workqueue: move hot fields of workqueue_struct to the end
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
e22bee78 48
ea138446 49#include "workqueue_internal.h"
1da177e4 50
c8e55f36 51enum {
24647570
TH
52 /*
53 * worker_pool flags
bc2ae0f5 54 *
24647570 55 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
56 * While associated (!DISASSOCIATED), all workers are bound to the
57 * CPU and none has %WORKER_UNBOUND set and concurrency management
58 * is in effect.
59 *
60 * While DISASSOCIATED, the cpu may be offline and all workers have
61 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 62 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 63 *
bc3a1afc
TH
64 * Note that DISASSOCIATED should be flipped only while holding
65 * manager_mutex to avoid changing binding state while
24647570 66 * create_worker() is in progress.
bc2ae0f5 67 */
11ebea50 68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 69 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 70 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 71
c8e55f36
TH
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
3270476a 103 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
822d8405
TH
124 * MG: pool->manager_mutex and pool->lock protected. Writes require both
125 * locks. Reads can happen under either lock.
126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 163 struct mutex manager_mutex; /* manager exclusion */
822d8405 164 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 165
7a4e344c 166 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
167 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
168 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 169
e19e397a
TH
170 /*
171 * The current concurrency level. As it's likely to be accessed
172 * from other CPUs during try_to_wake_up(), put it in a separate
173 * cacheline.
174 */
175 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
176
177 /*
178 * Destruction of pool is sched-RCU protected to allow dereferences
179 * from get_work_pool().
180 */
181 struct rcu_head rcu;
8b03ae3c
TH
182} ____cacheline_aligned_in_smp;
183
1da177e4 184/*
112202d9
TH
185 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
186 * of work_struct->data are used for flags and the remaining high bits
187 * point to the pwq; thus, pwqs need to be aligned at two's power of the
188 * number of flag bits.
1da177e4 189 */
112202d9 190struct pool_workqueue {
bd7bdd43 191 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 192 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
193 int work_color; /* L: current color */
194 int flush_color; /* L: flushing color */
8864b4e5 195 int refcnt; /* L: reference count */
73f53c4a
TH
196 int nr_in_flight[WORK_NR_COLORS];
197 /* L: nr of in_flight works */
1e19ffc6 198 int nr_active; /* L: nr of active works */
a0a1a5fd 199 int max_active; /* L: max active works */
1e19ffc6 200 struct list_head delayed_works; /* L: delayed works */
3c25a55d 201 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 202 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
203
204 /*
205 * Release of unbound pwq is punted to system_wq. See put_pwq()
206 * and pwq_unbound_release_workfn() for details. pool_workqueue
207 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 208 * determined without grabbing wq->mutex.
8864b4e5
TH
209 */
210 struct work_struct unbound_release_work;
211 struct rcu_head rcu;
e904e6c2 212} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 213
73f53c4a
TH
214/*
215 * Structure used to wait for workqueue flush.
216 */
217struct wq_flusher {
3c25a55d
LJ
218 struct list_head list; /* WQ: list of flushers */
219 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
220 struct completion done; /* flush completion */
221};
222
226223ab
TH
223struct wq_device;
224
1da177e4 225/*
c5aa87bb
TH
226 * The externally visible workqueue. It relays the issued work items to
227 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
228 */
229struct workqueue_struct {
3c25a55d 230 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 231 struct list_head list; /* PL: list of all workqueues */
73f53c4a 232
3c25a55d
LJ
233 struct mutex mutex; /* protects this wq */
234 int work_color; /* WQ: current work color */
235 int flush_color; /* WQ: current flush color */
112202d9 236 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
237 struct wq_flusher *first_flusher; /* WQ: first flusher */
238 struct list_head flusher_queue; /* WQ: flush waiters */
239 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 240
2e109a28 241 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
242 struct worker *rescuer; /* I: rescue worker */
243
87fc741e 244 int nr_drainers; /* WQ: drain in progress */
a357fc03 245 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 246
6029a918
TH
247 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
248
226223ab
TH
249#ifdef CONFIG_SYSFS
250 struct wq_device *wq_dev; /* I: for sysfs interface */
251#endif
4e6045f1 252#ifdef CONFIG_LOCKDEP
4690c4ab 253 struct lockdep_map lockdep_map;
4e6045f1 254#endif
ecf6881f 255 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
256
257 /* hot fields used during command issue, aligned to cacheline */
258 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
259 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
1da177e4
LT
260};
261
e904e6c2
TH
262static struct kmem_cache *pwq_cache;
263
bce90380
TH
264static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
265static cpumask_var_t *wq_numa_possible_cpumask;
266 /* possible CPUs of each node */
267
268static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
269
68e13a67 270static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 271static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 272
68e13a67
LJ
273static LIST_HEAD(workqueues); /* PL: list of all workqueues */
274static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
275
276/* the per-cpu worker pools */
277static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
278 cpu_worker_pools);
279
68e13a67 280static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 281
68e13a67 282/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
283static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
284
c5aa87bb 285/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
286static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
287
d320c038 288struct workqueue_struct *system_wq __read_mostly;
d320c038 289EXPORT_SYMBOL_GPL(system_wq);
044c782c 290struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 291EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 292struct workqueue_struct *system_long_wq __read_mostly;
d320c038 293EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 294struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 295EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 296struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 297EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 298
7d19c5ce
TH
299static int worker_thread(void *__worker);
300static void copy_workqueue_attrs(struct workqueue_attrs *to,
301 const struct workqueue_attrs *from);
302
97bd2347
TH
303#define CREATE_TRACE_POINTS
304#include <trace/events/workqueue.h>
305
68e13a67 306#define assert_rcu_or_pool_mutex() \
5bcab335 307 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
308 lockdep_is_held(&wq_pool_mutex), \
309 "sched RCU or wq_pool_mutex should be held")
5bcab335 310
b09f4fd3 311#define assert_rcu_or_wq_mutex(wq) \
76af4d93 312 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 313 lockdep_is_held(&wq->mutex), \
b09f4fd3 314 "sched RCU or wq->mutex should be held")
76af4d93 315
822d8405
TH
316#ifdef CONFIG_LOCKDEP
317#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
318 WARN_ONCE(debug_locks && \
319 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
320 !lockdep_is_held(&(pool)->lock), \
321 "pool->manager_mutex or ->lock should be held")
322#else
323#define assert_manager_or_pool_lock(pool) do { } while (0)
324#endif
325
f02ae73a
TH
326#define for_each_cpu_worker_pool(pool, cpu) \
327 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
328 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 329 (pool)++)
4ce62e9e 330
17116969
TH
331/**
332 * for_each_pool - iterate through all worker_pools in the system
333 * @pool: iteration cursor
611c92a0 334 * @pi: integer used for iteration
fa1b54e6 335 *
68e13a67
LJ
336 * This must be called either with wq_pool_mutex held or sched RCU read
337 * locked. If the pool needs to be used beyond the locking in effect, the
338 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
339 *
340 * The if/else clause exists only for the lockdep assertion and can be
341 * ignored.
17116969 342 */
611c92a0
TH
343#define for_each_pool(pool, pi) \
344 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 345 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 346 else
17116969 347
822d8405
TH
348/**
349 * for_each_pool_worker - iterate through all workers of a worker_pool
350 * @worker: iteration cursor
351 * @wi: integer used for iteration
352 * @pool: worker_pool to iterate workers of
353 *
354 * This must be called with either @pool->manager_mutex or ->lock held.
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
358 */
359#define for_each_pool_worker(worker, wi, pool) \
360 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
361 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
362 else
363
49e3cf44
TH
364/**
365 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
366 * @pwq: iteration cursor
367 * @wq: the target workqueue
76af4d93 368 *
b09f4fd3 369 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
370 * If the pwq needs to be used beyond the locking in effect, the caller is
371 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
372 *
373 * The if/else clause exists only for the lockdep assertion and can be
374 * ignored.
49e3cf44
TH
375 */
376#define for_each_pwq(pwq, wq) \
76af4d93 377 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 378 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 379 else
f3421797 380
dc186ad7
TG
381#ifdef CONFIG_DEBUG_OBJECTS_WORK
382
383static struct debug_obj_descr work_debug_descr;
384
99777288
SG
385static void *work_debug_hint(void *addr)
386{
387 return ((struct work_struct *) addr)->func;
388}
389
dc186ad7
TG
390/*
391 * fixup_init is called when:
392 * - an active object is initialized
393 */
394static int work_fixup_init(void *addr, enum debug_obj_state state)
395{
396 struct work_struct *work = addr;
397
398 switch (state) {
399 case ODEBUG_STATE_ACTIVE:
400 cancel_work_sync(work);
401 debug_object_init(work, &work_debug_descr);
402 return 1;
403 default:
404 return 0;
405 }
406}
407
408/*
409 * fixup_activate is called when:
410 * - an active object is activated
411 * - an unknown object is activated (might be a statically initialized object)
412 */
413static int work_fixup_activate(void *addr, enum debug_obj_state state)
414{
415 struct work_struct *work = addr;
416
417 switch (state) {
418
419 case ODEBUG_STATE_NOTAVAILABLE:
420 /*
421 * This is not really a fixup. The work struct was
422 * statically initialized. We just make sure that it
423 * is tracked in the object tracker.
424 */
22df02bb 425 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
426 debug_object_init(work, &work_debug_descr);
427 debug_object_activate(work, &work_debug_descr);
428 return 0;
429 }
430 WARN_ON_ONCE(1);
431 return 0;
432
433 case ODEBUG_STATE_ACTIVE:
434 WARN_ON(1);
435
436 default:
437 return 0;
438 }
439}
440
441/*
442 * fixup_free is called when:
443 * - an active object is freed
444 */
445static int work_fixup_free(void *addr, enum debug_obj_state state)
446{
447 struct work_struct *work = addr;
448
449 switch (state) {
450 case ODEBUG_STATE_ACTIVE:
451 cancel_work_sync(work);
452 debug_object_free(work, &work_debug_descr);
453 return 1;
454 default:
455 return 0;
456 }
457}
458
459static struct debug_obj_descr work_debug_descr = {
460 .name = "work_struct",
99777288 461 .debug_hint = work_debug_hint,
dc186ad7
TG
462 .fixup_init = work_fixup_init,
463 .fixup_activate = work_fixup_activate,
464 .fixup_free = work_fixup_free,
465};
466
467static inline void debug_work_activate(struct work_struct *work)
468{
469 debug_object_activate(work, &work_debug_descr);
470}
471
472static inline void debug_work_deactivate(struct work_struct *work)
473{
474 debug_object_deactivate(work, &work_debug_descr);
475}
476
477void __init_work(struct work_struct *work, int onstack)
478{
479 if (onstack)
480 debug_object_init_on_stack(work, &work_debug_descr);
481 else
482 debug_object_init(work, &work_debug_descr);
483}
484EXPORT_SYMBOL_GPL(__init_work);
485
486void destroy_work_on_stack(struct work_struct *work)
487{
488 debug_object_free(work, &work_debug_descr);
489}
490EXPORT_SYMBOL_GPL(destroy_work_on_stack);
491
492#else
493static inline void debug_work_activate(struct work_struct *work) { }
494static inline void debug_work_deactivate(struct work_struct *work) { }
495#endif
496
9daf9e67
TH
497/* allocate ID and assign it to @pool */
498static int worker_pool_assign_id(struct worker_pool *pool)
499{
500 int ret;
501
68e13a67 502 lockdep_assert_held(&wq_pool_mutex);
5bcab335 503
fa1b54e6
TH
504 do {
505 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
506 return -ENOMEM;
fa1b54e6 507 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 508 } while (ret == -EAGAIN);
9daf9e67 509
fa1b54e6 510 return ret;
7c3eed5c
TH
511}
512
76af4d93
TH
513/**
514 * first_pwq - return the first pool_workqueue of the specified workqueue
515 * @wq: the target workqueue
516 *
b09f4fd3 517 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
518 * If the pwq needs to be used beyond the locking in effect, the caller is
519 * responsible for guaranteeing that the pwq stays online.
76af4d93 520 */
7fb98ea7 521static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 522{
b09f4fd3 523 assert_rcu_or_wq_mutex(wq);
76af4d93
TH
524 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
525 pwqs_node);
b1f4ec17
ON
526}
527
73f53c4a
TH
528static unsigned int work_color_to_flags(int color)
529{
530 return color << WORK_STRUCT_COLOR_SHIFT;
531}
532
533static int get_work_color(struct work_struct *work)
534{
535 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
536 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
537}
538
539static int work_next_color(int color)
540{
541 return (color + 1) % WORK_NR_COLORS;
542}
1da177e4 543
14441960 544/*
112202d9
TH
545 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
546 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 547 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 548 *
112202d9
TH
549 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
550 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
551 * work->data. These functions should only be called while the work is
552 * owned - ie. while the PENDING bit is set.
7a22ad75 553 *
112202d9 554 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 555 * corresponding to a work. Pool is available once the work has been
112202d9 556 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 557 * available only while the work item is queued.
7a22ad75 558 *
bbb68dfa
TH
559 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
560 * canceled. While being canceled, a work item may have its PENDING set
561 * but stay off timer and worklist for arbitrarily long and nobody should
562 * try to steal the PENDING bit.
14441960 563 */
7a22ad75
TH
564static inline void set_work_data(struct work_struct *work, unsigned long data,
565 unsigned long flags)
365970a1 566{
6183c009 567 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
568 atomic_long_set(&work->data, data | flags | work_static(work));
569}
365970a1 570
112202d9 571static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
572 unsigned long extra_flags)
573{
112202d9
TH
574 set_work_data(work, (unsigned long)pwq,
575 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
576}
577
4468a00f
LJ
578static void set_work_pool_and_keep_pending(struct work_struct *work,
579 int pool_id)
580{
581 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
582 WORK_STRUCT_PENDING);
583}
584
7c3eed5c
TH
585static void set_work_pool_and_clear_pending(struct work_struct *work,
586 int pool_id)
7a22ad75 587{
23657bb1
TH
588 /*
589 * The following wmb is paired with the implied mb in
590 * test_and_set_bit(PENDING) and ensures all updates to @work made
591 * here are visible to and precede any updates by the next PENDING
592 * owner.
593 */
594 smp_wmb();
7c3eed5c 595 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 596}
f756d5e2 597
7a22ad75 598static void clear_work_data(struct work_struct *work)
1da177e4 599{
7c3eed5c
TH
600 smp_wmb(); /* see set_work_pool_and_clear_pending() */
601 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
602}
603
112202d9 604static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 605{
e120153d 606 unsigned long data = atomic_long_read(&work->data);
7a22ad75 607
112202d9 608 if (data & WORK_STRUCT_PWQ)
e120153d
TH
609 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
610 else
611 return NULL;
4d707b9f
ON
612}
613
7c3eed5c
TH
614/**
615 * get_work_pool - return the worker_pool a given work was associated with
616 * @work: the work item of interest
617 *
618 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 619 *
68e13a67
LJ
620 * Pools are created and destroyed under wq_pool_mutex, and allows read
621 * access under sched-RCU read lock. As such, this function should be
622 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
623 *
624 * All fields of the returned pool are accessible as long as the above
625 * mentioned locking is in effect. If the returned pool needs to be used
626 * beyond the critical section, the caller is responsible for ensuring the
627 * returned pool is and stays online.
7c3eed5c
TH
628 */
629static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 630{
e120153d 631 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 632 int pool_id;
7a22ad75 633
68e13a67 634 assert_rcu_or_pool_mutex();
fa1b54e6 635
112202d9
TH
636 if (data & WORK_STRUCT_PWQ)
637 return ((struct pool_workqueue *)
7c3eed5c 638 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 639
7c3eed5c
TH
640 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
641 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
642 return NULL;
643
fa1b54e6 644 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
645}
646
647/**
648 * get_work_pool_id - return the worker pool ID a given work is associated with
649 * @work: the work item of interest
650 *
651 * Return the worker_pool ID @work was last associated with.
652 * %WORK_OFFQ_POOL_NONE if none.
653 */
654static int get_work_pool_id(struct work_struct *work)
655{
54d5b7d0
LJ
656 unsigned long data = atomic_long_read(&work->data);
657
112202d9
TH
658 if (data & WORK_STRUCT_PWQ)
659 return ((struct pool_workqueue *)
54d5b7d0 660 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 661
54d5b7d0 662 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
663}
664
bbb68dfa
TH
665static void mark_work_canceling(struct work_struct *work)
666{
7c3eed5c 667 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 668
7c3eed5c
TH
669 pool_id <<= WORK_OFFQ_POOL_SHIFT;
670 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
671}
672
673static bool work_is_canceling(struct work_struct *work)
674{
675 unsigned long data = atomic_long_read(&work->data);
676
112202d9 677 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
678}
679
e22bee78 680/*
3270476a
TH
681 * Policy functions. These define the policies on how the global worker
682 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 683 * they're being called with pool->lock held.
e22bee78
TH
684 */
685
63d95a91 686static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 687{
e19e397a 688 return !atomic_read(&pool->nr_running);
a848e3b6
ON
689}
690
4594bf15 691/*
e22bee78
TH
692 * Need to wake up a worker? Called from anything but currently
693 * running workers.
974271c4
TH
694 *
695 * Note that, because unbound workers never contribute to nr_running, this
706026c2 696 * function will always return %true for unbound pools as long as the
974271c4 697 * worklist isn't empty.
4594bf15 698 */
63d95a91 699static bool need_more_worker(struct worker_pool *pool)
365970a1 700{
63d95a91 701 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 702}
4594bf15 703
e22bee78 704/* Can I start working? Called from busy but !running workers. */
63d95a91 705static bool may_start_working(struct worker_pool *pool)
e22bee78 706{
63d95a91 707 return pool->nr_idle;
e22bee78
TH
708}
709
710/* Do I need to keep working? Called from currently running workers. */
63d95a91 711static bool keep_working(struct worker_pool *pool)
e22bee78 712{
e19e397a
TH
713 return !list_empty(&pool->worklist) &&
714 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
715}
716
717/* Do we need a new worker? Called from manager. */
63d95a91 718static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 719{
63d95a91 720 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 721}
365970a1 722
e22bee78 723/* Do I need to be the manager? */
63d95a91 724static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 725{
63d95a91 726 return need_to_create_worker(pool) ||
11ebea50 727 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
728}
729
730/* Do we have too many workers and should some go away? */
63d95a91 731static bool too_many_workers(struct worker_pool *pool)
e22bee78 732{
34a06bd6 733 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
734 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
735 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 736
ea1abd61
LJ
737 /*
738 * nr_idle and idle_list may disagree if idle rebinding is in
739 * progress. Never return %true if idle_list is empty.
