of the list,
1140 * use NULL for list head.
1141 */
1142 list_for_each_entry_safe_from(work, n, NULL, entry) {
1143 list_move_tail(&work->entry, head);
1144 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1145 break;
1146 }
1147
1148 /*
1149 * If we're already inside safe list traversal and have moved
1150 * multiple works to the scheduled queue, the next position
1151 * needs to be updated.
1152 */
1153 if (nextp)
1154 *nextp = n;
1155}
1156
873eaca6
TH
1157/**
1158 * assign_work - assign a work item and its linked work items to a worker
1159 * @work: work to assign
1160 * @worker: worker to assign to
1161 * @nextp: out parameter for nested worklist walking
1162 *
1163 * Assign @work and its linked work items to @worker. If @work is already being
1164 * executed by another worker in the same pool, it'll be punted there.
1165 *
1166 * If @nextp is not NULL, it's updated to point to the next work of the last
1167 * scheduled work. This allows assign_work() to be nested inside
1168 * list_for_each_entry_safe().
1169 *
1170 * Returns %true if @work was successfully assigned to @worker. %false if @work
1171 * was punted to another worker already executing it.
1172 */
1173static bool assign_work(struct work_struct *work, struct worker *worker,
1174 struct work_struct **nextp)
1175{
1176 struct worker_pool *pool = worker->pool;
1177 struct worker *collision;
1178
1179 lockdep_assert_held(&pool->lock);
1180
1181 /*
1182 * A single work shouldn't be executed concurrently by multiple workers.
1183 * __queue_work() ensures that @work doesn't jump to a different pool
1184 * while still running in the previous pool. Here, we should ensure that
1185 * @work is not executed concurrently by multiple workers from the same
1186 * pool. Check whether anyone is already processing the work. If so,
1187 * defer the work to the currently executing one.
1188 */
1189 collision = find_worker_executing_work(pool, work);
1190 if (unlikely(collision)) {
1191 move_linked_works(work, &collision->scheduled, nextp);
1192 return false;
1193 }
1194
1195 move_linked_works(work, &worker->scheduled, nextp);
1196 return true;
1197}
1198
797e8345 1199/**
0219a352
TH
1200 * kick_pool - wake up an idle worker if necessary
1201 * @pool: pool to kick
797e8345 1202 *
0219a352
TH
1203 * @pool may have pending work items. Wake up worker if necessary. Returns
1204 * whether a worker was woken up.
797e8345 1205 */
0219a352 1206static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1207{
1208 struct worker *worker = first_idle_worker(pool);
8639eceb 1209 struct task_struct *p;
797e8345 1210
0219a352
TH
1211 lockdep_assert_held(&pool->lock);
1212
1213 if (!need_more_worker(pool) || !worker)
1214 return false;
1215
4cb1ef64
TH
1216 if (pool->flags & POOL_BH) {
1217 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1218 raise_softirq_irqoff(HI_SOFTIRQ);
1219 else
1220 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1221 return true;
1222 }
1223
8639eceb
TH
1224 p = worker->task;
1225
1226#ifdef CONFIG_SMP
1227 /*
1228 * Idle @worker is about to execute @work and waking up provides an
1229 * opportunity to migrate @worker at a lower cost by setting the task's
1230 * wake_cpu field. Let's see if we want to move @worker to improve
1231 * execution locality.
1232 *
1233 * We're waking the worker that went idle the latest and there's some
1234 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1235 * so, setting the wake_cpu won't do anything. As this is a best-effort
1236 * optimization and the race window is narrow, let's leave as-is for
1237 * now. If this becomes pronounced, we can skip over workers which are
1238 * still on cpu when picking an idle worker.
1239 *
1240 * If @pool has non-strict affinity, @worker might have ended up outside
1241 * its affinity scope. Repatriate.
1242 */
1243 if (!pool->attrs->affn_strict &&
1244 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1245 struct work_struct *work = list_first_entry(&pool->worklist,
1246 struct work_struct, entry);
1247 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1248 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1249 }
1250#endif
1251 wake_up_process(p);
0219a352 1252 return true;
797e8345
TH
1253}
1254
63638450
TH
1255#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1256
1257/*
1258 * Concurrency-managed per-cpu work items that hog CPU for longer than
1259 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1260 * which prevents them from stalling other concurrency-managed work items. If a
1261 * work function keeps triggering this mechanism, it's likely that the work item
1262 * should be using an unbound workqueue instead.
1263 *
1264 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1265 * and report them so that they can be examined and converted to use unbound
1266 * workqueues as appropriate. To avoid flooding the console, each violating work
1267 * function is tracked and reported with exponential backoff.
1268 */
1269#define WCI_MAX_ENTS 128
1270
1271struct wci_ent {
1272 work_func_t func;
1273 atomic64_t cnt;
1274 struct hlist_node hash_node;
1275};
1276
1277static struct wci_ent wci_ents[WCI_MAX_ENTS];
1278static int wci_nr_ents;
1279static DEFINE_RAW_SPINLOCK(wci_lock);
1280static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1281
1282static struct wci_ent *wci_find_ent(work_func_t func)
1283{
1284 struct wci_ent *ent;
1285
1286 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1287 (unsigned long)func) {
1288 if (ent->func == func)
1289 return ent;
1290 }
1291 return NULL;
1292}
1293
1294static void wq_cpu_intensive_report(work_func_t func)
1295{
1296 struct wci_ent *ent;
1297
1298restart:
1299 ent = wci_find_ent(func);
1300 if (ent) {
1301 u64 cnt;
1302
1303 /*
1304 * Start reporting from the fourth time and back off
1305 * exponentially.
1306 */
1307 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1308 if (cnt >= 4 && is_power_of_2(cnt))
1309 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1310 ent->func, wq_cpu_intensive_thresh_us,
1311 atomic64_read(&ent->cnt));
1312 return;
1313 }
1314
1315 /*
1316 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1317 * is exhausted, something went really wrong and we probably made enough
1318 * noise already.
1319 */
1320 if (wci_nr_ents >= WCI_MAX_ENTS)
1321 return;
1322
1323 raw_spin_lock(&wci_lock);
1324
1325 if (wci_nr_ents >= WCI_MAX_ENTS) {
1326 raw_spin_unlock(&wci_lock);
1327 return;
1328 }
1329
1330 if (wci_find_ent(func)) {
1331 raw_spin_unlock(&wci_lock);
1332 goto restart;
1333 }
1334
1335 ent = &wci_ents[wci_nr_ents++];
1336 ent->func = func;
1337 atomic64_set(&ent->cnt, 1);
1338 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1339
1340 raw_spin_unlock(&wci_lock);
1341}
1342
1343#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1344static void wq_cpu_intensive_report(work_func_t func) {}
1345#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1346
d302f017 1347/**
6d25be57 1348 * wq_worker_running - a worker is running again
e22bee78 1349 * @task: task waking up
e22bee78 1350 *
6d25be57 1351 * This function is called when a worker returns from schedule()
e22bee78 1352 */
6d25be57 1353void wq_worker_running(struct task_struct *task)
e22bee78
TH
1354{
1355 struct worker *worker = kthread_data(task);
1356
c8f6219b 1357 if (!READ_ONCE(worker->sleeping))
6d25be57 1358 return;
07edfece
FW
1359
1360 /*
1361 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1362 * and the nr_running increment below, we may ruin the nr_running reset
1363 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1364 * pool. Protect against such race.
1365 */
1366 preempt_disable();
6d25be57 1367 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1368 worker->pool->nr_running++;
07edfece 1369 preempt_enable();
616db877
TH
1370
1371 /*
1372 * CPU intensive auto-detection cares about how long a work item hogged
1373 * CPU without sleeping. Reset the starting timestamp on wakeup.
1374 */
1375 worker->current_at = worker->task->se.sum_exec_runtime;
1376
c8f6219b 1377 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1378}
1379
1380/**
1381 * wq_worker_sleeping - a worker is going to sleep
1382 * @task: task going to sleep
e22bee78 1383 *
6d25be57 1384 * This function is called from schedule() when a busy worker is
ccf45156 1385 * going to sleep.
e22bee78 1386 */
6d25be57 1387void wq_worker_sleeping(struct task_struct *task)
e22bee78 1388{
cc5bff38 1389 struct worker *worker = kthread_data(task);
111c225a 1390 struct worker_pool *pool;
e22bee78 1391
111c225a
TH
1392 /*
1393 * Rescuers, which may not have all the fields set up like normal
1394 * workers, also reach here, let's not access anything before
1395 * checking NOT_RUNNING.
1396 */
2d64672e 1397 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1398 return;
e22bee78 1399
111c225a 1400 pool = worker->pool;
111c225a 1401
62849a96 1402 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1403 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1404 return;
1405
c8f6219b 1406 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1407 raw_spin_lock_irq(&pool->lock);
e22bee78 1408
45c753f5
FW
1409 /*
1410 * Recheck in case unbind_workers() preempted us. We don't
1411 * want to decrement nr_running after the worker is unbound
1412 * and nr_running has been reset.
1413 */
1414 if (worker->flags & WORKER_NOT_RUNNING) {
1415 raw_spin_unlock_irq(&pool->lock);
1416 return;
1417 }
1418
bc35f7ef 1419 pool->nr_running--;
0219a352 1420 if (kick_pool(pool))
725e8ec5 1421 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1422
a9b8a985 1423 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1424}
1425
616db877
TH
1426/**
1427 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1428 * @task: task currently running
1429 *
1430 * Called from scheduler_tick(). We're in the IRQ context and the current
1431 * worker's fields which follow the 'K' locking rule can be accessed safely.
1432 */
1433void wq_worker_tick(struct task_struct *task)
1434{
1435 struct worker *worker = kthread_data(task);
1436 struct pool_workqueue *pwq = worker->current_pwq;
1437 struct worker_pool *pool = worker->pool;
1438
1439 if (!pwq)
1440 return;
1441
8a1dd1e5
TH
1442 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1443
18c8ae81
Z
1444 if (!wq_cpu_intensive_thresh_us)
1445 return;
1446
616db877
TH
1447 /*
1448 * If the current worker is concurrency managed and hogged the CPU for
1449 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1450 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1451 *
1452 * Set @worker->sleeping means that @worker is in the process of
1453 * switching out voluntarily and won't be contributing to
1454 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1455 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1456 * double decrements. The task is releasing the CPU anyway. Let's skip.
1457 * We probably want to make this prettier in the future.
616db877 1458 */
c8f6219b 1459 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1460 worker->task->se.sum_exec_runtime - worker->current_at <
1461 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1462 return;
1463
1464 raw_spin_lock(&pool->lock);
1465
1466 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1467 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1468 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1469
0219a352 1470 if (kick_pool(pool))
616db877 1471 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1472
1473 raw_spin_unlock(&pool->lock);
1474}
1475
1b69ac6b
JW
1476/**
1477 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1478 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1479 *
1480 * Determine the last function a worker executed. This is called from
1481 * the scheduler to get a worker's last known identity.
1482 *
1483 * CONTEXT:
a9b8a985 1484 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1485 *
4b047002
JW
1486 * This function is called during schedule() when a kworker is going
1487 * to sleep. It's used by psi to identify aggregation workers during
1488 * dequeuing, to allow periodic aggregation to shut-off when that
1489 * worker is the last task in the system or cgroup to go to sleep.
1490 *
1491 * As this function doesn't involve any workqueue-related locking, it
1492 * only returns stable values when called from inside the scheduler's
1493 * queuing and dequeuing paths, when @task, which must be a kworker,
1494 * is guaranteed to not be processing any works.
1495 *
1b69ac6b
JW
1496 * Return:
1497 * The last work function %current executed as a worker, NULL if it
1498 * hasn't executed any work yet.
1499 */
1500work_func_t wq_worker_last_func(struct task_struct *task)
1501{
1502 struct worker *worker = kthread_data(task);
1503
1504 return worker->last_func;
1505}
1506
91ccc6e7
TH
1507/**
1508 * wq_node_nr_active - Determine wq_node_nr_active to use
1509 * @wq: workqueue of interest
1510 * @node: NUMA node, can be %NUMA_NO_NODE
1511 *
1512 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1513 *
1514 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1515 *
1516 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1517 *
1518 * - Otherwise, node_nr_active[@node].
1519 */
1520static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1521 int node)
1522{
1523 if (!(wq->flags & WQ_UNBOUND))
1524 return NULL;
1525
1526 if (node == NUMA_NO_NODE)
1527 node = nr_node_ids;
1528
1529 return wq->node_nr_active[node];
1530}
1531
5797b1c1
TH
1532/**
1533 * wq_update_node_max_active - Update per-node max_actives to use
1534 * @wq: workqueue to update
1535 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1536 *
1537 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1538 * distributed among nodes according to the proportions of numbers of online
1539 * cpus. The result is always between @wq->min_active and max_active.
1540 */
1541static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1542{
1543 struct cpumask *effective = unbound_effective_cpumask(wq);
1544 int min_active = READ_ONCE(wq->min_active);
1545 int max_active = READ_ONCE(wq->max_active);
1546 int total_cpus, node;
1547
1548 lockdep_assert_held(&wq->mutex);
1549
c5f8cd6c
TH
1550 if (!wq_topo_initialized)
1551 return;
1552
15930da4 1553 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
5797b1c1
TH
1554 off_cpu = -1;
1555
1556 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1557 if (off_cpu >= 0)
1558 total_cpus--;
1559
1560 for_each_node(node) {
1561 int node_cpus;
1562
1563 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1564 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1565 node_cpus--;
1566
1567 wq_node_nr_active(wq, node)->max =
1568 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1569 min_active, max_active);
1570 }
1571
1572 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1573}
1574
8864b4e5
TH
1575/**
1576 * get_pwq - get an extra reference on the specified pool_workqueue
1577 * @pwq: pool_workqueue to get
1578 *
1579 * Obtain an extra reference on @pwq. The caller should guarantee that
1580 * @pwq has positive refcnt and be holding the matching pool->lock.
1581 */
1582static void get_pwq(struct pool_workqueue *pwq)
1583{
1584 lockdep_assert_held(&pwq->pool->lock);
1585 WARN_ON_ONCE(pwq->refcnt <= 0);
1586 pwq->refcnt++;
1587}
1588
1589/**
1590 * put_pwq - put a pool_workqueue reference
1591 * @pwq: pool_workqueue to put
1592 *
1593 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1594 * destruction. The caller should be holding the matching pool->lock.
1595 */
1596static void put_pwq(struct pool_workqueue *pwq)
1597{
1598 lockdep_assert_held(&pwq->pool->lock);
1599 if (likely(--pwq->refcnt))
1600 return;
8864b4e5 1601 /*
967b494e
TH
1602 * @pwq can't be released under pool->lock, bounce to a dedicated
1603 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1604 */
687a9aa5 1605 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1606}
1607
dce90d47
TH
1608/**
1609 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1610 * @pwq: pool_workqueue to put (can be %NULL)
1611 *
1612 * put_pwq() with locking. This function also allows %NULL @pwq.
1613 */
1614static void put_pwq_unlocked(struct pool_workqueue *pwq)
1615{
1616 if (pwq) {
1617 /*
24acfb71 1618 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1619 * following lock operations are safe.
1620 */
a9b8a985 1621 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1622 put_pwq(pwq);
a9b8a985 1623 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1624 }
1625}
1626
afa87ce8
TH
1627static bool pwq_is_empty(struct pool_workqueue *pwq)
1628{
1629 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1630}
1631
4c638030
TH
1632static void __pwq_activate_work(struct pool_workqueue *pwq,
1633 struct work_struct *work)
bf4ede01 1634{
1c270b79
TH
1635 unsigned long *wdb = work_data_bits(work);
1636
1637 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1638 trace_workqueue_activate_work(work);
82607adc
TH
1639 if (list_empty(&pwq->pool->worklist))
1640 pwq->pool->watchdog_ts = jiffies;
112202d9 1641 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1642 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1643}
1644
1645/**
1646 * pwq_activate_work - Activate a work item if inactive
1647 * @pwq: pool_workqueue @work belongs to
1648 * @work: work item to activate
1649 *
1650 * Returns %true if activated. %false if already active.
1651 */
1652static bool pwq_activate_work(struct pool_workqueue *pwq,
1653 struct work_struct *work)
1654{
1655 struct worker_pool *pool = pwq->pool;
91ccc6e7 1656 struct wq_node_nr_active *nna;
4c638030
TH
1657
1658 lockdep_assert_held(&pool->lock);
1659
1660 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1661 return false;
1662
91ccc6e7
TH
1663 nna = wq_node_nr_active(pwq->wq, pool->node);
1664 if (nna)
1665 atomic_inc(&nna->nr);
1666
112202d9 1667 pwq->nr_active++;
4c638030
TH
1668 __pwq_activate_work(pwq, work);
1669 return true;
bf4ede01
TH
1670}
1671
5797b1c1
TH
1672static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1673{
1674 int max = READ_ONCE(nna->max);
1675
1676 while (true) {
1677 int old, tmp;
1678
1679 old = atomic_read(&nna->nr);
1680 if (old >= max)
1681 return false;
1682 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1683 if (tmp == old)
1684 return true;
1685 }
1686}
1687
1c270b79
TH
1688/**
1689 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1690 * @pwq: pool_workqueue of interest
5797b1c1 1691 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1692 *
1693 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1694 * successfully obtained. %false otherwise.
1695 */
5797b1c1 1696static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1697{
1698 struct workqueue_struct *wq = pwq->wq;
1699 struct worker_pool *pool = pwq->pool;
91ccc6e7 1700 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1701 bool obtained = false;
1c270b79
TH
1702
1703 lockdep_assert_held(&pool->lock);
1704
5797b1c1 1705 if (!nna) {
4cb1ef64 1706 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
5797b1c1
TH
1707 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1708 goto out;
1709 }
1710
1711 /*
1712 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1713 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1714 * concurrency level. Don't jump the line.
1715 *
1716 * We need to ignore the pending test after max_active has increased as
1717 * pwq_dec_nr_active() can only maintain the concurrency level but not
1718 * increase it. This is indicated by @fill.
1719 */
1720 if (!list_empty(&pwq->pending_node) && likely(!fill))
1721 goto out;
1722
1723 obtained = tryinc_node_nr_active(nna);
1724 if (obtained)
1725 goto out;
1726
1727 /*
1728 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1729 * and try again. The smp_mb() is paired with the implied memory barrier
1730 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1731 * we see the decremented $nna->nr or they see non-empty
1732 * $nna->pending_pwqs.
1733 */
1734 raw_spin_lock(&nna->lock);
1735
1736 if (list_empty(&pwq->pending_node))
1737 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1738 else if (likely(!fill))
1739 goto out_unlock;
1740
1741 smp_mb();
1742
1743 obtained = tryinc_node_nr_active(nna);
1c270b79 1744
5797b1c1
TH
1745 /*
1746 * If @fill, @pwq might have already been pending. Being spuriously
1747 * pending in cold paths doesn't affect anything. Let's leave it be.
1748 */
1749 if (obtained && likely(!fill))
1750 list_del_init(&pwq->pending_node);
1751
1752out_unlock:
1753 raw_spin_unlock(&nna->lock);
1754out:
1755 if (obtained)
1c270b79
TH
1756 pwq->nr_active++;
1757 return obtained;
1758}
1759
1760/**
1761 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1762 * @pwq: pool_workqueue of interest
5797b1c1 1763 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1764 *
1765 * Activate the first inactive work item of @pwq if available and allowed by
1766 * max_active limit.
1767 *
1768 * Returns %true if an inactive work item has been activated. %false if no
1769 * inactive work item is found or max_active limit is reached.
1770 */
5797b1c1 1771static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1772{
1773 struct work_struct *work =
1774 list_first_entry_or_null(&pwq->inactive_works,
1775 struct work_struct, entry);
1776
5797b1c1 1777 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1778 __pwq_activate_work(pwq, work);
1779 return true;
1780 } else {
1781 return false;
1782 }
1783}
1784
5797b1c1
TH
1785/**
1786 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1787 * @nna: wq_node_nr_active to activate a pending pwq for
1788 * @caller_pool: worker_pool the caller is locking
1789 *
1790 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1791 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1792 */
1793static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1794 struct worker_pool *caller_pool)
1795{
1796 struct worker_pool *locked_pool = caller_pool;
1797 struct pool_workqueue *pwq;
1798 struct work_struct *work;
1799
1800 lockdep_assert_held(&caller_pool->lock);
1801
1802 raw_spin_lock(&nna->lock);
1803retry:
1804 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1805 struct pool_workqueue, pending_node);
1806 if (!pwq)
1807 goto out_unlock;
1808
1809 /*
1810 * If @pwq is for a different pool than @locked_pool, we need to lock
1811 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1812 * / lock dance. For that, we also need to release @nna->lock as it's
1813 * nested inside pool locks.
1814 */
1815 if (pwq->pool != locked_pool) {
1816 raw_spin_unlock(&locked_pool->lock);
1817 locked_pool = pwq->pool;
1818 if (!raw_spin_trylock(&locked_pool->lock)) {
1819 raw_spin_unlock(&nna->lock);
1820 raw_spin_lock(&locked_pool->lock);
1821 raw_spin_lock(&nna->lock);
1822 goto retry;
1823 }
1824 }
1825
1826 /*
1827 * $pwq may not have any inactive work items due to e.g. cancellations.
1828 * Drop it from pending_pwqs and see if there's another one.
1829 */
1830 work = list_first_entry_or_null(&pwq->inactive_works,
1831 struct work_struct, entry);
1832 if (!work) {
1833 list_del_init(&pwq->pending_node);
1834 goto retry;
1835 }
1836
1837 /*
1838 * Acquire an nr_active count and activate the inactive work item. If
1839 * $pwq still has inactive work items, rotate it to the end of the
1840 * pending_pwqs so that we round-robin through them. This means that
1841 * inactive work items are not activated in queueing order which is fine
1842 * given that there has never been any ordering across different pwqs.
1843 */
1844 if (likely(tryinc_node_nr_active(nna))) {
1845 pwq->nr_active++;
1846 __pwq_activate_work(pwq, work);
1847
1848 if (list_empty(&pwq->inactive_works))
1849 list_del_init(&pwq->pending_node);
1850 else
1851 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1852
1853 /* if activating a foreign pool, make sure it's running */
1854 if (pwq->pool != caller_pool)
1855 kick_pool(pwq->pool);
1856 }
1857
1858out_unlock:
1859 raw_spin_unlock(&nna->lock);
1860 if (locked_pool != caller_pool) {
1861 raw_spin_unlock(&locked_pool->lock);
1862 raw_spin_lock(&caller_pool->lock);
1863 }
1864}
1865
1c270b79
TH
1866/**
1867 * pwq_dec_nr_active - Retire an active count
1868 * @pwq: pool_workqueue of interest
1869 *
1870 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1871 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1872 */
1873static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1874{
1c270b79 1875 struct worker_pool *pool = pwq->pool;
91ccc6e7 1876 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1877
1c270b79
TH
1878 lockdep_assert_held(&pool->lock);
1879
91ccc6e7
TH
1880 /*
1881 * @pwq->nr_active should be decremented for both percpu and unbound
1882 * workqueues.
1883 */
1c270b79 1884 pwq->nr_active--;
91ccc6e7
TH
1885
1886 /*
1887 * For a percpu workqueue, it's simple. Just need to kick the first
1888 * inactive work item on @pwq itself.
1889 */
1890 if (!nna) {
5797b1c1 1891 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1892 return;
1893 }
1894
5797b1c1
TH
1895 /*
1896 * If @pwq is for an unbound workqueue, it's more complicated because
1897 * multiple pwqs and pools may be sharing the nr_active count. When a
1898 * pwq needs to wait for an nr_active count, it puts itself on
1899 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1900 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1901 * guarantee that either we see non-empty pending_pwqs or they see
1902 * decremented $nna->nr.
1903 *
1904 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1905 * max_active gets updated. However, it is guaranteed to be equal to or
1906 * larger than @pwq->wq->min_active which is above zero unless freezing.
1907 * This maintains the forward progress guarantee.
1908 */
1909 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1910 return;
1911
1912 if (!list_empty(&nna->pending_pwqs))
1913 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1914}
1915
bf4ede01 1916/**
112202d9
TH
1917 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1918 * @pwq: pwq of interest
c4560c2c 1919 * @work_data: work_data of work which left the queue
bf4ede01
TH
1920 *
1921 * A work either has completed or is removed from pending queue,
112202d9 1922 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1923 *
dd6c3c54
TH
1924 * NOTE:
1925 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1926 * and thus should be called after all other state updates for the in-flight
1927 * work item is complete.
1928 *
bf4ede01 1929 * CONTEXT:
a9b8a985 1930 * raw_spin_lock_irq(pool->lock).
bf4ede01 1931 */
c4560c2c 1932static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1933{
c4560c2c
LJ
1934 int color = get_work_color(work_data);
1935
1c270b79
TH
1936 if (!(work_data & WORK_STRUCT_INACTIVE))
1937 pwq_dec_nr_active(pwq);
018f3a13 1938
112202d9 1939 pwq->nr_in_flight[color]--;
bf4ede01 1940
bf4ede01 1941 /* is flush in progress and are we at the flushing tip? */
112202d9 1942 if (likely(pwq->flush_color != color))
8864b4e5 1943 goto out_put;
bf4ede01
TH
1944
1945 /* are there still in-flight works? */
112202d9 1946 if (pwq->nr_in_flight[color])
8864b4e5 1947 goto out_put;
bf4ede01 1948
112202d9
TH
1949 /* this pwq is done, clear flush_color */
1950 pwq->flush_color = -1;
bf4ede01
TH
1951
1952 /*
112202d9 1953 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1954 * will handle the rest.
1955 */
112202d9
TH
1956 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1957 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1958out_put:
1959 put_pwq(pwq);
bf4ede01
TH
1960}
1961
36e227d2 1962/**
bbb68dfa 1963 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1964 * @work: work item to steal
1965 * @is_dwork: @work is a delayed_work
bbb68dfa 1966 * @flags: place to store irq state
36e227d2
TH
1967 *
1968 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1969 * stable state - idle, on timer or on worklist.
36e227d2 1970 *
d185af30 1971 * Return:
3eb6b31b
MCC
1972 *
1973 * ======== ================================================================
36e227d2
TH
1974 * 1 if @work was pending and we successfully stole PENDING
1975 * 0 if @work was idle and we claimed PENDING
1976 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1977 * -ENOENT if someone else is canceling @work, this state may persist
1978 * for arbitrarily long
3eb6b31b 1979 * ======== ================================================================
36e227d2 1980 *
d185af30 1981 * Note:
bbb68dfa 1982 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1983 * interrupted while holding PENDING and @work off queue, irq must be
1984 * disabled on entry. This, combined with delayed_work->timer being
1985 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1986 *
1987 * On successful return, >= 0, irq is disabled and the caller is
1988 * responsible for releasing it using local_irq_restore(*@flags).
