workqueue: simplify is-work-item-queued-here test
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
8b03ae3c
TH
147} ____cacheline_aligned_in_smp;
148
1da177e4 149/*
502ca9d8 150 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
151 * work_struct->data are used for flags and thus cwqs need to be
152 * aligned at two's power of the number of flag bits.
1da177e4
LT
153 */
154struct cpu_workqueue_struct {
bd7bdd43 155 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 156 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
157 int work_color; /* L: current color */
158 int flush_color; /* L: flushing color */
159 int nr_in_flight[WORK_NR_COLORS];
160 /* L: nr of in_flight works */
1e19ffc6 161 int nr_active; /* L: nr of active works */
a0a1a5fd 162 int max_active; /* L: max active works */
1e19ffc6 163 struct list_head delayed_works; /* L: delayed works */
0f900049 164};
1da177e4 165
73f53c4a
TH
166/*
167 * Structure used to wait for workqueue flush.
168 */
169struct wq_flusher {
170 struct list_head list; /* F: list of flushers */
171 int flush_color; /* F: flush color waiting for */
172 struct completion done; /* flush completion */
173};
174
f2e005aa
TH
175/*
176 * All cpumasks are assumed to be always set on UP and thus can't be
177 * used to determine whether there's something to be done.
178 */
179#ifdef CONFIG_SMP
180typedef cpumask_var_t mayday_mask_t;
181#define mayday_test_and_set_cpu(cpu, mask) \
182 cpumask_test_and_set_cpu((cpu), (mask))
183#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
184#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 185#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
186#define free_mayday_mask(mask) free_cpumask_var((mask))
187#else
188typedef unsigned long mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
190#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
191#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
192#define alloc_mayday_mask(maskp, gfp) true
193#define free_mayday_mask(mask) do { } while (0)
194#endif
1da177e4
LT
195
196/*
197 * The externally visible workqueue abstraction is an array of
198 * per-CPU workqueues:
199 */
200struct workqueue_struct {
9c5a2ba7 201 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
202 union {
203 struct cpu_workqueue_struct __percpu *pcpu;
204 struct cpu_workqueue_struct *single;
205 unsigned long v;
206 } cpu_wq; /* I: cwq's */
4690c4ab 207 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
208
209 struct mutex flush_mutex; /* protects wq flushing */
210 int work_color; /* F: current work color */
211 int flush_color; /* F: current flush color */
212 atomic_t nr_cwqs_to_flush; /* flush in progress */
213 struct wq_flusher *first_flusher; /* F: first flusher */
214 struct list_head flusher_queue; /* F: flush waiters */
215 struct list_head flusher_overflow; /* F: flush overflow list */
216
f2e005aa 217 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
218 struct worker *rescuer; /* I: rescue worker */
219
9c5a2ba7 220 int nr_drainers; /* W: drain in progress */
dcd989cb 221 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 222#ifdef CONFIG_LOCKDEP
4690c4ab 223 struct lockdep_map lockdep_map;
4e6045f1 224#endif
b196be89 225 char name[]; /* I: workqueue name */
1da177e4
LT
226};
227
d320c038 228struct workqueue_struct *system_wq __read_mostly;
d320c038 229EXPORT_SYMBOL_GPL(system_wq);
044c782c 230struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 231EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 232struct workqueue_struct *system_long_wq __read_mostly;
d320c038 233EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 234struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 235EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 236struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 237EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 238
97bd2347
TH
239#define CREATE_TRACE_POINTS
240#include <trace/events/workqueue.h>
241
38db41d9 242#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
243 for ((pool) = &std_worker_pools(cpu)[0]; \
244 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 245
c9e7cf27
TH
246#define for_each_busy_worker(worker, i, pos, pool) \
247 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 248
706026c2
TH
249static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
250 unsigned int sw)
f3421797
TH
251{
252 if (cpu < nr_cpu_ids) {
253 if (sw & 1) {
254 cpu = cpumask_next(cpu, mask);
255 if (cpu < nr_cpu_ids)
256 return cpu;
257 }
258 if (sw & 2)
259 return WORK_CPU_UNBOUND;
260 }
6be19588 261 return WORK_CPU_END;
f3421797
TH
262}
263
706026c2
TH
264static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
265 struct workqueue_struct *wq)
f3421797 266{
706026c2 267 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
268}
269
09884951
TH
270/*
271 * CPU iterators
272 *
706026c2 273 * An extra cpu number is defined using an invalid cpu number
09884951 274 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
275 * specific CPU. The following iterators are similar to for_each_*_cpu()
276 * iterators but also considers the unbound CPU.
09884951 277 *
706026c2
TH
278 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
279 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
280 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
281 * WORK_CPU_UNBOUND for unbound workqueues
282 */
706026c2
TH
283#define for_each_wq_cpu(cpu) \
284 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 285 (cpu) < WORK_CPU_END; \
706026c2 286 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 287
706026c2
TH
288#define for_each_online_wq_cpu(cpu) \
289 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 290 (cpu) < WORK_CPU_END; \
706026c2 291 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
292
293#define for_each_cwq_cpu(cpu, wq) \
706026c2 294 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 295 (cpu) < WORK_CPU_END; \
706026c2 296 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 297
dc186ad7
TG
298#ifdef CONFIG_DEBUG_OBJECTS_WORK
299
300static struct debug_obj_descr work_debug_descr;
301
99777288
SG
302static void *work_debug_hint(void *addr)
303{
304 return ((struct work_struct *) addr)->func;
305}
306
dc186ad7
TG
307/*
308 * fixup_init is called when:
309 * - an active object is initialized
310 */
311static int work_fixup_init(void *addr, enum debug_obj_state state)
312{
313 struct work_struct *work = addr;
314
315 switch (state) {
316 case ODEBUG_STATE_ACTIVE:
317 cancel_work_sync(work);
318 debug_object_init(work, &work_debug_descr);
319 return 1;
320 default:
321 return 0;
322 }
323}
324
325/*
326 * fixup_activate is called when:
327 * - an active object is activated
328 * - an unknown object is activated (might be a statically initialized object)
329 */
330static int work_fixup_activate(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335
336 case ODEBUG_STATE_NOTAVAILABLE:
337 /*
338 * This is not really a fixup. The work struct was
339 * statically initialized. We just make sure that it
340 * is tracked in the object tracker.
341 */
22df02bb 342 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
343 debug_object_init(work, &work_debug_descr);
344 debug_object_activate(work, &work_debug_descr);
345 return 0;
346 }
347 WARN_ON_ONCE(1);
348 return 0;
349
350 case ODEBUG_STATE_ACTIVE:
351 WARN_ON(1);
352
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_free is called when:
360 * - an active object is freed
361 */
362static int work_fixup_free(void *addr, enum debug_obj_state state)
363{
364 struct work_struct *work = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 cancel_work_sync(work);
369 debug_object_free(work, &work_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376static struct debug_obj_descr work_debug_descr = {
377 .name = "work_struct",
99777288 378 .debug_hint = work_debug_hint,
dc186ad7
TG
379 .fixup_init = work_fixup_init,
380 .fixup_activate = work_fixup_activate,
381 .fixup_free = work_fixup_free,
382};
383
384static inline void debug_work_activate(struct work_struct *work)
385{
386 debug_object_activate(work, &work_debug_descr);
387}
388
389static inline void debug_work_deactivate(struct work_struct *work)
390{
391 debug_object_deactivate(work, &work_debug_descr);
392}
393
394void __init_work(struct work_struct *work, int onstack)
395{
396 if (onstack)
397 debug_object_init_on_stack(work, &work_debug_descr);
398 else
399 debug_object_init(work, &work_debug_descr);
400}
401EXPORT_SYMBOL_GPL(__init_work);
402
403void destroy_work_on_stack(struct work_struct *work)
404{
405 debug_object_free(work, &work_debug_descr);
406}
407EXPORT_SYMBOL_GPL(destroy_work_on_stack);
408
409#else
410static inline void debug_work_activate(struct work_struct *work) { }
411static inline void debug_work_deactivate(struct work_struct *work) { }
412#endif
413
95402b38
GS
414/* Serializes the accesses to the list of workqueues. */
415static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 416static LIST_HEAD(workqueues);
a0a1a5fd 417static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 418
e22bee78 419/*
a60dc39c
TH
420 * The CPU standard worker pools. nr_running is the only field which is
421 * expected to be used frequently by other cpus via try_to_wake_up(). Put
422 * it in a separate cacheline.
e22bee78 423 */
a60dc39c
TH
424static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
425 cpu_std_worker_pools);
e6e380ed
TH
426static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
427 cpu_std_pool_nr_running);
8b03ae3c 428
f3421797 429/*
a60dc39c
TH
430 * Standard worker pools and nr_running counter for unbound CPU. The pools
431 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
f3421797 432 */
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
e6e380ed 434static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
e34cdddb 435 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 436};
f3421797 437
9daf9e67
TH
438/* idr of all pools */
439static DEFINE_MUTEX(worker_pool_idr_mutex);
440static DEFINE_IDR(worker_pool_idr);
441
c34056a3 442static int worker_thread(void *__worker);
1da177e4 443
a60dc39c 444static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 445{
f3421797 446 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 447 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 448 else
a60dc39c 449 return unbound_std_worker_pools;
8b03ae3c
TH
450}
451
4e8f0a60
TH
452static int std_worker_pool_pri(struct worker_pool *pool)
453{
a60dc39c 454 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
455}
456
9daf9e67
TH
457/* allocate ID and assign it to @pool */
458static int worker_pool_assign_id(struct worker_pool *pool)
459{
460 int ret;
461
462 mutex_lock(&worker_pool_idr_mutex);
463 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 mutex_unlock(&worker_pool_idr_mutex);
466
467 return ret;
468}
469
7c3eed5c
TH
470/*
471 * Lookup worker_pool by id. The idr currently is built during boot and
472 * never modified. Don't worry about locking for now.
473 */
474static struct worker_pool *worker_pool_by_id(int pool_id)
475{
476 return idr_find(&worker_pool_idr, pool_id);
477}
478
d565ed63
TH
479static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
480{
a60dc39c 481 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 482
a60dc39c 483 return &pools[highpri];
d565ed63
TH
484}
485
63d95a91 486static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 487{
ec22ca5e 488 int cpu = pool->cpu;
e34cdddb 489 int idx = std_worker_pool_pri(pool);
63d95a91 490
f3421797 491 if (cpu != WORK_CPU_UNBOUND)
e6e380ed 492 return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
f3421797 493 else
e6e380ed 494 return &unbound_std_pool_nr_running[idx];
e22bee78
TH
495}
496
1537663f
TH
497static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
498 struct workqueue_struct *wq)
b1f4ec17 499{
f3421797 500 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 501 if (likely(cpu < nr_cpu_ids))
f3421797 502 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
503 } else if (likely(cpu == WORK_CPU_UNBOUND))
504 return wq->cpu_wq.single;
505 return NULL;
b1f4ec17
ON
506}
507
73f53c4a
TH
508static unsigned int work_color_to_flags(int color)
509{
510 return color << WORK_STRUCT_COLOR_SHIFT;
511}
512
513static int get_work_color(struct work_struct *work)
514{
515 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
516 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
517}
518
519static int work_next_color(int color)
520{
521 return (color + 1) % WORK_NR_COLORS;
522}
1da177e4 523
14441960 524/*
b5490077
TH
525 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
526 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 527 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 528 *
7c3eed5c
TH
529 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
530 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
531 * work->data. These functions should only be called while the work is
532 * owned - ie. while the PENDING bit is set.
7a22ad75 533 *
7c3eed5c
TH
534 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
535 * corresponding to a work. Pool is available once the work has been
536 * queued anywhere after initialization until it is sync canceled. cwq is
537 * available only while the work item is queued.
7a22ad75 538 *
bbb68dfa
TH
539 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
540 * canceled. While being canceled, a work item may have its PENDING set
541 * but stay off timer and worklist for arbitrarily long and nobody should
542 * try to steal the PENDING bit.
14441960 543 */
7a22ad75
TH
544static inline void set_work_data(struct work_struct *work, unsigned long data,
545 unsigned long flags)
365970a1 546{
4594bf15 547 BUG_ON(!work_pending(work));
7a22ad75
TH
548 atomic_long_set(&work->data, data | flags | work_static(work));
549}
365970a1 550
7a22ad75
TH
551static void set_work_cwq(struct work_struct *work,
552 struct cpu_workqueue_struct *cwq,
553 unsigned long extra_flags)
554{
555 set_work_data(work, (unsigned long)cwq,
e120153d 556 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
557}
558
4468a00f
LJ
559static void set_work_pool_and_keep_pending(struct work_struct *work,
560 int pool_id)
561{
562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
563 WORK_STRUCT_PENDING);
564}
565
7c3eed5c
TH
566static void set_work_pool_and_clear_pending(struct work_struct *work,
567 int pool_id)
7a22ad75 568{
23657bb1
TH
569 /*
570 * The following wmb is paired with the implied mb in
571 * test_and_set_bit(PENDING) and ensures all updates to @work made
572 * here are visible to and precede any updates by the next PENDING
573 * owner.
574 */
575 smp_wmb();
7c3eed5c 576 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 577}
f756d5e2 578
7a22ad75 579static void clear_work_data(struct work_struct *work)
1da177e4 580{
7c3eed5c
TH
581 smp_wmb(); /* see set_work_pool_and_clear_pending() */
582 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
583}
584
7a22ad75 585static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7a22ad75 588
e120153d
TH
589 if (data & WORK_STRUCT_CWQ)
590 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
591 else
592 return NULL;
4d707b9f
ON
593}
594
7c3eed5c
TH
595/**
596 * get_work_pool - return the worker_pool a given work was associated with
597 * @work: the work item of interest
598 *
599 * Return the worker_pool @work was last associated with. %NULL if none.
600 */
601static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 602{
e120153d 603 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
604 struct worker_pool *pool;
605 int pool_id;
7a22ad75 606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
7c3eed5c 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 610
7c3eed5c
TH
611 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
612 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
613 return NULL;
614
7c3eed5c
TH
615 pool = worker_pool_by_id(pool_id);
616 WARN_ON_ONCE(!pool);
617 return pool;
618}
619
620/**
621 * get_work_pool_id - return the worker pool ID a given work is associated with
622 * @work: the work item of interest
623 *
624 * Return the worker_pool ID @work was last associated with.
625 * %WORK_OFFQ_POOL_NONE if none.
626 */
627static int get_work_pool_id(struct work_struct *work)
628{
629 struct worker_pool *pool = get_work_pool(work);
630
631 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
632}
633
bbb68dfa
TH
634static void mark_work_canceling(struct work_struct *work)
635{
7c3eed5c 636 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 637
7c3eed5c
TH
638 pool_id <<= WORK_OFFQ_POOL_SHIFT;
639 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
640}
641
642static bool work_is_canceling(struct work_struct *work)
643{
644 unsigned long data = atomic_long_read(&work->data);
645
646 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
647}
648
e22bee78 649/*
3270476a
TH
650 * Policy functions. These define the policies on how the global worker
651 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 652 * they're being called with pool->lock held.
e22bee78
TH
653 */
654
63d95a91 655static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 656{
3270476a 657 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
658}
659
4594bf15 660/*
e22bee78
TH
661 * Need to wake up a worker? Called from anything but currently
662 * running workers.
