workqueue: Modularize wq_pod_type initialization
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
cd2440d6 52#include <linux/sched/debug.h>
62635ea8 53#include <linux/nmi.h>
940d71c6 54#include <linux/kvm_para.h>
aa6fde93 55#include <linux/delay.h>
e22bee78 56
ea138446 57#include "workqueue_internal.h"
1da177e4 58
c8e55f36 59enum {
24647570
TH
60 /*
61 * worker_pool flags
bc2ae0f5 62 *
24647570 63 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 70 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 71 *
bc3a1afc 72 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 73 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 74 * worker_attach_to_pool() is in progress.
bc2ae0f5 75 */
692b4825 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 78
c8e55f36 79 /* worker flags */
c8e55f36
TH
80 WORKER_DIE = 1 << 1, /* die die die */
81 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 82 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 86
a9ab775b
TH
87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
88 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 89
e34cdddb 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 91
29c91e99 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 94
e22bee78
TH
95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
97
3233cdbd
TH
98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
99 /* call for help after 10ms
100 (min two ticks) */
e22bee78
TH
101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
102 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
103
104 /*
105 * Rescue workers are used only on emergencies and shared by
8698a745 106 * all cpus. Give MIN_NICE.
e22bee78 107 */
8698a745
DY
108 RESCUER_NICE_LEVEL = MIN_NICE,
109 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
110
111 WQ_NAME_LEN = 24,
c8e55f36 112};
1da177e4
LT
113
114/*
4690c4ab
TH
115 * Structure fields follow one of the following exclusion rules.
116 *
e41e704b
TH
117 * I: Modifiable by initialization/destruction paths and read-only for
118 * everyone else.
4690c4ab 119 *
e22bee78
TH
120 * P: Preemption protected. Disabling preemption is enough and should
121 * only be modified and accessed from the local cpu.
122 *
d565ed63 123 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 124 *
bdf8b9bf
TH
125 * K: Only modified by worker while holding pool->lock. Can be safely read by
126 * self, while holding pool->lock or from IRQ context if %current is the
127 * kworker.
128 *
129 * S: Only modified by worker self.
130 *
1258fae7 131 * A: wq_pool_attach_mutex protected.
822d8405 132 *
68e13a67 133 * PL: wq_pool_mutex protected.
5bcab335 134 *
24acfb71 135 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 136 *
5b95e1af
LJ
137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
138 *
139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 140 * RCU for reads.
5b95e1af 141 *
3c25a55d
LJ
142 * WQ: wq->mutex protected.
143 *
24acfb71 144 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
145 *
146 * MD: wq_mayday_lock protected.
cd2440d6
PM
147 *
148 * WD: Used internally by the watchdog.
1da177e4 149 */
1da177e4 150
2eaebdb3 151/* struct worker is defined in workqueue_internal.h */
c34056a3 152
bd7bdd43 153struct worker_pool {
a9b8a985 154 raw_spinlock_t lock; /* the pool lock */
d84ff051 155 int cpu; /* I: the associated cpu */
f3f90ad4 156 int node; /* I: the associated node ID */
9daf9e67 157 int id; /* I: pool ID */
bc8b50c2 158 unsigned int flags; /* L: flags */
bd7bdd43 159
82607adc 160 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 161 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 162
bc35f7ef
LJ
163 /*
164 * The counter is incremented in a process context on the associated CPU
165 * w/ preemption disabled, and decremented or reset in the same context
166 * but w/ pool->lock held. The readers grab pool->lock and are
167 * guaranteed to see if the counter reached zero.
168 */
169 int nr_running;
84f91c62 170
bd7bdd43 171 struct list_head worklist; /* L: list of pending works */
ea1abd61 172
5826cc8f
LJ
173 int nr_workers; /* L: total number of workers */
174 int nr_idle; /* L: currently idle workers */
bd7bdd43 175
2c1f1a91 176 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 177 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
178 struct work_struct idle_cull_work; /* L: worker idle cleanup */
179
180 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 181
c5aa87bb 182 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 /* L: hash of busy workers */
185
2607d7a6 186 struct worker *manager; /* L: purely informational */
92f9c5c4 187 struct list_head workers; /* A: attached workers */
e02b9312 188 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 189 struct completion *detach_completion; /* all workers detached */
e19e397a 190
7cda9aae 191 struct ida worker_ida; /* worker IDs for task name */
e19e397a 192
7a4e344c 193 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
195 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 196
29c91e99 197 /*
24acfb71 198 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
199 * from get_work_pool().
200 */
201 struct rcu_head rcu;
84f91c62 202};
8b03ae3c 203
725e8ec5
TH
204/*
205 * Per-pool_workqueue statistics. These can be monitored using
206 * tools/workqueue/wq_monitor.py.
207 */
208enum pool_workqueue_stats {
209 PWQ_STAT_STARTED, /* work items started execution */
210 PWQ_STAT_COMPLETED, /* work items completed execution */
8a1dd1e5 211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
616db877 212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
725e8ec5
TH
213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
214 PWQ_STAT_MAYDAY, /* maydays to rescuer */
215 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
216
217 PWQ_NR_STATS,
218};
219
1da177e4 220/*
112202d9
TH
221 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
222 * of work_struct->data are used for flags and the remaining high bits
223 * point to the pwq; thus, pwqs need to be aligned at two's power of the
224 * number of flag bits.
1da177e4 225 */
112202d9 226struct pool_workqueue {
bd7bdd43 227 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 228 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
229 int work_color; /* L: current color */
230 int flush_color; /* L: flushing color */
8864b4e5 231 int refcnt; /* L: reference count */
73f53c4a
TH
232 int nr_in_flight[WORK_NR_COLORS];
233 /* L: nr of in_flight works */
018f3a13
LJ
234
235 /*
236 * nr_active management and WORK_STRUCT_INACTIVE:
237 *
238 * When pwq->nr_active >= max_active, new work item is queued to
239 * pwq->inactive_works instead of pool->worklist and marked with
240 * WORK_STRUCT_INACTIVE.
241 *
242 * All work items marked with WORK_STRUCT_INACTIVE do not participate
243 * in pwq->nr_active and all work items in pwq->inactive_works are
244 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
245 * work items are in pwq->inactive_works. Some of them are ready to
246 * run in pool->worklist or worker->scheduled. Those work itmes are
247 * only struct wq_barrier which is used for flush_work() and should
248 * not participate in pwq->nr_active. For non-barrier work item, it
249 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
250 */
1e19ffc6 251 int nr_active; /* L: nr of active works */
a0a1a5fd 252 int max_active; /* L: max active works */
f97a4a1a 253 struct list_head inactive_works; /* L: inactive works */
3c25a55d 254 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 255 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5 256
725e8ec5
TH
257 u64 stats[PWQ_NR_STATS];
258
8864b4e5 259 /*
967b494e 260 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
687a9aa5
TH
261 * and pwq_release_workfn() for details. pool_workqueue itself is also
262 * RCU protected so that the first pwq can be determined without
967b494e 263 * grabbing wq->mutex.
8864b4e5 264 */
687a9aa5 265 struct kthread_work release_work;
8864b4e5 266 struct rcu_head rcu;
e904e6c2 267} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 268
73f53c4a
TH
269/*
270 * Structure used to wait for workqueue flush.
271 */
272struct wq_flusher {
3c25a55d
LJ
273 struct list_head list; /* WQ: list of flushers */
274 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
275 struct completion done; /* flush completion */
276};
277
226223ab
TH
278struct wq_device;
279
1da177e4 280/*
c5aa87bb
TH
281 * The externally visible workqueue. It relays the issued work items to
282 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
283 */
284struct workqueue_struct {
3c25a55d 285 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 286 struct list_head list; /* PR: list of all workqueues */
73f53c4a 287
3c25a55d
LJ
288 struct mutex mutex; /* protects this wq */
289 int work_color; /* WQ: current work color */
290 int flush_color; /* WQ: current flush color */
112202d9 291 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
292 struct wq_flusher *first_flusher; /* WQ: first flusher */
293 struct list_head flusher_queue; /* WQ: flush waiters */
294 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 295
2e109a28 296 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 297 struct worker *rescuer; /* MD: rescue worker */
e22bee78 298
87fc741e 299 int nr_drainers; /* WQ: drain in progress */
a357fc03 300 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 301
5b95e1af
LJ
302 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
303 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 304
226223ab
TH
305#ifdef CONFIG_SYSFS
306 struct wq_device *wq_dev; /* I: for sysfs interface */
307#endif
4e6045f1 308#ifdef CONFIG_LOCKDEP
669de8bd
BVA
309 char *lock_name;
310 struct lock_class_key key;
4690c4ab 311 struct lockdep_map lockdep_map;
4e6045f1 312#endif
ecf6881f 313 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 314
e2dca7ad 315 /*
24acfb71
TG
316 * Destruction of workqueue_struct is RCU protected to allow walking
317 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
318 * This is used to dump all workqueues from sysrq.
319 */
320 struct rcu_head rcu;
321
2728fd2f
TH
322 /* hot fields used during command issue, aligned to cacheline */
323 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
636b927e 324 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
1da177e4
LT
325};
326
e904e6c2
TH
327static struct kmem_cache *pwq_cache;
328
84193c07
TH
329/*
330 * Each pod type describes how CPUs should be grouped for unbound workqueues.
331 * See the comment above workqueue_attrs->affn_scope.
332 */
333struct wq_pod_type {
334 int nr_pods; /* number of pods */
335 cpumask_var_t *pod_cpus; /* pod -> cpus */
336 int *pod_node; /* pod -> node */
337 int *cpu_pod; /* cpu -> pod */
338};
339
340static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
bce90380 341
616db877
TH
342/*
343 * Per-cpu work items which run for longer than the following threshold are
344 * automatically considered CPU intensive and excluded from concurrency
345 * management to prevent them from noticeably delaying other per-cpu work items.
aa6fde93
TH
346 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
347 * The actual value is initialized in wq_cpu_intensive_thresh_init().