1989 *
e0aecdd8 1990 * This function is safe to call from any context including IRQ handler.
bf4ede01 1991 */
bbb68dfa
TH
1992static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1993 unsigned long *flags)
bf4ede01 1994{
d565ed63 1995 struct worker_pool *pool;
112202d9 1996 struct pool_workqueue *pwq;
bf4ede01 1997
bbb68dfa
TH
1998 local_irq_save(*flags);
1999
36e227d2
TH
2000 /* try to steal the timer if it exists */
2001 if (is_dwork) {
2002 struct delayed_work *dwork = to_delayed_work(work);
2003
e0aecdd8
TH
2004 /*
2005 * dwork->timer is irqsafe. If del_timer() fails, it's
2006 * guaranteed that the timer is not queued anywhere and not
2007 * running on the local CPU.
2008 */
36e227d2
TH
2009 if (likely(del_timer(&dwork->timer)))
2010 return 1;
2011 }
2012
2013 /* try to claim PENDING the normal way */
bf4ede01
TH
2014 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2015 return 0;
2016
24acfb71 2017 rcu_read_lock();
bf4ede01
TH
2018 /*
2019 * The queueing is in progress, or it is already queued. Try to
2020 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2021 */
d565ed63
TH
2022 pool = get_work_pool(work);
2023 if (!pool)
bbb68dfa 2024 goto fail;
bf4ede01 2025
a9b8a985 2026 raw_spin_lock(&pool->lock);
0b3dae68 2027 /*
112202d9
TH
2028 * work->data is guaranteed to point to pwq only while the work
2029 * item is queued on pwq->wq, and both updating work->data to point
2030 * to pwq on queueing and to pool on dequeueing are done under
2031 * pwq->pool->lock. This in turn guarantees that, if work->data
2032 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
2033 * item is currently queued on that pool.
2034 */
112202d9
TH
2035 pwq = get_work_pwq(work);
2036 if (pwq && pwq->pool == pool) {
c70e1779
TH
2037 unsigned long work_data;
2038
16062836
TH
2039 debug_work_deactivate(work);
2040
2041 /*
018f3a13
LJ
2042 * A cancelable inactive work item must be in the
2043 * pwq->inactive_works since a queued barrier can't be
2044 * canceled (see the comments in insert_wq_barrier()).
2045 *
f97a4a1a 2046 * An inactive work item cannot be grabbed directly because
d812796e 2047 * it might have linked barrier work items which, if left
f97a4a1a 2048 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
2049 * management later on and cause stall. Make sure the work
2050 * item is activated before grabbing.
2051 */
4c638030 2052 pwq_activate_work(pwq, work);
16062836
TH
2053
2054 list_del_init(&work->entry);
16062836 2055
c70e1779
TH
2056 /*
2057 * work->data points to pwq iff queued. Let's point to pool. As
2058 * this destroys work->data needed by the next step, stash it.
2059 */
2060 work_data = *work_data_bits(work);
16062836
TH
2061 set_work_pool_and_keep_pending(work, pool->id);
2062
dd6c3c54 2063 /* must be the last step, see the function comment */
c70e1779 2064 pwq_dec_nr_in_flight(pwq, work_data);
dd6c3c54 2065
a9b8a985 2066 raw_spin_unlock(&pool->lock);
24acfb71 2067 rcu_read_unlock();
16062836 2068 return 1;
bf4ede01 2069 }
a9b8a985 2070 raw_spin_unlock(&pool->lock);
bbb68dfa 2071fail:
24acfb71 2072 rcu_read_unlock();
bbb68dfa
TH
2073 local_irq_restore(*flags);
2074 if (work_is_canceling(work))
2075 return -ENOENT;
2076 cpu_relax();
36e227d2 2077 return -EAGAIN;
bf4ede01
TH
2078}
2079
4690c4ab 2080/**
706026c2 2081 * insert_work - insert a work into a pool
112202d9 2082 * @pwq: pwq @work belongs to
4690c4ab
TH
2083 * @work: work to insert
2084 * @head: insertion point
2085 * @extra_flags: extra WORK_STRUCT_* flags to set
2086 *
112202d9 2087 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2088 * work_struct flags.
4690c4ab
TH
2089 *
2090 * CONTEXT:
a9b8a985 2091 * raw_spin_lock_irq(pool->lock).
4690c4ab 2092 */
112202d9
TH
2093static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2094 struct list_head *head, unsigned int extra_flags)
b89deed3 2095{
fe089f87 2096 debug_work_activate(work);
e22bee78 2097
e89a85d6 2098 /* record the work call stack in order to print it in KASAN reports */
f70da745 2099 kasan_record_aux_stack_noalloc(work);
e89a85d6 2100
4690c4ab 2101 /* we own @work, set data and link */
112202d9 2102 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2103 list_add_tail(&work->entry, head);
8864b4e5 2104 get_pwq(pwq);
b89deed3
ON
2105}
2106
c8efcc25
TH
2107/*
2108 * Test whether @work is being queued from another work executing on the
8d03ecfe 2109 * same workqueue.
c8efcc25
TH
2110 */
2111static bool is_chained_work(struct workqueue_struct *wq)
2112{
8d03ecfe
TH
2113 struct worker *worker;
2114
2115 worker = current_wq_worker();
2116 /*
bf393fd4 2117 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2118 * I'm @worker, it's safe to dereference it without locking.
2119 */
112202d9 2120 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2121}
2122
ef557180
MG
2123/*
2124 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2125 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2126 * avoid perturbing sensitive tasks.
2127 */
2128static int wq_select_unbound_cpu(int cpu)
2129{
2130 int new_cpu;
2131
f303fccb
TH
2132 if (likely(!wq_debug_force_rr_cpu)) {
2133 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2134 return cpu;
a8ec5880
AF
2135 } else {
2136 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2137 }
2138
ef557180
MG
2139 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2140 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2141 if (unlikely(new_cpu >= nr_cpu_ids)) {
2142 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2143 if (unlikely(new_cpu >= nr_cpu_ids))
2144 return cpu;
2145 }
2146 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2147
2148 return new_cpu;
2149}
2150
d84ff051 2151static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2152 struct work_struct *work)
2153{
112202d9 2154 struct pool_workqueue *pwq;
fe089f87 2155 struct worker_pool *last_pool, *pool;
8a2e8e5d 2156 unsigned int work_flags;
b75cac93 2157 unsigned int req_cpu = cpu;
8930caba
TH
2158
2159 /*
2160 * While a work item is PENDING && off queue, a task trying to
2161 * steal the PENDING will busy-loop waiting for it to either get
2162 * queued or lose PENDING. Grabbing PENDING and queueing should
2163 * happen with IRQ disabled.
2164 */
8e8eb730 2165 lockdep_assert_irqs_disabled();
1da177e4 2166
1e19ffc6 2167
33e3f0a3
RC
2168 /*
2169 * For a draining wq, only works from the same workqueue are
2170 * allowed. The __WQ_DESTROYING helps to spot the issue that
2171 * queues a new work item to a wq after destroy_workqueue(wq).
2172 */
2173 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2174 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2175 return;
24acfb71 2176 rcu_read_lock();
9e8cd2f5 2177retry:
c9178087 2178 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2179 if (req_cpu == WORK_CPU_UNBOUND) {
2180 if (wq->flags & WQ_UNBOUND)
aa202f1f 2181 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2182 else
aa202f1f 2183 cpu = raw_smp_processor_id();
aa202f1f 2184 }
dbf2576e 2185
636b927e 2186 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2187 pool = pwq->pool;
2188
c9178087
TH
2189 /*
2190 * If @work was previously on a different pool, it might still be
2191 * running there, in which case the work needs to be queued on that
2192 * pool to guarantee non-reentrancy.
2193 */
2194 last_pool = get_work_pool(work);
fe089f87 2195 if (last_pool && last_pool != pool) {
c9178087 2196 struct worker *worker;
18aa9eff 2197
a9b8a985 2198 raw_spin_lock(&last_pool->lock);
18aa9eff 2199
c9178087 2200 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2201
c9178087
TH
2202 if (worker && worker->current_pwq->wq == wq) {
2203 pwq = worker->current_pwq;
fe089f87
TH
2204 pool = pwq->pool;
2205 WARN_ON_ONCE(pool != last_pool);
8930caba 2206 } else {
c9178087 2207 /* meh... not running there, queue here */
a9b8a985 2208 raw_spin_unlock(&last_pool->lock);
fe089f87 2209 raw_spin_lock(&pool->lock);
8930caba 2210 }
f3421797 2211 } else {
fe089f87 2212 raw_spin_lock(&pool->lock);
502ca9d8
TH
2213 }
2214
9e8cd2f5 2215 /*
636b927e
TH
2216 * pwq is determined and locked. For unbound pools, we could have raced
2217 * with pwq release and it could already be dead. If its refcnt is zero,
2218 * repeat pwq selection. Note that unbound pwqs never die without
2219 * another pwq replacing it in cpu_pwq or while work items are executing
2220 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2221 */
2222 if (unlikely(!pwq->refcnt)) {
2223 if (wq->flags & WQ_UNBOUND) {
fe089f87 2224 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2225 cpu_relax();
2226 goto retry;
2227 }
2228 /* oops */
2229 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2230 wq->name, cpu);
2231 }
2232
112202d9
TH
2233 /* pwq determined, queue */
2234 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2235
24acfb71
TG
2236 if (WARN_ON(!list_empty(&work->entry)))
2237 goto out;
1e19ffc6 2238
112202d9
TH
2239 pwq->nr_in_flight[pwq->work_color]++;
2240 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2241
a045a272
TH
2242 /*
2243 * Limit the number of concurrently active work items to max_active.
2244 * @work must also queue behind existing inactive work items to maintain
2245 * ordering when max_active changes. See wq_adjust_max_active().
2246 */
5797b1c1 2247 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2248 if (list_empty(&pool->worklist))
2249 pool->watchdog_ts = jiffies;
2250
cdadf009 2251 trace_workqueue_activate_work(work);
fe089f87 2252 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2253 kick_pool(pool);
8a2e8e5d 2254 } else {
f97a4a1a 2255 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2256 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2257 }
1e19ffc6 2258
24acfb71 2259out:
fe089f87 2260 raw_spin_unlock(&pool->lock);
24acfb71 2261 rcu_read_unlock();
1da177e4
LT
2262}
2263
0fcb78c2 2264/**
c1a220e7
ZR
2265 * queue_work_on - queue work on specific cpu
2266 * @cpu: CPU number to execute work on
0fcb78c2
REB
2267 * @wq: workqueue to use
2268 * @work: work to queue
2269 *
c1a220e7 2270 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2271 * can't go away. Callers that fail to ensure that the specified
2272 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2273 * But note well that callers specifying a CPU that never has been
2274 * online will get a splat.
d185af30
YB
2275 *
2276 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2277 */
d4283e93
TH
2278bool queue_work_on(int cpu, struct workqueue_struct *wq,
2279 struct work_struct *work)
1da177e4 2280{
d4283e93 2281 bool ret = false;
8930caba 2282 unsigned long flags;
ef1ca236 2283
8930caba 2284 local_irq_save(flags);
c1a220e7 2285
22df02bb 2286 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 2287 __queue_work(cpu, wq, work);
d4283e93 2288 ret = true;
c1a220e7 2289 }
ef1ca236 2290
8930caba 2291 local_irq_restore(flags);
1da177e4
LT
2292 return ret;
2293}
ad7b1f84 2294EXPORT_SYMBOL(queue_work_on);
1da177e4 2295
8204e0c1 2296/**
fef59c9c 2297 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2298 * @node: NUMA node ID that we want to select a CPU from
2299 *
2300 * This function will attempt to find a "random" cpu available on a given
2301 * node. If there are no CPUs available on the given node it will return
2302 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2303 * available CPU if we need to schedule this work.
2304 */
fef59c9c 2305static int select_numa_node_cpu(int node)
8204e0c1
AD
2306{
2307 int cpu;
2308
8204e0c1
AD
2309 /* Delay binding to CPU if node is not valid or online */
2310 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2311 return WORK_CPU_UNBOUND;
2312
2313 /* Use local node/cpu if we are already there */
2314 cpu = raw_smp_processor_id();
2315 if (node == cpu_to_node(cpu))
2316 return cpu;
2317
2318 /* Use "random" otherwise know as "first" online CPU of node */
2319 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2320
2321 /* If CPU is valid return that, otherwise just defer */
2322 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2323}
2324
2325/**
2326 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2327 * @node: NUMA node that we are targeting the work for
2328 * @wq: workqueue to use
2329 * @work: work to queue
2330 *
2331 * We queue the work to a "random" CPU within a given NUMA node. The basic
2332 * idea here is to provide a way to somehow associate work with a given
2333 * NUMA node.
2334 *
2335 * This function will only make a best effort attempt at getting this onto
2336 * the right NUMA node. If no node is requested or the requested node is
2337 * offline then we just fall back to standard queue_work behavior.
2338 *
2339 * Currently the "random" CPU ends up being the first available CPU in the
2340 * intersection of cpu_online_mask and the cpumask of the node, unless we
2341 * are running on the node. In that case we just use the current CPU.
2342 *
2343 * Return: %false if @work was already on a queue, %true otherwise.
2344 */
2345bool queue_work_node(int node, struct workqueue_struct *wq,
2346 struct work_struct *work)
2347{
2348 unsigned long flags;
2349 bool ret = false;
2350
2351 /*
2352 * This current implementation is specific to unbound workqueues.
2353 * Specifically we only return the first available CPU for a given
2354 * node instead of cycling through individual CPUs within the node.
2355 *
2356 * If this is used with a per-cpu workqueue then the logic in
2357 * workqueue_select_cpu_near would need to be updated to allow for
2358 * some round robin type logic.
2359 */
2360 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2361
2362 local_irq_save(flags);
2363
2364 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
fef59c9c 2365 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2366
2367 __queue_work(cpu, wq, work);
2368 ret = true;
2369 }
2370
2371 local_irq_restore(flags);
2372 return ret;
2373}
2374EXPORT_SYMBOL_GPL(queue_work_node);
2375
8c20feb6 2376void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2377{
8c20feb6 2378 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2379
e0aecdd8 2380 /* should have been called from irqsafe timer with irq already off */
60c057bc 2381 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2382}
1438ade5 2383EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2384
7beb2edf
TH
2385static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2386 struct delayed_work *dwork, unsigned long delay)
1da177e4 2387{
7beb2edf
TH
2388 struct timer_list *timer = &dwork->timer;
2389 struct work_struct *work = &dwork->work;
7beb2edf 2390
637fdbae 2391 WARN_ON_ONCE(!wq);
4b243563 2392 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2393 WARN_ON_ONCE(timer_pending(timer));
2394 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2395
8852aac2
TH
2396 /*
2397 * If @delay is 0, queue @dwork->work immediately. This is for
2398 * both optimization and correctness. The earliest @timer can
2399 * expire is on the closest next tick and delayed_work users depend
2400 * on that there's no such delay when @delay is 0.
2401 */
2402 if (!delay) {
2403 __queue_work(cpu, wq, &dwork->work);
2404 return;
2405 }
2406
60c057bc 2407 dwork->wq = wq;
1265057f 2408 dwork->cpu = cpu;
7beb2edf
TH
2409 timer->expires = jiffies + delay;
2410
aae17ebb
LB
2411 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2412 /* If the current cpu is a housekeeping cpu, use it. */
2413 cpu = smp_processor_id();
2414 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2415 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
041bd12e 2416 add_timer_on(timer, cpu);
aae17ebb
LB
2417 } else {
2418 if (likely(cpu == WORK_CPU_UNBOUND))
2419 add_timer(timer);
2420 else
2421 add_timer_on(timer, cpu);
2422 }
1da177e4
LT
2423}
2424
0fcb78c2
REB
2425/**
2426 * queue_delayed_work_on - queue work on specific CPU after delay
2427 * @cpu: CPU number to execute work on
2428 * @wq: workqueue to use
af9997e4 2429 * @dwork: work to queue
0fcb78c2
REB
2430 * @delay: number of jiffies to wait before queueing
2431 *
d185af30 2432 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2433 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2434 * execution.
0fcb78c2 2435 */
d4283e93
TH
2436bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2437 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2438{
52bad64d 2439 struct work_struct *work = &dwork->work;
d4283e93 2440 bool ret = false;
8930caba 2441 unsigned long flags;
7a6bc1cd 2442
8930caba
TH
2443 /* read the comment in __queue_work() */
2444 local_irq_save(flags);
7a6bc1cd 2445
22df02bb 2446 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 2447 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2448 ret = true;
7a6bc1cd 2449 }
8a3e77cc 2450
8930caba 2451 local_irq_restore(flags);
7a6bc1cd
VP
2452 return ret;
2453}
ad7b1f84 2454EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2455
8376fe22
TH
2456/**
2457 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2458 * @cpu: CPU number to execute work on
2459 * @wq: workqueue to use
2460 * @dwork: work to queue
2461 * @delay: number of jiffies to wait before queueing
2462 *
2463 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2464 * modify @dwork's timer so that it expires after @delay. If @delay is
2465 * zero, @work is guaranteed to be scheduled immediately regardless of its
2466 * current state.
2467 *
d185af30 2468 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2469 * pending and its timer was modified.
2470 *
e0aecdd8 2471 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2472 * See try_to_grab_pending() for details.
2473 */
2474bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2475 struct delayed_work *dwork, unsigned long delay)
2476{
2477 unsigned long flags;
2478 int ret;
c7fc77f7 2479
8376fe22
TH
2480 do {
2481 ret = try_to_grab_pending(&dwork->work, true, &flags);
2482 } while (unlikely(ret == -EAGAIN));
63bc0362 2483
8376fe22
TH
2484 if (likely(ret >= 0)) {
2485 __queue_delayed_work(cpu, wq, dwork, delay);
2486 local_irq_restore(flags);
7a6bc1cd 2487 }
8376fe22
TH
2488
2489 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
2490 return ret;
2491}
8376fe22
TH
2492EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2493
05f0fe6b
TH
2494static void rcu_work_rcufn(struct rcu_head *rcu)
2495{
2496 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2497
2498 /* read the comment in __queue_work() */
2499 local_irq_disable();
2500 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2501 local_irq_enable();
2502}
2503
2504/**
2505 * queue_rcu_work - queue work after a RCU grace period
2506 * @wq: workqueue to use
2507 * @rwork: work to queue
2508 *
2509 * Return: %false if @rwork was already pending, %true otherwise. Note
2510 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2511 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2512 * execution may happen before a full RCU grace period has passed.
2513 */
2514bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2515{
2516 struct work_struct *work = &rwork->work;
2517
2518 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2519 rwork->wq = wq;
a7e30c0e 2520 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2521 return true;
2522 }
2523
2524 return false;
2525}
2526EXPORT_SYMBOL(queue_rcu_work);
2527
f7537df5 2528static struct worker *alloc_worker(int node)
c34056a3
TH
2529{
2530 struct worker *worker;
2531
f7537df5 2532 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2533 if (worker) {
2534 INIT_LIST_HEAD(&worker->entry);
affee4b2 2535 INIT_LIST_HEAD(&worker->scheduled);
da028469 2536 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2537 /* on creation a worker is in !idle && prep state */
2538 worker->flags = WORKER_PREP;
c8e55f36 2539 }
c34056a3
TH
2540 return worker;
2541}
2542
9546b29e
TH
2543static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2544{
8639eceb
TH
2545 if (pool->cpu < 0 && pool->attrs->affn_strict)
2546 return pool->attrs->__pod_cpumask;
2547 else
2548 return pool->attrs->cpumask;
9546b29e
TH
2549}
2550
4736cbf7
LJ
2551/**
2552 * worker_attach_to_pool() - attach a worker to a pool
2553 * @worker: worker to be attached
2554 * @pool: the target pool
2555 *
2556 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2557 * cpu-binding of @worker are kept coordinated with the pool across
2558 * cpu-[un]hotplugs.
2559 */
2560static void worker_attach_to_pool(struct worker *worker,
4cb1ef64 2561 struct worker_pool *pool)
4736cbf7 2562{
1258fae7 2563 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2564
4736cbf7 2565 /*
4cb1ef64
TH
2566 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2567 * across this function. See the comments above the flag definition for
2568 * details. BH workers are, while per-CPU, always DISASSOCIATED.
4736cbf7 2569 */
4cb1ef64 2570 if (pool->flags & POOL_DISASSOCIATED) {
4736cbf7 2571 worker->flags |= WORKER_UNBOUND;
4cb1ef64
TH
2572 } else {
2573 WARN_ON_ONCE(pool->flags & POOL_BH);
5c25b5ff 2574 kthread_set_per_cpu(worker->task, pool->cpu);
4cb1ef64 2575 }
4736cbf7 2576
640f17c8 2577 if (worker->rescue_wq)
9546b29e 2578 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2579
4736cbf7 2580 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2581 worker->pool = pool;
4736cbf7 2582
1258fae7 2583 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2584}
2585
60f5a4bc
LJ
2586/**
2587 * worker_detach_from_pool() - detach a worker from its pool
2588 * @worker: worker which is attached to its pool
60f5a4bc 2589 *
4736cbf7
LJ
2590 * Undo the attaching which had been done in worker_attach_to_pool(). The
2591 * caller worker shouldn't access to the pool after detached except it has
2592 * other reference to the pool.
60f5a4bc 2593 */
a2d812a2 2594static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2595{
a2d812a2 2596 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2597 struct completion *detach_completion = NULL;
2598
4cb1ef64
TH
2599 /* there is one permanent BH worker per CPU which should never detach */
2600 WARN_ON_ONCE(pool->flags & POOL_BH);
2601
1258fae7 2602 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2603
5c25b5ff 2604 kthread_set_per_cpu(worker->task, -1);
da028469 2605 list_del(&worker->node);
a2d812a2
TH
2606 worker->pool = NULL;
2607
e02b9312 2608 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2609 detach_completion = pool->detach_completion;
1258fae7 2610 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2611
b62c0751
LJ
2612 /* clear leftover flags without pool->lock after it is detached */
2613 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2614
60f5a4bc
LJ
2615 if (detach_completion)
2616 complete(detach_completion);
2617}
2618
c34056a3
TH
2619/**
2620 * create_worker - create a new workqueue worker
63d95a91 2621 * @pool: pool the new worker will belong to
c34056a3 2622 *
051e1850 2623 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2624 *
2625 * CONTEXT:
2626 * Might sleep. Does GFP_KERNEL allocations.
2627 *
d185af30 2628 * Return:
c34056a3
TH
2629 * Pointer to the newly created worker.
2630 */
bc2ae0f5 2631static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2632{
e441b56f
ZL
2633 struct worker *worker;
2634 int id;
5d9c7a1e 2635 char id_buf[23];
c34056a3 2636
7cda9aae 2637 /* ID is needed to determine kthread name */
e441b56f 2638 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2639 if (id < 0) {
2640 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2641 ERR_PTR(id));
e441b56f 2642 return NULL;
3f0ea0b8 2643 }
c34056a3 2644
f7537df5 2645 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2646 if (!worker) {
2647 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2648 goto fail;
3f0ea0b8 2649 }
c34056a3 2650
c34056a3
TH
2651 worker->id = id;
2652
4cb1ef64
TH
2653 if (!(pool->flags & POOL_BH)) {
2654 if (pool->cpu >= 0)
2655 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2656 pool->attrs->nice < 0 ? "H" : "");
2657 else
2658 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2659
2660 worker->task = kthread_create_on_node(worker_thread, worker,
2661 pool->node, "kworker/%s", id_buf);
2662 if (IS_ERR(worker->task)) {
2663 if (PTR_ERR(worker->task) == -EINTR) {
2664 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2665 id_buf);
2666 } else {
2667 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2668 worker->task);
2669 }
2670 goto fail;
60f54038 2671 }
c34056a3 2672
4cb1ef64
TH
2673 set_user_nice(worker->task, pool->attrs->nice);
2674 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2675 }
91151228 2676
da028469 2677 /* successful, attach the worker to the pool */
4736cbf7 2678 worker_attach_to_pool(worker, pool);
822d8405 2679
051e1850 2680 /* start the newly created worker */
a9b8a985 2681 raw_spin_lock_irq(&pool->lock);
0219a352 2682
051e1850
LJ
2683 worker->pool->nr_workers++;
2684 worker_enter_idle(worker);
0219a352
TH
2685
2686 /*
2687 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2688 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2689 * wake it up explicitly.
0219a352 2690 */
4cb1ef64
TH
2691 if (worker->task)
2692 wake_up_process(worker->task);
0219a352 2693
a9b8a985 2694 raw_spin_unlock_irq(&pool->lock);
051e1850 2695
c34056a3 2696 return worker;
822d8405 2697
c34056a3 2698fail:
e441b56f 2699 ida_free(&pool->worker_ida, id);
c34056a3
TH
2700 kfree(worker);
2701 return NULL;
2702}
2703
793777bc
VS
2704static void unbind_worker(struct worker *worker)
2705{
2706 lockdep_assert_held(&wq_pool_attach_mutex);
2707
2708 kthread_set_per_cpu(worker->task, -1);
2709 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2710 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2711 else
2712 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2713}
2714
e02b9312
VS
2715static void wake_dying_workers(struct list_head *cull_list)
2716{
2717 struct worker *worker, *tmp;
2718
2719 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2720 list_del_init(&worker->entry);
2721 unbind_worker(worker);
2722 /*
2723 * If the worker was somehow already running, then it had to be
2724 * in pool->idle_list when set_worker_dying() happened or we
2725 * wouldn't have gotten here.
2726 *
2727 * Thus, the worker must either have observed the WORKER_DIE
2728 * flag, or have set its state to TASK_IDLE. Either way, the
2729 * below will be observed by the worker and is safe to do
2730 * outside of pool->lock.
2731 */
2732 wake_up_process(worker->task);
2733 }
2734}
2735
c34056a3 2736/**
e02b9312 2737 * set_worker_dying - Tag a worker for destruction
c34056a3 2738 * @worker: worker to be destroyed
e02b9312 2739 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2740 *
e02b9312
VS
2741 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2742 * should be idle.
c8e55f36
TH
2743 *
2744 * CONTEXT:
a9b8a985 2745 * raw_spin_lock_irq(pool->lock).
c34056a3 2746 */
e02b9312 2747static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2748{
bd7bdd43 2749 struct worker_pool *pool = worker->pool;
c34056a3 2750
cd549687 2751 lockdep_assert_held(&pool->lock);
e02b9312 2752 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2753
c34056a3 2754 /* sanity check frenzy */
6183c009 2755 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2756 WARN_ON(!list_empty(&worker->scheduled)) ||
2757 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2758 return;
c34056a3 2759
73eb7fe7
LJ
2760 pool->nr_workers--;
2761 pool->nr_idle--;
5bdfff96 2762
cb444766 2763 worker->flags |= WORKER_DIE;
e02b9312
VS
2764
2765 list_move(&worker->entry, list);
2766 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2767}
2768
3f959aa3
VS
2769/**
2770 * idle_worker_timeout - check if some idle workers can now be deleted.