974271c4
TH
663 *
664 * Note that, because unbound workers never contribute to nr_running, this
706026c2 665 * function will always return %true for unbound pools as long as the
974271c4 666 * worklist isn't empty.
4594bf15 667 */
63d95a91 668static bool need_more_worker(struct worker_pool *pool)
365970a1 669{
63d95a91 670 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 671}
4594bf15 672
e22bee78 673/* Can I start working? Called from busy but !running workers. */
63d95a91 674static bool may_start_working(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return pool->nr_idle;
e22bee78
TH
677}
678
679/* Do I need to keep working? Called from currently running workers. */
63d95a91 680static bool keep_working(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 683
3270476a 684 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
685}
686
687/* Do we need a new worker? Called from manager. */
63d95a91 688static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 689{
63d95a91 690 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 691}
365970a1 692
e22bee78 693/* Do I need to be the manager? */
63d95a91 694static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 695{
63d95a91 696 return need_to_create_worker(pool) ||
11ebea50 697 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
698}
699
700/* Do we have too many workers and should some go away? */
63d95a91 701static bool too_many_workers(struct worker_pool *pool)
e22bee78 702{
552a37e9 703 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
704 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
705 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 706
ea1abd61
LJ
707 /*
708 * nr_idle and idle_list may disagree if idle rebinding is in
709 * progress. Never return %true if idle_list is empty.
710 */
711 if (list_empty(&pool->idle_list))
712 return false;
713
e22bee78 714 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
715}
716
4d707b9f 717/*
e22bee78
TH
718 * Wake up functions.
719 */
720
7e11629d 721/* Return the first worker. Safe with preemption disabled */
63d95a91 722static struct worker *first_worker(struct worker_pool *pool)
7e11629d 723{
63d95a91 724 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
725 return NULL;
726
63d95a91 727 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
728}
729
730/**
731 * wake_up_worker - wake up an idle worker
63d95a91 732 * @pool: worker pool to wake worker from
7e11629d 733 *
63d95a91 734 * Wake up the first idle worker of @pool.
7e11629d
TH
735 *
736 * CONTEXT:
d565ed63 737 * spin_lock_irq(pool->lock).
7e11629d 738 */
63d95a91 739static void wake_up_worker(struct worker_pool *pool)
7e11629d 740{
63d95a91 741 struct worker *worker = first_worker(pool);
7e11629d
TH
742
743 if (likely(worker))
744 wake_up_process(worker->task);
745}
746
d302f017 747/**
e22bee78
TH
748 * wq_worker_waking_up - a worker is waking up
749 * @task: task waking up
750 * @cpu: CPU @task is waking up to
751 *
752 * This function is called during try_to_wake_up() when a worker is
753 * being awoken.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 */
758void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
759{
760 struct worker *worker = kthread_data(task);
761
36576000 762 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 763 WARN_ON_ONCE(worker->pool->cpu != cpu);
63d95a91 764 atomic_inc(get_pool_nr_running(worker->pool));
36576000 765 }
e22bee78
TH
766}
767
768/**
769 * wq_worker_sleeping - a worker is going to sleep
770 * @task: task going to sleep
771 * @cpu: CPU in question, must be the current CPU number
772 *
773 * This function is called during schedule() when a busy worker is
774 * going to sleep. Worker on the same cpu can be woken up by
775 * returning pointer to its task.
776 *
777 * CONTEXT:
778 * spin_lock_irq(rq->lock)
779 *
780 * RETURNS:
781 * Worker task on @cpu to wake up, %NULL if none.
782 */
783struct task_struct *wq_worker_sleeping(struct task_struct *task,
784 unsigned int cpu)
785{
786 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
787 struct worker_pool *pool;
788 atomic_t *nr_running;
e22bee78 789
111c225a
TH
790 /*
791 * Rescuers, which may not have all the fields set up like normal
792 * workers, also reach here, let's not access anything before
793 * checking NOT_RUNNING.
794 */
2d64672e 795 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
796 return NULL;
797
111c225a
TH
798 pool = worker->pool;
799 nr_running = get_pool_nr_running(pool);
800
e22bee78
TH
801 /* this can only happen on the local cpu */
802 BUG_ON(cpu != raw_smp_processor_id());
803
804 /*
805 * The counterpart of the following dec_and_test, implied mb,
806 * worklist not empty test sequence is in insert_work().
807 * Please read comment there.
808 *
628c78e7
TH
809 * NOT_RUNNING is clear. This means that we're bound to and
810 * running on the local cpu w/ rq lock held and preemption
811 * disabled, which in turn means that none else could be
d565ed63 812 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 813 * lock is safe.
e22bee78 814 */
bd7bdd43 815 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 816 to_wakeup = first_worker(pool);
e22bee78
TH
817 return to_wakeup ? to_wakeup->task : NULL;
818}
819
820/**
821 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 822 * @worker: self
d302f017
TH
823 * @flags: flags to set
824 * @wakeup: wakeup an idle worker if necessary
825 *
e22bee78
TH
826 * Set @flags in @worker->flags and adjust nr_running accordingly. If
827 * nr_running becomes zero and @wakeup is %true, an idle worker is
828 * woken up.
d302f017 829 *
cb444766 830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock)
d302f017
TH
832 */
833static inline void worker_set_flags(struct worker *worker, unsigned int flags,
834 bool wakeup)
835{
bd7bdd43 836 struct worker_pool *pool = worker->pool;
e22bee78 837
cb444766
TH
838 WARN_ON_ONCE(worker->task != current);
839
e22bee78
TH
840 /*
841 * If transitioning into NOT_RUNNING, adjust nr_running and
842 * wake up an idle worker as necessary if requested by
843 * @wakeup.
844 */
845 if ((flags & WORKER_NOT_RUNNING) &&
846 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 847 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
848
849 if (wakeup) {
850 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 851 !list_empty(&pool->worklist))
63d95a91 852 wake_up_worker(pool);
e22bee78
TH
853 } else
854 atomic_dec(nr_running);
855 }
856
d302f017
TH
857 worker->flags |= flags;
858}
859
860/**
e22bee78 861 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 862 * @worker: self
d302f017
TH
863 * @flags: flags to clear
864 *
e22bee78 865 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 866 *
cb444766 867 * CONTEXT:
d565ed63 868 * spin_lock_irq(pool->lock)
d302f017
TH
869 */
870static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
871{
63d95a91 872 struct worker_pool *pool = worker->pool;
e22bee78
TH
873 unsigned int oflags = worker->flags;
874
cb444766
TH
875 WARN_ON_ONCE(worker->task != current);
876
d302f017 877 worker->flags &= ~flags;
e22bee78 878
42c025f3
TH
879 /*
880 * If transitioning out of NOT_RUNNING, increment nr_running. Note
881 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
882 * of multiple flags, not a single flag.
883 */
e22bee78
TH
884 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
885 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 886 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
887}
888
8cca0eea
TH
889/**
890 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 891 * @pool: pool of interest
8cca0eea
TH
892 * @work: work to find worker for
893 *
c9e7cf27
TH
894 * Find a worker which is executing @work on @pool by searching
895 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
896 * to match, its current execution should match the address of @work and
897 * its work function. This is to avoid unwanted dependency between
898 * unrelated work executions through a work item being recycled while still
899 * being executed.
900 *
901 * This is a bit tricky. A work item may be freed once its execution
902 * starts and nothing prevents the freed area from being recycled for
903 * another work item. If the same work item address ends up being reused
904 * before the original execution finishes, workqueue will identify the
905 * recycled work item as currently executing and make it wait until the
906 * current execution finishes, introducing an unwanted dependency.
907 *
908 * This function checks the work item address, work function and workqueue
909 * to avoid false positives. Note that this isn't complete as one may
910 * construct a work function which can introduce dependency onto itself
911 * through a recycled work item. Well, if somebody wants to shoot oneself
912 * in the foot that badly, there's only so much we can do, and if such
913 * deadlock actually occurs, it should be easy to locate the culprit work
914 * function.
8cca0eea
TH
915 *
916 * CONTEXT:
d565ed63 917 * spin_lock_irq(pool->lock).
8cca0eea
TH
918 *
919 * RETURNS:
920 * Pointer to worker which is executing @work if found, NULL
921 * otherwise.
4d707b9f 922 */
c9e7cf27 923static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 924 struct work_struct *work)
4d707b9f 925{
42f8570f
SL
926 struct worker *worker;
927 struct hlist_node *tmp;
928
c9e7cf27 929 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
930 (unsigned long)work)
931 if (worker->current_work == work &&
932 worker->current_func == work->func)
42f8570f
SL
933 return worker;
934
935 return NULL;
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
d565ed63 953 * spin_lock_irq(pool->lock).
bf4ede01
TH
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
3aa62497 979static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 980{
3aa62497 981 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
982
983 trace_workqueue_activate_work(work);
984 move_linked_works(work, &cwq->pool->worklist, NULL);
985 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
986 cwq->nr_active++;
987}
988
3aa62497
LJ
989static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
990{
991 struct work_struct *work = list_first_entry(&cwq->delayed_works,
992 struct work_struct, entry);
993
994 cwq_activate_delayed_work(work);
995}
996
bf4ede01
TH
997/**
998 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
999 * @cwq: cwq of interest
1000 * @color: color of work which left the queue
bf4ede01
TH
1001 *
1002 * A work either has completed or is removed from pending queue,
1003 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1004 *
1005 * CONTEXT:
d565ed63 1006 * spin_lock_irq(pool->lock).
bf4ede01 1007 */
b3f9f405 1008static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1009{
1010 /* ignore uncolored works */
1011 if (color == WORK_NO_COLOR)
1012 return;
1013
1014 cwq->nr_in_flight[color]--;
1015
b3f9f405
LJ
1016 cwq->nr_active--;
1017 if (!list_empty(&cwq->delayed_works)) {
1018 /* one down, submit a delayed one */
1019 if (cwq->nr_active < cwq->max_active)
1020 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1021 }
1022
1023 /* is flush in progress and are we at the flushing tip? */
1024 if (likely(cwq->flush_color != color))
1025 return;
1026
1027 /* are there still in-flight works? */
1028 if (cwq->nr_in_flight[color])
1029 return;
1030
1031 /* this cwq is done, clear flush_color */
1032 cwq->flush_color = -1;
1033
1034 /*
1035 * If this was the last cwq, wake up the first flusher. It
1036 * will handle the rest.
1037 */
1038 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1039 complete(&cwq->wq->first_flusher->done);
1040}
1041
36e227d2 1042/**
bbb68dfa 1043 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1044 * @work: work item to steal
1045 * @is_dwork: @work is a delayed_work
bbb68dfa 1046 * @flags: place to store irq state
36e227d2
TH
1047 *
1048 * Try to grab PENDING bit of @work. This function can handle @work in any
1049 * stable state - idle, on timer or on worklist. Return values are
1050 *
1051 * 1 if @work was pending and we successfully stole PENDING
1052 * 0 if @work was idle and we claimed PENDING
1053 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1054 * -ENOENT if someone else is canceling @work, this state may persist
1055 * for arbitrarily long
36e227d2 1056 *
bbb68dfa 1057 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1058 * interrupted while holding PENDING and @work off queue, irq must be
1059 * disabled on entry. This, combined with delayed_work->timer being
1060 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1061 *
1062 * On successful return, >= 0, irq is disabled and the caller is
1063 * responsible for releasing it using local_irq_restore(*@flags).
1064 *
e0aecdd8 1065 * This function is safe to call from any context including IRQ handler.
bf4ede01 1066 */
bbb68dfa
TH
1067static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1068 unsigned long *flags)
bf4ede01 1069{
d565ed63 1070 struct worker_pool *pool;
0b3dae68 1071 struct cpu_workqueue_struct *cwq;
bf4ede01 1072
bbb68dfa
TH
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
e0aecdd8
TH
1079 /*
1080 * dwork->timer is irqsafe. If del_timer() fails, it's
1081 * guaranteed that the timer is not queued anywhere and not
1082 * running on the local CPU.
1083 */
36e227d2
TH
1084 if (likely(del_timer(&dwork->timer)))
1085 return 1;
1086 }
1087
1088 /* try to claim PENDING the normal way */
bf4ede01
TH
1089 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1090 return 0;
1091
1092 /*
1093 * The queueing is in progress, or it is already queued. Try to
1094 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1095 */
d565ed63
TH
1096 pool = get_work_pool(work);
1097 if (!pool)
bbb68dfa 1098 goto fail;
bf4ede01 1099
d565ed63 1100 spin_lock(&pool->lock);
0b3dae68
LJ
1101 /*
1102 * work->data is guaranteed to point to cwq only while the work
1103 * item is queued on cwq->wq, and both updating work->data to point
1104 * to cwq on queueing and to pool on dequeueing are done under
1105 * cwq->pool->lock. This in turn guarantees that, if work->data
1106 * points to cwq which is associated with a locked pool, the work
1107 * item is currently queued on that pool.
1108 */
1109 cwq = get_work_cwq(work);
1110 if (cwq) {
1111 if (cwq->pool == pool) {
bf4ede01 1112 debug_work_deactivate(work);
3aa62497
LJ
1113
1114 /*
1115 * A delayed work item cannot be grabbed directly
1116 * because it might have linked NO_COLOR work items
1117 * which, if left on the delayed_list, will confuse
1118 * cwq->nr_active management later on and cause
1119 * stall. Make sure the work item is activated
1120 * before grabbing.
1121 */
1122 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1123 cwq_activate_delayed_work(work);
1124
bf4ede01
TH
1125 list_del_init(&work->entry);
1126 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1127 get_work_color(work));
36e227d2 1128
4468a00f
LJ
1129 /* work->data points to cwq iff queued, point to pool */
1130 set_work_pool_and_keep_pending(work, pool->id);
1131
d565ed63 1132 spin_unlock(&pool->lock);
36e227d2 1133 return 1;
bf4ede01
TH
1134 }
1135 }
d565ed63 1136 spin_unlock(&pool->lock);
bbb68dfa
TH
1137fail:
1138 local_irq_restore(*flags);
1139 if (work_is_canceling(work))
1140 return -ENOENT;
1141 cpu_relax();
36e227d2 1142 return -EAGAIN;
bf4ede01
TH
1143}
1144
4690c4ab 1145/**
706026c2 1146 * insert_work - insert a work into a pool
4690c4ab
TH
1147 * @cwq: cwq @work belongs to
1148 * @work: work to insert
1149 * @head: insertion point
1150 * @extra_flags: extra WORK_STRUCT_* flags to set
1151 *
706026c2
TH
1152 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1153 * work_struct flags.
4690c4ab
TH
1154 *
1155 * CONTEXT:
d565ed63 1156 * spin_lock_irq(pool->lock).
