tools/workqueue/wq_dump.py: Add node_nr/max_active dump
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
cd2440d6 52#include <linux/sched/debug.h>
62635ea8 53#include <linux/nmi.h>
940d71c6 54#include <linux/kvm_para.h>
aa6fde93 55#include <linux/delay.h>
e22bee78 56
ea138446 57#include "workqueue_internal.h"
1da177e4 58
e563d0a7 59enum worker_pool_flags {
24647570
TH
60 /*
61 * worker_pool flags
bc2ae0f5 62 *
24647570 63 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 70 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 71 *
bc3a1afc 72 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 73 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 74 * worker_attach_to_pool() is in progress.
bc2ae0f5 75 */
692b4825 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
e563d0a7 78};
db7bccf4 79
e563d0a7 80enum worker_flags {
c8e55f36 81 /* worker flags */
c8e55f36
TH
82 WORKER_DIE = 1 << 1, /* die die die */
83 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 84 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 87 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 88
a9ab775b
TH
89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
90 WORKER_UNBOUND | WORKER_REBOUND,
e563d0a7 91};
db7bccf4 92
e563d0a7 93enum wq_internal_consts {
e34cdddb 94 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 95
29c91e99 96 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 97 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 98
e22bee78
TH
99 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
100 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
101
3233cdbd
TH
102 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
103 /* call for help after 10ms
104 (min two ticks) */
e22bee78
TH
105 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
106 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
107
108 /*
109 * Rescue workers are used only on emergencies and shared by
8698a745 110 * all cpus. Give MIN_NICE.
e22bee78 111 */
8698a745
DY
112 RESCUER_NICE_LEVEL = MIN_NICE,
113 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f 114
31c89007 115 WQ_NAME_LEN = 32,
c8e55f36 116};
1da177e4
LT
117
118/*
4690c4ab
TH
119 * Structure fields follow one of the following exclusion rules.
120 *
e41e704b
TH
121 * I: Modifiable by initialization/destruction paths and read-only for
122 * everyone else.
4690c4ab 123 *
e22bee78
TH
124 * P: Preemption protected. Disabling preemption is enough and should
125 * only be modified and accessed from the local cpu.
126 *
d565ed63 127 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 128 *
5797b1c1
TH
129 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
130 * reads.
131 *
bdf8b9bf
TH
132 * K: Only modified by worker while holding pool->lock. Can be safely read by
133 * self, while holding pool->lock or from IRQ context if %current is the
134 * kworker.
135 *
136 * S: Only modified by worker self.
137 *
1258fae7 138 * A: wq_pool_attach_mutex protected.
822d8405 139 *
68e13a67 140 * PL: wq_pool_mutex protected.
5bcab335 141 *
24acfb71 142 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 143 *
5b95e1af
LJ
144 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
145 *
146 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 147 * RCU for reads.
5b95e1af 148 *
3c25a55d
LJ
149 * WQ: wq->mutex protected.
150 *
24acfb71 151 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28 152 *
a045a272
TH
153 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
154 * with READ_ONCE() without locking.
155 *
2e109a28 156 * MD: wq_mayday_lock protected.
cd2440d6
PM
157 *
158 * WD: Used internally by the watchdog.
1da177e4 159 */
1da177e4 160
2eaebdb3 161/* struct worker is defined in workqueue_internal.h */
c34056a3 162
bd7bdd43 163struct worker_pool {
a9b8a985 164 raw_spinlock_t lock; /* the pool lock */
d84ff051 165 int cpu; /* I: the associated cpu */
f3f90ad4 166 int node; /* I: the associated node ID */
9daf9e67 167 int id; /* I: pool ID */
bc8b50c2 168 unsigned int flags; /* L: flags */
bd7bdd43 169
82607adc 170 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 171 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 172
bc35f7ef
LJ
173 /*
174 * The counter is incremented in a process context on the associated CPU
175 * w/ preemption disabled, and decremented or reset in the same context
176 * but w/ pool->lock held. The readers grab pool->lock and are
177 * guaranteed to see if the counter reached zero.
178 */
179 int nr_running;
84f91c62 180
bd7bdd43 181 struct list_head worklist; /* L: list of pending works */
ea1abd61 182
5826cc8f
LJ
183 int nr_workers; /* L: total number of workers */
184 int nr_idle; /* L: currently idle workers */
bd7bdd43 185
2c1f1a91 186 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 187 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
188 struct work_struct idle_cull_work; /* L: worker idle cleanup */
189
190 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 191
c5aa87bb 192 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
193 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
194 /* L: hash of busy workers */
195
2607d7a6 196 struct worker *manager; /* L: purely informational */
92f9c5c4 197 struct list_head workers; /* A: attached workers */
e02b9312 198 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 199 struct completion *detach_completion; /* all workers detached */
e19e397a 200
7cda9aae 201 struct ida worker_ida; /* worker IDs for task name */
e19e397a 202
7a4e344c 203 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
204 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
205 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 206
29c91e99 207 /*
24acfb71 208 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
209 * from get_work_pool().
210 */
211 struct rcu_head rcu;
84f91c62 212};
8b03ae3c 213
725e8ec5
TH
214/*
215 * Per-pool_workqueue statistics. These can be monitored using
216 * tools/workqueue/wq_monitor.py.
217 */
218enum pool_workqueue_stats {
219 PWQ_STAT_STARTED, /* work items started execution */
220 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 221 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 222 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5 223 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
8639eceb 224 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
725e8ec5
TH
225 PWQ_STAT_MAYDAY, /* maydays to rescuer */
226 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
227
228 PWQ_NR_STATS,
229};
230
1da177e4 231/*
112202d9
TH
232 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
233 * of work_struct->data are used for flags and the remaining high bits
234 * point to the pwq; thus, pwqs need to be aligned at two's power of the
235 * number of flag bits.
1da177e4 236 */
112202d9 237struct pool_workqueue {
bd7bdd43 238 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 239 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
240 int work_color; /* L: current color */
241 int flush_color; /* L: flushing color */
8864b4e5 242 int refcnt; /* L: reference count */
73f53c4a
TH
243 int nr_in_flight[WORK_NR_COLORS];
244 /* L: nr of in_flight works */
018f3a13
LJ
245
246 /*
247 * nr_active management and WORK_STRUCT_INACTIVE:
248 *
249 * When pwq->nr_active >= max_active, new work item is queued to
250 * pwq->inactive_works instead of pool->worklist and marked with
251 * WORK_STRUCT_INACTIVE.
252 *
5797b1c1
TH
253 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
254 * nr_active and all work items in pwq->inactive_works are marked with
255 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
256 * in pwq->inactive_works. Some of them are ready to run in
257 * pool->worklist or worker->scheduled. Those work itmes are only struct
258 * wq_barrier which is used for flush_work() and should not participate
259 * in nr_active. For non-barrier work item, it is marked with
260 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
018f3a13 261 */
1e19ffc6 262 int nr_active; /* L: nr of active works */
f97a4a1a 263 struct list_head inactive_works; /* L: inactive works */
5797b1c1 264 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
3c25a55d 265 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 266 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 267
725e8ec5
TH
268 u64 stats[PWQ_NR_STATS];
269
8864b4e5 270 /*
967b494e 271 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
272 * and pwq_release_workfn() for details. pool_workqueue itself is also
273 * RCU protected so that the first pwq can be determined without
967b494e 274 * grabbing wq->mutex.
8864b4e5 275 */
687a9aa5 276 struct kthread_work release_work;
8864b4e5 277 struct rcu_head rcu;
e904e6c2 278} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 279
73f53c4a
TH
280/*
281 * Structure used to wait for workqueue flush.
282 */
283struct wq_flusher {
3c25a55d
LJ
284 struct list_head list; /* WQ: list of flushers */
285 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
286 struct completion done; /* flush completion */
287};
288
226223ab
TH
289struct wq_device;
290
91ccc6e7
TH
291/*
292 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
293 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
294 * As sharing a single nr_active across multiple sockets can be very expensive,
295 * the counting and enforcement is per NUMA node.
5797b1c1
TH
296 *
297 * The following struct is used to enforce per-node max_active. When a pwq wants
298 * to start executing a work item, it should increment ->nr using
299 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
300 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
301 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
302 * round-robin order.
91ccc6e7
TH
303 */
304struct wq_node_nr_active {
5797b1c1
TH
305 int max; /* per-node max_active */
306 atomic_t nr; /* per-node nr_active */
307 raw_spinlock_t lock; /* nests inside pool locks */
308 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
91ccc6e7
TH
309};
310
1da177e4 311/*
c5aa87bb
TH
312 * The externally visible workqueue. It relays the issued work items to
313 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
314 */
315struct workqueue_struct {
3c25a55d 316 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 317 struct list_head list; /* PR: list of all workqueues */
73f53c4a 318
3c25a55d
LJ
319 struct mutex mutex; /* protects this wq */
320 int work_color; /* WQ: current work color */
321 int flush_color; /* WQ: current flush color */
112202d9 322 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
323 struct wq_flusher *first_flusher; /* WQ: first flusher */
324 struct list_head flusher_queue; /* WQ: flush waiters */
325 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 326
2e109a28 327 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 328 struct worker *rescuer; /* MD: rescue worker */
e22bee78 329
87fc741e 330 int nr_drainers; /* WQ: drain in progress */
5797b1c1
TH
331
332 /* See alloc_workqueue() function comment for info on min/max_active */
a045a272 333 int max_active; /* WO: max active works */
5797b1c1 334 int min_active; /* WO: min active works */
a045a272 335 int saved_max_active; /* WQ: saved max_active */
5797b1c1 336 int saved_min_active; /* WQ: saved min_active */
226223ab 337
5b95e1af 338 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
9f66cff2 339 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
6029a918 340
226223ab
TH
341#ifdef CONFIG_SYSFS
342 struct wq_device *wq_dev; /* I: for sysfs interface */
343#endif
4e6045f1 344#ifdef CONFIG_LOCKDEP
669de8bd
BVA
345 char *lock_name;
346 struct lock_class_key key;
4690c4ab 347 struct lockdep_map lockdep_map;
4e6045f1 348#endif
ecf6881f 349 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 350
e2dca7ad 351 /*
24acfb71
TG
352 * Destruction of workqueue_struct is RCU protected to allow walking
353 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
354 * This is used to dump all workqueues from sysrq.
355 */
356 struct rcu_head rcu;
357
2728fd2f
TH
358 /* hot fields used during command issue, aligned to cacheline */
359 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 360 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
91ccc6e7 361 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
1da177e4
LT
362};
363
e904e6c2
TH
364static struct kmem_cache *pwq_cache;
365
84193c07
TH
366/*
367 * Each pod type describes how CPUs should be grouped for unbound workqueues.
368 * See the comment above workqueue_attrs->affn_scope.
369 */
370struct wq_pod_type {
371 int nr_pods; /* number of pods */
372 cpumask_var_t *pod_cpus; /* pod -> cpus */
373 int *pod_node; /* pod -> node */
374 int *cpu_pod; /* cpu -> pod */
375};
376
377static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
523a301e 378static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
63c5484e
TH
379
380static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
523a301e 381 [WQ_AFFN_DFL] = "default",
63c5484e
TH
382 [WQ_AFFN_CPU] = "cpu",
383 [WQ_AFFN_SMT] = "smt",
384 [WQ_AFFN_CACHE] = "cache",
385 [WQ_AFFN_NUMA] = "numa",
386 [WQ_AFFN_SYSTEM] = "system",
387};
bce90380 388
616db877
TH
389/*
390 * Per-cpu work items which run for longer than the following threshold are
391 * automatically considered CPU intensive and excluded from concurrency
392 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
393 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
394 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 395 */
aa6fde93 396static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877
TH
397module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
398
cee22a15 399/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 400static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
401module_param_named(power_efficient, wq_power_efficient, bool, 0444);
402
863b710b 403static bool wq_online; /* can kworkers be created yet? */
3347fa09 404
fef59c9c
TH
405/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
406static struct workqueue_attrs *wq_update_pod_attrs_buf;
4c16bd32 407
68e13a67 408static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 409static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 410static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
411/* wait for manager to go away */
412static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 413
e2dca7ad 414static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 415static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 416
99c621ef 417/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
418static cpumask_var_t wq_unbound_cpumask;
419
fe28f631
WL
420/* PL: user requested unbound cpumask via sysfs */
421static cpumask_var_t wq_requested_unbound_cpumask;
422
423/* PL: isolated cpumask to be excluded from unbound cpumask */
424static cpumask_var_t wq_isolated_cpumask;
425
ace3c549 426/* for further constrain wq_unbound_cpumask by cmdline parameter*/
427static struct cpumask wq_cmdline_cpumask __initdata;
428
ef557180
MG
429/* CPU where unbound work was last round robin scheduled from this CPU */
430static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 431
f303fccb
TH
432/*
433 * Local execution of unbound work items is no longer guaranteed. The
434 * following always forces round-robin CPU selection on unbound work items
435 * to uncover usages which depend on it.
436 */
437#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
438static bool wq_debug_force_rr_cpu = true;
439#else
440static bool wq_debug_force_rr_cpu = false;
441#endif
442module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
443
7d19c5ce 444/* the per-cpu worker pools */
25528213 445static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 446
68e13a67 447static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 448
68e13a67 449/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
450static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
451
c5aa87bb 452/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
453static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
454
8a2b7538
TH
455/* I: attributes used when instantiating ordered pools on demand */
456static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
457
967b494e
TH
458/*
459 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
460 * process context while holding a pool lock. Bounce to a dedicated kthread
461 * worker to avoid A-A deadlocks.
462 */
68279f9c 463static struct kthread_worker *pwq_release_worker __ro_after_init;
967b494e 464
68279f9c 465struct workqueue_struct *system_wq __ro_after_init;
ad7b1f84 466EXPORT_SYMBOL(system_wq);
68279f9c 467struct workqueue_struct *system_highpri_wq __ro_after_init;
1aabe902 468EXPORT_SYMBOL_GPL(system_highpri_wq);
68279f9c 469struct workqueue_struct *system_long_wq __ro_after_init;
d320c038 470EXPORT_SYMBOL_GPL(system_long_wq);
68279f9c 471struct workqueue_struct *system_unbound_wq __ro_after_init;
f3421797 472EXPORT_SYMBOL_GPL(system_unbound_wq);
68279f9c 473struct workqueue_struct *system_freezable_wq __ro_after_init;
24d51add 474EXPORT_SYMBOL_GPL(system_freezable_wq);
68279f9c 475struct workqueue_struct *system_power_efficient_wq __ro_after_init;
0668106c 476EXPORT_SYMBOL_GPL(system_power_efficient_wq);
68279f9c 477struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
0668106c 478EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 479
7d19c5ce 480static int worker_thread(void *__worker);
6ba94429 481static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 482static void show_pwq(struct pool_workqueue *pwq);
55df0933 483static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 484
97bd2347
TH
485#define CREATE_TRACE_POINTS
486#include <trace/events/workqueue.h>
487
68e13a67 488#define assert_rcu_or_pool_mutex() \
24acfb71 489 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 490 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 491 "RCU or wq_pool_mutex should be held")
5bcab335 492
5b95e1af 493#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 494 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
495 !lockdep_is_held(&wq->mutex) && \
496 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 497 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 498
f02ae73a
TH
499#define for_each_cpu_worker_pool(pool, cpu) \
500 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
501 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 502 (pool)++)
4ce62e9e 503
17116969
TH
504/**
505 * for_each_pool - iterate through all worker_pools in the system
506 * @pool: iteration cursor
611c92a0 507 * @pi: integer used for iteration
fa1b54e6 508 *
24acfb71 509 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
510 * locked. If the pool needs to be used beyond the locking in effect, the
511 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
512 *
513 * The if/else clause exists only for the lockdep assertion and can be
514 * ignored.
17116969 515 */
611c92a0
TH
516#define for_each_pool(pool, pi) \
517 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 518 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 519 else
17116969 520
822d8405
TH
521/**
522 * for_each_pool_worker - iterate through all workers of a worker_pool
523 * @worker: iteration cursor
822d8405
TH
524 * @pool: worker_pool to iterate workers of
525 *
1258fae7 526 * This must be called with wq_pool_attach_mutex.
822d8405
TH
527 *
528 * The if/else clause exists only for the lockdep assertion and can be
529 * ignored.
530 */
da028469
LJ
531#define for_each_pool_worker(worker, pool) \
532 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 533 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
534 else
535
49e3cf44
TH
536/**
537 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
538 * @pwq: iteration cursor
539 * @wq: the target workqueue
76af4d93 540 *
24acfb71 541 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
542 * If the pwq needs to be used beyond the locking in effect, the caller is
543 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
544 *
545 * The if/else clause exists only for the lockdep assertion and can be
546 * ignored.
49e3cf44
TH
547 */
548#define for_each_pwq(pwq, wq) \
49e9d1a9 549 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 550 lockdep_is_held(&(wq->mutex)))
f3421797 551
dc186ad7
TG
552#ifdef CONFIG_DEBUG_OBJECTS_WORK
553
f9e62f31 554static const struct debug_obj_descr work_debug_descr;
dc186ad7 555
99777288
SG
556static void *work_debug_hint(void *addr)
557{
558 return ((struct work_struct *) addr)->func;
559}
560
b9fdac7f
DC
561static bool work_is_static_object(void *addr)
562{
563 struct work_struct *work = addr;
564
565 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
566}
567
dc186ad7
TG
568/*
569 * fixup_init is called when:
570 * - an active object is initialized
571 */
02a982a6 572static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
573{
574 struct work_struct *work = addr;
575
576 switch (state) {
577 case ODEBUG_STATE_ACTIVE:
578 cancel_work_sync(work);
579 debug_object_init(work, &work_debug_descr);
02a982a6 580 return true;
dc186ad7 581 default:
02a982a6 582 return false;
dc186ad7
TG
583 }
584}
585
dc186ad7
TG
586/*
587 * fixup_free is called when:
588 * - an active object is freed
589 */
02a982a6 590static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
591{
592 struct work_struct *work = addr;
593
594 switch (state) {
595 case ODEBUG_STATE_ACTIVE:
596 cancel_work_sync(work);
597 debug_object_free(work, &work_debug_descr);
02a982a6 598 return true;
dc186ad7 599 default:
02a982a6 600 return false;
dc186ad7
TG
601 }
602}
603
f9e62f31 604static const struct debug_obj_descr work_debug_descr = {
dc186ad7 605 .name = "work_struct",
99777288 606 .debug_hint = work_debug_hint,
b9fdac7f 607 .is_static_object = work_is_static_object,
dc186ad7 608 .fixup_init = work_fixup_init,
dc186ad7
TG
609 .fixup_free = work_fixup_free,
610};
611
612static inline void debug_work_activate(struct work_struct *work)
613{
614 debug_object_activate(work, &work_debug_descr);
615}
616
617static inline void debug_work_deactivate(struct work_struct *work)
618{
619 debug_object_deactivate(work, &work_debug_descr);
620}
621
622void __init_work(struct work_struct *work, int onstack)
623{
624 if (onstack)
625 debug_object_init_on_stack(work, &work_debug_descr);
626 else
627 debug_object_init(work, &work_debug_descr);
628}
629EXPORT_SYMBOL_GPL(__init_work);
630
631void destroy_work_on_stack(struct work_struct *work)
632{
633 debug_object_free(work, &work_debug_descr);
634}
635EXPORT_SYMBOL_GPL(destroy_work_on_stack);
636
ea2e64f2
TG
637void destroy_delayed_work_on_stack(struct delayed_work *work)
638{
639 destroy_timer_on_stack(&work->timer);
640 debug_object_free(&work->work, &work_debug_descr);
641}
642EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
643
dc186ad7
TG
644#else
645static inline void debug_work_activate(struct work_struct *work) { }
646static inline void debug_work_deactivate(struct work_struct *work) { }
647#endif
648
4e8b22bd 649/**
67dc8325 650 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
651 * @pool: the pool pointer of interest
652 *
653 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
654 * successfully, -errno on failure.
655 */
9daf9e67
TH
656static int worker_pool_assign_id(struct worker_pool *pool)
657{
658 int ret;
659
68e13a67 660 lockdep_assert_held(&wq_pool_mutex);
5bcab335 661
4e8b22bd
LB
662 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
663 GFP_KERNEL);
229641a6 664 if (ret >= 0) {
e68035fb 665 pool->id = ret;
229641a6
TH
666 return 0;
667 }
fa1b54e6 668 return ret;
7c3eed5c
TH
669}
670
9f66cff2
TH
671static struct pool_workqueue __rcu **
672unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
673{
674 if (cpu >= 0)
675 return per_cpu_ptr(wq->cpu_pwq, cpu);
676 else
677 return &wq->dfl_pwq;
678}
679
680/* @cpu < 0 for dfl_pwq */
681static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
682{
683 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
684 lockdep_is_held(&wq_pool_mutex) ||
685 lockdep_is_held(&wq->mutex));
686}
687
5797b1c1
TH
688/**
689 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
690 * @wq: workqueue of interest
691 *
692 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
693 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
694 * default pwq is always mapped to the pool with the current effective cpumask.
695 */
696static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
697{
698 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
699}
700
73f53c4a
TH
701static unsigned int work_color_to_flags(int color)
702{
703 return color << WORK_STRUCT_COLOR_SHIFT;
704}
705
c4560c2c 706static int get_work_color(unsigned long work_data)
73f53c4a 707{
c4560c2c 708 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
709 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
710}
711
712static int work_next_color(int color)
713{
714 return (color + 1) % WORK_NR_COLORS;
715}
1da177e4 716
14441960 717/*
112202d9
TH
718 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
719 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 720 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 721 *
112202d9
TH
722 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
723 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
724 * work->data. These functions should only be called while the work is
725 * owned - ie. while the PENDING bit is set.
7a22ad75 726 *
112202d9 727 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 728 * corresponding to a work. Pool is available once the work has been
112202d9 729 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 730 * available only while the work item is queued.
7a22ad75 731 *
bbb68dfa
TH
732 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
733 * canceled. While being canceled, a work item may have its PENDING set
734 * but stay off timer and worklist for arbitrarily long and nobody should
735 * try to steal the PENDING bit.
14441960 736 */
7a22ad75
TH
737static inline void set_work_data(struct work_struct *work, unsigned long data,
738 unsigned long flags)
365970a1 739{
6183c009 740 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
741 atomic_long_set(&work->data, data | flags | work_static(work));
742}
365970a1 743
112202d9 744static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
745 unsigned long extra_flags)
746{
112202d9
TH
747 set_work_data(work, (unsigned long)pwq,
748 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
749}
750
4468a00f
LJ
751static void set_work_pool_and_keep_pending(struct work_struct *work,
752 int pool_id)
753{
754 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
755 WORK_STRUCT_PENDING);
756}
757
7c3eed5c
TH
758static void set_work_pool_and_clear_pending(struct work_struct *work,
759 int pool_id)
7a22ad75 760{
23657bb1
TH
761 /*
762 * The following wmb is paired with the implied mb in
763 * test_and_set_bit(PENDING) and ensures all updates to @work made
764 * here are visible to and precede any updates by the next PENDING
765 * owner.
766 */
767 smp_wmb();
7c3eed5c 768 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
769 /*
770 * The following mb guarantees that previous clear of a PENDING bit
771 * will not be reordered with any speculative LOADS or STORES from
772 * work->current_func, which is executed afterwards. This possible
8bdc6201 773 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
774 * the same @work. E.g. consider this case:
775 *
776 * CPU#0 CPU#1
777 * ---------------------------- --------------------------------
778 *
779 * 1 STORE event_indicated
780 * 2 queue_work_on() {
781 * 3 test_and_set_bit(PENDING)
782 * 4 } set_..._and_clear_pending() {
783 * 5 set_work_data() # clear bit
784 * 6 smp_mb()
785 * 7 work->current_func() {
786 * 8 LOAD event_indicated
787 * }
788 *
789 * Without an explicit full barrier speculative LOAD on line 8 can
790 * be executed before CPU#0 does STORE on line 1. If that happens,
791 * CPU#0 observes the PENDING bit is still set and new execution of
792 * a @work is not queued in a hope, that CPU#1 will eventually
793 * finish the queued @work. Meanwhile CPU#1 does not see
794 * event_indicated is set, because speculative LOAD was executed
795 * before actual STORE.
796 */
797 smp_mb();
7a22ad75 798}
f756d5e2 799
7a22ad75 800static void clear_work_data(struct work_struct *work)
1da177e4 801{
7c3eed5c
TH
802 smp_wmb(); /* see set_work_pool_and_clear_pending() */
803 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
804}
805
afa4bb77
LT
806static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
807{
808 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
809}
810
112202d9 811static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 812{
e120153d 813 unsigned long data = atomic_long_read(&work->data);
7a22ad75 814
112202d9 815 if (data & WORK_STRUCT_PWQ)
afa4bb77 816 return work_struct_pwq(data);
e120153d
TH
817 else
818 return NULL;
4d707b9f
ON
819}
820
7c3eed5c
TH
821/**
822 * get_work_pool - return the worker_pool a given work was associated with
823 * @work: the work item of interest
824 *
68e13a67 825 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
826 * access under RCU read lock. As such, this function should be
827 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
828 *
829 * All fields of the returned pool are accessible as long as the above
830 * mentioned locking is in effect. If the returned pool needs to be used
831 * beyond the critical section, the caller is responsible for ensuring the
832 * returned pool is and stays online.
d185af30
YB
833 *
834 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
835 */
836static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 837{
e120153d 838 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 839 int pool_id;
7a22ad75 840
68e13a67 841 assert_rcu_or_pool_mutex();
fa1b54e6 842
112202d9 843 if (data & WORK_STRUCT_PWQ)
afa4bb77 844 return work_struct_pwq(data)->pool;
7a22ad75 845
7c3eed5c
TH
846 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
847 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
848 return NULL;
849
fa1b54e6 850 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
851}
852
853/**
854 * get_work_pool_id - return the worker pool ID a given work is associated with
855 * @work: the work item of interest
856 *
d185af30 857 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
858 * %WORK_OFFQ_POOL_NONE if none.
859 */
860static int get_work_pool_id(struct work_struct *work)
861{
54d5b7d0
LJ
862 unsigned long data = atomic_long_read(&work->data);
863
112202d9 864 if (data & WORK_STRUCT_PWQ)
afa4bb77 865 return work_struct_pwq(data)->pool->id;
7c3eed5c 866
54d5b7d0 867 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
868}
869
bbb68dfa
TH
870static void mark_work_canceling(struct work_struct *work)
871{
7c3eed5c 872 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 873
7c3eed5c
TH
874 pool_id <<= WORK_OFFQ_POOL_SHIFT;
875 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
876}
877
878static bool work_is_canceling(struct work_struct *work)
879{
880 unsigned long data = atomic_long_read(&work->data);
881
112202d9 882 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
883}
884
e22bee78 885/*
3270476a
TH
886 * Policy functions. These define the policies on how the global worker
887 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 888 * they're being called with pool->lock held.
e22bee78
TH
889 */
890
4594bf15 891/*
e22bee78
TH
892 * Need to wake up a worker? Called from anything but currently
893 * running workers.
974271c4
TH
894 *
895 * Note that, because unbound workers never contribute to nr_running, this
706026c2 896 * function will always return %true for unbound pools as long as the
974271c4 897 * worklist isn't empty.
4594bf15 898 */
63d95a91 899static bool need_more_worker(struct worker_pool *pool)
365970a1 900{
0219a352 901 return !list_empty(&pool->worklist) && !pool->nr_running;
e22bee78 902}
4594bf15 903
e22bee78 904/* Can I start working? Called from busy but !running workers. */
63d95a91 905static bool may_start_working(struct worker_pool *pool)
e22bee78 906{
63d95a91 907 return pool->nr_idle;
e22bee78
TH
908}
909
910/* Do I need to keep working? Called from currently running workers. */
63d95a91 911static bool keep_working(struct worker_pool *pool)
e22bee78 912{
bc35f7ef 913 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
914}
915
916/* Do we need a new worker? Called from manager. */
63d95a91 917static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 918{
63d95a91 919 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 920}
365970a1 921
e22bee78 922/* Do we have too many workers and should some go away? */
63d95a91 923static bool too_many_workers(struct worker_pool *pool)
e22bee78 924{
692b4825 925 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
926 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
927 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
928
929 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
930}
931
c54d5046
TH
932/**
933 * worker_set_flags - set worker flags and adjust nr_running accordingly
934 * @worker: self
935 * @flags: flags to set
936 *
937 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
938 */
939static inline void worker_set_flags(struct worker *worker, unsigned int flags)
940{
941 struct worker_pool *pool = worker->pool;
942
bc8b50c2 943 lockdep_assert_held(&pool->lock);
c54d5046
TH
944
945 /* If transitioning into NOT_RUNNING, adjust nr_running. */
946 if ((flags & WORKER_NOT_RUNNING) &&
947 !(worker->flags & WORKER_NOT_RUNNING)) {
948 pool->nr_running--;
949 }
950
951 worker->flags |= flags;
952}
953
954/**
955 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
956 * @worker: self
957 * @flags: flags to clear
958 *
959 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
960 */
961static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
962{
963 struct worker_pool *pool = worker->pool;
964 unsigned int oflags = worker->flags;
965
bc8b50c2 966 lockdep_assert_held(&pool->lock);
c54d5046
TH
967
968 worker->flags &= ~flags;
969
970 /*
971 * If transitioning out of NOT_RUNNING, increment nr_running. Note
972 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
973 * of multiple flags, not a single flag.
974 */
975 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
976 if (!(worker->flags & WORKER_NOT_RUNNING))
977 pool->nr_running++;
978}
979
797e8345
TH
980/* Return the first idle worker. Called with pool->lock held. */
981static struct worker *first_idle_worker(struct worker_pool *pool)
982{
983 if (unlikely(list_empty(&pool->idle_list)))
984 return NULL;
985
986 return list_first_entry(&pool->idle_list, struct worker, entry);
987}
988
989/**
990 * worker_enter_idle - enter idle state
991 * @worker: worker which is entering idle state
992 *
993 * @worker is entering idle state. Update stats and idle timer if
994 * necessary.
995 *
996 * LOCKING:
997 * raw_spin_lock_irq(pool->lock).