616db877 348 */
aa6fde93 349static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
616db877
TH
350module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
351
cee22a15 352/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 353static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
354module_param_named(power_efficient, wq_power_efficient, bool, 0444);
355
863b710b 356static bool wq_online; /* can kworkers be created yet? */
3347fa09 357
fef59c9c
TH
358/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
359static struct workqueue_attrs *wq_update_pod_attrs_buf;
0f36ee24 360static cpumask_var_t wq_update_pod_cpumask_buf;
4c16bd32 361
68e13a67 362static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 363static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 364static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
365/* wait for manager to go away */
366static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 367
e2dca7ad 368static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 369static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 370
99c621ef 371/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
372static cpumask_var_t wq_unbound_cpumask;
373
ace3c549 374/* for further constrain wq_unbound_cpumask by cmdline parameter*/
375static struct cpumask wq_cmdline_cpumask __initdata;
376
ef557180
MG
377/* CPU where unbound work was last round robin scheduled from this CPU */
378static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 379
f303fccb
TH
380/*
381 * Local execution of unbound work items is no longer guaranteed. The
382 * following always forces round-robin CPU selection on unbound work items
383 * to uncover usages which depend on it.
384 */
385#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
386static bool wq_debug_force_rr_cpu = true;
387#else
388static bool wq_debug_force_rr_cpu = false;
389#endif
390module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
391
7d19c5ce 392/* the per-cpu worker pools */
25528213 393static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 394
68e13a67 395static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 396
68e13a67 397/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
398static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
399
c5aa87bb 400/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
401static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
402
8a2b7538
TH
403/* I: attributes used when instantiating ordered pools on demand */
404static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
405
967b494e
TH
406/*
407 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
408 * process context while holding a pool lock. Bounce to a dedicated kthread
409 * worker to avoid A-A deadlocks.
410 */
411static struct kthread_worker *pwq_release_worker;
412
d320c038 413struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 414EXPORT_SYMBOL(system_wq);
044c782c 415struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 416EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 417struct workqueue_struct *system_long_wq __read_mostly;
d320c038 418EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 419struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 420EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 421struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 422EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
423struct workqueue_struct *system_power_efficient_wq __read_mostly;
424EXPORT_SYMBOL_GPL(system_power_efficient_wq);
425struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
426EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 427
7d19c5ce 428static int worker_thread(void *__worker);
6ba94429 429static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 430static void show_pwq(struct pool_workqueue *pwq);
55df0933 431static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 432
97bd2347
TH
433#define CREATE_TRACE_POINTS
434#include <trace/events/workqueue.h>
435
68e13a67 436#define assert_rcu_or_pool_mutex() \
24acfb71 437 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 438 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 439 "RCU or wq_pool_mutex should be held")
5bcab335 440
5b95e1af 441#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 442 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
443 !lockdep_is_held(&wq->mutex) && \
444 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 445 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 446
f02ae73a
TH
447#define for_each_cpu_worker_pool(pool, cpu) \
448 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
449 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 450 (pool)++)
4ce62e9e 451
17116969
TH
452/**
453 * for_each_pool - iterate through all worker_pools in the system
454 * @pool: iteration cursor
611c92a0 455 * @pi: integer used for iteration
fa1b54e6 456 *
24acfb71 457 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
458 * locked. If the pool needs to be used beyond the locking in effect, the
459 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
460 *
461 * The if/else clause exists only for the lockdep assertion and can be
462 * ignored.
17116969 463 */
611c92a0
TH
464#define for_each_pool(pool, pi) \
465 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 466 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 467 else
17116969 468
822d8405
TH
469/**
470 * for_each_pool_worker - iterate through all workers of a worker_pool
471 * @worker: iteration cursor
822d8405
TH
472 * @pool: worker_pool to iterate workers of
473 *
1258fae7 474 * This must be called with wq_pool_attach_mutex.
822d8405
TH
475 *
476 * The if/else clause exists only for the lockdep assertion and can be
477 * ignored.
478 */
da028469
LJ
479#define for_each_pool_worker(worker, pool) \
480 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 481 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
482 else
483
49e3cf44
TH
484/**
485 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
486 * @pwq: iteration cursor
487 * @wq: the target workqueue
76af4d93 488 *
24acfb71 489 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
490 * If the pwq needs to be used beyond the locking in effect, the caller is
491 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
492 *
493 * The if/else clause exists only for the lockdep assertion and can be
494 * ignored.
49e3cf44
TH
495 */
496#define for_each_pwq(pwq, wq) \
49e9d1a9 497 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 498 lockdep_is_held(&(wq->mutex)))
f3421797 499
dc186ad7
TG
500#ifdef CONFIG_DEBUG_OBJECTS_WORK
501
f9e62f31 502static const struct debug_obj_descr work_debug_descr;
dc186ad7 503
99777288
SG
504static void *work_debug_hint(void *addr)
505{
506 return ((struct work_struct *) addr)->func;
507}
508
b9fdac7f
DC
509static bool work_is_static_object(void *addr)
510{
511 struct work_struct *work = addr;
512
513 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
514}
515
dc186ad7
TG
516/*
517 * fixup_init is called when:
518 * - an active object is initialized
519 */
02a982a6 520static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
521{
522 struct work_struct *work = addr;
523
524 switch (state) {
525 case ODEBUG_STATE_ACTIVE:
526 cancel_work_sync(work);
527 debug_object_init(work, &work_debug_descr);
02a982a6 528 return true;
dc186ad7 529 default:
02a982a6 530 return false;
dc186ad7
TG
531 }
532}
533
dc186ad7
TG
534/*
535 * fixup_free is called when:
536 * - an active object is freed
537 */
02a982a6 538static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
539{
540 struct work_struct *work = addr;
541
542 switch (state) {
543 case ODEBUG_STATE_ACTIVE:
544 cancel_work_sync(work);
545 debug_object_free(work, &work_debug_descr);
02a982a6 546 return true;
dc186ad7 547 default:
02a982a6 548 return false;
dc186ad7
TG
549 }
550}
551
f9e62f31 552static const struct debug_obj_descr work_debug_descr = {
dc186ad7 553 .name = "work_struct",
99777288 554 .debug_hint = work_debug_hint,
b9fdac7f 555 .is_static_object = work_is_static_object,
dc186ad7 556 .fixup_init = work_fixup_init,
dc186ad7
TG
557 .fixup_free = work_fixup_free,
558};
559
560static inline void debug_work_activate(struct work_struct *work)
561{
562 debug_object_activate(work, &work_debug_descr);
563}
564
565static inline void debug_work_deactivate(struct work_struct *work)
566{
567 debug_object_deactivate(work, &work_debug_descr);
568}
569
570void __init_work(struct work_struct *work, int onstack)
571{
572 if (onstack)
573 debug_object_init_on_stack(work, &work_debug_descr);
574 else
575 debug_object_init(work, &work_debug_descr);
576}
577EXPORT_SYMBOL_GPL(__init_work);
578
579void destroy_work_on_stack(struct work_struct *work)
580{
581 debug_object_free(work, &work_debug_descr);
582}
583EXPORT_SYMBOL_GPL(destroy_work_on_stack);
584
ea2e64f2
TG
585void destroy_delayed_work_on_stack(struct delayed_work *work)
586{
587 destroy_timer_on_stack(&work->timer);
588 debug_object_free(&work->work, &work_debug_descr);
589}
590EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
591
dc186ad7
TG
592#else
593static inline void debug_work_activate(struct work_struct *work) { }
594static inline void debug_work_deactivate(struct work_struct *work) { }
595#endif
596
4e8b22bd 597/**
67dc8325 598 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
599 * @pool: the pool pointer of interest
600 *
601 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
602 * successfully, -errno on failure.
603 */
9daf9e67
TH
604static int worker_pool_assign_id(struct worker_pool *pool)
605{
606 int ret;
607
68e13a67 608 lockdep_assert_held(&wq_pool_mutex);
5bcab335 609
4e8b22bd
LB
610 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
611 GFP_KERNEL);
229641a6 612 if (ret >= 0) {
e68035fb 613 pool->id = ret;
229641a6
TH
614 return 0;
615 }
fa1b54e6 616 return ret;
7c3eed5c
TH
617}
618
73f53c4a
TH
619static unsigned int work_color_to_flags(int color)
620{
621 return color << WORK_STRUCT_COLOR_SHIFT;
622}
623
c4560c2c 624static int get_work_color(unsigned long work_data)
73f53c4a 625{
c4560c2c 626 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
627 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
628}
629
630static int work_next_color(int color)
631{
632 return (color + 1) % WORK_NR_COLORS;
633}
1da177e4 634
14441960 635/*
112202d9
TH
636 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
637 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 638 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 639 *
112202d9
TH
640 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
641 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
642 * work->data. These functions should only be called while the work is
643 * owned - ie. while the PENDING bit is set.
7a22ad75 644 *
112202d9 645 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 646 * corresponding to a work. Pool is available once the work has been
112202d9 647 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 648 * available only while the work item is queued.
7a22ad75 649 *
bbb68dfa
TH
650 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
651 * canceled. While being canceled, a work item may have its PENDING set
652 * but stay off timer and worklist for arbitrarily long and nobody should
653 * try to steal the PENDING bit.
14441960 654 */
7a22ad75
TH
655static inline void set_work_data(struct work_struct *work, unsigned long data,
656 unsigned long flags)
365970a1 657{
6183c009 658 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
659 atomic_long_set(&work->data, data | flags | work_static(work));
660}
365970a1 661
112202d9 662static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
663 unsigned long extra_flags)
664{
112202d9
TH
665 set_work_data(work, (unsigned long)pwq,
666 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
667}
668
4468a00f
LJ
669static void set_work_pool_and_keep_pending(struct work_struct *work,
670 int pool_id)
671{
672 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
673 WORK_STRUCT_PENDING);
674}
675
7c3eed5c
TH
676static void set_work_pool_and_clear_pending(struct work_struct *work,
677 int pool_id)
7a22ad75 678{
23657bb1
TH
679 /*
680 * The following wmb is paired with the implied mb in
681 * test_and_set_bit(PENDING) and ensures all updates to @work made
682 * here are visible to and precede any updates by the next PENDING
683 * owner.
684 */
685 smp_wmb();
7c3eed5c 686 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
687 /*
688 * The following mb guarantees that previous clear of a PENDING bit
689 * will not be reordered with any speculative LOADS or STORES from
690 * work->current_func, which is executed afterwards. This possible
8bdc6201 691 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
692 * the same @work. E.g. consider this case:
693 *
694 * CPU#0 CPU#1
695 * ---------------------------- --------------------------------
696 *
697 * 1 STORE event_indicated
698 * 2 queue_work_on() {
699 * 3 test_and_set_bit(PENDING)
700 * 4 } set_..._and_clear_pending() {
701 * 5 set_work_data() # clear bit
702 * 6 smp_mb()
703 * 7 work->current_func() {
704 * 8 LOAD event_indicated
705 * }
706 *
707 * Without an explicit full barrier speculative LOAD on line 8 can
708 * be executed before CPU#0 does STORE on line 1. If that happens,
709 * CPU#0 observes the PENDING bit is still set and new execution of
710 * a @work is not queued in a hope, that CPU#1 will eventually
711 * finish the queued @work. Meanwhile CPU#1 does not see
712 * event_indicated is set, because speculative LOAD was executed
713 * before actual STORE.