4690c4ab 1157 */
b89deed3 1158static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1159 struct work_struct *work, struct list_head *head,
1160 unsigned int extra_flags)
b89deed3 1161{
63d95a91 1162 struct worker_pool *pool = cwq->pool;
e22bee78 1163
4690c4ab 1164 /* we own @work, set data and link */
7a22ad75 1165 set_work_cwq(work, cwq, extra_flags);
1a4d9b0a 1166 list_add_tail(&work->entry, head);
e22bee78
TH
1167
1168 /*
1169 * Ensure either worker_sched_deactivated() sees the above
1170 * list_add_tail() or we see zero nr_running to avoid workers
1171 * lying around lazily while there are works to be processed.
1172 */
1173 smp_mb();
1174
63d95a91
TH
1175 if (__need_more_worker(pool))
1176 wake_up_worker(pool);
b89deed3
ON
1177}
1178
c8efcc25
TH
1179/*
1180 * Test whether @work is being queued from another work executing on the
1181 * same workqueue. This is rather expensive and should only be used from
1182 * cold paths.
1183 */
1184static bool is_chained_work(struct workqueue_struct *wq)
1185{
1186 unsigned long flags;
1187 unsigned int cpu;
1188
706026c2 1189 for_each_wq_cpu(cpu) {
c9e7cf27
TH
1190 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1191 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1192 struct worker *worker;
1193 struct hlist_node *pos;
1194 int i;
1195
d565ed63 1196 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1197 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1198 if (worker->task != current)
1199 continue;
d565ed63 1200 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1201 /*
1202 * I'm @worker, no locking necessary. See if @work
1203 * is headed to the same workqueue.
1204 */
1205 return worker->current_cwq->wq == wq;
1206 }
d565ed63 1207 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1208 }
1209 return false;
1210}
1211
4690c4ab 1212static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1213 struct work_struct *work)
1214{
d565ed63
TH
1215 bool highpri = wq->flags & WQ_HIGHPRI;
1216 struct worker_pool *pool;
502ca9d8 1217 struct cpu_workqueue_struct *cwq;
1e19ffc6 1218 struct list_head *worklist;
8a2e8e5d 1219 unsigned int work_flags;
b75cac93 1220 unsigned int req_cpu = cpu;
8930caba
TH
1221
1222 /*
1223 * While a work item is PENDING && off queue, a task trying to
1224 * steal the PENDING will busy-loop waiting for it to either get
1225 * queued or lose PENDING. Grabbing PENDING and queueing should
1226 * happen with IRQ disabled.
1227 */
1228 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1229
dc186ad7 1230 debug_work_activate(work);
1e19ffc6 1231
c8efcc25 1232 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1233 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1234 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1235 return;
1236
d565ed63 1237 /* determine pool to use */
c7fc77f7 1238 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1239 struct worker_pool *last_pool;
18aa9eff 1240
57469821 1241 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1242 cpu = raw_smp_processor_id();
1243
18aa9eff 1244 /*
dbf2576e
TH
1245 * It's multi cpu. If @work was previously on a different
1246 * cpu, it might still be running there, in which case the
1247 * work needs to be queued on that cpu to guarantee
1248 * non-reentrancy.
18aa9eff 1249 */
d565ed63 1250 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1251 last_pool = get_work_pool(work);
dbf2576e 1252
d565ed63 1253 if (last_pool && last_pool != pool) {
18aa9eff
TH
1254 struct worker *worker;
1255
d565ed63 1256 spin_lock(&last_pool->lock);
18aa9eff 1257
c9e7cf27 1258 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1259
1260 if (worker && worker->current_cwq->wq == wq)
d565ed63 1261 pool = last_pool;
18aa9eff
TH
1262 else {
1263 /* meh... not running there, queue here */
d565ed63
TH
1264 spin_unlock(&last_pool->lock);
1265 spin_lock(&pool->lock);
18aa9eff 1266 }
8930caba 1267 } else {
d565ed63 1268 spin_lock(&pool->lock);
8930caba 1269 }
f3421797 1270 } else {
d565ed63
TH
1271 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1272 spin_lock(&pool->lock);
502ca9d8
TH
1273 }
1274
d565ed63
TH
1275 /* pool determined, get cwq and queue */
1276 cwq = get_cwq(pool->cpu, wq);
b75cac93 1277 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1278
f5b2552b 1279 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1280 spin_unlock(&pool->lock);
f5b2552b
DC
1281 return;
1282 }
1e19ffc6 1283
73f53c4a 1284 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1285 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1286
1287 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1288 trace_workqueue_activate_work(work);
1e19ffc6 1289 cwq->nr_active++;
3270476a 1290 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1291 } else {
1292 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1293 worklist = &cwq->delayed_works;
8a2e8e5d 1294 }
1e19ffc6 1295
8a2e8e5d 1296 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1297
d565ed63 1298 spin_unlock(&pool->lock);
1da177e4
LT
1299}
1300
0fcb78c2 1301/**
c1a220e7
ZR
1302 * queue_work_on - queue work on specific cpu
1303 * @cpu: CPU number to execute work on
0fcb78c2
REB
1304 * @wq: workqueue to use
1305 * @work: work to queue
1306 *
d4283e93 1307 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1308 *
c1a220e7
ZR
1309 * We queue the work to a specific CPU, the caller must ensure it
1310 * can't go away.
1da177e4 1311 */
d4283e93
TH
1312bool queue_work_on(int cpu, struct workqueue_struct *wq,
1313 struct work_struct *work)
1da177e4 1314{
d4283e93 1315 bool ret = false;
8930caba 1316 unsigned long flags;
ef1ca236 1317
8930caba 1318 local_irq_save(flags);
c1a220e7 1319
22df02bb 1320 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1321 __queue_work(cpu, wq, work);
d4283e93 1322 ret = true;
c1a220e7 1323 }
ef1ca236 1324
8930caba 1325 local_irq_restore(flags);
1da177e4
LT
1326 return ret;
1327}
c1a220e7 1328EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1329
c1a220e7 1330/**
0a13c00e 1331 * queue_work - queue work on a workqueue
c1a220e7
ZR
1332 * @wq: workqueue to use
1333 * @work: work to queue
1334 *
d4283e93 1335 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1336 *
0a13c00e
TH
1337 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1338 * it can be processed by another CPU.
c1a220e7 1339 */
d4283e93 1340bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1341{
57469821 1342 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1343}
0a13c00e 1344EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1345
d8e794df 1346void delayed_work_timer_fn(unsigned long __data)
1da177e4 1347{
52bad64d 1348 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1349
e0aecdd8 1350 /* should have been called from irqsafe timer with irq already off */
60c057bc 1351 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1352}
d8e794df 1353EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1354
7beb2edf
TH
1355static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1356 struct delayed_work *dwork, unsigned long delay)
1da177e4 1357{
7beb2edf
TH
1358 struct timer_list *timer = &dwork->timer;
1359 struct work_struct *work = &dwork->work;
7beb2edf
TH
1360
1361 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1362 timer->data != (unsigned long)dwork);
fc4b514f
TH
1363 WARN_ON_ONCE(timer_pending(timer));
1364 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1365
8852aac2
TH
1366 /*
1367 * If @delay is 0, queue @dwork->work immediately. This is for
1368 * both optimization and correctness. The earliest @timer can
1369 * expire is on the closest next tick and delayed_work users depend
1370 * on that there's no such delay when @delay is 0.
1371 */
1372 if (!delay) {
1373 __queue_work(cpu, wq, &dwork->work);
1374 return;
1375 }
1376
7beb2edf 1377 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1378
60c057bc 1379 dwork->wq = wq;
1265057f 1380 dwork->cpu = cpu;
7beb2edf
TH
1381 timer->expires = jiffies + delay;
1382
1383 if (unlikely(cpu != WORK_CPU_UNBOUND))
1384 add_timer_on(timer, cpu);
1385 else
1386 add_timer(timer);
1da177e4
LT
1387}
1388
0fcb78c2
REB
1389/**
1390 * queue_delayed_work_on - queue work on specific CPU after delay
1391 * @cpu: CPU number to execute work on
1392 * @wq: workqueue to use
af9997e4 1393 * @dwork: work to queue
0fcb78c2
REB
1394 * @delay: number of jiffies to wait before queueing
1395 *
715f1300
TH
1396 * Returns %false if @work was already on a queue, %true otherwise. If
1397 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1398 * execution.
0fcb78c2 1399 */
d4283e93
TH
1400bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1401 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1402{
52bad64d 1403 struct work_struct *work = &dwork->work;
d4283e93 1404 bool ret = false;
8930caba 1405 unsigned long flags;
7a6bc1cd 1406
8930caba
TH
1407 /* read the comment in __queue_work() */
1408 local_irq_save(flags);
7a6bc1cd 1409
22df02bb 1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1411 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1412 ret = true;
7a6bc1cd 1413 }
8a3e77cc 1414
8930caba 1415 local_irq_restore(flags);
7a6bc1cd
VP
1416 return ret;
1417}
ae90dd5d 1418EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1419
0a13c00e
TH
1420/**
1421 * queue_delayed_work - queue work on a workqueue after delay
1422 * @wq: workqueue to use
1423 * @dwork: delayable work to queue
1424 * @delay: number of jiffies to wait before queueing
1425 *
715f1300 1426 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1427 */
d4283e93 1428bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1429 struct delayed_work *dwork, unsigned long delay)
1430{
57469821 1431 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1432}
1433EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1434
8376fe22
TH
1435/**
1436 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1437 * @cpu: CPU number to execute work on
1438 * @wq: workqueue to use
1439 * @dwork: work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
1442 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1443 * modify @dwork's timer so that it expires after @delay. If @delay is
1444 * zero, @work is guaranteed to be scheduled immediately regardless of its
1445 * current state.
1446 *
1447 * Returns %false if @dwork was idle and queued, %true if @dwork was
1448 * pending and its timer was modified.
1449 *
e0aecdd8 1450 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1451 * See try_to_grab_pending() for details.
1452 */
1453bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455{
1456 unsigned long flags;
1457 int ret;
c7fc77f7 1458
8376fe22
TH
1459 do {
1460 ret = try_to_grab_pending(&dwork->work, true, &flags);
1461 } while (unlikely(ret == -EAGAIN));
63bc0362 1462
8376fe22
TH
1463 if (likely(ret >= 0)) {
1464 __queue_delayed_work(cpu, wq, dwork, delay);
1465 local_irq_restore(flags);
7a6bc1cd 1466 }
8376fe22
TH
1467
1468 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1469 return ret;
1470}
8376fe22
TH
1471EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1472
1473/**
1474 * mod_delayed_work - modify delay of or queue a delayed work
1475 * @wq: workqueue to use
1476 * @dwork: work to queue
1477 * @delay: number of jiffies to wait before queueing
1478 *
1479 * mod_delayed_work_on() on local CPU.
1480 */
1481bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1482 unsigned long delay)
1483{
1484 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1485}
1486EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1487
c8e55f36
TH
1488/**
1489 * worker_enter_idle - enter idle state
1490 * @worker: worker which is entering idle state
1491 *
1492 * @worker is entering idle state. Update stats and idle timer if
1493 * necessary.
1494 *
1495 * LOCKING:
d565ed63 1496 * spin_lock_irq(pool->lock).
c8e55f36
TH
1497 */
1498static void worker_enter_idle(struct worker *worker)
1da177e4 1499{
bd7bdd43 1500 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1501
1502 BUG_ON(worker->flags & WORKER_IDLE);
1503 BUG_ON(!list_empty(&worker->entry) &&
1504 (worker->hentry.next || worker->hentry.pprev));
1505
cb444766
TH
1506 /* can't use worker_set_flags(), also called from start_worker() */
1507 worker->flags |= WORKER_IDLE;
bd7bdd43 1508 pool->nr_idle++;
e22bee78 1509 worker->last_active = jiffies;
c8e55f36
TH
1510
1511 /* idle_list is LIFO */
bd7bdd43 1512 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1513
628c78e7
TH
1514 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1515 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1516
544ecf31 1517 /*
706026c2 1518 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1519 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1520 * nr_running, the warning may trigger spuriously. Check iff
1521 * unbind is not in progress.
544ecf31 1522 */
24647570 1523 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1524 pool->nr_workers == pool->nr_idle &&
63d95a91 1525 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1526}
1527
1528/**
1529 * worker_leave_idle - leave idle state
1530 * @worker: worker which is leaving idle state
1531 *
1532 * @worker is leaving idle state. Update stats.
1533 *
1534 * LOCKING:
d565ed63 1535 * spin_lock_irq(pool->lock).
c8e55f36
TH
1536 */
1537static void worker_leave_idle(struct worker *worker)
1538{
bd7bdd43 1539 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1540
1541 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1542 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1543 pool->nr_idle--;
c8e55f36
TH
1544 list_del_init(&worker->entry);
1545}
1546
e22bee78 1547/**
706026c2 1548 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1549 * @worker: self
1550 *
1551 * Works which are scheduled while the cpu is online must at least be
1552 * scheduled to a worker which is bound to the cpu so that if they are
1553 * flushed from cpu callbacks while cpu is going down, they are
1554 * guaranteed to execute on the cpu.
1555 *
1556 * This function is to be used by rogue workers and rescuers to bind
1557 * themselves to the target cpu and may race with cpu going down or
1558 * coming online. kthread_bind() can't be used because it may put the
1559 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1560 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1561 * [dis]associated in the meantime.
1562 *
706026c2 1563 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1564 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1565 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1566 * enters idle state or fetches works without dropping lock, it can
1567 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1568 *
1569 * CONTEXT:
d565ed63 1570 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1571 * held.
1572 *
1573 * RETURNS:
706026c2 1574 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1575 * bound), %false if offline.
1576 */
1577static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1578__acquires(&pool->lock)
e22bee78 1579{
24647570 1580 struct worker_pool *pool = worker->pool;
e22bee78
TH
1581 struct task_struct *task = worker->task;
1582
1583 while (true) {
4e6045f1 1584 /*
e22bee78
TH
1585 * The following call may fail, succeed or succeed
1586 * without actually migrating the task to the cpu if
1587 * it races with cpu hotunplug operation. Verify
24647570 1588 * against POOL_DISASSOCIATED.
4e6045f1 1589 */
24647570 1590 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1591 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1592
d565ed63 1593 spin_lock_irq(&pool->lock);
24647570 1594 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1595 return false;
ec22ca5e 1596 if (task_cpu(task) == pool->cpu &&
e22bee78 1597 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1598 get_cpu_mask(pool->cpu)))
e22bee78 1599 return true;
d565ed63 1600 spin_unlock_irq(&pool->lock);
e22bee78 1601
5035b20f
TH
1602 /*
1603 * We've raced with CPU hot[un]plug. Give it a breather
1604 * and retry migration. cond_resched() is required here;
1605 * otherwise, we might deadlock against cpu_stop trying to
1606 * bring down the CPU on non-preemptive kernel.