740 */
741 if (list_empty(&pool->idle_list))
742 return false;
743
e22bee78 744 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
745}
746
4d707b9f 747/*
e22bee78
TH
748 * Wake up functions.
749 */
750
7e11629d 751/* Return the first worker. Safe with preemption disabled */
63d95a91 752static struct worker *first_worker(struct worker_pool *pool)
7e11629d 753{
63d95a91 754 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
755 return NULL;
756
63d95a91 757 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
758}
759
760/**
761 * wake_up_worker - wake up an idle worker
63d95a91 762 * @pool: worker pool to wake worker from
7e11629d 763 *
63d95a91 764 * Wake up the first idle worker of @pool.
7e11629d
TH
765 *
766 * CONTEXT:
d565ed63 767 * spin_lock_irq(pool->lock).
7e11629d 768 */
63d95a91 769static void wake_up_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 struct worker *worker = first_worker(pool);
7e11629d
TH
772
773 if (likely(worker))
774 wake_up_process(worker->task);
775}
776
d302f017 777/**
e22bee78
TH
778 * wq_worker_waking_up - a worker is waking up
779 * @task: task waking up
780 * @cpu: CPU @task is waking up to
781 *
782 * This function is called during try_to_wake_up() when a worker is
783 * being awoken.
784 *
785 * CONTEXT:
786 * spin_lock_irq(rq->lock)
787 */
d84ff051 788void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
789{
790 struct worker *worker = kthread_data(task);
791
36576000 792 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 793 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 794 atomic_inc(&worker->pool->nr_running);
36576000 795 }
e22bee78
TH
796}
797
798/**
799 * wq_worker_sleeping - a worker is going to sleep
800 * @task: task going to sleep
801 * @cpu: CPU in question, must be the current CPU number
802 *
803 * This function is called during schedule() when a busy worker is
804 * going to sleep. Worker on the same cpu can be woken up by
805 * returning pointer to its task.
806 *
807 * CONTEXT:
808 * spin_lock_irq(rq->lock)
809 *
810 * RETURNS:
811 * Worker task on @cpu to wake up, %NULL if none.
812 */
d84ff051 813struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
814{
815 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 816 struct worker_pool *pool;
e22bee78 817
111c225a
TH
818 /*
819 * Rescuers, which may not have all the fields set up like normal
820 * workers, also reach here, let's not access anything before
821 * checking NOT_RUNNING.
822 */
2d64672e 823 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
824 return NULL;
825
111c225a 826 pool = worker->pool;
111c225a 827
e22bee78 828 /* this can only happen on the local cpu */
6183c009
TH
829 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
830 return NULL;
e22bee78
TH
831
832 /*
833 * The counterpart of the following dec_and_test, implied mb,
834 * worklist not empty test sequence is in insert_work().
835 * Please read comment there.
836 *
628c78e7
TH
837 * NOT_RUNNING is clear. This means that we're bound to and
838 * running on the local cpu w/ rq lock held and preemption
839 * disabled, which in turn means that none else could be
d565ed63 840 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 841 * lock is safe.
e22bee78 842 */
e19e397a
TH
843 if (atomic_dec_and_test(&pool->nr_running) &&
844 !list_empty(&pool->worklist))
63d95a91 845 to_wakeup = first_worker(pool);
e22bee78
TH
846 return to_wakeup ? to_wakeup->task : NULL;
847}
848
849/**
850 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 851 * @worker: self
d302f017
TH
852 * @flags: flags to set
853 * @wakeup: wakeup an idle worker if necessary
854 *
e22bee78
TH
855 * Set @flags in @worker->flags and adjust nr_running accordingly. If
856 * nr_running becomes zero and @wakeup is %true, an idle worker is
857 * woken up.
d302f017 858 *
cb444766 859 * CONTEXT:
d565ed63 860 * spin_lock_irq(pool->lock)
d302f017
TH
861 */
862static inline void worker_set_flags(struct worker *worker, unsigned int flags,
863 bool wakeup)
864{
bd7bdd43 865 struct worker_pool *pool = worker->pool;
e22bee78 866
cb444766
TH
867 WARN_ON_ONCE(worker->task != current);
868
e22bee78
TH
869 /*
870 * If transitioning into NOT_RUNNING, adjust nr_running and
871 * wake up an idle worker as necessary if requested by
872 * @wakeup.
873 */
874 if ((flags & WORKER_NOT_RUNNING) &&
875 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 876 if (wakeup) {
e19e397a 877 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 878 !list_empty(&pool->worklist))
63d95a91 879 wake_up_worker(pool);
e22bee78 880 } else
e19e397a 881 atomic_dec(&pool->nr_running);
e22bee78
TH
882 }
883
d302f017
TH
884 worker->flags |= flags;
885}
886
887/**
e22bee78 888 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 889 * @worker: self
d302f017
TH
890 * @flags: flags to clear
891 *
e22bee78 892 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 893 *
cb444766 894 * CONTEXT:
d565ed63 895 * spin_lock_irq(pool->lock)
d302f017
TH
896 */
897static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
898{
63d95a91 899 struct worker_pool *pool = worker->pool;
e22bee78
TH
900 unsigned int oflags = worker->flags;
901
cb444766
TH
902 WARN_ON_ONCE(worker->task != current);
903
d302f017 904 worker->flags &= ~flags;
e22bee78 905
42c025f3
TH
906 /*
907 * If transitioning out of NOT_RUNNING, increment nr_running. Note
908 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
909 * of multiple flags, not a single flag.
910 */
e22bee78
TH
911 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
912 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 913 atomic_inc(&pool->nr_running);
d302f017
TH
914}
915
8cca0eea
TH
916/**
917 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 918 * @pool: pool of interest
8cca0eea
TH
919 * @work: work to find worker for
920 *
c9e7cf27
TH
921 * Find a worker which is executing @work on @pool by searching
922 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
923 * to match, its current execution should match the address of @work and
924 * its work function. This is to avoid unwanted dependency between
925 * unrelated work executions through a work item being recycled while still
926 * being executed.
927 *
928 * This is a bit tricky. A work item may be freed once its execution
929 * starts and nothing prevents the freed area from being recycled for
930 * another work item. If the same work item address ends up being reused
931 * before the original execution finishes, workqueue will identify the
932 * recycled work item as currently executing and make it wait until the
933 * current execution finishes, introducing an unwanted dependency.
934 *
c5aa87bb
TH
935 * This function checks the work item address and work function to avoid
936 * false positives. Note that this isn't complete as one may construct a
937 * work function which can introduce dependency onto itself through a
938 * recycled work item. Well, if somebody wants to shoot oneself in the
939 * foot that badly, there's only so much we can do, and if such deadlock
940 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
941 *
942 * CONTEXT:
d565ed63 943 * spin_lock_irq(pool->lock).
8cca0eea
TH
944 *
945 * RETURNS:
946 * Pointer to worker which is executing @work if found, NULL
947 * otherwise.
4d707b9f 948 */
c9e7cf27 949static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 950 struct work_struct *work)
4d707b9f 951{
42f8570f 952 struct worker *worker;
42f8570f 953
b67bfe0d 954 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
955 (unsigned long)work)
956 if (worker->current_work == work &&
957 worker->current_func == work->func)
42f8570f
SL
958 return worker;
959
960 return NULL;
4d707b9f
ON
961}
962
bf4ede01
TH
963/**
964 * move_linked_works - move linked works to a list
965 * @work: start of series of works to be scheduled
966 * @head: target list to append @work to
967 * @nextp: out paramter for nested worklist walking
968 *
969 * Schedule linked works starting from @work to @head. Work series to
970 * be scheduled starts at @work and includes any consecutive work with
971 * WORK_STRUCT_LINKED set in its predecessor.
972 *
973 * If @nextp is not NULL, it's updated to point to the next work of
974 * the last scheduled work. This allows move_linked_works() to be
975 * nested inside outer list_for_each_entry_safe().
976 *
977 * CONTEXT:
d565ed63 978 * spin_lock_irq(pool->lock).
bf4ede01
TH
979 */
980static void move_linked_works(struct work_struct *work, struct list_head *head,
981 struct work_struct **nextp)
982{
983 struct work_struct *n;
984
985 /*
986 * Linked worklist will always end before the end of the list,
987 * use NULL for list head.
988 */
989 list_for_each_entry_safe_from(work, n, NULL, entry) {
990 list_move_tail(&work->entry, head);
991 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
992 break;
993 }
994
995 /*
996 * If we're already inside safe list traversal and have moved
997 * multiple works to the scheduled queue, the next position
998 * needs to be updated.
999 */
1000 if (nextp)
1001 *nextp = n;
1002}
1003
8864b4e5
TH
1004/**
1005 * get_pwq - get an extra reference on the specified pool_workqueue
1006 * @pwq: pool_workqueue to get
1007 *
1008 * Obtain an extra reference on @pwq. The caller should guarantee that
1009 * @pwq has positive refcnt and be holding the matching pool->lock.
1010 */
1011static void get_pwq(struct pool_workqueue *pwq)
1012{
1013 lockdep_assert_held(&pwq->pool->lock);
1014 WARN_ON_ONCE(pwq->refcnt <= 0);
1015 pwq->refcnt++;
1016}
1017
1018/**
1019 * put_pwq - put a pool_workqueue reference
1020 * @pwq: pool_workqueue to put
1021 *
1022 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1023 * destruction. The caller should be holding the matching pool->lock.
1024 */
1025static void put_pwq(struct pool_workqueue *pwq)
1026{
1027 lockdep_assert_held(&pwq->pool->lock);
1028 if (likely(--pwq->refcnt))
1029 return;
1030 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1031 return;
1032 /*
1033 * @pwq can't be released under pool->lock, bounce to
1034 * pwq_unbound_release_workfn(). This never recurses on the same
1035 * pool->lock as this path is taken only for unbound workqueues and
1036 * the release work item is scheduled on a per-cpu workqueue. To
1037 * avoid lockdep warning, unbound pool->locks are given lockdep
1038 * subclass of 1 in get_unbound_pool().
1039 */
1040 schedule_work(&pwq->unbound_release_work);
1041}
1042
112202d9 1043static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1044{
112202d9 1045 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1046
1047 trace_workqueue_activate_work(work);
112202d9 1048 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1049 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1050 pwq->nr_active++;
bf4ede01
TH
1051}
1052
112202d9 1053static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1054{
112202d9 1055 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1056 struct work_struct, entry);
1057
112202d9 1058 pwq_activate_delayed_work(work);
3aa62497
LJ
1059}
1060
bf4ede01 1061/**
112202d9
TH
1062 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1063 * @pwq: pwq of interest
bf4ede01 1064 * @color: color of work which left the queue
bf4ede01
TH
1065 *
1066 * A work either has completed or is removed from pending queue,
112202d9 1067 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1068 *
1069 * CONTEXT:
d565ed63 1070 * spin_lock_irq(pool->lock).
bf4ede01 1071 */
112202d9 1072static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1073{
8864b4e5 1074 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1075 if (color == WORK_NO_COLOR)
8864b4e5 1076 goto out_put;
bf4ede01 1077
112202d9 1078 pwq->nr_in_flight[color]--;
bf4ede01 1079
112202d9
TH
1080 pwq->nr_active--;
1081 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1082 /* one down, submit a delayed one */
112202d9
TH
1083 if (pwq->nr_active < pwq->max_active)
1084 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1085 }
1086
1087 /* is flush in progress and are we at the flushing tip? */
112202d9 1088 if (likely(pwq->flush_color != color))
8864b4e5 1089 goto out_put;
bf4ede01
TH
1090
1091 /* are there still in-flight works? */
112202d9 1092 if (pwq->nr_in_flight[color])
8864b4e5 1093 goto out_put;
bf4ede01 1094
112202d9
TH
1095 /* this pwq is done, clear flush_color */
1096 pwq->flush_color = -1;
bf4ede01
TH
1097
1098 /*
112202d9 1099 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1100 * will handle the rest.
1101 */
112202d9
TH
1102 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1103 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1104out_put:
1105 put_pwq(pwq);
bf4ede01
TH
1106}
1107
36e227d2 1108/**
bbb68dfa 1109 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1110 * @work: work item to steal
1111 * @is_dwork: @work is a delayed_work
bbb68dfa 1112 * @flags: place to store irq state
36e227d2
TH
1113 *
1114 * Try to grab PENDING bit of @work. This function can handle @work in any
1115 * stable state - idle, on timer or on worklist. Return values are
1116 *
1117 * 1 if @work was pending and we successfully stole PENDING
1118 * 0 if @work was idle and we claimed PENDING
1119 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1120 * -ENOENT if someone else is canceling @work, this state may persist
1121 * for arbitrarily long
36e227d2 1122 *
bbb68dfa 1123 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1124 * interrupted while holding PENDING and @work off queue, irq must be
1125 * disabled on entry. This, combined with delayed_work->timer being
1126 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1127 *
1128 * On successful return, >= 0, irq is disabled and the caller is
1129 * responsible for releasing it using local_irq_restore(*@flags).
1130 *
e0aecdd8 1131 * This function is safe to call from any context including IRQ handler.
bf4ede01 1132 */
bbb68dfa
TH
1133static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1134 unsigned long *flags)
bf4ede01 1135{
d565ed63 1136 struct worker_pool *pool;
112202d9 1137 struct pool_workqueue *pwq;
bf4ede01 1138
bbb68dfa
TH
1139 local_irq_save(*flags);
1140
36e227d2
TH
1141 /* try to steal the timer if it exists */
1142 if (is_dwork) {
1143 struct delayed_work *dwork = to_delayed_work(work);
1144
e0aecdd8
TH
1145 /*
1146 * dwork->timer is irqsafe. If del_timer() fails, it's
1147 * guaranteed that the timer is not queued anywhere and not
1148 * running on the local CPU.
1149 */
36e227d2
TH
1150 if (likely(del_timer(&dwork->timer)))
1151 return 1;
1152 }
1153
1154 /* try to claim PENDING the normal way */
bf4ede01
TH
1155 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1156 return 0;
1157
1158 /*
1159 * The queueing is in progress, or it is already queued. Try to
1160 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1161 */
d565ed63
TH
1162 pool = get_work_pool(work);
1163 if (!pool)
bbb68dfa 1164 goto fail;
bf4ede01 1165
d565ed63 1166 spin_lock(&pool->lock);
0b3dae68 1167 /*
112202d9
TH
1168 * work->data is guaranteed to point to pwq only while the work
1169 * item is queued on pwq->wq, and both updating work->data to point
1170 * to pwq on queueing and to pool on dequeueing are done under
1171 * pwq->pool->lock. This in turn guarantees that, if work->data
1172 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1173 * item is currently queued on that pool.
1174 */
112202d9
TH
1175 pwq = get_work_pwq(work);
1176 if (pwq && pwq->pool == pool) {
16062836
TH
1177 debug_work_deactivate(work);
1178
1179 /*
1180 * A delayed work item cannot be grabbed directly because
1181 * it might have linked NO_COLOR work items which, if left
112202d9 1182 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1183 * management later on and cause stall. Make sure the work
1184 * item is activated before grabbing.
1185 */
1186 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1187 pwq_activate_delayed_work(work);
16062836
TH
1188
1189 list_del_init(&work->entry);
112202d9 1190 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1191
112202d9 1192 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1193 set_work_pool_and_keep_pending(work, pool->id);
1194
1195 spin_unlock(&pool->lock);
1196 return 1;
bf4ede01 1197 }
d565ed63 1198 spin_unlock(&pool->lock);
bbb68dfa
TH
1199fail:
1200 local_irq_restore(*flags);
1201 if (work_is_canceling(work))
1202 return -ENOENT;
1203 cpu_relax();
36e227d2 1204 return -EAGAIN;
bf4ede01
TH
1205}
1206
4690c4ab 1207/**
706026c2 1208 * insert_work - insert a work into a pool
112202d9 1209 * @pwq: pwq @work belongs to
4690c4ab
TH
1210 * @work: work to insert
1211 * @head: insertion point
1212 * @extra_flags: extra WORK_STRUCT_* flags to set
1213 *
112202d9 1214 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1215 * work_struct flags.
4690c4ab
TH
1216 *
1217 * CONTEXT:
d565ed63 1218 * spin_lock_irq(pool->lock).
4690c4ab 1219 */
112202d9
TH
1220static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1221 struct list_head *head, unsigned int extra_flags)
b89deed3 1222{
112202d9 1223 struct worker_pool *pool = pwq->pool;
e22bee78 1224
4690c4ab 1225 /* we own @work, set data and link */
112202d9 1226 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1227 list_add_tail(&work->entry, head);
8864b4e5 1228 get_pwq(pwq);
e22bee78
TH
1229
1230 /*
c5aa87bb
TH
1231 * Ensure either wq_worker_sleeping() sees the above
1232 * list_add_tail() or we see zero nr_running to avoid workers lying
1233 * around lazily while there are works to be processed.
e22bee78
TH
1234 */
1235 smp_mb();
1236
63d95a91
TH
1237 if (__need_more_worker(pool))
1238 wake_up_worker(pool);
b89deed3
ON
1239}
1240
c8efcc25
TH
1241/*
1242 * Test whether @work is being queued from another work executing on the
8d03ecfe 1243 * same workqueue.
c8efcc25
TH
1244 */
1245static bool is_chained_work(struct workqueue_struct *wq)
1246{
8d03ecfe
TH
1247 struct worker *worker;
1248
1249 worker = current_wq_worker();
1250 /*
1251 * Return %true iff I'm a worker execuing a work item on @wq. If
1252 * I'm @worker, it's safe to dereference it without locking.
1253 */
112202d9 1254 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1255}
1256
d84ff051 1257static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1258 struct work_struct *work)
1259{
112202d9 1260 struct pool_workqueue *pwq;
c9178087 1261 struct worker_pool *last_pool;
1e19ffc6 1262 struct list_head *worklist;
8a2e8e5d 1263 unsigned int work_flags;
b75cac93 1264 unsigned int req_cpu = cpu;
8930caba
TH
1265
1266 /*
1267 * While a work item is PENDING && off queue, a task trying to
1268 * steal the PENDING will busy-loop waiting for it to either get
1269 * queued or lose PENDING. Grabbing PENDING and queueing should
1270 * happen with IRQ disabled.