714 */
715 smp_mb();
7a22ad75 716}
f756d5e2 717
7a22ad75 718static void clear_work_data(struct work_struct *work)
1da177e4 719{
7c3eed5c
TH
720 smp_wmb(); /* see set_work_pool_and_clear_pending() */
721 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
722}
723
afa4bb77
LT
724static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
725{
726 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
727}
728
112202d9 729static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 730{
e120153d 731 unsigned long data = atomic_long_read(&work->data);
7a22ad75 732
112202d9 733 if (data & WORK_STRUCT_PWQ)
afa4bb77 734 return work_struct_pwq(data);
e120153d
TH
735 else
736 return NULL;
4d707b9f
ON
737}
738
7c3eed5c
TH
739/**
740 * get_work_pool - return the worker_pool a given work was associated with
741 * @work: the work item of interest
742 *
68e13a67 743 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
744 * access under RCU read lock. As such, this function should be
745 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
746 *
747 * All fields of the returned pool are accessible as long as the above
748 * mentioned locking is in effect. If the returned pool needs to be used
749 * beyond the critical section, the caller is responsible for ensuring the
750 * returned pool is and stays online.
d185af30
YB
751 *
752 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
753 */
754static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 755{
e120153d 756 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 757 int pool_id;
7a22ad75 758
68e13a67 759 assert_rcu_or_pool_mutex();
fa1b54e6 760
112202d9 761 if (data & WORK_STRUCT_PWQ)
afa4bb77 762 return work_struct_pwq(data)->pool;
7a22ad75 763
7c3eed5c
TH
764 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
765 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
766 return NULL;
767
fa1b54e6 768 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
769}
770
771/**
772 * get_work_pool_id - return the worker pool ID a given work is associated with
773 * @work: the work item of interest
774 *
d185af30 775 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
776 * %WORK_OFFQ_POOL_NONE if none.
777 */
778static int get_work_pool_id(struct work_struct *work)
779{
54d5b7d0
LJ
780 unsigned long data = atomic_long_read(&work->data);
781
112202d9 782 if (data & WORK_STRUCT_PWQ)
afa4bb77 783 return work_struct_pwq(data)->pool->id;
7c3eed5c 784
54d5b7d0 785 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
786}
787
bbb68dfa
TH
788static void mark_work_canceling(struct work_struct *work)
789{
7c3eed5c 790 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 791
7c3eed5c
TH
792 pool_id <<= WORK_OFFQ_POOL_SHIFT;
793 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
794}
795
796static bool work_is_canceling(struct work_struct *work)
797{
798 unsigned long data = atomic_long_read(&work->data);
799
112202d9 800 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
801}
802
e22bee78 803/*
3270476a
TH
804 * Policy functions. These define the policies on how the global worker
805 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 806 * they're being called with pool->lock held.
e22bee78
TH
807 */
808
63d95a91 809static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 810{
bc35f7ef 811 return !pool->nr_running;
a848e3b6
ON
812}
813
4594bf15 814/*
e22bee78
TH
815 * Need to wake up a worker? Called from anything but currently
816 * running workers.
974271c4
TH
817 *
818 * Note that, because unbound workers never contribute to nr_running, this
706026c2 819 * function will always return %true for unbound pools as long as the
974271c4 820 * worklist isn't empty.
4594bf15 821 */
63d95a91 822static bool need_more_worker(struct worker_pool *pool)
365970a1 823{
63d95a91 824 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 825}
4594bf15 826
e22bee78 827/* Can I start working? Called from busy but !running workers. */
63d95a91 828static bool may_start_working(struct worker_pool *pool)
e22bee78 829{
63d95a91 830 return pool->nr_idle;
e22bee78
TH
831}
832
833/* Do I need to keep working? Called from currently running workers. */
63d95a91 834static bool keep_working(struct worker_pool *pool)
e22bee78 835{
bc35f7ef 836 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
837}
838
839/* Do we need a new worker? Called from manager. */
63d95a91 840static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 841{
63d95a91 842 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 843}
365970a1 844
e22bee78 845/* Do we have too many workers and should some go away? */
63d95a91 846static bool too_many_workers(struct worker_pool *pool)
e22bee78 847{
692b4825 848 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
849 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
850 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
851
852 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
853}
854
c54d5046
TH
855/**
856 * worker_set_flags - set worker flags and adjust nr_running accordingly
857 * @worker: self
858 * @flags: flags to set
859 *
860 * Set @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
861 */
862static inline void worker_set_flags(struct worker *worker, unsigned int flags)
863{
864 struct worker_pool *pool = worker->pool;
865
bc8b50c2 866 lockdep_assert_held(&pool->lock);
c54d5046
TH
867
868 /* If transitioning into NOT_RUNNING, adjust nr_running. */
869 if ((flags & WORKER_NOT_RUNNING) &&
870 !(worker->flags & WORKER_NOT_RUNNING)) {
871 pool->nr_running--;
872 }
873
874 worker->flags |= flags;
875}
876
877/**
878 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
879 * @worker: self
880 * @flags: flags to clear
881 *
882 * Clear @flags in @worker->flags and adjust nr_running accordingly.
c54d5046
TH
883 */
884static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
885{
886 struct worker_pool *pool = worker->pool;
887 unsigned int oflags = worker->flags;
888
bc8b50c2 889 lockdep_assert_held(&pool->lock);
c54d5046
TH
890
891 worker->flags &= ~flags;
892
893 /*
894 * If transitioning out of NOT_RUNNING, increment nr_running. Note
895 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
896 * of multiple flags, not a single flag.
897 */
898 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
899 if (!(worker->flags & WORKER_NOT_RUNNING))
900 pool->nr_running++;
901}
902
797e8345
TH
903/* Return the first idle worker. Called with pool->lock held. */
904static struct worker *first_idle_worker(struct worker_pool *pool)
905{
906 if (unlikely(list_empty(&pool->idle_list)))
907 return NULL;
908
909 return list_first_entry(&pool->idle_list, struct worker, entry);
910}
911
912/**
913 * worker_enter_idle - enter idle state
914 * @worker: worker which is entering idle state
915 *
916 * @worker is entering idle state. Update stats and idle timer if
917 * necessary.
918 *
919 * LOCKING:
920 * raw_spin_lock_irq(pool->lock).
921 */
922static void worker_enter_idle(struct worker *worker)
923{
924 struct worker_pool *pool = worker->pool;
925
926 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
927 WARN_ON_ONCE(!list_empty(&worker->entry) &&
928 (worker->hentry.next || worker->hentry.pprev)))
929 return;
930
931 /* can't use worker_set_flags(), also called from create_worker() */
932 worker->flags |= WORKER_IDLE;
933 pool->nr_idle++;
934 worker->last_active = jiffies;
935
936 /* idle_list is LIFO */
937 list_add(&worker->entry, &pool->idle_list);
938
939 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
940 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
941
942 /* Sanity check nr_running. */
943 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
944}
945
946/**
947 * worker_leave_idle - leave idle state
948 * @worker: worker which is leaving idle state
949 *
950 * @worker is leaving idle state. Update stats.
951 *
952 * LOCKING:
953 * raw_spin_lock_irq(pool->lock).
954 */
955static void worker_leave_idle(struct worker *worker)
956{
957 struct worker_pool *pool = worker->pool;
958
959 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
960 return;
961 worker_clr_flags(worker, WORKER_IDLE);
962 pool->nr_idle--;
963 list_del_init(&worker->entry);
964}
965
966/**
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
970 *
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
991 *
992 * CONTEXT:
993 * raw_spin_lock_irq(pool->lock).
994 *
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
997 * otherwise.
998 */
999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 struct work_struct *work)
1001{
1002 struct worker *worker;
1003
1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
1008 return worker;
1009
1010 return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * raw_spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
1054/**
1055 * wake_up_worker - wake up an idle worker
1056 * @pool: worker pool to wake worker from
1057 *
1058 * Wake up the first idle worker of @pool.
1059 *
1060 * CONTEXT:
1061 * raw_spin_lock_irq(pool->lock).
1062 */
1063static void wake_up_worker(struct worker_pool *pool)
1064{
1065 struct worker *worker = first_idle_worker(pool);
1066
1067 if (likely(worker))
1068 wake_up_process(worker->task);
1069}
1070
63638450
TH
1071#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1072
1073/*
1074 * Concurrency-managed per-cpu work items that hog CPU for longer than
1075 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1076 * which prevents them from stalling other concurrency-managed work items. If a
1077 * work function keeps triggering this mechanism, it's likely that the work item
1078 * should be using an unbound workqueue instead.
1079 *
1080 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1081 * and report them so that they can be examined and converted to use unbound
1082 * workqueues as appropriate. To avoid flooding the console, each violating work
1083 * function is tracked and reported with exponential backoff.
1084 */
1085#define WCI_MAX_ENTS 128
1086
1087struct wci_ent {
1088 work_func_t func;
1089 atomic64_t cnt;
1090 struct hlist_node hash_node;
1091};
1092
1093static struct wci_ent wci_ents[WCI_MAX_ENTS];
1094static int wci_nr_ents;
1095static DEFINE_RAW_SPINLOCK(wci_lock);
1096static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1097
1098static struct wci_ent *wci_find_ent(work_func_t func)
1099{
1100 struct wci_ent *ent;
1101
1102 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1103 (unsigned long)func) {
1104 if (ent->func == func)
1105 return ent;
1106 }
1107 return NULL;
1108}
1109
1110static void wq_cpu_intensive_report(work_func_t func)
1111{
1112 struct wci_ent *ent;
1113
1114restart:
1115 ent = wci_find_ent(func);
1116 if (ent) {
1117 u64 cnt;
1118
1119 /*
1120 * Start reporting from the fourth time and back off
1121 * exponentially.
1122 */
1123 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1124 if (cnt >= 4 && is_power_of_2(cnt))
1125 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1126 ent->func, wq_cpu_intensive_thresh_us,
1127 atomic64_read(&ent->cnt));
1128 return;
1129 }
1130
1131 /*
1132 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1133 * is exhausted, something went really wrong and we probably made enough
1134 * noise already.