1607 */
e22bee78 1608 cpu_relax();
5035b20f 1609 cond_resched();
e22bee78
TH
1610 }
1611}
1612
25511a47 1613/*
ea1abd61 1614 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1615 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1616 */
1617static void idle_worker_rebind(struct worker *worker)
1618{
5f7dabfd
LJ
1619 /* CPU may go down again inbetween, clear UNBOUND only on success */
1620 if (worker_maybe_bind_and_lock(worker))
1621 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1622
ea1abd61
LJ
1623 /* rebind complete, become available again */
1624 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1625 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1626}
1627
e22bee78 1628/*
25511a47 1629 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1630 * the associated cpu which is coming back online. This is scheduled by
1631 * cpu up but can race with other cpu hotplug operations and may be
1632 * executed twice without intervening cpu down.
e22bee78 1633 */
25511a47 1634static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1635{
1636 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1637
eab6d828
LJ
1638 if (worker_maybe_bind_and_lock(worker))
1639 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1640
d565ed63 1641 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1642}
1643
25511a47 1644/**
94cf58bb
TH
1645 * rebind_workers - rebind all workers of a pool to the associated CPU
1646 * @pool: pool of interest
25511a47 1647 *
94cf58bb 1648 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1649 * is different for idle and busy ones.
1650 *
ea1abd61
LJ
1651 * Idle ones will be removed from the idle_list and woken up. They will
1652 * add themselves back after completing rebind. This ensures that the
1653 * idle_list doesn't contain any unbound workers when re-bound busy workers
1654 * try to perform local wake-ups for concurrency management.
25511a47 1655 *
ea1abd61
LJ
1656 * Busy workers can rebind after they finish their current work items.
1657 * Queueing the rebind work item at the head of the scheduled list is
1658 * enough. Note that nr_running will be properly bumped as busy workers
1659 * rebind.
25511a47 1660 *
ea1abd61
LJ
1661 * On return, all non-manager workers are scheduled for rebind - see
1662 * manage_workers() for the manager special case. Any idle worker
1663 * including the manager will not appear on @idle_list until rebind is
1664 * complete, making local wake-ups safe.
25511a47 1665 */
94cf58bb 1666static void rebind_workers(struct worker_pool *pool)
25511a47 1667{
ea1abd61 1668 struct worker *worker, *n;
25511a47
TH
1669 struct hlist_node *pos;
1670 int i;
1671
94cf58bb
TH
1672 lockdep_assert_held(&pool->assoc_mutex);
1673 lockdep_assert_held(&pool->lock);
25511a47 1674
5f7dabfd 1675 /* dequeue and kick idle ones */
94cf58bb
TH
1676 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1677 /*
1678 * idle workers should be off @pool->idle_list until rebind
1679 * is complete to avoid receiving premature local wake-ups.
1680 */
1681 list_del_init(&worker->entry);
25511a47 1682
94cf58bb
TH
1683 /*
1684 * worker_thread() will see the above dequeuing and call
1685 * idle_worker_rebind().
1686 */
1687 wake_up_process(worker->task);
1688 }
25511a47 1689
94cf58bb
TH
1690 /* rebind busy workers */
1691 for_each_busy_worker(worker, i, pos, pool) {
1692 struct work_struct *rebind_work = &worker->rebind_work;
1693 struct workqueue_struct *wq;
25511a47 1694
94cf58bb
TH
1695 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1696 work_data_bits(rebind_work)))
1697 continue;
25511a47 1698
94cf58bb 1699 debug_work_activate(rebind_work);
90beca5d 1700
94cf58bb
TH
1701 /*
1702 * wq doesn't really matter but let's keep @worker->pool
1703 * and @cwq->pool consistent for sanity.
1704 */
1705 if (std_worker_pool_pri(worker->pool))
1706 wq = system_highpri_wq;
1707 else
1708 wq = system_wq;
1709
1710 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1711 worker->scheduled.next,
1712 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1713 }
25511a47
TH
1714}
1715
c34056a3
TH
1716static struct worker *alloc_worker(void)
1717{
1718 struct worker *worker;
1719
1720 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1721 if (worker) {
1722 INIT_LIST_HEAD(&worker->entry);
affee4b2 1723 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1724 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1725 /* on creation a worker is in !idle && prep state */
1726 worker->flags = WORKER_PREP;
c8e55f36 1727 }
c34056a3
TH
1728 return worker;
1729}
1730
1731/**
1732 * create_worker - create a new workqueue worker
63d95a91 1733 * @pool: pool the new worker will belong to
c34056a3 1734 *
63d95a91 1735 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1736 * can be started by calling start_worker() or destroyed using
1737 * destroy_worker().
1738 *
1739 * CONTEXT:
1740 * Might sleep. Does GFP_KERNEL allocations.
1741 *
1742 * RETURNS:
1743 * Pointer to the newly created worker.
1744 */
bc2ae0f5 1745static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1746{
e34cdddb 1747 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1748 struct worker *worker = NULL;
f3421797 1749 int id = -1;
c34056a3 1750
d565ed63 1751 spin_lock_irq(&pool->lock);
bd7bdd43 1752 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1753 spin_unlock_irq(&pool->lock);
bd7bdd43 1754 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1755 goto fail;
d565ed63 1756 spin_lock_irq(&pool->lock);
c34056a3 1757 }
d565ed63 1758 spin_unlock_irq(&pool->lock);
c34056a3
TH
1759
1760 worker = alloc_worker();
1761 if (!worker)
1762 goto fail;
1763
bd7bdd43 1764 worker->pool = pool;
c34056a3
TH
1765 worker->id = id;
1766
ec22ca5e 1767 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1768 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1769 worker, cpu_to_node(pool->cpu),
1770 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1771 else
1772 worker->task = kthread_create(worker_thread, worker,
3270476a 1773 "kworker/u:%d%s", id, pri);
c34056a3
TH
1774 if (IS_ERR(worker->task))
1775 goto fail;
1776
e34cdddb 1777 if (std_worker_pool_pri(pool))
3270476a
TH
1778 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1779
db7bccf4 1780 /*
bc2ae0f5 1781 * Determine CPU binding of the new worker depending on
24647570 1782 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1783 * flag remains stable across this function. See the comments
1784 * above the flag definition for details.
1785 *
1786 * As an unbound worker may later become a regular one if CPU comes
1787 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1788 */
24647570 1789 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1790 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1791 } else {
db7bccf4 1792 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1793 worker->flags |= WORKER_UNBOUND;
f3421797 1794 }
c34056a3
TH
1795
1796 return worker;
1797fail:
1798 if (id >= 0) {
d565ed63 1799 spin_lock_irq(&pool->lock);
bd7bdd43 1800 ida_remove(&pool->worker_ida, id);
d565ed63 1801 spin_unlock_irq(&pool->lock);
c34056a3
TH
1802 }
1803 kfree(worker);
1804 return NULL;
1805}
1806
1807/**
1808 * start_worker - start a newly created worker
1809 * @worker: worker to start
1810 *
706026c2 1811 * Make the pool aware of @worker and start it.
c34056a3
TH
1812 *
1813 * CONTEXT:
d565ed63 1814 * spin_lock_irq(pool->lock).
c34056a3
TH
1815 */
1816static void start_worker(struct worker *worker)
1817{
cb444766 1818 worker->flags |= WORKER_STARTED;
bd7bdd43 1819 worker->pool->nr_workers++;
c8e55f36 1820 worker_enter_idle(worker);
c34056a3
TH
1821 wake_up_process(worker->task);
1822}
1823
1824/**
1825 * destroy_worker - destroy a workqueue worker
1826 * @worker: worker to be destroyed
1827 *
706026c2 1828 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1829 *
1830 * CONTEXT:
d565ed63 1831 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1832 */
1833static void destroy_worker(struct worker *worker)
1834{
bd7bdd43 1835 struct worker_pool *pool = worker->pool;
c34056a3
TH
1836 int id = worker->id;
1837
1838 /* sanity check frenzy */
1839 BUG_ON(worker->current_work);
affee4b2 1840 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1841
c8e55f36 1842 if (worker->flags & WORKER_STARTED)
bd7bdd43 1843 pool->nr_workers--;
c8e55f36 1844 if (worker->flags & WORKER_IDLE)
bd7bdd43 1845 pool->nr_idle--;
c8e55f36
TH
1846
1847 list_del_init(&worker->entry);
cb444766 1848 worker->flags |= WORKER_DIE;
c8e55f36 1849
d565ed63 1850 spin_unlock_irq(&pool->lock);
c8e55f36 1851
c34056a3
TH
1852 kthread_stop(worker->task);
1853 kfree(worker);
1854
d565ed63 1855 spin_lock_irq(&pool->lock);
bd7bdd43 1856 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1857}
1858
63d95a91 1859static void idle_worker_timeout(unsigned long __pool)
e22bee78 1860{
63d95a91 1861 struct worker_pool *pool = (void *)__pool;
e22bee78 1862
d565ed63 1863 spin_lock_irq(&pool->lock);
e22bee78 1864
63d95a91 1865 if (too_many_workers(pool)) {
e22bee78
TH
1866 struct worker *worker;
1867 unsigned long expires;
1868
1869 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1870 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1871 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1872
1873 if (time_before(jiffies, expires))
63d95a91 1874 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1875 else {
1876 /* it's been idle for too long, wake up manager */
11ebea50 1877 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1878 wake_up_worker(pool);
d5abe669 1879 }
e22bee78
TH
1880 }
1881
d565ed63 1882 spin_unlock_irq(&pool->lock);
e22bee78 1883}
d5abe669 1884
e22bee78
TH
1885static bool send_mayday(struct work_struct *work)
1886{
1887 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1888 struct workqueue_struct *wq = cwq->wq;
f3421797 1889 unsigned int cpu;
e22bee78
TH
1890
1891 if (!(wq->flags & WQ_RESCUER))
1892 return false;
1893
1894 /* mayday mayday mayday */
ec22ca5e 1895 cpu = cwq->pool->cpu;
f3421797
TH
1896 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1897 if (cpu == WORK_CPU_UNBOUND)
1898 cpu = 0;
f2e005aa 1899 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1900 wake_up_process(wq->rescuer->task);
1901 return true;
1902}
1903
706026c2 1904static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1905{
63d95a91 1906 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1907 struct work_struct *work;
1908
d565ed63 1909 spin_lock_irq(&pool->lock);
e22bee78 1910
63d95a91 1911 if (need_to_create_worker(pool)) {
e22bee78
TH
1912 /*
1913 * We've been trying to create a new worker but
1914 * haven't been successful. We might be hitting an
1915 * allocation deadlock. Send distress signals to
1916 * rescuers.
1917 */
63d95a91 1918 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1919 send_mayday(work);
1da177e4 1920 }
e22bee78 1921
d565ed63 1922 spin_unlock_irq(&pool->lock);
e22bee78 1923
63d95a91 1924 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1925}
1926
e22bee78
TH
1927/**
1928 * maybe_create_worker - create a new worker if necessary
63d95a91 1929 * @pool: pool to create a new worker for
e22bee78 1930 *
63d95a91 1931 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1932 * have at least one idle worker on return from this function. If
1933 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1934 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1935 * possible allocation deadlock.
1936 *
1937 * On return, need_to_create_worker() is guaranteed to be false and
1938 * may_start_working() true.
1939 *
1940 * LOCKING:
d565ed63 1941 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1942 * multiple times. Does GFP_KERNEL allocations. Called only from
1943 * manager.
1944 *
1945 * RETURNS:
d565ed63 1946 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1947 * otherwise.
1948 */
63d95a91 1949static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1950__releases(&pool->lock)
1951__acquires(&pool->lock)
1da177e4 1952{
63d95a91 1953 if (!need_to_create_worker(pool))
e22bee78
TH
1954 return false;
1955restart:
d565ed63 1956 spin_unlock_irq(&pool->lock);
9f9c2364 1957
e22bee78 1958 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1959 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1960
1961 while (true) {
1962 struct worker *worker;
1963
bc2ae0f5 1964 worker = create_worker(pool);
e22bee78 1965 if (worker) {
63d95a91 1966 del_timer_sync(&pool->mayday_timer);
d565ed63 1967 spin_lock_irq(&pool->lock);
e22bee78 1968 start_worker(worker);
63d95a91 1969 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1970 return true;
1971 }
1972
63d95a91 1973 if (!need_to_create_worker(pool))
e22bee78 1974 break;
1da177e4 1975
e22bee78
TH
1976 __set_current_state(TASK_INTERRUPTIBLE);
1977 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1978
63d95a91 1979 if (!need_to_create_worker(pool))
e22bee78
TH
1980 break;
1981 }
1982
63d95a91 1983 del_timer_sync(&pool->mayday_timer);
d565ed63 1984 spin_lock_irq(&pool->lock);
63d95a91 1985 if (need_to_create_worker(pool))
e22bee78
TH
1986 goto restart;
1987 return true;
1988}
1989
1990/**
1991 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1992 * @pool: pool to destroy workers for
e22bee78 1993 *
63d95a91 1994 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1995 * IDLE_WORKER_TIMEOUT.
1996 *
1997 * LOCKING:
d565ed63 1998 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1999 * multiple times. Called only from manager.
2000 *
2001 * RETURNS:
d565ed63 2002 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2003 * otherwise.
2004 */
63d95a91 2005static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2006{
2007 bool ret = false;
1da177e4 2008
63d95a91 2009 while (too_many_workers(pool)) {
e22bee78
TH
2010 struct worker *worker;
2011 unsigned long expires;
3af24433 2012
63d95a91 2013 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2014 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2015
e22bee78 2016 if (time_before(jiffies, expires)) {
63d95a91 2017 mod_timer(&pool->idle_timer, expires);
3af24433 2018 break;
e22bee78 2019 }
1da177e4 2020
e22bee78
TH
2021 destroy_worker(worker);
2022 ret = true;
1da177e4 2023 }
1e19ffc6 2024
e22bee78 2025 return ret;
1e19ffc6
TH
2026}
2027
73f53c4a 2028/**
e22bee78
TH
2029 * manage_workers - manage worker pool
2030 * @worker: self
73f53c4a 2031 *
706026c2 2032 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2033 * to. At any given time, there can be only zero or one manager per
706026c2 2034 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2035 *
2036 * The caller can safely start processing works on false return. On
2037 * true return, it's guaranteed that need_to_create_worker() is false
2038 * and may_start_working() is true.
73f53c4a
TH
2039 *
2040 * CONTEXT:
d565ed63 2041 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2042 * multiple times. Does GFP_KERNEL allocations.
2043 *
2044 * RETURNS:
d565ed63
TH
2045 * spin_lock_irq(pool->lock) which may be released and regrabbed
2046 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2047 */
e22bee78 2048static bool manage_workers(struct worker *worker)
73f53c4a 2049{
63d95a91 2050 struct worker_pool *pool = worker->pool;
e22bee78 2051 bool ret = false;
73f53c4a 2052
ee378aa4 2053 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2054 return ret;
1e19ffc6 2055
552a37e9 2056 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2057
ee378aa4
LJ
2058 /*
2059 * To simplify both worker management and CPU hotplug, hold off
2060 * management while hotplug is in progress. CPU hotplug path can't
2061 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2062 * lead to idle worker depletion (all become busy thinking someone
2063 * else is managing) which in turn can result in deadlock under
b2eb83d1 2064 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2065 * manager against CPU hotplug.