1271 */
1272 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1273
dc186ad7 1274 debug_work_activate(work);
1e19ffc6 1275
c8efcc25 1276 /* if dying, only works from the same workqueue are allowed */
618b01eb 1277 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1278 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1279 return;
9e8cd2f5 1280retry:
c9178087 1281 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1282 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1283 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1284 cpu = raw_smp_processor_id();
7fb98ea7 1285 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1286 } else {
1287 pwq = first_pwq(wq);
1288 }
dbf2576e 1289
c9178087
TH
1290 /*
1291 * If @work was previously on a different pool, it might still be
1292 * running there, in which case the work needs to be queued on that
1293 * pool to guarantee non-reentrancy.
1294 */
1295 last_pool = get_work_pool(work);
1296 if (last_pool && last_pool != pwq->pool) {
1297 struct worker *worker;
18aa9eff 1298
c9178087 1299 spin_lock(&last_pool->lock);
18aa9eff 1300
c9178087 1301 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1302
c9178087
TH
1303 if (worker && worker->current_pwq->wq == wq) {
1304 pwq = worker->current_pwq;
8930caba 1305 } else {
c9178087
TH
1306 /* meh... not running there, queue here */
1307 spin_unlock(&last_pool->lock);
112202d9 1308 spin_lock(&pwq->pool->lock);
8930caba 1309 }
f3421797 1310 } else {
112202d9 1311 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1312 }
1313
9e8cd2f5
TH
1314 /*
1315 * pwq is determined and locked. For unbound pools, we could have
1316 * raced with pwq release and it could already be dead. If its
1317 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1318 * without another pwq replacing it as the first pwq or while a
1319 * work item is executing on it, so the retying is guaranteed to
1320 * make forward-progress.
1321 */
1322 if (unlikely(!pwq->refcnt)) {
1323 if (wq->flags & WQ_UNBOUND) {
1324 spin_unlock(&pwq->pool->lock);
1325 cpu_relax();
1326 goto retry;
1327 }
1328 /* oops */
1329 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1330 wq->name, cpu);
1331 }
1332
112202d9
TH
1333 /* pwq determined, queue */
1334 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1335
f5b2552b 1336 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1337 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1338 return;
1339 }
1e19ffc6 1340
112202d9
TH
1341 pwq->nr_in_flight[pwq->work_color]++;
1342 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1343
112202d9 1344 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1345 trace_workqueue_activate_work(work);
112202d9
TH
1346 pwq->nr_active++;
1347 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1348 } else {
1349 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1350 worklist = &pwq->delayed_works;
8a2e8e5d 1351 }
1e19ffc6 1352
112202d9 1353 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1354
112202d9 1355 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1356}
1357
0fcb78c2 1358/**
c1a220e7
ZR
1359 * queue_work_on - queue work on specific cpu
1360 * @cpu: CPU number to execute work on
0fcb78c2
REB
1361 * @wq: workqueue to use
1362 * @work: work to queue
1363 *
d4283e93 1364 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1365 *
c1a220e7
ZR
1366 * We queue the work to a specific CPU, the caller must ensure it
1367 * can't go away.
1da177e4 1368 */
d4283e93
TH
1369bool queue_work_on(int cpu, struct workqueue_struct *wq,
1370 struct work_struct *work)
1da177e4 1371{
d4283e93 1372 bool ret = false;
8930caba 1373 unsigned long flags;
ef1ca236 1374
8930caba 1375 local_irq_save(flags);
c1a220e7 1376
22df02bb 1377 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1378 __queue_work(cpu, wq, work);
d4283e93 1379 ret = true;
c1a220e7 1380 }
ef1ca236 1381
8930caba 1382 local_irq_restore(flags);
1da177e4
LT
1383 return ret;
1384}
c1a220e7 1385EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1386
d8e794df 1387void delayed_work_timer_fn(unsigned long __data)
1da177e4 1388{
52bad64d 1389 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1390
e0aecdd8 1391 /* should have been called from irqsafe timer with irq already off */
60c057bc 1392 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1393}
1438ade5 1394EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1395
7beb2edf
TH
1396static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1397 struct delayed_work *dwork, unsigned long delay)
1da177e4 1398{
7beb2edf
TH
1399 struct timer_list *timer = &dwork->timer;
1400 struct work_struct *work = &dwork->work;
7beb2edf
TH
1401
1402 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1403 timer->data != (unsigned long)dwork);
fc4b514f
TH
1404 WARN_ON_ONCE(timer_pending(timer));
1405 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1406
8852aac2
TH
1407 /*
1408 * If @delay is 0, queue @dwork->work immediately. This is for
1409 * both optimization and correctness. The earliest @timer can
1410 * expire is on the closest next tick and delayed_work users depend
1411 * on that there's no such delay when @delay is 0.
1412 */
1413 if (!delay) {
1414 __queue_work(cpu, wq, &dwork->work);
1415 return;
1416 }
1417
7beb2edf 1418 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1419
60c057bc 1420 dwork->wq = wq;
1265057f 1421 dwork->cpu = cpu;
7beb2edf
TH
1422 timer->expires = jiffies + delay;
1423
1424 if (unlikely(cpu != WORK_CPU_UNBOUND))
1425 add_timer_on(timer, cpu);
1426 else
1427 add_timer(timer);
1da177e4
LT
1428}
1429
0fcb78c2
REB
1430/**
1431 * queue_delayed_work_on - queue work on specific CPU after delay
1432 * @cpu: CPU number to execute work on
1433 * @wq: workqueue to use
af9997e4 1434 * @dwork: work to queue
0fcb78c2
REB
1435 * @delay: number of jiffies to wait before queueing
1436 *
715f1300
TH
1437 * Returns %false if @work was already on a queue, %true otherwise. If
1438 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1439 * execution.
0fcb78c2 1440 */
d4283e93
TH
1441bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1442 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1443{
52bad64d 1444 struct work_struct *work = &dwork->work;
d4283e93 1445 bool ret = false;
8930caba 1446 unsigned long flags;
7a6bc1cd 1447
8930caba
TH
1448 /* read the comment in __queue_work() */
1449 local_irq_save(flags);
7a6bc1cd 1450
22df02bb 1451 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1452 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1453 ret = true;
7a6bc1cd 1454 }
8a3e77cc 1455
8930caba 1456 local_irq_restore(flags);
7a6bc1cd
VP
1457 return ret;
1458}
ae90dd5d 1459EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1460
8376fe22
TH
1461/**
1462 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1463 * @cpu: CPU number to execute work on
1464 * @wq: workqueue to use
1465 * @dwork: work to queue
1466 * @delay: number of jiffies to wait before queueing
1467 *
1468 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1469 * modify @dwork's timer so that it expires after @delay. If @delay is
1470 * zero, @work is guaranteed to be scheduled immediately regardless of its
1471 * current state.
1472 *
1473 * Returns %false if @dwork was idle and queued, %true if @dwork was
1474 * pending and its timer was modified.
1475 *
e0aecdd8 1476 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1477 * See try_to_grab_pending() for details.
1478 */
1479bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
1481{
1482 unsigned long flags;
1483 int ret;
c7fc77f7 1484
8376fe22
TH
1485 do {
1486 ret = try_to_grab_pending(&dwork->work, true, &flags);
1487 } while (unlikely(ret == -EAGAIN));
63bc0362 1488
8376fe22
TH
1489 if (likely(ret >= 0)) {
1490 __queue_delayed_work(cpu, wq, dwork, delay);
1491 local_irq_restore(flags);
7a6bc1cd 1492 }
8376fe22
TH
1493
1494 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1495 return ret;
1496}
8376fe22
TH
1497EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1498
c8e55f36
TH
1499/**
1500 * worker_enter_idle - enter idle state
1501 * @worker: worker which is entering idle state
1502 *
1503 * @worker is entering idle state. Update stats and idle timer if
1504 * necessary.
1505 *
1506 * LOCKING:
d565ed63 1507 * spin_lock_irq(pool->lock).
c8e55f36
TH
1508 */
1509static void worker_enter_idle(struct worker *worker)
1da177e4 1510{
bd7bdd43 1511 struct worker_pool *pool = worker->pool;
c8e55f36 1512
6183c009
TH
1513 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1514 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1515 (worker->hentry.next || worker->hentry.pprev)))
1516 return;
c8e55f36 1517
cb444766
TH
1518 /* can't use worker_set_flags(), also called from start_worker() */
1519 worker->flags |= WORKER_IDLE;
bd7bdd43 1520 pool->nr_idle++;
e22bee78 1521 worker->last_active = jiffies;
c8e55f36
TH
1522
1523 /* idle_list is LIFO */
bd7bdd43 1524 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1525
628c78e7
TH
1526 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1527 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1528
544ecf31 1529 /*
706026c2 1530 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1531 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1532 * nr_running, the warning may trigger spuriously. Check iff
1533 * unbind is not in progress.
544ecf31 1534 */
24647570 1535 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1536 pool->nr_workers == pool->nr_idle &&
e19e397a 1537 atomic_read(&pool->nr_running));
c8e55f36
TH
1538}
1539
1540/**
1541 * worker_leave_idle - leave idle state
1542 * @worker: worker which is leaving idle state
1543 *
1544 * @worker is leaving idle state. Update stats.
1545 *
1546 * LOCKING:
d565ed63 1547 * spin_lock_irq(pool->lock).
c8e55f36
TH
1548 */
1549static void worker_leave_idle(struct worker *worker)
1550{
bd7bdd43 1551 struct worker_pool *pool = worker->pool;
c8e55f36 1552
6183c009
TH
1553 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1554 return;
d302f017 1555 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1556 pool->nr_idle--;
c8e55f36
TH
1557 list_del_init(&worker->entry);
1558}
1559
e22bee78 1560/**
f36dc67b
LJ
1561 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1562 * @pool: target worker_pool
1563 *
1564 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1565 *
1566 * Works which are scheduled while the cpu is online must at least be
1567 * scheduled to a worker which is bound to the cpu so that if they are
1568 * flushed from cpu callbacks while cpu is going down, they are
1569 * guaranteed to execute on the cpu.
1570 *
f5faa077 1571 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1572 * themselves to the target cpu and may race with cpu going down or
1573 * coming online. kthread_bind() can't be used because it may put the
1574 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1575 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1576 * [dis]associated in the meantime.
1577 *
706026c2 1578 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1579 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1580 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1581 * enters idle state or fetches works without dropping lock, it can
1582 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1583 *
1584 * CONTEXT:
d565ed63 1585 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1586 * held.
1587 *
1588 * RETURNS:
706026c2 1589 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1590 * bound), %false if offline.
1591 */
f36dc67b 1592static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1593__acquires(&pool->lock)
e22bee78 1594{
e22bee78 1595 while (true) {
4e6045f1 1596 /*
e22bee78
TH
1597 * The following call may fail, succeed or succeed
1598 * without actually migrating the task to the cpu if
1599 * it races with cpu hotunplug operation. Verify
24647570 1600 * against POOL_DISASSOCIATED.
4e6045f1 1601 */
24647570 1602 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1603 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1604
d565ed63 1605 spin_lock_irq(&pool->lock);
24647570 1606 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1607 return false;
f5faa077 1608 if (task_cpu(current) == pool->cpu &&
7a4e344c 1609 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1610 return true;
d565ed63 1611 spin_unlock_irq(&pool->lock);
e22bee78 1612
5035b20f
TH
1613 /*
1614 * We've raced with CPU hot[un]plug. Give it a breather
1615 * and retry migration. cond_resched() is required here;
1616 * otherwise, we might deadlock against cpu_stop trying to
1617 * bring down the CPU on non-preemptive kernel.
1618 */
e22bee78 1619 cpu_relax();
5035b20f 1620 cond_resched();
e22bee78
TH
1621 }
1622}
1623
c34056a3
TH
1624static struct worker *alloc_worker(void)
1625{
1626 struct worker *worker;
1627
1628 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1629 if (worker) {
1630 INIT_LIST_HEAD(&worker->entry);
affee4b2 1631 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1632 /* on creation a worker is in !idle && prep state */
1633 worker->flags = WORKER_PREP;
c8e55f36 1634 }
c34056a3
TH
1635 return worker;
1636}
1637
1638/**
1639 * create_worker - create a new workqueue worker
63d95a91 1640 * @pool: pool the new worker will belong to
c34056a3 1641 *
63d95a91 1642 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1643 * can be started by calling start_worker() or destroyed using
1644 * destroy_worker().
1645 *
1646 * CONTEXT:
1647 * Might sleep. Does GFP_KERNEL allocations.
1648 *
1649 * RETURNS:
1650 * Pointer to the newly created worker.
1651 */
bc2ae0f5 1652static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1653{
c34056a3 1654 struct worker *worker = NULL;
f3421797 1655 int id = -1;
e3c916a4 1656 char id_buf[16];
c34056a3 1657
cd549687
TH
1658 lockdep_assert_held(&pool->manager_mutex);
1659
822d8405
TH
1660 /*
1661 * ID is needed to determine kthread name. Allocate ID first
1662 * without installing the pointer.
1663 */
1664 idr_preload(GFP_KERNEL);
d565ed63 1665 spin_lock_irq(&pool->lock);
822d8405
TH
1666
1667 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1668
d565ed63 1669 spin_unlock_irq(&pool->lock);
822d8405
TH
1670 idr_preload_end();
1671 if (id < 0)
1672 goto fail;
c34056a3
TH
1673
1674 worker = alloc_worker();
1675 if (!worker)
1676 goto fail;
1677
bd7bdd43 1678 worker->pool = pool;
c34056a3
TH
1679 worker->id = id;
1680
29c91e99 1681 if (pool->cpu >= 0)
e3c916a4
TH
1682 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1683 pool->attrs->nice < 0 ? "H" : "");
f3421797 1684 else
e3c916a4
TH
1685 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1686
f3f90ad4 1687 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1688 "kworker/%s", id_buf);
c34056a3
TH
1689 if (IS_ERR(worker->task))
1690 goto fail;
1691
c5aa87bb
TH
1692 /*
1693 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1694 * online CPUs. It'll be re-applied when any of the CPUs come up.
1695 */
7a4e344c
TH
1696 set_user_nice(worker->task, pool->attrs->nice);
1697 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1698
14a40ffc
TH
1699 /* prevent userland from meddling with cpumask of workqueue workers */
1700 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1701
1702 /*
1703 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1704 * remains stable across this function. See the comments above the
1705 * flag definition for details.
1706 */
1707 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1708 worker->flags |= WORKER_UNBOUND;
c34056a3 1709
822d8405
TH
1710 /* successful, commit the pointer to idr */
1711 spin_lock_irq(&pool->lock);
1712 idr_replace(&pool->worker_idr, worker, worker->id);
1713 spin_unlock_irq(&pool->lock);
1714
c34056a3 1715 return worker;
822d8405 1716
c34056a3
TH
1717fail:
1718 if (id >= 0) {
d565ed63 1719 spin_lock_irq(&pool->lock);
822d8405 1720 idr_remove(&pool->worker_idr, id);
d565ed63 1721 spin_unlock_irq(&pool->lock);
c34056a3
TH
1722 }
1723 kfree(worker);
1724 return NULL;
1725}
1726
1727/**
1728 * start_worker - start a newly created worker
1729 * @worker: worker to start
1730 *
706026c2 1731 * Make the pool aware of @worker and start it.
c34056a3
TH
1732 *
1733 * CONTEXT:
d565ed63 1734 * spin_lock_irq(pool->lock).
c34056a3
TH
1735 */
1736static void start_worker(struct worker *worker)
1737{
cb444766 1738 worker->flags |= WORKER_STARTED;
bd7bdd43 1739 worker->pool->nr_workers++;
c8e55f36 1740 worker_enter_idle(worker);
c34056a3
TH
1741 wake_up_process(worker->task);
1742}
1743
ebf44d16
TH
1744/**
1745 * create_and_start_worker - create and start a worker for a pool
1746 * @pool: the target pool
1747 *
cd549687 1748 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1749 */
1750static int create_and_start_worker(struct worker_pool *pool)
1751{
1752 struct worker *worker;
1753
cd549687
TH
1754 mutex_lock(&pool->manager_mutex);
1755
ebf44d16
TH
1756 worker = create_worker(pool);
1757 if (worker) {
1758 spin_lock_irq(&pool->lock);
1759 start_worker(worker);
1760 spin_unlock_irq(&pool->lock);
1761 }
1762
cd549687
TH
1763 mutex_unlock(&pool->manager_mutex);
1764
ebf44d16
TH
1765 return worker ? 0 : -ENOMEM;
1766}
1767
c34056a3
TH
1768/**
1769 * destroy_worker - destroy a workqueue worker
1770 * @worker: worker to be destroyed
1771 *
706026c2 1772 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1773 *
1774 * CONTEXT:
d565ed63 1775 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1776 */
1777static void destroy_worker(struct worker *worker)
1778{
bd7bdd43 1779 struct worker_pool *pool = worker->pool;
c34056a3 1780
cd549687
TH
1781 lockdep_assert_held(&pool->manager_mutex);
1782 lockdep_assert_held(&pool->lock);
1783
c34056a3 1784 /* sanity check frenzy */
6183c009
TH
1785 if (WARN_ON(worker->current_work) ||
1786 WARN_ON(!list_empty(&worker->scheduled)))
1787 return;
c34056a3 1788
c8e55f36 1789 if (worker->flags & WORKER_STARTED)
bd7bdd43 1790 pool->nr_workers--;
c8e55f36 1791 if (worker->flags & WORKER_IDLE)
bd7bdd43 1792 pool->nr_idle--;
c8e55f36
TH
1793
1794 list_del_init(&worker->entry);
cb444766 1795 worker->flags |= WORKER_DIE;
c8e55f36 1796
822d8405
TH
1797 idr_remove(&pool->worker_idr, worker->id);
1798
d565ed63 1799 spin_unlock_irq(&pool->lock);
c8e55f36 1800
c34056a3
TH
1801 kthread_stop(worker->task);
1802 kfree(worker);
1803
d565ed63 1804 spin_lock_irq(&pool->lock);
c34056a3
TH
1805}
1806
63d95a91 1807static void idle_worker_timeout(unsigned long __pool)
e22bee78 1808{
63d95a91 1809 struct worker_pool *pool = (void *)__pool;
e22bee78 1810
d565ed63 1811 spin_lock_irq(&pool->lock);
e22bee78 1812
63d95a91 1813 if (too_many_workers(pool)) {
e22bee78
TH
1814 struct worker *worker;
1815 unsigned long expires;
1816
1817 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1818 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1819 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1820
1821 if (time_before(jiffies, expires))
63d95a91 1822 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1823 else {
1824 /* it's been idle for too long, wake up manager */
11ebea50 1825 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1826 wake_up_worker(pool);
d5abe669 1827 }
e22bee78
TH
1828 }
1829
d565ed63 1830 spin_unlock_irq(&pool->lock);
e22bee78 1831}
d5abe669 1832
493a1724 1833static void send_mayday(struct work_struct *work)
e22bee78 1834{
112202d9
TH
1835 struct pool_workqueue *pwq = get_work_pwq(work);
1836 struct workqueue_struct *wq = pwq->wq;
493a1724 1837
2e109a28 1838 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1839
493008a8 1840 if (!wq->rescuer)
493a1724 1841 return;
e22bee78
TH
1842
1843 /* mayday mayday mayday */
493a1724
TH
1844 if (list_empty(&pwq->mayday_node)) {
1845 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1846 wake_up_process(wq->rescuer->task);
493a1724 1847 }
e22bee78
TH
1848}
1849
706026c2 1850static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1851{
63d95a91 1852 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1853 struct work_struct *work;
1854
2e109a28 1855 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1856 spin_lock(&pool->lock);
e22bee78 1857
63d95a91 1858 if (need_to_create_worker(pool)) {
e22bee78
TH
1859 /*
1860 * We've been trying to create a new worker but
1861 * haven't been successful. We might be hitting an
1862 * allocation deadlock. Send distress signals to
1863 * rescuers.