2771 * @t: The pool's idle_timer that just expired
2772 *
2773 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2774 * worker_leave_idle(), as a worker flicking between idle and active while its
2775 * pool is at the too_many_workers() tipping point would cause too much timer
2776 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2777 * it expire and re-evaluate things from there.
2778 */
32a6c723 2779static void idle_worker_timeout(struct timer_list *t)
e22bee78 2780{
32a6c723 2781 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2782 bool do_cull = false;
2783
2784 if (work_pending(&pool->idle_cull_work))
2785 return;
e22bee78 2786
a9b8a985 2787 raw_spin_lock_irq(&pool->lock);
e22bee78 2788
3f959aa3 2789 if (too_many_workers(pool)) {
e22bee78
TH
2790 struct worker *worker;
2791 unsigned long expires;
2792
2793 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2794 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2795 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2796 do_cull = !time_before(jiffies, expires);
2797
2798 if (!do_cull)
2799 mod_timer(&pool->idle_timer, expires);
2800 }
2801 raw_spin_unlock_irq(&pool->lock);
2802
2803 if (do_cull)
2804 queue_work(system_unbound_wq, &pool->idle_cull_work);
2805}
2806
2807/**
2808 * idle_cull_fn - cull workers that have been idle for too long.
2809 * @work: the pool's work for handling these idle workers
2810 *
2811 * This goes through a pool's idle workers and gets rid of those that have been
2812 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2813 *
2814 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2815 * culled, so this also resets worker affinity. This requires a sleepable
2816 * context, hence the split between timer callback and work item.
3f959aa3
VS
2817 */
2818static void idle_cull_fn(struct work_struct *work)
2819{
2820 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2821 LIST_HEAD(cull_list);
3f959aa3 2822
e02b9312
VS
2823 /*
2824 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2825 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2826 * path. This is required as a previously-preempted worker could run after
2827 * set_worker_dying() has happened but before wake_dying_workers() did.
2828 */
2829 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2830 raw_spin_lock_irq(&pool->lock);
2831
2832 while (too_many_workers(pool)) {
2833 struct worker *worker;
2834 unsigned long expires;
2835
63d95a91 2836 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2837 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2838
3347fc9f 2839 if (time_before(jiffies, expires)) {
63d95a91 2840 mod_timer(&pool->idle_timer, expires);
3347fc9f 2841 break;
d5abe669 2842 }
3347fc9f 2843
e02b9312 2844 set_worker_dying(worker, &cull_list);
e22bee78
TH
2845 }
2846
a9b8a985 2847 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2848 wake_dying_workers(&cull_list);
2849 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2850}
d5abe669 2851
493a1724 2852static void send_mayday(struct work_struct *work)
e22bee78 2853{
112202d9
TH
2854 struct pool_workqueue *pwq = get_work_pwq(work);
2855 struct workqueue_struct *wq = pwq->wq;
493a1724 2856
2e109a28 2857 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2858
493008a8 2859 if (!wq->rescuer)
493a1724 2860 return;
e22bee78
TH
2861
2862 /* mayday mayday mayday */
493a1724 2863 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2864 /*
2865 * If @pwq is for an unbound wq, its base ref may be put at
2866 * any time due to an attribute change. Pin @pwq until the
2867 * rescuer is done with it.
2868 */
2869 get_pwq(pwq);
493a1724 2870 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2871 wake_up_process(wq->rescuer->task);
725e8ec5 2872 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2873 }
e22bee78
TH
2874}
2875
32a6c723 2876static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2877{
32a6c723 2878 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2879 struct work_struct *work;
2880
a9b8a985
SAS
2881 raw_spin_lock_irq(&pool->lock);
2882 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2883
63d95a91 2884 if (need_to_create_worker(pool)) {
e22bee78
TH
2885 /*
2886 * We've been trying to create a new worker but
2887 * haven't been successful. We might be hitting an
2888 * allocation deadlock. Send distress signals to
2889 * rescuers.
2890 */
63d95a91 2891 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2892 send_mayday(work);
1da177e4 2893 }
e22bee78 2894
a9b8a985
SAS
2895 raw_spin_unlock(&wq_mayday_lock);
2896 raw_spin_unlock_irq(&pool->lock);
e22bee78 2897
63d95a91 2898 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2899}
2900
e22bee78
TH
2901/**
2902 * maybe_create_worker - create a new worker if necessary
63d95a91 2903 * @pool: pool to create a new worker for
e22bee78 2904 *
63d95a91 2905 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2906 * have at least one idle worker on return from this function. If
2907 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2908 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2909 * possible allocation deadlock.
2910 *
c5aa87bb
TH
2911 * On return, need_to_create_worker() is guaranteed to be %false and
2912 * may_start_working() %true.
e22bee78
TH
2913 *
2914 * LOCKING:
a9b8a985 2915 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2916 * multiple times. Does GFP_KERNEL allocations. Called only from
2917 * manager.
e22bee78 2918 */
29187a9e 2919static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2920__releases(&pool->lock)
2921__acquires(&pool->lock)
1da177e4 2922{
e22bee78 2923restart:
a9b8a985 2924 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2925
e22bee78 2926 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2928
2929 while (true) {
051e1850 2930 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2931 break;
1da177e4 2932
e212f361 2933 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2934
63d95a91 2935 if (!need_to_create_worker(pool))
e22bee78
TH
2936 break;
2937 }
2938
63d95a91 2939 del_timer_sync(&pool->mayday_timer);
a9b8a985 2940 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2941 /*
2942 * This is necessary even after a new worker was just successfully
2943 * created as @pool->lock was dropped and the new worker might have
2944 * already become busy.
2945 */
63d95a91 2946 if (need_to_create_worker(pool))
e22bee78 2947 goto restart;
e22bee78
TH
2948}
2949
73f53c4a 2950/**
e22bee78
TH
2951 * manage_workers - manage worker pool
2952 * @worker: self
73f53c4a 2953 *
706026c2 2954 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2955 * to. At any given time, there can be only zero or one manager per
706026c2 2956 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2957 *
2958 * The caller can safely start processing works on false return. On
2959 * true return, it's guaranteed that need_to_create_worker() is false
2960 * and may_start_working() is true.
73f53c4a
TH
2961 *
2962 * CONTEXT:
a9b8a985 2963 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2964 * multiple times. Does GFP_KERNEL allocations.
2965 *
d185af30 2966 * Return:
29187a9e
TH
2967 * %false if the pool doesn't need management and the caller can safely
2968 * start processing works, %true if management function was performed and
2969 * the conditions that the caller verified before calling the function may
2970 * no longer be true.
73f53c4a 2971 */
e22bee78 2972static bool manage_workers(struct worker *worker)
73f53c4a 2973{
63d95a91 2974 struct worker_pool *pool = worker->pool;
73f53c4a 2975
692b4825 2976 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2977 return false;
692b4825
TH
2978
2979 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2980 pool->manager = worker;
1e19ffc6 2981
29187a9e 2982 maybe_create_worker(pool);
e22bee78 2983
2607d7a6 2984 pool->manager = NULL;
692b4825 2985 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2986 rcuwait_wake_up(&manager_wait);
29187a9e 2987 return true;
73f53c4a
TH
2988}
2989
a62428c0
TH
2990/**
2991 * process_one_work - process single work
c34056a3 2992 * @worker: self
a62428c0
TH
2993 * @work: work to process
2994 *
2995 * Process @work. This function contains all the logics necessary to
2996 * process a single work including synchronization against and
2997 * interaction with other workers on the same cpu, queueing and
2998 * flushing. As long as context requirement is met, any worker can
2999 * call this function to process a work.
3000 *
3001 * CONTEXT:
a9b8a985 3002 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 3003 */
c34056a3 3004static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
3005__releases(&pool->lock)
3006__acquires(&pool->lock)
a62428c0 3007{
112202d9 3008 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 3009 struct worker_pool *pool = worker->pool;
c4560c2c 3010 unsigned long work_data;
c35aea39 3011 int lockdep_start_depth, rcu_start_depth;
a62428c0
TH
3012#ifdef CONFIG_LOCKDEP
3013 /*
3014 * It is permissible to free the struct work_struct from
3015 * inside the function that is called from it, this we need to
3016 * take into account for lockdep too. To avoid bogus "held
3017 * lock freed" warnings as well as problems when looking into
3018 * work->lockdep_map, make a copy and use that here.
3019 */
4d82a1de
PZ
3020 struct lockdep_map lockdep_map;
3021
3022 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 3023#endif
807407c0 3024 /* ensure we're on the correct CPU */
85327af6 3025 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 3026 raw_smp_processor_id() != pool->cpu);
25511a47 3027
8930caba 3028 /* claim and dequeue */
a62428c0 3029 debug_work_deactivate(work);
c9e7cf27 3030 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 3031 worker->current_work = work;
a2c1c57b 3032 worker->current_func = work->func;
112202d9 3033 worker->current_pwq = pwq;
4cb1ef64
TH
3034 if (worker->task)
3035 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 3036 work_data = *work_data_bits(work);
d812796e 3037 worker->current_color = get_work_color(work_data);
7a22ad75 3038
8bf89593
TH
3039 /*
3040 * Record wq name for cmdline and debug reporting, may get
3041 * overridden through set_worker_desc().
3042 */
3043 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3044
a62428c0
TH
3045 list_del_init(&work->entry);
3046
fb0e7beb 3047 /*
228f1d00
LJ
3048 * CPU intensive works don't participate in concurrency management.
3049 * They're the scheduler's responsibility. This takes @worker out
3050 * of concurrency management and the next code block will chain
3051 * execution of the pending work items.
fb0e7beb 3052 */
616db877 3053 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 3054 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3055
974271c4 3056 /*
0219a352
TH
3057 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3058 * since nr_running would always be >= 1 at this point. This is used to
3059 * chain execution of the pending work items for WORKER_NOT_RUNNING
3060 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 3061 */
0219a352 3062 kick_pool(pool);
974271c4 3063
8930caba 3064 /*
7c3eed5c 3065 * Record the last pool and clear PENDING which should be the last
d565ed63 3066 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3067 * PENDING and queued state changes happen together while IRQ is
3068 * disabled.
8930caba 3069 */
7c3eed5c 3070 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 3071
fe48ba7d 3072 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3073 raw_spin_unlock_irq(&pool->lock);
a62428c0 3074
c35aea39
TH
3075 rcu_start_depth = rcu_preempt_depth();
3076 lockdep_start_depth = lockdep_depth(current);
a1d14934 3077 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 3078 lock_map_acquire(&lockdep_map);
e6f3faa7 3079 /*
f52be570
PZ
3080 * Strictly speaking we should mark the invariant state without holding
3081 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3082 *
3083 * However, that would result in:
3084 *
3085 * A(W1)
3086 * WFC(C)
3087 * A(W1)
3088 * C(C)
3089 *
3090 * Which would create W1->C->W1 dependencies, even though there is no
3091 * actual deadlock possible. There are two solutions, using a
3092 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3093 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3094 * these locks.
3095 *
3096 * AFAICT there is no possible deadlock scenario between the
3097 * flush_work() and complete() primitives (except for single-threaded
3098 * workqueues), so hiding them isn't a problem.
3099 */
f52be570 3100 lockdep_invariant_state(true);
e36c886a 3101 trace_workqueue_execute_start(work);
a2c1c57b 3102 worker->current_func(work);
e36c886a
AV
3103 /*
3104 * While we must be careful to not use "work" after this, the trace
3105 * point will only record its address.
3106 */
1c5da0ec 3107 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3108 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3109 lock_map_release(&lockdep_map);
112202d9 3110 lock_map_release(&pwq->wq->lockdep_map);
a62428c0 3111
c35aea39
TH
3112 if (unlikely((worker->task && in_atomic()) ||
3113 lockdep_depth(current) != lockdep_start_depth ||
3114 rcu_preempt_depth() != rcu_start_depth)) {
3115 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3116 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3117 current->comm, task_pid_nr(current), preempt_count(),
3118 lockdep_start_depth, lockdep_depth(current),
3119 rcu_start_depth, rcu_preempt_depth(),
3120 worker->current_func);
a62428c0
TH
3121 debug_show_held_locks(current);
3122 dump_stack();
3123 }
3124
b22ce278 3125 /*
025f50f3 3126 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3127 * kernels, where a requeueing work item waiting for something to
3128 * happen could deadlock with stop_machine as such work item could
3129 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3130 * stop_machine. At the same time, report a quiescent RCU state so
3131 * the same condition doesn't freeze RCU.
b22ce278 3132 */
4cb1ef64
TH
3133 if (worker->task)
3134 cond_resched();
b22ce278 3135
a9b8a985 3136 raw_spin_lock_irq(&pool->lock);
a62428c0 3137
616db877
TH
3138 /*
3139 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3140 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3141 * wq_cpu_intensive_thresh_us. Clear it.
3142 */
3143 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3144
1b69ac6b
JW
3145 /* tag the worker for identification in schedule() */
3146 worker->last_func = worker->current_func;
3147
a62428c0 3148 /* we're done with it, release */
42f8570f 3149 hash_del(&worker->hentry);
c34056a3 3150 worker->current_work = NULL;
a2c1c57b 3151 worker->current_func = NULL;
112202d9 3152 worker->current_pwq = NULL;
d812796e 3153 worker->current_color = INT_MAX;
dd6c3c54
TH
3154
3155 /* must be the last step, see the function comment */
c4560c2c 3156 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3157}
3158
affee4b2
TH
3159/**
3160 * process_scheduled_works - process scheduled works
3161 * @worker: self
3162 *
3163 * Process all scheduled works. Please note that the scheduled list
3164 * may change while processing a work, so this function repeatedly
3165 * fetches a work from the top and executes it.
3166 *
3167 * CONTEXT:
a9b8a985 3168 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3169 * multiple times.
3170 */
3171static void process_scheduled_works(struct worker *worker)
1da177e4 3172{
c0ab017d
TH
3173 struct work_struct *work;
3174 bool first = true;
3175
3176 while ((work = list_first_entry_or_null(&worker->scheduled,
3177 struct work_struct, entry))) {
3178 if (first) {
3179 worker->pool->watchdog_ts = jiffies;
3180 first = false;
3181 }
c34056a3 3182 process_one_work(worker, work);
1da177e4 3183 }
1da177e4
LT
3184}
3185
197f6acc
TH
3186static void set_pf_worker(bool val)
3187{
3188 mutex_lock(&wq_pool_attach_mutex);
3189 if (val)
3190 current->flags |= PF_WQ_WORKER;
3191 else
3192 current->flags &= ~PF_WQ_WORKER;
3193 mutex_unlock(&wq_pool_attach_mutex);
3194}
3195
4690c4ab
TH
3196/**
3197 * worker_thread - the worker thread function
c34056a3 3198 * @__worker: self
4690c4ab 3199 *
c5aa87bb
TH
3200 * The worker thread function. All workers belong to a worker_pool -
3201 * either a per-cpu one or dynamic unbound one. These workers process all
3202 * work items regardless of their specific target workqueue. The only
3203 * exception is work items which belong to workqueues with a rescuer which
3204 * will be explained in rescuer_thread().
d185af30
YB
3205 *
3206 * Return: 0
4690c4ab 3207 */
c34056a3 3208static int worker_thread(void *__worker)
1da177e4 3209{
c34056a3 3210 struct worker *worker = __worker;
bd7bdd43 3211 struct worker_pool *pool = worker->pool;
1da177e4 3212
e22bee78 3213 /* tell the scheduler that this is a workqueue worker */
197f6acc 3214 set_pf_worker(true);
c8e55f36 3215woke_up:
a9b8a985 3216 raw_spin_lock_irq(&pool->lock);
1da177e4 3217
a9ab775b
TH
3218 /* am I supposed to die? */
3219 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3220 raw_spin_unlock_irq(&pool->lock);
197f6acc 3221 set_pf_worker(false);
60f5a4bc
LJ
3222
3223 set_task_comm(worker->task, "kworker/dying");
e441b56f 3224 ida_free(&pool->worker_ida, worker->id);
a2d812a2 3225 worker_detach_from_pool(worker);
e02b9312 3226 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 3227 kfree(worker);
a9ab775b 3228 return 0;
c8e55f36 3229 }
affee4b2 3230
c8e55f36 3231 worker_leave_idle(worker);
db7bccf4 3232recheck:
e22bee78 3233 /* no more worker necessary? */
63d95a91 3234 if (!need_more_worker(pool))
e22bee78
TH
3235 goto sleep;
3236
3237 /* do we need to manage? */
63d95a91 3238 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3239 goto recheck;
3240
c8e55f36
TH
3241 /*
3242 * ->scheduled list can only be filled while a worker is
3243 * preparing to process a work or actually processing it.
3244 * Make sure nobody diddled with it while I was sleeping.
3245 */
6183c009 3246 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3247
e22bee78 3248 /*
a9ab775b
TH
3249 * Finish PREP stage. We're guaranteed to have at least one idle
3250 * worker or that someone else has already assumed the manager
3251 * role. This is where @worker starts participating in concurrency
3252 * management if applicable and concurrency management is restored
3253 * after being rebound. See rebind_workers() for details.
e22bee78 3254 */
a9ab775b 3255 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3256
3257 do {
c8e55f36 3258 struct work_struct *work =
bd7bdd43 3259 list_first_entry(&pool->worklist,
c8e55f36
TH
3260 struct work_struct, entry);
3261
873eaca6
TH
3262 if (assign_work(work, worker, NULL))
3263 process_scheduled_works(worker);
63d95a91 3264 } while (keep_working(pool));
e22bee78 3265
228f1d00 3266 worker_set_flags(worker, WORKER_PREP);
d313dd85 3267sleep:
c8e55f36 3268 /*
d565ed63
TH
3269 * pool->lock is held and there's no work to process and no need to
3270 * manage, sleep. Workers are woken up only while holding
3271 * pool->lock or from local cpu, so setting the current state
3272 * before releasing pool->lock is enough to prevent losing any
3273 * event.
c8e55f36
TH
3274 */
3275 worker_enter_idle(worker);
c5a94a61 3276 __set_current_state(TASK_IDLE);
a9b8a985 3277 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3278 schedule();
3279 goto woke_up;
1da177e4
LT
3280}
3281
e22bee78
TH
3282/**
3283 * rescuer_thread - the rescuer thread function
111c225a 3284 * @__rescuer: self
e22bee78
TH
3285 *
3286 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3287 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3288 *
706026c2 3289 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3290 * worker which uses GFP_KERNEL allocation which has slight chance of
3291 * developing into deadlock if some works currently on the same queue
3292 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3293 * the problem rescuer solves.
3294 *
706026c2
TH
3295 * When such condition is possible, the pool summons rescuers of all
3296 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3297 * those works so that forward progress can be guaranteed.
3298 *
3299 * This should happen rarely.
d185af30
YB
3300 *
3301 * Return: 0
e22bee78 3302 */
111c225a 3303static int rescuer_thread(void *__rescuer)
e22bee78 3304{
111c225a
TH
3305 struct worker *rescuer = __rescuer;
3306 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3307 bool should_stop;
e22bee78
TH
3308
3309 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3310
3311 /*
3312 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3313 * doesn't participate in concurrency management.
3314 */
197f6acc 3315 set_pf_worker(true);
e22bee78 3316repeat:
c5a94a61 3317 set_current_state(TASK_IDLE);
e22bee78 3318
4d595b86
LJ
3319 /*
3320 * By the time the rescuer is requested to stop, the workqueue
3321 * shouldn't have any work pending, but @wq->maydays may still have
3322 * pwq(s) queued. This can happen by non-rescuer workers consuming
3323 * all the work items before the rescuer got to them. Go through
3324 * @wq->maydays processing before acting on should_stop so that the
3325 * list is always empty on exit.
3326 */
3327 should_stop = kthread_should_stop();
e22bee78 3328
493a1724 3329 /* see whether any pwq is asking for help */
a9b8a985 3330 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3331
3332 while (!list_empty(&wq->maydays)) {
3333 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3334 struct pool_workqueue, mayday_node);
112202d9 3335 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3336 struct work_struct *work, *n;
3337
3338 __set_current_state(TASK_RUNNING);
493a1724
TH
3339 list_del_init(&pwq->mayday_node);
3340
a9b8a985 3341 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3342
51697d39
LJ
3343 worker_attach_to_pool(rescuer, pool);
3344
a9b8a985 3345 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3346
3347 /*
3348 * Slurp in all works issued via this workqueue and
3349 * process'em.
3350 */
873eaca6 3351 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3352 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3353 if (get_work_pwq(work) == pwq &&
3354 assign_work(work, rescuer, &n))
725e8ec5 3355 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3356 }
e22bee78 3357
873eaca6 3358 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3359 process_scheduled_works(rescuer);
3360
3361 /*
3362 * The above execution of rescued work items could
3363 * have created more to rescue through
f97a4a1a 3364 * pwq_activate_first_inactive() or chained
008847f6
N
3365 * queueing. Let's put @pwq back on mayday list so
3366 * that such back-to-back work items, which may be
3367 * being used to relieve memory pressure, don't
3368 * incur MAYDAY_INTERVAL delay inbetween.
3369 */
4f3f4cf3 3370 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3371 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3372 /*
3373 * Queue iff we aren't racing destruction
3374 * and somebody else hasn't queued it already.
3375 */
3376 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3377 get_pwq(pwq);
3378 list_add_tail(&pwq->mayday_node, &wq->maydays);
3379 }
a9b8a985 3380 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3381 }
3382 }
7576958a 3383
77668c8b
LJ
3384 /*
3385 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3386 * go away while we're still attached to it.
77668c8b
LJ
3387 */
3388 put_pwq(pwq);
3389
7576958a 3390 /*
0219a352
TH
3391 * Leave this pool. Notify regular workers; otherwise, we end up
3392 * with 0 concurrency and stalling the execution.
7576958a 3393 */
0219a352 3394 kick_pool(pool);
7576958a 3395
a9b8a985 3396 raw_spin_unlock_irq(&pool->lock);
13b1d625 3397
a2d812a2 3398 worker_detach_from_pool(rescuer);
13b1d625 3399
a9b8a985 3400 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3401 }
3402
a9b8a985 3403 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3404
4d595b86
LJ
3405 if (should_stop) {
3406 __set_current_state(TASK_RUNNING);
197f6acc 3407 set_pf_worker(false);
4d595b86
LJ
3408 return 0;
3409 }
3410
111c225a
TH
3411 /* rescuers should never participate in concurrency management */
3412 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3413 schedule();
3414 goto repeat;
1da177e4
LT
3415}
3416
4cb1ef64
TH
3417static void bh_worker(struct worker *worker)
3418{
3419 struct worker_pool *pool = worker->pool;
3420 int nr_restarts = BH_WORKER_RESTARTS;
3421 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3422
3423 raw_spin_lock_irq(&pool->lock);
3424 worker_leave_idle(worker);
3425
3426 /*
3427 * This function follows the structure of worker_thread(). See there for
3428 * explanations on each step.
3429 */
3430 if (!need_more_worker(pool))
3431 goto done;
3432
3433 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3434 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3435
3436 do {
3437 struct work_struct *work =
3438 list_first_entry(&pool->worklist,
3439 struct work_struct, entry);
3440
3441 if (assign_work(work, worker, NULL))
3442 process_scheduled_works(worker);
3443 } while (keep_working(pool) &&
3444 --nr_restarts && time_before(jiffies, end));
3445
3446 worker_set_flags(worker, WORKER_PREP);
3447done:
3448 worker_enter_idle(worker);
3449 kick_pool(pool);
3450 raw_spin_unlock_irq(&pool->lock);
3451}
3452
3453/*
3454 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3455 *
3456 * This is currently called from tasklet[_hi]action() and thus is also called
3457 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3458 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3459 * can be dropped.
3460 *
3461 * After full conversion, we'll add worker->softirq_action, directly use the
3462 * softirq action and obtain the worker pointer from the softirq_action pointer.
3463 */
3464void workqueue_softirq_action(bool highpri)
3465{
3466 struct worker_pool *pool =
3467 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3468 if (need_more_worker(pool))
3469 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3470}
3471
fca839c0
TH
3472/**
3473 * check_flush_dependency - check for flush dependency sanity
3474 * @target_wq: workqueue being flushed
3475 * @target_work: work item being flushed (NULL for workqueue flushes)
3476 *
3477 * %current is trying to flush the whole @target_wq or @target_work on it.
3478 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3479 * reclaiming memory or running on a workqueue which doesn't have
3480 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3481 * a deadlock.
3482 */
3483static void check_flush_dependency(struct workqueue_struct *target_wq,
3484 struct work_struct *target_work)
3485{
3486 work_func_t target_func = target_work ? target_work->func : NULL;
3487 struct worker *worker;
3488
3489 if (target_wq->flags & WQ_MEM_RECLAIM)
3490 return;
3491
3492 worker = current_wq_worker();
3493
3494 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3495 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3496 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3497 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3498 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3499 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3500 worker->current_pwq->wq->name, worker->current_func,
3501 target_wq->name, target_func);
3502}
3503
fc2e4d70
ON
3504struct wq_barrier {
3505 struct work_struct work;
3506 struct completion done;
2607d7a6 3507 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3508};
3509
3510static void wq_barrier_func(struct work_struct *work)
3511{
3512 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3513 complete(&barr->done);
3514}
3515
4690c4ab
TH
3516/**
3517 * insert_wq_barrier - insert a barrier work
112202d9 3518 * @pwq: pwq to insert barrier into
4690c4ab 3519 * @barr: wq_barrier to insert
affee4b2
TH
3520 * @target: target work to attach @barr to
3521 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3522 *
affee4b2
TH
3523 * @barr is linked to @target such that @barr is completed only after
3524 * @target finishes execution. Please note that the ordering
3525 * guarantee is observed only with respect to @target and on the local
3526 * cpu.
3527 *
3528 * Currently, a queued barrier can't be canceled. This is because
3529 * try_to_grab_pending() can't determine whether the work to be
3530 * grabbed is at the head of the queue and thus can't clear LINKED
3531 * flag of the previous work while there must be a valid next work
3532 * after a work with LINKED flag set.