1135 */
1136 if (wci_nr_ents >= WCI_MAX_ENTS)
1137 return;
1138
1139 raw_spin_lock(&wci_lock);
1140
1141 if (wci_nr_ents >= WCI_MAX_ENTS) {
1142 raw_spin_unlock(&wci_lock);
1143 return;
1144 }
1145
1146 if (wci_find_ent(func)) {
1147 raw_spin_unlock(&wci_lock);
1148 goto restart;
1149 }
1150
1151 ent = &wci_ents[wci_nr_ents++];
1152 ent->func = func;
1153 atomic64_set(&ent->cnt, 1);
1154 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1155
1156 raw_spin_unlock(&wci_lock);
1157}
1158
1159#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1160static void wq_cpu_intensive_report(work_func_t func) {}
1161#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1162
d302f017 1163/**
6d25be57 1164 * wq_worker_running - a worker is running again
e22bee78 1165 * @task: task waking up
e22bee78 1166 *
6d25be57 1167 * This function is called when a worker returns from schedule()
e22bee78 1168 */
6d25be57 1169void wq_worker_running(struct task_struct *task)
e22bee78
TH
1170{
1171 struct worker *worker = kthread_data(task);
1172
c8f6219b 1173 if (!READ_ONCE(worker->sleeping))
6d25be57 1174 return;
07edfece
FW
1175
1176 /*
1177 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1178 * and the nr_running increment below, we may ruin the nr_running reset
1179 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1180 * pool. Protect against such race.
1181 */
1182 preempt_disable();
6d25be57 1183 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1184 worker->pool->nr_running++;
07edfece 1185 preempt_enable();
616db877
TH
1186
1187 /*
1188 * CPU intensive auto-detection cares about how long a work item hogged
1189 * CPU without sleeping. Reset the starting timestamp on wakeup.
1190 */
1191 worker->current_at = worker->task->se.sum_exec_runtime;
1192
c8f6219b 1193 WRITE_ONCE(worker->sleeping, 0);
e22bee78
TH
1194}
1195
1196/**
1197 * wq_worker_sleeping - a worker is going to sleep
1198 * @task: task going to sleep
e22bee78 1199 *
6d25be57 1200 * This function is called from schedule() when a busy worker is
ccf45156 1201 * going to sleep.
e22bee78 1202 */
6d25be57 1203void wq_worker_sleeping(struct task_struct *task)
e22bee78 1204{
cc5bff38 1205 struct worker *worker = kthread_data(task);
111c225a 1206 struct worker_pool *pool;
e22bee78 1207
111c225a
TH
1208 /*
1209 * Rescuers, which may not have all the fields set up like normal
1210 * workers, also reach here, let's not access anything before
1211 * checking NOT_RUNNING.
1212 */
2d64672e 1213 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 1214 return;
e22bee78 1215
111c225a 1216 pool = worker->pool;
111c225a 1217
62849a96 1218 /* Return if preempted before wq_worker_running() was reached */
c8f6219b 1219 if (READ_ONCE(worker->sleeping))
6d25be57
TG
1220 return;
1221
c8f6219b 1222 WRITE_ONCE(worker->sleeping, 1);
a9b8a985 1223 raw_spin_lock_irq(&pool->lock);
e22bee78 1224
45c753f5
FW
1225 /*
1226 * Recheck in case unbind_workers() preempted us. We don't
1227 * want to decrement nr_running after the worker is unbound
1228 * and nr_running has been reset.
1229 */
1230 if (worker->flags & WORKER_NOT_RUNNING) {
1231 raw_spin_unlock_irq(&pool->lock);
1232 return;
1233 }
1234
bc35f7ef 1235 pool->nr_running--;
725e8ec5
TH
1236 if (need_more_worker(pool)) {
1237 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
cc5bff38 1238 wake_up_worker(pool);
725e8ec5 1239 }
a9b8a985 1240 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
1241}
1242
616db877
TH
1243/**
1244 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1245 * @task: task currently running
1246 *
1247 * Called from scheduler_tick(). We're in the IRQ context and the current
1248 * worker's fields which follow the 'K' locking rule can be accessed safely.
1249 */
1250void wq_worker_tick(struct task_struct *task)
1251{
1252 struct worker *worker = kthread_data(task);
1253 struct pool_workqueue *pwq = worker->current_pwq;
1254 struct worker_pool *pool = worker->pool;
1255
1256 if (!pwq)
1257 return;
1258
8a1dd1e5
TH
1259 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1260
18c8ae81
Z
1261 if (!wq_cpu_intensive_thresh_us)
1262 return;
1263
616db877
TH
1264 /*
1265 * If the current worker is concurrency managed and hogged the CPU for
1266 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1267 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
c8f6219b
Z
1268 *
1269 * Set @worker->sleeping means that @worker is in the process of
1270 * switching out voluntarily and won't be contributing to
1271 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1272 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1273 * double decrements. The task is releasing the CPU anyway. Let's skip.
1274 * We probably want to make this prettier in the future.
616db877 1275 */
c8f6219b 1276 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
616db877
TH
1277 worker->task->se.sum_exec_runtime - worker->current_at <
1278 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1279 return;
1280
1281 raw_spin_lock(&pool->lock);
1282
1283 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
63638450 1284 wq_cpu_intensive_report(worker->current_func);
616db877
TH
1285 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1286
1287 if (need_more_worker(pool)) {
1288 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1289 wake_up_worker(pool);
1290 }
1291
1292 raw_spin_unlock(&pool->lock);
1293}
1294
1b69ac6b
JW
1295/**
1296 * wq_worker_last_func - retrieve worker's last work function
8194fe94 1297 * @task: Task to retrieve last work function of.
1b69ac6b
JW
1298 *
1299 * Determine the last function a worker executed. This is called from
1300 * the scheduler to get a worker's last known identity.
1301 *
1302 * CONTEXT:
a9b8a985 1303 * raw_spin_lock_irq(rq->lock)
1b69ac6b 1304 *
4b047002
JW
1305 * This function is called during schedule() when a kworker is going
1306 * to sleep. It's used by psi to identify aggregation workers during
1307 * dequeuing, to allow periodic aggregation to shut-off when that
1308 * worker is the last task in the system or cgroup to go to sleep.
1309 *
1310 * As this function doesn't involve any workqueue-related locking, it
1311 * only returns stable values when called from inside the scheduler's
1312 * queuing and dequeuing paths, when @task, which must be a kworker,
1313 * is guaranteed to not be processing any works.
1314 *
1b69ac6b
JW
1315 * Return:
1316 * The last work function %current executed as a worker, NULL if it
1317 * hasn't executed any work yet.
1318 */
1319work_func_t wq_worker_last_func(struct task_struct *task)
1320{
1321 struct worker *worker = kthread_data(task);
1322
1323 return worker->last_func;
1324}
1325
8864b4e5
TH
1326/**
1327 * get_pwq - get an extra reference on the specified pool_workqueue
1328 * @pwq: pool_workqueue to get
1329 *
1330 * Obtain an extra reference on @pwq. The caller should guarantee that
1331 * @pwq has positive refcnt and be holding the matching pool->lock.
1332 */
1333static void get_pwq(struct pool_workqueue *pwq)
1334{
1335 lockdep_assert_held(&pwq->pool->lock);
1336 WARN_ON_ONCE(pwq->refcnt <= 0);
1337 pwq->refcnt++;
1338}
1339
1340/**
1341 * put_pwq - put a pool_workqueue reference
1342 * @pwq: pool_workqueue to put
1343 *
1344 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1345 * destruction. The caller should be holding the matching pool->lock.
1346 */
1347static void put_pwq(struct pool_workqueue *pwq)
1348{
1349 lockdep_assert_held(&pwq->pool->lock);
1350 if (likely(--pwq->refcnt))
1351 return;
8864b4e5 1352 /*
967b494e
TH
1353 * @pwq can't be released under pool->lock, bounce to a dedicated
1354 * kthread_worker to avoid A-A deadlocks.
8864b4e5 1355 */
687a9aa5 1356 kthread_queue_work(pwq_release_worker, &pwq->release_work);
8864b4e5
TH
1357}
1358
dce90d47
TH
1359/**
1360 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1361 * @pwq: pool_workqueue to put (can be %NULL)
1362 *
1363 * put_pwq() with locking. This function also allows %NULL @pwq.
1364 */
1365static void put_pwq_unlocked(struct pool_workqueue *pwq)
1366{
1367 if (pwq) {
1368 /*
24acfb71 1369 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1370 * following lock operations are safe.
1371 */
a9b8a985 1372 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1373 put_pwq(pwq);
a9b8a985 1374 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1375 }
1376}
1377
f97a4a1a 1378static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1379{
112202d9 1380 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1381
1382 trace_workqueue_activate_work(work);
82607adc
TH
1383 if (list_empty(&pwq->pool->worklist))
1384 pwq->pool->watchdog_ts = jiffies;
112202d9 1385 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1386 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1387 pwq->nr_active++;
bf4ede01
TH
1388}
1389
f97a4a1a 1390static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1391{
f97a4a1a 1392 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1393 struct work_struct, entry);
1394
f97a4a1a 1395 pwq_activate_inactive_work(work);
3aa62497
LJ
1396}
1397
bf4ede01 1398/**
112202d9
TH
1399 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1400 * @pwq: pwq of interest
c4560c2c 1401 * @work_data: work_data of work which left the queue
bf4ede01
TH
1402 *
1403 * A work either has completed or is removed from pending queue,
112202d9 1404 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1405 *
1406 * CONTEXT:
a9b8a985 1407 * raw_spin_lock_irq(pool->lock).
bf4ede01 1408 */
c4560c2c 1409static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1410{
c4560c2c
LJ
1411 int color = get_work_color(work_data);
1412
018f3a13
LJ
1413 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1414 pwq->nr_active--;
1415 if (!list_empty(&pwq->inactive_works)) {
1416 /* one down, submit an inactive one */
1417 if (pwq->nr_active < pwq->max_active)
1418 pwq_activate_first_inactive(pwq);
1419 }
1420 }
1421
112202d9 1422 pwq->nr_in_flight[color]--;
bf4ede01 1423
bf4ede01 1424 /* is flush in progress and are we at the flushing tip? */
112202d9 1425 if (likely(pwq->flush_color != color))
8864b4e5 1426 goto out_put;
bf4ede01
TH
1427
1428 /* are there still in-flight works? */
112202d9 1429 if (pwq->nr_in_flight[color])
8864b4e5 1430 goto out_put;
bf4ede01 1431
112202d9
TH
1432 /* this pwq is done, clear flush_color */
1433 pwq->flush_color = -1;
bf4ede01
TH
1434
1435 /*
112202d9 1436 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1437 * will handle the rest.