998 */
999static void worker_enter_idle(struct worker *worker)
1000{
1001 struct worker_pool *pool = worker->pool;
1002
1003 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1004 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1005 (worker->hentry.next || worker->hentry.pprev)))
1006 return;
1007
1008 /* can't use worker_set_flags(), also called from create_worker() */
1009 worker->flags |= WORKER_IDLE;
1010 pool->nr_idle++;
1011 worker->last_active = jiffies;
1012
1013 /* idle_list is LIFO */
1014 list_add(&worker->entry, &pool->idle_list);
1015
1016 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1017 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1018
1019 /* Sanity check nr_running. */
1020 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1021}
1022
1023/**
1024 * worker_leave_idle - leave idle state
1025 * @worker: worker which is leaving idle state
1026 *
1027 * @worker is leaving idle state. Update stats.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void worker_leave_idle(struct worker *worker)
1033{
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1037 return;
1038 worker_clr_flags(worker, WORKER_IDLE);
1039 pool->nr_idle--;
1040 list_del_init(&worker->entry);
1041}
1042
1043/**
1044 * find_worker_executing_work - find worker which is executing a work
1045 * @pool: pool of interest
1046 * @work: work to find worker for
1047 *
1048 * Find a worker which is executing @work on @pool by searching
1049 * @pool->busy_hash which is keyed by the address of @work. For a worker
1050 * to match, its current execution should match the address of @work and
1051 * its work function. This is to avoid unwanted dependency between
1052 * unrelated work executions through a work item being recycled while still
1053 * being executed.
1054 *
1055 * This is a bit tricky. A work item may be freed once its execution
1056 * starts and nothing prevents the freed area from being recycled for
1057 * another work item. If the same work item address ends up being reused
1058 * before the original execution finishes, workqueue will identify the
1059 * recycled work item as currently executing and make it wait until the
1060 * current execution finishes, introducing an unwanted dependency.
1061 *
1062 * This function checks the work item address and work function to avoid
1063 * false positives. Note that this isn't complete as one may construct a
1064 * work function which can introduce dependency onto itself through a
1065 * recycled work item. Well, if somebody wants to shoot oneself in the
1066 * foot that badly, there's only so much we can do, and if such deadlock
1067 * actually occurs, it should be easy to locate the culprit work function.
1068 *
1069 * CONTEXT:
1070 * raw_spin_lock_irq(pool->lock).
1071 *
1072 * Return:
1073 * Pointer to worker which is executing @work if found, %NULL
1074 * otherwise.
1075 */
1076static struct worker *find_worker_executing_work(struct worker_pool *pool,
1077 struct work_struct *work)
1078{
1079 struct worker *worker;
1080
1081 hash_for_each_possible(pool->busy_hash, worker, hentry,
1082 (unsigned long)work)
1083 if (worker->current_work == work &&
1084 worker->current_func == work->func)
1085 return worker;
1086
1087 return NULL;
1088}
1089
1090/**
1091 * move_linked_works - move linked works to a list
1092 * @work: start of series of works to be scheduled
1093 * @head: target list to append @work to
1094 * @nextp: out parameter for nested worklist walking
1095 *
873eaca6
TH
1096 * Schedule linked works starting from @work to @head. Work series to be
1097 * scheduled starts at @work and includes any consecutive work with
1098 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1099 * @nextp.
797e8345
TH
1100 *
1101 * CONTEXT:
1102 * raw_spin_lock_irq(pool->lock).
1103 */
1104static void move_linked_works(struct work_struct *work, struct list_head *head,
1105 struct work_struct **nextp)
1106{
1107 struct work_struct *n;
1108
1109 /*
1110 * Linked worklist will always end before the end of the list,
1111 * use NULL for list head.
1112 */
1113 list_for_each_entry_safe_from(work, n, NULL, entry) {
1114 list_move_tail(&work->entry, head);
1115 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1116 break;
1117 }
1118
1119 /*
1120 * If we're already inside safe list traversal and have moved
1121 * multiple works to the scheduled queue, the next position
1122 * needs to be updated.
1123 */
1124 if (nextp)
1125 *nextp = n;
1126}
1127
873eaca6
TH
1128/**
1129 * assign_work - assign a work item and its linked work items to a worker
1130 * @work: work to assign
1131 * @worker: worker to assign to
1132 * @nextp: out parameter for nested worklist walking
1133 *
1134 * Assign @work and its linked work items to @worker. If @work is already being
1135 * executed by another worker in the same pool, it'll be punted there.
1136 *
1137 * If @nextp is not NULL, it's updated to point to the next work of the last
1138 * scheduled work. This allows assign_work() to be nested inside
1139 * list_for_each_entry_safe().
1140 *
1141 * Returns %true if @work was successfully assigned to @worker. %false if @work
1142 * was punted to another worker already executing it.
1143 */
1144static bool assign_work(struct work_struct *work, struct worker *worker,
1145 struct work_struct **nextp)
1146{
1147 struct worker_pool *pool = worker->pool;
1148 struct worker *collision;
1149
1150 lockdep_assert_held(&pool->lock);
1151
1152 /*
1153 * A single work shouldn't be executed concurrently by multiple workers.
1154 * __queue_work() ensures that @work doesn't jump to a different pool
1155 * while still running in the previous pool. Here, we should ensure that
1156 * @work is not executed concurrently by multiple workers from the same
1157 * pool. Check whether anyone is already processing the work. If so,
1158 * defer the work to the currently executing one.
1159 */
1160 collision = find_worker_executing_work(pool, work);
1161 if (unlikely(collision)) {
1162 move_linked_works(work, &collision->scheduled, nextp);
1163 return false;
1164 }
1165
1166 move_linked_works(work, &worker->scheduled, nextp);
1167 return true;
1168}
1169
797e8345 1170/**
0219a352
TH
1171 * kick_pool - wake up an idle worker if necessary
1172 * @pool: pool to kick
797e8345 1173 *
0219a352
TH
1174 * @pool may have pending work items. Wake up worker if necessary. Returns
1175 * whether a worker was woken up.
797e8345 1176 */
0219a352 1177static bool kick_pool(struct worker_pool *pool)
797e8345
TH
1178{
1179 struct worker *worker = first_idle_worker(pool);
8639eceb 1180 struct task_struct *p;
797e8345 1181
0219a352
TH
1182 lockdep_assert_held(&pool->lock);
1183
1184 if (!need_more_worker(pool) || !worker)
1185 return false;
1186
8639eceb
TH
1187 p = worker->task;
1188
1189#ifdef CONFIG_SMP
1190 /*
1191 * Idle @worker is about to execute @work and waking up provides an
1192 * opportunity to migrate @worker at a lower cost by setting the task's
1193 * wake_cpu field. Let's see if we want to move @worker to improve
1194 * execution locality.
1195 *
1196 * We're waking the worker that went idle the latest and there's some
1197 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1198 * so, setting the wake_cpu won't do anything. As this is a best-effort
1199 * optimization and the race window is narrow, let's leave as-is for
1200 * now. If this becomes pronounced, we can skip over workers which are
1201 * still on cpu when picking an idle worker.
1202 *
1203 * If @pool has non-strict affinity, @worker might have ended up outside
1204 * its affinity scope. Repatriate.
1205 */
1206 if (!pool->attrs->affn_strict &&
1207 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1208 struct work_struct *work = list_first_entry(&pool->worklist,
1209 struct work_struct, entry);
1210 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1211 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1212 }
1213#endif
1214 wake_up_process(p);
0219a352 1215 return true;
797e8345
TH
1216}
1217
63638450
TH
1218#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1219
1220/*
1221 * Concurrency-managed per-cpu work items that hog CPU for longer than
1222 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1223 * which prevents them from stalling other concurrency-managed work items. If a
1224 * work function keeps triggering this mechanism, it's likely that the work item
1225 * should be using an unbound workqueue instead.
1226 *
1227 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1228 * and report them so that they can be examined and converted to use unbound
1229 * workqueues as appropriate. To avoid flooding the console, each violating work
1230 * function is tracked and reported with exponential backoff.
1231 */
1232#define WCI_MAX_ENTS 128
1233
1234struct wci_ent {
1235 work_func_t func;
1236 atomic64_t cnt;
1237 struct hlist_node hash_node;
1238};
1239
1240static struct wci_ent wci_ents[WCI_MAX_ENTS];
1241static int wci_nr_ents;
1242static DEFINE_RAW_SPINLOCK(wci_lock);
1243static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1244
1245static struct wci_ent *wci_find_ent(work_func_t func)
1246{
1247 struct wci_ent *ent;
1248
1249 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1250 (unsigned long)func) {
1251 if (ent->func == func)
1252 return ent;
1253 }
1254 return NULL;
1255}
1256
1257static void wq_cpu_intensive_report(work_func_t func)
1258{
1259 struct wci_ent *ent;
1260
1261restart:
1262 ent = wci_find_ent(func);
1263 if (ent) {
1264 u64 cnt;
1265
1266 /*
1267 * Start reporting from the fourth time and back off
1268 * exponentially.
1269 */
1270 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1271 if (cnt >= 4 && is_power_of_2(cnt))
1272 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1273 ent->func, wq_cpu_intensive_thresh_us,
1274 atomic64_read(&ent->cnt));
1275 return;
1276 }
1277
1278 /*
1279 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1280 * is exhausted, something went really wrong and we probably made enough
1281 * noise already.
1282 */
1283 if (wci_nr_ents >= WCI_MAX_ENTS)
1284 return;
1285
1286 raw_spin_lock(&wci_lock);
1287
1288 if (wci_nr_ents >= WCI_MAX_ENTS) {
1289 raw_spin_unlock(&wci_lock);
1290 return;
1291 }
1292
1293 if (wci_find_ent(func)) {
1294 raw_spin_unlock(&wci_lock);
1295 goto restart;
1296 }
1297
1298 ent = &wci_ents[wci_nr_ents++];
1299 ent->func = func;
1300 atomic64_set(&ent->cnt, 1);
1301 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1302
1303 raw_spin_unlock(&wci_lock);
1304}
1305
1306#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1307static void wq_cpu_intensive_report(work_func_t func) {}
1308#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1309
d302f017 1310/**
6d25be57 1311 * wq_worker_running - a worker is running again
e22bee78 1312 * @task: task waking up
e22bee78 1313 *
6d25be57 1314 * This function is called when a worker returns from schedule()
e22bee78 1315 */
6d25be57 1316void wq_worker_running(struct task_struct *task)
e22bee78
TH
1317{
1318 struct worker *worker = kthread_data(task);
1319
c8f6219b 1320 if (!READ_ONCE(worker->sleeping))
6d25be57 1321 return;
07edfece
FW
1322
1323 /*
1324 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1325 * and the nr_running increment below, we may ruin the nr_running reset
1326 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1327 * pool. Protect against such race.
1328 */
1329 preempt_disable();
6d25be57 1330 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1331 worker->pool->nr_running++;
07edfece 1332 preempt_enable();
616db877
TH
1333
1334 /*
1335 * CPU intensive auto-detection cares about how long a work item hogged
1336 * CPU without sleeping. Reset the starting timestamp on wakeup.
1337 */
1338 worker->current_at = worker->task->se.sum_exec_runtime;
1339
c8f6219b 1340 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1341}
1342
1343/**
1344 * wq_worker_sleeping - a worker is going to sleep
1345 * @task: task going to sleep
e22bee78 1346 *
6d25be57 1347 * This function is called from schedule() when a busy worker is
ccf45156 1348 * going to sleep.
e22bee78 1349 */
6d25be57 1350void wq_worker_sleeping(struct task_struct *task)
e22bee78 1351{
cc5bff38 1352 struct worker *worker = kthread_data(task);
111c225a 1353 struct worker_pool *pool;
e22bee78 1354
111c225a
TH
1355 /*
1356 * Rescuers, which may not have all the fields set up like normal
1357 * workers, also reach here, let's not access anything before
1358 * checking NOT_RUNNING.
1359 */
2d64672e 1360 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1361 return;
e22bee78 1362
111c225a 1363 pool = worker->pool;
111c225a 1364
62849a96 1365 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1366 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1367 return;
1368
c8f6219b 1369 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1370 raw_spin_lock_irq(&pool->lock);
e22bee78 1371
45c753f5
FW
1372 /*
1373 * Recheck in case unbind_workers() preempted us. We don't
1374 * want to decrement nr_running after the worker is unbound
1375 * and nr_running has been reset.
1376 */
1377 if (worker->flags & WORKER_NOT_RUNNING) {
1378 raw_spin_unlock_irq(&pool->lock);
1379 return;
1380 }
1381
bc35f7ef 1382 pool->nr_running--;
0219a352 1383 if (kick_pool(pool))
725e8ec5 1384 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
0219a352 1385
a9b8a985 1386 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1387}
1388
616db877
TH
1389/**
1390 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1391 * @task: task currently running
1392 *
1393 * Called from scheduler_tick(). We're in the IRQ context and the current
1394 * worker's fields which follow the 'K' locking rule can be accessed safely.
1395 */
1396void wq_worker_tick(struct task_struct *task)
1397{
1398 struct worker *worker = kthread_data(task);
1399 struct pool_workqueue *pwq = worker->current_pwq;
1400 struct worker_pool *pool = worker->pool;
1401
1402 if (!pwq)
1403 return;
1404
8a1dd1e5
TH
1405 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1406
18c8ae81
Z
1407 if (!wq_cpu_intensive_thresh_us)
1408 return;
1409
616db877
TH
1410 /*
1411 * If the current worker is concurrency managed and hogged the CPU for
1412 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1413 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1414 *
1415 * Set @worker->sleeping means that @worker is in the process of
1416 * switching out voluntarily and won't be contributing to
1417 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1418 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1419 * double decrements. The task is releasing the CPU anyway. Let's skip.
1420 * We probably want to make this prettier in the future.
616db877 1421 */
c8f6219b 1422 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1423 worker->task->se.sum_exec_runtime - worker->current_at <
1424 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1425 return;
1426
1427 raw_spin_lock(&pool->lock);
1428
1429 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1430 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1431 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1432
0219a352 1433 if (kick_pool(pool))
616db877 1434 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
616db877
TH
1435
1436 raw_spin_unlock(&pool->lock);
1437}
1438
1b69ac6b
JW
1439/**
1440 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1441 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1442 *
1443 * Determine the last function a worker executed. This is called from
1444 * the scheduler to get a worker's last known identity.
1445 *
1446 * CONTEXT:
a9b8a985 1447 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1448 *
4b047002
JW
1449 * This function is called during schedule() when a kworker is going
1450 * to sleep. It's used by psi to identify aggregation workers during
1451 * dequeuing, to allow periodic aggregation to shut-off when that
1452 * worker is the last task in the system or cgroup to go to sleep.
1453 *
1454 * As this function doesn't involve any workqueue-related locking, it
1455 * only returns stable values when called from inside the scheduler's
1456 * queuing and dequeuing paths, when @task, which must be a kworker,
1457 * is guaranteed to not be processing any works.
1458 *
1b69ac6b
JW
1459 * Return:
1460 * The last work function %current executed as a worker, NULL if it
1461 * hasn't executed any work yet.
1462 */
1463work_func_t wq_worker_last_func(struct task_struct *task)
1464{
1465 struct worker *worker = kthread_data(task);
1466
1467 return worker->last_func;
1468}
1469
91ccc6e7
TH
1470/**
1471 * wq_node_nr_active - Determine wq_node_nr_active to use
1472 * @wq: workqueue of interest
1473 * @node: NUMA node, can be %NUMA_NO_NODE
1474 *
1475 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1476 *
1477 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1478 *
1479 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1480 *
1481 * - Otherwise, node_nr_active[@node].
1482 */
1483static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1484 int node)
1485{
1486 if (!(wq->flags & WQ_UNBOUND))
1487 return NULL;
1488
1489 if (node == NUMA_NO_NODE)
1490 node = nr_node_ids;
1491
1492 return wq->node_nr_active[node];
1493}
1494
5797b1c1
TH
1495/**
1496 * wq_update_node_max_active - Update per-node max_actives to use
1497 * @wq: workqueue to update
1498 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1499 *
1500 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1501 * distributed among nodes according to the proportions of numbers of online
1502 * cpus. The result is always between @wq->min_active and max_active.
1503 */
1504static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1505{
1506 struct cpumask *effective = unbound_effective_cpumask(wq);
1507 int min_active = READ_ONCE(wq->min_active);
1508 int max_active = READ_ONCE(wq->max_active);
1509 int total_cpus, node;
1510
1511 lockdep_assert_held(&wq->mutex);
1512
1513 if (!cpumask_test_cpu(off_cpu, effective))
1514 off_cpu = -1;
1515
1516 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1517 if (off_cpu >= 0)
1518 total_cpus--;
1519
1520 for_each_node(node) {
1521 int node_cpus;
1522
1523 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1524 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1525 node_cpus--;
1526
1527 wq_node_nr_active(wq, node)->max =
1528 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1529 min_active, max_active);
1530 }
1531
1532 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1533}
1534
8864b4e5
TH
1535/**
1536 * get_pwq - get an extra reference on the specified pool_workqueue
1537 * @pwq: pool_workqueue to get
1538 *
1539 * Obtain an extra reference on @pwq. The caller should guarantee that
1540 * @pwq has positive refcnt and be holding the matching pool->lock.
1541 */
1542static void get_pwq(struct pool_workqueue *pwq)
1543{
1544 lockdep_assert_held(&pwq->pool->lock);
1545 WARN_ON_ONCE(pwq->refcnt <= 0);
1546 pwq->refcnt++;
1547}
1548
1549/**
1550 * put_pwq - put a pool_workqueue reference
1551 * @pwq: pool_workqueue to put
1552 *
1553 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1554 * destruction. The caller should be holding the matching pool->lock.
1555 */
1556static void put_pwq(struct pool_workqueue *pwq)
1557{
1558 lockdep_assert_held(&pwq->pool->lock);
1559 if (likely(--pwq->refcnt))
1560 return;
8864b4e5 1561 /*
967b494e
TH
1562 * @pwq can't be released under pool->lock, bounce to a dedicated
1563 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1564 */
687a9aa5 1565 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1566}
1567
dce90d47
TH
1568/**
1569 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1570 * @pwq: pool_workqueue to put (can be %NULL)
1571 *
1572 * put_pwq() with locking. This function also allows %NULL @pwq.
1573 */
1574static void put_pwq_unlocked(struct pool_workqueue *pwq)
1575{
1576 if (pwq) {
1577 /*
24acfb71 1578 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1579 * following lock operations are safe.
1580 */
a9b8a985 1581 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1582 put_pwq(pwq);
a9b8a985 1583 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1584 }
1585}
1586
afa87ce8
TH
1587static bool pwq_is_empty(struct pool_workqueue *pwq)
1588{
1589 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1590}
1591
4c638030
TH
1592static void __pwq_activate_work(struct pool_workqueue *pwq,
1593 struct work_struct *work)
bf4ede01 1594{
1c270b79
TH
1595 unsigned long *wdb = work_data_bits(work);
1596
1597 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
bf4ede01 1598 trace_workqueue_activate_work(work);
82607adc
TH
1599 if (list_empty(&pwq->pool->worklist))
1600 pwq->pool->watchdog_ts = jiffies;
112202d9 1601 move_linked_works(work, &pwq->pool->worklist, NULL);
1c270b79 1602 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
4c638030
TH
1603}
1604
1605/**
1606 * pwq_activate_work - Activate a work item if inactive
1607 * @pwq: pool_workqueue @work belongs to
1608 * @work: work item to activate
1609 *
1610 * Returns %true if activated. %false if already active.
1611 */
1612static bool pwq_activate_work(struct pool_workqueue *pwq,
1613 struct work_struct *work)
1614{
1615 struct worker_pool *pool = pwq->pool;
91ccc6e7 1616 struct wq_node_nr_active *nna;
4c638030
TH
1617
1618 lockdep_assert_held(&pool->lock);
1619
1620 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1621 return false;
1622
91ccc6e7
TH
1623 nna = wq_node_nr_active(pwq->wq, pool->node);
1624 if (nna)
1625 atomic_inc(&nna->nr);
1626
112202d9 1627 pwq->nr_active++;
4c638030
TH
1628 __pwq_activate_work(pwq, work);
1629 return true;
bf4ede01
TH
1630}
1631
5797b1c1
TH
1632static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1633{
1634 int max = READ_ONCE(nna->max);
1635
1636 while (true) {
1637 int old, tmp;
1638
1639 old = atomic_read(&nna->nr);
1640 if (old >= max)
1641 return false;
1642 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1643 if (tmp == old)
1644 return true;
1645 }
1646}
1647
1c270b79
TH
1648/**
1649 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1650 * @pwq: pool_workqueue of interest
5797b1c1 1651 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1652 *
1653 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1654 * successfully obtained. %false otherwise.
1655 */
5797b1c1 1656static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1657{
1658 struct workqueue_struct *wq = pwq->wq;
1659 struct worker_pool *pool = pwq->pool;
91ccc6e7 1660 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
5797b1c1 1661 bool obtained = false;
1c270b79
TH
1662
1663 lockdep_assert_held(&pool->lock);
1664
5797b1c1
TH
1665 if (!nna) {
1666 /* per-cpu workqueue, pwq->nr_active is sufficient */
1667 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1668 goto out;
1669 }
1670
1671 /*
1672 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1673 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1674 * concurrency level. Don't jump the line.
1675 *
1676 * We need to ignore the pending test after max_active has increased as
1677 * pwq_dec_nr_active() can only maintain the concurrency level but not
1678 * increase it. This is indicated by @fill.
1679 */
1680 if (!list_empty(&pwq->pending_node) && likely(!fill))
1681 goto out;
1682
1683 obtained = tryinc_node_nr_active(nna);
1684 if (obtained)
1685 goto out;
1686
1687 /*
1688 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1689 * and try again. The smp_mb() is paired with the implied memory barrier
1690 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1691 * we see the decremented $nna->nr or they see non-empty
1692 * $nna->pending_pwqs.
1693 */
1694 raw_spin_lock(&nna->lock);
1695
1696 if (list_empty(&pwq->pending_node))
1697 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1698 else if (likely(!fill))
1699 goto out_unlock;
1700
1701 smp_mb();
1702
1703 obtained = tryinc_node_nr_active(nna);
1c270b79 1704
5797b1c1
TH
1705 /*
1706 * If @fill, @pwq might have already been pending. Being spuriously
1707 * pending in cold paths doesn't affect anything. Let's leave it be.
1708 */
1709 if (obtained && likely(!fill))
1710 list_del_init(&pwq->pending_node);
1711
1712out_unlock:
1713 raw_spin_unlock(&nna->lock);
1714out:
1715 if (obtained)
1c270b79
TH
1716 pwq->nr_active++;
1717 return obtained;
1718}
1719
1720/**
1721 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1722 * @pwq: pool_workqueue of interest
5797b1c1 1723 * @fill: max_active may have increased, try to increase concurrency level
1c270b79
TH
1724 *
1725 * Activate the first inactive work item of @pwq if available and allowed by
1726 * max_active limit.
1727 *
1728 * Returns %true if an inactive work item has been activated. %false if no
1729 * inactive work item is found or max_active limit is reached.
1730 */
5797b1c1 1731static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1c270b79
TH
1732{
1733 struct work_struct *work =
1734 list_first_entry_or_null(&pwq->inactive_works,
1735 struct work_struct, entry);
1736
5797b1c1 1737 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1c270b79
TH
1738 __pwq_activate_work(pwq, work);
1739 return true;
1740 } else {
1741 return false;
1742 }
1743}
1744
5797b1c1
TH
1745/**
1746 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1747 * @nna: wq_node_nr_active to activate a pending pwq for
1748 * @caller_pool: worker_pool the caller is locking
1749 *
1750 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1751 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1752 */
1753static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1754 struct worker_pool *caller_pool)
1755{
1756 struct worker_pool *locked_pool = caller_pool;
1757 struct pool_workqueue *pwq;
1758 struct work_struct *work;
1759
1760 lockdep_assert_held(&caller_pool->lock);
1761
1762 raw_spin_lock(&nna->lock);
1763retry:
1764 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1765 struct pool_workqueue, pending_node);
1766 if (!pwq)
1767 goto out_unlock;
1768
1769 /*
1770 * If @pwq is for a different pool than @locked_pool, we need to lock
1771 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1772 * / lock dance. For that, we also need to release @nna->lock as it's
1773 * nested inside pool locks.
1774 */
1775 if (pwq->pool != locked_pool) {
1776 raw_spin_unlock(&locked_pool->lock);
1777 locked_pool = pwq->pool;
1778 if (!raw_spin_trylock(&locked_pool->lock)) {
1779 raw_spin_unlock(&nna->lock);
1780 raw_spin_lock(&locked_pool->lock);
1781 raw_spin_lock(&nna->lock);
1782 goto retry;
1783 }
1784 }
1785
1786 /*
1787 * $pwq may not have any inactive work items due to e.g. cancellations.
1788 * Drop it from pending_pwqs and see if there's another one.
1789 */
1790 work = list_first_entry_or_null(&pwq->inactive_works,
1791 struct work_struct, entry);
1792 if (!work) {
1793 list_del_init(&pwq->pending_node);
1794 goto retry;
1795 }
1796
1797 /*
1798 * Acquire an nr_active count and activate the inactive work item. If
1799 * $pwq still has inactive work items, rotate it to the end of the
1800 * pending_pwqs so that we round-robin through them. This means that
1801 * inactive work items are not activated in queueing order which is fine
1802 * given that there has never been any ordering across different pwqs.
1803 */
1804 if (likely(tryinc_node_nr_active(nna))) {
1805 pwq->nr_active++;
1806 __pwq_activate_work(pwq, work);
1807
1808 if (list_empty(&pwq->inactive_works))
1809 list_del_init(&pwq->pending_node);
1810 else
1811 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1812
1813 /* if activating a foreign pool, make sure it's running */
1814 if (pwq->pool != caller_pool)
1815 kick_pool(pwq->pool);
1816 }
1817
1818out_unlock:
1819 raw_spin_unlock(&nna->lock);
1820 if (locked_pool != caller_pool) {
1821 raw_spin_unlock(&locked_pool->lock);
1822 raw_spin_lock(&caller_pool->lock);
1823 }
1824}
1825
1c270b79
TH
1826/**
1827 * pwq_dec_nr_active - Retire an active count
1828 * @pwq: pool_workqueue of interest
1829 *
1830 * Decrement @pwq's nr_active and try to activate the first inactive work item.
5797b1c1 1831 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1c270b79
TH
1832 */
1833static void pwq_dec_nr_active(struct pool_workqueue *pwq)
3aa62497 1834{
1c270b79 1835 struct worker_pool *pool = pwq->pool;
91ccc6e7 1836 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
3aa62497 1837
1c270b79
TH
1838 lockdep_assert_held(&pool->lock);
1839
91ccc6e7
TH
1840 /*
1841 * @pwq->nr_active should be decremented for both percpu and unbound
1842 * workqueues.
1843 */
1c270b79 1844 pwq->nr_active--;
91ccc6e7
TH
1845
1846 /*
1847 * For a percpu workqueue, it's simple. Just need to kick the first
1848 * inactive work item on @pwq itself.
1849 */
1850 if (!nna) {
5797b1c1 1851 pwq_activate_first_inactive(pwq, false);
91ccc6e7
TH
1852 return;
1853 }
1854
5797b1c1
TH
1855 /*
1856 * If @pwq is for an unbound workqueue, it's more complicated because
1857 * multiple pwqs and pools may be sharing the nr_active count. When a
1858 * pwq needs to wait for an nr_active count, it puts itself on
1859 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1860 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1861 * guarantee that either we see non-empty pending_pwqs or they see
1862 * decremented $nna->nr.
1863 *
1864 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1865 * max_active gets updated. However, it is guaranteed to be equal to or
1866 * larger than @pwq->wq->min_active which is above zero unless freezing.
1867 * This maintains the forward progress guarantee.
1868 */
1869 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1870 return;
1871
1872 if (!list_empty(&nna->pending_pwqs))
1873 node_activate_pending_pwq(nna, pool);
3aa62497
LJ
1874}
1875
bf4ede01 1876/**
112202d9
TH
1877 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1878 * @pwq: pwq of interest
c4560c2c 1879 * @work_data: work_data of work which left the queue
bf4ede01
TH
1880 *
1881 * A work either has completed or is removed from pending queue,
112202d9 1882 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01 1883 *
dd6c3c54
TH
1884 * NOTE:
1885 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1886 * and thus should be called after all other state updates for the in-flight
1887 * work item is complete.
1888 *
bf4ede01 1889 * CONTEXT:
a9b8a985 1890 * raw_spin_lock_irq(pool->lock).
bf4ede01 1891 */
c4560c2c 1892static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1893{
c4560c2c
LJ
1894 int color = get_work_color(work_data);
1895
1c270b79
TH
1896 if (!(work_data & WORK_STRUCT_INACTIVE))
1897 pwq_dec_nr_active(pwq);
018f3a13 1898
112202d9 1899 pwq->nr_in_flight[color]--;
bf4ede01 1900
bf4ede01 1901 /* is flush in progress and are we at the flushing tip? */
112202d9 1902 if (likely(pwq->flush_color != color))
8864b4e5 1903 goto out_put;
bf4ede01
TH
1904
1905 /* are there still in-flight works? */
112202d9 1906 if (pwq->nr_in_flight[color])
8864b4e5 1907 goto out_put;
bf4ede01 1908
112202d9
TH
1909 /* this pwq is done, clear flush_color */
1910 pwq->flush_color = -1;
bf4ede01
TH
1911
1912 /*
112202d9 1913 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1914 * will handle the rest.
1915 */
112202d9
TH
1916 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1917 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1918out_put:
1919 put_pwq(pwq);
bf4ede01
TH
1920}
1921
36e227d2 1922/**
bbb68dfa 1923 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1924 * @work: work item to steal
1925 * @is_dwork: @work is a delayed_work
bbb68dfa 1926 * @flags: place to store irq state
36e227d2
TH
1927 *
1928 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1929 * stable state - idle, on timer or on worklist.
36e227d2 1930 *
d185af30 1931 * Return:
3eb6b31b
MCC
1932 *
1933 * ======== ================================================================
36e227d2
TH
1934 * 1 if @work was pending and we successfully stole PENDING
1935 * 0 if @work was idle and we claimed PENDING
1936 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1937 * -ENOENT if someone else is canceling @work, this state may persist
1938 * for arbitrarily long
3eb6b31b 1939 * ======== ================================================================
36e227d2 1940 *
d185af30 1941 * Note:
bbb68dfa 1942 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1943 * interrupted while holding PENDING and @work off queue, irq must be
1944 * disabled on entry. This, combined with delayed_work->timer being
1945 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1946 *
1947 * On successful return, >= 0, irq is disabled and the caller is
1948 * responsible for releasing it using local_irq_restore(*@flags).