1864 */
63d95a91 1865 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1866 send_mayday(work);
1da177e4 1867 }
e22bee78 1868
493a1724 1869 spin_unlock(&pool->lock);
2e109a28 1870 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1871
63d95a91 1872 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1873}
1874
e22bee78
TH
1875/**
1876 * maybe_create_worker - create a new worker if necessary
63d95a91 1877 * @pool: pool to create a new worker for
e22bee78 1878 *
63d95a91 1879 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1880 * have at least one idle worker on return from this function. If
1881 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1882 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1883 * possible allocation deadlock.
1884 *
c5aa87bb
TH
1885 * On return, need_to_create_worker() is guaranteed to be %false and
1886 * may_start_working() %true.
e22bee78
TH
1887 *
1888 * LOCKING:
d565ed63 1889 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1890 * multiple times. Does GFP_KERNEL allocations. Called only from
1891 * manager.
1892 *
1893 * RETURNS:
c5aa87bb 1894 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1895 * otherwise.
1896 */
63d95a91 1897static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1898__releases(&pool->lock)
1899__acquires(&pool->lock)
1da177e4 1900{
63d95a91 1901 if (!need_to_create_worker(pool))
e22bee78
TH
1902 return false;
1903restart:
d565ed63 1904 spin_unlock_irq(&pool->lock);
9f9c2364 1905
e22bee78 1906 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1907 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1908
1909 while (true) {
1910 struct worker *worker;
1911
bc2ae0f5 1912 worker = create_worker(pool);
e22bee78 1913 if (worker) {
63d95a91 1914 del_timer_sync(&pool->mayday_timer);
d565ed63 1915 spin_lock_irq(&pool->lock);
e22bee78 1916 start_worker(worker);
6183c009
TH
1917 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1918 goto restart;
e22bee78
TH
1919 return true;
1920 }
1921
63d95a91 1922 if (!need_to_create_worker(pool))
e22bee78 1923 break;
1da177e4 1924
e22bee78
TH
1925 __set_current_state(TASK_INTERRUPTIBLE);
1926 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1927
63d95a91 1928 if (!need_to_create_worker(pool))
e22bee78
TH
1929 break;
1930 }
1931
63d95a91 1932 del_timer_sync(&pool->mayday_timer);
d565ed63 1933 spin_lock_irq(&pool->lock);
63d95a91 1934 if (need_to_create_worker(pool))
e22bee78
TH
1935 goto restart;
1936 return true;
1937}
1938
1939/**
1940 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1941 * @pool: pool to destroy workers for
e22bee78 1942 *
63d95a91 1943 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1944 * IDLE_WORKER_TIMEOUT.
1945 *
1946 * LOCKING:
d565ed63 1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1948 * multiple times. Called only from manager.
1949 *
1950 * RETURNS:
c5aa87bb 1951 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1952 * otherwise.
1953 */
63d95a91 1954static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1955{
1956 bool ret = false;
1da177e4 1957
63d95a91 1958 while (too_many_workers(pool)) {
e22bee78
TH
1959 struct worker *worker;
1960 unsigned long expires;
3af24433 1961
63d95a91 1962 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1963 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1964
e22bee78 1965 if (time_before(jiffies, expires)) {
63d95a91 1966 mod_timer(&pool->idle_timer, expires);
3af24433 1967 break;
e22bee78 1968 }
1da177e4 1969
e22bee78
TH
1970 destroy_worker(worker);
1971 ret = true;
1da177e4 1972 }
1e19ffc6 1973
e22bee78 1974 return ret;
1e19ffc6
TH
1975}
1976
73f53c4a 1977/**
e22bee78
TH
1978 * manage_workers - manage worker pool
1979 * @worker: self
73f53c4a 1980 *
706026c2 1981 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1982 * to. At any given time, there can be only zero or one manager per
706026c2 1983 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1984 *
1985 * The caller can safely start processing works on false return. On
1986 * true return, it's guaranteed that need_to_create_worker() is false
1987 * and may_start_working() is true.
73f53c4a
TH
1988 *
1989 * CONTEXT:
d565ed63 1990 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1991 * multiple times. Does GFP_KERNEL allocations.
1992 *
1993 * RETURNS:
d565ed63
TH
1994 * spin_lock_irq(pool->lock) which may be released and regrabbed
1995 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 1996 */
e22bee78 1997static bool manage_workers(struct worker *worker)
73f53c4a 1998{
63d95a91 1999 struct worker_pool *pool = worker->pool;
e22bee78 2000 bool ret = false;
73f53c4a 2001
bc3a1afc
TH
2002 /*
2003 * Managership is governed by two mutexes - manager_arb and
2004 * manager_mutex. manager_arb handles arbitration of manager role.
2005 * Anyone who successfully grabs manager_arb wins the arbitration
2006 * and becomes the manager. mutex_trylock() on pool->manager_arb
2007 * failure while holding pool->lock reliably indicates that someone
2008 * else is managing the pool and the worker which failed trylock
2009 * can proceed to executing work items. This means that anyone
2010 * grabbing manager_arb is responsible for actually performing
2011 * manager duties. If manager_arb is grabbed and released without
2012 * actual management, the pool may stall indefinitely.
2013 *
2014 * manager_mutex is used for exclusion of actual management
2015 * operations. The holder of manager_mutex can be sure that none
2016 * of management operations, including creation and destruction of
2017 * workers, won't take place until the mutex is released. Because
2018 * manager_mutex doesn't interfere with manager role arbitration,
2019 * it is guaranteed that the pool's management, while may be
2020 * delayed, won't be disturbed by someone else grabbing
2021 * manager_mutex.
2022 */
34a06bd6 2023 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2024 return ret;
1e19ffc6 2025
ee378aa4 2026 /*
bc3a1afc
TH
2027 * With manager arbitration won, manager_mutex would be free in
2028 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2029 */
bc3a1afc 2030 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2031 spin_unlock_irq(&pool->lock);
bc3a1afc 2032 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2033 ret = true;
2034 }
73f53c4a 2035
11ebea50 2036 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2037
2038 /*
e22bee78
TH
2039 * Destroy and then create so that may_start_working() is true
2040 * on return.
73f53c4a 2041 */
63d95a91
TH
2042 ret |= maybe_destroy_workers(pool);
2043 ret |= maybe_create_worker(pool);
e22bee78 2044
bc3a1afc 2045 mutex_unlock(&pool->manager_mutex);
34a06bd6 2046 mutex_unlock(&pool->manager_arb);
e22bee78 2047 return ret;
73f53c4a
TH
2048}
2049
a62428c0
TH
2050/**
2051 * process_one_work - process single work
c34056a3 2052 * @worker: self
a62428c0
TH
2053 * @work: work to process
2054 *
2055 * Process @work. This function contains all the logics necessary to
2056 * process a single work including synchronization against and
2057 * interaction with other workers on the same cpu, queueing and
2058 * flushing. As long as context requirement is met, any worker can
2059 * call this function to process a work.
2060 *
2061 * CONTEXT:
d565ed63 2062 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2063 */
c34056a3 2064static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2065__releases(&pool->lock)
2066__acquires(&pool->lock)
a62428c0 2067{
112202d9 2068 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2069 struct worker_pool *pool = worker->pool;
112202d9 2070 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2071 int work_color;
7e11629d 2072 struct worker *collision;
a62428c0
TH
2073#ifdef CONFIG_LOCKDEP
2074 /*
2075 * It is permissible to free the struct work_struct from
2076 * inside the function that is called from it, this we need to
2077 * take into account for lockdep too. To avoid bogus "held
2078 * lock freed" warnings as well as problems when looking into
2079 * work->lockdep_map, make a copy and use that here.
2080 */
4d82a1de
PZ
2081 struct lockdep_map lockdep_map;
2082
2083 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2084#endif
6fec10a1
TH
2085 /*
2086 * Ensure we're on the correct CPU. DISASSOCIATED test is
2087 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2088 * unbound or a disassociated pool.
6fec10a1 2089 */
5f7dabfd 2090 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2091 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2092 raw_smp_processor_id() != pool->cpu);
25511a47 2093
7e11629d
TH
2094 /*
2095 * A single work shouldn't be executed concurrently by
2096 * multiple workers on a single cpu. Check whether anyone is
2097 * already processing the work. If so, defer the work to the
2098 * currently executing one.
2099 */
c9e7cf27 2100 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2101 if (unlikely(collision)) {
2102 move_linked_works(work, &collision->scheduled, NULL);
2103 return;
2104 }
2105
8930caba 2106 /* claim and dequeue */
a62428c0 2107 debug_work_deactivate(work);
c9e7cf27 2108 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2109 worker->current_work = work;
a2c1c57b 2110 worker->current_func = work->func;
112202d9 2111 worker->current_pwq = pwq;
73f53c4a 2112 work_color = get_work_color(work);
7a22ad75 2113
a62428c0
TH
2114 list_del_init(&work->entry);
2115
fb0e7beb
TH
2116 /*
2117 * CPU intensive works don't participate in concurrency
2118 * management. They're the scheduler's responsibility.
2119 */
2120 if (unlikely(cpu_intensive))
2121 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2122
974271c4 2123 /*
d565ed63 2124 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2125 * executed ASAP. Wake up another worker if necessary.
2126 */
63d95a91
TH
2127 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2128 wake_up_worker(pool);
974271c4 2129
8930caba 2130 /*
7c3eed5c 2131 * Record the last pool and clear PENDING which should be the last
d565ed63 2132 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2133 * PENDING and queued state changes happen together while IRQ is
2134 * disabled.
8930caba 2135 */
7c3eed5c 2136 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2137
d565ed63 2138 spin_unlock_irq(&pool->lock);
a62428c0 2139
112202d9 2140 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2141 lock_map_acquire(&lockdep_map);
e36c886a 2142 trace_workqueue_execute_start(work);
a2c1c57b 2143 worker->current_func(work);
e36c886a
AV
2144 /*
2145 * While we must be careful to not use "work" after this, the trace
2146 * point will only record its address.
2147 */
2148 trace_workqueue_execute_end(work);
a62428c0 2149 lock_map_release(&lockdep_map);
112202d9 2150 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2151
2152 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2153 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2154 " last function: %pf\n",
a2c1c57b
TH
2155 current->comm, preempt_count(), task_pid_nr(current),
2156 worker->current_func);
a62428c0
TH
2157 debug_show_held_locks(current);
2158 dump_stack();
2159 }
2160
d565ed63 2161 spin_lock_irq(&pool->lock);
a62428c0 2162
fb0e7beb
TH
2163 /* clear cpu intensive status */
2164 if (unlikely(cpu_intensive))
2165 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2166
a62428c0 2167 /* we're done with it, release */
42f8570f 2168 hash_del(&worker->hentry);
c34056a3 2169 worker->current_work = NULL;
a2c1c57b 2170 worker->current_func = NULL;
112202d9
TH
2171 worker->current_pwq = NULL;
2172 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2173}
2174
affee4b2
TH
2175/**
2176 * process_scheduled_works - process scheduled works
2177 * @worker: self
2178 *
2179 * Process all scheduled works. Please note that the scheduled list
2180 * may change while processing a work, so this function repeatedly
2181 * fetches a work from the top and executes it.
2182 *
2183 * CONTEXT:
d565ed63 2184 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2185 * multiple times.
2186 */
2187static void process_scheduled_works(struct worker *worker)
1da177e4 2188{
affee4b2
TH
2189 while (!list_empty(&worker->scheduled)) {
2190 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2191 struct work_struct, entry);
c34056a3 2192 process_one_work(worker, work);
1da177e4 2193 }
1da177e4
LT
2194}
2195
4690c4ab
TH
2196/**
2197 * worker_thread - the worker thread function
c34056a3 2198 * @__worker: self
4690c4ab 2199 *
c5aa87bb
TH
2200 * The worker thread function. All workers belong to a worker_pool -
2201 * either a per-cpu one or dynamic unbound one. These workers process all
2202 * work items regardless of their specific target workqueue. The only
2203 * exception is work items which belong to workqueues with a rescuer which
2204 * will be explained in rescuer_thread().
4690c4ab 2205 */
c34056a3 2206static int worker_thread(void *__worker)
1da177e4 2207{
c34056a3 2208 struct worker *worker = __worker;
bd7bdd43 2209 struct worker_pool *pool = worker->pool;
1da177e4 2210
e22bee78
TH
2211 /* tell the scheduler that this is a workqueue worker */
2212 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2213woke_up:
d565ed63 2214 spin_lock_irq(&pool->lock);
1da177e4 2215
a9ab775b
TH
2216 /* am I supposed to die? */
2217 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2218 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2219 WARN_ON_ONCE(!list_empty(&worker->entry));
2220 worker->task->flags &= ~PF_WQ_WORKER;
2221 return 0;
c8e55f36 2222 }
affee4b2 2223
c8e55f36 2224 worker_leave_idle(worker);
db7bccf4 2225recheck:
e22bee78 2226 /* no more worker necessary? */
63d95a91 2227 if (!need_more_worker(pool))
e22bee78
TH
2228 goto sleep;
2229
2230 /* do we need to manage? */
63d95a91 2231 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2232 goto recheck;
2233
c8e55f36
TH
2234 /*
2235 * ->scheduled list can only be filled while a worker is
2236 * preparing to process a work or actually processing it.
2237 * Make sure nobody diddled with it while I was sleeping.
2238 */
6183c009 2239 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2240
e22bee78 2241 /*
a9ab775b
TH
2242 * Finish PREP stage. We're guaranteed to have at least one idle
2243 * worker or that someone else has already assumed the manager
2244 * role. This is where @worker starts participating in concurrency
2245 * management if applicable and concurrency management is restored
2246 * after being rebound. See rebind_workers() for details.
e22bee78 2247 */
a9ab775b 2248 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2249
2250 do {
c8e55f36 2251 struct work_struct *work =
bd7bdd43 2252 list_first_entry(&pool->worklist,
c8e55f36
TH
2253 struct work_struct, entry);
2254
2255 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2256 /* optimization path, not strictly necessary */
2257 process_one_work(worker, work);
2258 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2259 process_scheduled_works(worker);
c8e55f36
TH
2260 } else {
2261 move_linked_works(work, &worker->scheduled, NULL);
2262 process_scheduled_works(worker);
affee4b2 2263 }
63d95a91 2264 } while (keep_working(pool));
e22bee78
TH
2265
2266 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2267sleep:
63d95a91 2268 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2269 goto recheck;
d313dd85 2270
c8e55f36 2271 /*
d565ed63
TH
2272 * pool->lock is held and there's no work to process and no need to
2273 * manage, sleep. Workers are woken up only while holding
2274 * pool->lock or from local cpu, so setting the current state
2275 * before releasing pool->lock is enough to prevent losing any
2276 * event.
c8e55f36
TH
2277 */
2278 worker_enter_idle(worker);
2279 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2280 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2281 schedule();
2282 goto woke_up;
1da177e4
LT
2283}
2284
e22bee78
TH
2285/**
2286 * rescuer_thread - the rescuer thread function
111c225a 2287 * @__rescuer: self
e22bee78
TH
2288 *
2289 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2290 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2291 *
706026c2 2292 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2293 * worker which uses GFP_KERNEL allocation which has slight chance of
2294 * developing into deadlock if some works currently on the same queue
2295 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2296 * the problem rescuer solves.
2297 *
706026c2
TH
2298 * When such condition is possible, the pool summons rescuers of all
2299 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2300 * those works so that forward progress can be guaranteed.
2301 *
2302 * This should happen rarely.
2303 */
111c225a 2304static int rescuer_thread(void *__rescuer)
e22bee78 2305{
111c225a
TH
2306 struct worker *rescuer = __rescuer;
2307 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2308 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2309
2310 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2311
2312 /*
2313 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2314 * doesn't participate in concurrency management.
2315 */
2316 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2317repeat:
2318 set_current_state(TASK_INTERRUPTIBLE);
2319
412d32e6
MG
2320 if (kthread_should_stop()) {
2321 __set_current_state(TASK_RUNNING);
111c225a 2322 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2323 return 0;
412d32e6 2324 }
e22bee78 2325
493a1724 2326 /* see whether any pwq is asking for help */
2e109a28 2327 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2328
2329 while (!list_empty(&wq->maydays)) {
2330 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2331 struct pool_workqueue, mayday_node);
112202d9 2332 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2333 struct work_struct *work, *n;
2334
2335 __set_current_state(TASK_RUNNING);
493a1724
TH
2336 list_del_init(&pwq->mayday_node);
2337
2e109a28 2338 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2339
2340 /* migrate to the target cpu if possible */
f36dc67b 2341 worker_maybe_bind_and_lock(pool);
b3104104 2342 rescuer->pool = pool;
e22bee78
TH
2343
2344 /*
2345 * Slurp in all works issued via this workqueue and
2346 * process'em.