1438 */
112202d9
TH
1439 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1440 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1441out_put:
1442 put_pwq(pwq);
bf4ede01
TH
1443}
1444
36e227d2 1445/**
bbb68dfa 1446 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1447 * @work: work item to steal
1448 * @is_dwork: @work is a delayed_work
bbb68dfa 1449 * @flags: place to store irq state
36e227d2
TH
1450 *
1451 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1452 * stable state - idle, on timer or on worklist.
36e227d2 1453 *
d185af30 1454 * Return:
3eb6b31b
MCC
1455 *
1456 * ======== ================================================================
36e227d2
TH
1457 * 1 if @work was pending and we successfully stole PENDING
1458 * 0 if @work was idle and we claimed PENDING
1459 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1460 * -ENOENT if someone else is canceling @work, this state may persist
1461 * for arbitrarily long
3eb6b31b 1462 * ======== ================================================================
36e227d2 1463 *
d185af30 1464 * Note:
bbb68dfa 1465 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1466 * interrupted while holding PENDING and @work off queue, irq must be
1467 * disabled on entry. This, combined with delayed_work->timer being
1468 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1469 *
1470 * On successful return, >= 0, irq is disabled and the caller is
1471 * responsible for releasing it using local_irq_restore(*@flags).
1472 *
e0aecdd8 1473 * This function is safe to call from any context including IRQ handler.
bf4ede01 1474 */
bbb68dfa
TH
1475static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1476 unsigned long *flags)
bf4ede01 1477{
d565ed63 1478 struct worker_pool *pool;
112202d9 1479 struct pool_workqueue *pwq;
bf4ede01 1480
bbb68dfa
TH
1481 local_irq_save(*flags);
1482
36e227d2
TH
1483 /* try to steal the timer if it exists */
1484 if (is_dwork) {
1485 struct delayed_work *dwork = to_delayed_work(work);
1486
e0aecdd8
TH
1487 /*
1488 * dwork->timer is irqsafe. If del_timer() fails, it's
1489 * guaranteed that the timer is not queued anywhere and not
1490 * running on the local CPU.
1491 */
36e227d2
TH
1492 if (likely(del_timer(&dwork->timer)))
1493 return 1;
1494 }
1495
1496 /* try to claim PENDING the normal way */
bf4ede01
TH
1497 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1498 return 0;
1499
24acfb71 1500 rcu_read_lock();
bf4ede01
TH
1501 /*
1502 * The queueing is in progress, or it is already queued. Try to
1503 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1504 */
d565ed63
TH
1505 pool = get_work_pool(work);
1506 if (!pool)
bbb68dfa 1507 goto fail;
bf4ede01 1508
a9b8a985 1509 raw_spin_lock(&pool->lock);
0b3dae68 1510 /*
112202d9
TH
1511 * work->data is guaranteed to point to pwq only while the work
1512 * item is queued on pwq->wq, and both updating work->data to point
1513 * to pwq on queueing and to pool on dequeueing are done under
1514 * pwq->pool->lock. This in turn guarantees that, if work->data
1515 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1516 * item is currently queued on that pool.
1517 */
112202d9
TH
1518 pwq = get_work_pwq(work);
1519 if (pwq && pwq->pool == pool) {
16062836
TH
1520 debug_work_deactivate(work);
1521
1522 /*
018f3a13
LJ
1523 * A cancelable inactive work item must be in the
1524 * pwq->inactive_works since a queued barrier can't be
1525 * canceled (see the comments in insert_wq_barrier()).
1526 *
f97a4a1a 1527 * An inactive work item cannot be grabbed directly because
d812796e 1528 * it might have linked barrier work items which, if left
f97a4a1a 1529 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1530 * management later on and cause stall. Make sure the work
1531 * item is activated before grabbing.
1532 */
f97a4a1a
LJ
1533 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1534 pwq_activate_inactive_work(work);
16062836
TH
1535
1536 list_del_init(&work->entry);
c4560c2c 1537 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1538
112202d9 1539 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1540 set_work_pool_and_keep_pending(work, pool->id);
1541
a9b8a985 1542 raw_spin_unlock(&pool->lock);
24acfb71 1543 rcu_read_unlock();
16062836 1544 return 1;
bf4ede01 1545 }
a9b8a985 1546 raw_spin_unlock(&pool->lock);
bbb68dfa 1547fail:
24acfb71 1548 rcu_read_unlock();
bbb68dfa
TH
1549 local_irq_restore(*flags);
1550 if (work_is_canceling(work))
1551 return -ENOENT;
1552 cpu_relax();
36e227d2 1553 return -EAGAIN;
bf4ede01
TH
1554}
1555
4690c4ab 1556/**
706026c2 1557 * insert_work - insert a work into a pool
112202d9 1558 * @pwq: pwq @work belongs to
4690c4ab
TH
1559 * @work: work to insert
1560 * @head: insertion point
1561 * @extra_flags: extra WORK_STRUCT_* flags to set
1562 *
112202d9 1563 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1564 * work_struct flags.
4690c4ab
TH
1565 *
1566 * CONTEXT:
a9b8a985 1567 * raw_spin_lock_irq(pool->lock).
4690c4ab 1568 */
112202d9
TH
1569static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1570 struct list_head *head, unsigned int extra_flags)
b89deed3 1571{
fe089f87 1572 debug_work_activate(work);
e22bee78 1573
e89a85d6 1574 /* record the work call stack in order to print it in KASAN reports */
f70da745 1575 kasan_record_aux_stack_noalloc(work);
e89a85d6 1576
4690c4ab 1577 /* we own @work, set data and link */
112202d9 1578 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1579 list_add_tail(&work->entry, head);
8864b4e5 1580 get_pwq(pwq);
b89deed3
ON
1581}
1582
c8efcc25
TH
1583/*
1584 * Test whether @work is being queued from another work executing on the
8d03ecfe 1585 * same workqueue.
c8efcc25
TH
1586 */
1587static bool is_chained_work(struct workqueue_struct *wq)
1588{
8d03ecfe
TH
1589 struct worker *worker;
1590
1591 worker = current_wq_worker();
1592 /*
bf393fd4 1593 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1594 * I'm @worker, it's safe to dereference it without locking.
1595 */
112202d9 1596 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1597}
1598
ef557180
MG
1599/*
1600 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1601 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1602 * avoid perturbing sensitive tasks.
1603 */
1604static int wq_select_unbound_cpu(int cpu)
1605{
1606 int new_cpu;
1607
f303fccb
TH
1608 if (likely(!wq_debug_force_rr_cpu)) {
1609 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1610 return cpu;
a8ec5880
AF
1611 } else {
1612 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
1613 }
1614
ef557180
MG
1615 if (cpumask_empty(wq_unbound_cpumask))
1616 return cpu;
1617
1618 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1619 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1620 if (unlikely(new_cpu >= nr_cpu_ids)) {
1621 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1622 if (unlikely(new_cpu >= nr_cpu_ids))
1623 return cpu;
1624 }
1625 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1626
1627 return new_cpu;
1628}
1629
d84ff051 1630static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1631 struct work_struct *work)
1632{
112202d9 1633 struct pool_workqueue *pwq;
fe089f87 1634 struct worker_pool *last_pool, *pool;
8a2e8e5d 1635 unsigned int work_flags;
b75cac93 1636 unsigned int req_cpu = cpu;
8930caba
TH
1637
1638 /*
1639 * While a work item is PENDING && off queue, a task trying to
1640 * steal the PENDING will busy-loop waiting for it to either get
1641 * queued or lose PENDING. Grabbing PENDING and queueing should
1642 * happen with IRQ disabled.
1643 */
8e8eb730 1644 lockdep_assert_irqs_disabled();
1da177e4 1645
1e19ffc6 1646
33e3f0a3
RC
1647 /*
1648 * For a draining wq, only works from the same workqueue are
1649 * allowed. The __WQ_DESTROYING helps to spot the issue that
1650 * queues a new work item to a wq after destroy_workqueue(wq).
1651 */
1652 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1653 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 1654 return;
24acfb71 1655 rcu_read_lock();
9e8cd2f5 1656retry:
c9178087 1657 /* pwq which will be used unless @work is executing elsewhere */
636b927e
TH
1658 if (req_cpu == WORK_CPU_UNBOUND) {
1659 if (wq->flags & WQ_UNBOUND)
aa202f1f 1660 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
636b927e 1661 else
aa202f1f 1662 cpu = raw_smp_processor_id();
aa202f1f 1663 }
dbf2576e 1664
636b927e 1665 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
fe089f87
TH
1666 pool = pwq->pool;
1667
c9178087
TH
1668 /*
1669 * If @work was previously on a different pool, it might still be
1670 * running there, in which case the work needs to be queued on that
1671 * pool to guarantee non-reentrancy.
1672 */
1673 last_pool = get_work_pool(work);
fe089f87 1674 if (last_pool && last_pool != pool) {
c9178087 1675 struct worker *worker;
18aa9eff 1676
a9b8a985 1677 raw_spin_lock(&last_pool->lock);
18aa9eff 1678
c9178087 1679 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1680
c9178087
TH
1681 if (worker && worker->current_pwq->wq == wq) {
1682 pwq = worker->current_pwq;
fe089f87
TH
1683 pool = pwq->pool;
1684 WARN_ON_ONCE(pool != last_pool);
8930caba 1685 } else {
c9178087 1686 /* meh... not running there, queue here */
a9b8a985 1687 raw_spin_unlock(&last_pool->lock);
fe089f87 1688 raw_spin_lock(&pool->lock);
8930caba 1689 }
f3421797 1690 } else {
fe089f87 1691 raw_spin_lock(&pool->lock);
502ca9d8
TH
1692 }
1693
9e8cd2f5 1694 /*
636b927e
TH
1695 * pwq is determined and locked. For unbound pools, we could have raced
1696 * with pwq release and it could already be dead. If its refcnt is zero,
1697 * repeat pwq selection. Note that unbound pwqs never die without
1698 * another pwq replacing it in cpu_pwq or while work items are executing
1699 * on it, so the retrying is guaranteed to make forward-progress.