2066 *
b2eb83d1 2067 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2068 * progress. trylock first without dropping @pool->lock.
ee378aa4 2069 */
b2eb83d1 2070 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2071 spin_unlock_irq(&pool->lock);
b2eb83d1 2072 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2073 /*
2074 * CPU hotplug could have happened while we were waiting
b2eb83d1 2075 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2076 * because manager isn't either on idle or busy list, and
706026c2 2077 * @pool's state and ours could have deviated.
ee378aa4 2078 *
b2eb83d1 2079 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2080 * simply try to bind. It will succeed or fail depending
706026c2 2081 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2082 * %WORKER_UNBOUND accordingly.
2083 */
2084 if (worker_maybe_bind_and_lock(worker))
2085 worker->flags &= ~WORKER_UNBOUND;
2086 else
2087 worker->flags |= WORKER_UNBOUND;
73f53c4a 2088
ee378aa4
LJ
2089 ret = true;
2090 }
73f53c4a 2091
11ebea50 2092 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2093
2094 /*
e22bee78
TH
2095 * Destroy and then create so that may_start_working() is true
2096 * on return.
73f53c4a 2097 */
63d95a91
TH
2098 ret |= maybe_destroy_workers(pool);
2099 ret |= maybe_create_worker(pool);
e22bee78 2100
552a37e9 2101 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2102 mutex_unlock(&pool->assoc_mutex);
e22bee78 2103 return ret;
73f53c4a
TH
2104}
2105
a62428c0
TH
2106/**
2107 * process_one_work - process single work
c34056a3 2108 * @worker: self
a62428c0
TH
2109 * @work: work to process
2110 *
2111 * Process @work. This function contains all the logics necessary to
2112 * process a single work including synchronization against and
2113 * interaction with other workers on the same cpu, queueing and
2114 * flushing. As long as context requirement is met, any worker can
2115 * call this function to process a work.
2116 *
2117 * CONTEXT:
d565ed63 2118 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2119 */
c34056a3 2120static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2121__releases(&pool->lock)
2122__acquires(&pool->lock)
a62428c0 2123{
7e11629d 2124 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2125 struct worker_pool *pool = worker->pool;
fb0e7beb 2126 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2127 int work_color;
7e11629d 2128 struct worker *collision;
a62428c0
TH
2129#ifdef CONFIG_LOCKDEP
2130 /*
2131 * It is permissible to free the struct work_struct from
2132 * inside the function that is called from it, this we need to
2133 * take into account for lockdep too. To avoid bogus "held
2134 * lock freed" warnings as well as problems when looking into
2135 * work->lockdep_map, make a copy and use that here.
2136 */
4d82a1de
PZ
2137 struct lockdep_map lockdep_map;
2138
2139 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2140#endif
6fec10a1
TH
2141 /*
2142 * Ensure we're on the correct CPU. DISASSOCIATED test is
2143 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2144 * unbound or a disassociated pool.
6fec10a1 2145 */
5f7dabfd 2146 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2147 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2148 raw_smp_processor_id() != pool->cpu);
25511a47 2149
7e11629d
TH
2150 /*
2151 * A single work shouldn't be executed concurrently by
2152 * multiple workers on a single cpu. Check whether anyone is
2153 * already processing the work. If so, defer the work to the
2154 * currently executing one.
2155 */
c9e7cf27 2156 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2157 if (unlikely(collision)) {
2158 move_linked_works(work, &collision->scheduled, NULL);
2159 return;
2160 }
2161
8930caba 2162 /* claim and dequeue */
a62428c0 2163 debug_work_deactivate(work);
c9e7cf27 2164 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2165 worker->current_work = work;
a2c1c57b 2166 worker->current_func = work->func;
8cca0eea 2167 worker->current_cwq = cwq;
73f53c4a 2168 work_color = get_work_color(work);
7a22ad75 2169
a62428c0
TH
2170 list_del_init(&work->entry);
2171
fb0e7beb
TH
2172 /*
2173 * CPU intensive works don't participate in concurrency
2174 * management. They're the scheduler's responsibility.
2175 */
2176 if (unlikely(cpu_intensive))
2177 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2178
974271c4 2179 /*
d565ed63 2180 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2181 * executed ASAP. Wake up another worker if necessary.
2182 */
63d95a91
TH
2183 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2184 wake_up_worker(pool);
974271c4 2185
8930caba 2186 /*
7c3eed5c 2187 * Record the last pool and clear PENDING which should be the last
d565ed63 2188 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2189 * PENDING and queued state changes happen together while IRQ is
2190 * disabled.
8930caba 2191 */
7c3eed5c 2192 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2193
d565ed63 2194 spin_unlock_irq(&pool->lock);
a62428c0 2195
e159489b 2196 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2197 lock_map_acquire(&lockdep_map);
e36c886a 2198 trace_workqueue_execute_start(work);
a2c1c57b 2199 worker->current_func(work);
e36c886a
AV
2200 /*
2201 * While we must be careful to not use "work" after this, the trace
2202 * point will only record its address.
2203 */
2204 trace_workqueue_execute_end(work);
a62428c0
TH
2205 lock_map_release(&lockdep_map);
2206 lock_map_release(&cwq->wq->lockdep_map);
2207
2208 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2209 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2210 " last function: %pf\n",
a2c1c57b
TH
2211 current->comm, preempt_count(), task_pid_nr(current),
2212 worker->current_func);
a62428c0
TH
2213 debug_show_held_locks(current);
2214 dump_stack();
2215 }
2216
d565ed63 2217 spin_lock_irq(&pool->lock);
a62428c0 2218
fb0e7beb
TH
2219 /* clear cpu intensive status */
2220 if (unlikely(cpu_intensive))
2221 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2222
a62428c0 2223 /* we're done with it, release */
42f8570f 2224 hash_del(&worker->hentry);
c34056a3 2225 worker->current_work = NULL;
a2c1c57b 2226 worker->current_func = NULL;
8cca0eea 2227 worker->current_cwq = NULL;
b3f9f405 2228 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2229}
2230
affee4b2
TH
2231/**
2232 * process_scheduled_works - process scheduled works
2233 * @worker: self
2234 *
2235 * Process all scheduled works. Please note that the scheduled list
2236 * may change while processing a work, so this function repeatedly
2237 * fetches a work from the top and executes it.
2238 *
2239 * CONTEXT:
d565ed63 2240 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2241 * multiple times.
2242 */
2243static void process_scheduled_works(struct worker *worker)
1da177e4 2244{
affee4b2
TH
2245 while (!list_empty(&worker->scheduled)) {
2246 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2247 struct work_struct, entry);
c34056a3 2248 process_one_work(worker, work);
1da177e4 2249 }
1da177e4
LT
2250}
2251
4690c4ab
TH
2252/**
2253 * worker_thread - the worker thread function
c34056a3 2254 * @__worker: self
4690c4ab 2255 *
706026c2
TH
2256 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2257 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2258 * their specific target workqueue. The only exception is works which
2259 * belong to workqueues with a rescuer which will be explained in
2260 * rescuer_thread().
4690c4ab 2261 */
c34056a3 2262static int worker_thread(void *__worker)
1da177e4 2263{
c34056a3 2264 struct worker *worker = __worker;
bd7bdd43 2265 struct worker_pool *pool = worker->pool;
1da177e4 2266
e22bee78
TH
2267 /* tell the scheduler that this is a workqueue worker */
2268 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2269woke_up:
d565ed63 2270 spin_lock_irq(&pool->lock);
1da177e4 2271
5f7dabfd
LJ
2272 /* we are off idle list if destruction or rebind is requested */
2273 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2274 spin_unlock_irq(&pool->lock);
25511a47 2275
5f7dabfd 2276 /* if DIE is set, destruction is requested */
25511a47
TH
2277 if (worker->flags & WORKER_DIE) {
2278 worker->task->flags &= ~PF_WQ_WORKER;
2279 return 0;
2280 }
2281
5f7dabfd 2282 /* otherwise, rebind */
25511a47
TH
2283 idle_worker_rebind(worker);
2284 goto woke_up;
c8e55f36 2285 }
affee4b2 2286
c8e55f36 2287 worker_leave_idle(worker);
db7bccf4 2288recheck:
e22bee78 2289 /* no more worker necessary? */
63d95a91 2290 if (!need_more_worker(pool))
e22bee78
TH
2291 goto sleep;
2292
2293 /* do we need to manage? */
63d95a91 2294 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2295 goto recheck;
2296
c8e55f36
TH
2297 /*
2298 * ->scheduled list can only be filled while a worker is
2299 * preparing to process a work or actually processing it.
2300 * Make sure nobody diddled with it while I was sleeping.
2301 */
2302 BUG_ON(!list_empty(&worker->scheduled));
2303
e22bee78
TH
2304 /*
2305 * When control reaches this point, we're guaranteed to have
2306 * at least one idle worker or that someone else has already
2307 * assumed the manager role.
2308 */
2309 worker_clr_flags(worker, WORKER_PREP);
2310
2311 do {
c8e55f36 2312 struct work_struct *work =
bd7bdd43 2313 list_first_entry(&pool->worklist,
c8e55f36
TH
2314 struct work_struct, entry);
2315
2316 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2317 /* optimization path, not strictly necessary */
2318 process_one_work(worker, work);
2319 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2320 process_scheduled_works(worker);
c8e55f36
TH
2321 } else {
2322 move_linked_works(work, &worker->scheduled, NULL);
2323 process_scheduled_works(worker);
affee4b2 2324 }
63d95a91 2325 } while (keep_working(pool));
e22bee78
TH
2326
2327 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2328sleep:
63d95a91 2329 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2330 goto recheck;
d313dd85 2331
c8e55f36 2332 /*
d565ed63
TH
2333 * pool->lock is held and there's no work to process and no need to
2334 * manage, sleep. Workers are woken up only while holding
2335 * pool->lock or from local cpu, so setting the current state
2336 * before releasing pool->lock is enough to prevent losing any
2337 * event.
c8e55f36
TH
2338 */
2339 worker_enter_idle(worker);
2340 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2341 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2342 schedule();
2343 goto woke_up;
1da177e4
LT
2344}
2345
e22bee78
TH
2346/**
2347 * rescuer_thread - the rescuer thread function
111c225a 2348 * @__rescuer: self
e22bee78
TH
2349 *
2350 * Workqueue rescuer thread function. There's one rescuer for each
2351 * workqueue which has WQ_RESCUER set.
2352 *
706026c2 2353 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2354 * worker which uses GFP_KERNEL allocation which has slight chance of
2355 * developing into deadlock if some works currently on the same queue
2356 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2357 * the problem rescuer solves.
2358 *
706026c2
TH
2359 * When such condition is possible, the pool summons rescuers of all
2360 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2361 * those works so that forward progress can be guaranteed.
2362 *
2363 * This should happen rarely.
2364 */
111c225a 2365static int rescuer_thread(void *__rescuer)
e22bee78 2366{
111c225a
TH
2367 struct worker *rescuer = __rescuer;
2368 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2369 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2370 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2371 unsigned int cpu;
2372
2373 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2374
2375 /*
2376 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2377 * doesn't participate in concurrency management.
2378 */
2379 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2380repeat:
2381 set_current_state(TASK_INTERRUPTIBLE);
2382
412d32e6
MG
2383 if (kthread_should_stop()) {
2384 __set_current_state(TASK_RUNNING);
111c225a 2385 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2386 return 0;
412d32e6 2387 }
e22bee78 2388
f3421797
TH
2389 /*
2390 * See whether any cpu is asking for help. Unbounded
2391 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2392 */
f2e005aa 2393 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2394 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2395 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2396 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2397 struct work_struct *work, *n;
2398
2399 __set_current_state(TASK_RUNNING);
f2e005aa 2400 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2401
2402 /* migrate to the target cpu if possible */
bd7bdd43 2403 rescuer->pool = pool;
e22bee78
TH
2404 worker_maybe_bind_and_lock(rescuer);
2405
2406 /*
2407 * Slurp in all works issued via this workqueue and
2408 * process'em.
2409 */
2410 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2411 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2412 if (get_work_cwq(work) == cwq)
2413 move_linked_works(work, scheduled, &n);
2414
2415 process_scheduled_works(rescuer);
7576958a
TH
2416
2417 /*
d565ed63 2418 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2419 * regular worker; otherwise, we end up with 0 concurrency
2420 * and stalling the execution.
2421 */
63d95a91
TH
2422 if (keep_working(pool))
2423 wake_up_worker(pool);
7576958a 2424
d565ed63 2425 spin_unlock_irq(&pool->lock);
e22bee78
TH
2426 }
2427
111c225a
TH
2428 /* rescuers should never participate in concurrency management */
2429 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2430 schedule();
2431 goto repeat;
1da177e4
LT
2432}
2433
fc2e4d70
ON
2434struct wq_barrier {
2435 struct work_struct work;
2436 struct completion done;
2437};
2438
2439static void wq_barrier_func(struct work_struct *work)
2440{
2441 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2442 complete(&barr->done);
2443}
2444
4690c4ab
TH
2445/**
2446 * insert_wq_barrier - insert a barrier work
2447 * @cwq: cwq to insert barrier into
2448 * @barr: wq_barrier to insert
affee4b2
TH
2449 * @target: target work to attach @barr to
2450 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2451 *
affee4b2
TH
2452 * @barr is linked to @target such that @barr is completed only after
2453 * @target finishes execution. Please note that the ordering
2454 * guarantee is observed only with respect to @target and on the local
2455 * cpu.
2456 *
2457 * Currently, a queued barrier can't be canceled. This is because
2458 * try_to_grab_pending() can't determine whether the work to be
2459 * grabbed is at the head of the queue and thus can't clear LINKED
2460 * flag of the previous work while there must be a valid next work
2461 * after a work with LINKED flag set.
2462 *
2463 * Note that when @worker is non-NULL, @target may be modified
2464 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2465 *
2466 * CONTEXT:
d565ed63 2467 * spin_lock_irq(pool->lock).
4690c4ab 2468 */
83c22520 2469static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2470 struct wq_barrier *barr,
2471 struct work_struct *target, struct worker *worker)
fc2e4d70 2472{
affee4b2
TH
2473 struct list_head *head;
2474 unsigned int linked = 0;
2475
dc186ad7 2476 /*
d565ed63 2477 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2478 * as we know for sure that this will not trigger any of the
2479 * checks and call back into the fixup functions where we
2480 * might deadlock.
2481 */
ca1cab37 2482 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2483 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2484 init_completion(&barr->done);
83c22520 2485
affee4b2
TH
2486 /*
2487 * If @target is currently being executed, schedule the
2488 * barrier to the worker; otherwise, put it after @target.
2489 */
2490 if (worker)
2491 head = worker->scheduled.next;
2492 else {
2493 unsigned long *bits = work_data_bits(target);
2494
2495 head = target->entry.next;
2496 /* there can already be other linked works, inherit and set */
2497 linked = *bits & WORK_STRUCT_LINKED;
2498 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2499 }
2500
dc186ad7 2501 debug_work_activate(&barr->work);
affee4b2
TH
2502 insert_work(cwq, &barr->work, head,
2503 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2504}
2505
73f53c4a
TH
2506/**
2507 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2508 * @wq: workqueue being flushed
2509 * @flush_color: new flush color, < 0 for no-op
2510 * @work_color: new work color, < 0 for no-op
2511 *
2512 * Prepare cwqs for workqueue flushing.