2347 */
6183c009 2348 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2349 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2350 if (get_work_pwq(work) == pwq)
e22bee78
TH
2351 move_linked_works(work, scheduled, &n);
2352
2353 process_scheduled_works(rescuer);
7576958a
TH
2354
2355 /*
d565ed63 2356 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2357 * regular worker; otherwise, we end up with 0 concurrency
2358 * and stalling the execution.
2359 */
63d95a91
TH
2360 if (keep_working(pool))
2361 wake_up_worker(pool);
7576958a 2362
b3104104 2363 rescuer->pool = NULL;
493a1724 2364 spin_unlock(&pool->lock);
2e109a28 2365 spin_lock(&wq_mayday_lock);
e22bee78
TH
2366 }
2367
2e109a28 2368 spin_unlock_irq(&wq_mayday_lock);
493a1724 2369
111c225a
TH
2370 /* rescuers should never participate in concurrency management */
2371 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2372 schedule();
2373 goto repeat;
1da177e4
LT
2374}
2375
fc2e4d70
ON
2376struct wq_barrier {
2377 struct work_struct work;
2378 struct completion done;
2379};
2380
2381static void wq_barrier_func(struct work_struct *work)
2382{
2383 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2384 complete(&barr->done);
2385}
2386
4690c4ab
TH
2387/**
2388 * insert_wq_barrier - insert a barrier work
112202d9 2389 * @pwq: pwq to insert barrier into
4690c4ab 2390 * @barr: wq_barrier to insert
affee4b2
TH
2391 * @target: target work to attach @barr to
2392 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2393 *
affee4b2
TH
2394 * @barr is linked to @target such that @barr is completed only after
2395 * @target finishes execution. Please note that the ordering
2396 * guarantee is observed only with respect to @target and on the local
2397 * cpu.
2398 *
2399 * Currently, a queued barrier can't be canceled. This is because
2400 * try_to_grab_pending() can't determine whether the work to be
2401 * grabbed is at the head of the queue and thus can't clear LINKED
2402 * flag of the previous work while there must be a valid next work
2403 * after a work with LINKED flag set.
2404 *
2405 * Note that when @worker is non-NULL, @target may be modified
112202d9 2406 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2407 *
2408 * CONTEXT:
d565ed63 2409 * spin_lock_irq(pool->lock).
4690c4ab 2410 */
112202d9 2411static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2412 struct wq_barrier *barr,
2413 struct work_struct *target, struct worker *worker)
fc2e4d70 2414{
affee4b2
TH
2415 struct list_head *head;
2416 unsigned int linked = 0;
2417
dc186ad7 2418 /*
d565ed63 2419 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2420 * as we know for sure that this will not trigger any of the
2421 * checks and call back into the fixup functions where we
2422 * might deadlock.
2423 */
ca1cab37 2424 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2425 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2426 init_completion(&barr->done);
83c22520 2427
affee4b2
TH
2428 /*
2429 * If @target is currently being executed, schedule the
2430 * barrier to the worker; otherwise, put it after @target.
2431 */
2432 if (worker)
2433 head = worker->scheduled.next;
2434 else {
2435 unsigned long *bits = work_data_bits(target);
2436
2437 head = target->entry.next;
2438 /* there can already be other linked works, inherit and set */
2439 linked = *bits & WORK_STRUCT_LINKED;
2440 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2441 }
2442
dc186ad7 2443 debug_work_activate(&barr->work);
112202d9 2444 insert_work(pwq, &barr->work, head,
affee4b2 2445 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2446}
2447
73f53c4a 2448/**
112202d9 2449 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2450 * @wq: workqueue being flushed
2451 * @flush_color: new flush color, < 0 for no-op
2452 * @work_color: new work color, < 0 for no-op
2453 *
112202d9 2454 * Prepare pwqs for workqueue flushing.
73f53c4a 2455 *
112202d9
TH
2456 * If @flush_color is non-negative, flush_color on all pwqs should be
2457 * -1. If no pwq has in-flight commands at the specified color, all
2458 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2459 * has in flight commands, its pwq->flush_color is set to
2460 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2461 * wakeup logic is armed and %true is returned.
2462 *
2463 * The caller should have initialized @wq->first_flusher prior to
2464 * calling this function with non-negative @flush_color. If
2465 * @flush_color is negative, no flush color update is done and %false
2466 * is returned.
2467 *
112202d9 2468 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2469 * work_color which is previous to @work_color and all will be
2470 * advanced to @work_color.
2471 *
2472 * CONTEXT:
3c25a55d 2473 * mutex_lock(wq->mutex).
73f53c4a
TH
2474 *
2475 * RETURNS:
2476 * %true if @flush_color >= 0 and there's something to flush. %false
2477 * otherwise.
2478 */
112202d9 2479static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2480 int flush_color, int work_color)
1da177e4 2481{
73f53c4a 2482 bool wait = false;
49e3cf44 2483 struct pool_workqueue *pwq;
1da177e4 2484
73f53c4a 2485 if (flush_color >= 0) {
6183c009 2486 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2487 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2488 }
2355b70f 2489
49e3cf44 2490 for_each_pwq(pwq, wq) {
112202d9 2491 struct worker_pool *pool = pwq->pool;
fc2e4d70 2492
b09f4fd3 2493 spin_lock_irq(&pool->lock);
83c22520 2494
73f53c4a 2495 if (flush_color >= 0) {
6183c009 2496 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2497
112202d9
TH
2498 if (pwq->nr_in_flight[flush_color]) {
2499 pwq->flush_color = flush_color;
2500 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2501 wait = true;
2502 }
2503 }
1da177e4 2504
73f53c4a 2505 if (work_color >= 0) {
6183c009 2506 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2507 pwq->work_color = work_color;
73f53c4a 2508 }
1da177e4 2509
b09f4fd3 2510 spin_unlock_irq(&pool->lock);
1da177e4 2511 }
2355b70f 2512
112202d9 2513 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2514 complete(&wq->first_flusher->done);
14441960 2515
73f53c4a 2516 return wait;
1da177e4
LT
2517}
2518
0fcb78c2 2519/**
1da177e4 2520 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2521 * @wq: workqueue to flush
1da177e4 2522 *
c5aa87bb
TH
2523 * This function sleeps until all work items which were queued on entry
2524 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2525 */
7ad5b3a5 2526void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2527{
73f53c4a
TH
2528 struct wq_flusher this_flusher = {
2529 .list = LIST_HEAD_INIT(this_flusher.list),
2530 .flush_color = -1,
2531 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2532 };
2533 int next_color;
1da177e4 2534
3295f0ef
IM
2535 lock_map_acquire(&wq->lockdep_map);
2536 lock_map_release(&wq->lockdep_map);
73f53c4a 2537
3c25a55d 2538 mutex_lock(&wq->mutex);
73f53c4a
TH
2539
2540 /*
2541 * Start-to-wait phase
2542 */
2543 next_color = work_next_color(wq->work_color);
2544
2545 if (next_color != wq->flush_color) {
2546 /*
2547 * Color space is not full. The current work_color
2548 * becomes our flush_color and work_color is advanced
2549 * by one.
2550 */
6183c009 2551 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2552 this_flusher.flush_color = wq->work_color;
2553 wq->work_color = next_color;
2554
2555 if (!wq->first_flusher) {
2556 /* no flush in progress, become the first flusher */
6183c009 2557 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2558
2559 wq->first_flusher = &this_flusher;
2560
112202d9 2561 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2562 wq->work_color)) {
2563 /* nothing to flush, done */
2564 wq->flush_color = next_color;
2565 wq->first_flusher = NULL;
2566 goto out_unlock;
2567 }
2568 } else {
2569 /* wait in queue */
6183c009 2570 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2571 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2572 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2573 }
2574 } else {
2575 /*
2576 * Oops, color space is full, wait on overflow queue.
2577 * The next flush completion will assign us
2578 * flush_color and transfer to flusher_queue.
2579 */
2580 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2581 }
2582
3c25a55d 2583 mutex_unlock(&wq->mutex);
73f53c4a
TH
2584
2585 wait_for_completion(&this_flusher.done);
2586
2587 /*
2588 * Wake-up-and-cascade phase
2589 *
2590 * First flushers are responsible for cascading flushes and
2591 * handling overflow. Non-first flushers can simply return.
2592 */
2593 if (wq->first_flusher != &this_flusher)
2594 return;
2595
3c25a55d 2596 mutex_lock(&wq->mutex);
73f53c4a 2597
4ce48b37
TH
2598 /* we might have raced, check again with mutex held */
2599 if (wq->first_flusher != &this_flusher)
2600 goto out_unlock;
2601
73f53c4a
TH
2602 wq->first_flusher = NULL;
2603
6183c009
TH
2604 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2606
2607 while (true) {
2608 struct wq_flusher *next, *tmp;
2609
2610 /* complete all the flushers sharing the current flush color */
2611 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2612 if (next->flush_color != wq->flush_color)
2613 break;
2614 list_del_init(&next->list);
2615 complete(&next->done);
2616 }
2617
6183c009
TH
2618 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2619 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2620
2621 /* this flush_color is finished, advance by one */
2622 wq->flush_color = work_next_color(wq->flush_color);
2623
2624 /* one color has been freed, handle overflow queue */
2625 if (!list_empty(&wq->flusher_overflow)) {
2626 /*
2627 * Assign the same color to all overflowed
2628 * flushers, advance work_color and append to
2629 * flusher_queue. This is the start-to-wait
2630 * phase for these overflowed flushers.
2631 */
2632 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2633 tmp->flush_color = wq->work_color;
2634
2635 wq->work_color = work_next_color(wq->work_color);
2636
2637 list_splice_tail_init(&wq->flusher_overflow,
2638 &wq->flusher_queue);
112202d9 2639 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2640 }
2641
2642 if (list_empty(&wq->flusher_queue)) {
6183c009 2643 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2644 break;
2645 }
2646
2647 /*
2648 * Need to flush more colors. Make the next flusher
112202d9 2649 * the new first flusher and arm pwqs.
73f53c4a 2650 */
6183c009
TH
2651 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2652 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2653
2654 list_del_init(&next->list);
2655 wq->first_flusher = next;
2656
112202d9 2657 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2658 break;
2659
2660 /*
2661 * Meh... this color is already done, clear first
2662 * flusher and repeat cascading.
2663 */
2664 wq->first_flusher = NULL;
2665 }
2666
2667out_unlock:
3c25a55d 2668 mutex_unlock(&wq->mutex);
1da177e4 2669}
ae90dd5d 2670EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2671
9c5a2ba7
TH
2672/**
2673 * drain_workqueue - drain a workqueue
2674 * @wq: workqueue to drain
2675 *
2676 * Wait until the workqueue becomes empty. While draining is in progress,
2677 * only chain queueing is allowed. IOW, only currently pending or running
2678 * work items on @wq can queue further work items on it. @wq is flushed
2679 * repeatedly until it becomes empty. The number of flushing is detemined
2680 * by the depth of chaining and should be relatively short. Whine if it
2681 * takes too long.
2682 */
2683void drain_workqueue(struct workqueue_struct *wq)
2684{
2685 unsigned int flush_cnt = 0;
49e3cf44 2686 struct pool_workqueue *pwq;
9c5a2ba7
TH
2687
2688 /*
2689 * __queue_work() needs to test whether there are drainers, is much
2690 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2691 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2692 */
87fc741e 2693 mutex_lock(&wq->mutex);
9c5a2ba7 2694 if (!wq->nr_drainers++)
618b01eb 2695 wq->flags |= __WQ_DRAINING;
87fc741e 2696 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2697reflush:
2698 flush_workqueue(wq);
2699
b09f4fd3 2700 mutex_lock(&wq->mutex);
76af4d93 2701
49e3cf44 2702 for_each_pwq(pwq, wq) {
fa2563e4 2703 bool drained;
9c5a2ba7 2704
b09f4fd3 2705 spin_lock_irq(&pwq->pool->lock);
112202d9 2706 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2707 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2708
2709 if (drained)
9c5a2ba7
TH
2710 continue;
2711
2712 if (++flush_cnt == 10 ||
2713 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2714 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2715 wq->name, flush_cnt);
76af4d93 2716
b09f4fd3 2717 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2718 goto reflush;
2719 }
2720
9c5a2ba7 2721 if (!--wq->nr_drainers)
618b01eb 2722 wq->flags &= ~__WQ_DRAINING;
87fc741e 2723 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2724}
2725EXPORT_SYMBOL_GPL(drain_workqueue);
2726
606a5020 2727static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2728{
affee4b2 2729 struct worker *worker = NULL;
c9e7cf27 2730 struct worker_pool *pool;
112202d9 2731 struct pool_workqueue *pwq;
db700897
ON
2732
2733 might_sleep();
fa1b54e6
TH
2734
2735 local_irq_disable();
c9e7cf27 2736 pool = get_work_pool(work);
fa1b54e6
TH
2737 if (!pool) {
2738 local_irq_enable();
baf59022 2739 return false;
fa1b54e6 2740 }
db700897 2741
fa1b54e6 2742 spin_lock(&pool->lock);
0b3dae68 2743 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2744 pwq = get_work_pwq(work);
2745 if (pwq) {
2746 if (unlikely(pwq->pool != pool))
4690c4ab 2747 goto already_gone;
606a5020 2748 } else {
c9e7cf27 2749 worker = find_worker_executing_work(pool, work);
affee4b2 2750 if (!worker)
4690c4ab 2751 goto already_gone;
112202d9 2752 pwq = worker->current_pwq;
606a5020 2753 }
db700897 2754
112202d9 2755 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2756 spin_unlock_irq(&pool->lock);
7a22ad75 2757
e159489b
TH
2758 /*
2759 * If @max_active is 1 or rescuer is in use, flushing another work
2760 * item on the same workqueue may lead to deadlock. Make sure the
2761 * flusher is not running on the same workqueue by verifying write
2762 * access.
2763 */
493008a8 2764 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2765 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2766 else
112202d9
TH
2767 lock_map_acquire_read(&pwq->wq->lockdep_map);
2768 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2769
401a8d04 2770 return true;
4690c4ab 2771already_gone:
d565ed63 2772 spin_unlock_irq(&pool->lock);
401a8d04 2773 return false;
db700897 2774}
baf59022
TH
2775
2776/**
2777 * flush_work - wait for a work to finish executing the last queueing instance
2778 * @work: the work to flush
2779 *
606a5020
TH
2780 * Wait until @work has finished execution. @work is guaranteed to be idle
2781 * on return if it hasn't been requeued since flush started.
baf59022
TH
2782 *
2783 * RETURNS:
2784 * %true if flush_work() waited for the work to finish execution,
2785 * %false if it was already idle.
2786 */
2787bool flush_work(struct work_struct *work)
2788{
2789 struct wq_barrier barr;
2790
0976dfc1
SB
2791 lock_map_acquire(&work->lockdep_map);
2792 lock_map_release(&work->lockdep_map);
2793
606a5020 2794 if (start_flush_work(work, &barr)) {
401a8d04
TH
2795 wait_for_completion(&barr.done);
2796 destroy_work_on_stack(&barr.work);
2797 return true;
606a5020 2798 } else {
401a8d04 2799 return false;
6e84d644 2800 }
6e84d644 2801}
606a5020 2802EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2803
36e227d2 2804static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2805{
bbb68dfa 2806 unsigned long flags;
1f1f642e
ON
2807 int ret;
2808
2809 do {
bbb68dfa
TH
2810 ret = try_to_grab_pending(work, is_dwork, &flags);
2811 /*
2812 * If someone else is canceling, wait for the same event it
2813 * would be waiting for before retrying.
2814 */
2815 if (unlikely(ret == -ENOENT))
606a5020 2816 flush_work(work);
1f1f642e
ON
2817 } while (unlikely(ret < 0));
2818
bbb68dfa
TH
2819 /* tell other tasks trying to grab @work to back off */
2820 mark_work_canceling(work);
2821 local_irq_restore(flags);
2822
606a5020 2823 flush_work(work);
7a22ad75 2824 clear_work_data(work);
1f1f642e
ON
2825 return ret;
2826}
2827
6e84d644 2828/**
401a8d04
TH
2829 * cancel_work_sync - cancel a work and wait for it to finish
2830 * @work: the work to cancel
6e84d644 2831 *
401a8d04
TH
2832 * Cancel @work and wait for its execution to finish. This function
2833 * can be used even if the work re-queues itself or migrates to
2834 * another workqueue. On return from this function, @work is
2835 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2836 *
401a8d04
TH
2837 * cancel_work_sync(&delayed_work->work) must not be used for
2838 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2839 *
401a8d04 2840 * The caller must ensure that the workqueue on which @work was last
6e84d644 2841 * queued can't be destroyed before this function returns.
401a8d04
TH
2842 *
2843 * RETURNS:
2844 * %true if @work was pending, %false otherwise.
6e84d644 2845 */
401a8d04 2846bool cancel_work_sync(struct work_struct *work)
6e84d644 2847{
36e227d2 2848 return __cancel_work_timer(work, false);
b89deed3 2849}
28e53bdd 2850EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2851
6e84d644 2852/**
401a8d04
TH
2853 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2854 * @dwork: the delayed work to flush
6e84d644 2855 *
401a8d04
TH
2856 * Delayed timer is cancelled and the pending work is queued for
2857 * immediate execution. Like flush_work(), this function only
2858 * considers the last queueing instance of @dwork.
1f1f642e 2859 *
401a8d04
TH
2860 * RETURNS:
2861 * %true if flush_work() waited for the work to finish execution,
2862 * %false if it was already idle.
6e84d644 2863 */
401a8d04
TH
2864bool flush_delayed_work(struct delayed_work *dwork)
2865{
8930caba 2866 local_irq_disable();
401a8d04 2867 if (del_timer_sync(&dwork->timer))
60c057bc 2868 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2869 local_irq_enable();
401a8d04
TH
2870 return flush_work(&dwork->work);
2871}
2872EXPORT_SYMBOL(flush_delayed_work);
2873
09383498 2874/**
57b30ae7
TH
2875 * cancel_delayed_work - cancel a delayed work
2876 * @dwork: delayed_work to cancel
09383498 2877 *
57b30ae7
TH
2878 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2879 * and canceled; %false if wasn't pending. Note that the work callback
2880 * function may still be running on return, unless it returns %true and the
2881 * work doesn't re-arm itself. Explicitly flush or use
2882 * cancel_delayed_work_sync() to wait on it.