9e8cd2f5
TH
1700 */
1701 if (unlikely(!pwq->refcnt)) {
1702 if (wq->flags & WQ_UNBOUND) {
fe089f87 1703 raw_spin_unlock(&pool->lock);
9e8cd2f5
TH
1704 cpu_relax();
1705 goto retry;
1706 }
1707 /* oops */
1708 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1709 wq->name, cpu);
1710 }
1711
112202d9
TH
1712 /* pwq determined, queue */
1713 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1714
24acfb71
TG
1715 if (WARN_ON(!list_empty(&work->entry)))
1716 goto out;
1e19ffc6 1717
112202d9
TH
1718 pwq->nr_in_flight[pwq->work_color]++;
1719 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1720
112202d9 1721 if (likely(pwq->nr_active < pwq->max_active)) {
fe089f87
TH
1722 if (list_empty(&pool->worklist))
1723 pool->watchdog_ts = jiffies;
1724
cdadf009 1725 trace_workqueue_activate_work(work);
112202d9 1726 pwq->nr_active++;
fe089f87
TH
1727 insert_work(pwq, work, &pool->worklist, work_flags);
1728
1729 if (__need_more_worker(pool))
1730 wake_up_worker(pool);
8a2e8e5d 1731 } else {
f97a4a1a 1732 work_flags |= WORK_STRUCT_INACTIVE;
fe089f87 1733 insert_work(pwq, work, &pwq->inactive_works, work_flags);
8a2e8e5d 1734 }
1e19ffc6 1735
24acfb71 1736out:
fe089f87 1737 raw_spin_unlock(&pool->lock);
24acfb71 1738 rcu_read_unlock();
1da177e4
LT
1739}
1740
0fcb78c2 1741/**
c1a220e7
ZR
1742 * queue_work_on - queue work on specific cpu
1743 * @cpu: CPU number to execute work on
0fcb78c2
REB
1744 * @wq: workqueue to use
1745 * @work: work to queue
1746 *
c1a220e7 1747 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
1748 * can't go away. Callers that fail to ensure that the specified
1749 * CPU cannot go away will execute on a randomly chosen CPU.
854f5cc5
PM
1750 * But note well that callers specifying a CPU that never has been
1751 * online will get a splat.
d185af30
YB
1752 *
1753 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1754 */
d4283e93
TH
1755bool queue_work_on(int cpu, struct workqueue_struct *wq,
1756 struct work_struct *work)
1da177e4 1757{
d4283e93 1758 bool ret = false;
8930caba 1759 unsigned long flags;
ef1ca236 1760
8930caba 1761 local_irq_save(flags);
c1a220e7 1762
22df02bb 1763 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1764 __queue_work(cpu, wq, work);
d4283e93 1765 ret = true;
c1a220e7 1766 }
ef1ca236 1767
8930caba 1768 local_irq_restore(flags);
1da177e4
LT
1769 return ret;
1770}
ad7b1f84 1771EXPORT_SYMBOL(queue_work_on);
1da177e4 1772
8204e0c1 1773/**
fef59c9c 1774 * select_numa_node_cpu - Select a CPU based on NUMA node
8204e0c1
AD
1775 * @node: NUMA node ID that we want to select a CPU from
1776 *
1777 * This function will attempt to find a "random" cpu available on a given
1778 * node. If there are no CPUs available on the given node it will return
1779 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1780 * available CPU if we need to schedule this work.
1781 */
fef59c9c 1782static int select_numa_node_cpu(int node)
8204e0c1
AD
1783{
1784 int cpu;
1785
8204e0c1
AD
1786 /* Delay binding to CPU if node is not valid or online */
1787 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1788 return WORK_CPU_UNBOUND;
1789
1790 /* Use local node/cpu if we are already there */
1791 cpu = raw_smp_processor_id();
1792 if (node == cpu_to_node(cpu))
1793 return cpu;
1794
1795 /* Use "random" otherwise know as "first" online CPU of node */
1796 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1797
1798 /* If CPU is valid return that, otherwise just defer */
1799 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1800}
1801
1802/**
1803 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1804 * @node: NUMA node that we are targeting the work for
1805 * @wq: workqueue to use
1806 * @work: work to queue
1807 *
1808 * We queue the work to a "random" CPU within a given NUMA node. The basic
1809 * idea here is to provide a way to somehow associate work with a given
1810 * NUMA node.
1811 *
1812 * This function will only make a best effort attempt at getting this onto
1813 * the right NUMA node. If no node is requested or the requested node is
1814 * offline then we just fall back to standard queue_work behavior.
1815 *
1816 * Currently the "random" CPU ends up being the first available CPU in the
1817 * intersection of cpu_online_mask and the cpumask of the node, unless we
1818 * are running on the node. In that case we just use the current CPU.
1819 *
1820 * Return: %false if @work was already on a queue, %true otherwise.
1821 */
1822bool queue_work_node(int node, struct workqueue_struct *wq,
1823 struct work_struct *work)
1824{
1825 unsigned long flags;
1826 bool ret = false;
1827
1828 /*
1829 * This current implementation is specific to unbound workqueues.
1830 * Specifically we only return the first available CPU for a given
1831 * node instead of cycling through individual CPUs within the node.
1832 *
1833 * If this is used with a per-cpu workqueue then the logic in
1834 * workqueue_select_cpu_near would need to be updated to allow for
1835 * some round robin type logic.
1836 */
1837 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1838
1839 local_irq_save(flags);
1840
1841 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
fef59c9c 1842 int cpu = select_numa_node_cpu(node);
8204e0c1
AD
1843
1844 __queue_work(cpu, wq, work);
1845 ret = true;
1846 }
1847
1848 local_irq_restore(flags);
1849 return ret;
1850}
1851EXPORT_SYMBOL_GPL(queue_work_node);
1852
8c20feb6 1853void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1854{
8c20feb6 1855 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1856
e0aecdd8 1857 /* should have been called from irqsafe timer with irq already off */
60c057bc 1858 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1859}
1438ade5 1860EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1861
7beb2edf
TH
1862static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1863 struct delayed_work *dwork, unsigned long delay)
1da177e4 1864{
7beb2edf
TH
1865 struct timer_list *timer = &dwork->timer;
1866 struct work_struct *work = &dwork->work;
7beb2edf 1867
637fdbae 1868 WARN_ON_ONCE(!wq);
4b243563 1869 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1870 WARN_ON_ONCE(timer_pending(timer));
1871 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1872
8852aac2
TH
1873 /*
1874 * If @delay is 0, queue @dwork->work immediately. This is for
1875 * both optimization and correctness. The earliest @timer can
1876 * expire is on the closest next tick and delayed_work users depend
1877 * on that there's no such delay when @delay is 0.
1878 */
1879 if (!delay) {
1880 __queue_work(cpu, wq, &dwork->work);
1881 return;
1882 }
1883
60c057bc 1884 dwork->wq = wq;
1265057f 1885 dwork->cpu = cpu;
7beb2edf
TH
1886 timer->expires = jiffies + delay;
1887
041bd12e
TH
1888 if (unlikely(cpu != WORK_CPU_UNBOUND))
1889 add_timer_on(timer, cpu);
1890 else
1891 add_timer(timer);
1da177e4
LT
1892}
1893
0fcb78c2
REB
1894/**
1895 * queue_delayed_work_on - queue work on specific CPU after delay
1896 * @cpu: CPU number to execute work on
1897 * @wq: workqueue to use
af9997e4 1898 * @dwork: work to queue
0fcb78c2
REB
1899 * @delay: number of jiffies to wait before queueing
1900 *
d185af30 1901 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1902 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1903 * execution.
0fcb78c2 1904 */
d4283e93
TH
1905bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1906 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1907{
52bad64d 1908 struct work_struct *work = &dwork->work;
d4283e93 1909 bool ret = false;
8930caba 1910 unsigned long flags;
7a6bc1cd 1911
8930caba
TH
1912 /* read the comment in __queue_work() */
1913 local_irq_save(flags);
7a6bc1cd 1914
22df02bb 1915 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1916 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1917 ret = true;
7a6bc1cd 1918 }
8a3e77cc 1919
8930caba 1920 local_irq_restore(flags);
7a6bc1cd
VP
1921 return ret;
1922}
ad7b1f84 1923EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1924
8376fe22
TH
1925/**
1926 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1927 * @cpu: CPU number to execute work on
1928 * @wq: workqueue to use
1929 * @dwork: work to queue
1930 * @delay: number of jiffies to wait before queueing
1931 *
1932 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1933 * modify @dwork's timer so that it expires after @delay. If @delay is
1934 * zero, @work is guaranteed to be scheduled immediately regardless of its
1935 * current state.
1936 *
d185af30 1937 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1938 * pending and its timer was modified.
1939 *
e0aecdd8 1940 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1941 * See try_to_grab_pending() for details.
1942 */
1943bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1944 struct delayed_work *dwork, unsigned long delay)
1945{
1946 unsigned long flags;
1947 int ret;
c7fc77f7 1948
8376fe22
TH
1949 do {
1950 ret = try_to_grab_pending(&dwork->work, true, &flags);
1951 } while (unlikely(ret == -EAGAIN));
63bc0362 1952
8376fe22
TH
1953 if (likely(ret >= 0)) {
1954 __queue_delayed_work(cpu, wq, dwork, delay);
1955 local_irq_restore(flags);
7a6bc1cd 1956 }
8376fe22
TH
1957
1958 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1959 return ret;
1960}
8376fe22
TH
1961EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1962
05f0fe6b
TH
1963static void rcu_work_rcufn(struct rcu_head *rcu)
1964{
1965 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1966
1967 /* read the comment in __queue_work() */
1968 local_irq_disable();
1969 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1970 local_irq_enable();
1971}
1972
1973/**
1974 * queue_rcu_work - queue work after a RCU grace period
1975 * @wq: workqueue to use
1976 * @rwork: work to queue
1977 *
1978 * Return: %false if @rwork was already pending, %true otherwise. Note
1979 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1980 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1981 * execution may happen before a full RCU grace period has passed.