2513 *
2514 * If @flush_color is non-negative, flush_color on all cwqs should be
2515 * -1. If no cwq has in-flight commands at the specified color, all
2516 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2517 * has in flight commands, its cwq->flush_color is set to
2518 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2519 * wakeup logic is armed and %true is returned.
2520 *
2521 * The caller should have initialized @wq->first_flusher prior to
2522 * calling this function with non-negative @flush_color. If
2523 * @flush_color is negative, no flush color update is done and %false
2524 * is returned.
2525 *
2526 * If @work_color is non-negative, all cwqs should have the same
2527 * work_color which is previous to @work_color and all will be
2528 * advanced to @work_color.
2529 *
2530 * CONTEXT:
2531 * mutex_lock(wq->flush_mutex).
2532 *
2533 * RETURNS:
2534 * %true if @flush_color >= 0 and there's something to flush. %false
2535 * otherwise.
2536 */
2537static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2538 int flush_color, int work_color)
1da177e4 2539{
73f53c4a
TH
2540 bool wait = false;
2541 unsigned int cpu;
1da177e4 2542
73f53c4a
TH
2543 if (flush_color >= 0) {
2544 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2545 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2546 }
2355b70f 2547
f3421797 2548 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2549 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2550 struct worker_pool *pool = cwq->pool;
fc2e4d70 2551
d565ed63 2552 spin_lock_irq(&pool->lock);
83c22520 2553
73f53c4a
TH
2554 if (flush_color >= 0) {
2555 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2556
73f53c4a
TH
2557 if (cwq->nr_in_flight[flush_color]) {
2558 cwq->flush_color = flush_color;
2559 atomic_inc(&wq->nr_cwqs_to_flush);
2560 wait = true;
2561 }
2562 }
1da177e4 2563
73f53c4a
TH
2564 if (work_color >= 0) {
2565 BUG_ON(work_color != work_next_color(cwq->work_color));
2566 cwq->work_color = work_color;
2567 }
1da177e4 2568
d565ed63 2569 spin_unlock_irq(&pool->lock);
1da177e4 2570 }
2355b70f 2571
73f53c4a
TH
2572 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2573 complete(&wq->first_flusher->done);
14441960 2574
73f53c4a 2575 return wait;
1da177e4
LT
2576}
2577
0fcb78c2 2578/**
1da177e4 2579 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2580 * @wq: workqueue to flush
1da177e4
LT
2581 *
2582 * Forces execution of the workqueue and blocks until its completion.
2583 * This is typically used in driver shutdown handlers.
2584 *
fc2e4d70
ON
2585 * We sleep until all works which were queued on entry have been handled,
2586 * but we are not livelocked by new incoming ones.
1da177e4 2587 */
7ad5b3a5 2588void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2589{
73f53c4a
TH
2590 struct wq_flusher this_flusher = {
2591 .list = LIST_HEAD_INIT(this_flusher.list),
2592 .flush_color = -1,
2593 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2594 };
2595 int next_color;
1da177e4 2596
3295f0ef
IM
2597 lock_map_acquire(&wq->lockdep_map);
2598 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2599
2600 mutex_lock(&wq->flush_mutex);
2601
2602 /*
2603 * Start-to-wait phase
2604 */
2605 next_color = work_next_color(wq->work_color);
2606
2607 if (next_color != wq->flush_color) {
2608 /*
2609 * Color space is not full. The current work_color
2610 * becomes our flush_color and work_color is advanced
2611 * by one.
2612 */
2613 BUG_ON(!list_empty(&wq->flusher_overflow));
2614 this_flusher.flush_color = wq->work_color;
2615 wq->work_color = next_color;
2616
2617 if (!wq->first_flusher) {
2618 /* no flush in progress, become the first flusher */
2619 BUG_ON(wq->flush_color != this_flusher.flush_color);
2620
2621 wq->first_flusher = &this_flusher;
2622
2623 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2624 wq->work_color)) {
2625 /* nothing to flush, done */
2626 wq->flush_color = next_color;
2627 wq->first_flusher = NULL;
2628 goto out_unlock;
2629 }
2630 } else {
2631 /* wait in queue */
2632 BUG_ON(wq->flush_color == this_flusher.flush_color);
2633 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2634 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2635 }
2636 } else {
2637 /*
2638 * Oops, color space is full, wait on overflow queue.
2639 * The next flush completion will assign us
2640 * flush_color and transfer to flusher_queue.
2641 */
2642 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2643 }
2644
2645 mutex_unlock(&wq->flush_mutex);
2646
2647 wait_for_completion(&this_flusher.done);
2648
2649 /*
2650 * Wake-up-and-cascade phase
2651 *
2652 * First flushers are responsible for cascading flushes and
2653 * handling overflow. Non-first flushers can simply return.
2654 */
2655 if (wq->first_flusher != &this_flusher)
2656 return;
2657
2658 mutex_lock(&wq->flush_mutex);
2659
4ce48b37
TH
2660 /* we might have raced, check again with mutex held */
2661 if (wq->first_flusher != &this_flusher)
2662 goto out_unlock;
2663
73f53c4a
TH
2664 wq->first_flusher = NULL;
2665
2666 BUG_ON(!list_empty(&this_flusher.list));
2667 BUG_ON(wq->flush_color != this_flusher.flush_color);
2668
2669 while (true) {
2670 struct wq_flusher *next, *tmp;
2671
2672 /* complete all the flushers sharing the current flush color */
2673 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2674 if (next->flush_color != wq->flush_color)
2675 break;
2676 list_del_init(&next->list);
2677 complete(&next->done);
2678 }
2679
2680 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2681 wq->flush_color != work_next_color(wq->work_color));
2682
2683 /* this flush_color is finished, advance by one */
2684 wq->flush_color = work_next_color(wq->flush_color);
2685
2686 /* one color has been freed, handle overflow queue */
2687 if (!list_empty(&wq->flusher_overflow)) {
2688 /*
2689 * Assign the same color to all overflowed
2690 * flushers, advance work_color and append to
2691 * flusher_queue. This is the start-to-wait
2692 * phase for these overflowed flushers.
2693 */
2694 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2695 tmp->flush_color = wq->work_color;
2696
2697 wq->work_color = work_next_color(wq->work_color);
2698
2699 list_splice_tail_init(&wq->flusher_overflow,
2700 &wq->flusher_queue);
2701 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2702 }
2703
2704 if (list_empty(&wq->flusher_queue)) {
2705 BUG_ON(wq->flush_color != wq->work_color);
2706 break;
2707 }
2708
2709 /*
2710 * Need to flush more colors. Make the next flusher
2711 * the new first flusher and arm cwqs.
2712 */
2713 BUG_ON(wq->flush_color == wq->work_color);
2714 BUG_ON(wq->flush_color != next->flush_color);
2715
2716 list_del_init(&next->list);
2717 wq->first_flusher = next;
2718
2719 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2720 break;
2721
2722 /*
2723 * Meh... this color is already done, clear first
2724 * flusher and repeat cascading.
2725 */
2726 wq->first_flusher = NULL;
2727 }
2728
2729out_unlock:
2730 mutex_unlock(&wq->flush_mutex);
1da177e4 2731}
ae90dd5d 2732EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2733
9c5a2ba7
TH
2734/**
2735 * drain_workqueue - drain a workqueue
2736 * @wq: workqueue to drain
2737 *
2738 * Wait until the workqueue becomes empty. While draining is in progress,
2739 * only chain queueing is allowed. IOW, only currently pending or running
2740 * work items on @wq can queue further work items on it. @wq is flushed
2741 * repeatedly until it becomes empty. The number of flushing is detemined
2742 * by the depth of chaining and should be relatively short. Whine if it
2743 * takes too long.
2744 */
2745void drain_workqueue(struct workqueue_struct *wq)
2746{
2747 unsigned int flush_cnt = 0;
2748 unsigned int cpu;
2749
2750 /*
2751 * __queue_work() needs to test whether there are drainers, is much
2752 * hotter than drain_workqueue() and already looks at @wq->flags.
2753 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2754 */
2755 spin_lock(&workqueue_lock);
2756 if (!wq->nr_drainers++)
2757 wq->flags |= WQ_DRAINING;
2758 spin_unlock(&workqueue_lock);
2759reflush:
2760 flush_workqueue(wq);
2761
2762 for_each_cwq_cpu(cpu, wq) {
2763 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2764 bool drained;
9c5a2ba7 2765
d565ed63 2766 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2767 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2768 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2769
2770 if (drained)
9c5a2ba7
TH
2771 continue;
2772
2773 if (++flush_cnt == 10 ||
2774 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2775 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2776 wq->name, flush_cnt);
9c5a2ba7
TH
2777 goto reflush;
2778 }
2779
2780 spin_lock(&workqueue_lock);
2781 if (!--wq->nr_drainers)
2782 wq->flags &= ~WQ_DRAINING;
2783 spin_unlock(&workqueue_lock);
2784}
2785EXPORT_SYMBOL_GPL(drain_workqueue);
2786
606a5020 2787static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2788{
affee4b2 2789 struct worker *worker = NULL;
c9e7cf27 2790 struct worker_pool *pool;
db700897 2791 struct cpu_workqueue_struct *cwq;
db700897
ON
2792
2793 might_sleep();
c9e7cf27
TH
2794 pool = get_work_pool(work);
2795 if (!pool)
baf59022 2796 return false;
db700897 2797
d565ed63 2798 spin_lock_irq(&pool->lock);
0b3dae68
LJ
2799 /* see the comment in try_to_grab_pending() with the same code */
2800 cwq = get_work_cwq(work);
2801 if (cwq) {
2802 if (unlikely(cwq->pool != pool))
4690c4ab 2803 goto already_gone;
606a5020 2804 } else {
c9e7cf27 2805 worker = find_worker_executing_work(pool, work);
affee4b2 2806 if (!worker)
4690c4ab 2807 goto already_gone;
7a22ad75 2808 cwq = worker->current_cwq;
606a5020 2809 }
db700897 2810
baf59022 2811 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2812 spin_unlock_irq(&pool->lock);
7a22ad75 2813
e159489b
TH
2814 /*
2815 * If @max_active is 1 or rescuer is in use, flushing another work
2816 * item on the same workqueue may lead to deadlock. Make sure the
2817 * flusher is not running on the same workqueue by verifying write
2818 * access.
2819 */
2820 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2821 lock_map_acquire(&cwq->wq->lockdep_map);
2822 else
2823 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2824 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2825
401a8d04 2826 return true;
4690c4ab 2827already_gone:
d565ed63 2828 spin_unlock_irq(&pool->lock);
401a8d04 2829 return false;
db700897 2830}
baf59022
TH
2831
2832/**
2833 * flush_work - wait for a work to finish executing the last queueing instance
2834 * @work: the work to flush
2835 *
606a5020
TH
2836 * Wait until @work has finished execution. @work is guaranteed to be idle
2837 * on return if it hasn't been requeued since flush started.
baf59022
TH
2838 *
2839 * RETURNS:
2840 * %true if flush_work() waited for the work to finish execution,
2841 * %false if it was already idle.
2842 */
2843bool flush_work(struct work_struct *work)
2844{
2845 struct wq_barrier barr;
2846
0976dfc1
SB
2847 lock_map_acquire(&work->lockdep_map);
2848 lock_map_release(&work->lockdep_map);
2849
606a5020 2850 if (start_flush_work(work, &barr)) {
401a8d04
TH
2851 wait_for_completion(&barr.done);
2852 destroy_work_on_stack(&barr.work);
2853 return true;
606a5020 2854 } else {
401a8d04 2855 return false;
6e84d644 2856 }
6e84d644 2857}
606a5020 2858EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2859
36e227d2 2860static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2861{
bbb68dfa 2862 unsigned long flags;
1f1f642e
ON
2863 int ret;
2864
2865 do {
bbb68dfa
TH
2866 ret = try_to_grab_pending(work, is_dwork, &flags);
2867 /*
2868 * If someone else is canceling, wait for the same event it
2869 * would be waiting for before retrying.
2870 */
2871 if (unlikely(ret == -ENOENT))
606a5020 2872 flush_work(work);
1f1f642e
ON
2873 } while (unlikely(ret < 0));
2874
bbb68dfa
TH
2875 /* tell other tasks trying to grab @work to back off */
2876 mark_work_canceling(work);
2877 local_irq_restore(flags);
2878
606a5020 2879 flush_work(work);
7a22ad75 2880 clear_work_data(work);
1f1f642e
ON
2881 return ret;
2882}
2883
6e84d644 2884/**
401a8d04
TH
2885 * cancel_work_sync - cancel a work and wait for it to finish
2886 * @work: the work to cancel
6e84d644 2887 *
401a8d04
TH
2888 * Cancel @work and wait for its execution to finish. This function
2889 * can be used even if the work re-queues itself or migrates to
2890 * another workqueue. On return from this function, @work is
2891 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2892 *
401a8d04
TH
2893 * cancel_work_sync(&delayed_work->work) must not be used for
2894 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2895 *
401a8d04 2896 * The caller must ensure that the workqueue on which @work was last
6e84d644 2897 * queued can't be destroyed before this function returns.
401a8d04
TH
2898 *
2899 * RETURNS:
2900 * %true if @work was pending, %false otherwise.
6e84d644 2901 */
401a8d04 2902bool cancel_work_sync(struct work_struct *work)
6e84d644 2903{
36e227d2 2904 return __cancel_work_timer(work, false);
b89deed3 2905}
28e53bdd 2906EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2907
6e84d644 2908/**
401a8d04
TH
2909 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2910 * @dwork: the delayed work to flush
6e84d644 2911 *
401a8d04
TH
2912 * Delayed timer is cancelled and the pending work is queued for
2913 * immediate execution. Like flush_work(), this function only
2914 * considers the last queueing instance of @dwork.
1f1f642e 2915 *
401a8d04
TH
2916 * RETURNS:
2917 * %true if flush_work() waited for the work to finish execution,
2918 * %false if it was already idle.
6e84d644 2919 */
401a8d04
TH
2920bool flush_delayed_work(struct delayed_work *dwork)
2921{
8930caba 2922 local_irq_disable();
401a8d04 2923 if (del_timer_sync(&dwork->timer))
60c057bc 2924 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2925 local_irq_enable();
401a8d04
TH
2926 return flush_work(&dwork->work);
2927}
2928EXPORT_SYMBOL(flush_delayed_work);
2929
09383498 2930/**
57b30ae7
TH
2931 * cancel_delayed_work - cancel a delayed work
2932 * @dwork: delayed_work to cancel
09383498 2933 *
57b30ae7
TH
2934 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2935 * and canceled; %false if wasn't pending. Note that the work callback
2936 * function may still be running on return, unless it returns %true and the
2937 * work doesn't re-arm itself. Explicitly flush or use
2938 * cancel_delayed_work_sync() to wait on it.