1949 *
e0aecdd8 1950 * This function is safe to call from any context including IRQ handler.
bf4ede01 1951 */
bbb68dfa
TH
1952static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1953 unsigned long *flags)
bf4ede01 1954{
d565ed63 1955 struct worker_pool *pool;
112202d9 1956 struct pool_workqueue *pwq;
bf4ede01 1957
bbb68dfa
TH
1958 local_irq_save(*flags);
1959
36e227d2
TH
1960 /* try to steal the timer if it exists */
1961 if (is_dwork) {
1962 struct delayed_work *dwork = to_delayed_work(work);
1963
e0aecdd8
TH
1964 /*
1965 * dwork->timer is irqsafe. If del_timer() fails, it's
1966 * guaranteed that the timer is not queued anywhere and not
1967 * running on the local CPU.
1968 */
36e227d2
TH
1969 if (likely(del_timer(&dwork->timer)))
1970 return 1;
1971 }
1972
1973 /* try to claim PENDING the normal way */
bf4ede01
TH
1974 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1975 return 0;
1976
24acfb71 1977 rcu_read_lock();
bf4ede01
TH
1978 /*
1979 * The queueing is in progress, or it is already queued. Try to
1980 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1981 */
d565ed63
TH
1982 pool = get_work_pool(work);
1983 if (!pool)
bbb68dfa 1984 goto fail;
bf4ede01 1985
a9b8a985 1986 raw_spin_lock(&pool->lock);
0b3dae68 1987 /*
112202d9
TH
1988 * work->data is guaranteed to point to pwq only while the work
1989 * item is queued on pwq->wq, and both updating work->data to point
1990 * to pwq on queueing and to pool on dequeueing are done under
1991 * pwq->pool->lock. This in turn guarantees that, if work->data
1992 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1993 * item is currently queued on that pool.
1994 */
112202d9
TH
1995 pwq = get_work_pwq(work);
1996 if (pwq && pwq->pool == pool) {
16062836
TH
1997 debug_work_deactivate(work);
1998
1999 /*
018f3a13
LJ
2000 * A cancelable inactive work item must be in the
2001 * pwq->inactive_works since a queued barrier can't be
2002 * canceled (see the comments in insert_wq_barrier()).
2003 *
f97a4a1a 2004 * An inactive work item cannot be grabbed directly because
d812796e 2005 * it might have linked barrier work items which, if left
f97a4a1a 2006 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
2007 * management later on and cause stall. Make sure the work
2008 * item is activated before grabbing.
2009 */
4c638030 2010 pwq_activate_work(pwq, work);
16062836
TH
2011
2012 list_del_init(&work->entry);
16062836 2013
112202d9 2014 /* work->data points to pwq iff queued, point to pool */
16062836
TH
2015 set_work_pool_and_keep_pending(work, pool->id);
2016
dd6c3c54
TH
2017 /* must be the last step, see the function comment */
2018 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
2019
a9b8a985 2020 raw_spin_unlock(&pool->lock);
24acfb71 2021 rcu_read_unlock();
16062836 2022 return 1;
bf4ede01 2023 }
a9b8a985 2024 raw_spin_unlock(&pool->lock);
bbb68dfa 2025fail:
24acfb71 2026 rcu_read_unlock();
bbb68dfa
TH
2027 local_irq_restore(*flags);
2028 if (work_is_canceling(work))
2029 return -ENOENT;
2030 cpu_relax();
36e227d2 2031 return -EAGAIN;
bf4ede01
TH
2032}
2033
4690c4ab 2034/**
706026c2 2035 * insert_work - insert a work into a pool
112202d9 2036 * @pwq: pwq @work belongs to
4690c4ab
TH
2037 * @work: work to insert
2038 * @head: insertion point
2039 * @extra_flags: extra WORK_STRUCT_* flags to set
2040 *
112202d9 2041 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 2042 * work_struct flags.
4690c4ab
TH
2043 *
2044 * CONTEXT:
a9b8a985 2045 * raw_spin_lock_irq(pool->lock).
4690c4ab 2046 */
112202d9
TH
2047static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2048 struct list_head *head, unsigned int extra_flags)
b89deed3 2049{
fe089f87 2050 debug_work_activate(work);
e22bee78 2051
e89a85d6 2052 /* record the work call stack in order to print it in KASAN reports */
f70da745 2053 kasan_record_aux_stack_noalloc(work);
e89a85d6 2054
4690c4ab 2055 /* we own @work, set data and link */
112202d9 2056 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 2057 list_add_tail(&work->entry, head);
8864b4e5 2058 get_pwq(pwq);
b89deed3
ON
2059}
2060
c8efcc25
TH
2061/*
2062 * Test whether @work is being queued from another work executing on the
8d03ecfe 2063 * same workqueue.
c8efcc25
TH
2064 */
2065static bool is_chained_work(struct workqueue_struct *wq)
2066{
8d03ecfe
TH
2067 struct worker *worker;
2068
2069 worker = current_wq_worker();
2070 /*
bf393fd4 2071 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
2072 * I'm @worker, it's safe to dereference it without locking.
2073 */
112202d9 2074 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
2075}
2076
ef557180
MG
2077/*
2078 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2079 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2080 * avoid perturbing sensitive tasks.
2081 */
2082static int wq_select_unbound_cpu(int cpu)
2083{
2084 int new_cpu;
2085
f303fccb
TH
2086 if (likely(!wq_debug_force_rr_cpu)) {
2087 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2088 return cpu;
a8ec5880
AF
2089 } else {
2090 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
2091 }
2092
ef557180
MG
2093 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2094 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2095 if (unlikely(new_cpu >= nr_cpu_ids)) {
2096 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2097 if (unlikely(new_cpu >= nr_cpu_ids))
2098 return cpu;
2099 }
2100 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2101
2102 return new_cpu;
2103}
2104
d84ff051 2105static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
2106 struct work_struct *work)
2107{
112202d9 2108 struct pool_workqueue *pwq;
fe089f87 2109 struct worker_pool *last_pool, *pool;
8a2e8e5d 2110 unsigned int work_flags;
b75cac93 2111 unsigned int req_cpu = cpu;
8930caba
TH
2112
2113 /*
2114 * While a work item is PENDING && off queue, a task trying to
2115 * steal the PENDING will busy-loop waiting for it to either get
2116 * queued or lose PENDING. Grabbing PENDING and queueing should
2117 * happen with IRQ disabled.
2118 */
8e8eb730 2119 lockdep_assert_irqs_disabled();
1da177e4 2120
1e19ffc6 2121
33e3f0a3
RC
2122 /*
2123 * For a draining wq, only works from the same workqueue are
2124 * allowed. The __WQ_DESTROYING helps to spot the issue that
2125 * queues a new work item to a wq after destroy_workqueue(wq).
2126 */
2127 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2128 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 2129 return;
24acfb71 2130 rcu_read_lock();
9e8cd2f5 2131retry:
c9178087 2132 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
2133 if (req_cpu == WORK_CPU_UNBOUND) {
2134 if (wq->flags & WQ_UNBOUND)
aa202f1f 2135 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 2136 else
aa202f1f 2137 cpu = raw_smp_processor_id();
aa202f1f 2138 }
dbf2576e 2139
636b927e 2140 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
2141 pool = pwq->pool;
2142
c9178087
TH
2143 /*
2144 * If @work was previously on a different pool, it might still be
2145 * running there, in which case the work needs to be queued on that
2146 * pool to guarantee non-reentrancy.
2147 */
2148 last_pool = get_work_pool(work);
fe089f87 2149 if (last_pool && last_pool != pool) {
c9178087 2150 struct worker *worker;
18aa9eff 2151
a9b8a985 2152 raw_spin_lock(&last_pool->lock);
18aa9eff 2153
c9178087 2154 worker = find_worker_executing_work(last_pool, work);
18aa9eff 2155
c9178087
TH
2156 if (worker && worker->current_pwq->wq == wq) {
2157 pwq = worker->current_pwq;
fe089f87
TH
2158 pool = pwq->pool;
2159 WARN_ON_ONCE(pool != last_pool);
8930caba 2160 } else {
c9178087 2161 /* meh... not running there, queue here */
a9b8a985 2162 raw_spin_unlock(&last_pool->lock);
fe089f87 2163 raw_spin_lock(&pool->lock);
8930caba 2164 }
f3421797 2165 } else {
fe089f87 2166 raw_spin_lock(&pool->lock);
502ca9d8
TH
2167 }
2168
9e8cd2f5 2169 /*
636b927e
TH
2170 * pwq is determined and locked. For unbound pools, we could have raced
2171 * with pwq release and it could already be dead. If its refcnt is zero,
2172 * repeat pwq selection. Note that unbound pwqs never die without
2173 * another pwq replacing it in cpu_pwq or while work items are executing
2174 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
2175 */
2176 if (unlikely(!pwq->refcnt)) {
2177 if (wq->flags & WQ_UNBOUND) {
fe089f87 2178 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
2179 cpu_relax();
2180 goto retry;
2181 }
2182 /* oops */
2183 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2184 wq->name, cpu);
2185 }
2186
112202d9
TH
2187 /* pwq determined, queue */
2188 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 2189
24acfb71
TG
2190 if (WARN_ON(!list_empty(&work->entry)))
2191 goto out;
1e19ffc6 2192
112202d9
TH
2193 pwq->nr_in_flight[pwq->work_color]++;
2194 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 2195
a045a272
TH
2196 /*
2197 * Limit the number of concurrently active work items to max_active.
2198 * @work must also queue behind existing inactive work items to maintain
2199 * ordering when max_active changes. See wq_adjust_max_active().
2200 */
5797b1c1 2201 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
fe089f87
TH
2202 if (list_empty(&pool->worklist))
2203 pool->watchdog_ts = jiffies;
2204
cdadf009 2205 trace_workqueue_activate_work(work);
fe089f87 2206 insert_work(pwq, work, &pool->worklist, work_flags);
0219a352 2207 kick_pool(pool);
8a2e8e5d 2208 } else {
f97a4a1a 2209 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 2210 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 2211 }
1e19ffc6 2212
24acfb71 2213out:
fe089f87 2214 raw_spin_unlock(&pool->lock);
24acfb71 2215 rcu_read_unlock();
1da177e4
LT
2216}
2217
0fcb78c2 2218/**
c1a220e7
ZR
2219 * queue_work_on - queue work on specific cpu
2220 * @cpu: CPU number to execute work on
0fcb78c2
REB
2221 * @wq: workqueue to use
2222 * @work: work to queue
2223 *
c1a220e7 2224 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
2225 * can't go away. Callers that fail to ensure that the specified
2226 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
2227 * But note well that callers specifying a CPU that never has been
2228 * online will get a splat.
d185af30
YB
2229 *
2230 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 2231 */
d4283e93
TH
2232bool queue_work_on(int cpu, struct workqueue_struct *wq,
2233 struct work_struct *work)
1da177e4 2234{
d4283e93 2235 bool ret = false;
8930caba 2236 unsigned long flags;
ef1ca236 2237
8930caba 2238 local_irq_save(flags);
c1a220e7 2239
22df02bb 2240 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 2241 __queue_work(cpu, wq, work);
d4283e93 2242 ret = true;
c1a220e7 2243 }
ef1ca236 2244
8930caba 2245 local_irq_restore(flags);
1da177e4
LT
2246 return ret;
2247}
ad7b1f84 2248EXPORT_SYMBOL(queue_work_on);
1da177e4 2249
8204e0c1 2250/**
fef59c9c 2251 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
2252 * @node: NUMA node ID that we want to select a CPU from
2253 *
2254 * This function will attempt to find a "random" cpu available on a given
2255 * node. If there are no CPUs available on the given node it will return
2256 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2257 * available CPU if we need to schedule this work.
2258 */
fef59c9c 2259static int select_numa_node_cpu(int node)
8204e0c1
AD
2260{
2261 int cpu;
2262
8204e0c1
AD
2263 /* Delay binding to CPU if node is not valid or online */
2264 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2265 return WORK_CPU_UNBOUND;
2266
2267 /* Use local node/cpu if we are already there */
2268 cpu = raw_smp_processor_id();
2269 if (node == cpu_to_node(cpu))
2270 return cpu;
2271
2272 /* Use "random" otherwise know as "first" online CPU of node */
2273 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2274
2275 /* If CPU is valid return that, otherwise just defer */
2276 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2277}
2278
2279/**
2280 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2281 * @node: NUMA node that we are targeting the work for
2282 * @wq: workqueue to use
2283 * @work: work to queue
2284 *
2285 * We queue the work to a "random" CPU within a given NUMA node. The basic
2286 * idea here is to provide a way to somehow associate work with a given
2287 * NUMA node.
2288 *
2289 * This function will only make a best effort attempt at getting this onto
2290 * the right NUMA node. If no node is requested or the requested node is
2291 * offline then we just fall back to standard queue_work behavior.
2292 *
2293 * Currently the "random" CPU ends up being the first available CPU in the
2294 * intersection of cpu_online_mask and the cpumask of the node, unless we
2295 * are running on the node. In that case we just use the current CPU.
2296 *
2297 * Return: %false if @work was already on a queue, %true otherwise.
2298 */
2299bool queue_work_node(int node, struct workqueue_struct *wq,
2300 struct work_struct *work)
2301{
2302 unsigned long flags;
2303 bool ret = false;
2304
2305 /*
2306 * This current implementation is specific to unbound workqueues.
2307 * Specifically we only return the first available CPU for a given
2308 * node instead of cycling through individual CPUs within the node.
2309 *
2310 * If this is used with a per-cpu workqueue then the logic in
2311 * workqueue_select_cpu_near would need to be updated to allow for
2312 * some round robin type logic.
2313 */
2314 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2315
2316 local_irq_save(flags);
2317
2318 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
fef59c9c 2319 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
2320
2321 __queue_work(cpu, wq, work);
2322 ret = true;
2323 }
2324
2325 local_irq_restore(flags);
2326 return ret;
2327}
2328EXPORT_SYMBOL_GPL(queue_work_node);
2329
8c20feb6 2330void delayed_work_timer_fn(struct timer_list *t)
1da177e4 2331{
8c20feb6 2332 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 2333
e0aecdd8 2334 /* should have been called from irqsafe timer with irq already off */
60c057bc 2335 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 2336}
1438ade5 2337EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 2338
7beb2edf
TH
2339static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2340 struct delayed_work *dwork, unsigned long delay)
1da177e4 2341{
7beb2edf
TH
2342 struct timer_list *timer = &dwork->timer;
2343 struct work_struct *work = &dwork->work;
7beb2edf 2344
637fdbae 2345 WARN_ON_ONCE(!wq);
4b243563 2346 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
2347 WARN_ON_ONCE(timer_pending(timer));
2348 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 2349
8852aac2
TH
2350 /*
2351 * If @delay is 0, queue @dwork->work immediately. This is for
2352 * both optimization and correctness. The earliest @timer can
2353 * expire is on the closest next tick and delayed_work users depend
2354 * on that there's no such delay when @delay is 0.
2355 */
2356 if (!delay) {
2357 __queue_work(cpu, wq, &dwork->work);
2358 return;
2359 }
2360
60c057bc 2361 dwork->wq = wq;
1265057f 2362 dwork->cpu = cpu;
7beb2edf
TH
2363 timer->expires = jiffies + delay;
2364
041bd12e
TH
2365 if (unlikely(cpu != WORK_CPU_UNBOUND))
2366 add_timer_on(timer, cpu);
2367 else
2368 add_timer(timer);
1da177e4
LT
2369}
2370
0fcb78c2
REB
2371/**
2372 * queue_delayed_work_on - queue work on specific CPU after delay
2373 * @cpu: CPU number to execute work on
2374 * @wq: workqueue to use
af9997e4 2375 * @dwork: work to queue
0fcb78c2
REB
2376 * @delay: number of jiffies to wait before queueing
2377 *
d185af30 2378 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
2379 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2380 * execution.
0fcb78c2 2381 */
d4283e93
TH
2382bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2383 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 2384{
52bad64d 2385 struct work_struct *work = &dwork->work;
d4283e93 2386 bool ret = false;
8930caba 2387 unsigned long flags;
7a6bc1cd 2388
8930caba
TH
2389 /* read the comment in __queue_work() */
2390 local_irq_save(flags);
7a6bc1cd 2391
22df02bb 2392 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 2393 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 2394 ret = true;
7a6bc1cd 2395 }
8a3e77cc 2396
8930caba 2397 local_irq_restore(flags);
7a6bc1cd
VP
2398 return ret;
2399}
ad7b1f84 2400EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 2401
8376fe22
TH
2402/**
2403 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2404 * @cpu: CPU number to execute work on
2405 * @wq: workqueue to use
2406 * @dwork: work to queue
2407 * @delay: number of jiffies to wait before queueing
2408 *
2409 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2410 * modify @dwork's timer so that it expires after @delay. If @delay is
2411 * zero, @work is guaranteed to be scheduled immediately regardless of its
2412 * current state.
2413 *
d185af30 2414 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
2415 * pending and its timer was modified.
2416 *
e0aecdd8 2417 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
2418 * See try_to_grab_pending() for details.
2419 */
2420bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2421 struct delayed_work *dwork, unsigned long delay)
2422{
2423 unsigned long flags;
2424 int ret;
c7fc77f7 2425
8376fe22
TH
2426 do {
2427 ret = try_to_grab_pending(&dwork->work, true, &flags);
2428 } while (unlikely(ret == -EAGAIN));
63bc0362 2429
8376fe22
TH
2430 if (likely(ret >= 0)) {
2431 __queue_delayed_work(cpu, wq, dwork, delay);
2432 local_irq_restore(flags);
7a6bc1cd 2433 }
8376fe22
TH
2434
2435 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
2436 return ret;
2437}
8376fe22
TH
2438EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2439
05f0fe6b
TH
2440static void rcu_work_rcufn(struct rcu_head *rcu)
2441{
2442 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2443
2444 /* read the comment in __queue_work() */
2445 local_irq_disable();
2446 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2447 local_irq_enable();
2448}
2449
2450/**
2451 * queue_rcu_work - queue work after a RCU grace period
2452 * @wq: workqueue to use
2453 * @rwork: work to queue
2454 *
2455 * Return: %false if @rwork was already pending, %true otherwise. Note
2456 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 2457 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
2458 * execution may happen before a full RCU grace period has passed.
2459 */
2460bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2461{
2462 struct work_struct *work = &rwork->work;
2463
2464 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2465 rwork->wq = wq;
a7e30c0e 2466 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
2467 return true;
2468 }
2469
2470 return false;
2471}
2472EXPORT_SYMBOL(queue_rcu_work);
2473
f7537df5 2474static struct worker *alloc_worker(int node)
c34056a3
TH
2475{
2476 struct worker *worker;
2477
f7537df5 2478 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2479 if (worker) {
2480 INIT_LIST_HEAD(&worker->entry);
affee4b2 2481 INIT_LIST_HEAD(&worker->scheduled);
da028469 2482 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2483 /* on creation a worker is in !idle && prep state */
2484 worker->flags = WORKER_PREP;
c8e55f36 2485 }
c34056a3
TH
2486 return worker;
2487}
2488
9546b29e
TH
2489static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2490{
8639eceb
TH
2491 if (pool->cpu < 0 && pool->attrs->affn_strict)
2492 return pool->attrs->__pod_cpumask;
2493 else
2494 return pool->attrs->cpumask;
9546b29e
TH
2495}
2496
4736cbf7
LJ
2497/**
2498 * worker_attach_to_pool() - attach a worker to a pool
2499 * @worker: worker to be attached
2500 * @pool: the target pool
2501 *
2502 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2503 * cpu-binding of @worker are kept coordinated with the pool across
2504 * cpu-[un]hotplugs.
2505 */
2506static void worker_attach_to_pool(struct worker *worker,
2507 struct worker_pool *pool)
2508{
1258fae7 2509 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2510
4736cbf7 2511 /*
1258fae7
TH
2512 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2513 * stable across this function. See the comments above the flag
2514 * definition for details.
4736cbf7
LJ
2515 */
2516 if (pool->flags & POOL_DISASSOCIATED)
2517 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
2518 else
2519 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 2520
640f17c8 2521 if (worker->rescue_wq)
9546b29e 2522 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
640f17c8 2523
4736cbf7 2524 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2525 worker->pool = pool;
4736cbf7 2526
1258fae7 2527 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2528}
2529
60f5a4bc
LJ
2530/**
2531 * worker_detach_from_pool() - detach a worker from its pool
2532 * @worker: worker which is attached to its pool
60f5a4bc 2533 *
4736cbf7
LJ
2534 * Undo the attaching which had been done in worker_attach_to_pool(). The
2535 * caller worker shouldn't access to the pool after detached except it has
2536 * other reference to the pool.
60f5a4bc 2537 */
a2d812a2 2538static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2539{
a2d812a2 2540 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2541 struct completion *detach_completion = NULL;
2542
1258fae7 2543 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2544
5c25b5ff 2545 kthread_set_per_cpu(worker->task, -1);
da028469 2546 list_del(&worker->node);
a2d812a2
TH
2547 worker->pool = NULL;
2548
e02b9312 2549 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2550 detach_completion = pool->detach_completion;
1258fae7 2551 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2552
b62c0751
LJ
2553 /* clear leftover flags without pool->lock after it is detached */
2554 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2555
60f5a4bc
LJ
2556 if (detach_completion)
2557 complete(detach_completion);
2558}
2559
c34056a3
TH
2560/**
2561 * create_worker - create a new workqueue worker
63d95a91 2562 * @pool: pool the new worker will belong to
c34056a3 2563 *
051e1850 2564 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2565 *
2566 * CONTEXT:
2567 * Might sleep. Does GFP_KERNEL allocations.
2568 *
d185af30 2569 * Return:
c34056a3
TH
2570 * Pointer to the newly created worker.
2571 */
bc2ae0f5 2572static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2573{
e441b56f
ZL
2574 struct worker *worker;
2575 int id;
5d9c7a1e 2576 char id_buf[23];
c34056a3 2577
7cda9aae 2578 /* ID is needed to determine kthread name */
e441b56f 2579 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2580 if (id < 0) {
2581 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2582 ERR_PTR(id));
e441b56f 2583 return NULL;
3f0ea0b8 2584 }
c34056a3 2585
f7537df5 2586 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2587 if (!worker) {
2588 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2589 goto fail;
3f0ea0b8 2590 }
c34056a3 2591
c34056a3
TH
2592 worker->id = id;
2593
29c91e99 2594 if (pool->cpu >= 0)
e3c916a4
TH
2595 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2596 pool->attrs->nice < 0 ? "H" : "");
f3421797 2597 else
e3c916a4
TH
2598 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2599
f3f90ad4 2600 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 2601 "kworker/%s", id_buf);
3f0ea0b8 2602 if (IS_ERR(worker->task)) {
60f54038
PM
2603 if (PTR_ERR(worker->task) == -EINTR) {
2604 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2605 id_buf);
2606 } else {
2607 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2608 worker->task);
2609 }
c34056a3 2610 goto fail;
3f0ea0b8 2611 }
c34056a3 2612
91151228 2613 set_user_nice(worker->task, pool->attrs->nice);
9546b29e 2614 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
91151228 2615
da028469 2616 /* successful, attach the worker to the pool */
4736cbf7 2617 worker_attach_to_pool(worker, pool);
822d8405 2618
051e1850 2619 /* start the newly created worker */
a9b8a985 2620 raw_spin_lock_irq(&pool->lock);
0219a352 2621
051e1850
LJ
2622 worker->pool->nr_workers++;
2623 worker_enter_idle(worker);
0219a352
TH
2624
2625 /*
2626 * @worker is waiting on a completion in kthread() and will trigger hung
6a229b0e
TH
2627 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2628 * wake it up explicitly.
0219a352 2629 */
051e1850 2630 wake_up_process(worker->task);
0219a352 2631
a9b8a985 2632 raw_spin_unlock_irq(&pool->lock);
051e1850 2633
c34056a3 2634 return worker;
822d8405 2635
c34056a3 2636fail:
e441b56f 2637 ida_free(&pool->worker_ida, id);
c34056a3
TH
2638 kfree(worker);
2639 return NULL;
2640}
2641
793777bc
VS
2642static void unbind_worker(struct worker *worker)
2643{
2644 lockdep_assert_held(&wq_pool_attach_mutex);
2645
2646 kthread_set_per_cpu(worker->task, -1);
2647 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2648 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2649 else
2650 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2651}
2652
e02b9312
VS
2653static void wake_dying_workers(struct list_head *cull_list)
2654{
2655 struct worker *worker, *tmp;
2656
2657 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2658 list_del_init(&worker->entry);
2659 unbind_worker(worker);
2660 /*
2661 * If the worker was somehow already running, then it had to be
2662 * in pool->idle_list when set_worker_dying() happened or we
2663 * wouldn't have gotten here.
2664 *
2665 * Thus, the worker must either have observed the WORKER_DIE
2666 * flag, or have set its state to TASK_IDLE. Either way, the
2667 * below will be observed by the worker and is safe to do
2668 * outside of pool->lock.
2669 */
2670 wake_up_process(worker->task);
2671 }
2672}
2673
c34056a3 2674/**
e02b9312 2675 * set_worker_dying - Tag a worker for destruction
c34056a3 2676 * @worker: worker to be destroyed
e02b9312 2677 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2678 *
e02b9312
VS
2679 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2680 * should be idle.
c8e55f36
TH
2681 *
2682 * CONTEXT:
a9b8a985 2683 * raw_spin_lock_irq(pool->lock).
c34056a3 2684 */
e02b9312 2685static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2686{
bd7bdd43 2687 struct worker_pool *pool = worker->pool;
c34056a3 2688
cd549687 2689 lockdep_assert_held(&pool->lock);
e02b9312 2690 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2691
c34056a3 2692 /* sanity check frenzy */
6183c009 2693 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2694 WARN_ON(!list_empty(&worker->scheduled)) ||
2695 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2696 return;
c34056a3 2697
73eb7fe7
LJ
2698 pool->nr_workers--;
2699 pool->nr_idle--;
5bdfff96 2700
cb444766 2701 worker->flags |= WORKER_DIE;
e02b9312
VS
2702
2703 list_move(&worker->entry, list);
2704 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2705}
2706
3f959aa3
VS
2707/**
2708 * idle_worker_timeout - check if some idle workers can now be deleted.
2709 * @t: The pool's idle_timer that just expired
2710 *
2711 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2712 * worker_leave_idle(), as a worker flicking between idle and active while its
2713 * pool is at the too_many_workers() tipping point would cause too much timer
2714 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2715 * it expire and re-evaluate things from there.
2716 */
32a6c723 2717static void idle_worker_timeout(struct timer_list *t)
e22bee78 2718{
32a6c723 2719 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2720 bool do_cull = false;
2721
2722 if (work_pending(&pool->idle_cull_work))
2723 return;
e22bee78 2724
a9b8a985 2725 raw_spin_lock_irq(&pool->lock);
e22bee78 2726
3f959aa3 2727 if (too_many_workers(pool)) {
e22bee78
TH
2728 struct worker *worker;
2729 unsigned long expires;
2730
2731 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2732 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2733 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2734 do_cull = !time_before(jiffies, expires);
2735
2736 if (!do_cull)
2737 mod_timer(&pool->idle_timer, expires);
2738 }
2739 raw_spin_unlock_irq(&pool->lock);
2740
2741 if (do_cull)
2742 queue_work(system_unbound_wq, &pool->idle_cull_work);
2743}
2744
2745/**
2746 * idle_cull_fn - cull workers that have been idle for too long.
2747 * @work: the pool's work for handling these idle workers
2748 *
2749 * This goes through a pool's idle workers and gets rid of those that have been
2750 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2751 *
2752 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2753 * culled, so this also resets worker affinity. This requires a sleepable
2754 * context, hence the split between timer callback and work item.
3f959aa3
VS
2755 */
2756static void idle_cull_fn(struct work_struct *work)
2757{
2758 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2759 LIST_HEAD(cull_list);
3f959aa3 2760
e02b9312
VS
2761 /*
2762 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2763 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2764 * path. This is required as a previously-preempted worker could run after
2765 * set_worker_dying() has happened but before wake_dying_workers() did.
2766 */
2767 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2768 raw_spin_lock_irq(&pool->lock);
2769
2770 while (too_many_workers(pool)) {
2771 struct worker *worker;
2772 unsigned long expires;
2773
63d95a91 2774 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2775 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2776
3347fc9f 2777 if (time_before(jiffies, expires)) {
63d95a91 2778 mod_timer(&pool->idle_timer, expires);
3347fc9f 2779 break;
d5abe669 2780 }
3347fc9f 2781
e02b9312 2782 set_worker_dying(worker, &cull_list);
e22bee78
TH
2783 }
2784
a9b8a985 2785 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2786 wake_dying_workers(&cull_list);
2787 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2788}
d5abe669 2789
493a1724 2790static void send_mayday(struct work_struct *work)
e22bee78 2791{
112202d9
TH
2792 struct pool_workqueue *pwq = get_work_pwq(work);
2793 struct workqueue_struct *wq = pwq->wq;
493a1724 2794
2e109a28 2795 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2796
493008a8 2797 if (!wq->rescuer)
493a1724 2798 return;
e22bee78
TH
2799
2800 /* mayday mayday mayday */
493a1724 2801 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2802 /*
2803 * If @pwq is for an unbound wq, its base ref may be put at
2804 * any time due to an attribute change. Pin @pwq until the
2805 * rescuer is done with it.
2806 */
2807 get_pwq(pwq);
493a1724 2808 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2809 wake_up_process(wq->rescuer->task);
725e8ec5 2810 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2811 }
e22bee78
TH
2812}
2813
32a6c723 2814static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2815{
32a6c723 2816 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2817 struct work_struct *work;
2818
a9b8a985
SAS
2819 raw_spin_lock_irq(&pool->lock);
2820 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2821
63d95a91 2822 if (need_to_create_worker(pool)) {
e22bee78
TH
2823 /*
2824 * We've been trying to create a new worker but
2825 * haven't been successful. We might be hitting an
2826 * allocation deadlock. Send distress signals to
2827 * rescuers.
2828 */
63d95a91 2829 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2830 send_mayday(work);
1da177e4 2831 }
e22bee78 2832
a9b8a985
SAS
2833 raw_spin_unlock(&wq_mayday_lock);
2834 raw_spin_unlock_irq(&pool->lock);
e22bee78 2835
63d95a91 2836 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2837}
2838
e22bee78
TH
2839/**
2840 * maybe_create_worker - create a new worker if necessary
63d95a91 2841 * @pool: pool to create a new worker for
e22bee78 2842 *
63d95a91 2843 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2844 * have at least one idle worker on return from this function. If
2845 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2846 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2847 * possible allocation deadlock.