1982 */
1983bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1984{
1985 struct work_struct *work = &rwork->work;
1986
1987 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1988 rwork->wq = wq;
a7e30c0e 1989 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
1990 return true;
1991 }
1992
1993 return false;
1994}
1995EXPORT_SYMBOL(queue_rcu_work);
1996
f7537df5 1997static struct worker *alloc_worker(int node)
c34056a3
TH
1998{
1999 struct worker *worker;
2000
f7537df5 2001 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
2002 if (worker) {
2003 INIT_LIST_HEAD(&worker->entry);
affee4b2 2004 INIT_LIST_HEAD(&worker->scheduled);
da028469 2005 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
2006 /* on creation a worker is in !idle && prep state */
2007 worker->flags = WORKER_PREP;
c8e55f36 2008 }
c34056a3
TH
2009 return worker;
2010}
2011
4736cbf7
LJ
2012/**
2013 * worker_attach_to_pool() - attach a worker to a pool
2014 * @worker: worker to be attached
2015 * @pool: the target pool
2016 *
2017 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2018 * cpu-binding of @worker are kept coordinated with the pool across
2019 * cpu-[un]hotplugs.
2020 */
2021static void worker_attach_to_pool(struct worker *worker,
2022 struct worker_pool *pool)
2023{
1258fae7 2024 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 2025
4736cbf7 2026 /*
1258fae7
TH
2027 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2028 * stable across this function. See the comments above the flag
2029 * definition for details.
4736cbf7
LJ
2030 */
2031 if (pool->flags & POOL_DISASSOCIATED)
2032 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
2033 else
2034 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 2035
640f17c8
PZ
2036 if (worker->rescue_wq)
2037 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
2038
4736cbf7 2039 list_add_tail(&worker->node, &pool->workers);
a2d812a2 2040 worker->pool = pool;
4736cbf7 2041
1258fae7 2042 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
2043}
2044
60f5a4bc
LJ
2045/**
2046 * worker_detach_from_pool() - detach a worker from its pool
2047 * @worker: worker which is attached to its pool
60f5a4bc 2048 *
4736cbf7
LJ
2049 * Undo the attaching which had been done in worker_attach_to_pool(). The
2050 * caller worker shouldn't access to the pool after detached except it has
2051 * other reference to the pool.
60f5a4bc 2052 */
a2d812a2 2053static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 2054{
a2d812a2 2055 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
2056 struct completion *detach_completion = NULL;
2057
1258fae7 2058 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 2059
5c25b5ff 2060 kthread_set_per_cpu(worker->task, -1);
da028469 2061 list_del(&worker->node);
a2d812a2
TH
2062 worker->pool = NULL;
2063
e02b9312 2064 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 2065 detach_completion = pool->detach_completion;
1258fae7 2066 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 2067
b62c0751
LJ
2068 /* clear leftover flags without pool->lock after it is detached */
2069 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2070
60f5a4bc
LJ
2071 if (detach_completion)
2072 complete(detach_completion);
2073}
2074
c34056a3
TH
2075/**
2076 * create_worker - create a new workqueue worker
63d95a91 2077 * @pool: pool the new worker will belong to
c34056a3 2078 *
051e1850 2079 * Create and start a new worker which is attached to @pool.
c34056a3
TH
2080 *
2081 * CONTEXT:
2082 * Might sleep. Does GFP_KERNEL allocations.
2083 *
d185af30 2084 * Return:
c34056a3
TH
2085 * Pointer to the newly created worker.
2086 */
bc2ae0f5 2087static struct worker *create_worker(struct worker_pool *pool)
c34056a3 2088{
e441b56f
ZL
2089 struct worker *worker;
2090 int id;
e3c916a4 2091 char id_buf[16];
c34056a3 2092
7cda9aae 2093 /* ID is needed to determine kthread name */
e441b56f 2094 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
2095 if (id < 0) {
2096 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2097 ERR_PTR(id));
e441b56f 2098 return NULL;
3f0ea0b8 2099 }
c34056a3 2100
f7537df5 2101 worker = alloc_worker(pool->node);
3f0ea0b8
PM
2102 if (!worker) {
2103 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 2104 goto fail;
3f0ea0b8 2105 }
c34056a3 2106
c34056a3
TH
2107 worker->id = id;
2108
29c91e99 2109 if (pool->cpu >= 0)
e3c916a4
TH
2110 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2111 pool->attrs->nice < 0 ? "H" : "");
f3421797 2112 else
e3c916a4
TH
2113 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2114
f3f90ad4 2115 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 2116 "kworker/%s", id_buf);
3f0ea0b8 2117 if (IS_ERR(worker->task)) {
60f54038
PM
2118 if (PTR_ERR(worker->task) == -EINTR) {
2119 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2120 id_buf);
2121 } else {
2122 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2123 worker->task);
2124 }
c34056a3 2125 goto fail;
3f0ea0b8 2126 }
c34056a3 2127
91151228 2128 set_user_nice(worker->task, pool->attrs->nice);
25834c73 2129 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 2130
da028469 2131 /* successful, attach the worker to the pool */
4736cbf7 2132 worker_attach_to_pool(worker, pool);
822d8405 2133
051e1850 2134 /* start the newly created worker */
a9b8a985 2135 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2136 worker->pool->nr_workers++;
2137 worker_enter_idle(worker);
2138 wake_up_process(worker->task);
a9b8a985 2139 raw_spin_unlock_irq(&pool->lock);
051e1850 2140
c34056a3 2141 return worker;
822d8405 2142
c34056a3 2143fail:
e441b56f 2144 ida_free(&pool->worker_ida, id);
c34056a3
TH
2145 kfree(worker);
2146 return NULL;
2147}
2148
793777bc
VS
2149static void unbind_worker(struct worker *worker)
2150{
2151 lockdep_assert_held(&wq_pool_attach_mutex);
2152
2153 kthread_set_per_cpu(worker->task, -1);
2154 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2155 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2156 else
2157 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2158}
2159
e02b9312
VS
2160static void wake_dying_workers(struct list_head *cull_list)
2161{
2162 struct worker *worker, *tmp;
2163
2164 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2165 list_del_init(&worker->entry);
2166 unbind_worker(worker);
2167 /*
2168 * If the worker was somehow already running, then it had to be
2169 * in pool->idle_list when set_worker_dying() happened or we
2170 * wouldn't have gotten here.
2171 *
2172 * Thus, the worker must either have observed the WORKER_DIE
2173 * flag, or have set its state to TASK_IDLE. Either way, the
2174 * below will be observed by the worker and is safe to do
2175 * outside of pool->lock.
2176 */
2177 wake_up_process(worker->task);
2178 }
2179}
2180
c34056a3 2181/**
e02b9312 2182 * set_worker_dying - Tag a worker for destruction
c34056a3 2183 * @worker: worker to be destroyed
e02b9312 2184 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2185 *
e02b9312
VS
2186 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2187 * should be idle.
c8e55f36
TH
2188 *
2189 * CONTEXT:
a9b8a985 2190 * raw_spin_lock_irq(pool->lock).
c34056a3 2191 */
e02b9312 2192static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2193{
bd7bdd43 2194 struct worker_pool *pool = worker->pool;
c34056a3 2195
cd549687 2196 lockdep_assert_held(&pool->lock);
e02b9312 2197 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2198
c34056a3 2199 /* sanity check frenzy */
6183c009 2200 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2201 WARN_ON(!list_empty(&worker->scheduled)) ||
2202 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2203 return;
c34056a3 2204
73eb7fe7
LJ
2205 pool->nr_workers--;
2206 pool->nr_idle--;
5bdfff96 2207
cb444766 2208 worker->flags |= WORKER_DIE;
e02b9312
VS
2209
2210 list_move(&worker->entry, list);
2211 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2212}
2213
3f959aa3
VS
2214/**
2215 * idle_worker_timeout - check if some idle workers can now be deleted.
2216 * @t: The pool's idle_timer that just expired
2217 *
2218 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2219 * worker_leave_idle(), as a worker flicking between idle and active while its
2220 * pool is at the too_many_workers() tipping point would cause too much timer
2221 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2222 * it expire and re-evaluate things from there.
2223 */
32a6c723 2224static void idle_worker_timeout(struct timer_list *t)
e22bee78 2225{
32a6c723 2226 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2227 bool do_cull = false;
2228
2229 if (work_pending(&pool->idle_cull_work))
2230 return;
e22bee78 2231
a9b8a985 2232 raw_spin_lock_irq(&pool->lock);
e22bee78 2233
3f959aa3 2234 if (too_many_workers(pool)) {
e22bee78
TH
2235 struct worker *worker;
2236 unsigned long expires;
2237
2238 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2239 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2240 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2241 do_cull = !time_before(jiffies, expires);
2242
2243 if (!do_cull)
2244 mod_timer(&pool->idle_timer, expires);
2245 }
2246 raw_spin_unlock_irq(&pool->lock);
2247
2248 if (do_cull)
2249 queue_work(system_unbound_wq, &pool->idle_cull_work);
2250}
2251
2252/**
2253 * idle_cull_fn - cull workers that have been idle for too long.
2254 * @work: the pool's work for handling these idle workers
2255 *
2256 * This goes through a pool's idle workers and gets rid of those that have been
2257 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2258 *
2259 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2260 * culled, so this also resets worker affinity. This requires a sleepable
2261 * context, hence the split between timer callback and work item.
3f959aa3
VS
2262 */
2263static void idle_cull_fn(struct work_struct *work)
2264{
2265 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
9680540c 2266 LIST_HEAD(cull_list);
3f959aa3 2267
e02b9312
VS
2268 /*
2269 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2270 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2271 * path. This is required as a previously-preempted worker could run after
2272 * set_worker_dying() has happened but before wake_dying_workers() did.
2273 */
2274 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2275 raw_spin_lock_irq(&pool->lock);
2276
2277 while (too_many_workers(pool)) {
2278 struct worker *worker;
2279 unsigned long expires;
2280
63d95a91 2281 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2282 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2283
3347fc9f 2284 if (time_before(jiffies, expires)) {
63d95a91 2285 mod_timer(&pool->idle_timer, expires);
3347fc9f 2286 break;
d5abe669 2287 }
3347fc9f 2288
e02b9312 2289 set_worker_dying(worker, &cull_list);
e22bee78
TH
2290 }
2291
a9b8a985 2292 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2293 wake_dying_workers(&cull_list);
2294 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2295}
d5abe669 2296
493a1724 2297static void send_mayday(struct work_struct *work)
e22bee78 2298{
112202d9
TH
2299 struct pool_workqueue *pwq = get_work_pwq(work);
2300 struct workqueue_struct *wq = pwq->wq;
493a1724 2301
2e109a28 2302 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2303
493008a8 2304 if (!wq->rescuer)
493a1724 2305 return;
e22bee78
TH
2306
2307 /* mayday mayday mayday */
493a1724 2308 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2309 /*
2310 * If @pwq is for an unbound wq, its base ref may be put at
2311 * any time due to an attribute change. Pin @pwq until the
2312 * rescuer is done with it.