09383498 2883 *
57b30ae7 2884 * This function is safe to call from any context including IRQ handler.
09383498 2885 */
57b30ae7 2886bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2887{
57b30ae7
TH
2888 unsigned long flags;
2889 int ret;
2890
2891 do {
2892 ret = try_to_grab_pending(&dwork->work, true, &flags);
2893 } while (unlikely(ret == -EAGAIN));
2894
2895 if (unlikely(ret < 0))
2896 return false;
2897
7c3eed5c
TH
2898 set_work_pool_and_clear_pending(&dwork->work,
2899 get_work_pool_id(&dwork->work));
57b30ae7 2900 local_irq_restore(flags);
c0158ca6 2901 return ret;
09383498 2902}
57b30ae7 2903EXPORT_SYMBOL(cancel_delayed_work);
09383498 2904
401a8d04
TH
2905/**
2906 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2907 * @dwork: the delayed work cancel
2908 *
2909 * This is cancel_work_sync() for delayed works.
2910 *
2911 * RETURNS:
2912 * %true if @dwork was pending, %false otherwise.
2913 */
2914bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2915{
36e227d2 2916 return __cancel_work_timer(&dwork->work, true);
6e84d644 2917}
f5a421a4 2918EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2919
b6136773 2920/**
31ddd871 2921 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2922 * @func: the function to call
b6136773 2923 *
31ddd871
TH
2924 * schedule_on_each_cpu() executes @func on each online CPU using the
2925 * system workqueue and blocks until all CPUs have completed.
b6136773 2926 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2927 *
2928 * RETURNS:
2929 * 0 on success, -errno on failure.
b6136773 2930 */
65f27f38 2931int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2932{
2933 int cpu;
38f51568 2934 struct work_struct __percpu *works;
15316ba8 2935
b6136773
AM
2936 works = alloc_percpu(struct work_struct);
2937 if (!works)
15316ba8 2938 return -ENOMEM;
b6136773 2939
93981800
TH
2940 get_online_cpus();
2941
15316ba8 2942 for_each_online_cpu(cpu) {
9bfb1839
IM
2943 struct work_struct *work = per_cpu_ptr(works, cpu);
2944
2945 INIT_WORK(work, func);
b71ab8c2 2946 schedule_work_on(cpu, work);
65a64464 2947 }
93981800
TH
2948
2949 for_each_online_cpu(cpu)
2950 flush_work(per_cpu_ptr(works, cpu));
2951
95402b38 2952 put_online_cpus();
b6136773 2953 free_percpu(works);
15316ba8
CL
2954 return 0;
2955}
2956
eef6a7d5
AS
2957/**
2958 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2959 *
2960 * Forces execution of the kernel-global workqueue and blocks until its
2961 * completion.
2962 *
2963 * Think twice before calling this function! It's very easy to get into
2964 * trouble if you don't take great care. Either of the following situations
2965 * will lead to deadlock:
2966 *
2967 * One of the work items currently on the workqueue needs to acquire
2968 * a lock held by your code or its caller.
2969 *
2970 * Your code is running in the context of a work routine.
2971 *
2972 * They will be detected by lockdep when they occur, but the first might not
2973 * occur very often. It depends on what work items are on the workqueue and
2974 * what locks they need, which you have no control over.
2975 *
2976 * In most situations flushing the entire workqueue is overkill; you merely
2977 * need to know that a particular work item isn't queued and isn't running.
2978 * In such cases you should use cancel_delayed_work_sync() or
2979 * cancel_work_sync() instead.
2980 */
1da177e4
LT
2981void flush_scheduled_work(void)
2982{
d320c038 2983 flush_workqueue(system_wq);
1da177e4 2984}
ae90dd5d 2985EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2986
1fa44eca
JB
2987/**
2988 * execute_in_process_context - reliably execute the routine with user context
2989 * @fn: the function to execute
1fa44eca
JB
2990 * @ew: guaranteed storage for the execute work structure (must
2991 * be available when the work executes)
2992 *
2993 * Executes the function immediately if process context is available,
2994 * otherwise schedules the function for delayed execution.
2995 *
2996 * Returns: 0 - function was executed
2997 * 1 - function was scheduled for execution
2998 */
65f27f38 2999int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3000{
3001 if (!in_interrupt()) {
65f27f38 3002 fn(&ew->work);
1fa44eca
JB
3003 return 0;
3004 }
3005
65f27f38 3006 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3007 schedule_work(&ew->work);
3008
3009 return 1;
3010}
3011EXPORT_SYMBOL_GPL(execute_in_process_context);
3012
226223ab
TH
3013#ifdef CONFIG_SYSFS
3014/*
3015 * Workqueues with WQ_SYSFS flag set is visible to userland via
3016 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3017 * following attributes.
3018 *
3019 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3020 * max_active RW int : maximum number of in-flight work items
3021 *
3022 * Unbound workqueues have the following extra attributes.
3023 *
3024 * id RO int : the associated pool ID
3025 * nice RW int : nice value of the workers
3026 * cpumask RW mask : bitmask of allowed CPUs for the workers
3027 */
3028struct wq_device {
3029 struct workqueue_struct *wq;
3030 struct device dev;
3031};
3032
3033static struct workqueue_struct *dev_to_wq(struct device *dev)
3034{
3035 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3036
3037 return wq_dev->wq;
3038}
3039
3040static ssize_t wq_per_cpu_show(struct device *dev,
3041 struct device_attribute *attr, char *buf)
3042{
3043 struct workqueue_struct *wq = dev_to_wq(dev);
3044
3045 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3046}
3047
3048static ssize_t wq_max_active_show(struct device *dev,
3049 struct device_attribute *attr, char *buf)
3050{
3051 struct workqueue_struct *wq = dev_to_wq(dev);
3052
3053 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3054}
3055
3056static ssize_t wq_max_active_store(struct device *dev,
3057 struct device_attribute *attr,
3058 const char *buf, size_t count)
3059{
3060 struct workqueue_struct *wq = dev_to_wq(dev);
3061 int val;
3062
3063 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3064 return -EINVAL;
3065
3066 workqueue_set_max_active(wq, val);
3067 return count;
3068}
3069
3070static struct device_attribute wq_sysfs_attrs[] = {
3071 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3072 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3073 __ATTR_NULL,
3074};
3075
3076static ssize_t wq_pool_id_show(struct device *dev,
3077 struct device_attribute *attr, char *buf)
3078{
3079 struct workqueue_struct *wq = dev_to_wq(dev);
3080 struct worker_pool *pool;
3081 int written;
3082
3083 rcu_read_lock_sched();
3084 pool = first_pwq(wq)->pool;
3085 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3086 rcu_read_unlock_sched();
3087
3088 return written;
3089}
3090
3091static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3092 char *buf)
3093{
3094 struct workqueue_struct *wq = dev_to_wq(dev);
3095 int written;
3096
6029a918
TH
3097 mutex_lock(&wq->mutex);
3098 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3099 mutex_unlock(&wq->mutex);
226223ab
TH
3100
3101 return written;
3102}
3103
3104/* prepare workqueue_attrs for sysfs store operations */
3105static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3106{
3107 struct workqueue_attrs *attrs;
3108
3109 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3110 if (!attrs)
3111 return NULL;
3112
6029a918
TH
3113 mutex_lock(&wq->mutex);
3114 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3115 mutex_unlock(&wq->mutex);
226223ab
TH
3116 return attrs;
3117}
3118
3119static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3120 const char *buf, size_t count)
3121{
3122 struct workqueue_struct *wq = dev_to_wq(dev);
3123 struct workqueue_attrs *attrs;
3124 int ret;
3125
3126 attrs = wq_sysfs_prep_attrs(wq);
3127 if (!attrs)
3128 return -ENOMEM;
3129
3130 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3131 attrs->nice >= -20 && attrs->nice <= 19)
3132 ret = apply_workqueue_attrs(wq, attrs);
3133 else
3134 ret = -EINVAL;
3135
3136 free_workqueue_attrs(attrs);
3137 return ret ?: count;
3138}
3139
3140static ssize_t wq_cpumask_show(struct device *dev,
3141 struct device_attribute *attr, char *buf)
3142{
3143 struct workqueue_struct *wq = dev_to_wq(dev);
3144 int written;
3145
6029a918
TH
3146 mutex_lock(&wq->mutex);
3147 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3148 mutex_unlock(&wq->mutex);
226223ab
TH
3149
3150 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3151 return written;
3152}
3153
3154static ssize_t wq_cpumask_store(struct device *dev,
3155 struct device_attribute *attr,
3156 const char *buf, size_t count)
3157{
3158 struct workqueue_struct *wq = dev_to_wq(dev);
3159 struct workqueue_attrs *attrs;
3160 int ret;
3161
3162 attrs = wq_sysfs_prep_attrs(wq);
3163 if (!attrs)
3164 return -ENOMEM;
3165
3166 ret = cpumask_parse(buf, attrs->cpumask);
3167 if (!ret)
3168 ret = apply_workqueue_attrs(wq, attrs);
3169
3170 free_workqueue_attrs(attrs);
3171 return ret ?: count;
3172}
3173
3174static struct device_attribute wq_sysfs_unbound_attrs[] = {
3175 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3176 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3177 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3178 __ATTR_NULL,
3179};
3180
3181static struct bus_type wq_subsys = {
3182 .name = "workqueue",
3183 .dev_attrs = wq_sysfs_attrs,
3184};
3185
3186static int __init wq_sysfs_init(void)
3187{
3188 return subsys_virtual_register(&wq_subsys, NULL);
3189}
3190core_initcall(wq_sysfs_init);
3191
3192static void wq_device_release(struct device *dev)
3193{
3194 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3195
3196 kfree(wq_dev);
3197}
3198
3199/**
3200 * workqueue_sysfs_register - make a workqueue visible in sysfs
3201 * @wq: the workqueue to register
3202 *
3203 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3204 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3205 * which is the preferred method.
3206 *
3207 * Workqueue user should use this function directly iff it wants to apply
3208 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3209 * apply_workqueue_attrs() may race against userland updating the
3210 * attributes.
3211 *
3212 * Returns 0 on success, -errno on failure.
3213 */
3214int workqueue_sysfs_register(struct workqueue_struct *wq)
3215{
3216 struct wq_device *wq_dev;
3217 int ret;
3218
3219 /*
3220 * Adjusting max_active or creating new pwqs by applyting
3221 * attributes breaks ordering guarantee. Disallow exposing ordered
3222 * workqueues.
3223 */
3224 if (WARN_ON(wq->flags & __WQ_ORDERED))
3225 return -EINVAL;
3226
3227 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3228 if (!wq_dev)
3229 return -ENOMEM;
3230
3231 wq_dev->wq = wq;
3232 wq_dev->dev.bus = &wq_subsys;
3233 wq_dev->dev.init_name = wq->name;
3234 wq_dev->dev.release = wq_device_release;
3235
3236 /*
3237 * unbound_attrs are created separately. Suppress uevent until
3238 * everything is ready.
3239 */
3240 dev_set_uevent_suppress(&wq_dev->dev, true);
3241
3242 ret = device_register(&wq_dev->dev);
3243 if (ret) {
3244 kfree(wq_dev);
3245 wq->wq_dev = NULL;
3246 return ret;
3247 }
3248
3249 if (wq->flags & WQ_UNBOUND) {
3250 struct device_attribute *attr;
3251
3252 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3253 ret = device_create_file(&wq_dev->dev, attr);
3254 if (ret) {
3255 device_unregister(&wq_dev->dev);
3256 wq->wq_dev = NULL;
3257 return ret;
3258 }
3259 }
3260 }
3261
3262 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3263 return 0;
3264}
3265
3266/**
3267 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3268 * @wq: the workqueue to unregister
3269 *
3270 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3271 */
3272static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3273{
3274 struct wq_device *wq_dev = wq->wq_dev;
3275
3276 if (!wq->wq_dev)
3277 return;
3278
3279 wq->wq_dev = NULL;
3280 device_unregister(&wq_dev->dev);
3281}
3282#else /* CONFIG_SYSFS */
3283static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3284#endif /* CONFIG_SYSFS */
3285
7a4e344c
TH
3286/**
3287 * free_workqueue_attrs - free a workqueue_attrs
3288 * @attrs: workqueue_attrs to free
3289 *
3290 * Undo alloc_workqueue_attrs().
3291 */
3292void free_workqueue_attrs(struct workqueue_attrs *attrs)
3293{
3294 if (attrs) {
3295 free_cpumask_var(attrs->cpumask);
3296 kfree(attrs);
3297 }
3298}
3299
3300/**
3301 * alloc_workqueue_attrs - allocate a workqueue_attrs
3302 * @gfp_mask: allocation mask to use
3303 *
3304 * Allocate a new workqueue_attrs, initialize with default settings and
3305 * return it. Returns NULL on failure.
3306 */
3307struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3308{
3309 struct workqueue_attrs *attrs;
3310
3311 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3312 if (!attrs)
3313 goto fail;
3314 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3315 goto fail;
3316
13e2e556 3317 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3318 return attrs;
3319fail:
3320 free_workqueue_attrs(attrs);
3321 return NULL;
3322}
3323
29c91e99
TH
3324static void copy_workqueue_attrs(struct workqueue_attrs *to,
3325 const struct workqueue_attrs *from)
3326{
3327 to->nice = from->nice;
3328 cpumask_copy(to->cpumask, from->cpumask);
3329}
3330
29c91e99
TH
3331/* hash value of the content of @attr */
3332static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3333{
3334 u32 hash = 0;
3335
3336 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3337 hash = jhash(cpumask_bits(attrs->cpumask),
3338 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3339 return hash;
3340}
3341
3342/* content equality test */
3343static bool wqattrs_equal(const struct workqueue_attrs *a,
3344 const struct workqueue_attrs *b)
3345{
3346 if (a->nice != b->nice)
3347 return false;
3348 if (!cpumask_equal(a->cpumask, b->cpumask))
3349 return false;
3350 return true;
3351}
3352
7a4e344c
TH
3353/**
3354 * init_worker_pool - initialize a newly zalloc'd worker_pool
3355 * @pool: worker_pool to initialize
3356 *
3357 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3358 * Returns 0 on success, -errno on failure. Even on failure, all fields
3359 * inside @pool proper are initialized and put_unbound_pool() can be called
3360 * on @pool safely to release it.
7a4e344c
TH
3361 */
3362static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3363{
3364 spin_lock_init(&pool->lock);
29c91e99
TH
3365 pool->id = -1;
3366 pool->cpu = -1;
f3f90ad4 3367 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3368 pool->flags |= POOL_DISASSOCIATED;
3369 INIT_LIST_HEAD(&pool->worklist);
3370 INIT_LIST_HEAD(&pool->idle_list);
3371 hash_init(pool->busy_hash);
3372
3373 init_timer_deferrable(&pool->idle_timer);
3374 pool->idle_timer.function = idle_worker_timeout;
3375 pool->idle_timer.data = (unsigned long)pool;
3376
3377 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3378 (unsigned long)pool);
3379
3380 mutex_init(&pool->manager_arb);
bc3a1afc 3381 mutex_init(&pool->manager_mutex);
822d8405 3382 idr_init(&pool->worker_idr);
7a4e344c 3383
29c91e99
TH
3384 INIT_HLIST_NODE(&pool->hash_node);
3385 pool->refcnt = 1;
3386
3387 /* shouldn't fail above this point */
7a4e344c
TH
3388 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3389 if (!pool->attrs)
3390 return -ENOMEM;
3391 return 0;
4e1a1f9a
TH
3392}
3393
29c91e99
TH
3394static void rcu_free_pool(struct rcu_head *rcu)
3395{
3396 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3397
822d8405 3398 idr_destroy(&pool->worker_idr);
29c91e99
TH
3399 free_workqueue_attrs(pool->attrs);
3400 kfree(pool);
3401}
3402
3403/**
3404 * put_unbound_pool - put a worker_pool
3405 * @pool: worker_pool to put
3406 *
3407 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3408 * safe manner. get_unbound_pool() calls this function on its failure path
3409 * and this function should be able to release pools which went through,
3410 * successfully or not, init_worker_pool().
a892cacc
TH
3411 *
3412 * Should be called with wq_pool_mutex held.
29c91e99
TH
3413 */
3414static void put_unbound_pool(struct worker_pool *pool)
3415{
3416 struct worker *worker;
3417
a892cacc
TH
3418 lockdep_assert_held(&wq_pool_mutex);
3419
3420 if (--pool->refcnt)
29c91e99 3421 return;
29c91e99
TH
3422
3423 /* sanity checks */
3424 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3425 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3426 return;
29c91e99
TH
3427
3428 /* release id and unhash */
3429 if (pool->id >= 0)
3430 idr_remove(&worker_pool_idr, pool->id);
3431 hash_del(&pool->hash_node);
3432
c5aa87bb
TH
3433 /*
3434 * Become the manager and destroy all workers. Grabbing
3435 * manager_arb prevents @pool's workers from blocking on
3436 * manager_mutex.
3437 */
29c91e99 3438 mutex_lock(&pool->manager_arb);
cd549687 3439 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3440 spin_lock_irq(&pool->lock);
3441
3442 while ((worker = first_worker(pool)))
3443 destroy_worker(worker);
3444 WARN_ON(pool->nr_workers || pool->nr_idle);
3445
3446 spin_unlock_irq(&pool->lock);
cd549687 3447 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3448 mutex_unlock(&pool->manager_arb);
3449
3450 /* shut down the timers */
3451 del_timer_sync(&pool->idle_timer);
3452 del_timer_sync(&pool->mayday_timer);
3453
3454 /* sched-RCU protected to allow dereferences from get_work_pool() */
3455 call_rcu_sched(&pool->rcu, rcu_free_pool);
3456}
3457
3458/**
3459 * get_unbound_pool - get a worker_pool with the specified attributes
3460 * @attrs: the attributes of the worker_pool to get
3461 *
3462 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3463 * reference count and return it. If there already is a matching
3464 * worker_pool, it will be used; otherwise, this function attempts to
3465 * create a new one. On failure, returns NULL.
a892cacc
TH
3466 *
3467 * Should be called with wq_pool_mutex held.