2848 *
c5aa87bb
TH
2849 * On return, need_to_create_worker() is guaranteed to be %false and
2850 * may_start_working() %true.
e22bee78
TH
2851 *
2852 * LOCKING:
a9b8a985 2853 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2854 * multiple times. Does GFP_KERNEL allocations. Called only from
2855 * manager.
e22bee78 2856 */
29187a9e 2857static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2858__releases(&pool->lock)
2859__acquires(&pool->lock)
1da177e4 2860{
e22bee78 2861restart:
a9b8a985 2862 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2863
e22bee78 2864 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2865 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2866
2867 while (true) {
051e1850 2868 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2869 break;
1da177e4 2870
e212f361 2871 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2872
63d95a91 2873 if (!need_to_create_worker(pool))
e22bee78
TH
2874 break;
2875 }
2876
63d95a91 2877 del_timer_sync(&pool->mayday_timer);
a9b8a985 2878 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2879 /*
2880 * This is necessary even after a new worker was just successfully
2881 * created as @pool->lock was dropped and the new worker might have
2882 * already become busy.
2883 */
63d95a91 2884 if (need_to_create_worker(pool))
e22bee78 2885 goto restart;
e22bee78
TH
2886}
2887
73f53c4a 2888/**
e22bee78
TH
2889 * manage_workers - manage worker pool
2890 * @worker: self
73f53c4a 2891 *
706026c2 2892 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2893 * to. At any given time, there can be only zero or one manager per
706026c2 2894 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2895 *
2896 * The caller can safely start processing works on false return. On
2897 * true return, it's guaranteed that need_to_create_worker() is false
2898 * and may_start_working() is true.
73f53c4a
TH
2899 *
2900 * CONTEXT:
a9b8a985 2901 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2902 * multiple times. Does GFP_KERNEL allocations.
2903 *
d185af30 2904 * Return:
29187a9e
TH
2905 * %false if the pool doesn't need management and the caller can safely
2906 * start processing works, %true if management function was performed and
2907 * the conditions that the caller verified before calling the function may
2908 * no longer be true.
73f53c4a 2909 */
e22bee78 2910static bool manage_workers(struct worker *worker)
73f53c4a 2911{
63d95a91 2912 struct worker_pool *pool = worker->pool;
73f53c4a 2913
692b4825 2914 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2915 return false;
692b4825
TH
2916
2917 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2918 pool->manager = worker;
1e19ffc6 2919
29187a9e 2920 maybe_create_worker(pool);
e22bee78 2921
2607d7a6 2922 pool->manager = NULL;
692b4825 2923 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2924 rcuwait_wake_up(&manager_wait);
29187a9e 2925 return true;
73f53c4a
TH
2926}
2927
a62428c0
TH
2928/**
2929 * process_one_work - process single work
c34056a3 2930 * @worker: self
a62428c0
TH
2931 * @work: work to process
2932 *
2933 * Process @work. This function contains all the logics necessary to
2934 * process a single work including synchronization against and
2935 * interaction with other workers on the same cpu, queueing and
2936 * flushing. As long as context requirement is met, any worker can
2937 * call this function to process a work.
2938 *
2939 * CONTEXT:
a9b8a985 2940 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2941 */
c34056a3 2942static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2943__releases(&pool->lock)
2944__acquires(&pool->lock)
a62428c0 2945{
112202d9 2946 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2947 struct worker_pool *pool = worker->pool;
c4560c2c 2948 unsigned long work_data;
a62428c0
TH
2949#ifdef CONFIG_LOCKDEP
2950 /*
2951 * It is permissible to free the struct work_struct from
2952 * inside the function that is called from it, this we need to
2953 * take into account for lockdep too. To avoid bogus "held
2954 * lock freed" warnings as well as problems when looking into
2955 * work->lockdep_map, make a copy and use that here.
2956 */
4d82a1de
PZ
2957 struct lockdep_map lockdep_map;
2958
2959 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2960#endif
807407c0 2961 /* ensure we're on the correct CPU */
85327af6 2962 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2963 raw_smp_processor_id() != pool->cpu);
25511a47 2964
8930caba 2965 /* claim and dequeue */
a62428c0 2966 debug_work_deactivate(work);
c9e7cf27 2967 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2968 worker->current_work = work;
a2c1c57b 2969 worker->current_func = work->func;
112202d9 2970 worker->current_pwq = pwq;
616db877 2971 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 2972 work_data = *work_data_bits(work);
d812796e 2973 worker->current_color = get_work_color(work_data);
7a22ad75 2974
8bf89593
TH
2975 /*
2976 * Record wq name for cmdline and debug reporting, may get
2977 * overridden through set_worker_desc().
2978 */
2979 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2980
a62428c0
TH
2981 list_del_init(&work->entry);
2982
fb0e7beb 2983 /*
228f1d00
LJ
2984 * CPU intensive works don't participate in concurrency management.
2985 * They're the scheduler's responsibility. This takes @worker out
2986 * of concurrency management and the next code block will chain
2987 * execution of the pending work items.
fb0e7beb 2988 */
616db877 2989 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 2990 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2991
974271c4 2992 /*
0219a352
TH
2993 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2994 * since nr_running would always be >= 1 at this point. This is used to
2995 * chain execution of the pending work items for WORKER_NOT_RUNNING
2996 * workers such as the UNBOUND and CPU_INTENSIVE ones.
974271c4 2997 */
0219a352 2998 kick_pool(pool);
974271c4 2999
8930caba 3000 /*
7c3eed5c 3001 * Record the last pool and clear PENDING which should be the last
d565ed63 3002 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
3003 * PENDING and queued state changes happen together while IRQ is
3004 * disabled.
8930caba 3005 */
7c3eed5c 3006 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 3007
fe48ba7d 3008 pwq->stats[PWQ_STAT_STARTED]++;
a9b8a985 3009 raw_spin_unlock_irq(&pool->lock);
a62428c0 3010
a1d14934 3011 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 3012 lock_map_acquire(&lockdep_map);
e6f3faa7 3013 /*
f52be570
PZ
3014 * Strictly speaking we should mark the invariant state without holding
3015 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
3016 *
3017 * However, that would result in:
3018 *
3019 * A(W1)
3020 * WFC(C)
3021 * A(W1)
3022 * C(C)
3023 *
3024 * Which would create W1->C->W1 dependencies, even though there is no
3025 * actual deadlock possible. There are two solutions, using a
3026 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 3027 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
3028 * these locks.
3029 *
3030 * AFAICT there is no possible deadlock scenario between the
3031 * flush_work() and complete() primitives (except for single-threaded
3032 * workqueues), so hiding them isn't a problem.
3033 */
f52be570 3034 lockdep_invariant_state(true);
e36c886a 3035 trace_workqueue_execute_start(work);
a2c1c57b 3036 worker->current_func(work);
e36c886a
AV
3037 /*
3038 * While we must be careful to not use "work" after this, the trace
3039 * point will only record its address.
3040 */
1c5da0ec 3041 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 3042 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 3043 lock_map_release(&lockdep_map);
112202d9 3044 lock_map_release(&pwq->wq->lockdep_map);
a62428c0 3045
1a65a6d1
XY
3046 if (unlikely(in_atomic() || lockdep_depth(current) > 0 ||
3047 rcu_preempt_depth() > 0)) {
3048 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n"
d75f773c 3049 " last function: %ps\n",
1a65a6d1
XY
3050 current->comm, preempt_count(), rcu_preempt_depth(),
3051 task_pid_nr(current), worker->current_func);
a62428c0
TH
3052 debug_show_held_locks(current);
3053 dump_stack();
3054 }
3055
b22ce278 3056 /*
025f50f3 3057 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
3058 * kernels, where a requeueing work item waiting for something to
3059 * happen could deadlock with stop_machine as such work item could
3060 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
3061 * stop_machine. At the same time, report a quiescent RCU state so
3062 * the same condition doesn't freeze RCU.
b22ce278 3063 */
a7e6425e 3064 cond_resched();
b22ce278 3065
a9b8a985 3066 raw_spin_lock_irq(&pool->lock);
a62428c0 3067
616db877
TH
3068 /*
3069 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3070 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3071 * wq_cpu_intensive_thresh_us. Clear it.
3072 */
3073 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 3074
1b69ac6b
JW
3075 /* tag the worker for identification in schedule() */
3076 worker->last_func = worker->current_func;
3077
a62428c0 3078 /* we're done with it, release */
42f8570f 3079 hash_del(&worker->hentry);
c34056a3 3080 worker->current_work = NULL;
a2c1c57b 3081 worker->current_func = NULL;
112202d9 3082 worker->current_pwq = NULL;
d812796e 3083 worker->current_color = INT_MAX;
dd6c3c54
TH
3084
3085 /* must be the last step, see the function comment */
c4560c2c 3086 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
3087}
3088
affee4b2
TH
3089/**
3090 * process_scheduled_works - process scheduled works
3091 * @worker: self
3092 *
3093 * Process all scheduled works. Please note that the scheduled list
3094 * may change while processing a work, so this function repeatedly
3095 * fetches a work from the top and executes it.
3096 *
3097 * CONTEXT:
a9b8a985 3098 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
3099 * multiple times.
3100 */
3101static void process_scheduled_works(struct worker *worker)
1da177e4 3102{
c0ab017d
TH
3103 struct work_struct *work;
3104 bool first = true;
3105
3106 while ((work = list_first_entry_or_null(&worker->scheduled,
3107 struct work_struct, entry))) {
3108 if (first) {
3109 worker->pool->watchdog_ts = jiffies;
3110 first = false;
3111 }
c34056a3 3112 process_one_work(worker, work);
1da177e4 3113 }
1da177e4
LT
3114}
3115
197f6acc
TH
3116static void set_pf_worker(bool val)
3117{
3118 mutex_lock(&wq_pool_attach_mutex);
3119 if (val)
3120 current->flags |= PF_WQ_WORKER;
3121 else
3122 current->flags &= ~PF_WQ_WORKER;
3123 mutex_unlock(&wq_pool_attach_mutex);
3124}
3125
4690c4ab
TH
3126/**
3127 * worker_thread - the worker thread function
c34056a3 3128 * @__worker: self
4690c4ab 3129 *
c5aa87bb
TH
3130 * The worker thread function. All workers belong to a worker_pool -
3131 * either a per-cpu one or dynamic unbound one. These workers process all
3132 * work items regardless of their specific target workqueue. The only
3133 * exception is work items which belong to workqueues with a rescuer which
3134 * will be explained in rescuer_thread().
d185af30
YB
3135 *
3136 * Return: 0
4690c4ab 3137 */
c34056a3 3138static int worker_thread(void *__worker)
1da177e4 3139{
c34056a3 3140 struct worker *worker = __worker;
bd7bdd43 3141 struct worker_pool *pool = worker->pool;
1da177e4 3142
e22bee78 3143 /* tell the scheduler that this is a workqueue worker */
197f6acc 3144 set_pf_worker(true);
c8e55f36 3145woke_up:
a9b8a985 3146 raw_spin_lock_irq(&pool->lock);
1da177e4 3147
a9ab775b
TH
3148 /* am I supposed to die? */
3149 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 3150 raw_spin_unlock_irq(&pool->lock);
197f6acc 3151 set_pf_worker(false);
60f5a4bc
LJ
3152
3153 set_task_comm(worker->task, "kworker/dying");
e441b56f 3154 ida_free(&pool->worker_ida, worker->id);
a2d812a2 3155 worker_detach_from_pool(worker);
e02b9312 3156 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 3157 kfree(worker);
a9ab775b 3158 return 0;
c8e55f36 3159 }
affee4b2 3160
c8e55f36 3161 worker_leave_idle(worker);
db7bccf4 3162recheck:
e22bee78 3163 /* no more worker necessary? */
63d95a91 3164 if (!need_more_worker(pool))
e22bee78
TH
3165 goto sleep;
3166
3167 /* do we need to manage? */
63d95a91 3168 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
3169 goto recheck;
3170
c8e55f36
TH
3171 /*
3172 * ->scheduled list can only be filled while a worker is
3173 * preparing to process a work or actually processing it.
3174 * Make sure nobody diddled with it while I was sleeping.
3175 */
6183c009 3176 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 3177
e22bee78 3178 /*
a9ab775b
TH
3179 * Finish PREP stage. We're guaranteed to have at least one idle
3180 * worker or that someone else has already assumed the manager
3181 * role. This is where @worker starts participating in concurrency
3182 * management if applicable and concurrency management is restored
3183 * after being rebound. See rebind_workers() for details.
e22bee78 3184 */
a9ab775b 3185 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
3186
3187 do {
c8e55f36 3188 struct work_struct *work =
bd7bdd43 3189 list_first_entry(&pool->worklist,
c8e55f36
TH
3190 struct work_struct, entry);
3191
873eaca6
TH
3192 if (assign_work(work, worker, NULL))
3193 process_scheduled_works(worker);
63d95a91 3194 } while (keep_working(pool));
e22bee78 3195
228f1d00 3196 worker_set_flags(worker, WORKER_PREP);
d313dd85 3197sleep:
c8e55f36 3198 /*
d565ed63
TH
3199 * pool->lock is held and there's no work to process and no need to
3200 * manage, sleep. Workers are woken up only while holding
3201 * pool->lock or from local cpu, so setting the current state
3202 * before releasing pool->lock is enough to prevent losing any
3203 * event.
c8e55f36
TH
3204 */
3205 worker_enter_idle(worker);
c5a94a61 3206 __set_current_state(TASK_IDLE);
a9b8a985 3207 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
3208 schedule();
3209 goto woke_up;
1da177e4
LT
3210}
3211
e22bee78
TH
3212/**
3213 * rescuer_thread - the rescuer thread function
111c225a 3214 * @__rescuer: self
e22bee78
TH
3215 *
3216 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 3217 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 3218 *
706026c2 3219 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
3220 * worker which uses GFP_KERNEL allocation which has slight chance of
3221 * developing into deadlock if some works currently on the same queue
3222 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3223 * the problem rescuer solves.
3224 *
706026c2
TH
3225 * When such condition is possible, the pool summons rescuers of all
3226 * workqueues which have works queued on the pool and let them process
e22bee78
TH
3227 * those works so that forward progress can be guaranteed.
3228 *
3229 * This should happen rarely.
d185af30
YB
3230 *
3231 * Return: 0
e22bee78 3232 */
111c225a 3233static int rescuer_thread(void *__rescuer)
e22bee78 3234{
111c225a
TH
3235 struct worker *rescuer = __rescuer;
3236 struct workqueue_struct *wq = rescuer->rescue_wq;
4d595b86 3237 bool should_stop;
e22bee78
TH
3238
3239 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
3240
3241 /*
3242 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3243 * doesn't participate in concurrency management.
3244 */
197f6acc 3245 set_pf_worker(true);
e22bee78 3246repeat:
c5a94a61 3247 set_current_state(TASK_IDLE);
e22bee78 3248
4d595b86
LJ
3249 /*
3250 * By the time the rescuer is requested to stop, the workqueue
3251 * shouldn't have any work pending, but @wq->maydays may still have
3252 * pwq(s) queued. This can happen by non-rescuer workers consuming
3253 * all the work items before the rescuer got to them. Go through
3254 * @wq->maydays processing before acting on should_stop so that the
3255 * list is always empty on exit.
3256 */
3257 should_stop = kthread_should_stop();
e22bee78 3258
493a1724 3259 /* see whether any pwq is asking for help */
a9b8a985 3260 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
3261
3262 while (!list_empty(&wq->maydays)) {
3263 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3264 struct pool_workqueue, mayday_node);
112202d9 3265 struct worker_pool *pool = pwq->pool;
e22bee78
TH
3266 struct work_struct *work, *n;
3267
3268 __set_current_state(TASK_RUNNING);
493a1724
TH
3269 list_del_init(&pwq->mayday_node);
3270
a9b8a985 3271 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 3272
51697d39
LJ
3273 worker_attach_to_pool(rescuer, pool);
3274
a9b8a985 3275 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
3276
3277 /*
3278 * Slurp in all works issued via this workqueue and
3279 * process'em.
3280 */
873eaca6 3281 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
82607adc 3282 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
873eaca6
TH
3283 if (get_work_pwq(work) == pwq &&
3284 assign_work(work, rescuer, &n))
725e8ec5 3285 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 3286 }
e22bee78 3287
873eaca6 3288 if (!list_empty(&rescuer->scheduled)) {
008847f6
N
3289 process_scheduled_works(rescuer);
3290
3291 /*
3292 * The above execution of rescued work items could
3293 * have created more to rescue through
f97a4a1a 3294 * pwq_activate_first_inactive() or chained
008847f6
N
3295 * queueing. Let's put @pwq back on mayday list so
3296 * that such back-to-back work items, which may be
3297 * being used to relieve memory pressure, don't
3298 * incur MAYDAY_INTERVAL delay inbetween.
3299 */
4f3f4cf3 3300 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 3301 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
3302 /*
3303 * Queue iff we aren't racing destruction
3304 * and somebody else hasn't queued it already.
3305 */
3306 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3307 get_pwq(pwq);
3308 list_add_tail(&pwq->mayday_node, &wq->maydays);
3309 }
a9b8a985 3310 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
3311 }
3312 }
7576958a 3313
77668c8b
LJ
3314 /*
3315 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 3316 * go away while we're still attached to it.
77668c8b
LJ
3317 */
3318 put_pwq(pwq);
3319
7576958a 3320 /*
0219a352
TH
3321 * Leave this pool. Notify regular workers; otherwise, we end up
3322 * with 0 concurrency and stalling the execution.
7576958a 3323 */
0219a352 3324 kick_pool(pool);
7576958a 3325
a9b8a985 3326 raw_spin_unlock_irq(&pool->lock);
13b1d625 3327
a2d812a2 3328 worker_detach_from_pool(rescuer);
13b1d625 3329
a9b8a985 3330 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
3331 }
3332
a9b8a985 3333 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 3334
4d595b86
LJ
3335 if (should_stop) {
3336 __set_current_state(TASK_RUNNING);
197f6acc 3337 set_pf_worker(false);
4d595b86
LJ
3338 return 0;
3339 }
3340
111c225a
TH
3341 /* rescuers should never participate in concurrency management */
3342 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
3343 schedule();
3344 goto repeat;
1da177e4
LT
3345}
3346
fca839c0
TH
3347/**
3348 * check_flush_dependency - check for flush dependency sanity
3349 * @target_wq: workqueue being flushed
3350 * @target_work: work item being flushed (NULL for workqueue flushes)
3351 *
3352 * %current is trying to flush the whole @target_wq or @target_work on it.
3353 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3354 * reclaiming memory or running on a workqueue which doesn't have
3355 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3356 * a deadlock.
3357 */
3358static void check_flush_dependency(struct workqueue_struct *target_wq,
3359 struct work_struct *target_work)
3360{
3361 work_func_t target_func = target_work ? target_work->func : NULL;
3362 struct worker *worker;
3363
3364 if (target_wq->flags & WQ_MEM_RECLAIM)
3365 return;
3366
3367 worker = current_wq_worker();
3368
3369 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 3370 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 3371 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
3372 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3373 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 3374 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
3375 worker->current_pwq->wq->name, worker->current_func,
3376 target_wq->name, target_func);
3377}
3378
fc2e4d70
ON
3379struct wq_barrier {
3380 struct work_struct work;
3381 struct completion done;
2607d7a6 3382 struct task_struct *task; /* purely informational */
fc2e4d70
ON
3383};
3384
3385static void wq_barrier_func(struct work_struct *work)
3386{
3387 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3388 complete(&barr->done);
3389}
3390
4690c4ab
TH
3391/**
3392 * insert_wq_barrier - insert a barrier work
112202d9 3393 * @pwq: pwq to insert barrier into
4690c4ab 3394 * @barr: wq_barrier to insert
affee4b2
TH
3395 * @target: target work to attach @barr to
3396 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 3397 *
affee4b2
TH
3398 * @barr is linked to @target such that @barr is completed only after
3399 * @target finishes execution. Please note that the ordering
3400 * guarantee is observed only with respect to @target and on the local
3401 * cpu.
3402 *
3403 * Currently, a queued barrier can't be canceled. This is because
3404 * try_to_grab_pending() can't determine whether the work to be
3405 * grabbed is at the head of the queue and thus can't clear LINKED
3406 * flag of the previous work while there must be a valid next work
3407 * after a work with LINKED flag set.
3408 *
3409 * Note that when @worker is non-NULL, @target may be modified
112202d9 3410 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
3411 *
3412 * CONTEXT:
a9b8a985 3413 * raw_spin_lock_irq(pool->lock).
4690c4ab 3414 */
112202d9 3415static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
3416 struct wq_barrier *barr,
3417 struct work_struct *target, struct worker *worker)
fc2e4d70 3418{
d812796e
LJ
3419 unsigned int work_flags = 0;
3420 unsigned int work_color;
affee4b2 3421 struct list_head *head;
affee4b2 3422
dc186ad7 3423 /*
d565ed63 3424 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
3425 * as we know for sure that this will not trigger any of the
3426 * checks and call back into the fixup functions where we
3427 * might deadlock.
3428 */
ca1cab37 3429 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 3430 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 3431
fd1a5b04
BP
3432 init_completion_map(&barr->done, &target->lockdep_map);
3433
2607d7a6 3434 barr->task = current;
83c22520 3435
5797b1c1 3436 /* The barrier work item does not participate in nr_active. */
018f3a13
LJ
3437 work_flags |= WORK_STRUCT_INACTIVE;
3438
affee4b2
TH
3439 /*
3440 * If @target is currently being executed, schedule the
3441 * barrier to the worker; otherwise, put it after @target.
3442 */
d812796e 3443 if (worker) {
affee4b2 3444 head = worker->scheduled.next;
d812796e
LJ
3445 work_color = worker->current_color;
3446 } else {
affee4b2
TH
3447 unsigned long *bits = work_data_bits(target);
3448
3449 head = target->entry.next;
3450 /* there can already be other linked works, inherit and set */
d21cece0 3451 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 3452 work_color = get_work_color(*bits);
affee4b2
TH
3453 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3454 }
3455
d812796e
LJ
3456 pwq->nr_in_flight[work_color]++;
3457 work_flags |= work_color_to_flags(work_color);
3458
d21cece0 3459 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
3460}
3461
73f53c4a 3462/**
112202d9 3463 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
3464 * @wq: workqueue being flushed
3465 * @flush_color: new flush color, < 0 for no-op
3466 * @work_color: new work color, < 0 for no-op
3467 *
112202d9 3468 * Prepare pwqs for workqueue flushing.
73f53c4a 3469 *
112202d9
TH
3470 * If @flush_color is non-negative, flush_color on all pwqs should be
3471 * -1. If no pwq has in-flight commands at the specified color, all
3472 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3473 * has in flight commands, its pwq->flush_color is set to
3474 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
3475 * wakeup logic is armed and %true is returned.
3476 *
3477 * The caller should have initialized @wq->first_flusher prior to
3478 * calling this function with non-negative @flush_color. If
3479 * @flush_color is negative, no flush color update is done and %false
3480 * is returned.
3481 *
112202d9 3482 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3483 * work_color which is previous to @work_color and all will be
3484 * advanced to @work_color.
3485 *
3486 * CONTEXT:
3c25a55d 3487 * mutex_lock(wq->mutex).
73f53c4a 3488 *
d185af30 3489 * Return:
73f53c4a
TH
3490 * %true if @flush_color >= 0 and there's something to flush. %false
3491 * otherwise.
3492 */
112202d9 3493static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3494 int flush_color, int work_color)
1da177e4 3495{
73f53c4a 3496 bool wait = false;
49e3cf44 3497 struct pool_workqueue *pwq;
1da177e4 3498
73f53c4a 3499 if (flush_color >= 0) {
6183c009 3500 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3501 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3502 }
2355b70f 3503
49e3cf44 3504 for_each_pwq(pwq, wq) {
112202d9 3505 struct worker_pool *pool = pwq->pool;
fc2e4d70 3506
a9b8a985 3507 raw_spin_lock_irq(&pool->lock);
83c22520 3508
73f53c4a 3509 if (flush_color >= 0) {
6183c009 3510 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3511
112202d9
TH
3512 if (pwq->nr_in_flight[flush_color]) {
3513 pwq->flush_color = flush_color;
3514 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3515 wait = true;
3516 }
3517 }
1da177e4 3518
73f53c4a 3519 if (work_color >= 0) {
6183c009 3520 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3521 pwq->work_color = work_color;
73f53c4a 3522 }
1da177e4 3523
a9b8a985 3524 raw_spin_unlock_irq(&pool->lock);
1da177e4 3525 }
2355b70f 3526
112202d9 3527 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3528 complete(&wq->first_flusher->done);
14441960 3529
73f53c4a 3530 return wait;
1da177e4
LT
3531}
3532
0fcb78c2 3533/**
c4f135d6 3534 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3535 * @wq: workqueue to flush
1da177e4 3536 *
c5aa87bb
TH
3537 * This function sleeps until all work items which were queued on entry
3538 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3539 */
c4f135d6 3540void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3541{
73f53c4a
TH
3542 struct wq_flusher this_flusher = {
3543 .list = LIST_HEAD_INIT(this_flusher.list),
3544 .flush_color = -1,
fd1a5b04 3545 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3546 };
3547 int next_color;
1da177e4 3548
3347fa09
TH
3549 if (WARN_ON(!wq_online))
3550 return;
3551
87915adc
JB
3552 lock_map_acquire(&wq->lockdep_map);
3553 lock_map_release(&wq->lockdep_map);
3554
3c25a55d 3555 mutex_lock(&wq->mutex);
73f53c4a
TH
3556
3557 /*
3558 * Start-to-wait phase
3559 */
3560 next_color = work_next_color(wq->work_color);
3561
3562 if (next_color != wq->flush_color) {
3563 /*
3564 * Color space is not full. The current work_color
3565 * becomes our flush_color and work_color is advanced
3566 * by one.
3567 */
6183c009 3568 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3569 this_flusher.flush_color = wq->work_color;
3570 wq->work_color = next_color;
3571
3572 if (!wq->first_flusher) {
3573 /* no flush in progress, become the first flusher */
6183c009 3574 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3575
3576 wq->first_flusher = &this_flusher;
3577
112202d9 3578 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3579 wq->work_color)) {
3580 /* nothing to flush, done */
3581 wq->flush_color = next_color;
3582 wq->first_flusher = NULL;
3583 goto out_unlock;
3584 }
3585 } else {
3586 /* wait in queue */
6183c009 3587 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3588 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3589 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3590 }
3591 } else {
3592 /*
3593 * Oops, color space is full, wait on overflow queue.
3594 * The next flush completion will assign us
3595 * flush_color and transfer to flusher_queue.
3596 */
3597 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3598 }
3599
fca839c0
TH
3600 check_flush_dependency(wq, NULL);
3601
3c25a55d 3602 mutex_unlock(&wq->mutex);
73f53c4a
TH
3603
3604 wait_for_completion(&this_flusher.done);
3605
3606 /*
3607 * Wake-up-and-cascade phase
3608 *
3609 * First flushers are responsible for cascading flushes and
3610 * handling overflow. Non-first flushers can simply return.
3611 */
00d5d15b 3612 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3613 return;
3614
3c25a55d 3615 mutex_lock(&wq->mutex);
73f53c4a 3616
4ce48b37
TH
3617 /* we might have raced, check again with mutex held */
3618 if (wq->first_flusher != &this_flusher)
3619 goto out_unlock;
3620
00d5d15b 3621 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3622
6183c009
TH
3623 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3624 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3625
3626 while (true) {
3627 struct wq_flusher *next, *tmp;
3628
3629 /* complete all the flushers sharing the current flush color */
3630 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3631 if (next->flush_color != wq->flush_color)
3632 break;
3633 list_del_init(&next->list);
3634 complete(&next->done);
3635 }
3636
6183c009
TH
3637 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3638 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3639
3640 /* this flush_color is finished, advance by one */
3641 wq->flush_color = work_next_color(wq->flush_color);
3642
3643 /* one color has been freed, handle overflow queue */
3644 if (!list_empty(&wq->flusher_overflow)) {
3645 /*
3646 * Assign the same color to all overflowed
3647 * flushers, advance work_color and append to
3648 * flusher_queue. This is the start-to-wait
3649 * phase for these overflowed flushers.
3650 */
3651 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3652 tmp->flush_color = wq->work_color;
3653
3654 wq->work_color = work_next_color(wq->work_color);
3655
3656 list_splice_tail_init(&wq->flusher_overflow,
3657 &wq->flusher_queue);
112202d9 3658 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3659 }
3660
3661 if (list_empty(&wq->flusher_queue)) {
6183c009 3662 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3663 break;
3664 }
3665
3666 /*
3667 * Need to flush more colors. Make the next flusher
112202d9 3668 * the new first flusher and arm pwqs.
73f53c4a 3669 */
6183c009
TH
3670 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3671 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3672
3673 list_del_init(&next->list);
3674 wq->first_flusher = next;
3675
112202d9 3676 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3677 break;
3678
3679 /*
3680 * Meh... this color is already done, clear first
3681 * flusher and repeat cascading.
3682 */
3683 wq->first_flusher = NULL;
3684 }
3685
3686out_unlock:
3c25a55d 3687 mutex_unlock(&wq->mutex);
1da177e4 3688}
c4f135d6 3689EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3690
9c5a2ba7
TH
3691/**
3692 * drain_workqueue - drain a workqueue
3693 * @wq: workqueue to drain
3694 *
3695 * Wait until the workqueue becomes empty. While draining is in progress,
3696 * only chain queueing is allowed. IOW, only currently pending or running
3697 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3698 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3699 * by the depth of chaining and should be relatively short. Whine if it
3700 * takes too long.