3533 *
3534 * Note that when @worker is non-NULL, @target may be modified
112202d9 3535 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3536 *
3537 * CONTEXT:
a9b8a985 3538 * raw_spin_lock_irq(pool->lock).
4690c4ab 3539 */
112202d9 3540static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3541 struct wq_barrier *barr,
3542 struct work_struct *target, struct worker *worker)
fc2e4d70 3543{
4cb1ef64 3544 static __maybe_unused struct lock_class_key bh_key, thr_key;
d812796e
LJ
3545 unsigned int work_flags = 0;
3546 unsigned int work_color;
affee4b2 3547 struct list_head *head;
affee4b2 3548
dc186ad7 3549 /*
d565ed63 3550 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3551 * as we know for sure that this will not trigger any of the
3552 * checks and call back into the fixup functions where we
3553 * might deadlock.
4cb1ef64
TH
3554 *
3555 * BH and threaded workqueues need separate lockdep keys to avoid
3556 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3557 * usage".
dc186ad7 3558 */
4cb1ef64
TH
3559 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3560 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
22df02bb 3561 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3562
fd1a5b04
BP
3563 init_completion_map(&barr->done, &target->lockdep_map);
3564
2607d7a6 3565 barr->task = current;
83c22520 3566
5797b1c1 3567 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3568 work_flags |= WORK_STRUCT_INACTIVE;
3569
affee4b2
TH
3570 /*
3571 * If @target is currently being executed, schedule the
3572 * barrier to the worker; otherwise, put it after @target.
3573 */
d812796e 3574 if (worker) {
affee4b2 3575 head = worker->scheduled.next;
d812796e
LJ
3576 work_color = worker->current_color;
3577 } else {
affee4b2
TH
3578 unsigned long *bits = work_data_bits(target);
3579
3580 head = target->entry.next;
3581 /* there can already be other linked works, inherit and set */
d21cece0 3582 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3583 work_color = get_work_color(*bits);
affee4b2
TH
3584 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3585 }
3586
d812796e
LJ
3587 pwq->nr_in_flight[work_color]++;
3588 work_flags |= work_color_to_flags(work_color);
3589
d21cece0 3590 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3591}
3592
73f53c4a 3593/**
112202d9 3594 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3595 * @wq: workqueue being flushed
3596 * @flush_color: new flush color, < 0 for no-op
3597 * @work_color: new work color, < 0 for no-op
3598 *
112202d9 3599 * Prepare pwqs for workqueue flushing.
73f53c4a 3600 *
112202d9
TH
3601 * If @flush_color is non-negative, flush_color on all pwqs should be
3602 * -1. If no pwq has in-flight commands at the specified color, all
3603 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3604 * has in flight commands, its pwq->flush_color is set to
3605 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3606 * wakeup logic is armed and %true is returned.
3607 *
3608 * The caller should have initialized @wq->first_flusher prior to
3609 * calling this function with non-negative @flush_color. If
3610 * @flush_color is negative, no flush color update is done and %false
3611 * is returned.
3612 *
112202d9 3613 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3614 * work_color which is previous to @work_color and all will be
3615 * advanced to @work_color.
3616 *
3617 * CONTEXT:
3c25a55d 3618 * mutex_lock(wq->mutex).
73f53c4a 3619 *
d185af30 3620 * Return:
73f53c4a
TH
3621 * %true if @flush_color >= 0 and there's something to flush. %false
3622 * otherwise.
3623 */
112202d9 3624static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3625 int flush_color, int work_color)
1da177e4 3626{
73f53c4a 3627 bool wait = false;
49e3cf44 3628 struct pool_workqueue *pwq;
1da177e4 3629
73f53c4a 3630 if (flush_color >= 0) {
6183c009 3631 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3632 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3633 }
2355b70f 3634
49e3cf44 3635 for_each_pwq(pwq, wq) {
112202d9 3636 struct worker_pool *pool = pwq->pool;
fc2e4d70 3637
a9b8a985 3638 raw_spin_lock_irq(&pool->lock);
83c22520 3639
73f53c4a 3640 if (flush_color >= 0) {
6183c009 3641 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3642
112202d9
TH
3643 if (pwq->nr_in_flight[flush_color]) {
3644 pwq->flush_color = flush_color;
3645 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3646 wait = true;
3647 }
3648 }
1da177e4 3649
73f53c4a 3650 if (work_color >= 0) {
6183c009 3651 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3652 pwq->work_color = work_color;
73f53c4a 3653 }
1da177e4 3654
a9b8a985 3655 raw_spin_unlock_irq(&pool->lock);
1da177e4 3656 }
2355b70f 3657
112202d9 3658 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3659 complete(&wq->first_flusher->done);
14441960 3660
73f53c4a 3661 return wait;
1da177e4
LT
3662}
3663
c35aea39
TH
3664static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3665{
4cb1ef64
TH
3666#ifdef CONFIG_LOCKDEP
3667 if (wq->flags & WQ_BH)
3668 local_bh_disable();
3669
c35aea39
TH
3670 lock_map_acquire(&wq->lockdep_map);
3671 lock_map_release(&wq->lockdep_map);
4cb1ef64
TH
3672
3673 if (wq->flags & WQ_BH)
3674 local_bh_enable();
3675#endif
c35aea39
TH
3676}
3677
3678static void touch_work_lockdep_map(struct work_struct *work,
3679 struct workqueue_struct *wq)
3680{
4cb1ef64
TH
3681#ifdef CONFIG_LOCKDEP
3682 if (wq->flags & WQ_BH)
3683 local_bh_disable();
3684
c35aea39
TH
3685 lock_map_acquire(&work->lockdep_map);
3686 lock_map_release(&work->lockdep_map);
4cb1ef64
TH
3687
3688 if (wq->flags & WQ_BH)
3689 local_bh_enable();
3690#endif
c35aea39
TH
3691}
3692
0fcb78c2 3693/**
c4f135d6 3694 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3695 * @wq: workqueue to flush
1da177e4 3696 *
c5aa87bb
TH
3697 * This function sleeps until all work items which were queued on entry
3698 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3699 */
c4f135d6 3700void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3701{
73f53c4a
TH
3702 struct wq_flusher this_flusher = {
3703 .list = LIST_HEAD_INIT(this_flusher.list),
3704 .flush_color = -1,
fd1a5b04 3705 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3706 };
3707 int next_color;
1da177e4 3708
3347fa09
TH
3709 if (WARN_ON(!wq_online))
3710 return;
3711
c35aea39 3712 touch_wq_lockdep_map(wq);
87915adc 3713
3c25a55d 3714 mutex_lock(&wq->mutex);
73f53c4a
TH
3715
3716 /*
3717 * Start-to-wait phase
3718 */
3719 next_color = work_next_color(wq->work_color);
3720
3721 if (next_color != wq->flush_color) {
3722 /*
3723 * Color space is not full. The current work_color
3724 * becomes our flush_color and work_color is advanced
3725 * by one.
3726 */
6183c009 3727 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3728 this_flusher.flush_color = wq->work_color;
3729 wq->work_color = next_color;
3730
3731 if (!wq->first_flusher) {
3732 /* no flush in progress, become the first flusher */
6183c009 3733 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3734
3735 wq->first_flusher = &this_flusher;
3736
112202d9 3737 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3738 wq->work_color)) {
3739 /* nothing to flush, done */
3740 wq->flush_color = next_color;
3741 wq->first_flusher = NULL;
3742 goto out_unlock;
3743 }
3744 } else {
3745 /* wait in queue */
6183c009 3746 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3747 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3748 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3749 }
3750 } else {
3751 /*
3752 * Oops, color space is full, wait on overflow queue.
3753 * The next flush completion will assign us
3754 * flush_color and transfer to flusher_queue.
3755 */
3756 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3757 }
3758
fca839c0
TH
3759 check_flush_dependency(wq, NULL);
3760
3c25a55d 3761 mutex_unlock(&wq->mutex);
73f53c4a
TH
3762
3763 wait_for_completion(&this_flusher.done);
3764
3765 /*
3766 * Wake-up-and-cascade phase
3767 *
3768 * First flushers are responsible for cascading flushes and
3769 * handling overflow. Non-first flushers can simply return.
3770 */
00d5d15b 3771 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3772 return;
3773
3c25a55d 3774 mutex_lock(&wq->mutex);
73f53c4a 3775
4ce48b37
TH
3776 /* we might have raced, check again with mutex held */
3777 if (wq->first_flusher != &this_flusher)
3778 goto out_unlock;
3779
00d5d15b 3780 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3781
6183c009
TH
3782 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3783 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3784
3785 while (true) {
3786 struct wq_flusher *next, *tmp;
3787
3788 /* complete all the flushers sharing the current flush color */
3789 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3790 if (next->flush_color != wq->flush_color)
3791 break;
3792 list_del_init(&next->list);
3793 complete(&next->done);
3794 }
3795
6183c009
TH
3796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3797 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3798
3799 /* this flush_color is finished, advance by one */
3800 wq->flush_color = work_next_color(wq->flush_color);
3801
3802 /* one color has been freed, handle overflow queue */
3803 if (!list_empty(&wq->flusher_overflow)) {
3804 /*
3805 * Assign the same color to all overflowed
3806 * flushers, advance work_color and append to
3807 * flusher_queue. This is the start-to-wait
3808 * phase for these overflowed flushers.
3809 */
3810 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3811 tmp->flush_color = wq->work_color;
3812
3813 wq->work_color = work_next_color(wq->work_color);
3814
3815 list_splice_tail_init(&wq->flusher_overflow,
3816 &wq->flusher_queue);
112202d9 3817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3818 }
3819
3820 if (list_empty(&wq->flusher_queue)) {
6183c009 3821 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3822 break;
3823 }
3824
3825 /*
3826 * Need to flush more colors. Make the next flusher
112202d9 3827 * the new first flusher and arm pwqs.
73f53c4a 3828 */
6183c009
TH
3829 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3830 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3831
3832 list_del_init(&next->list);
3833 wq->first_flusher = next;
3834
112202d9 3835 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3836 break;
3837
3838 /*
3839 * Meh... this color is already done, clear first
3840 * flusher and repeat cascading.
3841 */
3842 wq->first_flusher = NULL;
3843 }
3844
3845out_unlock:
3c25a55d 3846 mutex_unlock(&wq->mutex);
1da177e4 3847}
c4f135d6 3848EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3849
9c5a2ba7
TH
3850/**
3851 * drain_workqueue - drain a workqueue
3852 * @wq: workqueue to drain
3853 *
3854 * Wait until the workqueue becomes empty. While draining is in progress,
3855 * only chain queueing is allowed. IOW, only currently pending or running
3856 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3857 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3858 * by the depth of chaining and should be relatively short. Whine if it
3859 * takes too long.
3860 */
3861void drain_workqueue(struct workqueue_struct *wq)
3862{
3863 unsigned int flush_cnt = 0;
49e3cf44 3864 struct pool_workqueue *pwq;
9c5a2ba7
TH
3865
3866 /*
3867 * __queue_work() needs to test whether there are drainers, is much
3868 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3869 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3870 */
87fc741e 3871 mutex_lock(&wq->mutex);
9c5a2ba7 3872 if (!wq->nr_drainers++)
618b01eb 3873 wq->flags |= __WQ_DRAINING;
87fc741e 3874 mutex_unlock(&wq->mutex);
9c5a2ba7 3875reflush:
c4f135d6 3876 __flush_workqueue(wq);
9c5a2ba7 3877
b09f4fd3 3878 mutex_lock(&wq->mutex);
76af4d93 3879
49e3cf44 3880 for_each_pwq(pwq, wq) {
fa2563e4 3881 bool drained;
9c5a2ba7 3882
a9b8a985 3883 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 3884 drained = pwq_is_empty(pwq);
a9b8a985 3885 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3886
3887 if (drained)
9c5a2ba7
TH
3888 continue;
3889
3890 if (++flush_cnt == 10 ||
3891 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3892 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3893 wq->name, __func__, flush_cnt);
76af4d93 3894
b09f4fd3 3895 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3896 goto reflush;
3897 }
3898
9c5a2ba7 3899 if (!--wq->nr_drainers)
618b01eb 3900 wq->flags &= ~__WQ_DRAINING;
87fc741e 3901 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3902}
3903EXPORT_SYMBOL_GPL(drain_workqueue);
3904
d6e89786
JB
3905static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3906 bool from_cancel)
db700897 3907{
affee4b2 3908 struct worker *worker = NULL;
c9e7cf27 3909 struct worker_pool *pool;
112202d9 3910 struct pool_workqueue *pwq;
c35aea39 3911 struct workqueue_struct *wq;
db700897
ON
3912
3913 might_sleep();
fa1b54e6 3914
24acfb71 3915 rcu_read_lock();
c9e7cf27 3916 pool = get_work_pool(work);
fa1b54e6 3917 if (!pool) {
24acfb71 3918 rcu_read_unlock();
baf59022 3919 return false;
fa1b54e6 3920 }
db700897 3921
a9b8a985 3922 raw_spin_lock_irq(&pool->lock);
0b3dae68 3923 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3924 pwq = get_work_pwq(work);
3925 if (pwq) {
3926 if (unlikely(pwq->pool != pool))
4690c4ab 3927 goto already_gone;
606a5020 3928 } else {
c9e7cf27 3929 worker = find_worker_executing_work(pool, work);
affee4b2 3930 if (!worker)
4690c4ab 3931 goto already_gone;
112202d9 3932 pwq = worker->current_pwq;
606a5020 3933 }
db700897 3934
c35aea39
TH
3935 wq = pwq->wq;
3936 check_flush_dependency(wq, work);
fca839c0 3937
112202d9 3938 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3939 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3940
c35aea39
TH
3941 touch_work_lockdep_map(work, wq);
3942
e159489b 3943 /*
a1d14934
PZ
3944 * Force a lock recursion deadlock when using flush_work() inside a
3945 * single-threaded or rescuer equipped workqueue.
3946 *
3947 * For single threaded workqueues the deadlock happens when the work
3948 * is after the work issuing the flush_work(). For rescuer equipped
3949 * workqueues the deadlock happens when the rescuer stalls, blocking
3950 * forward progress.
e159489b 3951 */
c35aea39
TH
3952 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
3953 touch_wq_lockdep_map(wq);
3954
24acfb71 3955 rcu_read_unlock();
401a8d04 3956 return true;
4690c4ab 3957already_gone:
a9b8a985 3958 raw_spin_unlock_irq(&pool->lock);
24acfb71 3959 rcu_read_unlock();
401a8d04 3960 return false;
db700897 3961}
baf59022 3962
d6e89786
JB
3963static bool __flush_work(struct work_struct *work, bool from_cancel)
3964{
3965 struct wq_barrier barr;
3966
3967 if (WARN_ON(!wq_online))
3968 return false;
3969
4d43d395
TH
3970 if (WARN_ON(!work->func))
3971 return false;
3972
d6e89786
JB
3973 if (start_flush_work(work, &barr, from_cancel)) {
3974 wait_for_completion(&barr.done);
3975 destroy_work_on_stack(&barr.work);
3976 return true;
3977 } else {
3978 return false;
3979 }
3980}
3981
baf59022
TH
3982/**
3983 * flush_work - wait for a work to finish executing the last queueing instance
3984 * @work: the work to flush
3985 *
606a5020
TH
3986 * Wait until @work has finished execution. @work is guaranteed to be idle
3987 * on return if it hasn't been requeued since flush started.
baf59022 3988 *
d185af30 3989 * Return:
baf59022
TH
3990 * %true if flush_work() waited for the work to finish execution,
3991 * %false if it was already idle.
3992 */
3993bool flush_work(struct work_struct *work)
3994{
d6e89786 3995 return __flush_work(work, false);
6e84d644 3996}
606a5020 3997EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3998
8603e1b3 3999struct cwt_wait {
ac6424b9 4000 wait_queue_entry_t wait;
8603e1b3
TH
4001 struct work_struct *work;
4002};
4003
ac6424b9 4004static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
4005{
4006 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
4007
4008 if (cwait->work != key)
4009 return 0;
4010 return autoremove_wake_function(wait, mode, sync, key);
4011}
4012
36e227d2 4013static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 4014{
8603e1b3 4015 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 4016 unsigned long flags;
1f1f642e
ON
4017 int ret;
4018
4019 do {
bbb68dfa
TH
4020 ret = try_to_grab_pending(work, is_dwork, &flags);
4021 /*
8603e1b3
TH
4022 * If someone else is already canceling, wait for it to
4023 * finish. flush_work() doesn't work for PREEMPT_NONE
4024 * because we may get scheduled between @work's completion
4025 * and the other canceling task resuming and clearing
4026 * CANCELING - flush_work() will return false immediately
4027 * as @work is no longer busy, try_to_grab_pending() will
4028 * return -ENOENT as @work is still being canceled and the
4029 * other canceling task won't be able to clear CANCELING as
4030 * we're hogging the CPU.
4031 *
4032 * Let's wait for completion using a waitqueue. As this
4033 * may lead to the thundering herd problem, use a custom
4034 * wake function which matches @work along with exclusive
4035 * wait and wakeup.
bbb68dfa 4036 */
8603e1b3
TH
4037 if (unlikely(ret == -ENOENT)) {
4038 struct cwt_wait cwait;
4039
4040 init_wait(&cwait.wait);
4041 cwait.wait.func = cwt_wakefn;
4042 cwait.work = work;
4043
4044 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
4045 TASK_UNINTERRUPTIBLE);
4046 if (work_is_canceling(work))
4047 schedule();
4048 finish_wait(&cancel_waitq, &cwait.wait);
4049 }
1f1f642e
ON
4050 } while (unlikely(ret < 0));
4051
bbb68dfa
TH
4052 /* tell other tasks trying to grab @work to back off */
4053 mark_work_canceling(work);
4054 local_irq_restore(flags);
4055
3347fa09
TH
4056 /*
4057 * This allows canceling during early boot. We know that @work
4058 * isn't executing.
4059 */
4060 if (wq_online)
d6e89786 4061 __flush_work(work, true);
3347fa09 4062
7a22ad75 4063 clear_work_data(work);
8603e1b3
TH
4064
4065 /*
4066 * Paired with prepare_to_wait() above so that either
4067 * waitqueue_active() is visible here or !work_is_canceling() is
4068 * visible there.
4069 */
4070 smp_mb();
4071 if (waitqueue_active(&cancel_waitq))
4072 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
4073
1f1f642e
ON
4074 return ret;
4075}
4076
6e84d644 4077/**
401a8d04
TH
4078 * cancel_work_sync - cancel a work and wait for it to finish
4079 * @work: the work to cancel
6e84d644 4080 *
401a8d04
TH
4081 * Cancel @work and wait for its execution to finish. This function
4082 * can be used even if the work re-queues itself or migrates to
4083 * another workqueue. On return from this function, @work is
4084 * guaranteed to be not pending or executing on any CPU.
1f1f642e 4085 *
401a8d04
TH
4086 * cancel_work_sync(&delayed_work->work) must not be used for
4087 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 4088 *
401a8d04 4089 * The caller must ensure that the workqueue on which @work was last
6e84d644 4090 * queued can't be destroyed before this function returns.
401a8d04 4091 *
d185af30 4092 * Return:
401a8d04 4093 * %true if @work was pending, %false otherwise.
6e84d644 4094 */
401a8d04 4095bool cancel_work_sync(struct work_struct *work)
6e84d644 4096{
36e227d2 4097 return __cancel_work_timer(work, false);
b89deed3 4098}
28e53bdd 4099EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 4100
6e84d644 4101/**
401a8d04
TH
4102 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4103 * @dwork: the delayed work to flush
6e84d644 4104 *
401a8d04
TH
4105 * Delayed timer is cancelled and the pending work is queued for
4106 * immediate execution. Like flush_work(), this function only
4107 * considers the last queueing instance of @dwork.
1f1f642e 4108 *
d185af30 4109 * Return:
401a8d04
TH
4110 * %true if flush_work() waited for the work to finish execution,
4111 * %false if it was already idle.
6e84d644 4112 */
401a8d04
TH
4113bool flush_delayed_work(struct delayed_work *dwork)
4114{
8930caba 4115 local_irq_disable();
401a8d04 4116 if (del_timer_sync(&dwork->timer))
60c057bc 4117 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 4118 local_irq_enable();
401a8d04
TH
4119 return flush_work(&dwork->work);
4120}
4121EXPORT_SYMBOL(flush_delayed_work);
4122
05f0fe6b
TH
4123/**
4124 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4125 * @rwork: the rcu work to flush
4126 *
4127 * Return:
4128 * %true if flush_rcu_work() waited for the work to finish execution,
4129 * %false if it was already idle.
4130 */
4131bool flush_rcu_work(struct rcu_work *rwork)
4132{
4133 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4134 rcu_barrier();
4135 flush_work(&rwork->work);
4136 return true;
4137 } else {
4138 return flush_work(&rwork->work);
4139 }
4140}
4141EXPORT_SYMBOL(flush_rcu_work);
4142
f72b8792
JA
4143static bool __cancel_work(struct work_struct *work, bool is_dwork)
4144{
4145 unsigned long flags;
4146 int ret;
4147
4148 do {
4149 ret = try_to_grab_pending(work, is_dwork, &flags);
4150 } while (unlikely(ret == -EAGAIN));
4151
4152 if (unlikely(ret < 0))
4153 return false;
4154
4155 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
4156 local_irq_restore(flags);
4157 return ret;
4158}
4159
73b4b532
AG
4160/*
4161 * See cancel_delayed_work()
4162 */
4163bool cancel_work(struct work_struct *work)
4164{
4165 return __cancel_work(work, false);
4166}
4167EXPORT_SYMBOL(cancel_work);
4168
09383498 4169/**
57b30ae7
TH
4170 * cancel_delayed_work - cancel a delayed work
4171 * @dwork: delayed_work to cancel
09383498 4172 *
d185af30
YB
4173 * Kill off a pending delayed_work.
4174 *
4175 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4176 * pending.
4177 *
4178 * Note:
4179 * The work callback function may still be running on return, unless
4180 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4181 * use cancel_delayed_work_sync() to wait on it.
09383498 4182 *
57b30ae7 4183 * This function is safe to call from any context including IRQ handler.
09383498 4184 */
57b30ae7 4185bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4186{
f72b8792 4187 return __cancel_work(&dwork->work, true);
09383498 4188}
57b30ae7 4189EXPORT_SYMBOL(cancel_delayed_work);
09383498 4190
401a8d04
TH
4191/**
4192 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4193 * @dwork: the delayed work cancel
4194 *
4195 * This is cancel_work_sync() for delayed works.
4196 *
d185af30 4197 * Return:
401a8d04
TH
4198 * %true if @dwork was pending, %false otherwise.
4199 */
4200bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4201{
36e227d2 4202 return __cancel_work_timer(&dwork->work, true);
6e84d644 4203}
f5a421a4 4204EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4205
b6136773 4206/**
31ddd871 4207 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4208 * @func: the function to call
b6136773 4209 *
31ddd871
TH
4210 * schedule_on_each_cpu() executes @func on each online CPU using the
4211 * system workqueue and blocks until all CPUs have completed.
b6136773 4212 * schedule_on_each_cpu() is very slow.
31ddd871 4213 *
d185af30 4214 * Return:
31ddd871 4215 * 0 on success, -errno on failure.
b6136773 4216 */
65f27f38 4217int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4218{
4219 int cpu;
38f51568 4220 struct work_struct __percpu *works;
15316ba8 4221
b6136773
AM
4222 works = alloc_percpu(struct work_struct);
4223 if (!works)
15316ba8 4224 return -ENOMEM;
b6136773 4225
ffd8bea8 4226 cpus_read_lock();
93981800 4227
15316ba8 4228 for_each_online_cpu(cpu) {
9bfb1839
IM
4229 struct work_struct *work = per_cpu_ptr(works, cpu);
4230
4231 INIT_WORK(work, func);
b71ab8c2 4232 schedule_work_on(cpu, work);
65a64464 4233 }
93981800
TH
4234
4235 for_each_online_cpu(cpu)
4236 flush_work(per_cpu_ptr(works, cpu));
4237
ffd8bea8 4238 cpus_read_unlock();
b6136773 4239 free_percpu(works);
15316ba8
CL
4240 return 0;
4241}
4242
1fa44eca
JB
4243/**
4244 * execute_in_process_context - reliably execute the routine with user context
4245 * @fn: the function to execute
1fa44eca
JB
4246 * @ew: guaranteed storage for the execute work structure (must
4247 * be available when the work executes)
4248 *
4249 * Executes the function immediately if process context is available,
4250 * otherwise schedules the function for delayed execution.
4251 *
d185af30 4252 * Return: 0 - function was executed
1fa44eca
JB
4253 * 1 - function was scheduled for execution
4254 */
65f27f38 4255int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4256{
4257 if (!in_interrupt()) {
65f27f38 4258 fn(&ew->work);
1fa44eca
JB
4259 return 0;
4260 }
4261
65f27f38 4262 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4263 schedule_work(&ew->work);
4264
4265 return 1;
4266}
4267EXPORT_SYMBOL_GPL(execute_in_process_context);
4268
6ba94429
FW
4269/**
4270 * free_workqueue_attrs - free a workqueue_attrs
4271 * @attrs: workqueue_attrs to free
226223ab 4272 *
6ba94429 4273 * Undo alloc_workqueue_attrs().
226223ab 4274 */
513c98d0 4275void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4276{
6ba94429
FW
4277 if (attrs) {
4278 free_cpumask_var(attrs->cpumask);
9546b29e 4279 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4280 kfree(attrs);
4281 }
226223ab
TH
4282}
4283
6ba94429
FW
4284/**
4285 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4286 *
4287 * Allocate a new workqueue_attrs, initialize with default settings and
4288 * return it.
4289 *
4290 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4291 */
513c98d0 4292struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4293{
6ba94429 4294 struct workqueue_attrs *attrs;
226223ab 4295
be69d00d 4296 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4297 if (!attrs)
4298 goto fail;
be69d00d 4299 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4300 goto fail;
9546b29e
TH
4301 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4302 goto fail;
6ba94429
FW
4303
4304 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4305 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4306 return attrs;
4307fail:
4308 free_workqueue_attrs(attrs);
4309 return NULL;
226223ab
TH
4310}
4311
6ba94429
FW
4312static void copy_workqueue_attrs(struct workqueue_attrs *to,
4313 const struct workqueue_attrs *from)
226223ab 4314{
6ba94429
FW
4315 to->nice = from->nice;
4316 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4317 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4318 to->affn_strict = from->affn_strict;
84193c07 4319
6ba94429 4320 /*
84193c07
TH
4321 * Unlike hash and equality test, copying shouldn't ignore wq-only
4322 * fields as copying is used for both pool and wq attrs. Instead,
4323 * get_unbound_pool() explicitly clears the fields.