09383498 2939 *
57b30ae7 2940 * This function is safe to call from any context including IRQ handler.
09383498 2941 */
57b30ae7 2942bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2943{
57b30ae7
TH
2944 unsigned long flags;
2945 int ret;
2946
2947 do {
2948 ret = try_to_grab_pending(&dwork->work, true, &flags);
2949 } while (unlikely(ret == -EAGAIN));
2950
2951 if (unlikely(ret < 0))
2952 return false;
2953
7c3eed5c
TH
2954 set_work_pool_and_clear_pending(&dwork->work,
2955 get_work_pool_id(&dwork->work));
57b30ae7 2956 local_irq_restore(flags);
c0158ca6 2957 return ret;
09383498 2958}
57b30ae7 2959EXPORT_SYMBOL(cancel_delayed_work);
09383498 2960
401a8d04
TH
2961/**
2962 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2963 * @dwork: the delayed work cancel
2964 *
2965 * This is cancel_work_sync() for delayed works.
2966 *
2967 * RETURNS:
2968 * %true if @dwork was pending, %false otherwise.
2969 */
2970bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2971{
36e227d2 2972 return __cancel_work_timer(&dwork->work, true);
6e84d644 2973}
f5a421a4 2974EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2975
0fcb78c2 2976/**
c1a220e7
ZR
2977 * schedule_work_on - put work task on a specific cpu
2978 * @cpu: cpu to put the work task on
2979 * @work: job to be done
2980 *
2981 * This puts a job on a specific cpu
2982 */
d4283e93 2983bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2984{
d320c038 2985 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2986}
2987EXPORT_SYMBOL(schedule_work_on);
2988
0fcb78c2 2989/**
0fcb78c2
REB
2990 * schedule_work - put work task in global workqueue
2991 * @work: job to be done
0fcb78c2 2992 *
d4283e93
TH
2993 * Returns %false if @work was already on the kernel-global workqueue and
2994 * %true otherwise.
5b0f437d
BVA
2995 *
2996 * This puts a job in the kernel-global workqueue if it was not already
2997 * queued and leaves it in the same position on the kernel-global
2998 * workqueue otherwise.
0fcb78c2 2999 */
d4283e93 3000bool schedule_work(struct work_struct *work)
1da177e4 3001{
d320c038 3002 return queue_work(system_wq, work);
1da177e4 3003}
ae90dd5d 3004EXPORT_SYMBOL(schedule_work);
1da177e4 3005
0fcb78c2
REB
3006/**
3007 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3008 * @cpu: cpu to use
52bad64d 3009 * @dwork: job to be done
0fcb78c2
REB
3010 * @delay: number of jiffies to wait
3011 *
3012 * After waiting for a given time this puts a job in the kernel-global
3013 * workqueue on the specified CPU.
3014 */
d4283e93
TH
3015bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3016 unsigned long delay)
1da177e4 3017{
d320c038 3018 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3019}
ae90dd5d 3020EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3021
0fcb78c2
REB
3022/**
3023 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3024 * @dwork: job to be done
3025 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3026 *
3027 * After waiting for a given time this puts a job in the kernel-global
3028 * workqueue.
3029 */
d4283e93 3030bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3031{
d320c038 3032 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3033}
ae90dd5d 3034EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3035
b6136773 3036/**
31ddd871 3037 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3038 * @func: the function to call
b6136773 3039 *
31ddd871
TH
3040 * schedule_on_each_cpu() executes @func on each online CPU using the
3041 * system workqueue and blocks until all CPUs have completed.
b6136773 3042 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3043 *
3044 * RETURNS:
3045 * 0 on success, -errno on failure.
b6136773 3046 */
65f27f38 3047int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3048{
3049 int cpu;
38f51568 3050 struct work_struct __percpu *works;
15316ba8 3051
b6136773
AM
3052 works = alloc_percpu(struct work_struct);
3053 if (!works)
15316ba8 3054 return -ENOMEM;
b6136773 3055
93981800
TH
3056 get_online_cpus();
3057
15316ba8 3058 for_each_online_cpu(cpu) {
9bfb1839
IM
3059 struct work_struct *work = per_cpu_ptr(works, cpu);
3060
3061 INIT_WORK(work, func);
b71ab8c2 3062 schedule_work_on(cpu, work);
65a64464 3063 }
93981800
TH
3064
3065 for_each_online_cpu(cpu)
3066 flush_work(per_cpu_ptr(works, cpu));
3067
95402b38 3068 put_online_cpus();
b6136773 3069 free_percpu(works);
15316ba8
CL
3070 return 0;
3071}
3072
eef6a7d5
AS
3073/**
3074 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3075 *
3076 * Forces execution of the kernel-global workqueue and blocks until its
3077 * completion.
3078 *
3079 * Think twice before calling this function! It's very easy to get into
3080 * trouble if you don't take great care. Either of the following situations
3081 * will lead to deadlock:
3082 *
3083 * One of the work items currently on the workqueue needs to acquire
3084 * a lock held by your code or its caller.
3085 *
3086 * Your code is running in the context of a work routine.
3087 *
3088 * They will be detected by lockdep when they occur, but the first might not
3089 * occur very often. It depends on what work items are on the workqueue and
3090 * what locks they need, which you have no control over.
3091 *
3092 * In most situations flushing the entire workqueue is overkill; you merely
3093 * need to know that a particular work item isn't queued and isn't running.
3094 * In such cases you should use cancel_delayed_work_sync() or
3095 * cancel_work_sync() instead.
3096 */
1da177e4
LT
3097void flush_scheduled_work(void)
3098{
d320c038 3099 flush_workqueue(system_wq);
1da177e4 3100}
ae90dd5d 3101EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3102
1fa44eca
JB
3103/**
3104 * execute_in_process_context - reliably execute the routine with user context
3105 * @fn: the function to execute
1fa44eca
JB
3106 * @ew: guaranteed storage for the execute work structure (must
3107 * be available when the work executes)
3108 *
3109 * Executes the function immediately if process context is available,
3110 * otherwise schedules the function for delayed execution.
3111 *
3112 * Returns: 0 - function was executed
3113 * 1 - function was scheduled for execution
3114 */
65f27f38 3115int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3116{
3117 if (!in_interrupt()) {
65f27f38 3118 fn(&ew->work);
1fa44eca
JB
3119 return 0;
3120 }
3121
65f27f38 3122 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3123 schedule_work(&ew->work);
3124
3125 return 1;
3126}
3127EXPORT_SYMBOL_GPL(execute_in_process_context);
3128
1da177e4
LT
3129int keventd_up(void)
3130{
d320c038 3131 return system_wq != NULL;
1da177e4
LT
3132}
3133
bdbc5dd7 3134static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3135{
65a64464 3136 /*
0f900049
TH
3137 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3138 * Make sure that the alignment isn't lower than that of
3139 * unsigned long long.
65a64464 3140 */
0f900049
TH
3141 const size_t size = sizeof(struct cpu_workqueue_struct);
3142 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3143 __alignof__(unsigned long long));
65a64464 3144
e06ffa1e 3145 if (!(wq->flags & WQ_UNBOUND))
f3421797 3146 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3147 else {
f3421797
TH
3148 void *ptr;
3149
3150 /*
3151 * Allocate enough room to align cwq and put an extra
3152 * pointer at the end pointing back to the originally
3153 * allocated pointer which will be used for free.
3154 */
3155 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3156 if (ptr) {
3157 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3158 *(void **)(wq->cpu_wq.single + 1) = ptr;
3159 }
bdbc5dd7 3160 }
f3421797 3161
0415b00d 3162 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3163 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3164 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3165}
3166
bdbc5dd7 3167static void free_cwqs(struct workqueue_struct *wq)
0f900049 3168{
e06ffa1e 3169 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3170 free_percpu(wq->cpu_wq.pcpu);
3171 else if (wq->cpu_wq.single) {
3172 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3173 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3174 }
0f900049
TH
3175}
3176
f3421797
TH
3177static int wq_clamp_max_active(int max_active, unsigned int flags,
3178 const char *name)
b71ab8c2 3179{
f3421797
TH
3180 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3181
3182 if (max_active < 1 || max_active > lim)
044c782c
VI
3183 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3184 max_active, name, 1, lim);
b71ab8c2 3185
f3421797 3186 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3187}
3188
b196be89 3189struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3190 unsigned int flags,
3191 int max_active,
3192 struct lock_class_key *key,
b196be89 3193 const char *lock_name, ...)
1da177e4 3194{
b196be89 3195 va_list args, args1;
1da177e4 3196 struct workqueue_struct *wq;
c34056a3 3197 unsigned int cpu;
b196be89
TH
3198 size_t namelen;
3199
3200 /* determine namelen, allocate wq and format name */
3201 va_start(args, lock_name);
3202 va_copy(args1, args);
3203 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3204
3205 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3206 if (!wq)
3207 goto err;
3208
3209 vsnprintf(wq->name, namelen, fmt, args1);
3210 va_end(args);
3211 va_end(args1);
1da177e4 3212
6370a6ad
TH
3213 /*
3214 * Workqueues which may be used during memory reclaim should
3215 * have a rescuer to guarantee forward progress.
3216 */
3217 if (flags & WQ_MEM_RECLAIM)
3218 flags |= WQ_RESCUER;
3219
d320c038 3220 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3221 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3222
b196be89 3223 /* init wq */
97e37d7b 3224 wq->flags = flags;
a0a1a5fd 3225 wq->saved_max_active = max_active;
73f53c4a
TH
3226 mutex_init(&wq->flush_mutex);
3227 atomic_set(&wq->nr_cwqs_to_flush, 0);
3228 INIT_LIST_HEAD(&wq->flusher_queue);
3229 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3230
eb13ba87 3231 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3232 INIT_LIST_HEAD(&wq->list);
3af24433 3233
bdbc5dd7
TH
3234 if (alloc_cwqs(wq) < 0)
3235 goto err;
3236
f3421797 3237 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3238 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3239
0f900049 3240 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3241 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3242 cwq->wq = wq;
73f53c4a 3243 cwq->flush_color = -1;
1e19ffc6 3244 cwq->max_active = max_active;
1e19ffc6 3245 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3246 }
1537663f 3247
e22bee78
TH
3248 if (flags & WQ_RESCUER) {
3249 struct worker *rescuer;
3250
f2e005aa 3251 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3252 goto err;
3253
3254 wq->rescuer = rescuer = alloc_worker();
3255 if (!rescuer)
3256 goto err;
3257
111c225a
TH
3258 rescuer->rescue_wq = wq;
3259 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3260 wq->name);
e22bee78
TH
3261 if (IS_ERR(rescuer->task))
3262 goto err;
3263
e22bee78
TH
3264 rescuer->task->flags |= PF_THREAD_BOUND;
3265 wake_up_process(rescuer->task);
3af24433
ON
3266 }
3267
a0a1a5fd
TH
3268 /*
3269 * workqueue_lock protects global freeze state and workqueues
3270 * list. Grab it, set max_active accordingly and add the new
3271 * workqueue to workqueues list.
3272 */
1537663f 3273 spin_lock(&workqueue_lock);
a0a1a5fd 3274
58a69cb4 3275 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3276 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3277 get_cwq(cpu, wq)->max_active = 0;
3278
1537663f 3279 list_add(&wq->list, &workqueues);
a0a1a5fd 3280
1537663f
TH
3281 spin_unlock(&workqueue_lock);
3282
3af24433 3283 return wq;
4690c4ab
TH
3284err:
3285 if (wq) {
bdbc5dd7 3286 free_cwqs(wq);
f2e005aa 3287 free_mayday_mask(wq->mayday_mask);
e22bee78 3288 kfree(wq->rescuer);
4690c4ab
TH
3289 kfree(wq);
3290 }
3291 return NULL;
3af24433 3292}
d320c038 3293EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3294
3af24433
ON
3295/**
3296 * destroy_workqueue - safely terminate a workqueue
3297 * @wq: target workqueue
3298 *
3299 * Safely destroy a workqueue. All work currently pending will be done first.
3300 */
3301void destroy_workqueue(struct workqueue_struct *wq)
3302{
c8e55f36 3303 unsigned int cpu;
3af24433 3304
9c5a2ba7
TH
3305 /* drain it before proceeding with destruction */
3306 drain_workqueue(wq);
c8efcc25 3307
a0a1a5fd
TH
3308 /*
3309 * wq list is used to freeze wq, remove from list after
3310 * flushing is complete in case freeze races us.
3311 */
95402b38 3312 spin_lock(&workqueue_lock);
b1f4ec17 3313 list_del(&wq->list);
95402b38 3314 spin_unlock(&workqueue_lock);
3af24433 3315
e22bee78 3316 /* sanity check */
f3421797 3317 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3318 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3319 int i;
3320
73f53c4a
TH
3321 for (i = 0; i < WORK_NR_COLORS; i++)
3322 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3323 BUG_ON(cwq->nr_active);
3324 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3325 }
9b41ea72 3326
e22bee78
TH
3327 if (wq->flags & WQ_RESCUER) {
3328 kthread_stop(wq->rescuer->task);
f2e005aa 3329 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3330 kfree(wq->rescuer);
e22bee78
TH
3331 }
3332
bdbc5dd7 3333 free_cwqs(wq);
3af24433
ON
3334 kfree(wq);
3335}
3336EXPORT_SYMBOL_GPL(destroy_workqueue);
3337
9f4bd4cd
LJ
3338/**
3339 * cwq_set_max_active - adjust max_active of a cwq
3340 * @cwq: target cpu_workqueue_struct
3341 * @max_active: new max_active value.
3342 *
3343 * Set @cwq->max_active to @max_active and activate delayed works if
3344 * increased.
3345 *
3346 * CONTEXT:
d565ed63 3347 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3348 */
3349static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3350{
3351 cwq->max_active = max_active;
3352
3353 while (!list_empty(&cwq->delayed_works) &&
3354 cwq->nr_active < cwq->max_active)
3355 cwq_activate_first_delayed(cwq);
3356}
3357
dcd989cb
TH
3358/**
3359 * workqueue_set_max_active - adjust max_active of a workqueue
3360 * @wq: target workqueue
3361 * @max_active: new max_active value.
3362 *
3363 * Set max_active of @wq to @max_active.
3364 *
3365 * CONTEXT:
3366 * Don't call from IRQ context.