3701 */
3702void drain_workqueue(struct workqueue_struct *wq)
3703{
3704 unsigned int flush_cnt = 0;
49e3cf44 3705 struct pool_workqueue *pwq;
9c5a2ba7
TH
3706
3707 /*
3708 * __queue_work() needs to test whether there are drainers, is much
3709 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3710 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3711 */
87fc741e 3712 mutex_lock(&wq->mutex);
9c5a2ba7 3713 if (!wq->nr_drainers++)
618b01eb 3714 wq->flags |= __WQ_DRAINING;
87fc741e 3715 mutex_unlock(&wq->mutex);
9c5a2ba7 3716reflush:
c4f135d6 3717 __flush_workqueue(wq);
9c5a2ba7 3718
b09f4fd3 3719 mutex_lock(&wq->mutex);
76af4d93 3720
49e3cf44 3721 for_each_pwq(pwq, wq) {
fa2563e4 3722 bool drained;
9c5a2ba7 3723
a9b8a985 3724 raw_spin_lock_irq(&pwq->pool->lock);
afa87ce8 3725 drained = pwq_is_empty(pwq);
a9b8a985 3726 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3727
3728 if (drained)
9c5a2ba7
TH
3729 continue;
3730
3731 if (++flush_cnt == 10 ||
3732 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3733 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3734 wq->name, __func__, flush_cnt);
76af4d93 3735
b09f4fd3 3736 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3737 goto reflush;
3738 }
3739
9c5a2ba7 3740 if (!--wq->nr_drainers)
618b01eb 3741 wq->flags &= ~__WQ_DRAINING;
87fc741e 3742 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3743}
3744EXPORT_SYMBOL_GPL(drain_workqueue);
3745
d6e89786
JB
3746static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3747 bool from_cancel)
db700897 3748{
affee4b2 3749 struct worker *worker = NULL;
c9e7cf27 3750 struct worker_pool *pool;
112202d9 3751 struct pool_workqueue *pwq;
db700897
ON
3752
3753 might_sleep();
fa1b54e6 3754
24acfb71 3755 rcu_read_lock();
c9e7cf27 3756 pool = get_work_pool(work);
fa1b54e6 3757 if (!pool) {
24acfb71 3758 rcu_read_unlock();
baf59022 3759 return false;
fa1b54e6 3760 }
db700897 3761
a9b8a985 3762 raw_spin_lock_irq(&pool->lock);
0b3dae68 3763 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3764 pwq = get_work_pwq(work);
3765 if (pwq) {
3766 if (unlikely(pwq->pool != pool))
4690c4ab 3767 goto already_gone;
606a5020 3768 } else {
c9e7cf27 3769 worker = find_worker_executing_work(pool, work);
affee4b2 3770 if (!worker)
4690c4ab 3771 goto already_gone;
112202d9 3772 pwq = worker->current_pwq;
606a5020 3773 }
db700897 3774
fca839c0
TH
3775 check_flush_dependency(pwq->wq, work);
3776
112202d9 3777 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3778 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3779
e159489b 3780 /*
a1d14934
PZ
3781 * Force a lock recursion deadlock when using flush_work() inside a
3782 * single-threaded or rescuer equipped workqueue.
3783 *
3784 * For single threaded workqueues the deadlock happens when the work
3785 * is after the work issuing the flush_work(). For rescuer equipped
3786 * workqueues the deadlock happens when the rescuer stalls, blocking
3787 * forward progress.
e159489b 3788 */
d6e89786
JB
3789 if (!from_cancel &&
3790 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3791 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3792 lock_map_release(&pwq->wq->lockdep_map);
3793 }
24acfb71 3794 rcu_read_unlock();
401a8d04 3795 return true;
4690c4ab 3796already_gone:
a9b8a985 3797 raw_spin_unlock_irq(&pool->lock);
24acfb71 3798 rcu_read_unlock();
401a8d04 3799 return false;
db700897 3800}
baf59022 3801
d6e89786
JB
3802static bool __flush_work(struct work_struct *work, bool from_cancel)
3803{
3804 struct wq_barrier barr;
3805
3806 if (WARN_ON(!wq_online))
3807 return false;
3808
4d43d395
TH
3809 if (WARN_ON(!work->func))
3810 return false;
3811
c0feea59
TH
3812 lock_map_acquire(&work->lockdep_map);
3813 lock_map_release(&work->lockdep_map);
87915adc 3814
d6e89786
JB
3815 if (start_flush_work(work, &barr, from_cancel)) {
3816 wait_for_completion(&barr.done);
3817 destroy_work_on_stack(&barr.work);
3818 return true;
3819 } else {
3820 return false;
3821 }
3822}
3823
baf59022
TH
3824/**
3825 * flush_work - wait for a work to finish executing the last queueing instance
3826 * @work: the work to flush
3827 *
606a5020
TH
3828 * Wait until @work has finished execution. @work is guaranteed to be idle
3829 * on return if it hasn't been requeued since flush started.
baf59022 3830 *
d185af30 3831 * Return:
baf59022
TH
3832 * %true if flush_work() waited for the work to finish execution,
3833 * %false if it was already idle.
3834 */
3835bool flush_work(struct work_struct *work)
3836{
d6e89786 3837 return __flush_work(work, false);
6e84d644 3838}
606a5020 3839EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3840
8603e1b3 3841struct cwt_wait {
ac6424b9 3842 wait_queue_entry_t wait;
8603e1b3
TH
3843 struct work_struct *work;
3844};
3845
ac6424b9 3846static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3847{
3848 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3849
3850 if (cwait->work != key)
3851 return 0;
3852 return autoremove_wake_function(wait, mode, sync, key);
3853}
3854
36e227d2 3855static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3856{
8603e1b3 3857 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3858 unsigned long flags;
1f1f642e
ON
3859 int ret;
3860
3861 do {
bbb68dfa
TH
3862 ret = try_to_grab_pending(work, is_dwork, &flags);
3863 /*
8603e1b3
TH
3864 * If someone else is already canceling, wait for it to
3865 * finish. flush_work() doesn't work for PREEMPT_NONE
3866 * because we may get scheduled between @work's completion
3867 * and the other canceling task resuming and clearing
3868 * CANCELING - flush_work() will return false immediately
3869 * as @work is no longer busy, try_to_grab_pending() will
3870 * return -ENOENT as @work is still being canceled and the
3871 * other canceling task won't be able to clear CANCELING as
3872 * we're hogging the CPU.
3873 *
3874 * Let's wait for completion using a waitqueue. As this
3875 * may lead to the thundering herd problem, use a custom
3876 * wake function which matches @work along with exclusive
3877 * wait and wakeup.
bbb68dfa 3878 */
8603e1b3
TH
3879 if (unlikely(ret == -ENOENT)) {
3880 struct cwt_wait cwait;
3881
3882 init_wait(&cwait.wait);
3883 cwait.wait.func = cwt_wakefn;
3884 cwait.work = work;
3885
3886 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3887 TASK_UNINTERRUPTIBLE);
3888 if (work_is_canceling(work))
3889 schedule();
3890 finish_wait(&cancel_waitq, &cwait.wait);
3891 }
1f1f642e
ON
3892 } while (unlikely(ret < 0));
3893
bbb68dfa
TH
3894 /* tell other tasks trying to grab @work to back off */
3895 mark_work_canceling(work);
3896 local_irq_restore(flags);
3897
3347fa09
TH
3898 /*
3899 * This allows canceling during early boot. We know that @work
3900 * isn't executing.
3901 */
3902 if (wq_online)
d6e89786 3903 __flush_work(work, true);
3347fa09 3904
7a22ad75 3905 clear_work_data(work);
8603e1b3
TH
3906
3907 /*
3908 * Paired with prepare_to_wait() above so that either
3909 * waitqueue_active() is visible here or !work_is_canceling() is
3910 * visible there.
3911 */
3912 smp_mb();
3913 if (waitqueue_active(&cancel_waitq))
3914 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3915
1f1f642e
ON
3916 return ret;
3917}
3918
6e84d644 3919/**
401a8d04
TH
3920 * cancel_work_sync - cancel a work and wait for it to finish
3921 * @work: the work to cancel
6e84d644 3922 *
401a8d04
TH
3923 * Cancel @work and wait for its execution to finish. This function
3924 * can be used even if the work re-queues itself or migrates to
3925 * another workqueue. On return from this function, @work is
3926 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3927 *
401a8d04
TH
3928 * cancel_work_sync(&delayed_work->work) must not be used for
3929 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3930 *
401a8d04 3931 * The caller must ensure that the workqueue on which @work was last
6e84d644 3932 * queued can't be destroyed before this function returns.
401a8d04 3933 *
d185af30 3934 * Return:
401a8d04 3935 * %true if @work was pending, %false otherwise.
6e84d644 3936 */
401a8d04 3937bool cancel_work_sync(struct work_struct *work)
6e84d644 3938{
36e227d2 3939 return __cancel_work_timer(work, false);
b89deed3 3940}
28e53bdd 3941EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3942
6e84d644 3943/**
401a8d04
TH
3944 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3945 * @dwork: the delayed work to flush
6e84d644 3946 *
401a8d04
TH
3947 * Delayed timer is cancelled and the pending work is queued for
3948 * immediate execution. Like flush_work(), this function only
3949 * considers the last queueing instance of @dwork.
1f1f642e 3950 *
d185af30 3951 * Return:
401a8d04
TH
3952 * %true if flush_work() waited for the work to finish execution,
3953 * %false if it was already idle.
6e84d644 3954 */
401a8d04
TH
3955bool flush_delayed_work(struct delayed_work *dwork)
3956{
8930caba 3957 local_irq_disable();
401a8d04 3958 if (del_timer_sync(&dwork->timer))
60c057bc 3959 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3960 local_irq_enable();
401a8d04
TH
3961 return flush_work(&dwork->work);
3962}
3963EXPORT_SYMBOL(flush_delayed_work);
3964
05f0fe6b
TH
3965/**
3966 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3967 * @rwork: the rcu work to flush
3968 *
3969 * Return:
3970 * %true if flush_rcu_work() waited for the work to finish execution,
3971 * %false if it was already idle.
3972 */
3973bool flush_rcu_work(struct rcu_work *rwork)
3974{
3975 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3976 rcu_barrier();
3977 flush_work(&rwork->work);
3978 return true;
3979 } else {
3980 return flush_work(&rwork->work);
3981 }
3982}
3983EXPORT_SYMBOL(flush_rcu_work);
3984
f72b8792
JA
3985static bool __cancel_work(struct work_struct *work, bool is_dwork)
3986{
3987 unsigned long flags;
3988 int ret;
3989
3990 do {
3991 ret = try_to_grab_pending(work, is_dwork, &flags);
3992 } while (unlikely(ret == -EAGAIN));
3993
3994 if (unlikely(ret < 0))
3995 return false;
3996
3997 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3998 local_irq_restore(flags);
3999 return ret;
4000}
4001
73b4b532
AG
4002/*
4003 * See cancel_delayed_work()
4004 */
4005bool cancel_work(struct work_struct *work)
4006{
4007 return __cancel_work(work, false);
4008}
4009EXPORT_SYMBOL(cancel_work);
4010
09383498 4011/**
57b30ae7
TH
4012 * cancel_delayed_work - cancel a delayed work
4013 * @dwork: delayed_work to cancel
09383498 4014 *
d185af30
YB
4015 * Kill off a pending delayed_work.
4016 *
4017 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4018 * pending.
4019 *
4020 * Note:
4021 * The work callback function may still be running on return, unless
4022 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4023 * use cancel_delayed_work_sync() to wait on it.
09383498 4024 *
57b30ae7 4025 * This function is safe to call from any context including IRQ handler.
09383498 4026 */
57b30ae7 4027bool cancel_delayed_work(struct delayed_work *dwork)
09383498 4028{
f72b8792 4029 return __cancel_work(&dwork->work, true);
09383498 4030}
57b30ae7 4031EXPORT_SYMBOL(cancel_delayed_work);
09383498 4032
401a8d04
TH
4033/**
4034 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4035 * @dwork: the delayed work cancel
4036 *
4037 * This is cancel_work_sync() for delayed works.
4038 *
d185af30 4039 * Return:
401a8d04
TH
4040 * %true if @dwork was pending, %false otherwise.
4041 */
4042bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 4043{
36e227d2 4044 return __cancel_work_timer(&dwork->work, true);
6e84d644 4045}
f5a421a4 4046EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 4047
b6136773 4048/**
31ddd871 4049 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 4050 * @func: the function to call
b6136773 4051 *
31ddd871
TH
4052 * schedule_on_each_cpu() executes @func on each online CPU using the
4053 * system workqueue and blocks until all CPUs have completed.
b6136773 4054 * schedule_on_each_cpu() is very slow.
31ddd871 4055 *
d185af30 4056 * Return:
31ddd871 4057 * 0 on success, -errno on failure.
b6136773 4058 */
65f27f38 4059int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
4060{
4061 int cpu;
38f51568 4062 struct work_struct __percpu *works;
15316ba8 4063
b6136773
AM
4064 works = alloc_percpu(struct work_struct);
4065 if (!works)
15316ba8 4066 return -ENOMEM;
b6136773 4067
ffd8bea8 4068 cpus_read_lock();
93981800 4069
15316ba8 4070 for_each_online_cpu(cpu) {
9bfb1839
IM
4071 struct work_struct *work = per_cpu_ptr(works, cpu);
4072
4073 INIT_WORK(work, func);
b71ab8c2 4074 schedule_work_on(cpu, work);
65a64464 4075 }
93981800
TH
4076
4077 for_each_online_cpu(cpu)
4078 flush_work(per_cpu_ptr(works, cpu));
4079
ffd8bea8 4080 cpus_read_unlock();
b6136773 4081 free_percpu(works);
15316ba8
CL
4082 return 0;
4083}
4084
1fa44eca
JB
4085/**
4086 * execute_in_process_context - reliably execute the routine with user context
4087 * @fn: the function to execute
1fa44eca
JB
4088 * @ew: guaranteed storage for the execute work structure (must
4089 * be available when the work executes)
4090 *
4091 * Executes the function immediately if process context is available,
4092 * otherwise schedules the function for delayed execution.
4093 *
d185af30 4094 * Return: 0 - function was executed
1fa44eca
JB
4095 * 1 - function was scheduled for execution
4096 */
65f27f38 4097int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
4098{
4099 if (!in_interrupt()) {
65f27f38 4100 fn(&ew->work);
1fa44eca
JB
4101 return 0;
4102 }
4103
65f27f38 4104 INIT_WORK(&ew->work, fn);
1fa44eca
JB
4105 schedule_work(&ew->work);
4106
4107 return 1;
4108}
4109EXPORT_SYMBOL_GPL(execute_in_process_context);
4110
6ba94429
FW
4111/**
4112 * free_workqueue_attrs - free a workqueue_attrs
4113 * @attrs: workqueue_attrs to free
226223ab 4114 *
6ba94429 4115 * Undo alloc_workqueue_attrs().
226223ab 4116 */
513c98d0 4117void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 4118{
6ba94429
FW
4119 if (attrs) {
4120 free_cpumask_var(attrs->cpumask);
9546b29e 4121 free_cpumask_var(attrs->__pod_cpumask);
6ba94429
FW
4122 kfree(attrs);
4123 }
226223ab
TH
4124}
4125
6ba94429
FW
4126/**
4127 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
4128 *
4129 * Allocate a new workqueue_attrs, initialize with default settings and
4130 * return it.
4131 *
4132 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4133 */
513c98d0 4134struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 4135{
6ba94429 4136 struct workqueue_attrs *attrs;
226223ab 4137
be69d00d 4138 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
4139 if (!attrs)
4140 goto fail;
be69d00d 4141 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429 4142 goto fail;
9546b29e
TH
4143 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4144 goto fail;
6ba94429
FW
4145
4146 cpumask_copy(attrs->cpumask, cpu_possible_mask);
523a301e 4147 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
4148 return attrs;
4149fail:
4150 free_workqueue_attrs(attrs);
4151 return NULL;
226223ab
TH
4152}
4153
6ba94429
FW
4154static void copy_workqueue_attrs(struct workqueue_attrs *to,
4155 const struct workqueue_attrs *from)
226223ab 4156{
6ba94429
FW
4157 to->nice = from->nice;
4158 cpumask_copy(to->cpumask, from->cpumask);
9546b29e 4159 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
8639eceb 4160 to->affn_strict = from->affn_strict;
84193c07 4161
6ba94429 4162 /*
84193c07
TH
4163 * Unlike hash and equality test, copying shouldn't ignore wq-only
4164 * fields as copying is used for both pool and wq attrs. Instead,
4165 * get_unbound_pool() explicitly clears the fields.
6ba94429 4166 */
84193c07 4167 to->affn_scope = from->affn_scope;
af73f5c9 4168 to->ordered = from->ordered;
226223ab
TH
4169}
4170
5de7a03c
TH
4171/*
4172 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4173 * comments in 'struct workqueue_attrs' definition.
4174 */
4175static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4176{
84193c07 4177 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c
TH
4178 attrs->ordered = false;
4179}
4180
6ba94429
FW
4181/* hash value of the content of @attr */
4182static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 4183{
6ba94429 4184 u32 hash = 0;
226223ab 4185
6ba94429
FW
4186 hash = jhash_1word(attrs->nice, hash);
4187 hash = jhash(cpumask_bits(attrs->cpumask),
4188 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
9546b29e
TH
4189 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4190 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
8639eceb 4191 hash = jhash_1word(attrs->affn_strict, hash);
6ba94429 4192 return hash;
226223ab 4193}
226223ab 4194
6ba94429
FW
4195/* content equality test */
4196static bool wqattrs_equal(const struct workqueue_attrs *a,
4197 const struct workqueue_attrs *b)
226223ab 4198{
6ba94429
FW
4199 if (a->nice != b->nice)
4200 return false;
4201 if (!cpumask_equal(a->cpumask, b->cpumask))
4202 return false;
9546b29e
TH
4203 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4204 return false;
8639eceb
TH
4205 if (a->affn_strict != b->affn_strict)
4206 return false;
6ba94429 4207 return true;
226223ab
TH
4208}
4209
0f36ee24
TH
4210/* Update @attrs with actually available CPUs */
4211static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4212 const cpumask_t *unbound_cpumask)
4213{
4214 /*
4215 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4216 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4217 * @unbound_cpumask.
4218 */
4219 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4220 if (unlikely(cpumask_empty(attrs->cpumask)))
4221 cpumask_copy(attrs->cpumask, unbound_cpumask);
4222}
4223
84193c07
TH
4224/* find wq_pod_type to use for @attrs */
4225static const struct wq_pod_type *
4226wqattrs_pod_type(const struct workqueue_attrs *attrs)
4227{
523a301e
TH
4228 enum wq_affn_scope scope;
4229 struct wq_pod_type *pt;
4230
4231 /* to synchronize access to wq_affn_dfl */
4232 lockdep_assert_held(&wq_pool_mutex);
4233
4234 if (attrs->affn_scope == WQ_AFFN_DFL)
4235 scope = wq_affn_dfl;
4236 else
4237 scope = attrs->affn_scope;
4238
4239 pt = &wq_pod_types[scope];
84193c07
TH
4240
4241 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4242 likely(pt->nr_pods))
4243 return pt;
4244
4245 /*
4246 * Before workqueue_init_topology(), only SYSTEM is available which is
4247 * initialized in workqueue_init_early().
4248 */
4249 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4250 BUG_ON(!pt->nr_pods);
4251 return pt;
4252}
4253
6ba94429
FW
4254/**
4255 * init_worker_pool - initialize a newly zalloc'd worker_pool
4256 * @pool: worker_pool to initialize
4257 *
402dd89d 4258 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
4259 *
4260 * Return: 0 on success, -errno on failure. Even on failure, all fields
4261 * inside @pool proper are initialized and put_unbound_pool() can be called
4262 * on @pool safely to release it.
4263 */
4264static int init_worker_pool(struct worker_pool *pool)
226223ab 4265{
a9b8a985 4266 raw_spin_lock_init(&pool->lock);
6ba94429
FW
4267 pool->id = -1;
4268 pool->cpu = -1;
4269 pool->node = NUMA_NO_NODE;
4270 pool->flags |= POOL_DISASSOCIATED;
82607adc 4271 pool->watchdog_ts = jiffies;
6ba94429
FW
4272 INIT_LIST_HEAD(&pool->worklist);
4273 INIT_LIST_HEAD(&pool->idle_list);
4274 hash_init(pool->busy_hash);
226223ab 4275
32a6c723 4276 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 4277 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 4278
32a6c723 4279 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 4280
6ba94429 4281 INIT_LIST_HEAD(&pool->workers);
e02b9312 4282 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 4283
6ba94429
FW
4284 ida_init(&pool->worker_ida);
4285 INIT_HLIST_NODE(&pool->hash_node);
4286 pool->refcnt = 1;
226223ab 4287
6ba94429 4288 /* shouldn't fail above this point */
be69d00d 4289 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
4290 if (!pool->attrs)
4291 return -ENOMEM;
5de7a03c
TH
4292
4293 wqattrs_clear_for_pool(pool->attrs);
4294
6ba94429 4295 return 0;
226223ab
TH
4296}
4297
669de8bd
BVA
4298#ifdef CONFIG_LOCKDEP
4299static void wq_init_lockdep(struct workqueue_struct *wq)
4300{
4301 char *lock_name;
4302
4303 lockdep_register_key(&wq->key);
4304 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4305 if (!lock_name)
4306 lock_name = wq->name;
69a106c0
QC
4307
4308 wq->lock_name = lock_name;
669de8bd
BVA
4309 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4310}
4311
4312static void wq_unregister_lockdep(struct workqueue_struct *wq)
4313{
4314 lockdep_unregister_key(&wq->key);
4315}
4316
4317static void wq_free_lockdep(struct workqueue_struct *wq)
4318{
4319 if (wq->lock_name != wq->name)
4320 kfree(wq->lock_name);
4321}
4322#else
4323static void wq_init_lockdep(struct workqueue_struct *wq)
4324{
4325}
4326
4327static void wq_unregister_lockdep(struct workqueue_struct *wq)
4328{
4329}
4330
4331static void wq_free_lockdep(struct workqueue_struct *wq)
4332{
4333}
4334#endif
4335
91ccc6e7
TH
4336static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4337{
4338 int node;
4339
4340 for_each_node(node) {
4341 kfree(nna_ar[node]);
4342 nna_ar[node] = NULL;
4343 }
4344
4345 kfree(nna_ar[nr_node_ids]);
4346 nna_ar[nr_node_ids] = NULL;
4347}
4348
4349static void init_node_nr_active(struct wq_node_nr_active *nna)
4350{
4351 atomic_set(&nna->nr, 0);
5797b1c1
TH
4352 raw_spin_lock_init(&nna->lock);
4353 INIT_LIST_HEAD(&nna->pending_pwqs);
91ccc6e7
TH
4354}
4355
4356/*
4357 * Each node's nr_active counter will be accessed mostly from its own node and
4358 * should be allocated in the node.
4359 */
4360static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4361{
4362 struct wq_node_nr_active *nna;
4363 int node;
4364
4365 for_each_node(node) {
4366 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4367 if (!nna)
4368 goto err_free;
4369 init_node_nr_active(nna);
4370 nna_ar[node] = nna;
4371 }
4372
4373 /* [nr_node_ids] is used as the fallback */
4374 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4375 if (!nna)
4376 goto err_free;
4377 init_node_nr_active(nna);
4378 nna_ar[nr_node_ids] = nna;
4379
4380 return 0;
4381
4382err_free:
4383 free_node_nr_active(nna_ar);
4384 return -ENOMEM;
4385}
4386
6ba94429 4387static void rcu_free_wq(struct rcu_head *rcu)
226223ab 4388{
6ba94429
FW
4389 struct workqueue_struct *wq =
4390 container_of(rcu, struct workqueue_struct, rcu);
226223ab 4391
91ccc6e7
TH
4392 if (wq->flags & WQ_UNBOUND)
4393 free_node_nr_active(wq->node_nr_active);
4394
669de8bd 4395 wq_free_lockdep(wq);
636b927e
TH
4396 free_percpu(wq->cpu_pwq);
4397 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 4398 kfree(wq);
226223ab
TH
4399}
4400
6ba94429 4401static void rcu_free_pool(struct rcu_head *rcu)
226223ab 4402{
6ba94429 4403 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 4404
6ba94429
FW
4405 ida_destroy(&pool->worker_ida);
4406 free_workqueue_attrs(pool->attrs);
4407 kfree(pool);
226223ab
TH
4408}
4409
6ba94429
FW
4410/**
4411 * put_unbound_pool - put a worker_pool
4412 * @pool: worker_pool to put
4413 *
24acfb71 4414 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
4415 * safe manner. get_unbound_pool() calls this function on its failure path
4416 * and this function should be able to release pools which went through,
4417 * successfully or not, init_worker_pool().
4418 *
4419 * Should be called with wq_pool_mutex held.
4420 */
4421static void put_unbound_pool(struct worker_pool *pool)
226223ab 4422{
6ba94429
FW
4423 DECLARE_COMPLETION_ONSTACK(detach_completion);
4424 struct worker *worker;
9680540c 4425 LIST_HEAD(cull_list);
e02b9312 4426
6ba94429 4427 lockdep_assert_held(&wq_pool_mutex);
226223ab 4428
6ba94429
FW
4429 if (--pool->refcnt)
4430 return;
226223ab 4431
6ba94429
FW
4432 /* sanity checks */
4433 if (WARN_ON(!(pool->cpu < 0)) ||
4434 WARN_ON(!list_empty(&pool->worklist)))
4435 return;
226223ab 4436
6ba94429
FW
4437 /* release id and unhash */
4438 if (pool->id >= 0)
4439 idr_remove(&worker_pool_idr, pool->id);
4440 hash_del(&pool->hash_node);
d55262c4 4441
6ba94429 4442 /*
692b4825
TH
4443 * Become the manager and destroy all workers. This prevents
4444 * @pool's workers from blocking on attach_mutex. We're the last
4445 * manager and @pool gets freed with the flag set.
9ab03be4
VS
4446 *
4447 * Having a concurrent manager is quite unlikely to happen as we can
4448 * only get here with
4449 * pwq->refcnt == pool->refcnt == 0
4450 * which implies no work queued to the pool, which implies no worker can
4451 * become the manager. However a worker could have taken the role of
4452 * manager before the refcnts dropped to 0, since maybe_create_worker()
4453 * drops pool->lock
6ba94429 4454 */
9ab03be4
VS
4455 while (true) {
4456 rcuwait_wait_event(&manager_wait,
4457 !(pool->flags & POOL_MANAGER_ACTIVE),
4458 TASK_UNINTERRUPTIBLE);
e02b9312
VS
4459
4460 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
4461 raw_spin_lock_irq(&pool->lock);
4462 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4463 pool->flags |= POOL_MANAGER_ACTIVE;
4464 break;
4465 }
4466 raw_spin_unlock_irq(&pool->lock);
e02b9312 4467 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 4468 }
692b4825 4469
6ba94429 4470 while ((worker = first_idle_worker(pool)))
e02b9312 4471 set_worker_dying(worker, &cull_list);
6ba94429 4472 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 4473 raw_spin_unlock_irq(&pool->lock);
d55262c4 4474
e02b9312
VS
4475 wake_dying_workers(&cull_list);
4476
4477 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 4478 pool->detach_completion = &detach_completion;
1258fae7 4479 mutex_unlock(&wq_pool_attach_mutex);
226223ab 4480
6ba94429
FW
4481 if (pool->detach_completion)
4482 wait_for_completion(pool->detach_completion);
226223ab 4483
6ba94429
FW
4484 /* shut down the timers */
4485 del_timer_sync(&pool->idle_timer);
3f959aa3 4486 cancel_work_sync(&pool->idle_cull_work);
6ba94429 4487 del_timer_sync(&pool->mayday_timer);
226223ab 4488
24acfb71 4489 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 4490 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
4491}
4492
4493/**
6ba94429
FW
4494 * get_unbound_pool - get a worker_pool with the specified attributes
4495 * @attrs: the attributes of the worker_pool to get
226223ab 4496 *
6ba94429
FW
4497 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4498 * reference count and return it. If there already is a matching
4499 * worker_pool, it will be used; otherwise, this function attempts to
4500 * create a new one.
226223ab 4501 *
6ba94429 4502 * Should be called with wq_pool_mutex held.
226223ab 4503 *
6ba94429
FW
4504 * Return: On success, a worker_pool with the same attributes as @attrs.
4505 * On failure, %NULL.
226223ab 4506 */
6ba94429 4507static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 4508{
84193c07 4509 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
4510 u32 hash = wqattrs_hash(attrs);
4511 struct worker_pool *pool;
84193c07 4512 int pod, node = NUMA_NO_NODE;
226223ab 4513
6ba94429 4514 lockdep_assert_held(&wq_pool_mutex);
226223ab 4515
6ba94429
FW
4516 /* do we already have a matching pool? */
4517 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4518 if (wqattrs_equal(pool->attrs, attrs)) {
4519 pool->refcnt++;
4520 return pool;
4521 }
4522 }
226223ab 4523
9546b29e 4524 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
84193c07 4525 for (pod = 0; pod < pt->nr_pods; pod++) {
9546b29e 4526 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
84193c07
TH
4527 node = pt->pod_node[pod];
4528 break;
e2273584
XP
4529 }
4530 }
4531
6ba94429 4532 /* nope, create a new one */
84193c07 4533 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
4534 if (!pool || init_worker_pool(pool) < 0)
4535 goto fail;
4536
84193c07 4537 pool->node = node;
5de7a03c
TH
4538 copy_workqueue_attrs(pool->attrs, attrs);
4539 wqattrs_clear_for_pool(pool->attrs);
226223ab 4540
6ba94429
FW
4541 if (worker_pool_assign_id(pool) < 0)
4542 goto fail;
226223ab 4543
6ba94429 4544 /* create and start the initial worker */
3347fa09 4545 if (wq_online && !create_worker(pool))
6ba94429 4546 goto fail;
226223ab 4547
6ba94429
FW
4548 /* install */
4549 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 4550
6ba94429
FW
4551 return pool;
4552fail:
4553 if (pool)
4554 put_unbound_pool(pool);
4555 return NULL;
226223ab 4556}
226223ab 4557
6ba94429 4558static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 4559{
6ba94429
FW
4560 kmem_cache_free(pwq_cache,
4561 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
4562}
4563
6ba94429 4564/*
967b494e
TH
4565 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4566 * refcnt and needs to be destroyed.
7a4e344c 4567 */
687a9aa5 4568static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 4569{
6ba94429 4570 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 4571 release_work);
6ba94429
FW
4572 struct workqueue_struct *wq = pwq->wq;
4573 struct worker_pool *pool = pwq->pool;
b42b0bdd 4574 bool is_last = false;
7a4e344c 4575
b42b0bdd 4576 /*
687a9aa5 4577 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
4578 * @wq, and @wq is invalid to access.
4579 */
4580 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
4581 mutex_lock(&wq->mutex);
4582 list_del_rcu(&pwq->pwqs_node);
4583 is_last = list_empty(&wq->pwqs);
4584 mutex_unlock(&wq->mutex);
4585 }
6ba94429 4586
687a9aa5
TH
4587 if (wq->flags & WQ_UNBOUND) {
4588 mutex_lock(&wq_pool_mutex);
4589 put_unbound_pool(pool);
4590 mutex_unlock(&wq_pool_mutex);
4591 }
6ba94429 4592
5797b1c1
TH
4593 if (!list_empty(&pwq->pending_node)) {
4594 struct wq_node_nr_active *nna =
4595 wq_node_nr_active(pwq->wq, pwq->pool->node);
4596
4597 raw_spin_lock_irq(&nna->lock);
4598 list_del_init(&pwq->pending_node);
4599 raw_spin_unlock_irq(&nna->lock);
4600 }
4601
25b00775 4602 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 4603
2865a8fb 4604 /*
6ba94429
FW
4605 * If we're the last pwq going away, @wq is already dead and no one
4606 * is gonna access it anymore. Schedule RCU free.