29c91e99
TH
3468 */
3469static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3470{
29c91e99
TH
3471 u32 hash = wqattrs_hash(attrs);
3472 struct worker_pool *pool;
f3f90ad4 3473 int node;
29c91e99 3474
a892cacc 3475 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3476
3477 /* do we already have a matching pool? */
29c91e99
TH
3478 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3479 if (wqattrs_equal(pool->attrs, attrs)) {
3480 pool->refcnt++;
3481 goto out_unlock;
3482 }
3483 }
29c91e99
TH
3484
3485 /* nope, create a new one */
3486 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3487 if (!pool || init_worker_pool(pool) < 0)
3488 goto fail;
3489
12ee4fc6
LJ
3490 if (workqueue_freezing)
3491 pool->flags |= POOL_FREEZING;
3492
8864b4e5 3493 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3494 copy_workqueue_attrs(pool->attrs, attrs);
3495
f3f90ad4
TH
3496 /* if cpumask is contained inside a NUMA node, we belong to that node */
3497 if (wq_numa_enabled) {
3498 for_each_node(node) {
3499 if (cpumask_subset(pool->attrs->cpumask,
3500 wq_numa_possible_cpumask[node])) {
3501 pool->node = node;
3502 break;
3503 }
3504 }
3505 }
3506
29c91e99
TH
3507 if (worker_pool_assign_id(pool) < 0)
3508 goto fail;
3509
3510 /* create and start the initial worker */
ebf44d16 3511 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3512 goto fail;
3513
29c91e99 3514 /* install */
29c91e99
TH
3515 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3516out_unlock:
29c91e99
TH
3517 return pool;
3518fail:
29c91e99
TH
3519 if (pool)
3520 put_unbound_pool(pool);
3521 return NULL;
3522}
3523
8864b4e5
TH
3524static void rcu_free_pwq(struct rcu_head *rcu)
3525{
3526 kmem_cache_free(pwq_cache,
3527 container_of(rcu, struct pool_workqueue, rcu));
3528}
3529
3530/*
3531 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3532 * and needs to be destroyed.
3533 */
3534static void pwq_unbound_release_workfn(struct work_struct *work)
3535{
3536 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3537 unbound_release_work);
3538 struct workqueue_struct *wq = pwq->wq;
3539 struct worker_pool *pool = pwq->pool;
bc0caf09 3540 bool is_last;
8864b4e5
TH
3541
3542 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3543 return;
3544
75ccf595 3545 /*
3c25a55d 3546 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3547 * necessary on release but do it anyway. It's easier to verify
3548 * and consistent with the linking path.
3549 */
3c25a55d 3550 mutex_lock(&wq->mutex);
8864b4e5 3551 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3552 is_last = list_empty(&wq->pwqs);
3c25a55d 3553 mutex_unlock(&wq->mutex);
8864b4e5 3554
a892cacc 3555 mutex_lock(&wq_pool_mutex);
8864b4e5 3556 put_unbound_pool(pool);
a892cacc
TH
3557 mutex_unlock(&wq_pool_mutex);
3558
8864b4e5
TH
3559 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3560
3561 /*
3562 * If we're the last pwq going away, @wq is already dead and no one
3563 * is gonna access it anymore. Free it.
3564 */
6029a918
TH
3565 if (is_last) {
3566 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3567 kfree(wq);
6029a918 3568 }
8864b4e5
TH
3569}
3570
0fbd95aa 3571/**
699ce097 3572 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3573 * @pwq: target pool_workqueue
0fbd95aa 3574 *
699ce097
TH
3575 * If @pwq isn't freezing, set @pwq->max_active to the associated
3576 * workqueue's saved_max_active and activate delayed work items
3577 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3578 */
699ce097 3579static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3580{
699ce097
TH
3581 struct workqueue_struct *wq = pwq->wq;
3582 bool freezable = wq->flags & WQ_FREEZABLE;
3583
3584 /* for @wq->saved_max_active */
a357fc03 3585 lockdep_assert_held(&wq->mutex);
699ce097
TH
3586
3587 /* fast exit for non-freezable wqs */
3588 if (!freezable && pwq->max_active == wq->saved_max_active)
3589 return;
3590
a357fc03 3591 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3592
3593 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3594 pwq->max_active = wq->saved_max_active;
0fbd95aa 3595
699ce097
TH
3596 while (!list_empty(&pwq->delayed_works) &&
3597 pwq->nr_active < pwq->max_active)
3598 pwq_activate_first_delayed(pwq);
951a078a
LJ
3599
3600 /*
3601 * Need to kick a worker after thawed or an unbound wq's
3602 * max_active is bumped. It's a slow path. Do it always.
3603 */
3604 wake_up_worker(pwq->pool);
699ce097
TH
3605 } else {
3606 pwq->max_active = 0;
3607 }
3608
a357fc03 3609 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3610}
3611
d2c1d404
TH
3612static void init_and_link_pwq(struct pool_workqueue *pwq,
3613 struct workqueue_struct *wq,
9e8cd2f5
TH
3614 struct worker_pool *pool,
3615 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3616{
3617 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3618
3619 pwq->pool = pool;
3620 pwq->wq = wq;
3621 pwq->flush_color = -1;
8864b4e5 3622 pwq->refcnt = 1;
d2c1d404
TH
3623 INIT_LIST_HEAD(&pwq->delayed_works);
3624 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3625 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3626
3c25a55d 3627 mutex_lock(&wq->mutex);
75ccf595 3628
983ca25e
TH
3629 /*
3630 * Set the matching work_color. This is synchronized with
3c25a55d 3631 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3632 */
9e8cd2f5
TH
3633 if (p_last_pwq)
3634 *p_last_pwq = first_pwq(wq);
75ccf595 3635 pwq->work_color = wq->work_color;
983ca25e
TH
3636
3637 /* sync max_active to the current setting */
3638 pwq_adjust_max_active(pwq);
3639
3640 /* link in @pwq */
9e8cd2f5 3641 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
a357fc03 3642
6029a918
TH
3643 if (wq->flags & WQ_UNBOUND)
3644 copy_workqueue_attrs(wq->unbound_attrs, pool->attrs);
3645
3c25a55d 3646 mutex_unlock(&wq->mutex);
d2c1d404
TH
3647}
3648
9e8cd2f5
TH
3649/**
3650 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3651 * @wq: the target workqueue
3652 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3653 *
3654 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3655 * current attributes, a new pwq is created and made the first pwq which
3656 * will serve all new work items. Older pwqs are released as in-flight
3657 * work items finish. Note that a work item which repeatedly requeues
3658 * itself back-to-back will stay on its current pwq.
3659 *
3660 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3661 * failure.
3662 */
3663int apply_workqueue_attrs(struct workqueue_struct *wq,
3664 const struct workqueue_attrs *attrs)
3665{
13e2e556
TH
3666 struct workqueue_attrs *new_attrs;
3667 struct pool_workqueue *pwq = NULL, *last_pwq;
9e8cd2f5 3668 struct worker_pool *pool;
4862125b 3669 int ret;
9e8cd2f5 3670
8719dcea 3671 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3672 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3673 return -EINVAL;
3674
8719dcea
TH
3675 /* creating multiple pwqs breaks ordering guarantee */
3676 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3677 return -EINVAL;
3678
13e2e556
TH
3679 /* make a copy of @attrs and sanitize it */
3680 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3681 if (!new_attrs)
3682 goto enomem;
3683
3684 copy_workqueue_attrs(new_attrs, attrs);
3685 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3686
a892cacc
TH
3687 mutex_lock(&wq_pool_mutex);
3688
9e8cd2f5 3689 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
a892cacc
TH
3690 if (!pwq) {
3691 mutex_unlock(&wq_pool_mutex);
13e2e556 3692 goto enomem;
a892cacc 3693 }
9e8cd2f5 3694
13e2e556 3695 pool = get_unbound_pool(new_attrs);
a892cacc
TH
3696 if (!pool) {
3697 mutex_unlock(&wq_pool_mutex);
13e2e556 3698 goto enomem;
a892cacc
TH
3699 }
3700
3701 mutex_unlock(&wq_pool_mutex);
9e8cd2f5
TH
3702
3703 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3704 if (last_pwq) {
3705 spin_lock_irq(&last_pwq->pool->lock);
3706 put_pwq(last_pwq);
3707 spin_unlock_irq(&last_pwq->pool->lock);
3708 }
3709
4862125b
TH
3710 ret = 0;
3711 /* fall through */
3712out_free:
3713 free_workqueue_attrs(new_attrs);
3714 return ret;
13e2e556
TH
3715
3716enomem:
3717 kmem_cache_free(pwq_cache, pwq);
4862125b
TH
3718 ret = -ENOMEM;
3719 goto out_free;
9e8cd2f5
TH
3720}
3721
30cdf249 3722static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3723{
49e3cf44 3724 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3725 int cpu;
3726
3727 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3728 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3729 if (!wq->cpu_pwqs)
30cdf249
TH
3730 return -ENOMEM;
3731
3732 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3733 struct pool_workqueue *pwq =
3734 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3735 struct worker_pool *cpu_pools =
f02ae73a 3736 per_cpu(cpu_worker_pools, cpu);
f3421797 3737
9e8cd2f5 3738 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3739 }
9e8cd2f5 3740 return 0;
30cdf249 3741 } else {
9e8cd2f5 3742 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3743 }
0f900049
TH
3744}
3745
f3421797
TH
3746static int wq_clamp_max_active(int max_active, unsigned int flags,
3747 const char *name)
b71ab8c2 3748{
f3421797
TH
3749 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3750
3751 if (max_active < 1 || max_active > lim)
044c782c
VI
3752 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3753 max_active, name, 1, lim);
b71ab8c2 3754
f3421797 3755 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3756}
3757
b196be89 3758struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3759 unsigned int flags,
3760 int max_active,
3761 struct lock_class_key *key,
b196be89 3762 const char *lock_name, ...)
1da177e4 3763{
ecf6881f 3764 va_list args;
1da177e4 3765 struct workqueue_struct *wq;
49e3cf44 3766 struct pool_workqueue *pwq;
b196be89 3767
ecf6881f
TH
3768 /* allocate wq and format name */
3769 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
b196be89 3770 if (!wq)
d2c1d404 3771 return NULL;
b196be89 3772
6029a918
TH
3773 if (flags & WQ_UNBOUND) {
3774 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3775 if (!wq->unbound_attrs)
3776 goto err_free_wq;
3777 }
3778
ecf6881f
TH
3779 va_start(args, lock_name);
3780 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3781 va_end(args);
1da177e4 3782
d320c038 3783 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3784 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3785
b196be89 3786 /* init wq */
97e37d7b 3787 wq->flags = flags;
a0a1a5fd 3788 wq->saved_max_active = max_active;
3c25a55d 3789 mutex_init(&wq->mutex);
112202d9 3790 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3791 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3792 INIT_LIST_HEAD(&wq->flusher_queue);
3793 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3794 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3795
eb13ba87 3796 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3797 INIT_LIST_HEAD(&wq->list);
3af24433 3798
30cdf249 3799 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3800 goto err_free_wq;
1537663f 3801
493008a8
TH
3802 /*
3803 * Workqueues which may be used during memory reclaim should
3804 * have a rescuer to guarantee forward progress.
3805 */
3806 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3807 struct worker *rescuer;
3808
d2c1d404 3809 rescuer = alloc_worker();
e22bee78 3810 if (!rescuer)
d2c1d404 3811 goto err_destroy;
e22bee78 3812
111c225a
TH
3813 rescuer->rescue_wq = wq;
3814 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3815 wq->name);
d2c1d404
TH
3816 if (IS_ERR(rescuer->task)) {
3817 kfree(rescuer);
3818 goto err_destroy;
3819 }
e22bee78 3820
d2c1d404 3821 wq->rescuer = rescuer;
14a40ffc 3822 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3823 wake_up_process(rescuer->task);
3af24433
ON
3824 }
3825
226223ab
TH
3826 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3827 goto err_destroy;
3828
a0a1a5fd 3829 /*
68e13a67
LJ
3830 * wq_pool_mutex protects global freeze state and workqueues list.
3831 * Grab it, adjust max_active and add the new @wq to workqueues
3832 * list.
a0a1a5fd 3833 */
68e13a67 3834 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3835
a357fc03 3836 mutex_lock(&wq->mutex);
699ce097
TH
3837 for_each_pwq(pwq, wq)
3838 pwq_adjust_max_active(pwq);
a357fc03 3839 mutex_unlock(&wq->mutex);
a0a1a5fd 3840
1537663f 3841 list_add(&wq->list, &workqueues);
a0a1a5fd 3842
68e13a67 3843 mutex_unlock(&wq_pool_mutex);
1537663f 3844
3af24433 3845 return wq;
d2c1d404
TH
3846
3847err_free_wq:
6029a918 3848 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3849 kfree(wq);
3850 return NULL;
3851err_destroy:
3852 destroy_workqueue(wq);
4690c4ab 3853 return NULL;
3af24433 3854}
d320c038 3855EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3856
3af24433
ON
3857/**
3858 * destroy_workqueue - safely terminate a workqueue
3859 * @wq: target workqueue
3860 *
3861 * Safely destroy a workqueue. All work currently pending will be done first.
3862 */
3863void destroy_workqueue(struct workqueue_struct *wq)
3864{
49e3cf44 3865 struct pool_workqueue *pwq;
3af24433 3866
9c5a2ba7
TH
3867 /* drain it before proceeding with destruction */
3868 drain_workqueue(wq);
c8efcc25 3869
6183c009 3870 /* sanity checks */
b09f4fd3 3871 mutex_lock(&wq->mutex);
49e3cf44 3872 for_each_pwq(pwq, wq) {
6183c009
TH
3873 int i;
3874
76af4d93
TH
3875 for (i = 0; i < WORK_NR_COLORS; i++) {
3876 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3877 mutex_unlock(&wq->mutex);
6183c009 3878 return;
76af4d93
TH
3879 }
3880 }
3881
8864b4e5
TH
3882 if (WARN_ON(pwq->refcnt > 1) ||
3883 WARN_ON(pwq->nr_active) ||
76af4d93 3884 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3885 mutex_unlock(&wq->mutex);
6183c009 3886 return;
76af4d93 3887 }
6183c009 3888 }
b09f4fd3 3889 mutex_unlock(&wq->mutex);
6183c009 3890
a0a1a5fd
TH
3891 /*
3892 * wq list is used to freeze wq, remove from list after
3893 * flushing is complete in case freeze races us.
3894 */
68e13a67 3895 mutex_lock(&wq_pool_mutex);
d2c1d404 3896 list_del_init(&wq->list);
68e13a67 3897 mutex_unlock(&wq_pool_mutex);
3af24433 3898
226223ab
TH
3899 workqueue_sysfs_unregister(wq);
3900
493008a8 3901 if (wq->rescuer) {
e22bee78 3902 kthread_stop(wq->rescuer->task);
8d9df9f0 3903 kfree(wq->rescuer);
493008a8 3904 wq->rescuer = NULL;
e22bee78
TH
3905 }
3906
8864b4e5
TH
3907 if (!(wq->flags & WQ_UNBOUND)) {
3908 /*
3909 * The base ref is never dropped on per-cpu pwqs. Directly
3910 * free the pwqs and wq.
3911 */
3912 free_percpu(wq->cpu_pwqs);
3913 kfree(wq);
3914 } else {
3915 /*
3916 * We're the sole accessor of @wq at this point. Directly
3917 * access the first pwq and put the base ref. As both pwqs
3918 * and pools are sched-RCU protected, the lock operations
3919 * are safe. @wq will be freed when the last pwq is
3920 * released.
3921 */
29c91e99
TH
3922 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3923 pwqs_node);
8864b4e5
TH
3924 spin_lock_irq(&pwq->pool->lock);
3925 put_pwq(pwq);
3926 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3927 }
3af24433
ON
3928}
3929EXPORT_SYMBOL_GPL(destroy_workqueue);
3930
dcd989cb
TH
3931/**
3932 * workqueue_set_max_active - adjust max_active of a workqueue
3933 * @wq: target workqueue
3934 * @max_active: new max_active value.
3935 *
3936 * Set max_active of @wq to @max_active.
3937 *
3938 * CONTEXT:
3939 * Don't call from IRQ context.
3940 */
3941void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3942{
49e3cf44 3943 struct pool_workqueue *pwq;
dcd989cb 3944
8719dcea
TH
3945 /* disallow meddling with max_active for ordered workqueues */
3946 if (WARN_ON(wq->flags & __WQ_ORDERED))
3947 return;
3948
f3421797 3949 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3950
a357fc03 3951 mutex_lock(&wq->mutex);
dcd989cb
TH
3952
3953 wq->saved_max_active = max_active;
3954
699ce097
TH
3955 for_each_pwq(pwq, wq)
3956 pwq_adjust_max_active(pwq);
93981800 3957
a357fc03 3958 mutex_unlock(&wq->mutex);
15316ba8 3959}
dcd989cb 3960EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3961
e6267616
TH
3962/**
3963 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3964 *
3965 * Determine whether %current is a workqueue rescuer. Can be used from
3966 * work functions to determine whether it's being run off the rescuer task.
3967 */
3968bool current_is_workqueue_rescuer(void)
3969{
3970 struct worker *worker = current_wq_worker();
3971
6a092dfd 3972 return worker && worker->rescue_wq;
e6267616
TH
3973}
3974
eef6a7d5 3975/**
dcd989cb
TH
3976 * workqueue_congested - test whether a workqueue is congested
3977 * @cpu: CPU in question
3978 * @wq: target workqueue
eef6a7d5 3979 *
dcd989cb
TH
3980 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3981 * no synchronization around this function and the test result is
3982 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3983 *
dcd989cb
TH
3984 * RETURNS:
3985 * %true if congested, %false otherwise.
eef6a7d5 3986 */
d84ff051 3987bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3988{
7fb98ea7 3989 struct pool_workqueue *pwq;
76af4d93
TH
3990 bool ret;
3991
88109453 3992 rcu_read_lock_sched();
7fb98ea7
TH
3993
3994 if (!(wq->flags & WQ_UNBOUND))
3995 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3996 else
3997 pwq = first_pwq(wq);
dcd989cb 3998
76af4d93 3999 ret = !list_empty(&pwq->delayed_works);
88109453 4000 rcu_read_unlock_sched();
76af4d93
TH
4001
4002 return ret;
1da177e4 4003}
dcd989cb 4004EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4005
dcd989cb
TH
4006/**
4007 * work_busy - test whether a work is currently pending or running
4008 * @work: the work to be tested
4009 *
4010 * Test whether @work is currently pending or running. There is no
4011 * synchronization around this function and the test result is
4012 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4013 *
4014 * RETURNS:
4015 * OR'd bitmask of WORK_BUSY_* bits.