6ba94429 4324 */
84193c07 4325 to->affn_scope = from->affn_scope;
af73f5c9 4326 to->ordered = from->ordered;
226223ab
TH
4327}
4328
5de7a03c
TH
4329/*
4330 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4331 * comments in 'struct workqueue_attrs' definition.
4332 */
4333static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4334{
84193c07 4335 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c
TH
4336 attrs->ordered = false;
4337}
4338
6ba94429
FW
4339/* hash value of the content of @attr */
4340static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4341{
6ba94429 4342 u32 hash = 0;
226223ab 4343
6ba94429
FW
4344 hash = jhash_1word(attrs->nice, hash);
4345 hash = jhash(cpumask_bits(attrs->cpumask),
4346 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
9546b29e
TH
4347 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4348 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
8639eceb 4349 hash = jhash_1word(attrs->affn_strict, hash);
6ba94429 4350 return hash;
226223ab 4351}
226223ab 4352
6ba94429
FW
4353/* content equality test */
4354static bool wqattrs_equal(const struct workqueue_attrs *a,
4355 const struct workqueue_attrs *b)
226223ab 4356{
6ba94429
FW
4357 if (a->nice != b->nice)
4358 return false;
4359 if (!cpumask_equal(a->cpumask, b->cpumask))
4360 return false;
9546b29e
TH
4361 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4362 return false;
8639eceb
TH
4363 if (a->affn_strict != b->affn_strict)
4364 return false;
6ba94429 4365 return true;
226223ab
TH
4366}
4367
0f36ee24
TH
4368/* Update @attrs with actually available CPUs */
4369static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4370 const cpumask_t *unbound_cpumask)
4371{
4372 /*
4373 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4374 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4375 * @unbound_cpumask.
4376 */
4377 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4378 if (unlikely(cpumask_empty(attrs->cpumask)))
4379 cpumask_copy(attrs->cpumask, unbound_cpumask);
4380}
4381
84193c07
TH
4382/* find wq_pod_type to use for @attrs */
4383static const struct wq_pod_type *
4384wqattrs_pod_type(const struct workqueue_attrs *attrs)
4385{
523a301e
TH
4386 enum wq_affn_scope scope;
4387 struct wq_pod_type *pt;
4388
4389 /* to synchronize access to wq_affn_dfl */
4390 lockdep_assert_held(&wq_pool_mutex);
4391
4392 if (attrs->affn_scope == WQ_AFFN_DFL)
4393 scope = wq_affn_dfl;
4394 else
4395 scope = attrs->affn_scope;
4396
4397 pt = &wq_pod_types[scope];
84193c07
TH
4398
4399 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4400 likely(pt->nr_pods))
4401 return pt;
4402
4403 /*
4404 * Before workqueue_init_topology(), only SYSTEM is available which is
4405 * initialized in workqueue_init_early().
4406 */
4407 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4408 BUG_ON(!pt->nr_pods);
4409 return pt;
4410}
4411
6ba94429
FW
4412/**
4413 * init_worker_pool - initialize a newly zalloc'd worker_pool
4414 * @pool: worker_pool to initialize
4415 *
402dd89d 4416 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4417 *
4418 * Return: 0 on success, -errno on failure. Even on failure, all fields
4419 * inside @pool proper are initialized and put_unbound_pool() can be called
4420 * on @pool safely to release it.
4421 */
4422static int init_worker_pool(struct worker_pool *pool)
226223ab 4423{
a9b8a985 4424 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4425 pool->id = -1;
4426 pool->cpu = -1;
4427 pool->node = NUMA_NO_NODE;
4428 pool->flags |= POOL_DISASSOCIATED;
82607adc 4429 pool->watchdog_ts = jiffies;
6ba94429
FW
4430 INIT_LIST_HEAD(&pool->worklist);
4431 INIT_LIST_HEAD(&pool->idle_list);
4432 hash_init(pool->busy_hash);
226223ab 4433
32a6c723 4434 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4435 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4436
32a6c723 4437 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4438
6ba94429 4439 INIT_LIST_HEAD(&pool->workers);
e02b9312 4440 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 4441
6ba94429
FW
4442 ida_init(&pool->worker_ida);
4443 INIT_HLIST_NODE(&pool->hash_node);
4444 pool->refcnt = 1;
226223ab 4445
6ba94429 4446 /* shouldn't fail above this point */
be69d00d 4447 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4448 if (!pool->attrs)
4449 return -ENOMEM;
5de7a03c
TH
4450
4451 wqattrs_clear_for_pool(pool->attrs);
4452
6ba94429 4453 return 0;
226223ab
TH
4454}
4455
669de8bd
BVA
4456#ifdef CONFIG_LOCKDEP
4457static void wq_init_lockdep(struct workqueue_struct *wq)
4458{
4459 char *lock_name;
4460
4461 lockdep_register_key(&wq->key);
4462 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4463 if (!lock_name)
4464 lock_name = wq->name;
69a106c0
QC
4465
4466 wq->lock_name = lock_name;
669de8bd
BVA
4467 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4468}
4469
4470static void wq_unregister_lockdep(struct workqueue_struct *wq)
4471{
4472 lockdep_unregister_key(&wq->key);
4473}
4474
4475static void wq_free_lockdep(struct workqueue_struct *wq)
4476{
4477 if (wq->lock_name != wq->name)
4478 kfree(wq->lock_name);
4479}
4480#else
4481static void wq_init_lockdep(struct workqueue_struct *wq)
4482{
4483}
4484
4485static void wq_unregister_lockdep(struct workqueue_struct *wq)
4486{
4487}
4488
4489static void wq_free_lockdep(struct workqueue_struct *wq)
4490{
4491}
4492#endif
4493
91ccc6e7
TH
4494static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4495{
4496 int node;
4497
4498 for_each_node(node) {
4499 kfree(nna_ar[node]);
4500 nna_ar[node] = NULL;
4501 }
4502
4503 kfree(nna_ar[nr_node_ids]);
4504 nna_ar[nr_node_ids] = NULL;
4505}
4506
4507static void init_node_nr_active(struct wq_node_nr_active *nna)
4508{
c5f8cd6c 4509 nna->max = WQ_DFL_MIN_ACTIVE;
91ccc6e7 4510 atomic_set(&nna->nr, 0);
5797b1c1
TH
4511 raw_spin_lock_init(&nna->lock);
4512 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4513}
4514
4515/*
4516 * Each node's nr_active counter will be accessed mostly from its own node and
4517 * should be allocated in the node.
4518 */
4519static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4520{
4521 struct wq_node_nr_active *nna;
4522 int node;
4523
4524 for_each_node(node) {
4525 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4526 if (!nna)
4527 goto err_free;
4528 init_node_nr_active(nna);
4529 nna_ar[node] = nna;
4530 }
4531
4532 /* [nr_node_ids] is used as the fallback */
4533 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4534 if (!nna)
4535 goto err_free;
4536 init_node_nr_active(nna);
4537 nna_ar[nr_node_ids] = nna;
4538
4539 return 0;
4540
4541err_free:
4542 free_node_nr_active(nna_ar);
4543 return -ENOMEM;
4544}
4545
6ba94429 4546static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4547{
6ba94429
FW
4548 struct workqueue_struct *wq =
4549 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4550
91ccc6e7
TH
4551 if (wq->flags & WQ_UNBOUND)
4552 free_node_nr_active(wq->node_nr_active);
4553
669de8bd 4554 wq_free_lockdep(wq);
636b927e
TH
4555 free_percpu(wq->cpu_pwq);
4556 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4557 kfree(wq);
226223ab
TH
4558}
4559
6ba94429 4560static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4561{
6ba94429 4562 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4563
6ba94429
FW
4564 ida_destroy(&pool->worker_ida);
4565 free_workqueue_attrs(pool->attrs);
4566 kfree(pool);
226223ab
TH
4567}
4568
6ba94429
FW
4569/**
4570 * put_unbound_pool - put a worker_pool
4571 * @pool: worker_pool to put
4572 *
24acfb71 4573 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4574 * safe manner. get_unbound_pool() calls this function on its failure path
4575 * and this function should be able to release pools which went through,
4576 * successfully or not, init_worker_pool().
4577 *
4578 * Should be called with wq_pool_mutex held.
4579 */
4580static void put_unbound_pool(struct worker_pool *pool)
226223ab 4581{
6ba94429
FW
4582 DECLARE_COMPLETION_ONSTACK(detach_completion);
4583 struct worker *worker;
9680540c 4584 LIST_HEAD(cull_list);
e02b9312 4585
6ba94429 4586 lockdep_assert_held(&wq_pool_mutex);
226223ab 4587
6ba94429
FW
4588 if (--pool->refcnt)
4589 return;
226223ab 4590
6ba94429
FW
4591 /* sanity checks */
4592 if (WARN_ON(!(pool->cpu < 0)) ||
4593 WARN_ON(!list_empty(&pool->worklist)))
4594 return;
226223ab 4595
6ba94429
FW
4596 /* release id and unhash */
4597 if (pool->id >= 0)
4598 idr_remove(&worker_pool_idr, pool->id);
4599 hash_del(&pool->hash_node);
d55262c4 4600
6ba94429 4601 /*
692b4825
TH
4602 * Become the manager and destroy all workers. This prevents
4603 * @pool's workers from blocking on attach_mutex. We're the last
4604 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4605 *
4606 * Having a concurrent manager is quite unlikely to happen as we can
4607 * only get here with
4608 * pwq->refcnt == pool->refcnt == 0
4609 * which implies no work queued to the pool, which implies no worker can
4610 * become the manager. However a worker could have taken the role of
4611 * manager before the refcnts dropped to 0, since maybe_create_worker()
4612 * drops pool->lock
6ba94429 4613 */
9ab03be4
VS
4614 while (true) {
4615 rcuwait_wait_event(&manager_wait,
4616 !(pool->flags & POOL_MANAGER_ACTIVE),
4617 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4618
4619 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4620 raw_spin_lock_irq(&pool->lock);
4621 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4622 pool->flags |= POOL_MANAGER_ACTIVE;
4623 break;
4624 }
4625 raw_spin_unlock_irq(&pool->lock);
e02b9312 4626 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4627 }
692b4825 4628
6ba94429 4629 while ((worker = first_idle_worker(pool)))
e02b9312 4630 set_worker_dying(worker, &cull_list);
6ba94429 4631 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4632 raw_spin_unlock_irq(&pool->lock);
d55262c4 4633
e02b9312
VS
4634 wake_dying_workers(&cull_list);
4635
4636 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 4637 pool->detach_completion = &detach_completion;
1258fae7 4638 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4639
6ba94429
FW
4640 if (pool->detach_completion)
4641 wait_for_completion(pool->detach_completion);
226223ab 4642
6ba94429
FW
4643 /* shut down the timers */
4644 del_timer_sync(&pool->idle_timer);
3f959aa3 4645 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4646 del_timer_sync(&pool->mayday_timer);
226223ab 4647
24acfb71 4648 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4649 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4650}
4651
4652/**
6ba94429
FW
4653 * get_unbound_pool - get a worker_pool with the specified attributes
4654 * @attrs: the attributes of the worker_pool to get
226223ab 4655 *
6ba94429
FW
4656 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4657 * reference count and return it. If there already is a matching
4658 * worker_pool, it will be used; otherwise, this function attempts to
4659 * create a new one.
226223ab 4660 *
6ba94429 4661 * Should be called with wq_pool_mutex held.
226223ab 4662 *
6ba94429
FW
4663 * Return: On success, a worker_pool with the same attributes as @attrs.
4664 * On failure, %NULL.
226223ab 4665 */
6ba94429 4666static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4667{
84193c07 4668 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4669 u32 hash = wqattrs_hash(attrs);
4670 struct worker_pool *pool;
84193c07 4671 int pod, node = NUMA_NO_NODE;
226223ab 4672
6ba94429 4673 lockdep_assert_held(&wq_pool_mutex);
226223ab 4674
6ba94429
FW
4675 /* do we already have a matching pool? */
4676 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4677 if (wqattrs_equal(pool->attrs, attrs)) {
4678 pool->refcnt++;
4679 return pool;
4680 }
4681 }
226223ab 4682
9546b29e 4683 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 4684 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 4685 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
4686 node = pt->pod_node[pod];
4687 break;
e2273584
XP
4688 }
4689 }
4690
6ba94429 4691 /* nope, create a new one */
84193c07 4692 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
4693 if (!pool || init_worker_pool(pool) < 0)
4694 goto fail;
4695
84193c07 4696 pool->node = node;
5de7a03c
TH
4697 copy_workqueue_attrs(pool->attrs, attrs);
4698 wqattrs_clear_for_pool(pool->attrs);
226223ab 4699
6ba94429
FW
4700 if (worker_pool_assign_id(pool) < 0)
4701 goto fail;
226223ab 4702
6ba94429 4703 /* create and start the initial worker */
3347fa09 4704 if (wq_online && !create_worker(pool))
6ba94429 4705 goto fail;
226223ab 4706
6ba94429
FW
4707 /* install */
4708 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 4709
6ba94429
FW
4710 return pool;
4711fail:
4712 if (pool)
4713 put_unbound_pool(pool);
4714 return NULL;
226223ab 4715}
226223ab 4716
6ba94429 4717static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 4718{
6ba94429
FW
4719 kmem_cache_free(pwq_cache,
4720 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
4721}
4722
6ba94429 4723/*
967b494e
TH
4724 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4725 * refcnt and needs to be destroyed.
7a4e344c 4726 */
687a9aa5 4727static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 4728{
6ba94429 4729 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 4730 release_work);
6ba94429
FW
4731 struct workqueue_struct *wq = pwq->wq;
4732 struct worker_pool *pool = pwq->pool;
b42b0bdd 4733 bool is_last = false;
7a4e344c 4734
b42b0bdd 4735 /*
687a9aa5 4736 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
4737 * @wq, and @wq is invalid to access.
4738 */
4739 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
4740 mutex_lock(&wq->mutex);
4741 list_del_rcu(&pwq->pwqs_node);
4742 is_last = list_empty(&wq->pwqs);
4743 mutex_unlock(&wq->mutex);
4744 }
6ba94429 4745
687a9aa5
TH
4746 if (wq->flags & WQ_UNBOUND) {
4747 mutex_lock(&wq_pool_mutex);
4748 put_unbound_pool(pool);
4749 mutex_unlock(&wq_pool_mutex);
4750 }
6ba94429 4751
5797b1c1
TH
4752 if (!list_empty(&pwq->pending_node)) {
4753 struct wq_node_nr_active *nna =
4754 wq_node_nr_active(pwq->wq, pwq->pool->node);
4755
4756 raw_spin_lock_irq(&nna->lock);
4757 list_del_init(&pwq->pending_node);
4758 raw_spin_unlock_irq(&nna->lock);
4759 }
4760
25b00775 4761 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 4762
2865a8fb 4763 /*
6ba94429
FW
4764 * If we're the last pwq going away, @wq is already dead and no one
4765 * is gonna access it anymore. Schedule RCU free.
2865a8fb 4766 */
669de8bd
BVA
4767 if (is_last) {
4768 wq_unregister_lockdep(wq);
25b00775 4769 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 4770 }
29c91e99
TH
4771}
4772
67dc8325 4773/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
4774static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4775 struct worker_pool *pool)
29c91e99 4776{
6ba94429 4777 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 4778
6ba94429
FW
4779 memset(pwq, 0, sizeof(*pwq));
4780
4781 pwq->pool = pool;
4782 pwq->wq = wq;
4783 pwq->flush_color = -1;
4784 pwq->refcnt = 1;
f97a4a1a 4785 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 4786 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
4787 INIT_LIST_HEAD(&pwq->pwqs_node);
4788 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 4789 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
4790}
4791
6ba94429
FW
4792/* sync @pwq with the current state of its associated wq and link it */
4793static void link_pwq(struct pool_workqueue *pwq)
29c91e99 4794{
6ba94429 4795 struct workqueue_struct *wq = pwq->wq;
29c91e99 4796
6ba94429 4797 lockdep_assert_held(&wq->mutex);
a892cacc 4798
6ba94429
FW
4799 /* may be called multiple times, ignore if already linked */
4800 if (!list_empty(&pwq->pwqs_node))
29c91e99 4801 return;
29c91e99 4802
6ba94429
FW
4803 /* set the matching work_color */
4804 pwq->work_color = wq->work_color;
29c91e99 4805
6ba94429
FW
4806 /* link in @pwq */
4807 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4808}
29c91e99 4809
6ba94429
FW
4810/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4811static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4812 const struct workqueue_attrs *attrs)
4813{
4814 struct worker_pool *pool;
4815 struct pool_workqueue *pwq;
60f5a4bc 4816
6ba94429 4817 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 4818
6ba94429
FW
4819 pool = get_unbound_pool(attrs);
4820 if (!pool)
4821 return NULL;
60f5a4bc 4822
6ba94429
FW
4823 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4824 if (!pwq) {
4825 put_unbound_pool(pool);
4826 return NULL;
4827 }
29c91e99 4828
6ba94429
FW
4829 init_pwq(pwq, wq, pool);
4830 return pwq;
4831}
29c91e99 4832
29c91e99 4833/**
fef59c9c 4834 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 4835 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 4836 * @cpu: the target CPU
6ba94429 4837 * @cpu_going_down: if >= 0, the CPU to consider as offline
29c91e99 4838 *
fef59c9c
TH
4839 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4840 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
9546b29e 4841 * The result is stored in @attrs->__pod_cpumask.
a892cacc 4842 *
fef59c9c
TH
4843 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4844 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4845 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 4846 *
fef59c9c 4847 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 4848 */
9546b29e
TH
4849static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4850 int cpu_going_down)
29c91e99 4851{
84193c07
TH
4852 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4853 int pod = pt->cpu_pod[cpu];
29c91e99 4854
fef59c9c 4855 /* does @pod have any online CPUs @attrs wants? */
9546b29e
TH
4856 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4857 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
6ba94429 4858 if (cpu_going_down >= 0)
9546b29e 4859 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
29c91e99 4860
9546b29e
TH
4861 if (cpumask_empty(attrs->__pod_cpumask)) {
4862 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
4863 return;
4864 }
4c16bd32 4865
fef59c9c 4866 /* yeap, return possible CPUs in @pod that @attrs wants */
9546b29e 4867 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 4868
9546b29e 4869 if (cpumask_empty(attrs->__pod_cpumask))
1ad0f0a7
MB
4870 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4871 "possible intersect\n");
4c16bd32
TH
4872}
4873
9f66cff2 4874/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
4875static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4876 int cpu, struct pool_workqueue *pwq)
1befcf30 4877{
9f66cff2 4878 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
4879 struct pool_workqueue *old_pwq;
4880
5b95e1af 4881 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4882 lockdep_assert_held(&wq->mutex);
4883
4884 /* link_pwq() can handle duplicate calls */
4885 link_pwq(pwq);
4886
9f66cff2
TH
4887 old_pwq = rcu_access_pointer(*slot);
4888 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
4889 return old_pwq;
4890}
4891
2d5f0764
LJ
4892/* context to store the prepared attrs & pwqs before applying */
4893struct apply_wqattrs_ctx {
4894 struct workqueue_struct *wq; /* target workqueue */
4895 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4896 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4897 struct pool_workqueue *dfl_pwq;
4898 struct pool_workqueue *pwq_tbl[];
4899};
4900
4901/* free the resources after success or abort */
4902static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4903{
4904 if (ctx) {
636b927e 4905 int cpu;
2d5f0764 4906
636b927e
TH
4907 for_each_possible_cpu(cpu)
4908 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
4909 put_pwq_unlocked(ctx->dfl_pwq);
4910
4911 free_workqueue_attrs(ctx->attrs);
4912
4913 kfree(ctx);
4914 }
4915}
4916
4917/* allocate the attrs and pwqs for later installation */
4918static struct apply_wqattrs_ctx *
4919apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4920 const struct workqueue_attrs *attrs,
4921 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4922{
2d5f0764 4923 struct apply_wqattrs_ctx *ctx;
9546b29e 4924 struct workqueue_attrs *new_attrs;
636b927e 4925 int cpu;
9e8cd2f5 4926
2d5f0764 4927 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4928
84193c07
TH
4929 if (WARN_ON(attrs->affn_scope < 0 ||
4930 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4931 return ERR_PTR(-EINVAL);
4932
636b927e 4933 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 4934
be69d00d 4935 new_attrs = alloc_workqueue_attrs();
9546b29e 4936 if (!ctx || !new_attrs)
2d5f0764 4937 goto out_free;
13e2e556 4938
4c16bd32
TH
4939 /*
4940 * If something goes wrong during CPU up/down, we'll fall back to
4941 * the default pwq covering whole @attrs->cpumask. Always create
4942 * it even if we don't use it immediately.
4943 */
0f36ee24
TH
4944 copy_workqueue_attrs(new_attrs, attrs);
4945 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 4946 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
4947 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4948 if (!ctx->dfl_pwq)
4949 goto out_free;
4c16bd32 4950
636b927e 4951 for_each_possible_cpu(cpu) {
af73f5c9 4952 if (new_attrs->ordered) {
2d5f0764 4953 ctx->dfl_pwq->refcnt++;
636b927e
TH
4954 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4955 } else {
9546b29e
TH
4956 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4957 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
4958 if (!ctx->pwq_tbl[cpu])
4959 goto out_free;
4c16bd32
TH
4960 }
4961 }
4962
042f7df1
LJ
4963 /* save the user configured attrs and sanitize it. */
4964 copy_workqueue_attrs(new_attrs, attrs);
4965 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 4966 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 4967 ctx->attrs = new_attrs;
042f7df1 4968
2d5f0764 4969 ctx->wq = wq;
2d5f0764
LJ
4970 return ctx;
4971
4972out_free:
2d5f0764
LJ
4973 free_workqueue_attrs(new_attrs);
4974 apply_wqattrs_cleanup(ctx);
84193c07 4975 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
4976}
4977
4978/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4979static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4980{
636b927e 4981 int cpu;
9e8cd2f5 4982
4c16bd32 4983 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4984 mutex_lock(&ctx->wq->mutex);
a892cacc 4985
2d5f0764 4986 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 4987
9f66cff2 4988 /* save the previous pwqs and install the new ones */
636b927e
TH
4989 for_each_possible_cpu(cpu)
4990 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4991 ctx->pwq_tbl[cpu]);
9f66cff2 4992 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 4993
5797b1c1
TH
4994 /* update node_nr_active->max */
4995 wq_update_node_max_active(ctx->wq, -1);
4996
2d5f0764
LJ
4997 mutex_unlock(&ctx->wq->mutex);
4998}
9e8cd2f5 4999
a0111cf6
LJ
5000static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5001 const struct workqueue_attrs *attrs)
2d5f0764
LJ
5002{
5003 struct apply_wqattrs_ctx *ctx;
4c16bd32 5004
2d5f0764
LJ
5005 /* only unbound workqueues can change attributes */
5006 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5007 return -EINVAL;
13e2e556 5008
2d5f0764 5009 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
5010 if (!list_empty(&wq->pwqs)) {
5011 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5012 return -EINVAL;
5013
5014 wq->flags &= ~__WQ_ORDERED;
5015 }
2d5f0764 5016
99c621ef 5017 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
5018 if (IS_ERR(ctx))
5019 return PTR_ERR(ctx);
2d5f0764
LJ
5020
5021 /* the ctx has been prepared successfully, let's commit it */
6201171e 5022 apply_wqattrs_commit(ctx);
2d5f0764
LJ
5023 apply_wqattrs_cleanup(ctx);
5024
6201171e 5025 return 0;
9e8cd2f5
TH
5026}
5027
a0111cf6
LJ
5028/**
5029 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5030 * @wq: the target workqueue
5031 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5032 *
fef59c9c
TH
5033 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5034 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5035 * work items are affine to the pod it was issued on. Older pwqs are released as
5036 * in-flight work items finish. Note that a work item which repeatedly requeues
5037 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
5038 *
5039 * Performs GFP_KERNEL allocations.
5040 *
ffd8bea8 5041 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 5042 *
a0111cf6
LJ
5043 * Return: 0 on success and -errno on failure.
5044 */
513c98d0 5045int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
5046 const struct workqueue_attrs *attrs)
5047{
5048 int ret;
5049
509b3204
DJ
5050 lockdep_assert_cpus_held();
5051
5052 mutex_lock(&wq_pool_mutex);
a0111cf6 5053 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 5054 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
5055
5056 return ret;
5057}
5058
4c16bd32 5059/**
fef59c9c 5060 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 5061 * @wq: the target workqueue
4cbfd3de
TH
5062 * @cpu: the CPU to update pool association for
5063 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
5064 * @online: whether @cpu is coming up or going down
5065 *
5066 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 5067 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
5068 * @wq accordingly.
5069 *
fef59c9c
TH
5070 *
5071 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5072 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5073 *
5074 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5075 * with a cpumask spanning multiple pods, the workers which were already
5076 * executing the work items for the workqueue will lose their CPU affinity and
5077 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5078 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5079 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 5080 */
fef59c9c
TH
5081static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5082 int hotplug_cpu, bool online)
4c16bd32 5083{
4cbfd3de 5084 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
5085 struct pool_workqueue *old_pwq = NULL, *pwq;
5086 struct workqueue_attrs *target_attrs;
4c16bd32
TH
5087
5088 lockdep_assert_held(&wq_pool_mutex);
5089
84193c07 5090 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
5091 return;
5092
5093 /*
5094 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5095 * Let's use a preallocated one. The following buf is protected by
5096 * CPU hotplug exclusion.