2865a8fb 4607 */
669de8bd
BVA
4608 if (is_last) {
4609 wq_unregister_lockdep(wq);
25b00775 4610 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 4611 }
29c91e99
TH
4612}
4613
67dc8325 4614/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
4615static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4616 struct worker_pool *pool)
29c91e99 4617{
6ba94429 4618 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 4619
6ba94429
FW
4620 memset(pwq, 0, sizeof(*pwq));
4621
4622 pwq->pool = pool;
4623 pwq->wq = wq;
4624 pwq->flush_color = -1;
4625 pwq->refcnt = 1;
f97a4a1a 4626 INIT_LIST_HEAD(&pwq->inactive_works);
5797b1c1 4627 INIT_LIST_HEAD(&pwq->pending_node);
6ba94429
FW
4628 INIT_LIST_HEAD(&pwq->pwqs_node);
4629 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 4630 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
4631}
4632
6ba94429
FW
4633/* sync @pwq with the current state of its associated wq and link it */
4634static void link_pwq(struct pool_workqueue *pwq)
29c91e99 4635{
6ba94429 4636 struct workqueue_struct *wq = pwq->wq;
29c91e99 4637
6ba94429 4638 lockdep_assert_held(&wq->mutex);
a892cacc 4639
6ba94429
FW
4640 /* may be called multiple times, ignore if already linked */
4641 if (!list_empty(&pwq->pwqs_node))
29c91e99 4642 return;
29c91e99 4643
6ba94429
FW
4644 /* set the matching work_color */
4645 pwq->work_color = wq->work_color;
29c91e99 4646
6ba94429
FW
4647 /* link in @pwq */
4648 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4649}
29c91e99 4650
6ba94429
FW
4651/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4652static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4653 const struct workqueue_attrs *attrs)
4654{
4655 struct worker_pool *pool;
4656 struct pool_workqueue *pwq;
60f5a4bc 4657
6ba94429 4658 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 4659
6ba94429
FW
4660 pool = get_unbound_pool(attrs);
4661 if (!pool)
4662 return NULL;
60f5a4bc 4663
6ba94429
FW
4664 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4665 if (!pwq) {
4666 put_unbound_pool(pool);
4667 return NULL;
4668 }
29c91e99 4669
6ba94429
FW
4670 init_pwq(pwq, wq, pool);
4671 return pwq;
4672}
29c91e99 4673
29c91e99 4674/**
fef59c9c 4675 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 4676 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 4677 * @cpu: the target CPU
6ba94429 4678 * @cpu_going_down: if >= 0, the CPU to consider as offline
29c91e99 4679 *
fef59c9c
TH
4680 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4681 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
9546b29e 4682 * The result is stored in @attrs->__pod_cpumask.
a892cacc 4683 *
fef59c9c
TH
4684 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4685 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4686 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 4687 *
fef59c9c 4688 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 4689 */
9546b29e
TH
4690static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4691 int cpu_going_down)
29c91e99 4692{
84193c07
TH
4693 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4694 int pod = pt->cpu_pod[cpu];
29c91e99 4695
fef59c9c 4696 /* does @pod have any online CPUs @attrs wants? */
9546b29e
TH
4697 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4698 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
6ba94429 4699 if (cpu_going_down >= 0)
9546b29e 4700 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
29c91e99 4701
9546b29e
TH
4702 if (cpumask_empty(attrs->__pod_cpumask)) {
4703 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
84193c07
TH
4704 return;
4705 }
4c16bd32 4706
fef59c9c 4707 /* yeap, return possible CPUs in @pod that @attrs wants */
9546b29e 4708 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 4709
9546b29e 4710 if (cpumask_empty(attrs->__pod_cpumask))
1ad0f0a7
MB
4711 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4712 "possible intersect\n");
4c16bd32
TH
4713}
4714
9f66cff2 4715/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
636b927e
TH
4716static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4717 int cpu, struct pool_workqueue *pwq)
1befcf30 4718{
9f66cff2 4719 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
1befcf30
TH
4720 struct pool_workqueue *old_pwq;
4721
5b95e1af 4722 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4723 lockdep_assert_held(&wq->mutex);
4724
4725 /* link_pwq() can handle duplicate calls */
4726 link_pwq(pwq);
4727
9f66cff2
TH
4728 old_pwq = rcu_access_pointer(*slot);
4729 rcu_assign_pointer(*slot, pwq);
1befcf30
TH
4730 return old_pwq;
4731}
4732
2d5f0764
LJ
4733/* context to store the prepared attrs & pwqs before applying */
4734struct apply_wqattrs_ctx {
4735 struct workqueue_struct *wq; /* target workqueue */
4736 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4737 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4738 struct pool_workqueue *dfl_pwq;
4739 struct pool_workqueue *pwq_tbl[];
4740};
4741
4742/* free the resources after success or abort */
4743static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4744{
4745 if (ctx) {
636b927e 4746 int cpu;
2d5f0764 4747
636b927e
TH
4748 for_each_possible_cpu(cpu)
4749 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
4750 put_pwq_unlocked(ctx->dfl_pwq);
4751
4752 free_workqueue_attrs(ctx->attrs);
4753
4754 kfree(ctx);
4755 }
4756}
4757
4758/* allocate the attrs and pwqs for later installation */
4759static struct apply_wqattrs_ctx *
4760apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4761 const struct workqueue_attrs *attrs,
4762 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4763{
2d5f0764 4764 struct apply_wqattrs_ctx *ctx;
9546b29e 4765 struct workqueue_attrs *new_attrs;
636b927e 4766 int cpu;
9e8cd2f5 4767
2d5f0764 4768 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4769
84193c07
TH
4770 if (WARN_ON(attrs->affn_scope < 0 ||
4771 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4772 return ERR_PTR(-EINVAL);
4773
636b927e 4774 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 4775
be69d00d 4776 new_attrs = alloc_workqueue_attrs();
9546b29e 4777 if (!ctx || !new_attrs)
2d5f0764 4778 goto out_free;
13e2e556 4779
4c16bd32
TH
4780 /*
4781 * If something goes wrong during CPU up/down, we'll fall back to
4782 * the default pwq covering whole @attrs->cpumask. Always create
4783 * it even if we don't use it immediately.
4784 */
0f36ee24
TH
4785 copy_workqueue_attrs(new_attrs, attrs);
4786 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
9546b29e 4787 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764
LJ
4788 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4789 if (!ctx->dfl_pwq)
4790 goto out_free;
4c16bd32 4791
636b927e 4792 for_each_possible_cpu(cpu) {
af73f5c9 4793 if (new_attrs->ordered) {
2d5f0764 4794 ctx->dfl_pwq->refcnt++;
636b927e
TH
4795 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4796 } else {
9546b29e
TH
4797 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4798 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
636b927e
TH
4799 if (!ctx->pwq_tbl[cpu])
4800 goto out_free;
4c16bd32
TH
4801 }
4802 }
4803
042f7df1
LJ
4804 /* save the user configured attrs and sanitize it. */
4805 copy_workqueue_attrs(new_attrs, attrs);
4806 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
9546b29e 4807 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
2d5f0764 4808 ctx->attrs = new_attrs;
042f7df1 4809
2d5f0764 4810 ctx->wq = wq;
2d5f0764
LJ
4811 return ctx;
4812
4813out_free:
2d5f0764
LJ
4814 free_workqueue_attrs(new_attrs);
4815 apply_wqattrs_cleanup(ctx);
84193c07 4816 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
4817}
4818
4819/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4820static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4821{
636b927e 4822 int cpu;
9e8cd2f5 4823
4c16bd32 4824 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4825 mutex_lock(&ctx->wq->mutex);
a892cacc 4826
2d5f0764 4827 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32 4828
9f66cff2 4829 /* save the previous pwqs and install the new ones */
636b927e
TH
4830 for_each_possible_cpu(cpu)
4831 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4832 ctx->pwq_tbl[cpu]);
9f66cff2 4833 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
f147f29e 4834
5797b1c1
TH
4835 /* update node_nr_active->max */
4836 wq_update_node_max_active(ctx->wq, -1);
4837
2d5f0764
LJ
4838 mutex_unlock(&ctx->wq->mutex);
4839}
9e8cd2f5 4840
a0111cf6
LJ
4841static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4842 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4843{
4844 struct apply_wqattrs_ctx *ctx;
4c16bd32 4845
2d5f0764
LJ
4846 /* only unbound workqueues can change attributes */
4847 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4848 return -EINVAL;
13e2e556 4849
2d5f0764 4850 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4851 if (!list_empty(&wq->pwqs)) {
4852 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4853 return -EINVAL;
4854
4855 wq->flags &= ~__WQ_ORDERED;
4856 }
2d5f0764 4857
99c621ef 4858 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
4859 if (IS_ERR(ctx))
4860 return PTR_ERR(ctx);
2d5f0764
LJ
4861
4862 /* the ctx has been prepared successfully, let's commit it */
6201171e 4863 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4864 apply_wqattrs_cleanup(ctx);
4865
6201171e 4866 return 0;
9e8cd2f5
TH
4867}
4868
a0111cf6
LJ
4869/**
4870 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4871 * @wq: the target workqueue
4872 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4873 *
fef59c9c
TH
4874 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4875 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4876 * work items are affine to the pod it was issued on. Older pwqs are released as
4877 * in-flight work items finish. Note that a work item which repeatedly requeues
4878 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
4879 *
4880 * Performs GFP_KERNEL allocations.
4881 *
ffd8bea8 4882 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4883 *
a0111cf6
LJ
4884 * Return: 0 on success and -errno on failure.
4885 */
513c98d0 4886int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4887 const struct workqueue_attrs *attrs)
4888{
4889 int ret;
4890
509b3204
DJ
4891 lockdep_assert_cpus_held();
4892
4893 mutex_lock(&wq_pool_mutex);
a0111cf6 4894 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4895 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4896
4897 return ret;
4898}
4899
4c16bd32 4900/**
fef59c9c 4901 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 4902 * @wq: the target workqueue
4cbfd3de
TH
4903 * @cpu: the CPU to update pool association for
4904 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
4905 * @online: whether @cpu is coming up or going down
4906 *
4907 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 4908 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
4909 * @wq accordingly.
4910 *
fef59c9c
TH
4911 *
4912 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4913 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4914 *
4915 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4916 * with a cpumask spanning multiple pods, the workers which were already
4917 * executing the work items for the workqueue will lose their CPU affinity and
4918 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4919 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4920 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 4921 */
fef59c9c
TH
4922static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4923 int hotplug_cpu, bool online)
4c16bd32 4924{
4cbfd3de 4925 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
4926 struct pool_workqueue *old_pwq = NULL, *pwq;
4927 struct workqueue_attrs *target_attrs;
4c16bd32
TH
4928
4929 lockdep_assert_held(&wq_pool_mutex);
4930
84193c07 4931 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
4932 return;
4933
4934 /*
4935 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4936 * Let's use a preallocated one. The following buf is protected by
4937 * CPU hotplug exclusion.
4938 */
fef59c9c 4939 target_attrs = wq_update_pod_attrs_buf;
4c16bd32 4940
4c16bd32 4941 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 4942 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 4943
636b927e 4944 /* nothing to do if the target cpumask matches the current pwq */
9546b29e 4945 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
9f66cff2 4946 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
636b927e 4947 return;
4c16bd32 4948
4c16bd32
TH
4949 /* create a new pwq */
4950 pwq = alloc_unbound_pwq(wq, target_attrs);
4951 if (!pwq) {
fef59c9c 4952 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 4953 wq->name);
77f300b1 4954 goto use_dfl_pwq;
4c16bd32
TH
4955 }
4956
f7142ed4 4957 /* Install the new pwq. */
4c16bd32 4958 mutex_lock(&wq->mutex);
636b927e 4959 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
4960 goto out_unlock;
4961
4962use_dfl_pwq:
f7142ed4 4963 mutex_lock(&wq->mutex);
9f66cff2
TH
4964 pwq = unbound_pwq(wq, -1);
4965 raw_spin_lock_irq(&pwq->pool->lock);
4966 get_pwq(pwq);
4967 raw_spin_unlock_irq(&pwq->pool->lock);
4968 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
4969out_unlock:
4970 mutex_unlock(&wq->mutex);
4971 put_pwq_unlocked(old_pwq);
4972}
4973
30cdf249 4974static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4975{
49e3cf44 4976 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4977 int cpu, ret;
30cdf249 4978
636b927e
TH
4979 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4980 if (!wq->cpu_pwq)
4981 goto enomem;
30cdf249 4982
636b927e 4983 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 4984 for_each_possible_cpu(cpu) {
687a9aa5 4985 struct pool_workqueue **pwq_p =
ee1ceef7 4986 per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
4987 struct worker_pool *pool =
4988 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4989
4990 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4991 pool->node);
4992 if (!*pwq_p)
4993 goto enomem;
f3421797 4994
687a9aa5 4995 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
4996
4997 mutex_lock(&wq->mutex);
687a9aa5 4998 link_pwq(*pwq_p);
f147f29e 4999 mutex_unlock(&wq->mutex);
30cdf249 5000 }
9e8cd2f5 5001 return 0;
509b3204
DJ
5002 }
5003
ffd8bea8 5004 cpus_read_lock();
509b3204 5005 if (wq->flags & __WQ_ORDERED) {
9f66cff2
TH
5006 struct pool_workqueue *dfl_pwq;
5007
8a2b7538
TH
5008 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5009 /* there should only be single pwq for ordering guarantee */
9f66cff2
TH
5010 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5011 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5012 wq->pwqs.prev != &dfl_pwq->pwqs_node),
8a2b7538 5013 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 5014 } else {
509b3204 5015 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 5016 }
ffd8bea8 5017 cpus_read_unlock();
509b3204 5018
64344553
Z
5019 /* for unbound pwq, flush the pwq_release_worker ensures that the
5020 * pwq_release_workfn() completes before calling kfree(wq).
5021 */
5022 if (ret)
5023 kthread_flush_worker(pwq_release_worker);
5024
509b3204 5025 return ret;
687a9aa5
TH
5026
5027enomem:
5028 if (wq->cpu_pwq) {
7b42f401
Z
5029 for_each_possible_cpu(cpu) {
5030 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5031
5032 if (pwq)
5033 kmem_cache_free(pwq_cache, pwq);
5034 }
687a9aa5
TH
5035 free_percpu(wq->cpu_pwq);
5036 wq->cpu_pwq = NULL;
5037 }
5038 return -ENOMEM;
0f900049
TH
5039}
5040
f3421797
TH
5041static int wq_clamp_max_active(int max_active, unsigned int flags,
5042 const char *name)
b71ab8c2 5043{
636b927e 5044 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 5045 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 5046 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 5047
636b927e 5048 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
5049}
5050
983c7515
TH
5051/*
5052 * Workqueues which may be used during memory reclaim should have a rescuer
5053 * to guarantee forward progress.
5054 */
5055static int init_rescuer(struct workqueue_struct *wq)
5056{
5057 struct worker *rescuer;
b92b36ea 5058 int ret;
983c7515
TH
5059
5060 if (!(wq->flags & WQ_MEM_RECLAIM))
5061 return 0;
5062
5063 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
5064 if (!rescuer) {
5065 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5066 wq->name);
983c7515 5067 return -ENOMEM;
4c0736a7 5068 }
983c7515
TH
5069
5070 rescuer->rescue_wq = wq;
b6a46f72 5071 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
f187b697 5072 if (IS_ERR(rescuer->task)) {
b92b36ea 5073 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
5074 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5075 wq->name, ERR_PTR(ret));
983c7515 5076 kfree(rescuer);
b92b36ea 5077 return ret;
983c7515
TH
5078 }
5079
5080 wq->rescuer = rescuer;
85f0ab43
JL
5081 if (wq->flags & WQ_UNBOUND)
5082 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
5083 else
5084 kthread_bind_mask(rescuer->task, cpu_possible_mask);
983c7515
TH
5085 wake_up_process(rescuer->task);
5086
5087 return 0;
5088}
5089
a045a272
TH
5090/**
5091 * wq_adjust_max_active - update a wq's max_active to the current setting
5092 * @wq: target workqueue
5093 *
5094 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5095 * activate inactive work items accordingly. If @wq is freezing, clear
5096 * @wq->max_active to zero.
5097 */
5098static void wq_adjust_max_active(struct workqueue_struct *wq)
5099{
c5404d4e 5100 bool activated;
5797b1c1 5101 int new_max, new_min;
a045a272
TH
5102
5103 lockdep_assert_held(&wq->mutex);
5104
5105 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5797b1c1
TH
5106 new_max = 0;
5107 new_min = 0;
5108 } else {
5109 new_max = wq->saved_max_active;
5110 new_min = wq->saved_min_active;
a045a272
TH
5111 }
5112
5797b1c1 5113 if (wq->max_active == new_max && wq->min_active == new_min)
a045a272
TH
5114 return;
5115
5116 /*
5797b1c1 5117 * Update @wq->max/min_active and then kick inactive work items if more
a045a272
TH
5118 * active work items are allowed. This doesn't break work item ordering
5119 * because new work items are always queued behind existing inactive
5120 * work items if there are any.
5121 */
5797b1c1
TH
5122 WRITE_ONCE(wq->max_active, new_max);
5123 WRITE_ONCE(wq->min_active, new_min);
5124
5125 if (wq->flags & WQ_UNBOUND)
5126 wq_update_node_max_active(wq, -1);
5127
5128 if (new_max == 0)
5129 return;
a045a272 5130
c5404d4e
TH
5131 /*
5132 * Round-robin through pwq's activating the first inactive work item
5133 * until max_active is filled.
5134 */
5135 do {
5136 struct pool_workqueue *pwq;
a045a272 5137
c5404d4e
TH
5138 activated = false;
5139 for_each_pwq(pwq, wq) {
5140 unsigned long flags;
a045a272 5141
c5404d4e
TH
5142 /* can be called during early boot w/ irq disabled */
5143 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5797b1c1 5144 if (pwq_activate_first_inactive(pwq, true)) {
c5404d4e
TH
5145 activated = true;
5146 kick_pool(pwq->pool);
5147 }
5148 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5149 }
5150 } while (activated);
a045a272
TH
5151}
5152
a2775bbc 5153__printf(1, 4)
669de8bd
BVA
5154struct workqueue_struct *alloc_workqueue(const char *fmt,
5155 unsigned int flags,
5156 int max_active, ...)
1da177e4 5157{
ecf6881f 5158 va_list args;
1da177e4 5159 struct workqueue_struct *wq;
91ccc6e7
TH
5160 size_t wq_size;
5161 int name_len;
b196be89 5162
5c0338c6 5163 /*
fef59c9c
TH
5164 * Unbound && max_active == 1 used to imply ordered, which is no longer
5165 * the case on many machines due to per-pod pools. While
5c0338c6 5166 * alloc_ordered_workqueue() is the right way to create an ordered
fef59c9c 5167 * workqueue, keep the previous behavior to avoid subtle breakages.
5c0338c6
TH
5168 */
5169 if ((flags & WQ_UNBOUND) && max_active == 1)
5170 flags |= __WQ_ORDERED;
5171
cee22a15
VK
5172 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5173 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5174 flags |= WQ_UNBOUND;
5175
ecf6881f 5176 /* allocate wq and format name */
91ccc6e7
TH
5177 if (flags & WQ_UNBOUND)
5178 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5179 else
5180 wq_size = sizeof(*wq);
5181
5182 wq = kzalloc(wq_size, GFP_KERNEL);
b196be89 5183 if (!wq)
d2c1d404 5184 return NULL;
b196be89 5185
6029a918 5186 if (flags & WQ_UNBOUND) {
be69d00d 5187 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
5188 if (!wq->unbound_attrs)
5189 goto err_free_wq;
5190 }
5191
669de8bd 5192 va_start(args, max_active);
91ccc6e7 5193 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 5194 va_end(args);
1da177e4 5195
91ccc6e7
TH
5196 if (name_len >= WQ_NAME_LEN)
5197 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5198 wq->name);
31c89007 5199
d320c038 5200 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 5201 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 5202
b196be89 5203 /* init wq */
97e37d7b 5204 wq->flags = flags;
a045a272 5205 wq->max_active = max_active;
5797b1c1
TH
5206 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5207 wq->saved_max_active = wq->max_active;
5208 wq->saved_min_active = wq->min_active;
3c25a55d 5209 mutex_init(&wq->mutex);
112202d9 5210 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 5211 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
5212 INIT_LIST_HEAD(&wq->flusher_queue);
5213 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 5214 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 5215
669de8bd 5216 wq_init_lockdep(wq);
cce1a165 5217 INIT_LIST_HEAD(&wq->list);
3af24433 5218
91ccc6e7
TH
5219 if (flags & WQ_UNBOUND) {
5220 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5221 goto err_unreg_lockdep;
5222 }
5223
30cdf249 5224 if (alloc_and_link_pwqs(wq) < 0)
91ccc6e7 5225 goto err_free_node_nr_active;
1537663f 5226
40c17f75 5227 if (wq_online && init_rescuer(wq) < 0)
983c7515 5228 goto err_destroy;
3af24433 5229
226223ab
TH
5230 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5231 goto err_destroy;
5232
a0a1a5fd 5233 /*
68e13a67
LJ
5234 * wq_pool_mutex protects global freeze state and workqueues list.
5235 * Grab it, adjust max_active and add the new @wq to workqueues
5236 * list.
a0a1a5fd 5237 */
68e13a67 5238 mutex_lock(&wq_pool_mutex);
a0a1a5fd 5239
a357fc03 5240 mutex_lock(&wq->mutex);
a045a272 5241 wq_adjust_max_active(wq);
a357fc03 5242 mutex_unlock(&wq->mutex);
a0a1a5fd 5243
e2dca7ad 5244 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 5245
68e13a67 5246 mutex_unlock(&wq_pool_mutex);
1537663f 5247
3af24433 5248 return wq;
d2c1d404 5249
91ccc6e7
TH
5250err_free_node_nr_active:
5251 if (wq->flags & WQ_UNBOUND)
5252 free_node_nr_active(wq->node_nr_active);
82efcab3 5253err_unreg_lockdep:
009bb421
BVA
5254 wq_unregister_lockdep(wq);
5255 wq_free_lockdep(wq);
82efcab3 5256err_free_wq:
6029a918 5257 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
5258 kfree(wq);
5259 return NULL;
5260err_destroy:
5261 destroy_workqueue(wq);
4690c4ab 5262 return NULL;
3af24433 5263}
669de8bd 5264EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 5265
c29eb853
TH
5266static bool pwq_busy(struct pool_workqueue *pwq)
5267{
5268 int i;
5269
5270 for (i = 0; i < WORK_NR_COLORS; i++)
5271 if (pwq->nr_in_flight[i])
5272 return true;
5273
9f66cff2 5274 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
c29eb853 5275 return true;
afa87ce8 5276 if (!pwq_is_empty(pwq))
c29eb853
TH
5277 return true;
5278
5279 return false;
5280}
5281
3af24433
ON
5282/**
5283 * destroy_workqueue - safely terminate a workqueue
5284 * @wq: target workqueue
5285 *
5286 * Safely destroy a workqueue. All work currently pending will be done first.
5287 */
5288void destroy_workqueue(struct workqueue_struct *wq)
5289{
49e3cf44 5290 struct pool_workqueue *pwq;
636b927e 5291 int cpu;
3af24433 5292
def98c84
TH
5293 /*
5294 * Remove it from sysfs first so that sanity check failure doesn't
5295 * lead to sysfs name conflicts.
5296 */
5297 workqueue_sysfs_unregister(wq);
5298
33e3f0a3
RC
5299 /* mark the workqueue destruction is in progress */
5300 mutex_lock(&wq->mutex);
5301 wq->flags |= __WQ_DESTROYING;
5302 mutex_unlock(&wq->mutex);
5303
9c5a2ba7
TH
5304 /* drain it before proceeding with destruction */
5305 drain_workqueue(wq);
c8efcc25 5306
def98c84
TH
5307 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5308 if (wq->rescuer) {
5309 struct worker *rescuer = wq->rescuer;
5310
5311 /* this prevents new queueing */
a9b8a985 5312 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 5313 wq->rescuer = NULL;
a9b8a985 5314 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
5315
5316 /* rescuer will empty maydays list before exiting */
5317 kthread_stop(rescuer->task);
8efe1223 5318 kfree(rescuer);
def98c84
TH
5319 }
5320
c29eb853
TH
5321 /*
5322 * Sanity checks - grab all the locks so that we wait for all
5323 * in-flight operations which may do put_pwq().
5324 */
5325 mutex_lock(&wq_pool_mutex);
b09f4fd3 5326 mutex_lock(&wq->mutex);
49e3cf44 5327 for_each_pwq(pwq, wq) {
a9b8a985 5328 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 5329 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
5330 pr_warn("%s: %s has the following busy pwq\n",
5331 __func__, wq->name);
c29eb853 5332 show_pwq(pwq);
a9b8a985 5333 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 5334 mutex_unlock(&wq->mutex);
c29eb853 5335 mutex_unlock(&wq_pool_mutex);
55df0933 5336 show_one_workqueue(wq);
6183c009 5337 return;
76af4d93 5338 }
a9b8a985 5339 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 5340 }
b09f4fd3 5341 mutex_unlock(&wq->mutex);
6183c009 5342
a0a1a5fd
TH
5343 /*
5344 * wq list is used to freeze wq, remove from list after
5345 * flushing is complete in case freeze races us.
5346 */
e2dca7ad 5347 list_del_rcu(&wq->list);
68e13a67 5348 mutex_unlock(&wq_pool_mutex);
3af24433 5349
636b927e
TH
5350 /*
5351 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5352 * to put the base refs. @wq will be auto-destroyed from the last
5353 * pwq_put. RCU read lock prevents @wq from going away from under us.
5354 */
5355 rcu_read_lock();
4c16bd32 5356
636b927e 5357 for_each_possible_cpu(cpu) {
9f66cff2
TH
5358 put_pwq_unlocked(unbound_pwq(wq, cpu));
5359 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
29c91e99 5360 }
636b927e 5361
9f66cff2
TH
5362 put_pwq_unlocked(unbound_pwq(wq, -1));
5363 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
636b927e
TH
5364
5365 rcu_read_unlock();
3af24433
ON
5366}
5367EXPORT_SYMBOL_GPL(destroy_workqueue);
5368
dcd989cb
TH
5369/**
5370 * workqueue_set_max_active - adjust max_active of a workqueue
5371 * @wq: target workqueue
5372 * @max_active: new max_active value.
5373 *
5797b1c1
TH
5374 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5375 * comment.
dcd989cb
TH
5376 *
5377 * CONTEXT:
5378 * Don't call from IRQ context.
5379 */
5380void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5381{
8719dcea 5382 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 5383 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
5384 return;
5385
f3421797 5386 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 5387
a357fc03 5388 mutex_lock(&wq->mutex);
dcd989cb 5389
0a94efb5 5390 wq->flags &= ~__WQ_ORDERED;
dcd989cb 5391 wq->saved_max_active = max_active;
5797b1c1
TH
5392 if (wq->flags & WQ_UNBOUND)
5393 wq->saved_min_active = min(wq->saved_min_active, max_active);
5394
a045a272 5395 wq_adjust_max_active(wq);
93981800 5396
a357fc03 5397 mutex_unlock(&wq->mutex);
15316ba8 5398}
dcd989cb 5399EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 5400
27d4ee03
LW
5401/**
5402 * current_work - retrieve %current task's work struct
5403 *
5404 * Determine if %current task is a workqueue worker and what it's working on.
5405 * Useful to find out the context that the %current task is running in.
5406 *
5407 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5408 */
5409struct work_struct *current_work(void)
5410{
5411 struct worker *worker = current_wq_worker();
5412
5413 return worker ? worker->current_work : NULL;
5414}
5415EXPORT_SYMBOL(current_work);
5416
e6267616
TH
5417/**
5418 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5419 *
5420 * Determine whether %current is a workqueue rescuer. Can be used from
5421 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
5422 *
5423 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
5424 */
5425bool current_is_workqueue_rescuer(void)
5426{
5427 struct worker *worker = current_wq_worker();
5428
6a092dfd 5429 return worker && worker->rescue_wq;
e6267616
TH
5430}
5431
eef6a7d5 5432/**
dcd989cb
TH
5433 * workqueue_congested - test whether a workqueue is congested
5434 * @cpu: CPU in question
5435 * @wq: target workqueue
eef6a7d5 5436 *
dcd989cb
TH
5437 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5438 * no synchronization around this function and the test result is
5439 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 5440 *
d3251859 5441 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
5442 *
5443 * With the exception of ordered workqueues, all workqueues have per-cpu
5444 * pool_workqueues, each with its own congested state. A workqueue being
5445 * congested on one CPU doesn't mean that the workqueue is contested on any
5446 * other CPUs.
d3251859 5447 *
d185af30 5448 * Return:
dcd989cb 5449 * %true if congested, %false otherwise.
eef6a7d5 5450 */
d84ff051 5451bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 5452{
7fb98ea7 5453 struct pool_workqueue *pwq;
76af4d93
TH
5454 bool ret;
5455
24acfb71
TG
5456 rcu_read_lock();
5457 preempt_disable();
7fb98ea7 5458
d3251859
TH
5459 if (cpu == WORK_CPU_UNBOUND)
5460 cpu = smp_processor_id();
5461
636b927e 5462 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 5463 ret = !list_empty(&pwq->inactive_works);
636b927e 5464
24acfb71
TG
5465 preempt_enable();
5466 rcu_read_unlock();
76af4d93
TH
5467
5468 return ret;
1da177e4 5469}
dcd989cb 5470EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 5471
dcd989cb
TH
5472/**
5473 * work_busy - test whether a work is currently pending or running
5474 * @work: the work to be tested
5475 *
5476 * Test whether @work is currently pending or running. There is no
5477 * synchronization around this function and the test result is
5478 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 5479 *
d185af30 5480 * Return:
dcd989cb
TH
5481 * OR'd bitmask of WORK_BUSY_* bits.