4016 */
4017unsigned int work_busy(struct work_struct *work)
1da177e4 4018{
fa1b54e6 4019 struct worker_pool *pool;
dcd989cb
TH
4020 unsigned long flags;
4021 unsigned int ret = 0;
1da177e4 4022
dcd989cb
TH
4023 if (work_pending(work))
4024 ret |= WORK_BUSY_PENDING;
1da177e4 4025
fa1b54e6
TH
4026 local_irq_save(flags);
4027 pool = get_work_pool(work);
038366c5 4028 if (pool) {
fa1b54e6 4029 spin_lock(&pool->lock);
038366c5
LJ
4030 if (find_worker_executing_work(pool, work))
4031 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4032 spin_unlock(&pool->lock);
038366c5 4033 }
fa1b54e6 4034 local_irq_restore(flags);
1da177e4 4035
dcd989cb 4036 return ret;
1da177e4 4037}
dcd989cb 4038EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4039
db7bccf4
TH
4040/*
4041 * CPU hotplug.
4042 *
e22bee78 4043 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4044 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4045 * pool which make migrating pending and scheduled works very
e22bee78 4046 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4047 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4048 * blocked draining impractical.
4049 *
24647570 4050 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4051 * running as an unbound one and allowing it to be reattached later if the
4052 * cpu comes back online.
db7bccf4 4053 */
1da177e4 4054
706026c2 4055static void wq_unbind_fn(struct work_struct *work)
3af24433 4056{
38db41d9 4057 int cpu = smp_processor_id();
4ce62e9e 4058 struct worker_pool *pool;
db7bccf4 4059 struct worker *worker;
a9ab775b 4060 int wi;
3af24433 4061
f02ae73a 4062 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4063 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4064
bc3a1afc 4065 mutex_lock(&pool->manager_mutex);
94cf58bb 4066 spin_lock_irq(&pool->lock);
3af24433 4067
94cf58bb 4068 /*
bc3a1afc 4069 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4070 * unbound and set DISASSOCIATED. Before this, all workers
4071 * except for the ones which are still executing works from
4072 * before the last CPU down must be on the cpu. After
4073 * this, they may become diasporas.
4074 */
a9ab775b 4075 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4076 worker->flags |= WORKER_UNBOUND;
06ba38a9 4077
24647570 4078 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4079
94cf58bb 4080 spin_unlock_irq(&pool->lock);
bc3a1afc 4081 mutex_unlock(&pool->manager_mutex);
94cf58bb 4082 }
628c78e7 4083
e22bee78 4084 /*
403c821d 4085 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4086 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4087 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4088 */
e22bee78 4089 schedule();
06ba38a9 4090
e22bee78 4091 /*
628c78e7
TH
4092 * Sched callbacks are disabled now. Zap nr_running. After this,
4093 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4094 * are always true as long as the worklist is not empty. Pools on
4095 * @cpu now behave as unbound (in terms of concurrency management)
4096 * pools which are served by workers tied to the CPU.
628c78e7
TH
4097 *
4098 * On return from this function, the current worker would trigger
4099 * unbound chain execution of pending work items if other workers
4100 * didn't already.
e22bee78 4101 */
f02ae73a 4102 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4103 atomic_set(&pool->nr_running, 0);
3af24433 4104}
3af24433 4105
bd7c089e
TH
4106/**
4107 * rebind_workers - rebind all workers of a pool to the associated CPU
4108 * @pool: pool of interest
4109 *
a9ab775b 4110 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4111 */
4112static void rebind_workers(struct worker_pool *pool)
4113{
a9ab775b
TH
4114 struct worker *worker;
4115 int wi;
bd7c089e
TH
4116
4117 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4118
a9ab775b
TH
4119 /*
4120 * Restore CPU affinity of all workers. As all idle workers should
4121 * be on the run-queue of the associated CPU before any local
4122 * wake-ups for concurrency management happen, restore CPU affinty
4123 * of all workers first and then clear UNBOUND. As we're called
4124 * from CPU_ONLINE, the following shouldn't fail.
4125 */
4126 for_each_pool_worker(worker, wi, pool)
4127 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4128 pool->attrs->cpumask) < 0);
bd7c089e 4129
a9ab775b 4130 spin_lock_irq(&pool->lock);
bd7c089e 4131
a9ab775b
TH
4132 for_each_pool_worker(worker, wi, pool) {
4133 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4134
4135 /*
a9ab775b
TH
4136 * A bound idle worker should actually be on the runqueue
4137 * of the associated CPU for local wake-ups targeting it to
4138 * work. Kick all idle workers so that they migrate to the
4139 * associated CPU. Doing this in the same loop as
4140 * replacing UNBOUND with REBOUND is safe as no worker will
4141 * be bound before @pool->lock is released.
bd7c089e 4142 */
a9ab775b
TH
4143 if (worker_flags & WORKER_IDLE)
4144 wake_up_process(worker->task);
bd7c089e 4145
a9ab775b
TH
4146 /*
4147 * We want to clear UNBOUND but can't directly call
4148 * worker_clr_flags() or adjust nr_running. Atomically
4149 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4150 * @worker will clear REBOUND using worker_clr_flags() when
4151 * it initiates the next execution cycle thus restoring
4152 * concurrency management. Note that when or whether
4153 * @worker clears REBOUND doesn't affect correctness.
4154 *
4155 * ACCESS_ONCE() is necessary because @worker->flags may be
4156 * tested without holding any lock in
4157 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4158 * fail incorrectly leading to premature concurrency
4159 * management operations.
4160 */
4161 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4162 worker_flags |= WORKER_REBOUND;
4163 worker_flags &= ~WORKER_UNBOUND;
4164 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4165 }
a9ab775b
TH
4166
4167 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4168}
4169
7dbc725e
TH
4170/**
4171 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4172 * @pool: unbound pool of interest
4173 * @cpu: the CPU which is coming up
4174 *
4175 * An unbound pool may end up with a cpumask which doesn't have any online
4176 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4177 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4178 * online CPU before, cpus_allowed of all its workers should be restored.
4179 */
4180static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4181{
4182 static cpumask_t cpumask;
4183 struct worker *worker;
4184 int wi;
4185
4186 lockdep_assert_held(&pool->manager_mutex);
4187
4188 /* is @cpu allowed for @pool? */
4189 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4190 return;
4191
4192 /* is @cpu the only online CPU? */
4193 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4194 if (cpumask_weight(&cpumask) != 1)
4195 return;
4196
4197 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4198 for_each_pool_worker(worker, wi, pool)
4199 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4200 pool->attrs->cpumask) < 0);
4201}
4202
8db25e78
TH
4203/*
4204 * Workqueues should be brought up before normal priority CPU notifiers.
4205 * This will be registered high priority CPU notifier.
4206 */
9fdf9b73 4207static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4208 unsigned long action,
4209 void *hcpu)
3af24433 4210{
d84ff051 4211 int cpu = (unsigned long)hcpu;
4ce62e9e 4212 struct worker_pool *pool;
7dbc725e 4213 int pi;
3ce63377 4214
8db25e78 4215 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4216 case CPU_UP_PREPARE:
f02ae73a 4217 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4218 if (pool->nr_workers)
4219 continue;
ebf44d16 4220 if (create_and_start_worker(pool) < 0)
3ce63377 4221 return NOTIFY_BAD;
3af24433 4222 }
8db25e78 4223 break;
3af24433 4224
db7bccf4
TH
4225 case CPU_DOWN_FAILED:
4226 case CPU_ONLINE:
68e13a67 4227 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4228
4229 for_each_pool(pool, pi) {
bc3a1afc 4230 mutex_lock(&pool->manager_mutex);
94cf58bb 4231
7dbc725e
TH
4232 if (pool->cpu == cpu) {
4233 spin_lock_irq(&pool->lock);
4234 pool->flags &= ~POOL_DISASSOCIATED;
4235 spin_unlock_irq(&pool->lock);
a9ab775b 4236
7dbc725e
TH
4237 rebind_workers(pool);
4238 } else if (pool->cpu < 0) {
4239 restore_unbound_workers_cpumask(pool, cpu);
4240 }
94cf58bb 4241
bc3a1afc 4242 mutex_unlock(&pool->manager_mutex);
94cf58bb 4243 }
7dbc725e 4244
68e13a67 4245 mutex_unlock(&wq_pool_mutex);
db7bccf4 4246 break;
00dfcaf7 4247 }
65758202
TH
4248 return NOTIFY_OK;
4249}
4250
4251/*
4252 * Workqueues should be brought down after normal priority CPU notifiers.
4253 * This will be registered as low priority CPU notifier.
4254 */
9fdf9b73 4255static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4256 unsigned long action,
4257 void *hcpu)
4258{
d84ff051 4259 int cpu = (unsigned long)hcpu;
8db25e78
TH
4260 struct work_struct unbind_work;
4261
65758202
TH
4262 switch (action & ~CPU_TASKS_FROZEN) {
4263 case CPU_DOWN_PREPARE:
8db25e78 4264 /* unbinding should happen on the local CPU */
706026c2 4265 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4266 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4267 flush_work(&unbind_work);
4268 break;
65758202
TH
4269 }
4270 return NOTIFY_OK;
4271}
4272
2d3854a3 4273#ifdef CONFIG_SMP
8ccad40d 4274
2d3854a3 4275struct work_for_cpu {
ed48ece2 4276 struct work_struct work;
2d3854a3
RR
4277 long (*fn)(void *);
4278 void *arg;
4279 long ret;
4280};
4281
ed48ece2 4282static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4283{
ed48ece2
TH
4284 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4285
2d3854a3
RR
4286 wfc->ret = wfc->fn(wfc->arg);
4287}
4288
4289/**
4290 * work_on_cpu - run a function in user context on a particular cpu
4291 * @cpu: the cpu to run on
4292 * @fn: the function to run
4293 * @arg: the function arg
4294 *
31ad9081
RR
4295 * This will return the value @fn returns.
4296 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4297 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4298 */
d84ff051 4299long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4300{
ed48ece2 4301 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4302
ed48ece2
TH
4303 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4304 schedule_work_on(cpu, &wfc.work);
4305 flush_work(&wfc.work);
2d3854a3
RR
4306 return wfc.ret;
4307}
4308EXPORT_SYMBOL_GPL(work_on_cpu);
4309#endif /* CONFIG_SMP */
4310
a0a1a5fd
TH
4311#ifdef CONFIG_FREEZER
4312
4313/**
4314 * freeze_workqueues_begin - begin freezing workqueues
4315 *
58a69cb4 4316 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4317 * workqueues will queue new works to their delayed_works list instead of
706026c2 4318 * pool->worklist.
a0a1a5fd
TH
4319 *
4320 * CONTEXT:
a357fc03 4321 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4322 */
4323void freeze_workqueues_begin(void)
4324{
17116969 4325 struct worker_pool *pool;
24b8a847
TH
4326 struct workqueue_struct *wq;
4327 struct pool_workqueue *pwq;
611c92a0 4328 int pi;
a0a1a5fd 4329
68e13a67 4330 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4331
6183c009 4332 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4333 workqueue_freezing = true;
4334
24b8a847 4335 /* set FREEZING */
611c92a0 4336 for_each_pool(pool, pi) {
5bcab335 4337 spin_lock_irq(&pool->lock);
17116969
TH
4338 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4339 pool->flags |= POOL_FREEZING;
5bcab335 4340 spin_unlock_irq(&pool->lock);
24b8a847 4341 }
a0a1a5fd 4342
24b8a847 4343 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4344 mutex_lock(&wq->mutex);
699ce097
TH
4345 for_each_pwq(pwq, wq)
4346 pwq_adjust_max_active(pwq);
a357fc03 4347 mutex_unlock(&wq->mutex);
a0a1a5fd 4348 }
5bcab335 4349
68e13a67 4350 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4351}
4352
4353/**
58a69cb4 4354 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4355 *
4356 * Check whether freezing is complete. This function must be called
4357 * between freeze_workqueues_begin() and thaw_workqueues().
4358 *
4359 * CONTEXT:
68e13a67 4360 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4361 *
4362 * RETURNS:
58a69cb4
TH
4363 * %true if some freezable workqueues are still busy. %false if freezing
4364 * is complete.
a0a1a5fd
TH
4365 */
4366bool freeze_workqueues_busy(void)
4367{
a0a1a5fd 4368 bool busy = false;
24b8a847
TH
4369 struct workqueue_struct *wq;
4370 struct pool_workqueue *pwq;
a0a1a5fd 4371
68e13a67 4372 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4373
6183c009 4374 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4375
24b8a847
TH
4376 list_for_each_entry(wq, &workqueues, list) {
4377 if (!(wq->flags & WQ_FREEZABLE))
4378 continue;
a0a1a5fd
TH
4379 /*
4380 * nr_active is monotonically decreasing. It's safe
4381 * to peek without lock.
4382 */
88109453 4383 rcu_read_lock_sched();
24b8a847 4384 for_each_pwq(pwq, wq) {
6183c009 4385 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4386 if (pwq->nr_active) {
a0a1a5fd 4387 busy = true;
88109453 4388 rcu_read_unlock_sched();
a0a1a5fd
TH
4389 goto out_unlock;
4390 }
4391 }
88109453 4392 rcu_read_unlock_sched();
a0a1a5fd
TH
4393 }
4394out_unlock:
68e13a67 4395 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4396 return busy;
4397}
4398
4399/**
4400 * thaw_workqueues - thaw workqueues
4401 *
4402 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4403 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4404 *
4405 * CONTEXT:
a357fc03 4406 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4407 */
4408void thaw_workqueues(void)
4409{
24b8a847
TH
4410 struct workqueue_struct *wq;
4411 struct pool_workqueue *pwq;
4412 struct worker_pool *pool;
611c92a0 4413 int pi;
a0a1a5fd 4414
68e13a67 4415 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4416
4417 if (!workqueue_freezing)
4418 goto out_unlock;
4419
24b8a847 4420 /* clear FREEZING */
611c92a0 4421 for_each_pool(pool, pi) {
5bcab335 4422 spin_lock_irq(&pool->lock);
24b8a847
TH
4423 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4424 pool->flags &= ~POOL_FREEZING;
5bcab335 4425 spin_unlock_irq(&pool->lock);
24b8a847 4426 }
8b03ae3c 4427
24b8a847
TH
4428 /* restore max_active and repopulate worklist */
4429 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4430 mutex_lock(&wq->mutex);
699ce097
TH
4431 for_each_pwq(pwq, wq)
4432 pwq_adjust_max_active(pwq);
a357fc03 4433 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4434 }
4435
4436 workqueue_freezing = false;
4437out_unlock:
68e13a67 4438 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4439}
4440#endif /* CONFIG_FREEZER */
4441
bce90380
TH
4442static void __init wq_numa_init(void)
4443{
4444 cpumask_var_t *tbl;
4445 int node, cpu;
4446
4447 /* determine NUMA pwq table len - highest node id + 1 */
4448 for_each_node(node)
4449 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4450
4451 if (num_possible_nodes() <= 1)
4452 return;
4453
4454 /*
4455 * We want masks of possible CPUs of each node which isn't readily
4456 * available. Build one from cpu_to_node() which should have been
4457 * fully initialized by now.
4458 */
4459 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4460 BUG_ON(!tbl);
4461
4462 for_each_node(node)
4463 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4464
4465 for_each_possible_cpu(cpu) {
4466 node = cpu_to_node(cpu);
4467 if (WARN_ON(node == NUMA_NO_NODE)) {
4468 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4469 /* happens iff arch is bonkers, let's just proceed */
4470 return;
4471 }
4472 cpumask_set_cpu(cpu, tbl[node]);
4473 }
4474
4475 wq_numa_possible_cpumask = tbl;
4476 wq_numa_enabled = true;
4477}
4478
6ee0578b 4479static int __init init_workqueues(void)
1da177e4 4480{
7a4e344c
TH
4481 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4482 int i, cpu;
c34056a3 4483
7c3eed5c
TH
4484 /* make sure we have enough bits for OFFQ pool ID */
4485 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4486 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4487
e904e6c2
TH
4488 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4489
4490 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4491
65758202 4492 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4493 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4494
bce90380
TH
4495 wq_numa_init();
4496
706026c2 4497 /* initialize CPU pools */
29c91e99 4498 for_each_possible_cpu(cpu) {
4ce62e9e 4499 struct worker_pool *pool;
8b03ae3c 4500
7a4e344c 4501 i = 0;
f02ae73a 4502 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4503 BUG_ON(init_worker_pool(pool));
ec22ca5e 4504 pool->cpu = cpu;
29c91e99 4505 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4506 pool->attrs->nice = std_nice[i++];
f3f90ad4 4507 pool->node = cpu_to_node(cpu);
7a4e344c 4508
9daf9e67 4509 /* alloc pool ID */
68e13a67 4510 mutex_lock(&wq_pool_mutex);
9daf9e67 4511 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4512 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4513 }
8b03ae3c
TH
4514 }
4515
e22bee78 4516 /* create the initial worker */
29c91e99 4517 for_each_online_cpu(cpu) {
4ce62e9e 4518 struct worker_pool *pool;
e22bee78 4519
f02ae73a 4520 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4521 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4522 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4523 }
e22bee78
TH
4524 }
4525
29c91e99
TH
4526 /* create default unbound wq attrs */
4527 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4528 struct workqueue_attrs *attrs;
4529
4530 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4531 attrs->nice = std_nice[i];
29c91e99
TH
4532 unbound_std_wq_attrs[i] = attrs;
4533 }
4534
d320c038 4535 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4536 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4537 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4538 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4539 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4540 system_freezable_wq = alloc_workqueue("events_freezable",
4541 WQ_FREEZABLE, 0);
1aabe902 4542 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4543 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4544 return 0;
1da177e4 4545}
6ee0578b 4546early_initcall(init_workqueues);