5097 */
fef59c9c 5098 target_attrs = wq_update_pod_attrs_buf;
4c16bd32 5099
4c16bd32 5100 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 5101 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 5102
636b927e 5103 /* nothing to do if the target cpumask matches the current pwq */
9546b29e 5104 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
9f66cff2 5105 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 5106 return;
4c16bd32 5107
4c16bd32
TH
5108 /* create a new pwq */
5109 pwq = alloc_unbound_pwq(wq, target_attrs);
5110 if (!pwq) {
fef59c9c 5111 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 5112 wq->name);
77f300b1 5113 goto use_dfl_pwq;
4c16bd32
TH
5114 }
5115
f7142ed4 5116 /* Install the new pwq. */
4c16bd32 5117 mutex_lock(&wq->mutex);
636b927e 5118 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5119 goto out_unlock;
5120
5121use_dfl_pwq:
f7142ed4 5122 mutex_lock(&wq->mutex);
9f66cff2
TH
5123 pwq = unbound_pwq(wq, -1);
5124 raw_spin_lock_irq(&pwq->pool->lock);
5125 get_pwq(pwq);
5126 raw_spin_unlock_irq(&pwq->pool->lock);
5127 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
5128out_unlock:
5129 mutex_unlock(&wq->mutex);
5130 put_pwq_unlocked(old_pwq);
5131}
5132
30cdf249 5133static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 5134{
49e3cf44 5135 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 5136 int cpu, ret;
30cdf249 5137
636b927e
TH
5138 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5139 if (!wq->cpu_pwq)
5140 goto enomem;
30cdf249 5141
636b927e 5142 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 5143 for_each_possible_cpu(cpu) {
4cb1ef64
TH
5144 struct pool_workqueue **pwq_p;
5145 struct worker_pool __percpu *pools;
5146 struct worker_pool *pool;
5147
5148 if (wq->flags & WQ_BH)
5149 pools = bh_worker_pools;
5150 else
5151 pools = cpu_worker_pools;
5152
5153 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5154 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
5155
5156 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5157 pool->node);
5158 if (!*pwq_p)
5159 goto enomem;
f3421797 5160
687a9aa5 5161 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
5162
5163 mutex_lock(&wq->mutex);
687a9aa5 5164 link_pwq(*pwq_p);
f147f29e 5165 mutex_unlock(&wq->mutex);
30cdf249 5166 }
9e8cd2f5 5167 return 0;
509b3204
DJ
5168 }
5169
ffd8bea8 5170 cpus_read_lock();
509b3204 5171 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5172 struct pool_workqueue *dfl_pwq;
5173
8a2b7538
TH
5174 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5175 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5176 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5177 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5178 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5179 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5180 } else {
509b3204 5181 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5182 }
ffd8bea8 5183 cpus_read_unlock();
509b3204 5184
64344553
Z
5185 /* for unbound pwq, flush the pwq_release_worker ensures that the
5186 * pwq_release_workfn() completes before calling kfree(wq).
5187 */
5188 if (ret)
5189 kthread_flush_worker(pwq_release_worker);
5190
509b3204 5191 return ret;
687a9aa5
TH
5192
5193enomem:
5194 if (wq->cpu_pwq) {
7b42f401
Z
5195 for_each_possible_cpu(cpu) {
5196 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5197
5198 if (pwq)
5199 kmem_cache_free(pwq_cache, pwq);
5200 }
687a9aa5
TH
5201 free_percpu(wq->cpu_pwq);
5202 wq->cpu_pwq = NULL;
5203 }
5204 return -ENOMEM;
0f900049
TH
5205}
5206
f3421797
TH
5207static int wq_clamp_max_active(int max_active, unsigned int flags,
5208 const char *name)
b71ab8c2 5209{
636b927e 5210 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5211 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5212 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5213
636b927e 5214 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5215}
5216
983c7515
TH
5217/*
5218 * Workqueues which may be used during memory reclaim should have a rescuer
5219 * to guarantee forward progress.
5220 */
5221static int init_rescuer(struct workqueue_struct *wq)
5222{
5223 struct worker *rescuer;
b92b36ea 5224 int ret;
983c7515
TH
5225
5226 if (!(wq->flags & WQ_MEM_RECLAIM))
5227 return 0;
5228
5229 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5230 if (!rescuer) {
5231 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5232 wq->name);
983c7515 5233 return -ENOMEM;
4c0736a7 5234 }
983c7515
TH
5235
5236 rescuer->rescue_wq = wq;
b6a46f72 5237 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
f187b697 5238 if (IS_ERR(rescuer->task)) {
b92b36ea 5239 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5240 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5241 wq->name, ERR_PTR(ret));
983c7515 5242 kfree(rescuer);
b92b36ea 5243 return ret;
983c7515
TH
5244 }
5245
5246 wq->rescuer = rescuer;
85f0ab43
JL
5247 if (wq->flags & WQ_UNBOUND)
5248 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
5249 else
5250 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5251 wake_up_process(rescuer->task);
5252
5253 return 0;
5254}
5255
a045a272
TH
5256/**
5257 * wq_adjust_max_active - update a wq's max_active to the current setting
5258 * @wq: target workqueue
5259 *
5260 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5261 * activate inactive work items accordingly. If @wq is freezing, clear
5262 * @wq->max_active to zero.
5263 */
5264static void wq_adjust_max_active(struct workqueue_struct *wq)
5265{
c5404d4e 5266 bool activated;
5797b1c1 5267 int new_max, new_min;
a045a272
TH
5268
5269 lockdep_assert_held(&wq->mutex);
5270
5271 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5272 new_max = 0;
5273 new_min = 0;
5274 } else {
5275 new_max = wq->saved_max_active;
5276 new_min = wq->saved_min_active;
a045a272
TH
5277 }
5278
5797b1c1 5279 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5280 return;
5281
5282 /*
5797b1c1 5283 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5284 * active work items are allowed. This doesn't break work item ordering
5285 * because new work items are always queued behind existing inactive
5286 * work items if there are any.
5287 */
5797b1c1
TH
5288 WRITE_ONCE(wq->max_active, new_max);
5289 WRITE_ONCE(wq->min_active, new_min);
5290
5291 if (wq->flags & WQ_UNBOUND)
5292 wq_update_node_max_active(wq, -1);
5293
5294 if (new_max == 0)
5295 return;
a045a272 5296
c5404d4e
TH
5297 /*
5298 * Round-robin through pwq's activating the first inactive work item
5299 * until max_active is filled.
5300 */
5301 do {
5302 struct pool_workqueue *pwq;
a045a272 5303
c5404d4e
TH
5304 activated = false;
5305 for_each_pwq(pwq, wq) {
5306 unsigned long flags;
a045a272 5307
c5404d4e
TH
5308 /* can be called during early boot w/ irq disabled */
5309 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5797b1c1 5310 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5311 activated = true;
5312 kick_pool(pwq->pool);
5313 }
5314 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5315 }
5316 } while (activated);
a045a272
TH
5317}
5318
a2775bbc 5319__printf(1, 4)
669de8bd
BVA
5320struct workqueue_struct *alloc_workqueue(const char *fmt,
5321 unsigned int flags,
5322 int max_active, ...)
1da177e4 5323{
ecf6881f 5324 va_list args;
1da177e4 5325 struct workqueue_struct *wq;
91ccc6e7
TH
5326 size_t wq_size;
5327 int name_len;
b196be89 5328
4cb1ef64
TH
5329 if (flags & WQ_BH) {
5330 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5331 return NULL;
5332 if (WARN_ON_ONCE(max_active))
5333 return NULL;
5334 }
5335
5c0338c6 5336 /*
fef59c9c
TH
5337 * Unbound && max_active == 1 used to imply ordered, which is no longer
5338 * the case on many machines due to per-pod pools. While
5c0338c6 5339 * alloc_ordered_workqueue() is the right way to create an ordered
fef59c9c 5340 * workqueue, keep the previous behavior to avoid subtle breakages.
5c0338c6
TH
5341 */
5342 if ((flags & WQ_UNBOUND) && max_active == 1)
5343 flags |= __WQ_ORDERED;
5344
cee22a15
VK
5345 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5346 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5347 flags |= WQ_UNBOUND;
5348
ecf6881f 5349 /* allocate wq and format name */
91ccc6e7
TH
5350 if (flags & WQ_UNBOUND)
5351 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5352 else
5353 wq_size = sizeof(*wq);
5354
5355 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5356 if (!wq)
d2c1d404 5357 return NULL;
b196be89 5358
6029a918 5359 if (flags & WQ_UNBOUND) {
be69d00d 5360 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5361 if (!wq->unbound_attrs)
5362 goto err_free_wq;
5363 }
5364
669de8bd 5365 va_start(args, max_active);
91ccc6e7 5366 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 5367 va_end(args);
1da177e4 5368
91ccc6e7
TH
5369 if (name_len >= WQ_NAME_LEN)
5370 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5371 wq->name);
31c89007 5372
4cb1ef64
TH
5373 if (flags & WQ_BH) {
5374 /*
5375 * BH workqueues always share a single execution context per CPU
5376 * and don't impose any max_active limit.
5377 */
5378 max_active = INT_MAX;
5379 } else {
5380 max_active = max_active ?: WQ_DFL_ACTIVE;
5381 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5382 }
3af24433 5383
b196be89 5384 /* init wq */
97e37d7b 5385 wq->flags = flags;
a045a272 5386 wq->max_active = max_active;
5797b1c1
TH
5387 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5388 wq->saved_max_active = wq->max_active;
5389 wq->saved_min_active = wq->min_active;
3c25a55d 5390 mutex_init(&wq->mutex);
112202d9 5391 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5392 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5393 INIT_LIST_HEAD(&wq->flusher_queue);
5394 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5395 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5396
669de8bd 5397 wq_init_lockdep(wq);
cce1a165 5398 INIT_LIST_HEAD(&wq->list);
3af24433 5399
91ccc6e7
TH
5400 if (flags & WQ_UNBOUND) {
5401 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5402 goto err_unreg_lockdep;
5403 }
5404
30cdf249 5405 if (alloc_and_link_pwqs(wq) < 0)
91ccc6e7 5406 goto err_free_node_nr_active;
1537663f 5407
40c17f75 5408 if (wq_online && init_rescuer(wq) < 0)
983c7515 5409 goto err_destroy;
3af24433 5410
226223ab
TH
5411 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5412 goto err_destroy;
5413
a0a1a5fd 5414 /*
68e13a67
LJ
5415 * wq_pool_mutex protects global freeze state and workqueues list.
5416 * Grab it, adjust max_active and add the new @wq to workqueues
5417 * list.
a0a1a5fd 5418 */
68e13a67 5419 mutex_lock(&wq_pool_mutex);
a0a1a5fd 5420
a357fc03 5421 mutex_lock(&wq->mutex);
a045a272 5422 wq_adjust_max_active(wq);
a357fc03 5423 mutex_unlock(&wq->mutex);
a0a1a5fd 5424
e2dca7ad 5425 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5426
68e13a67 5427 mutex_unlock(&wq_pool_mutex);
1537663f 5428
3af24433 5429 return wq;
d2c1d404 5430
91ccc6e7
TH
5431err_free_node_nr_active:
5432 if (wq->flags & WQ_UNBOUND)
5433 free_node_nr_active(wq->node_nr_active);
82efcab3 5434err_unreg_lockdep:
009bb421
BVA
5435 wq_unregister_lockdep(wq);
5436 wq_free_lockdep(wq);
82efcab3 5437err_free_wq:
6029a918 5438 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5439 kfree(wq);
5440 return NULL;
5441err_destroy:
5442 destroy_workqueue(wq);
4690c4ab 5443 return NULL;
3af24433 5444}
669de8bd 5445EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5446
c29eb853
TH
5447static bool pwq_busy(struct pool_workqueue *pwq)
5448{
5449 int i;
5450
5451 for (i = 0; i < WORK_NR_COLORS; i++)
5452 if (pwq->nr_in_flight[i])
5453 return true;
5454
9f66cff2 5455 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5456 return true;
afa87ce8 5457 if (!pwq_is_empty(pwq))
c29eb853
TH
5458 return true;
5459
5460 return false;
5461}
5462
3af24433
ON
5463/**
5464 * destroy_workqueue - safely terminate a workqueue
5465 * @wq: target workqueue
5466 *
5467 * Safely destroy a workqueue. All work currently pending will be done first.
5468 */
5469void destroy_workqueue(struct workqueue_struct *wq)
5470{
49e3cf44 5471 struct pool_workqueue *pwq;
636b927e 5472 int cpu;
3af24433 5473
def98c84
TH
5474 /*
5475 * Remove it from sysfs first so that sanity check failure doesn't
5476 * lead to sysfs name conflicts.
5477 */
5478 workqueue_sysfs_unregister(wq);
5479
33e3f0a3
RC
5480 /* mark the workqueue destruction is in progress */
5481 mutex_lock(&wq->mutex);
5482 wq->flags |= __WQ_DESTROYING;
5483 mutex_unlock(&wq->mutex);
5484
9c5a2ba7
TH
5485 /* drain it before proceeding with destruction */
5486 drain_workqueue(wq);
c8efcc25 5487
def98c84
TH
5488 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5489 if (wq->rescuer) {
5490 struct worker *rescuer = wq->rescuer;
5491
5492 /* this prevents new queueing */
a9b8a985 5493 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5494 wq->rescuer = NULL;
a9b8a985 5495 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5496
5497 /* rescuer will empty maydays list before exiting */
5498 kthread_stop(rescuer->task);
8efe1223 5499 kfree(rescuer);
def98c84
TH
5500 }
5501
c29eb853
TH
5502 /*
5503 * Sanity checks - grab all the locks so that we wait for all
5504 * in-flight operations which may do put_pwq().
5505 */
5506 mutex_lock(&wq_pool_mutex);
b09f4fd3 5507 mutex_lock(&wq->mutex);
49e3cf44 5508 for_each_pwq(pwq, wq) {
a9b8a985 5509 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5510 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5511 pr_warn("%s: %s has the following busy pwq\n",
5512 __func__, wq->name);
c29eb853 5513 show_pwq(pwq);
a9b8a985 5514 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5515 mutex_unlock(&wq->mutex);
c29eb853 5516 mutex_unlock(&wq_pool_mutex);
55df0933 5517 show_one_workqueue(wq);
6183c009 5518 return;
76af4d93 5519 }
a9b8a985 5520 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5521 }
b09f4fd3 5522 mutex_unlock(&wq->mutex);
6183c009 5523
a0a1a5fd
TH
5524 /*
5525 * wq list is used to freeze wq, remove from list after
5526 * flushing is complete in case freeze races us.
5527 */
e2dca7ad 5528 list_del_rcu(&wq->list);
68e13a67 5529 mutex_unlock(&wq_pool_mutex);
3af24433 5530
636b927e
TH
5531 /*
5532 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5533 * to put the base refs. @wq will be auto-destroyed from the last
5534 * pwq_put. RCU read lock prevents @wq from going away from under us.
5535 */
5536 rcu_read_lock();
4c16bd32 5537
636b927e 5538 for_each_possible_cpu(cpu) {
9f66cff2
TH
5539 put_pwq_unlocked(unbound_pwq(wq, cpu));
5540 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5541 }
636b927e 5542
9f66cff2
TH
5543 put_pwq_unlocked(unbound_pwq(wq, -1));
5544 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5545
5546 rcu_read_unlock();
3af24433
ON
5547}
5548EXPORT_SYMBOL_GPL(destroy_workqueue);
5549
dcd989cb
TH
5550/**
5551 * workqueue_set_max_active - adjust max_active of a workqueue
5552 * @wq: target workqueue
5553 * @max_active: new max_active value.
5554 *
5797b1c1
TH
5555 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5556 * comment.
dcd989cb
TH
5557 *
5558 * CONTEXT:
5559 * Don't call from IRQ context.
5560 */
5561void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5562{
4cb1ef64
TH
5563 /* max_active doesn't mean anything for BH workqueues */
5564 if (WARN_ON(wq->flags & WQ_BH))
5565 return;
8719dcea 5566 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 5567 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
5568 return;
5569
f3421797 5570 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5571
a357fc03 5572 mutex_lock(&wq->mutex);
dcd989cb 5573
0a94efb5 5574 wq->flags &= ~__WQ_ORDERED;
dcd989cb 5575 wq->saved_max_active = max_active;
5797b1c1
TH
5576 if (wq->flags & WQ_UNBOUND)
5577 wq->saved_min_active = min(wq->saved_min_active, max_active);
5578
a045a272 5579 wq_adjust_max_active(wq);
93981800 5580
a357fc03 5581 mutex_unlock(&wq->mutex);
15316ba8 5582}
dcd989cb 5583EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5584
27d4ee03
LW
5585/**
5586 * current_work - retrieve %current task's work struct
5587 *
5588 * Determine if %current task is a workqueue worker and what it's working on.
5589 * Useful to find out the context that the %current task is running in.
5590 *
5591 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5592 */
5593struct work_struct *current_work(void)
5594{
5595 struct worker *worker = current_wq_worker();
5596
5597 return worker ? worker->current_work : NULL;
5598}
5599EXPORT_SYMBOL(current_work);
5600
e6267616
TH
5601/**
5602 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5603 *
5604 * Determine whether %current is a workqueue rescuer. Can be used from
5605 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5606 *
5607 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5608 */
5609bool current_is_workqueue_rescuer(void)
5610{
5611 struct worker *worker = current_wq_worker();
5612
6a092dfd 5613 return worker && worker->rescue_wq;
e6267616
TH
5614}
5615
eef6a7d5 5616/**
dcd989cb
TH
5617 * workqueue_congested - test whether a workqueue is congested
5618 * @cpu: CPU in question
5619 * @wq: target workqueue
eef6a7d5 5620 *
dcd989cb
TH
5621 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5622 * no synchronization around this function and the test result is
5623 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5624 *
d3251859 5625 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5626 *
5627 * With the exception of ordered workqueues, all workqueues have per-cpu
5628 * pool_workqueues, each with its own congested state. A workqueue being
5629 * congested on one CPU doesn't mean that the workqueue is contested on any
5630 * other CPUs.
d3251859 5631 *
d185af30 5632 * Return:
dcd989cb 5633 * %true if congested, %false otherwise.
eef6a7d5 5634 */
d84ff051 5635bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 5636{
7fb98ea7 5637 struct pool_workqueue *pwq;
76af4d93
TH
5638 bool ret;
5639
24acfb71
TG
5640 rcu_read_lock();
5641 preempt_disable();
7fb98ea7 5642
d3251859
TH
5643 if (cpu == WORK_CPU_UNBOUND)
5644 cpu = smp_processor_id();
5645
636b927e 5646 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 5647 ret = !list_empty(&pwq->inactive_works);
636b927e 5648
24acfb71
TG
5649 preempt_enable();
5650 rcu_read_unlock();
76af4d93
TH
5651
5652 return ret;
1da177e4 5653}
dcd989cb 5654EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 5655
dcd989cb
TH
5656/**
5657 * work_busy - test whether a work is currently pending or running
5658 * @work: the work to be tested
5659 *
5660 * Test whether @work is currently pending or running. There is no
5661 * synchronization around this function and the test result is
5662 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 5663 *
d185af30 5664 * Return:
dcd989cb
TH
5665 * OR'd bitmask of WORK_BUSY_* bits.
5666 */
5667unsigned int work_busy(struct work_struct *work)
1da177e4 5668{
fa1b54e6 5669 struct worker_pool *pool;
dcd989cb
TH
5670 unsigned long flags;
5671 unsigned int ret = 0;
1da177e4 5672
dcd989cb
TH
5673 if (work_pending(work))
5674 ret |= WORK_BUSY_PENDING;
1da177e4 5675
24acfb71 5676 rcu_read_lock();
fa1b54e6 5677 pool = get_work_pool(work);
038366c5 5678 if (pool) {
a9b8a985 5679 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
5680 if (find_worker_executing_work(pool, work))
5681 ret |= WORK_BUSY_RUNNING;
a9b8a985 5682 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 5683 }
24acfb71 5684 rcu_read_unlock();
1da177e4 5685
dcd989cb 5686 return ret;
1da177e4 5687}
dcd989cb 5688EXPORT_SYMBOL_GPL(work_busy);
1da177e4 5689
3d1cb205
TH
5690/**
5691 * set_worker_desc - set description for the current work item
5692 * @fmt: printf-style format string
5693 * @...: arguments for the format string
5694 *
5695 * This function can be called by a running work function to describe what
5696 * the work item is about. If the worker task gets dumped, this
5697 * information will be printed out together to help debugging. The
5698 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5699 */
5700void set_worker_desc(const char *fmt, ...)
5701{
5702 struct worker *worker = current_wq_worker();
5703 va_list args;
5704
5705 if (worker) {
5706 va_start(args, fmt);
5707 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5708 va_end(args);
3d1cb205
TH
5709 }
5710}
5c750d58 5711EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
5712
5713/**
5714 * print_worker_info - print out worker information and description
5715 * @log_lvl: the log level to use when printing
5716 * @task: target task
5717 *
5718 * If @task is a worker and currently executing a work item, print out the
5719 * name of the workqueue being serviced and worker description set with
5720 * set_worker_desc() by the currently executing work item.
5721 *
5722 * This function can be safely called on any task as long as the
5723 * task_struct itself is accessible. While safe, this function isn't
5724 * synchronized and may print out mixups or garbages of limited length.
5725 */
5726void print_worker_info(const char *log_lvl, struct task_struct *task)
5727{
5728 work_func_t *fn = NULL;
5729 char name[WQ_NAME_LEN] = { };
5730 char desc[WORKER_DESC_LEN] = { };
5731 struct pool_workqueue *pwq = NULL;
5732 struct workqueue_struct *wq = NULL;
3d1cb205
TH
5733 struct worker *worker;
5734
5735 if (!(task->flags & PF_WQ_WORKER))
5736 return;
5737
5738 /*
5739 * This function is called without any synchronization and @task
5740 * could be in any state. Be careful with dereferences.
5741 */
e700591a 5742 worker = kthread_probe_data(task);
3d1cb205
TH
5743
5744 /*
8bf89593
TH
5745 * Carefully copy the associated workqueue's workfn, name and desc.
5746 * Keep the original last '\0' in case the original is garbage.
3d1cb205 5747 */
fe557319
CH
5748 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5749 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5750 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5751 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5752 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
5753
5754 if (fn || name[0] || desc[0]) {
d75f773c 5755 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 5756 if (strcmp(name, desc))
3d1cb205
TH
5757 pr_cont(" (%s)", desc);
5758 pr_cont("\n");
5759 }
5760}
5761
3494fc30
TH
5762static void pr_cont_pool_info(struct worker_pool *pool)
5763{
5764 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5765 if (pool->node != NUMA_NO_NODE)
5766 pr_cont(" node=%d", pool->node);
4cb1ef64
TH
5767 pr_cont(" flags=0x%x", pool->flags);
5768 if (pool->flags & POOL_BH)
5769 pr_cont(" bh%s",
5770 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5771 else
5772 pr_cont(" nice=%d", pool->attrs->nice);
5773}
5774
5775static void pr_cont_worker_id(struct worker *worker)
5776{
5777 struct worker_pool *pool = worker->pool;
5778
5779 if (pool->flags & WQ_BH)
5780 pr_cont("bh%s",
5781 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5782 else
5783 pr_cont("%d%s", task_pid_nr(worker->task),
5784 worker->rescue_wq ? "(RESCUER)" : "");
3494fc30
TH
5785}
5786
c76feb0d
PM
5787struct pr_cont_work_struct {
5788 bool comma;
5789 work_func_t func;
5790 long ctr;
5791};
5792
5793static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5794{
5795 if (!pcwsp->ctr)
5796 goto out_record;
5797 if (func == pcwsp->func) {
5798 pcwsp->ctr++;
5799 return;
5800 }
5801 if (pcwsp->ctr == 1)
5802 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5803 else
5804 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5805 pcwsp->ctr = 0;
5806out_record:
5807 if ((long)func == -1L)
5808 return;
5809 pcwsp->comma = comma;
5810 pcwsp->func = func;
5811 pcwsp->ctr = 1;
5812}
5813
5814static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
5815{
5816 if (work->func == wq_barrier_func) {
5817 struct wq_barrier *barr;
5818
5819 barr = container_of(work, struct wq_barrier, work);
5820
c76feb0d 5821 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
5822 pr_cont("%s BAR(%d)", comma ? "," : "",
5823 task_pid_nr(barr->task));
5824 } else {
c76feb0d
PM
5825 if (!comma)
5826 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5827 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
5828 }
5829}
5830
5831static void show_pwq(struct pool_workqueue *pwq)
5832{
c76feb0d 5833 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
5834 struct worker_pool *pool = pwq->pool;
5835 struct work_struct *work;
5836 struct worker *worker;
5837 bool has_in_flight = false, has_pending = false;
5838 int bkt;
5839
5840 pr_info(" pwq %d:", pool->id);
5841 pr_cont_pool_info(pool);
5842
a045a272
TH
5843 pr_cont(" active=%d refcnt=%d%s\n",
5844 pwq->nr_active, pwq->refcnt,
3494fc30
TH
5845 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5846
5847 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5848 if (worker->current_pwq == pwq) {
5849 has_in_flight = true;
5850 break;
5851 }
5852 }
5853 if (has_in_flight) {
5854 bool comma = false;
5855
5856 pr_info(" in-flight:");
5857 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5858 if (worker->current_pwq != pwq)
5859 continue;
5860
4cb1ef64
TH
5861 pr_cont(" %s", comma ? "," : "");
5862 pr_cont_worker_id(worker);
5863 pr_cont(":%ps", worker->current_func);
3494fc30 5864 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
5865 pr_cont_work(false, work, &pcws);
5866 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5867 comma = true;
5868 }
5869 pr_cont("\n");
5870 }
5871
5872 list_for_each_entry(work, &pool->worklist, entry) {
5873 if (get_work_pwq(work) == pwq) {
5874 has_pending = true;
5875 break;
5876 }
5877 }
5878 if (has_pending) {
5879 bool comma = false;
5880
5881 pr_info(" pending:");
5882 list_for_each_entry(work, &pool->worklist, entry) {
5883 if (get_work_pwq(work) != pwq)
5884 continue;
5885
c76feb0d 5886 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5887 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5888 }
c76feb0d 5889 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5890 pr_cont("\n");
5891 }
5892
f97a4a1a 5893 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
5894 bool comma = false;
5895
f97a4a1a
LJ
5896 pr_info(" inactive:");
5897 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 5898 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5899 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5900 }
c76feb0d 5901 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5902 pr_cont("\n");
5903 }
5904}
5905
5906/**
55df0933
IK
5907 * show_one_workqueue - dump state of specified workqueue
5908 * @wq: workqueue whose state will be printed
3494fc30 5909 */
55df0933 5910void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 5911{
55df0933
IK
5912 struct pool_workqueue *pwq;
5913 bool idle = true;
3494fc30 5914 unsigned long flags;
3494fc30 5915
55df0933 5916 for_each_pwq(pwq, wq) {
afa87ce8 5917 if (!pwq_is_empty(pwq)) {
55df0933
IK
5918 idle = false;
5919 break;
3494fc30 5920 }
55df0933
IK
5921 }
5922 if (idle) /* Nothing to print for idle workqueue */
5923 return;
3494fc30 5924
55df0933 5925 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 5926
55df0933
IK
5927 for_each_pwq(pwq, wq) {
5928 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
afa87ce8 5929 if (!pwq_is_empty(pwq)) {
62635ea8 5930 /*
55df0933
IK
5931 * Defer printing to avoid deadlocks in console
5932 * drivers that queue work while holding locks
5933 * also taken in their write paths.