5482 */
5483unsigned int work_busy(struct work_struct *work)
1da177e4 5484{
fa1b54e6 5485 struct worker_pool *pool;
dcd989cb
TH
5486 unsigned long flags;
5487 unsigned int ret = 0;
1da177e4 5488
dcd989cb
TH
5489 if (work_pending(work))
5490 ret |= WORK_BUSY_PENDING;
1da177e4 5491
24acfb71 5492 rcu_read_lock();
fa1b54e6 5493 pool = get_work_pool(work);
038366c5 5494 if (pool) {
a9b8a985 5495 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
5496 if (find_worker_executing_work(pool, work))
5497 ret |= WORK_BUSY_RUNNING;
a9b8a985 5498 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 5499 }
24acfb71 5500 rcu_read_unlock();
1da177e4 5501
dcd989cb 5502 return ret;
1da177e4 5503}
dcd989cb 5504EXPORT_SYMBOL_GPL(work_busy);
1da177e4 5505
3d1cb205
TH
5506/**
5507 * set_worker_desc - set description for the current work item
5508 * @fmt: printf-style format string
5509 * @...: arguments for the format string
5510 *
5511 * This function can be called by a running work function to describe what
5512 * the work item is about. If the worker task gets dumped, this
5513 * information will be printed out together to help debugging. The
5514 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5515 */
5516void set_worker_desc(const char *fmt, ...)
5517{
5518 struct worker *worker = current_wq_worker();
5519 va_list args;
5520
5521 if (worker) {
5522 va_start(args, fmt);
5523 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5524 va_end(args);
3d1cb205
TH
5525 }
5526}
5c750d58 5527EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
5528
5529/**
5530 * print_worker_info - print out worker information and description
5531 * @log_lvl: the log level to use when printing
5532 * @task: target task
5533 *
5534 * If @task is a worker and currently executing a work item, print out the
5535 * name of the workqueue being serviced and worker description set with
5536 * set_worker_desc() by the currently executing work item.
5537 *
5538 * This function can be safely called on any task as long as the
5539 * task_struct itself is accessible. While safe, this function isn't
5540 * synchronized and may print out mixups or garbages of limited length.
5541 */
5542void print_worker_info(const char *log_lvl, struct task_struct *task)
5543{
5544 work_func_t *fn = NULL;
5545 char name[WQ_NAME_LEN] = { };
5546 char desc[WORKER_DESC_LEN] = { };
5547 struct pool_workqueue *pwq = NULL;
5548 struct workqueue_struct *wq = NULL;
3d1cb205
TH
5549 struct worker *worker;
5550
5551 if (!(task->flags & PF_WQ_WORKER))
5552 return;
5553
5554 /*
5555 * This function is called without any synchronization and @task
5556 * could be in any state. Be careful with dereferences.
5557 */
e700591a 5558 worker = kthread_probe_data(task);
3d1cb205
TH
5559
5560 /*
8bf89593
TH
5561 * Carefully copy the associated workqueue's workfn, name and desc.
5562 * Keep the original last '\0' in case the original is garbage.
3d1cb205 5563 */
fe557319
CH
5564 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5565 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5566 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5567 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5568 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
5569
5570 if (fn || name[0] || desc[0]) {
d75f773c 5571 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 5572 if (strcmp(name, desc))
3d1cb205
TH
5573 pr_cont(" (%s)", desc);
5574 pr_cont("\n");
5575 }
5576}
5577
3494fc30
TH
5578static void pr_cont_pool_info(struct worker_pool *pool)
5579{
5580 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5581 if (pool->node != NUMA_NO_NODE)
5582 pr_cont(" node=%d", pool->node);
5583 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5584}
5585
c76feb0d
PM
5586struct pr_cont_work_struct {
5587 bool comma;
5588 work_func_t func;
5589 long ctr;
5590};
5591
5592static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5593{
5594 if (!pcwsp->ctr)
5595 goto out_record;
5596 if (func == pcwsp->func) {
5597 pcwsp->ctr++;
5598 return;
5599 }
5600 if (pcwsp->ctr == 1)
5601 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5602 else
5603 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5604 pcwsp->ctr = 0;
5605out_record:
5606 if ((long)func == -1L)
5607 return;
5608 pcwsp->comma = comma;
5609 pcwsp->func = func;
5610 pcwsp->ctr = 1;
5611}
5612
5613static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
5614{
5615 if (work->func == wq_barrier_func) {
5616 struct wq_barrier *barr;
5617
5618 barr = container_of(work, struct wq_barrier, work);
5619
c76feb0d 5620 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
5621 pr_cont("%s BAR(%d)", comma ? "," : "",
5622 task_pid_nr(barr->task));
5623 } else {
c76feb0d
PM
5624 if (!comma)
5625 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5626 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
5627 }
5628}
5629
5630static void show_pwq(struct pool_workqueue *pwq)
5631{
c76feb0d 5632 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
5633 struct worker_pool *pool = pwq->pool;
5634 struct work_struct *work;
5635 struct worker *worker;
5636 bool has_in_flight = false, has_pending = false;
5637 int bkt;
5638
5639 pr_info(" pwq %d:", pool->id);
5640 pr_cont_pool_info(pool);
5641
a045a272
TH
5642 pr_cont(" active=%d refcnt=%d%s\n",
5643 pwq->nr_active, pwq->refcnt,
3494fc30
TH
5644 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5645
5646 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5647 if (worker->current_pwq == pwq) {
5648 has_in_flight = true;
5649 break;
5650 }
5651 }
5652 if (has_in_flight) {
5653 bool comma = false;
5654
5655 pr_info(" in-flight:");
5656 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5657 if (worker->current_pwq != pwq)
5658 continue;
5659
d75f773c 5660 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 5661 task_pid_nr(worker->task),
30ae2fc0 5662 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
5663 worker->current_func);
5664 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
5665 pr_cont_work(false, work, &pcws);
5666 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5667 comma = true;
5668 }
5669 pr_cont("\n");
5670 }
5671
5672 list_for_each_entry(work, &pool->worklist, entry) {
5673 if (get_work_pwq(work) == pwq) {
5674 has_pending = true;
5675 break;
5676 }
5677 }
5678 if (has_pending) {
5679 bool comma = false;
5680
5681 pr_info(" pending:");
5682 list_for_each_entry(work, &pool->worklist, entry) {
5683 if (get_work_pwq(work) != pwq)
5684 continue;
5685
c76feb0d 5686 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5687 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5688 }
c76feb0d 5689 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5690 pr_cont("\n");
5691 }
5692
f97a4a1a 5693 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
5694 bool comma = false;
5695
f97a4a1a
LJ
5696 pr_info(" inactive:");
5697 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 5698 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5699 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5700 }
c76feb0d 5701 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5702 pr_cont("\n");
5703 }
5704}
5705
5706/**
55df0933
IK
5707 * show_one_workqueue - dump state of specified workqueue
5708 * @wq: workqueue whose state will be printed
3494fc30 5709 */
55df0933 5710void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 5711{
55df0933
IK
5712 struct pool_workqueue *pwq;
5713 bool idle = true;
3494fc30 5714 unsigned long flags;
3494fc30 5715
55df0933 5716 for_each_pwq(pwq, wq) {
afa87ce8 5717 if (!pwq_is_empty(pwq)) {
55df0933
IK
5718 idle = false;
5719 break;
3494fc30 5720 }
55df0933
IK
5721 }
5722 if (idle) /* Nothing to print for idle workqueue */
5723 return;
3494fc30 5724
55df0933 5725 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 5726
55df0933
IK
5727 for_each_pwq(pwq, wq) {
5728 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
afa87ce8 5729 if (!pwq_is_empty(pwq)) {
62635ea8 5730 /*
55df0933
IK
5731 * Defer printing to avoid deadlocks in console
5732 * drivers that queue work while holding locks
5733 * also taken in their write paths.
62635ea8 5734 */
55df0933
IK
5735 printk_deferred_enter();
5736 show_pwq(pwq);
5737 printk_deferred_exit();
3494fc30 5738 }
55df0933 5739 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
5740 /*
5741 * We could be printing a lot from atomic context, e.g.
55df0933 5742 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
5743 * hard lockup.
5744 */
5745 touch_nmi_watchdog();
3494fc30
TH
5746 }
5747
55df0933
IK
5748}
5749
5750/**
5751 * show_one_worker_pool - dump state of specified worker pool
5752 * @pool: worker pool whose state will be printed
5753 */
5754static void show_one_worker_pool(struct worker_pool *pool)
5755{
5756 struct worker *worker;
5757 bool first = true;
5758 unsigned long flags;
335a42eb 5759 unsigned long hung = 0;
55df0933
IK
5760
5761 raw_spin_lock_irqsave(&pool->lock, flags);
5762 if (pool->nr_workers == pool->nr_idle)
5763 goto next_pool;
335a42eb
PM
5764
5765 /* How long the first pending work is waiting for a worker. */
5766 if (!list_empty(&pool->worklist))
5767 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5768
55df0933
IK
5769 /*
5770 * Defer printing to avoid deadlocks in console drivers that
5771 * queue work while holding locks also taken in their write
5772 * paths.
5773 */
5774 printk_deferred_enter();
5775 pr_info("pool %d:", pool->id);
5776 pr_cont_pool_info(pool);
335a42eb 5777 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
5778 if (pool->manager)
5779 pr_cont(" manager: %d",
5780 task_pid_nr(pool->manager->task));
5781 list_for_each_entry(worker, &pool->idle_list, entry) {
5782 pr_cont(" %s%d", first ? "idle: " : "",
5783 task_pid_nr(worker->task));
5784 first = false;
5785 }
5786 pr_cont("\n");
5787 printk_deferred_exit();
5788next_pool:
5789 raw_spin_unlock_irqrestore(&pool->lock, flags);
5790 /*
5791 * We could be printing a lot from atomic context, e.g.
5792 * sysrq-t -> show_all_workqueues(). Avoid triggering
5793 * hard lockup.
5794 */
5795 touch_nmi_watchdog();
5796
5797}
5798
5799/**
5800 * show_all_workqueues - dump workqueue state
5801 *
704bc669 5802 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
5803 */
5804void show_all_workqueues(void)
5805{
5806 struct workqueue_struct *wq;
5807 struct worker_pool *pool;
5808 int pi;
5809
5810 rcu_read_lock();
5811
5812 pr_info("Showing busy workqueues and worker pools:\n");
5813
5814 list_for_each_entry_rcu(wq, &workqueues, list)
5815 show_one_workqueue(wq);
5816
5817 for_each_pool(pool, pi)
5818 show_one_worker_pool(pool);
5819
24acfb71 5820 rcu_read_unlock();
3494fc30
TH
5821}
5822
704bc669
JL
5823/**
5824 * show_freezable_workqueues - dump freezable workqueue state
5825 *
5826 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5827 * still busy.
5828 */
5829void show_freezable_workqueues(void)
5830{
5831 struct workqueue_struct *wq;
5832
5833 rcu_read_lock();
5834
5835 pr_info("Showing freezable workqueues that are still busy:\n");
5836
5837 list_for_each_entry_rcu(wq, &workqueues, list) {
5838 if (!(wq->flags & WQ_FREEZABLE))
5839 continue;
5840 show_one_workqueue(wq);
5841 }
5842
5843 rcu_read_unlock();
5844}
5845
6b59808b
TH
5846/* used to show worker information through /proc/PID/{comm,stat,status} */
5847void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5848{
6b59808b
TH
5849 int off;
5850
5851 /* always show the actual comm */
5852 off = strscpy(buf, task->comm, size);
5853 if (off < 0)
5854 return;
5855
197f6acc 5856 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
5857 mutex_lock(&wq_pool_attach_mutex);
5858
197f6acc
TH
5859 if (task->flags & PF_WQ_WORKER) {
5860 struct worker *worker = kthread_data(task);
5861 struct worker_pool *pool = worker->pool;
6b59808b 5862
197f6acc 5863 if (pool) {
a9b8a985 5864 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
5865 /*
5866 * ->desc tracks information (wq name or
5867 * set_worker_desc()) for the latest execution. If
5868 * current, prepend '+', otherwise '-'.
5869 */
5870 if (worker->desc[0] != '\0') {
5871 if (worker->current_work)
5872 scnprintf(buf + off, size - off, "+%s",
5873 worker->desc);
5874 else
5875 scnprintf(buf + off, size - off, "-%s",
5876 worker->desc);
5877 }
a9b8a985 5878 raw_spin_unlock_irq(&pool->lock);
6b59808b 5879 }
6b59808b
TH
5880 }
5881
5882 mutex_unlock(&wq_pool_attach_mutex);
5883}
5884
66448bc2
MM
5885#ifdef CONFIG_SMP
5886
db7bccf4
TH
5887/*
5888 * CPU hotplug.
5889 *
e22bee78 5890 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 5891 * are a lot of assumptions on strong associations among work, pwq and
706026c2 5892 * pool which make migrating pending and scheduled works very
e22bee78 5893 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 5894 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
5895 * blocked draining impractical.
5896 *
24647570 5897 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
5898 * running as an unbound one and allowing it to be reattached later if the
5899 * cpu comes back online.
db7bccf4 5900 */
1da177e4 5901
e8b3f8db 5902static void unbind_workers(int cpu)
3af24433 5903{
4ce62e9e 5904 struct worker_pool *pool;
db7bccf4 5905 struct worker *worker;
3af24433 5906
f02ae73a 5907 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 5908 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 5909 raw_spin_lock_irq(&pool->lock);
3af24433 5910
94cf58bb 5911 /*
92f9c5c4 5912 * We've blocked all attach/detach operations. Make all workers
94cf58bb 5913 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 5914 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
5915 * And the preemption disabled section in their sched callbacks
5916 * are guaranteed to see WORKER_UNBOUND since the code here
5917 * is on the same cpu.
94cf58bb 5918 */
da028469 5919 for_each_pool_worker(worker, pool)
c9e7cf27 5920 worker->flags |= WORKER_UNBOUND;
06ba38a9 5921
24647570 5922 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 5923
eb283428 5924 /*
989442d7
LJ
5925 * The handling of nr_running in sched callbacks are disabled
5926 * now. Zap nr_running. After this, nr_running stays zero and
5927 * need_more_worker() and keep_working() are always true as
5928 * long as the worklist is not empty. This pool now behaves as
5929 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
5930 * are served by workers tied to the pool.
5931 */
bc35f7ef 5932 pool->nr_running = 0;
eb283428
LJ
5933
5934 /*
5935 * With concurrency management just turned off, a busy
5936 * worker blocking could lead to lengthy stalls. Kick off
5937 * unbound chain execution of currently pending work items.
5938 */
0219a352 5939 kick_pool(pool);
989442d7 5940
a9b8a985 5941 raw_spin_unlock_irq(&pool->lock);
989442d7 5942
793777bc
VS
5943 for_each_pool_worker(worker, pool)
5944 unbind_worker(worker);
989442d7
LJ
5945
5946 mutex_unlock(&wq_pool_attach_mutex);
eb283428 5947 }
3af24433 5948}
3af24433 5949
bd7c089e
TH
5950/**
5951 * rebind_workers - rebind all workers of a pool to the associated CPU
5952 * @pool: pool of interest
5953 *
a9ab775b 5954 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5955 */
5956static void rebind_workers(struct worker_pool *pool)
5957{
a9ab775b 5958 struct worker *worker;
bd7c089e 5959
1258fae7 5960 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5961
a9ab775b
TH
5962 /*
5963 * Restore CPU affinity of all workers. As all idle workers should
5964 * be on the run-queue of the associated CPU before any local
402dd89d 5965 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5966 * of all workers first and then clear UNBOUND. As we're called
5967 * from CPU_ONLINE, the following shouldn't fail.
5968 */
c63a2e52
VS
5969 for_each_pool_worker(worker, pool) {
5970 kthread_set_per_cpu(worker->task, pool->cpu);
5971 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
9546b29e 5972 pool_allowed_cpus(pool)) < 0);
c63a2e52 5973 }
bd7c089e 5974
a9b8a985 5975 raw_spin_lock_irq(&pool->lock);
f7c17d26 5976
3de5e884 5977 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5978
da028469 5979 for_each_pool_worker(worker, pool) {
a9ab775b 5980 unsigned int worker_flags = worker->flags;
bd7c089e 5981
a9ab775b
TH
5982 /*
5983 * We want to clear UNBOUND but can't directly call
5984 * worker_clr_flags() or adjust nr_running. Atomically
5985 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5986 * @worker will clear REBOUND using worker_clr_flags() when
5987 * it initiates the next execution cycle thus restoring
5988 * concurrency management. Note that when or whether
5989 * @worker clears REBOUND doesn't affect correctness.
5990 *
c95491ed 5991 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5992 * tested without holding any lock in
6d25be57 5993 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5994 * fail incorrectly leading to premature concurrency
5995 * management operations.
5996 */
5997 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5998 worker_flags |= WORKER_REBOUND;
5999 worker_flags &= ~WORKER_UNBOUND;
c95491ed 6000 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 6001 }
a9ab775b 6002
a9b8a985 6003 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
6004}
6005
7dbc725e
TH
6006/**
6007 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6008 * @pool: unbound pool of interest
6009 * @cpu: the CPU which is coming up
6010 *
6011 * An unbound pool may end up with a cpumask which doesn't have any online
6012 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6013 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6014 * online CPU before, cpus_allowed of all its workers should be restored.
6015 */
6016static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6017{
6018 static cpumask_t cpumask;
6019 struct worker *worker;
7dbc725e 6020
1258fae7 6021 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
6022
6023 /* is @cpu allowed for @pool? */
6024 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6025 return;
6026
7dbc725e 6027 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
6028
6029 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 6030 for_each_pool_worker(worker, pool)
d945b5e9 6031 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
6032}
6033
7ee681b2
TG
6034int workqueue_prepare_cpu(unsigned int cpu)
6035{
6036 struct worker_pool *pool;
6037
6038 for_each_cpu_worker_pool(pool, cpu) {
6039 if (pool->nr_workers)
6040 continue;
6041 if (!create_worker(pool))
6042 return -ENOMEM;
6043 }
6044 return 0;
6045}
6046
6047int workqueue_online_cpu(unsigned int cpu)
3af24433 6048{
4ce62e9e 6049 struct worker_pool *pool;
4c16bd32 6050 struct workqueue_struct *wq;
7dbc725e 6051 int pi;
3ce63377 6052
7ee681b2 6053 mutex_lock(&wq_pool_mutex);
7dbc725e 6054
7ee681b2 6055 for_each_pool(pool, pi) {
1258fae7 6056 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 6057
7ee681b2
TG
6058 if (pool->cpu == cpu)
6059 rebind_workers(pool);
6060 else if (pool->cpu < 0)
6061 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 6062
1258fae7 6063 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 6064 }
6ba94429 6065
fef59c9c 6066 /* update pod affinity of unbound workqueues */
4cbfd3de 6067 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6068 struct workqueue_attrs *attrs = wq->unbound_attrs;
6069
6070 if (attrs) {
6071 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6072 int tcpu;
4cbfd3de 6073
84193c07 6074 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6075 wq_update_pod(wq, tcpu, cpu, true);
5797b1c1
TH
6076
6077 mutex_lock(&wq->mutex);
6078 wq_update_node_max_active(wq, -1);
6079 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6080 }
6081 }
6ba94429 6082
7ee681b2
TG
6083 mutex_unlock(&wq_pool_mutex);
6084 return 0;
6ba94429
FW
6085}
6086
7ee681b2 6087int workqueue_offline_cpu(unsigned int cpu)
6ba94429 6088{
6ba94429
FW
6089 struct workqueue_struct *wq;
6090
7ee681b2 6091 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
6092 if (WARN_ON(cpu != smp_processor_id()))
6093 return -1;
6094
6095 unbind_workers(cpu);
7ee681b2 6096
fef59c9c 6097 /* update pod affinity of unbound workqueues */
7ee681b2 6098 mutex_lock(&wq_pool_mutex);
4cbfd3de 6099 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
6100 struct workqueue_attrs *attrs = wq->unbound_attrs;
6101
6102 if (attrs) {
6103 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6104 int tcpu;
4cbfd3de 6105
84193c07 6106 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 6107 wq_update_pod(wq, tcpu, cpu, false);
5797b1c1
TH
6108
6109 mutex_lock(&wq->mutex);
6110 wq_update_node_max_active(wq, cpu);
6111 mutex_unlock(&wq->mutex);
4cbfd3de
TH
6112 }
6113 }
7ee681b2
TG
6114 mutex_unlock(&wq_pool_mutex);
6115
7ee681b2 6116 return 0;
6ba94429
FW
6117}
6118
6ba94429
FW
6119struct work_for_cpu {
6120 struct work_struct work;
6121 long (*fn)(void *);
6122 void *arg;
6123 long ret;
6124};
6125
6126static void work_for_cpu_fn(struct work_struct *work)
6127{
6128 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6129
6130 wfc->ret = wfc->fn(wfc->arg);
6131}
6132
6133/**
265f3ed0 6134 * work_on_cpu_key - run a function in thread context on a particular cpu
6ba94429
FW
6135 * @cpu: the cpu to run on
6136 * @fn: the function to run
6137 * @arg: the function arg
265f3ed0 6138 * @key: The lock class key for lock debugging purposes
6ba94429
FW
6139 *
6140 * It is up to the caller to ensure that the cpu doesn't go offline.
6141 * The caller must not hold any locks which would prevent @fn from completing.
6142 *
6143 * Return: The value @fn returns.
6144 */
265f3ed0
FW
6145long work_on_cpu_key(int cpu, long (*fn)(void *),
6146 void *arg, struct lock_class_key *key)
6ba94429
FW
6147{
6148 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6149
265f3ed0 6150 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6ba94429
FW
6151 schedule_work_on(cpu, &wfc.work);
6152 flush_work(&wfc.work);
6153 destroy_work_on_stack(&wfc.work);
6154 return wfc.ret;
6155}
265f3ed0 6156EXPORT_SYMBOL_GPL(work_on_cpu_key);
0e8d6a93
TG
6157
6158/**
265f3ed0 6159 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
0e8d6a93
TG
6160 * @cpu: the cpu to run on
6161 * @fn: the function to run
6162 * @arg: the function argument
265f3ed0 6163 * @key: The lock class key for lock debugging purposes
0e8d6a93
TG
6164 *
6165 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6166 * any locks which would prevent @fn from completing.
6167 *
6168 * Return: The value @fn returns.
6169 */
265f3ed0
FW
6170long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6171 void *arg, struct lock_class_key *key)
0e8d6a93
TG
6172{
6173 long ret = -ENODEV;
6174
ffd8bea8 6175 cpus_read_lock();
0e8d6a93 6176 if (cpu_online(cpu))
265f3ed0 6177 ret = work_on_cpu_key(cpu, fn, arg, key);
ffd8bea8 6178 cpus_read_unlock();
0e8d6a93
TG
6179 return ret;
6180}
265f3ed0 6181EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6ba94429
FW
6182#endif /* CONFIG_SMP */
6183
6184#ifdef CONFIG_FREEZER
6185
6186/**
6187 * freeze_workqueues_begin - begin freezing workqueues
6188 *
6189 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 6190 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
6191 * pool->worklist.
6192 *
6193 * CONTEXT:
6194 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6195 */
6196void freeze_workqueues_begin(void)
6197{
6198 struct workqueue_struct *wq;
6ba94429
FW
6199
6200 mutex_lock(&wq_pool_mutex);
6201
6202 WARN_ON_ONCE(workqueue_freezing);
6203 workqueue_freezing = true;
6204
6205 list_for_each_entry(wq, &workqueues, list) {
6206 mutex_lock(&wq->mutex);
a045a272 6207 wq_adjust_max_active(wq);
6ba94429
FW
6208 mutex_unlock(&wq->mutex);
6209 }
6210
6211 mutex_unlock(&wq_pool_mutex);
6212}
6213
6214/**
6215 * freeze_workqueues_busy - are freezable workqueues still busy?
6216 *
6217 * Check whether freezing is complete. This function must be called
6218 * between freeze_workqueues_begin() and thaw_workqueues().
6219 *
6220 * CONTEXT:
6221 * Grabs and releases wq_pool_mutex.
6222 *
6223 * Return:
6224 * %true if some freezable workqueues are still busy. %false if freezing
6225 * is complete.
6226 */
6227bool freeze_workqueues_busy(void)
6228{
6229 bool busy = false;
6230 struct workqueue_struct *wq;
6231 struct pool_workqueue *pwq;
6232
6233 mutex_lock(&wq_pool_mutex);
6234
6235 WARN_ON_ONCE(!workqueue_freezing);
6236
6237 list_for_each_entry(wq, &workqueues, list) {
6238 if (!(wq->flags & WQ_FREEZABLE))
6239 continue;
6240 /*
6241 * nr_active is monotonically decreasing. It's safe
6242 * to peek without lock.
6243 */
24acfb71 6244 rcu_read_lock();
6ba94429
FW
6245 for_each_pwq(pwq, wq) {
6246 WARN_ON_ONCE(pwq->nr_active < 0);
6247 if (pwq->nr_active) {
6248 busy = true;
24acfb71 6249 rcu_read_unlock();
6ba94429
FW
6250 goto out_unlock;
6251 }
6252 }
24acfb71 6253 rcu_read_unlock();
6ba94429
FW
6254 }
6255out_unlock:
6256 mutex_unlock(&wq_pool_mutex);
6257 return busy;
6258}
6259
6260/**
6261 * thaw_workqueues - thaw workqueues
6262 *
6263 * Thaw workqueues. Normal queueing is restored and all collected
6264 * frozen works are transferred to their respective pool worklists.
6265 *
6266 * CONTEXT:
6267 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6268 */
6269void thaw_workqueues(void)
6270{
6271 struct workqueue_struct *wq;
6ba94429
FW
6272
6273 mutex_lock(&wq_pool_mutex);
6274
6275 if (!workqueue_freezing)
6276 goto out_unlock;
6277
6278 workqueue_freezing = false;
6279
6280 /* restore max_active and repopulate worklist */
6281 list_for_each_entry(wq, &workqueues, list) {
6282 mutex_lock(&wq->mutex);
a045a272 6283 wq_adjust_max_active(wq);
6ba94429
FW
6284 mutex_unlock(&wq->mutex);
6285 }
6286
6287out_unlock:
6288 mutex_unlock(&wq_pool_mutex);
6289}
6290#endif /* CONFIG_FREEZER */
6291
99c621ef 6292static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
6293{
6294 LIST_HEAD(ctxs);
6295 int ret = 0;
6296 struct workqueue_struct *wq;
6297 struct apply_wqattrs_ctx *ctx, *n;
6298
6299 lockdep_assert_held(&wq_pool_mutex);
6300
6301 list_for_each_entry(wq, &workqueues, list) {
6302 if (!(wq->flags & WQ_UNBOUND))
6303 continue;
ca10d851 6304
042f7df1 6305 /* creating multiple pwqs breaks ordering guarantee */
ca10d851
WL
6306 if (!list_empty(&wq->pwqs)) {
6307 if (wq->flags & __WQ_ORDERED_EXPLICIT)
6308 continue;
6309 wq->flags &= ~__WQ_ORDERED;
6310 }
042f7df1 6311
99c621ef 6312 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
6313 if (IS_ERR(ctx)) {
6314 ret = PTR_ERR(ctx);
042f7df1
LJ
6315 break;
6316 }
6317
6318 list_add_tail(&ctx->list, &ctxs);
6319 }
6320
6321 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6322 if (!ret)
6323 apply_wqattrs_commit(ctx);
6324 apply_wqattrs_cleanup(ctx);
6325 }
6326
99c621ef
LJ
6327 if (!ret) {
6328 mutex_lock(&wq_pool_attach_mutex);
6329 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6330 mutex_unlock(&wq_pool_attach_mutex);
6331 }
042f7df1
LJ
6332 return ret;
6333}
6334
fe28f631
WL
6335/**
6336 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6337 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6338 *
6339 * This function can be called from cpuset code to provide a set of isolated
6340 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6341 * either cpus_read_lock or cpus_write_lock.
6342 */
6343int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6344{
6345 cpumask_var_t cpumask;
6346 int ret = 0;
6347
6348 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6349 return -ENOMEM;
6350
6351 lockdep_assert_cpus_held();
6352 mutex_lock(&wq_pool_mutex);
6353
6354 /* Save the current isolated cpumask & export it via sysfs */
6355 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6356
6357 /*
6358 * If the operation fails, it will fall back to
6359 * wq_requested_unbound_cpumask which is initially set to
6360 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6361 * by any subsequent write to workqueue/cpumask sysfs file.
6362 */
6363 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6364 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6365 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6366 ret = workqueue_apply_unbound_cpumask(cpumask);
6367
6368 mutex_unlock(&wq_pool_mutex);
6369 free_cpumask_var(cpumask);
6370 return ret;
6371}
6372
63c5484e
TH
6373static int parse_affn_scope(const char *val)
6374{
6375 int i;
6376
6377 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6378 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6379 return i;
6380 }
6381 return -EINVAL;
6382}
6383
6384static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6385{
523a301e
TH
6386 struct workqueue_struct *wq;
6387 int affn, cpu;
63c5484e
TH
6388
6389 affn = parse_affn_scope(val);
6390 if (affn < 0)
6391 return affn;
523a301e
TH
6392 if (affn == WQ_AFFN_DFL)
6393 return -EINVAL;
6394
6395 cpus_read_lock();
6396 mutex_lock(&wq_pool_mutex);
63c5484e
TH
6397
6398 wq_affn_dfl = affn;
523a301e
TH
6399
6400 list_for_each_entry(wq, &workqueues, list) {
6401 for_each_online_cpu(cpu) {
6402 wq_update_pod(wq, cpu, cpu, true);
6403 }
6404 }
6405
6406 mutex_unlock(&wq_pool_mutex);
6407 cpus_read_unlock();
6408
63c5484e
TH
6409 return 0;
6410}
6411
6412static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6413{
6414 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6415}
6416
6417static const struct kernel_param_ops wq_affn_dfl_ops = {
6418 .set = wq_affn_dfl_set,
6419 .get = wq_affn_dfl_get,
6420};
6421
6422module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6423
6ba94429
FW
6424#ifdef CONFIG_SYSFS
6425/*
6426 * Workqueues with WQ_SYSFS flag set is visible to userland via
6427 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6428 * following attributes.
6429 *
63c5484e
TH
6430 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6431 * max_active RW int : maximum number of in-flight work items
6ba94429
FW
6432 *
6433 * Unbound workqueues have the following extra attributes.