3367 */
3368void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3369{
3370 unsigned int cpu;
3371
f3421797 3372 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3373
3374 spin_lock(&workqueue_lock);
3375
3376 wq->saved_max_active = max_active;
3377
f3421797 3378 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3379 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3380 struct worker_pool *pool = cwq->pool;
dcd989cb 3381
d565ed63 3382 spin_lock_irq(&pool->lock);
dcd989cb 3383
58a69cb4 3384 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3385 !(pool->flags & POOL_FREEZING))
3386 cwq_set_max_active(cwq, max_active);
9bfb1839 3387
d565ed63 3388 spin_unlock_irq(&pool->lock);
65a64464 3389 }
93981800 3390
dcd989cb 3391 spin_unlock(&workqueue_lock);
15316ba8 3392}
dcd989cb 3393EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3394
eef6a7d5 3395/**
dcd989cb
TH
3396 * workqueue_congested - test whether a workqueue is congested
3397 * @cpu: CPU in question
3398 * @wq: target workqueue
eef6a7d5 3399 *
dcd989cb
TH
3400 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3401 * no synchronization around this function and the test result is
3402 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3403 *
dcd989cb
TH
3404 * RETURNS:
3405 * %true if congested, %false otherwise.
eef6a7d5 3406 */
dcd989cb 3407bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3408{
dcd989cb
TH
3409 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3410
3411 return !list_empty(&cwq->delayed_works);
1da177e4 3412}
dcd989cb 3413EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3414
dcd989cb
TH
3415/**
3416 * work_busy - test whether a work is currently pending or running
3417 * @work: the work to be tested
3418 *
3419 * Test whether @work is currently pending or running. There is no
3420 * synchronization around this function and the test result is
3421 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3422 *
3423 * RETURNS:
3424 * OR'd bitmask of WORK_BUSY_* bits.
3425 */
3426unsigned int work_busy(struct work_struct *work)
1da177e4 3427{
c9e7cf27 3428 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3429 unsigned long flags;
3430 unsigned int ret = 0;
1da177e4 3431
dcd989cb
TH
3432 if (work_pending(work))
3433 ret |= WORK_BUSY_PENDING;
1da177e4 3434
038366c5
LJ
3435 if (pool) {
3436 spin_lock_irqsave(&pool->lock, flags);
3437 if (find_worker_executing_work(pool, work))
3438 ret |= WORK_BUSY_RUNNING;
3439 spin_unlock_irqrestore(&pool->lock, flags);
3440 }
1da177e4 3441
dcd989cb 3442 return ret;
1da177e4 3443}
dcd989cb 3444EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3445
db7bccf4
TH
3446/*
3447 * CPU hotplug.
3448 *
e22bee78
TH
3449 * There are two challenges in supporting CPU hotplug. Firstly, there
3450 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3451 * pool which make migrating pending and scheduled works very
e22bee78 3452 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3453 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3454 * blocked draining impractical.
3455 *
24647570 3456 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3457 * running as an unbound one and allowing it to be reattached later if the
3458 * cpu comes back online.
db7bccf4 3459 */
1da177e4 3460
706026c2 3461static void wq_unbind_fn(struct work_struct *work)
3af24433 3462{
38db41d9 3463 int cpu = smp_processor_id();
4ce62e9e 3464 struct worker_pool *pool;
db7bccf4
TH
3465 struct worker *worker;
3466 struct hlist_node *pos;
3467 int i;
3af24433 3468
38db41d9
TH
3469 for_each_std_worker_pool(pool, cpu) {
3470 BUG_ON(cpu != smp_processor_id());
db7bccf4 3471
94cf58bb
TH
3472 mutex_lock(&pool->assoc_mutex);
3473 spin_lock_irq(&pool->lock);
3af24433 3474
94cf58bb
TH
3475 /*
3476 * We've claimed all manager positions. Make all workers
3477 * unbound and set DISASSOCIATED. Before this, all workers
3478 * except for the ones which are still executing works from
3479 * before the last CPU down must be on the cpu. After
3480 * this, they may become diasporas.
3481 */
4ce62e9e 3482 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3483 worker->flags |= WORKER_UNBOUND;
3af24433 3484
c9e7cf27
TH
3485 for_each_busy_worker(worker, i, pos, pool)
3486 worker->flags |= WORKER_UNBOUND;
06ba38a9 3487
24647570 3488 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3489
94cf58bb
TH
3490 spin_unlock_irq(&pool->lock);
3491 mutex_unlock(&pool->assoc_mutex);
3492 }
628c78e7 3493
e22bee78 3494 /*
403c821d 3495 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3496 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3497 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3498 */
e22bee78 3499 schedule();
06ba38a9 3500
e22bee78 3501 /*
628c78e7
TH
3502 * Sched callbacks are disabled now. Zap nr_running. After this,
3503 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3504 * are always true as long as the worklist is not empty. Pools on
3505 * @cpu now behave as unbound (in terms of concurrency management)
3506 * pools which are served by workers tied to the CPU.
628c78e7
TH
3507 *
3508 * On return from this function, the current worker would trigger
3509 * unbound chain execution of pending work items if other workers
3510 * didn't already.
e22bee78 3511 */
38db41d9 3512 for_each_std_worker_pool(pool, cpu)
4ce62e9e 3513 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3514}
3af24433 3515
8db25e78
TH
3516/*
3517 * Workqueues should be brought up before normal priority CPU notifiers.
3518 * This will be registered high priority CPU notifier.
3519 */
9fdf9b73 3520static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3521 unsigned long action,
3522 void *hcpu)
3af24433
ON
3523{
3524 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3525 struct worker_pool *pool;
3ce63377 3526
8db25e78 3527 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3528 case CPU_UP_PREPARE:
38db41d9 3529 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3530 struct worker *worker;
3531
3532 if (pool->nr_workers)
3533 continue;
3534
3535 worker = create_worker(pool);
3536 if (!worker)
3537 return NOTIFY_BAD;
3538
d565ed63 3539 spin_lock_irq(&pool->lock);
3ce63377 3540 start_worker(worker);
d565ed63 3541 spin_unlock_irq(&pool->lock);
3af24433 3542 }
8db25e78 3543 break;
3af24433 3544
db7bccf4
TH
3545 case CPU_DOWN_FAILED:
3546 case CPU_ONLINE:
38db41d9 3547 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3548 mutex_lock(&pool->assoc_mutex);
3549 spin_lock_irq(&pool->lock);
3550
24647570 3551 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3552 rebind_workers(pool);
3553
3554 spin_unlock_irq(&pool->lock);
3555 mutex_unlock(&pool->assoc_mutex);
3556 }
db7bccf4 3557 break;
00dfcaf7 3558 }
65758202
TH
3559 return NOTIFY_OK;
3560}
3561
3562/*
3563 * Workqueues should be brought down after normal priority CPU notifiers.
3564 * This will be registered as low priority CPU notifier.
3565 */
9fdf9b73 3566static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3567 unsigned long action,
3568 void *hcpu)
3569{
8db25e78
TH
3570 unsigned int cpu = (unsigned long)hcpu;
3571 struct work_struct unbind_work;
3572
65758202
TH
3573 switch (action & ~CPU_TASKS_FROZEN) {
3574 case CPU_DOWN_PREPARE:
8db25e78 3575 /* unbinding should happen on the local CPU */
706026c2 3576 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3577 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3578 flush_work(&unbind_work);
3579 break;
65758202
TH
3580 }
3581 return NOTIFY_OK;
3582}
3583
2d3854a3 3584#ifdef CONFIG_SMP
8ccad40d 3585
2d3854a3 3586struct work_for_cpu {
ed48ece2 3587 struct work_struct work;
2d3854a3
RR
3588 long (*fn)(void *);
3589 void *arg;
3590 long ret;
3591};
3592
ed48ece2 3593static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3594{
ed48ece2
TH
3595 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3596
2d3854a3
RR
3597 wfc->ret = wfc->fn(wfc->arg);
3598}
3599
3600/**
3601 * work_on_cpu - run a function in user context on a particular cpu
3602 * @cpu: the cpu to run on
3603 * @fn: the function to run
3604 * @arg: the function arg
3605 *
31ad9081
RR
3606 * This will return the value @fn returns.
3607 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3608 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3609 */
3610long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3611{
ed48ece2 3612 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3613
ed48ece2
TH
3614 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3615 schedule_work_on(cpu, &wfc.work);
3616 flush_work(&wfc.work);
2d3854a3
RR
3617 return wfc.ret;
3618}
3619EXPORT_SYMBOL_GPL(work_on_cpu);
3620#endif /* CONFIG_SMP */
3621
a0a1a5fd
TH
3622#ifdef CONFIG_FREEZER
3623
3624/**
3625 * freeze_workqueues_begin - begin freezing workqueues
3626 *
58a69cb4
TH
3627 * Start freezing workqueues. After this function returns, all freezable
3628 * workqueues will queue new works to their frozen_works list instead of
706026c2 3629 * pool->worklist.
a0a1a5fd
TH
3630 *
3631 * CONTEXT:
d565ed63 3632 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3633 */
3634void freeze_workqueues_begin(void)
3635{
a0a1a5fd
TH
3636 unsigned int cpu;
3637
3638 spin_lock(&workqueue_lock);
3639
3640 BUG_ON(workqueue_freezing);
3641 workqueue_freezing = true;
3642
706026c2 3643 for_each_wq_cpu(cpu) {
35b6bb63 3644 struct worker_pool *pool;
bdbc5dd7 3645 struct workqueue_struct *wq;
8b03ae3c 3646
38db41d9 3647 for_each_std_worker_pool(pool, cpu) {
a1056305 3648 spin_lock_irq(&pool->lock);
d565ed63 3649
35b6bb63
TH
3650 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3651 pool->flags |= POOL_FREEZING;
db7bccf4 3652
a1056305
TH
3653 list_for_each_entry(wq, &workqueues, list) {
3654 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3655
a1056305
TH
3656 if (cwq && cwq->pool == pool &&
3657 (wq->flags & WQ_FREEZABLE))
3658 cwq->max_active = 0;
3659 }
8b03ae3c 3660
a1056305
TH
3661 spin_unlock_irq(&pool->lock);
3662 }
a0a1a5fd
TH
3663 }
3664
3665 spin_unlock(&workqueue_lock);
3666}
3667
3668/**
58a69cb4 3669 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3670 *
3671 * Check whether freezing is complete. This function must be called
3672 * between freeze_workqueues_begin() and thaw_workqueues().
3673 *
3674 * CONTEXT:
3675 * Grabs and releases workqueue_lock.
3676 *
3677 * RETURNS:
58a69cb4
TH
3678 * %true if some freezable workqueues are still busy. %false if freezing
3679 * is complete.
a0a1a5fd
TH
3680 */
3681bool freeze_workqueues_busy(void)
3682{
a0a1a5fd
TH
3683 unsigned int cpu;
3684 bool busy = false;
3685
3686 spin_lock(&workqueue_lock);
3687
3688 BUG_ON(!workqueue_freezing);
3689
706026c2 3690 for_each_wq_cpu(cpu) {
bdbc5dd7 3691 struct workqueue_struct *wq;
a0a1a5fd
TH
3692 /*
3693 * nr_active is monotonically decreasing. It's safe
3694 * to peek without lock.
3695 */
3696 list_for_each_entry(wq, &workqueues, list) {
3697 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3698
58a69cb4 3699 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3700 continue;
3701
3702 BUG_ON(cwq->nr_active < 0);
3703 if (cwq->nr_active) {
3704 busy = true;
3705 goto out_unlock;
3706 }
3707 }
3708 }
3709out_unlock:
3710 spin_unlock(&workqueue_lock);
3711 return busy;
3712}
3713
3714/**
3715 * thaw_workqueues - thaw workqueues
3716 *
3717 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3718 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3719 *
3720 * CONTEXT:
d565ed63 3721 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3722 */
3723void thaw_workqueues(void)
3724{
a0a1a5fd
TH
3725 unsigned int cpu;
3726
3727 spin_lock(&workqueue_lock);
3728
3729 if (!workqueue_freezing)
3730 goto out_unlock;
3731
706026c2 3732 for_each_wq_cpu(cpu) {
4ce62e9e 3733 struct worker_pool *pool;
bdbc5dd7 3734 struct workqueue_struct *wq;
8b03ae3c 3735
38db41d9 3736 for_each_std_worker_pool(pool, cpu) {
a1056305 3737 spin_lock_irq(&pool->lock);
d565ed63 3738
35b6bb63
TH
3739 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3740 pool->flags &= ~POOL_FREEZING;
db7bccf4 3741
a1056305
TH
3742 list_for_each_entry(wq, &workqueues, list) {
3743 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3744
a1056305
TH
3745 if (!cwq || cwq->pool != pool ||
3746 !(wq->flags & WQ_FREEZABLE))
3747 continue;
a0a1a5fd 3748
a1056305
TH
3749 /* restore max_active and repopulate worklist */
3750 cwq_set_max_active(cwq, wq->saved_max_active);
3751 }
8b03ae3c 3752
4ce62e9e 3753 wake_up_worker(pool);
a1056305
TH
3754
3755 spin_unlock_irq(&pool->lock);
d565ed63 3756 }
a0a1a5fd
TH
3757 }
3758
3759 workqueue_freezing = false;
3760out_unlock:
3761 spin_unlock(&workqueue_lock);
3762}
3763#endif /* CONFIG_FREEZER */
3764
6ee0578b 3765static int __init init_workqueues(void)
1da177e4 3766{
c34056a3
TH
3767 unsigned int cpu;
3768
7c3eed5c
TH
3769 /* make sure we have enough bits for OFFQ pool ID */
3770 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3771 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3772
65758202 3773 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3774 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3775
706026c2
TH
3776 /* initialize CPU pools */
3777 for_each_wq_cpu(cpu) {
4ce62e9e 3778 struct worker_pool *pool;
8b03ae3c 3779
38db41d9 3780 for_each_std_worker_pool(pool, cpu) {
d565ed63 3781 spin_lock_init(&pool->lock);
ec22ca5e 3782 pool->cpu = cpu;
24647570 3783 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3784 INIT_LIST_HEAD(&pool->worklist);
3785 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3786 hash_init(pool->busy_hash);
e7577c50 3787
4ce62e9e
TH
3788 init_timer_deferrable(&pool->idle_timer);
3789 pool->idle_timer.function = idle_worker_timeout;
3790 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3791
706026c2 3792 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3793 (unsigned long)pool);
3794
b2eb83d1 3795 mutex_init(&pool->assoc_mutex);
4ce62e9e 3796 ida_init(&pool->worker_ida);
9daf9e67
TH
3797
3798 /* alloc pool ID */
3799 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3800 }
8b03ae3c
TH
3801 }
3802
e22bee78 3803 /* create the initial worker */
706026c2 3804 for_each_online_wq_cpu(cpu) {
4ce62e9e 3805 struct worker_pool *pool;
e22bee78 3806
38db41d9 3807 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3808 struct worker *worker;
3809
24647570
TH
3810 if (cpu != WORK_CPU_UNBOUND)
3811 pool->flags &= ~POOL_DISASSOCIATED;
3812
bc2ae0f5 3813 worker = create_worker(pool);
4ce62e9e 3814 BUG_ON(!worker);
d565ed63 3815 spin_lock_irq(&pool->lock);
4ce62e9e 3816 start_worker(worker);
d565ed63 3817 spin_unlock_irq(&pool->lock);
4ce62e9e 3818 }
e22bee78
TH
3819 }
3820
d320c038 3821 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3822 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3823 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3824 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3825 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3826 system_freezable_wq = alloc_workqueue("events_freezable",
3827 WQ_FREEZABLE, 0);
1aabe902 3828 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3829 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3830 return 0;
1da177e4 3831}
6ee0578b 3832early_initcall(init_workqueues);