62635ea8 5934 */
55df0933
IK
5935 printk_deferred_enter();
5936 show_pwq(pwq);
5937 printk_deferred_exit();
3494fc30 5938 }
55df0933 5939 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
5940 /*
5941 * We could be printing a lot from atomic context, e.g.
55df0933 5942 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
5943 * hard lockup.
5944 */
5945 touch_nmi_watchdog();
3494fc30
TH
5946 }
5947
55df0933
IK
5948}
5949
5950/**
5951 * show_one_worker_pool - dump state of specified worker pool
5952 * @pool: worker pool whose state will be printed
5953 */
5954static void show_one_worker_pool(struct worker_pool *pool)
5955{
5956 struct worker *worker;
5957 bool first = true;
5958 unsigned long flags;
335a42eb 5959 unsigned long hung = 0;
55df0933
IK
5960
5961 raw_spin_lock_irqsave(&pool->lock, flags);
5962 if (pool->nr_workers == pool->nr_idle)
5963 goto next_pool;
335a42eb
PM
5964
5965 /* How long the first pending work is waiting for a worker. */
5966 if (!list_empty(&pool->worklist))
5967 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5968
55df0933
IK
5969 /*
5970 * Defer printing to avoid deadlocks in console drivers that
5971 * queue work while holding locks also taken in their write
5972 * paths.
5973 */
5974 printk_deferred_enter();
5975 pr_info("pool %d:", pool->id);
5976 pr_cont_pool_info(pool);
335a42eb 5977 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
5978 if (pool->manager)
5979 pr_cont(" manager: %d",
5980 task_pid_nr(pool->manager->task));
5981 list_for_each_entry(worker, &pool->idle_list, entry) {
4cb1ef64
TH
5982 pr_cont(" %s", first ? "idle: " : "");
5983 pr_cont_worker_id(worker);
55df0933
IK
5984 first = false;
5985 }
5986 pr_cont("\n");
5987 printk_deferred_exit();
5988next_pool:
5989 raw_spin_unlock_irqrestore(&pool->lock, flags);
5990 /*
5991 * We could be printing a lot from atomic context, e.g.
5992 * sysrq-t -> show_all_workqueues(). Avoid triggering
5993 * hard lockup.
5994 */
5995 touch_nmi_watchdog();
5996
5997}
5998
5999/**
6000 * show_all_workqueues - dump workqueue state
6001 *
704bc669 6002 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
6003 */
6004void show_all_workqueues(void)
6005{
6006 struct workqueue_struct *wq;
6007 struct worker_pool *pool;
6008 int pi;
6009
6010 rcu_read_lock();
6011
6012 pr_info("Showing busy workqueues and worker pools:\n");
6013
6014 list_for_each_entry_rcu(wq, &workqueues, list)
6015 show_one_workqueue(wq);
6016
6017 for_each_pool(pool, pi)
6018 show_one_worker_pool(pool);
6019
24acfb71 6020 rcu_read_unlock();
3494fc30
TH
6021}
6022
704bc669
JL
6023/**
6024 * show_freezable_workqueues - dump freezable workqueue state
6025 *
6026 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6027 * still busy.
6028 */
6029void show_freezable_workqueues(void)
6030{
6031 struct workqueue_struct *wq;
6032
6033 rcu_read_lock();
6034
6035 pr_info("Showing freezable workqueues that are still busy:\n");
6036
6037 list_for_each_entry_rcu(wq, &workqueues, list) {
6038 if (!(wq->flags & WQ_FREEZABLE))
6039 continue;
6040 show_one_workqueue(wq);
6041 }
6042
6043 rcu_read_unlock();
6044}
6045
6b59808b
TH
6046/* used to show worker information through /proc/PID/{comm,stat,status} */
6047void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6048{
6b59808b
TH
6049 int off;
6050
6051 /* always show the actual comm */
6052 off = strscpy(buf, task->comm, size);
6053 if (off < 0)
6054 return;
6055
197f6acc 6056 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
6057 mutex_lock(&wq_pool_attach_mutex);
6058
197f6acc
TH
6059 if (task->flags & PF_WQ_WORKER) {
6060 struct worker *worker = kthread_data(task);
6061 struct worker_pool *pool = worker->pool;
6b59808b 6062
197f6acc 6063 if (pool) {
a9b8a985 6064 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
6065 /*
6066 * ->desc tracks information (wq name or
6067 * set_worker_desc()) for the latest execution. If
6068 * current, prepend '+', otherwise '-'.
6069 */
6070 if (worker->desc[0] != '\0') {
6071 if (worker->current_work)
6072 scnprintf(buf + off, size - off, "+%s",
6073 worker->desc);
6074 else
6075 scnprintf(buf + off, size - off, "-%s",
6076 worker->desc);
6077 }
a9b8a985 6078 raw_spin_unlock_irq(&pool->lock);
6b59808b 6079 }
6b59808b
TH
6080 }
6081
6082 mutex_unlock(&wq_pool_attach_mutex);
6083}
6084
66448bc2
MM
6085#ifdef CONFIG_SMP
6086
db7bccf4
TH
6087/*
6088 * CPU hotplug.
6089 *
e22bee78 6090 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 6091 * are a lot of assumptions on strong associations among work, pwq and
706026c2 6092 * pool which make migrating pending and scheduled works very
e22bee78 6093 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 6094 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
6095 * blocked draining impractical.
6096 *
24647570 6097 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
6098 * running as an unbound one and allowing it to be reattached later if the
6099 * cpu comes back online.
db7bccf4 6100 */
1da177e4 6101
e8b3f8db 6102static void unbind_workers(int cpu)
3af24433 6103{
4ce62e9e 6104 struct worker_pool *pool;
db7bccf4 6105 struct worker *worker;
3af24433 6106
f02ae73a 6107 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 6108 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 6109 raw_spin_lock_irq(&pool->lock);
3af24433 6110
94cf58bb 6111 /*
92f9c5c4 6112 * We've blocked all attach/detach operations. Make all workers
94cf58bb 6113 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 6114 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
6115 * And the preemption disabled section in their sched callbacks
6116 * are guaranteed to see WORKER_UNBOUND since the code here
6117 * is on the same cpu.
94cf58bb 6118 */
da028469 6119 for_each_pool_worker(worker, pool)
c9e7cf27 6120 worker->flags |= WORKER_UNBOUND;
06ba38a9 6121
24647570 6122 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 6123
eb283428 6124 /*
989442d7
LJ
6125 * The handling of nr_running in sched callbacks are disabled
6126 * now. Zap nr_running. After this, nr_running stays zero and
6127 * need_more_worker() and keep_working() are always true as
6128 * long as the worklist is not empty. This pool now behaves as
6129 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
6130 * are served by workers tied to the pool.
6131 */
bc35f7ef 6132 pool->nr_running = 0;
eb283428
LJ
6133
6134 /*
6135 * With concurrency management just turned off, a busy
6136 * worker blocking could lead to lengthy stalls. Kick off
6137 * unbound chain execution of currently pending work items.
6138 */
0219a352 6139 kick_pool(pool);
989442d7 6140
a9b8a985 6141 raw_spin_unlock_irq(&pool->lock);
989442d7 6142
793777bc
VS
6143 for_each_pool_worker(worker, pool)
6144 unbind_worker(worker);
989442d7
LJ
6145
6146 mutex_unlock(&wq_pool_attach_mutex);
eb283428 6147 }
3af24433 6148}
3af24433 6149
bd7c089e
TH
6150/**
6151 * rebind_workers - rebind all workers of a pool to the associated CPU
6152 * @pool: pool of interest
6153 *
a9ab775b 6154 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
6155 */
6156static void rebind_workers(struct worker_pool *pool)
6157{
a9ab775b 6158 struct worker *worker;
bd7c089e 6159
1258fae7 6160 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 6161
a9ab775b
TH
6162 /*
6163 * Restore CPU affinity of all workers. As all idle workers should
6164 * be on the run-queue of the associated CPU before any local
402dd89d 6165 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
6166 * of all workers first and then clear UNBOUND. As we're called
6167 * from CPU_ONLINE, the following shouldn't fail.
6168 */
c63a2e52
VS
6169 for_each_pool_worker(worker, pool) {
6170 kthread_set_per_cpu(worker->task, pool->cpu);
6171 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 6172 pool_allowed_cpus(pool)) < 0);
c63a2e52 6173 }
bd7c089e 6174
a9b8a985 6175 raw_spin_lock_irq(&pool->lock);
f7c17d26 6176
3de5e884 6177 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 6178
da028469 6179 for_each_pool_worker(worker, pool) {
a9ab775b 6180 unsigned int worker_flags = worker->flags;
bd7c089e 6181
a9ab775b
TH
6182 /*
6183 * We want to clear UNBOUND but can't directly call
6184 * worker_clr_flags() or adjust nr_running. Atomically
6185 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6186 * @worker will clear REBOUND using worker_clr_flags() when
6187 * it initiates the next execution cycle thus restoring
6188 * concurrency management. Note that when or whether
6189 * @worker clears REBOUND doesn't affect correctness.
6190 *
c95491ed 6191 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 6192 * tested without holding any lock in
6d25be57 6193 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
6194 * fail incorrectly leading to premature concurrency
6195 * management operations.
6196 */
6197 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6198 worker_flags |= WORKER_REBOUND;
6199 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6200 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6201 }
a9ab775b 6202
a9b8a985 6203 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6204}
6205
7dbc725e
TH
6206/**
6207 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6208 * @pool: unbound pool of interest
6209 * @cpu: the CPU which is coming up
6210 *
6211 * An unbound pool may end up with a cpumask which doesn't have any online
6212 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6213 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6214 * online CPU before, cpus_allowed of all its workers should be restored.
6215 */
6216static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6217{
6218 static cpumask_t cpumask;
6219 struct worker *worker;
7dbc725e 6220
1258fae7 6221 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6222
6223 /* is @cpu allowed for @pool? */
6224 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6225 return;
6226
7dbc725e 6227 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6228
6229 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6230 for_each_pool_worker(worker, pool)
d945b5e9 6231 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6232}
6233
7ee681b2
TG
6234int workqueue_prepare_cpu(unsigned int cpu)
6235{
6236 struct worker_pool *pool;
6237
6238 for_each_cpu_worker_pool(pool, cpu) {
6239 if (pool->nr_workers)
6240 continue;
6241 if (!create_worker(pool))
6242 return -ENOMEM;
6243 }
6244 return 0;
6245}
6246
6247int workqueue_online_cpu(unsigned int cpu)
3af24433 6248{
4ce62e9e 6249 struct worker_pool *pool;
4c16bd32 6250 struct workqueue_struct *wq;
7dbc725e 6251 int pi;
3ce63377 6252
7ee681b2 6253 mutex_lock(&wq_pool_mutex);
7dbc725e 6254
7ee681b2 6255 for_each_pool(pool, pi) {
4cb1ef64
TH
6256 /* BH pools aren't affected by hotplug */
6257 if (pool->flags & POOL_BH)
6258 continue;
94cf58bb 6259
4cb1ef64 6260 mutex_lock(&wq_pool_attach_mutex);
7ee681b2
TG
6261 if (pool->cpu == cpu)
6262 rebind_workers(pool);
6263 else if (pool->cpu < 0)
6264 restore_unbound_workers_cpumask(pool, cpu);
1258fae7 6265 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6266 }
6ba94429 6267
fef59c9c 6268 /* update pod affinity of unbound workqueues */
4cbfd3de 6269 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6270 struct workqueue_attrs *attrs = wq->unbound_attrs;
6271
6272 if (attrs) {
6273 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6274 int tcpu;
4cbfd3de 6275
84193c07 6276 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6277 wq_update_pod(wq, tcpu, cpu, true);
5797b1c1
TH
6278
6279 mutex_lock(&wq->mutex);
6280 wq_update_node_max_active(wq, -1);
6281 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6282 }
6283 }
6ba94429 6284
7ee681b2
TG
6285 mutex_unlock(&wq_pool_mutex);
6286 return 0;
6ba94429
FW
6287}
6288
7ee681b2 6289int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6290{
6ba94429
FW
6291 struct workqueue_struct *wq;
6292
7ee681b2 6293 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6294 if (WARN_ON(cpu != smp_processor_id()))
6295 return -1;
6296
6297 unbind_workers(cpu);
7ee681b2 6298
fef59c9c 6299 /* update pod affinity of unbound workqueues */
7ee681b2 6300 mutex_lock(&wq_pool_mutex);
4cbfd3de 6301 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6302 struct workqueue_attrs *attrs = wq->unbound_attrs;
6303
6304 if (attrs) {
6305 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6306 int tcpu;
4cbfd3de 6307
84193c07 6308 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6309 wq_update_pod(wq, tcpu, cpu, false);
5797b1c1
TH
6310
6311 mutex_lock(&wq->mutex);
6312 wq_update_node_max_active(wq, cpu);
6313 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6314 }
6315 }
7ee681b2
TG
6316 mutex_unlock(&wq_pool_mutex);
6317
7ee681b2 6318 return 0;
6ba94429
FW
6319}
6320
6ba94429
FW
6321struct work_for_cpu {
6322 struct work_struct work;
6323 long (*fn)(void *);
6324 void *arg;
6325 long ret;
6326};
6327
6328static void work_for_cpu_fn(struct work_struct *work)
6329{
6330 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6331
6332 wfc->ret = wfc->fn(wfc->arg);
6333}
6334
6335/**
265f3ed0 6336 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6337 * @cpu: the cpu to run on
6338 * @fn: the function to run
6339 * @arg: the function arg
265f3ed0 6340 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6341 *
6342 * It is up to the caller to ensure that the cpu doesn't go offline.
6343 * The caller must not hold any locks which would prevent @fn from completing.
6344 *
6345 * Return: The value @fn returns.
6346 */
265f3ed0
FW
6347long work_on_cpu_key(int cpu, long (*fn)(void *),
6348 void *arg, struct lock_class_key *key)
6ba94429
FW
6349{
6350 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6351
265f3ed0 6352 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6353 schedule_work_on(cpu, &wfc.work);
6354 flush_work(&wfc.work);
6355 destroy_work_on_stack(&wfc.work);
6356 return wfc.ret;
6357}
265f3ed0 6358EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6359
6360/**
265f3ed0 6361 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6362 * @cpu: the cpu to run on
6363 * @fn: the function to run
6364 * @arg: the function argument
265f3ed0 6365 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6366 *
6367 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6368 * any locks which would prevent @fn from completing.
6369 *
6370 * Return: The value @fn returns.
6371 */
265f3ed0
FW
6372long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6373 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6374{
6375 long ret = -ENODEV;
6376
ffd8bea8 6377 cpus_read_lock();
0e8d6a93 6378 if (cpu_online(cpu))
265f3ed0 6379 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6380 cpus_read_unlock();
0e8d6a93
TG
6381 return ret;
6382}
265f3ed0 6383EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6384#endif /* CONFIG_SMP */
6385
6386#ifdef CONFIG_FREEZER
6387
6388/**
6389 * freeze_workqueues_begin - begin freezing workqueues
6390 *
6391 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6392 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6393 * pool->worklist.
6394 *
6395 * CONTEXT:
6396 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6397 */
6398void freeze_workqueues_begin(void)
6399{
6400 struct workqueue_struct *wq;
6ba94429
FW
6401
6402 mutex_lock(&wq_pool_mutex);
6403
6404 WARN_ON_ONCE(workqueue_freezing);
6405 workqueue_freezing = true;
6406
6407 list_for_each_entry(wq, &workqueues, list) {
6408 mutex_lock(&wq->mutex);
a045a272 6409 wq_adjust_max_active(wq);
6ba94429
FW
6410 mutex_unlock(&wq->mutex);
6411 }
6412
6413 mutex_unlock(&wq_pool_mutex);
6414}
6415
6416/**
6417 * freeze_workqueues_busy - are freezable workqueues still busy?
6418 *
6419 * Check whether freezing is complete. This function must be called
6420 * between freeze_workqueues_begin() and thaw_workqueues().
6421 *
6422 * CONTEXT:
6423 * Grabs and releases wq_pool_mutex.
6424 *
6425 * Return:
6426 * %true if some freezable workqueues are still busy. %false if freezing
6427 * is complete.
6428 */
6429bool freeze_workqueues_busy(void)
6430{
6431 bool busy = false;
6432 struct workqueue_struct *wq;
6433 struct pool_workqueue *pwq;
6434
6435 mutex_lock(&wq_pool_mutex);
6436
6437 WARN_ON_ONCE(!workqueue_freezing);
6438
6439 list_for_each_entry(wq, &workqueues, list) {
6440 if (!(wq->flags & WQ_FREEZABLE))
6441 continue;
6442 /*
6443 * nr_active is monotonically decreasing. It's safe
6444 * to peek without lock.
6445 */
24acfb71 6446 rcu_read_lock();
6ba94429
FW
6447 for_each_pwq(pwq, wq) {
6448 WARN_ON_ONCE(pwq->nr_active < 0);
6449 if (pwq->nr_active) {
6450 busy = true;
24acfb71 6451 rcu_read_unlock();
6ba94429
FW
6452 goto out_unlock;
6453 }
6454 }
24acfb71 6455 rcu_read_unlock();
6ba94429
FW
6456 }
6457out_unlock:
6458 mutex_unlock(&wq_pool_mutex);
6459 return busy;
6460}
6461
6462/**
6463 * thaw_workqueues - thaw workqueues
6464 *
6465 * Thaw workqueues. Normal queueing is restored and all collected
6466 * frozen works are transferred to their respective pool worklists.
6467 *
6468 * CONTEXT:
6469 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6470 */
6471void thaw_workqueues(void)
6472{
6473 struct workqueue_struct *wq;
6ba94429
FW
6474
6475 mutex_lock(&wq_pool_mutex);
6476
6477 if (!workqueue_freezing)
6478 goto out_unlock;
6479
6480 workqueue_freezing = false;
6481
6482 /* restore max_active and repopulate worklist */
6483 list_for_each_entry(wq, &workqueues, list) {
6484 mutex_lock(&wq->mutex);
a045a272 6485 wq_adjust_max_active(wq);
6ba94429
FW
6486 mutex_unlock(&wq->mutex);
6487 }
6488
6489out_unlock:
6490 mutex_unlock(&wq_pool_mutex);
6491}
6492#endif /* CONFIG_FREEZER */
6493
99c621ef 6494static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6495{
6496 LIST_HEAD(ctxs);
6497 int ret = 0;
6498 struct workqueue_struct *wq;
6499 struct apply_wqattrs_ctx *ctx, *n;
6500
6501 lockdep_assert_held(&wq_pool_mutex);
6502
6503 list_for_each_entry(wq, &workqueues, list) {
6504 if (!(wq->flags & WQ_UNBOUND))
6505 continue;
ca10d851 6506
042f7df1 6507 /* creating multiple pwqs breaks ordering guarantee */
ca10d851
WL
6508 if (!list_empty(&wq->pwqs)) {
6509 if (wq->flags & __WQ_ORDERED_EXPLICIT)
6510 continue;
6511 wq->flags &= ~__WQ_ORDERED;
6512 }
042f7df1 6513
99c621ef 6514 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6515 if (IS_ERR(ctx)) {
6516 ret = PTR_ERR(ctx);
042f7df1
LJ
6517 break;
6518 }
6519
6520 list_add_tail(&ctx->list, &ctxs);
6521 }
6522
6523 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6524 if (!ret)
6525 apply_wqattrs_commit(ctx);
6526 apply_wqattrs_cleanup(ctx);
6527 }
6528
99c621ef
LJ
6529 if (!ret) {
6530 mutex_lock(&wq_pool_attach_mutex);
6531 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6532 mutex_unlock(&wq_pool_attach_mutex);
6533 }
042f7df1
LJ
6534 return ret;
6535}
6536
fe28f631
WL
6537/**
6538 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6539 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6540 *
6541 * This function can be called from cpuset code to provide a set of isolated
6542 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6543 * either cpus_read_lock or cpus_write_lock.
6544 */
6545int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6546{
6547 cpumask_var_t cpumask;
6548 int ret = 0;
6549
6550 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6551 return -ENOMEM;
6552
6553 lockdep_assert_cpus_held();
6554 mutex_lock(&wq_pool_mutex);
6555
6556 /* Save the current isolated cpumask & export it via sysfs */
6557 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6558
6559 /*
6560 * If the operation fails, it will fall back to
6561 * wq_requested_unbound_cpumask which is initially set to
6562 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6563 * by any subsequent write to workqueue/cpumask sysfs file.
6564 */
6565 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6566 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6567 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6568 ret = workqueue_apply_unbound_cpumask(cpumask);
6569
6570 mutex_unlock(&wq_pool_mutex);
6571 free_cpumask_var(cpumask);
6572 return ret;
6573}
6574
63c5484e
TH
6575static int parse_affn_scope(const char *val)
6576{
6577 int i;
6578
6579 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6580 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6581 return i;
6582 }
6583 return -EINVAL;
6584}
6585
6586static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6587{
523a301e
TH
6588 struct workqueue_struct *wq;
6589 int affn, cpu;
63c5484e
TH
6590
6591 affn = parse_affn_scope(val);
6592 if (affn < 0)
6593 return affn;
523a301e
TH
6594 if (affn == WQ_AFFN_DFL)
6595 return -EINVAL;
6596
6597 cpus_read_lock();
6598 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6599
6600 wq_affn_dfl = affn;
523a301e
TH
6601
6602 list_for_each_entry(wq, &workqueues, list) {
6603 for_each_online_cpu(cpu) {
6604 wq_update_pod(wq, cpu, cpu, true);
6605 }
6606 }
6607
6608 mutex_unlock(&wq_pool_mutex);
6609 cpus_read_unlock();
6610
63c5484e
TH
6611 return 0;
6612}
6613
6614static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6615{
6616 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6617}
6618
6619static const struct kernel_param_ops wq_affn_dfl_ops = {
6620 .set = wq_affn_dfl_set,
6621 .get = wq_affn_dfl_get,
6622};
6623
6624module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6625
6ba94429
FW
6626#ifdef CONFIG_SYSFS
6627/*
6628 * Workqueues with WQ_SYSFS flag set is visible to userland via
6629 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6630 * following attributes.
6631 *
63c5484e
TH
6632 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6633 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6634 *
6635 * Unbound workqueues have the following extra attributes.
6636 *
63c5484e
TH
6637 * nice RW int : nice value of the workers
6638 * cpumask RW mask : bitmask of allowed CPUs for the workers
6639 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 6640 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
6641 */
6642struct wq_device {
6643 struct workqueue_struct *wq;
6644 struct device dev;
6645};
6646
6647static struct workqueue_struct *dev_to_wq(struct device *dev)
6648{
6649 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6650
6651 return wq_dev->wq;
6652}
6653
6654static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6655 char *buf)
6656{
6657 struct workqueue_struct *wq = dev_to_wq(dev);
6658
6659 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6660}
6661static DEVICE_ATTR_RO(per_cpu);
6662
6663static ssize_t max_active_show(struct device *dev,
6664 struct device_attribute *attr, char *buf)
6665{
6666 struct workqueue_struct *wq = dev_to_wq(dev);
6667
6668 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6669}
6670
6671static ssize_t max_active_store(struct device *dev,
6672 struct device_attribute *attr, const char *buf,
6673 size_t count)
6674{
6675 struct workqueue_struct *wq = dev_to_wq(dev);
6676 int val;
6677
6678 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6679 return -EINVAL;
6680
6681 workqueue_set_max_active(wq, val);
6682 return count;
6683}
6684static DEVICE_ATTR_RW(max_active);
6685
6686static struct attribute *wq_sysfs_attrs[] = {
6687 &dev_attr_per_cpu.attr,
6688 &dev_attr_max_active.attr,
6689 NULL,
6690};
6691ATTRIBUTE_GROUPS(wq_sysfs);
6692
49277a5b
WL
6693static void apply_wqattrs_lock(void)
6694{
6695 /* CPUs should stay stable across pwq creations and installations */
6696 cpus_read_lock();
6697 mutex_lock(&wq_pool_mutex);
6698}
6699
6700static void apply_wqattrs_unlock(void)
6701{
6702 mutex_unlock(&wq_pool_mutex);
6703 cpus_read_unlock();
6704}
6705
6ba94429
FW
6706static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6707 char *buf)
6708{
6709 struct workqueue_struct *wq = dev_to_wq(dev);
6710 int written;
6711
6712 mutex_lock(&wq->mutex);
6713 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6714 mutex_unlock(&wq->mutex);
6715
6716 return written;
6717}
6718
6719/* prepare workqueue_attrs for sysfs store operations */
6720static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6721{
6722 struct workqueue_attrs *attrs;
6723
899a94fe
LJ
6724 lockdep_assert_held(&wq_pool_mutex);
6725
be69d00d 6726 attrs = alloc_workqueue_attrs();
6ba94429
FW
6727 if (!attrs)
6728 return NULL;
6729
6ba94429 6730 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
6731 return attrs;
6732}
6733
6734static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6735 const char *buf, size_t count)
6736{
6737 struct workqueue_struct *wq = dev_to_wq(dev);
6738 struct workqueue_attrs *attrs;
d4d3e257
LJ
6739 int ret = -ENOMEM;
6740
6741 apply_wqattrs_lock();
6ba94429
FW
6742
6743 attrs = wq_sysfs_prep_attrs(wq);
6744 if (!attrs)
d4d3e257 6745 goto out_unlock;
6ba94429
FW
6746
6747 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6748 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 6749 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
6750 else
6751 ret = -EINVAL;
6752
d4d3e257
LJ
6753out_unlock:
6754 apply_wqattrs_unlock();
6ba94429
FW
6755 free_workqueue_attrs(attrs);
6756 return ret ?: count;
6757}
6758
6759static ssize_t wq_cpumask_show(struct device *dev,
6760 struct device_attribute *attr, char *buf)
6761{
6762 struct workqueue_struct *wq = dev_to_wq(dev);
6763 int written;
6764
6765 mutex_lock(&wq->mutex);
6766 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6767 cpumask_pr_args(wq->unbound_attrs->cpumask));
6768 mutex_unlock(&wq->mutex);
6769 return written;
6770}
6771
6772static ssize_t wq_cpumask_store(struct device *dev,
6773 struct device_attribute *attr,
6774 const char *buf, size_t count)
6775{
6776 struct workqueue_struct *wq = dev_to_wq(dev);
6777 struct workqueue_attrs *attrs;
d4d3e257
LJ
6778 int ret = -ENOMEM;
6779
6780 apply_wqattrs_lock();
6ba94429
FW
6781
6782 attrs = wq_sysfs_prep_attrs(wq);
6783 if (!attrs)
d4d3e257 6784 goto out_unlock;
6ba94429
FW
6785
6786 ret = cpumask_parse(buf, attrs->cpumask);
6787 if (!ret)
d4d3e257 6788 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 6789
d4d3e257
LJ
6790out_unlock:
6791 apply_wqattrs_unlock();
6ba94429
FW
6792 free_workqueue_attrs(attrs);
6793 return ret ?: count;
6794}
6795
63c5484e
TH
6796static ssize_t wq_affn_scope_show(struct device *dev,
6797 struct device_attribute *attr, char *buf)
6798{
6799 struct workqueue_struct *wq = dev_to_wq(dev);
6800 int written;
6801
6802 mutex_lock(&wq->mutex);
523a301e
TH
6803 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6804 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6805 wq_affn_names[WQ_AFFN_DFL],
6806 wq_affn_names[wq_affn_dfl]);
6807 else
6808 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6809 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
6810 mutex_unlock(&wq->mutex);
6811
6812 return written;
6813}
6814
6815static ssize_t wq_affn_scope_store(struct device *dev,
6816 struct device_attribute *attr,
6817 const char *buf, size_t count)
6818{
6819 struct workqueue_struct *wq = dev_to_wq(dev);
6820 struct workqueue_attrs *attrs;
6821 int affn, ret = -ENOMEM;
6822
6823 affn = parse_affn_scope(buf);
6824 if (affn < 0)
6825 return affn;
6826
6827 apply_wqattrs_lock();
6828 attrs = wq_sysfs_prep_attrs(wq);
6829 if (attrs) {
6830 attrs->affn_scope = affn;
6831 ret = apply_workqueue_attrs_locked(wq, attrs);
6832 }
6833 apply_wqattrs_unlock();
6834 free_workqueue_attrs(attrs);
6835 return ret ?: count;
6836}
6837
8639eceb
TH
6838static ssize_t wq_affinity_strict_show(struct device *dev,
6839 struct device_attribute *attr, char *buf)
6840{
6841 struct workqueue_struct *wq = dev_to_wq(dev);
6842
6843 return scnprintf(buf, PAGE_SIZE, "%d\n",
6844 wq->unbound_attrs->affn_strict);
6845}
6846
6847static ssize_t wq_affinity_strict_store(struct device *dev,
6848 struct device_attribute *attr,
6849 const char *buf, size_t count)
6850{
6851 struct workqueue_struct *wq = dev_to_wq(dev);
6852 struct workqueue_attrs *attrs;
6853 int v, ret = -ENOMEM;
6854
6855 if (sscanf(buf, "%d", &v) != 1)
6856 return -EINVAL;
6857
6858 apply_wqattrs_lock();
6859 attrs = wq_sysfs_prep_attrs(wq);
6860 if (attrs) {
6861 attrs->affn_strict = (bool)v;
6862 ret = apply_workqueue_attrs_locked(wq, attrs);
6863 }
6864 apply_wqattrs_unlock();
6865 free_workqueue_attrs(attrs);
6866 return ret ?: count;
6867}
6868
6ba94429 6869static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
6870 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6871 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 6872 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 6873 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
6874 __ATTR_NULL,
6875};
8ccad40d 6876
4f19b8e0 6877static struct bus_type wq_subsys = {
6ba94429
FW
6878 .name = "workqueue",
6879 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
6880};
6881
49277a5b
WL
6882/**
6883 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6884 * @cpumask: the cpumask to set
6885 *
6886 * The low-level workqueues cpumask is a global cpumask that limits
6887 * the affinity of all unbound workqueues. This function check the @cpumask
6888 * and apply it to all unbound workqueues and updates all pwqs of them.