6434 *
63c5484e
TH
6435 * nice RW int : nice value of the workers
6436 * cpumask RW mask : bitmask of allowed CPUs for the workers
6437 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
8639eceb 6438 * affinity_strict RW bool : worker CPU affinity is strict
6ba94429
FW
6439 */
6440struct wq_device {
6441 struct workqueue_struct *wq;
6442 struct device dev;
6443};
6444
6445static struct workqueue_struct *dev_to_wq(struct device *dev)
6446{
6447 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6448
6449 return wq_dev->wq;
6450}
6451
6452static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6453 char *buf)
6454{
6455 struct workqueue_struct *wq = dev_to_wq(dev);
6456
6457 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6458}
6459static DEVICE_ATTR_RO(per_cpu);
6460
6461static ssize_t max_active_show(struct device *dev,
6462 struct device_attribute *attr, char *buf)
6463{
6464 struct workqueue_struct *wq = dev_to_wq(dev);
6465
6466 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6467}
6468
6469static ssize_t max_active_store(struct device *dev,
6470 struct device_attribute *attr, const char *buf,
6471 size_t count)
6472{
6473 struct workqueue_struct *wq = dev_to_wq(dev);
6474 int val;
6475
6476 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6477 return -EINVAL;
6478
6479 workqueue_set_max_active(wq, val);
6480 return count;
6481}
6482static DEVICE_ATTR_RW(max_active);
6483
6484static struct attribute *wq_sysfs_attrs[] = {
6485 &dev_attr_per_cpu.attr,
6486 &dev_attr_max_active.attr,
6487 NULL,
6488};
6489ATTRIBUTE_GROUPS(wq_sysfs);
6490
49277a5b
WL
6491static void apply_wqattrs_lock(void)
6492{
6493 /* CPUs should stay stable across pwq creations and installations */
6494 cpus_read_lock();
6495 mutex_lock(&wq_pool_mutex);
6496}
6497
6498static void apply_wqattrs_unlock(void)
6499{
6500 mutex_unlock(&wq_pool_mutex);
6501 cpus_read_unlock();
6502}
6503
6ba94429
FW
6504static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6505 char *buf)
6506{
6507 struct workqueue_struct *wq = dev_to_wq(dev);
6508 int written;
6509
6510 mutex_lock(&wq->mutex);
6511 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6512 mutex_unlock(&wq->mutex);
6513
6514 return written;
6515}
6516
6517/* prepare workqueue_attrs for sysfs store operations */
6518static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6519{
6520 struct workqueue_attrs *attrs;
6521
899a94fe
LJ
6522 lockdep_assert_held(&wq_pool_mutex);
6523
be69d00d 6524 attrs = alloc_workqueue_attrs();
6ba94429
FW
6525 if (!attrs)
6526 return NULL;
6527
6ba94429 6528 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
6529 return attrs;
6530}
6531
6532static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6533 const char *buf, size_t count)
6534{
6535 struct workqueue_struct *wq = dev_to_wq(dev);
6536 struct workqueue_attrs *attrs;
d4d3e257
LJ
6537 int ret = -ENOMEM;
6538
6539 apply_wqattrs_lock();
6ba94429
FW
6540
6541 attrs = wq_sysfs_prep_attrs(wq);
6542 if (!attrs)
d4d3e257 6543 goto out_unlock;
6ba94429
FW
6544
6545 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6546 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 6547 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
6548 else
6549 ret = -EINVAL;
6550
d4d3e257
LJ
6551out_unlock:
6552 apply_wqattrs_unlock();
6ba94429
FW
6553 free_workqueue_attrs(attrs);
6554 return ret ?: count;
6555}
6556
6557static ssize_t wq_cpumask_show(struct device *dev,
6558 struct device_attribute *attr, char *buf)
6559{
6560 struct workqueue_struct *wq = dev_to_wq(dev);
6561 int written;
6562
6563 mutex_lock(&wq->mutex);
6564 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6565 cpumask_pr_args(wq->unbound_attrs->cpumask));
6566 mutex_unlock(&wq->mutex);
6567 return written;
6568}
6569
6570static ssize_t wq_cpumask_store(struct device *dev,
6571 struct device_attribute *attr,
6572 const char *buf, size_t count)
6573{
6574 struct workqueue_struct *wq = dev_to_wq(dev);
6575 struct workqueue_attrs *attrs;
d4d3e257
LJ
6576 int ret = -ENOMEM;
6577
6578 apply_wqattrs_lock();
6ba94429
FW
6579
6580 attrs = wq_sysfs_prep_attrs(wq);
6581 if (!attrs)
d4d3e257 6582 goto out_unlock;
6ba94429
FW
6583
6584 ret = cpumask_parse(buf, attrs->cpumask);
6585 if (!ret)
d4d3e257 6586 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 6587
d4d3e257
LJ
6588out_unlock:
6589 apply_wqattrs_unlock();
6ba94429
FW
6590 free_workqueue_attrs(attrs);
6591 return ret ?: count;
6592}
6593
63c5484e
TH
6594static ssize_t wq_affn_scope_show(struct device *dev,
6595 struct device_attribute *attr, char *buf)
6596{
6597 struct workqueue_struct *wq = dev_to_wq(dev);
6598 int written;
6599
6600 mutex_lock(&wq->mutex);
523a301e
TH
6601 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6602 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6603 wq_affn_names[WQ_AFFN_DFL],
6604 wq_affn_names[wq_affn_dfl]);
6605 else
6606 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6607 wq_affn_names[wq->unbound_attrs->affn_scope]);
63c5484e
TH
6608 mutex_unlock(&wq->mutex);
6609
6610 return written;
6611}
6612
6613static ssize_t wq_affn_scope_store(struct device *dev,
6614 struct device_attribute *attr,
6615 const char *buf, size_t count)
6616{
6617 struct workqueue_struct *wq = dev_to_wq(dev);
6618 struct workqueue_attrs *attrs;
6619 int affn, ret = -ENOMEM;
6620
6621 affn = parse_affn_scope(buf);
6622 if (affn < 0)
6623 return affn;
6624
6625 apply_wqattrs_lock();
6626 attrs = wq_sysfs_prep_attrs(wq);
6627 if (attrs) {
6628 attrs->affn_scope = affn;
6629 ret = apply_workqueue_attrs_locked(wq, attrs);
6630 }
6631 apply_wqattrs_unlock();
6632 free_workqueue_attrs(attrs);
6633 return ret ?: count;
6634}
6635
8639eceb
TH
6636static ssize_t wq_affinity_strict_show(struct device *dev,
6637 struct device_attribute *attr, char *buf)
6638{
6639 struct workqueue_struct *wq = dev_to_wq(dev);
6640
6641 return scnprintf(buf, PAGE_SIZE, "%d\n",
6642 wq->unbound_attrs->affn_strict);
6643}
6644
6645static ssize_t wq_affinity_strict_store(struct device *dev,
6646 struct device_attribute *attr,
6647 const char *buf, size_t count)
6648{
6649 struct workqueue_struct *wq = dev_to_wq(dev);
6650 struct workqueue_attrs *attrs;
6651 int v, ret = -ENOMEM;
6652
6653 if (sscanf(buf, "%d", &v) != 1)
6654 return -EINVAL;
6655
6656 apply_wqattrs_lock();
6657 attrs = wq_sysfs_prep_attrs(wq);
6658 if (attrs) {
6659 attrs->affn_strict = (bool)v;
6660 ret = apply_workqueue_attrs_locked(wq, attrs);
6661 }
6662 apply_wqattrs_unlock();
6663 free_workqueue_attrs(attrs);
6664 return ret ?: count;
6665}
6666
6ba94429 6667static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
6668 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6669 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
63c5484e 6670 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
8639eceb 6671 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6ba94429
FW
6672 __ATTR_NULL,
6673};
8ccad40d 6674
6ba94429
FW
6675static struct bus_type wq_subsys = {
6676 .name = "workqueue",
6677 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
6678};
6679
49277a5b
WL
6680/**
6681 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6682 * @cpumask: the cpumask to set
6683 *
6684 * The low-level workqueues cpumask is a global cpumask that limits
6685 * the affinity of all unbound workqueues. This function check the @cpumask
6686 * and apply it to all unbound workqueues and updates all pwqs of them.
6687 *
6688 * Return: 0 - Success
6689 * -EINVAL - Invalid @cpumask
6690 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6691 */
6692static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6693{
6694 int ret = -EINVAL;
6695
6696 /*
6697 * Not excluding isolated cpus on purpose.
6698 * If the user wishes to include them, we allow that.
6699 */
6700 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6701 if (!cpumask_empty(cpumask)) {
6702 apply_wqattrs_lock();
6703 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6704 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6705 ret = 0;
6706 goto out_unlock;
6707 }
6708
6709 ret = workqueue_apply_unbound_cpumask(cpumask);
6710
6711out_unlock:
6712 apply_wqattrs_unlock();
6713 }
6714
6715 return ret;
6716}
6717
fe28f631
WL
6718static ssize_t __wq_cpumask_show(struct device *dev,
6719 struct device_attribute *attr, char *buf, cpumask_var_t mask)
b05a7928
FW
6720{
6721 int written;
6722
042f7df1 6723 mutex_lock(&wq_pool_mutex);
fe28f631 6724 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
042f7df1 6725 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
6726
6727 return written;
6728}
6729
fe28f631
WL
6730static ssize_t wq_unbound_cpumask_show(struct device *dev,
6731 struct device_attribute *attr, char *buf)
6732{
6733 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6734}
6735
6736static ssize_t wq_requested_cpumask_show(struct device *dev,
6737 struct device_attribute *attr, char *buf)
6738{
6739 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6740}
6741
6742static ssize_t wq_isolated_cpumask_show(struct device *dev,
6743 struct device_attribute *attr, char *buf)
6744{
6745 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6746}
6747
042f7df1
LJ
6748static ssize_t wq_unbound_cpumask_store(struct device *dev,
6749 struct device_attribute *attr, const char *buf, size_t count)
6750{
6751 cpumask_var_t cpumask;
6752 int ret;
6753
6754 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6755 return -ENOMEM;
6756
6757 ret = cpumask_parse(buf, cpumask);
6758 if (!ret)
6759 ret = workqueue_set_unbound_cpumask(cpumask);
6760
6761 free_cpumask_var(cpumask);
6762 return ret ? ret : count;
6763}
6764
fe28f631 6765static struct device_attribute wq_sysfs_cpumask_attrs[] = {
042f7df1 6766 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
fe28f631
WL
6767 wq_unbound_cpumask_store),
6768 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6769 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6770 __ATTR_NULL,
6771};
b05a7928 6772
6ba94429 6773static int __init wq_sysfs_init(void)
2d3854a3 6774{
686f6697 6775 struct device *dev_root;
b05a7928
FW
6776 int err;
6777
6778 err = subsys_virtual_register(&wq_subsys, NULL);
6779 if (err)
6780 return err;
6781
686f6697
GKH
6782 dev_root = bus_get_dev_root(&wq_subsys);
6783 if (dev_root) {
fe28f631
WL
6784 struct device_attribute *attr;
6785
6786 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6787 err = device_create_file(dev_root, attr);
6788 if (err)
6789 break;
6790 }
686f6697
GKH
6791 put_device(dev_root);
6792 }
6793 return err;
2d3854a3 6794}
6ba94429 6795core_initcall(wq_sysfs_init);
2d3854a3 6796
6ba94429 6797static void wq_device_release(struct device *dev)
2d3854a3 6798{
6ba94429 6799 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 6800
6ba94429 6801 kfree(wq_dev);
2d3854a3 6802}
a0a1a5fd
TH
6803
6804/**
6ba94429
FW
6805 * workqueue_sysfs_register - make a workqueue visible in sysfs
6806 * @wq: the workqueue to register
a0a1a5fd 6807 *
6ba94429
FW
6808 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6809 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6810 * which is the preferred method.
a0a1a5fd 6811 *
6ba94429
FW
6812 * Workqueue user should use this function directly iff it wants to apply
6813 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6814 * apply_workqueue_attrs() may race against userland updating the
6815 * attributes.
6816 *
6817 * Return: 0 on success, -errno on failure.
a0a1a5fd 6818 */
6ba94429 6819int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 6820{
6ba94429
FW
6821 struct wq_device *wq_dev;
6822 int ret;
a0a1a5fd 6823
6ba94429 6824 /*
402dd89d 6825 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
6826 * attributes breaks ordering guarantee. Disallow exposing ordered
6827 * workqueues.
6828 */
0a94efb5 6829 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 6830 return -EINVAL;
a0a1a5fd 6831
6ba94429
FW
6832 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6833 if (!wq_dev)
6834 return -ENOMEM;
5bcab335 6835
6ba94429
FW
6836 wq_dev->wq = wq;
6837 wq_dev->dev.bus = &wq_subsys;
6ba94429 6838 wq_dev->dev.release = wq_device_release;
23217b44 6839 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 6840
6ba94429
FW
6841 /*
6842 * unbound_attrs are created separately. Suppress uevent until
6843 * everything is ready.
6844 */
6845 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 6846
6ba94429
FW
6847 ret = device_register(&wq_dev->dev);
6848 if (ret) {
537f4146 6849 put_device(&wq_dev->dev);
6ba94429
FW
6850 wq->wq_dev = NULL;
6851 return ret;
6852 }
a0a1a5fd 6853
6ba94429
FW
6854 if (wq->flags & WQ_UNBOUND) {
6855 struct device_attribute *attr;
a0a1a5fd 6856
6ba94429
FW
6857 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6858 ret = device_create_file(&wq_dev->dev, attr);
6859 if (ret) {
6860 device_unregister(&wq_dev->dev);
6861 wq->wq_dev = NULL;
6862 return ret;
a0a1a5fd
TH
6863 }
6864 }
6865 }
6ba94429
FW
6866
6867 dev_set_uevent_suppress(&wq_dev->dev, false);
6868 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6869 return 0;
a0a1a5fd
TH
6870}
6871
6872/**
6ba94429
FW
6873 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6874 * @wq: the workqueue to unregister
a0a1a5fd 6875 *
6ba94429 6876 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 6877 */
6ba94429 6878static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 6879{
6ba94429 6880 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 6881
6ba94429
FW
6882 if (!wq->wq_dev)
6883 return;
a0a1a5fd 6884
6ba94429
FW
6885 wq->wq_dev = NULL;
6886 device_unregister(&wq_dev->dev);
a0a1a5fd 6887}
6ba94429
FW
6888#else /* CONFIG_SYSFS */
6889static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6890#endif /* CONFIG_SYSFS */
a0a1a5fd 6891
82607adc
TH
6892/*
6893 * Workqueue watchdog.
6894 *
6895 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6896 * flush dependency, a concurrency managed work item which stays RUNNING
6897 * indefinitely. Workqueue stalls can be very difficult to debug as the
6898 * usual warning mechanisms don't trigger and internal workqueue state is
6899 * largely opaque.
6900 *
6901 * Workqueue watchdog monitors all worker pools periodically and dumps
6902 * state if some pools failed to make forward progress for a while where
6903 * forward progress is defined as the first item on ->worklist changing.
6904 *
6905 * This mechanism is controlled through the kernel parameter
6906 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6907 * corresponding sysfs parameter file.
6908 */
6909#ifdef CONFIG_WQ_WATCHDOG
6910
82607adc 6911static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 6912static struct timer_list wq_watchdog_timer;
82607adc
TH
6913
6914static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6915static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6916
cd2440d6
PM
6917/*
6918 * Show workers that might prevent the processing of pending work items.
6919 * The only candidates are CPU-bound workers in the running state.
6920 * Pending work items should be handled by another idle worker
6921 * in all other situations.
6922 */
6923static void show_cpu_pool_hog(struct worker_pool *pool)
6924{
6925 struct worker *worker;
6926 unsigned long flags;
6927 int bkt;
6928
6929 raw_spin_lock_irqsave(&pool->lock, flags);
6930
6931 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6932 if (task_is_running(worker->task)) {
6933 /*
6934 * Defer printing to avoid deadlocks in console
6935 * drivers that queue work while holding locks
6936 * also taken in their write paths.
6937 */
6938 printk_deferred_enter();
6939
6940 pr_info("pool %d:\n", pool->id);
6941 sched_show_task(worker->task);
6942
6943 printk_deferred_exit();
6944 }
6945 }
6946
6947 raw_spin_unlock_irqrestore(&pool->lock, flags);
6948}
6949
6950static void show_cpu_pools_hogs(void)
6951{
6952 struct worker_pool *pool;
6953 int pi;
6954
6955 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6956
6957 rcu_read_lock();
6958
6959 for_each_pool(pool, pi) {
6960 if (pool->cpu_stall)
6961 show_cpu_pool_hog(pool);
6962
6963 }
6964
6965 rcu_read_unlock();
6966}
6967
82607adc
TH
6968static void wq_watchdog_reset_touched(void)
6969{
6970 int cpu;
6971
6972 wq_watchdog_touched = jiffies;
6973 for_each_possible_cpu(cpu)
6974 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6975}
6976
5cd79d6a 6977static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
6978{
6979 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6980 bool lockup_detected = false;
cd2440d6 6981 bool cpu_pool_stall = false;
940d71c6 6982 unsigned long now = jiffies;
82607adc
TH
6983 struct worker_pool *pool;
6984 int pi;
6985
6986 if (!thresh)
6987 return;
6988
6989 rcu_read_lock();
6990
6991 for_each_pool(pool, pi) {
6992 unsigned long pool_ts, touched, ts;
6993
cd2440d6 6994 pool->cpu_stall = false;
82607adc
TH
6995 if (list_empty(&pool->worklist))
6996 continue;
6997
940d71c6
SS
6998 /*
6999 * If a virtual machine is stopped by the host it can look to
7000 * the watchdog like a stall.
7001 */
7002 kvm_check_and_clear_guest_paused();
7003
82607adc 7004 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
7005 if (pool->cpu >= 0)
7006 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7007 else
7008 touched = READ_ONCE(wq_watchdog_touched);
82607adc 7009 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
7010
7011 if (time_after(pool_ts, touched))
7012 ts = pool_ts;
7013 else
7014 ts = touched;
7015
82607adc 7016 /* did we stall? */
940d71c6 7017 if (time_after(now, ts + thresh)) {
82607adc 7018 lockup_detected = true;
cd2440d6
PM
7019 if (pool->cpu >= 0) {
7020 pool->cpu_stall = true;
7021 cpu_pool_stall = true;
7022 }
82607adc
TH
7023 pr_emerg("BUG: workqueue lockup - pool");
7024 pr_cont_pool_info(pool);
7025 pr_cont(" stuck for %us!\n",
940d71c6 7026 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 7027 }
cd2440d6
PM
7028
7029
82607adc
TH
7030 }
7031
7032 rcu_read_unlock();
7033
7034 if (lockup_detected)
55df0933 7035 show_all_workqueues();
82607adc 7036
cd2440d6
PM
7037 if (cpu_pool_stall)
7038 show_cpu_pools_hogs();
7039
82607adc
TH
7040 wq_watchdog_reset_touched();
7041 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7042}
7043
cb9d7fd5 7044notrace void wq_watchdog_touch(int cpu)
82607adc
TH
7045{
7046 if (cpu >= 0)
7047 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
7048
7049 wq_watchdog_touched = jiffies;
82607adc
TH
7050}
7051
7052static void wq_watchdog_set_thresh(unsigned long thresh)
7053{
7054 wq_watchdog_thresh = 0;
7055 del_timer_sync(&wq_watchdog_timer);
7056
7057 if (thresh) {
7058 wq_watchdog_thresh = thresh;
7059 wq_watchdog_reset_touched();
7060 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7061 }
7062}
7063
7064static int wq_watchdog_param_set_thresh(const char *val,
7065 const struct kernel_param *kp)
7066{
7067 unsigned long thresh;
7068 int ret;
7069
7070 ret = kstrtoul(val, 0, &thresh);
7071 if (ret)
7072 return ret;
7073
7074 if (system_wq)
7075 wq_watchdog_set_thresh(thresh);
7076 else
7077 wq_watchdog_thresh = thresh;
7078
7079 return 0;
7080}
7081
7082static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7083 .set = wq_watchdog_param_set_thresh,
7084 .get = param_get_ulong,
7085};
7086
7087module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7088 0644);
7089
7090static void wq_watchdog_init(void)
7091{
5cd79d6a 7092 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
7093 wq_watchdog_set_thresh(wq_watchdog_thresh);
7094}
7095
7096#else /* CONFIG_WQ_WATCHDOG */
7097
7098static inline void wq_watchdog_init(void) { }
7099
7100#endif /* CONFIG_WQ_WATCHDOG */
7101
4a6c5607
TH
7102static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7103{
7104 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7105 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7106 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7107 return;
7108 }
7109
7110 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7111}
7112
3347fa09
TH
7113/**
7114 * workqueue_init_early - early init for workqueue subsystem
7115 *
2930155b
TH
7116 * This is the first step of three-staged workqueue subsystem initialization and
7117 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7118 * up. It sets up all the data structures and system workqueues and allows early
7119 * boot code to create workqueues and queue/cancel work items. Actual work item
7120 * execution starts only after kthreads can be created and scheduled right
7121 * before early initcalls.
3347fa09 7122 */
2333e829 7123void __init workqueue_init_early(void)
1da177e4 7124{
84193c07 7125 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c
TH
7126 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7127 int i, cpu;
c34056a3 7128
10cdb157 7129 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 7130
b05a7928 7131 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
fe28f631
WL
7132 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7133 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
b05a7928 7134
4a6c5607
TH
7135 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7136 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7137 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
ace3c549 7138 if (!cpumask_empty(&wq_cmdline_cpumask))
4a6c5607 7139 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
ace3c549 7140
fe28f631 7141 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
ace3c549 7142
e904e6c2
TH
7143 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7144
2930155b
TH
7145 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7146 BUG_ON(!wq_update_pod_attrs_buf);
7147
7bd20b6b
MT
7148 /*
7149 * If nohz_full is enabled, set power efficient workqueue as unbound.
7150 * This allows workqueue items to be moved to HK CPUs.
7151 */
7152 if (housekeeping_enabled(HK_TYPE_TICK))
7153 wq_power_efficient = true;
7154
84193c07
TH
7155 /* initialize WQ_AFFN_SYSTEM pods */
7156 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7157 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7158 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7159 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7160
7161 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7162
84193c07
TH
7163 pt->nr_pods = 1;
7164 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7165 pt->pod_node[0] = NUMA_NO_NODE;
7166 pt->cpu_pod[0] = 0;
7167
706026c2 7168 /* initialize CPU pools */
29c91e99 7169 for_each_possible_cpu(cpu) {
4ce62e9e 7170 struct worker_pool *pool;
8b03ae3c 7171
7a4e344c 7172 i = 0;
f02ae73a 7173 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 7174 BUG_ON(init_worker_pool(pool));
ec22ca5e 7175 pool->cpu = cpu;
29c91e99 7176 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
9546b29e 7177 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7a4e344c 7178 pool->attrs->nice = std_nice[i++];
8639eceb 7179 pool->attrs->affn_strict = true;
f3f90ad4 7180 pool->node = cpu_to_node(cpu);
7a4e344c 7181
9daf9e67 7182 /* alloc pool ID */
68e13a67 7183 mutex_lock(&wq_pool_mutex);
9daf9e67 7184 BUG_ON(worker_pool_assign_id(pool));
68e13a67 7185 mutex_unlock(&wq_pool_mutex);
4ce62e9e 7186 }
8b03ae3c
TH
7187 }
7188
8a2b7538 7189 /* create default unbound and ordered wq attrs */
29c91e99
TH
7190 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7191 struct workqueue_attrs *attrs;
7192
be69d00d 7193 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 7194 attrs->nice = std_nice[i];
29c91e99 7195 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
7196
7197 /*
7198 * An ordered wq should have only one pwq as ordering is
7199 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 7200 */
be69d00d 7201 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 7202 attrs->nice = std_nice[i];
af73f5c9 7203 attrs->ordered = true;
8a2b7538 7204 ordered_wq_attrs[i] = attrs;
29c91e99
TH
7205 }
7206
d320c038 7207 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 7208 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 7209 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 7210 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 7211 WQ_MAX_ACTIVE);
24d51add
TH
7212 system_freezable_wq = alloc_workqueue("events_freezable",
7213 WQ_FREEZABLE, 0);
0668106c
VK
7214 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7215 WQ_POWER_EFFICIENT, 0);
8318d6a6 7216 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
0668106c
VK
7217 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7218 0);
1aabe902 7219 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
7220 !system_unbound_wq || !system_freezable_wq ||
7221 !system_power_efficient_wq ||
7222 !system_freezable_power_efficient_wq);
3347fa09
TH
7223}
7224
aa6fde93
TH
7225static void __init wq_cpu_intensive_thresh_init(void)
7226{
7227 unsigned long thresh;
7228 unsigned long bogo;
7229
dd64c873
Z
7230 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7231 BUG_ON(IS_ERR(pwq_release_worker));
7232
aa6fde93
TH
7233 /* if the user set it to a specific value, keep it */
7234 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7235 return;
7236
7237 /*
7238 * The default of 10ms is derived from the fact that most modern (as of
7239 * 2023) processors can do a lot in 10ms and that it's just below what
7240 * most consider human-perceivable. However, the kernel also runs on a
7241 * lot slower CPUs including microcontrollers where the threshold is way
7242 * too low.
7243 *
7244 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7245 * This is by no means accurate but it doesn't have to be. The mechanism
7246 * is still useful even when the threshold is fully scaled up. Also, as
7247 * the reports would usually be applicable to everyone, some machines
7248 * operating on longer thresholds won't significantly diminish their
7249 * usefulness.
7250 */
7251 thresh = 10 * USEC_PER_MSEC;
7252
7253 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7254 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7255 if (bogo < 4000)
7256 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7257
7258 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7259 loops_per_jiffy, bogo, thresh);
7260
7261 wq_cpu_intensive_thresh_us = thresh;
7262}
7263
3347fa09
TH
7264/**
7265 * workqueue_init - bring workqueue subsystem fully online
7266 *
2930155b
TH
7267 * This is the second step of three-staged workqueue subsystem initialization
7268 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7269 * been created and work items queued on them, but there are no kworkers
7270 * executing the work items yet. Populate the worker pools with the initial
7271 * workers and enable future kworker creations.
3347fa09 7272 */
2333e829 7273void __init workqueue_init(void)
3347fa09 7274{
2186d9f9 7275 struct workqueue_struct *wq;
3347fa09
TH
7276 struct worker_pool *pool;
7277 int cpu, bkt;
7278
aa6fde93
TH
7279 wq_cpu_intensive_thresh_init();
7280
2186d9f9
TH
7281 mutex_lock(&wq_pool_mutex);
7282
2930155b
TH
7283 /*
7284 * Per-cpu pools created earlier could be missing node hint. Fix them
7285 * up. Also, create a rescuer for workqueues that requested it.
7286 */
2186d9f9
TH
7287 for_each_possible_cpu(cpu) {
7288 for_each_cpu_worker_pool(pool, cpu) {
7289 pool->node = cpu_to_node(cpu);
7290 }
7291 }
7292
40c17f75 7293 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
7294 WARN(init_rescuer(wq),
7295 "workqueue: failed to create early rescuer for %s",
7296 wq->name);
7297 }
2186d9f9
TH
7298
7299 mutex_unlock(&wq_pool_mutex);
7300
3347fa09
TH
7301 /* create the initial workers */
7302 for_each_online_cpu(cpu) {
7303 for_each_cpu_worker_pool(pool, cpu) {
7304 pool->flags &= ~POOL_DISASSOCIATED;
7305 BUG_ON(!create_worker(pool));
7306 }
7307 }
7308
7309 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7310 BUG_ON(!create_worker(pool));
7311
7312 wq_online = true;
82607adc 7313 wq_watchdog_init();
1da177e4 7314}
c4f135d6 7315
025e1684
TH
7316/*
7317 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7318 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7319 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7320 */
7321static void __init init_pod_type(struct wq_pod_type *pt,
7322 bool (*cpus_share_pod)(int, int))
7323{
7324 int cur, pre, cpu, pod;
7325
7326 pt->nr_pods = 0;
7327
7328 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7329 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7330 BUG_ON(!pt->cpu_pod);
7331
7332 for_each_possible_cpu(cur) {
7333 for_each_possible_cpu(pre) {
7334 if (pre >= cur) {
7335 pt->cpu_pod[cur] = pt->nr_pods++;
7336 break;
7337 }
7338 if (cpus_share_pod(cur, pre)) {
7339 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7340 break;
7341 }
7342 }
7343 }
7344
7345 /* init the rest to match @pt->cpu_pod[] */
7346 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7347 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7348 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7349
7350 for (pod = 0; pod < pt->nr_pods; pod++)
7351 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7352
7353 for_each_possible_cpu(cpu) {
7354 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7355 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7356 }
7357}
7358
63c5484e
TH
7359static bool __init cpus_dont_share(int cpu0, int cpu1)
7360{
7361 return false;
7362}
7363
7364static bool __init cpus_share_smt(int cpu0, int cpu1)
7365{
7366#ifdef CONFIG_SCHED_SMT
7367 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7368#else
7369 return false;
7370#endif
7371}
7372
025e1684
TH
7373static bool __init cpus_share_numa(int cpu0, int cpu1)
7374{
7375 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7376}
7377
2930155b
TH
7378/**
7379 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7380 *
7381 * This is the third step of there-staged workqueue subsystem initialization and
7382 * invoked after SMP and topology information are fully initialized. It
7383 * initializes the unbound CPU pods accordingly.
7384 */
7385void __init workqueue_init_topology(void)
a86feae6 7386{
2930155b 7387 struct workqueue_struct *wq;
025e1684 7388 int cpu;
a86feae6 7389
63c5484e
TH
7390 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7391 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7392 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
025e1684 7393 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 7394
2930155b 7395 mutex_lock(&wq_pool_mutex);
a86feae6 7396
2930155b
TH
7397 /*
7398 * Workqueues allocated earlier would have all CPUs sharing the default
7399 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7400 * combinations to apply per-pod sharing.
7401 */
7402 list_for_each_entry(wq, &workqueues, list) {
5797b1c1 7403 for_each_online_cpu(cpu)
2930155b 7404 wq_update_pod(wq, cpu, cpu, true);
5797b1c1
TH
7405 if (wq->flags & WQ_UNBOUND) {
7406 mutex_lock(&wq->mutex);
7407 wq_update_node_max_active(wq, -1);
7408 mutex_unlock(&wq->mutex);
2930155b
TH
7409 }
7410 }
7411
7412 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
7413}
7414
20bdedaf
TH
7415void __warn_flushing_systemwide_wq(void)
7416{
7417 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7418 dump_stack();
7419}
c4f135d6 7420EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 7421
7422static int __init workqueue_unbound_cpus_setup(char *str)
7423{
7424 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7425 cpumask_clear(&wq_cmdline_cpumask);
7426 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7427 }
7428
7429 return 1;
7430}
7431__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);