6889 *
6890 * Return: 0 - Success
6891 * -EINVAL - Invalid @cpumask
6892 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6893 */
6894static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6895{
6896 int ret = -EINVAL;
6897
6898 /*
6899 * Not excluding isolated cpus on purpose.
6900 * If the user wishes to include them, we allow that.
6901 */
6902 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6903 if (!cpumask_empty(cpumask)) {
6904 apply_wqattrs_lock();
6905 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6906 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6907 ret = 0;
6908 goto out_unlock;
6909 }
6910
6911 ret = workqueue_apply_unbound_cpumask(cpumask);
6912
6913out_unlock:
6914 apply_wqattrs_unlock();
6915 }
6916
6917 return ret;
6918}
6919
fe28f631
WL
6920static ssize_t __wq_cpumask_show(struct device *dev,
6921 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
6922{
6923 int written;
6924
042f7df1 6925 mutex_lock(&wq_pool_mutex);
fe28f631 6926 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 6927 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
6928
6929 return written;
6930}
6931
fe28f631
WL
6932static ssize_t wq_unbound_cpumask_show(struct device *dev,
6933 struct device_attribute *attr, char *buf)
6934{
6935 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6936}
6937
6938static ssize_t wq_requested_cpumask_show(struct device *dev,
6939 struct device_attribute *attr, char *buf)
6940{
6941 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6942}
6943
6944static ssize_t wq_isolated_cpumask_show(struct device *dev,
6945 struct device_attribute *attr, char *buf)
6946{
6947 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6948}
6949
042f7df1
LJ
6950static ssize_t wq_unbound_cpumask_store(struct device *dev,
6951 struct device_attribute *attr, const char *buf, size_t count)
6952{
6953 cpumask_var_t cpumask;
6954 int ret;
6955
6956 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6957 return -ENOMEM;
6958
6959 ret = cpumask_parse(buf, cpumask);
6960 if (!ret)
6961 ret = workqueue_set_unbound_cpumask(cpumask);
6962
6963 free_cpumask_var(cpumask);
6964 return ret ? ret : count;
6965}
6966
fe28f631 6967static struct device_attribute wq_sysfs_cpumask_attrs[] = {
042f7df1 6968 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
fe28f631
WL
6969 wq_unbound_cpumask_store),
6970 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6971 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6972 __ATTR_NULL,
6973};
b05a7928 6974
6ba94429 6975static int __init wq_sysfs_init(void)
2d3854a3 6976{
686f6697 6977 struct device *dev_root;
b05a7928
FW
6978 int err;
6979
6980 err = subsys_virtual_register(&wq_subsys, NULL);
6981 if (err)
6982 return err;
6983
686f6697
GKH
6984 dev_root = bus_get_dev_root(&wq_subsys);
6985 if (dev_root) {
fe28f631
WL
6986 struct device_attribute *attr;
6987
6988 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6989 err = device_create_file(dev_root, attr);
6990 if (err)
6991 break;
6992 }
686f6697
GKH
6993 put_device(dev_root);
6994 }
6995 return err;
2d3854a3 6996}
6ba94429 6997core_initcall(wq_sysfs_init);
2d3854a3 6998
6ba94429 6999static void wq_device_release(struct device *dev)
2d3854a3 7000{
6ba94429 7001 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 7002
6ba94429 7003 kfree(wq_dev);
2d3854a3 7004}
a0a1a5fd
TH
7005
7006/**
6ba94429
FW
7007 * workqueue_sysfs_register - make a workqueue visible in sysfs
7008 * @wq: the workqueue to register
a0a1a5fd 7009 *
6ba94429
FW
7010 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7011 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7012 * which is the preferred method.
a0a1a5fd 7013 *
6ba94429
FW
7014 * Workqueue user should use this function directly iff it wants to apply
7015 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7016 * apply_workqueue_attrs() may race against userland updating the
7017 * attributes.
7018 *
7019 * Return: 0 on success, -errno on failure.
a0a1a5fd 7020 */
6ba94429 7021int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 7022{
6ba94429
FW
7023 struct wq_device *wq_dev;
7024 int ret;
a0a1a5fd 7025
6ba94429 7026 /*
402dd89d 7027 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
7028 * attributes breaks ordering guarantee. Disallow exposing ordered
7029 * workqueues.
7030 */
0a94efb5 7031 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 7032 return -EINVAL;
a0a1a5fd 7033
6ba94429
FW
7034 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7035 if (!wq_dev)
7036 return -ENOMEM;
5bcab335 7037
6ba94429
FW
7038 wq_dev->wq = wq;
7039 wq_dev->dev.bus = &wq_subsys;
6ba94429 7040 wq_dev->dev.release = wq_device_release;
23217b44 7041 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 7042
6ba94429
FW
7043 /*
7044 * unbound_attrs are created separately. Suppress uevent until
7045 * everything is ready.
7046 */
7047 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 7048
6ba94429
FW
7049 ret = device_register(&wq_dev->dev);
7050 if (ret) {
537f4146 7051 put_device(&wq_dev->dev);
6ba94429
FW
7052 wq->wq_dev = NULL;
7053 return ret;
7054 }
a0a1a5fd 7055
6ba94429
FW
7056 if (wq->flags & WQ_UNBOUND) {
7057 struct device_attribute *attr;
a0a1a5fd 7058
6ba94429
FW
7059 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7060 ret = device_create_file(&wq_dev->dev, attr);
7061 if (ret) {
7062 device_unregister(&wq_dev->dev);
7063 wq->wq_dev = NULL;
7064 return ret;
a0a1a5fd
TH
7065 }
7066 }
7067 }
6ba94429
FW
7068
7069 dev_set_uevent_suppress(&wq_dev->dev, false);
7070 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7071 return 0;
a0a1a5fd
TH
7072}
7073
7074/**
6ba94429
FW
7075 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7076 * @wq: the workqueue to unregister
a0a1a5fd 7077 *
6ba94429 7078 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 7079 */
6ba94429 7080static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 7081{
6ba94429 7082 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 7083
6ba94429
FW
7084 if (!wq->wq_dev)
7085 return;
a0a1a5fd 7086
6ba94429
FW
7087 wq->wq_dev = NULL;
7088 device_unregister(&wq_dev->dev);
a0a1a5fd 7089}
6ba94429
FW
7090#else /* CONFIG_SYSFS */
7091static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7092#endif /* CONFIG_SYSFS */
a0a1a5fd 7093
82607adc
TH
7094/*
7095 * Workqueue watchdog.
7096 *
7097 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7098 * flush dependency, a concurrency managed work item which stays RUNNING
7099 * indefinitely. Workqueue stalls can be very difficult to debug as the
7100 * usual warning mechanisms don't trigger and internal workqueue state is
7101 * largely opaque.
7102 *
7103 * Workqueue watchdog monitors all worker pools periodically and dumps
7104 * state if some pools failed to make forward progress for a while where
7105 * forward progress is defined as the first item on ->worklist changing.
7106 *
7107 * This mechanism is controlled through the kernel parameter
7108 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7109 * corresponding sysfs parameter file.
7110 */
7111#ifdef CONFIG_WQ_WATCHDOG
7112
82607adc 7113static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 7114static struct timer_list wq_watchdog_timer;
82607adc
TH
7115
7116static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7117static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7118
cd2440d6
PM
7119/*
7120 * Show workers that might prevent the processing of pending work items.
7121 * The only candidates are CPU-bound workers in the running state.
7122 * Pending work items should be handled by another idle worker
7123 * in all other situations.
7124 */
7125static void show_cpu_pool_hog(struct worker_pool *pool)
7126{
7127 struct worker *worker;
7128 unsigned long flags;
7129 int bkt;
7130
7131 raw_spin_lock_irqsave(&pool->lock, flags);
7132
7133 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7134 if (task_is_running(worker->task)) {
7135 /*
7136 * Defer printing to avoid deadlocks in console
7137 * drivers that queue work while holding locks
7138 * also taken in their write paths.
7139 */
7140 printk_deferred_enter();
7141
7142 pr_info("pool %d:\n", pool->id);
7143 sched_show_task(worker->task);
7144
7145 printk_deferred_exit();
7146 }
7147 }
7148
7149 raw_spin_unlock_irqrestore(&pool->lock, flags);
7150}
7151
7152static void show_cpu_pools_hogs(void)
7153{
7154 struct worker_pool *pool;
7155 int pi;
7156
7157 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7158
7159 rcu_read_lock();
7160
7161 for_each_pool(pool, pi) {
7162 if (pool->cpu_stall)
7163 show_cpu_pool_hog(pool);
7164
7165 }
7166
7167 rcu_read_unlock();
7168}
7169
82607adc
TH
7170static void wq_watchdog_reset_touched(void)
7171{
7172 int cpu;
7173
7174 wq_watchdog_touched = jiffies;
7175 for_each_possible_cpu(cpu)
7176 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7177}
7178
5cd79d6a 7179static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
7180{
7181 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7182 bool lockup_detected = false;
cd2440d6 7183 bool cpu_pool_stall = false;
940d71c6 7184 unsigned long now = jiffies;
82607adc
TH
7185 struct worker_pool *pool;
7186 int pi;
7187
7188 if (!thresh)
7189 return;
7190
7191 rcu_read_lock();
7192
7193 for_each_pool(pool, pi) {
7194 unsigned long pool_ts, touched, ts;
7195
cd2440d6 7196 pool->cpu_stall = false;
82607adc
TH
7197 if (list_empty(&pool->worklist))
7198 continue;
7199
940d71c6
SS
7200 /*
7201 * If a virtual machine is stopped by the host it can look to
7202 * the watchdog like a stall.
7203 */
7204 kvm_check_and_clear_guest_paused();
7205
82607adc 7206 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7207 if (pool->cpu >= 0)
7208 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7209 else
7210 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7211 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7212
7213 if (time_after(pool_ts, touched))
7214 ts = pool_ts;
7215 else
7216 ts = touched;
7217
82607adc 7218 /* did we stall? */
940d71c6 7219 if (time_after(now, ts + thresh)) {
82607adc 7220 lockup_detected = true;
4cb1ef64 7221 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
cd2440d6
PM
7222 pool->cpu_stall = true;
7223 cpu_pool_stall = true;
7224 }
82607adc
TH
7225 pr_emerg("BUG: workqueue lockup - pool");
7226 pr_cont_pool_info(pool);
7227 pr_cont(" stuck for %us!\n",
940d71c6 7228 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7229 }
cd2440d6
PM
7230
7231
82607adc
TH
7232 }
7233
7234 rcu_read_unlock();
7235
7236 if (lockup_detected)
55df0933 7237 show_all_workqueues();
82607adc 7238
cd2440d6
PM
7239 if (cpu_pool_stall)
7240 show_cpu_pools_hogs();
7241
82607adc
TH
7242 wq_watchdog_reset_touched();
7243 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7244}
7245
cb9d7fd5 7246notrace void wq_watchdog_touch(int cpu)
82607adc
TH
7247{
7248 if (cpu >= 0)
7249 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
7250
7251 wq_watchdog_touched = jiffies;
82607adc
TH
7252}
7253
7254static void wq_watchdog_set_thresh(unsigned long thresh)
7255{
7256 wq_watchdog_thresh = 0;
7257 del_timer_sync(&wq_watchdog_timer);
7258
7259 if (thresh) {
7260 wq_watchdog_thresh = thresh;
7261 wq_watchdog_reset_touched();
7262 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7263 }
7264}
7265
7266static int wq_watchdog_param_set_thresh(const char *val,
7267 const struct kernel_param *kp)
7268{
7269 unsigned long thresh;
7270 int ret;
7271
7272 ret = kstrtoul(val, 0, &thresh);
7273 if (ret)
7274 return ret;
7275
7276 if (system_wq)
7277 wq_watchdog_set_thresh(thresh);
7278 else
7279 wq_watchdog_thresh = thresh;
7280
7281 return 0;
7282}
7283
7284static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7285 .set = wq_watchdog_param_set_thresh,
7286 .get = param_get_ulong,
7287};
7288
7289module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7290 0644);
7291
7292static void wq_watchdog_init(void)
7293{
5cd79d6a 7294 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7295 wq_watchdog_set_thresh(wq_watchdog_thresh);
7296}
7297
7298#else /* CONFIG_WQ_WATCHDOG */
7299
7300static inline void wq_watchdog_init(void) { }
7301
7302#endif /* CONFIG_WQ_WATCHDOG */
7303
4a6c5607
TH
7304static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7305{
7306 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7307 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7308 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7309 return;
7310 }
7311
7312 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7313}
7314
2fcdb1b4
TH
7315static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7316{
7317 BUG_ON(init_worker_pool(pool));
7318 pool->cpu = cpu;
7319 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7320 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7321 pool->attrs->nice = nice;
7322 pool->attrs->affn_strict = true;
7323 pool->node = cpu_to_node(cpu);
7324
7325 /* alloc pool ID */
7326 mutex_lock(&wq_pool_mutex);
7327 BUG_ON(worker_pool_assign_id(pool));
7328 mutex_unlock(&wq_pool_mutex);
7329}
7330
3347fa09
TH
7331/**
7332 * workqueue_init_early - early init for workqueue subsystem
7333 *
2930155b
TH
7334 * This is the first step of three-staged workqueue subsystem initialization and
7335 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7336 * up. It sets up all the data structures and system workqueues and allows early
7337 * boot code to create workqueues and queue/cancel work items. Actual work item
7338 * execution starts only after kthreads can be created and scheduled right
7339 * before early initcalls.
3347fa09 7340 */
2333e829 7341void __init workqueue_init_early(void)
1da177e4 7342{
84193c07 7343 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c
TH
7344 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7345 int i, cpu;
c34056a3 7346
10cdb157 7347 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7348
b05a7928 7349 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7350 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7351 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7352
4a6c5607
TH
7353 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7354 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7355 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7356 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7357 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7358
fe28f631 7359 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7360
e904e6c2
TH
7361 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7362
2930155b
TH
7363 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7364 BUG_ON(!wq_update_pod_attrs_buf);
7365
7bd20b6b
MT
7366 /*
7367 * If nohz_full is enabled, set power efficient workqueue as unbound.
7368 * This allows workqueue items to be moved to HK CPUs.
7369 */
7370 if (housekeeping_enabled(HK_TYPE_TICK))
7371 wq_power_efficient = true;
7372
84193c07
TH
7373 /* initialize WQ_AFFN_SYSTEM pods */
7374 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7375 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7376 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7377 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7378
7379 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7380
84193c07
TH
7381 pt->nr_pods = 1;
7382 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7383 pt->pod_node[0] = NUMA_NO_NODE;
7384 pt->cpu_pod[0] = 0;
7385
4cb1ef64 7386 /* initialize BH and CPU pools */
29c91e99 7387 for_each_possible_cpu(cpu) {
4ce62e9e 7388 struct worker_pool *pool;
8b03ae3c 7389
4cb1ef64
TH
7390 i = 0;
7391 for_each_bh_worker_pool(pool, cpu) {
7392 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7393 pool->flags |= POOL_BH;
7394 }
7395
7a4e344c 7396 i = 0;
2fcdb1b4
TH
7397 for_each_cpu_worker_pool(pool, cpu)
7398 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
8b03ae3c
TH
7399 }
7400
8a2b7538 7401 /* create default unbound and ordered wq attrs */
29c91e99
TH
7402 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7403 struct workqueue_attrs *attrs;
7404
be69d00d 7405 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7406 attrs->nice = std_nice[i];
29c91e99 7407 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7408
7409 /*
7410 * An ordered wq should have only one pwq as ordering is
7411 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7412 */
be69d00d 7413 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7414 attrs->nice = std_nice[i];
af73f5c9 7415 attrs->ordered = true;
8a2b7538 7416 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7417 }
7418
d320c038 7419 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7420 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7421 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7422 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7423 WQ_MAX_ACTIVE);
24d51add
TH
7424 system_freezable_wq = alloc_workqueue("events_freezable",
7425 WQ_FREEZABLE, 0);
0668106c
VK
7426 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7427 WQ_POWER_EFFICIENT, 0);
8318d6a6 7428 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7429 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7430 0);
4cb1ef64
TH
7431 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7432 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7433 WQ_BH | WQ_HIGHPRI, 0);
1aabe902 7434 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7435 !system_unbound_wq || !system_freezable_wq ||
7436 !system_power_efficient_wq ||
4cb1ef64
TH
7437 !system_freezable_power_efficient_wq ||
7438 !system_bh_wq || !system_bh_highpri_wq);
3347fa09
TH
7439}
7440
aa6fde93
TH
7441static void __init wq_cpu_intensive_thresh_init(void)
7442{
7443 unsigned long thresh;
7444 unsigned long bogo;
7445
dd64c873
Z
7446 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7447 BUG_ON(IS_ERR(pwq_release_worker));
7448
aa6fde93
TH
7449 /* if the user set it to a specific value, keep it */
7450 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7451 return;
7452
7453 /*
7454 * The default of 10ms is derived from the fact that most modern (as of
7455 * 2023) processors can do a lot in 10ms and that it's just below what
7456 * most consider human-perceivable. However, the kernel also runs on a
7457 * lot slower CPUs including microcontrollers where the threshold is way
7458 * too low.
7459 *
7460 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7461 * This is by no means accurate but it doesn't have to be. The mechanism
7462 * is still useful even when the threshold is fully scaled up. Also, as
7463 * the reports would usually be applicable to everyone, some machines
7464 * operating on longer thresholds won't significantly diminish their
7465 * usefulness.
7466 */
7467 thresh = 10 * USEC_PER_MSEC;
7468
7469 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7470 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7471 if (bogo < 4000)
7472 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7473
7474 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7475 loops_per_jiffy, bogo, thresh);
7476
7477 wq_cpu_intensive_thresh_us = thresh;
7478}
7479
3347fa09
TH
7480/**
7481 * workqueue_init - bring workqueue subsystem fully online
7482 *
2930155b
TH
7483 * This is the second step of three-staged workqueue subsystem initialization
7484 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7485 * been created and work items queued on them, but there are no kworkers
7486 * executing the work items yet. Populate the worker pools with the initial
7487 * workers and enable future kworker creations.
3347fa09 7488 */
2333e829 7489void __init workqueue_init(void)
3347fa09 7490{
2186d9f9 7491 struct workqueue_struct *wq;
3347fa09
TH
7492 struct worker_pool *pool;
7493 int cpu, bkt;
7494
aa6fde93
TH
7495 wq_cpu_intensive_thresh_init();
7496
2186d9f9
TH
7497 mutex_lock(&wq_pool_mutex);
7498
2930155b
TH
7499 /*
7500 * Per-cpu pools created earlier could be missing node hint. Fix them
7501 * up. Also, create a rescuer for workqueues that requested it.
7502 */
2186d9f9 7503 for_each_possible_cpu(cpu) {
4cb1ef64
TH
7504 for_each_bh_worker_pool(pool, cpu)
7505 pool->node = cpu_to_node(cpu);
7506 for_each_cpu_worker_pool(pool, cpu)
2186d9f9 7507 pool->node = cpu_to_node(cpu);
2186d9f9
TH
7508 }
7509
40c17f75 7510 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7511 WARN(init_rescuer(wq),
7512 "workqueue: failed to create early rescuer for %s",
7513 wq->name);
7514 }
2186d9f9
TH
7515
7516 mutex_unlock(&wq_pool_mutex);
7517
4cb1ef64
TH
7518 /*
7519 * Create the initial workers. A BH pool has one pseudo worker that
7520 * represents the shared BH execution context and thus doesn't get
7521 * affected by hotplug events. Create the BH pseudo workers for all
7522 * possible CPUs here.
7523 */
7524 for_each_possible_cpu(cpu)
7525 for_each_bh_worker_pool(pool, cpu)
7526 BUG_ON(!create_worker(pool));
7527
3347fa09
TH
7528 for_each_online_cpu(cpu) {
7529 for_each_cpu_worker_pool(pool, cpu) {
7530 pool->flags &= ~POOL_DISASSOCIATED;
7531 BUG_ON(!create_worker(pool));
7532 }
7533 }
7534
7535 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7536 BUG_ON(!create_worker(pool));
7537
7538 wq_online = true;
82607adc 7539 wq_watchdog_init();
1da177e4 7540}
c4f135d6 7541
025e1684
TH
7542/*
7543 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7544 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7545 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7546 */
7547static void __init init_pod_type(struct wq_pod_type *pt,
7548 bool (*cpus_share_pod)(int, int))
7549{
7550 int cur, pre, cpu, pod;
7551
7552 pt->nr_pods = 0;
7553
7554 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7555 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7556 BUG_ON(!pt->cpu_pod);
7557
7558 for_each_possible_cpu(cur) {
7559 for_each_possible_cpu(pre) {
7560 if (pre >= cur) {
7561 pt->cpu_pod[cur] = pt->nr_pods++;
7562 break;
7563 }
7564 if (cpus_share_pod(cur, pre)) {
7565 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7566 break;
7567 }
7568 }
7569 }
7570
7571 /* init the rest to match @pt->cpu_pod[] */
7572 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7573 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7574 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7575
7576 for (pod = 0; pod < pt->nr_pods; pod++)
7577 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7578
7579 for_each_possible_cpu(cpu) {
7580 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7581 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7582 }
7583}
7584
63c5484e
TH
7585static bool __init cpus_dont_share(int cpu0, int cpu1)
7586{
7587 return false;
7588}
7589
7590static bool __init cpus_share_smt(int cpu0, int cpu1)
7591{
7592#ifdef CONFIG_SCHED_SMT
7593 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7594#else
7595 return false;
7596#endif
7597}
7598
025e1684
TH
7599static bool __init cpus_share_numa(int cpu0, int cpu1)
7600{
7601 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7602}
7603
2930155b
TH
7604/**
7605 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7606 *
7607 * This is the third step of there-staged workqueue subsystem initialization and
7608 * invoked after SMP and topology information are fully initialized. It
7609 * initializes the unbound CPU pods accordingly.
7610 */
7611void __init workqueue_init_topology(void)
a86feae6 7612{
2930155b 7613 struct workqueue_struct *wq;
025e1684 7614 int cpu;
a86feae6 7615
63c5484e
TH
7616 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7617 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7618 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7619 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7620
c5f8cd6c
TH
7621 wq_topo_initialized = true;
7622
2930155b 7623 mutex_lock(&wq_pool_mutex);
a86feae6 7624
2930155b
TH
7625 /*
7626 * Workqueues allocated earlier would have all CPUs sharing the default
7627 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7628 * combinations to apply per-pod sharing.
7629 */
7630 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 7631 for_each_online_cpu(cpu)
2930155b 7632 wq_update_pod(wq, cpu, cpu, true);
5797b1c1
TH
7633 if (wq->flags & WQ_UNBOUND) {
7634 mutex_lock(&wq->mutex);
7635 wq_update_node_max_active(wq, -1);
7636 mutex_unlock(&wq->mutex);
2930155b
TH
7637 }
7638 }
7639
7640 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
7641}
7642
20bdedaf
TH
7643void __warn_flushing_systemwide_wq(void)
7644{
7645 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7646 dump_stack();
7647}
c4f135d6 7648EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 7649
7650static int __init workqueue_unbound_cpus_setup(char *str)
7651{
7652 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7653 cpumask_clear(&wq_cmdline_cpumask);
7654 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7655 }
7656
7657 return 1;
7658}
7659__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);