2313 */
2314 get_pwq(pwq);
493a1724 2315 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2316 wake_up_process(wq->rescuer->task);
725e8ec5 2317 pwq->stats[PWQ_STAT_MAYDAY]++;
493a1724 2318 }
e22bee78
TH
2319}
2320
32a6c723 2321static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2322{
32a6c723 2323 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2324 struct work_struct *work;
2325
a9b8a985
SAS
2326 raw_spin_lock_irq(&pool->lock);
2327 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2328
63d95a91 2329 if (need_to_create_worker(pool)) {
e22bee78
TH
2330 /*
2331 * We've been trying to create a new worker but
2332 * haven't been successful. We might be hitting an
2333 * allocation deadlock. Send distress signals to
2334 * rescuers.
2335 */
63d95a91 2336 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2337 send_mayday(work);
1da177e4 2338 }
e22bee78 2339
a9b8a985
SAS
2340 raw_spin_unlock(&wq_mayday_lock);
2341 raw_spin_unlock_irq(&pool->lock);
e22bee78 2342
63d95a91 2343 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2344}
2345
e22bee78
TH
2346/**
2347 * maybe_create_worker - create a new worker if necessary
63d95a91 2348 * @pool: pool to create a new worker for
e22bee78 2349 *
63d95a91 2350 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2351 * have at least one idle worker on return from this function. If
2352 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2353 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2354 * possible allocation deadlock.
2355 *
c5aa87bb
TH
2356 * On return, need_to_create_worker() is guaranteed to be %false and
2357 * may_start_working() %true.
e22bee78
TH
2358 *
2359 * LOCKING:
a9b8a985 2360 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2361 * multiple times. Does GFP_KERNEL allocations. Called only from
2362 * manager.
e22bee78 2363 */
29187a9e 2364static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2365__releases(&pool->lock)
2366__acquires(&pool->lock)
1da177e4 2367{
e22bee78 2368restart:
a9b8a985 2369 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2370
e22bee78 2371 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2372 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2373
2374 while (true) {
051e1850 2375 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2376 break;
1da177e4 2377
e212f361 2378 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2379
63d95a91 2380 if (!need_to_create_worker(pool))
e22bee78
TH
2381 break;
2382 }
2383
63d95a91 2384 del_timer_sync(&pool->mayday_timer);
a9b8a985 2385 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2386 /*
2387 * This is necessary even after a new worker was just successfully
2388 * created as @pool->lock was dropped and the new worker might have
2389 * already become busy.
2390 */
63d95a91 2391 if (need_to_create_worker(pool))
e22bee78 2392 goto restart;
e22bee78
TH
2393}
2394
73f53c4a 2395/**
e22bee78
TH
2396 * manage_workers - manage worker pool
2397 * @worker: self
73f53c4a 2398 *
706026c2 2399 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2400 * to. At any given time, there can be only zero or one manager per
706026c2 2401 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2402 *
2403 * The caller can safely start processing works on false return. On
2404 * true return, it's guaranteed that need_to_create_worker() is false
2405 * and may_start_working() is true.
73f53c4a
TH
2406 *
2407 * CONTEXT:
a9b8a985 2408 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2409 * multiple times. Does GFP_KERNEL allocations.
2410 *
d185af30 2411 * Return:
29187a9e
TH
2412 * %false if the pool doesn't need management and the caller can safely
2413 * start processing works, %true if management function was performed and
2414 * the conditions that the caller verified before calling the function may
2415 * no longer be true.
73f53c4a 2416 */
e22bee78 2417static bool manage_workers(struct worker *worker)
73f53c4a 2418{
63d95a91 2419 struct worker_pool *pool = worker->pool;
73f53c4a 2420
692b4825 2421 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2422 return false;
692b4825
TH
2423
2424 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2425 pool->manager = worker;
1e19ffc6 2426
29187a9e 2427 maybe_create_worker(pool);
e22bee78 2428
2607d7a6 2429 pool->manager = NULL;
692b4825 2430 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2431 rcuwait_wake_up(&manager_wait);
29187a9e 2432 return true;
73f53c4a
TH
2433}
2434
a62428c0
TH
2435/**
2436 * process_one_work - process single work
c34056a3 2437 * @worker: self
a62428c0
TH
2438 * @work: work to process
2439 *
2440 * Process @work. This function contains all the logics necessary to
2441 * process a single work including synchronization against and
2442 * interaction with other workers on the same cpu, queueing and
2443 * flushing. As long as context requirement is met, any worker can
2444 * call this function to process a work.
2445 *
2446 * CONTEXT:
a9b8a985 2447 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2448 */
c34056a3 2449static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2450__releases(&pool->lock)
2451__acquires(&pool->lock)
a62428c0 2452{
112202d9 2453 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2454 struct worker_pool *pool = worker->pool;
c4560c2c 2455 unsigned long work_data;
7e11629d 2456 struct worker *collision;
a62428c0
TH
2457#ifdef CONFIG_LOCKDEP
2458 /*
2459 * It is permissible to free the struct work_struct from
2460 * inside the function that is called from it, this we need to
2461 * take into account for lockdep too. To avoid bogus "held
2462 * lock freed" warnings as well as problems when looking into
2463 * work->lockdep_map, make a copy and use that here.
2464 */
4d82a1de
PZ
2465 struct lockdep_map lockdep_map;
2466
2467 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2468#endif
807407c0 2469 /* ensure we're on the correct CPU */
85327af6 2470 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2471 raw_smp_processor_id() != pool->cpu);
25511a47 2472
7e11629d
TH
2473 /*
2474 * A single work shouldn't be executed concurrently by
2475 * multiple workers on a single cpu. Check whether anyone is
2476 * already processing the work. If so, defer the work to the
2477 * currently executing one.
2478 */
c9e7cf27 2479 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2480 if (unlikely(collision)) {
2481 move_linked_works(work, &collision->scheduled, NULL);
2482 return;
2483 }
2484
8930caba 2485 /* claim and dequeue */
a62428c0 2486 debug_work_deactivate(work);
c9e7cf27 2487 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2488 worker->current_work = work;
a2c1c57b 2489 worker->current_func = work->func;
112202d9 2490 worker->current_pwq = pwq;
616db877 2491 worker->current_at = worker->task->se.sum_exec_runtime;
c4560c2c 2492 work_data = *work_data_bits(work);
d812796e 2493 worker->current_color = get_work_color(work_data);
7a22ad75 2494
8bf89593
TH
2495 /*
2496 * Record wq name for cmdline and debug reporting, may get
2497 * overridden through set_worker_desc().
2498 */
2499 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2500
a62428c0
TH
2501 list_del_init(&work->entry);
2502
fb0e7beb 2503 /*
228f1d00
LJ
2504 * CPU intensive works don't participate in concurrency management.
2505 * They're the scheduler's responsibility. This takes @worker out
2506 * of concurrency management and the next code block will chain
2507 * execution of the pending work items.
fb0e7beb 2508 */
616db877 2509 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
228f1d00 2510 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2511
974271c4 2512 /*
a489a03e
LJ
2513 * Wake up another worker if necessary. The condition is always
2514 * false for normal per-cpu workers since nr_running would always
2515 * be >= 1 at this point. This is used to chain execution of the
2516 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2517 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2518 */
a489a03e 2519 if (need_more_worker(pool))
63d95a91 2520 wake_up_worker(pool);
974271c4 2521
8930caba 2522 /*
7c3eed5c 2523 * Record the last pool and clear PENDING which should be the last
d565ed63 2524 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2525 * PENDING and queued state changes happen together while IRQ is
2526 * disabled.
8930caba 2527 */
7c3eed5c 2528 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2529
a9b8a985 2530 raw_spin_unlock_irq(&pool->lock);
a62428c0 2531
a1d14934 2532 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2533 lock_map_acquire(&lockdep_map);
e6f3faa7 2534 /*
f52be570
PZ
2535 * Strictly speaking we should mark the invariant state without holding
2536 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2537 *
2538 * However, that would result in:
2539 *
2540 * A(W1)
2541 * WFC(C)
2542 * A(W1)
2543 * C(C)
2544 *
2545 * Which would create W1->C->W1 dependencies, even though there is no
2546 * actual deadlock possible. There are two solutions, using a
2547 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2548 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2549 * these locks.
2550 *
2551 * AFAICT there is no possible deadlock scenario between the
2552 * flush_work() and complete() primitives (except for single-threaded
2553 * workqueues), so hiding them isn't a problem.
2554 */
f52be570 2555 lockdep_invariant_state(true);
725e8ec5 2556 pwq->stats[PWQ_STAT_STARTED]++;
e36c886a 2557 trace_workqueue_execute_start(work);
a2c1c57b 2558 worker->current_func(work);
e36c886a
AV
2559 /*
2560 * While we must be careful to not use "work" after this, the trace
2561 * point will only record its address.
2562 */
1c5da0ec 2563 trace_workqueue_execute_end(work, worker->current_func);
725e8ec5 2564 pwq->stats[PWQ_STAT_COMPLETED]++;
a62428c0 2565 lock_map_release(&lockdep_map);
112202d9 2566 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2567
2568 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2569 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2570 " last function: %ps\n",
a2c1c57b
TH
2571 current->comm, preempt_count(), task_pid_nr(current),
2572 worker->current_func);
a62428c0
TH
2573 debug_show_held_locks(current);
2574 dump_stack();
2575 }
2576
b22ce278 2577 /*
025f50f3 2578 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2579 * kernels, where a requeueing work item waiting for something to
2580 * happen could deadlock with stop_machine as such work item could
2581 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2582 * stop_machine. At the same time, report a quiescent RCU state so
2583 * the same condition doesn't freeze RCU.
b22ce278 2584 */
a7e6425e 2585 cond_resched();
b22ce278 2586
a9b8a985 2587 raw_spin_lock_irq(&pool->lock);
a62428c0 2588
616db877
TH
2589 /*
2590 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2591 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2592 * wq_cpu_intensive_thresh_us. Clear it.
2593 */
2594 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2595
1b69ac6b
JW
2596 /* tag the worker for identification in schedule() */
2597 worker->last_func = worker->current_func;
2598
a62428c0 2599 /* we're done with it, release */
42f8570f 2600 hash_del(&worker->hentry);
c34056a3 2601 worker->current_work = NULL;
a2c1c57b 2602 worker->current_func = NULL;
112202d9 2603 worker->current_pwq = NULL;
d812796e 2604 worker->current_color = INT_MAX;
c4560c2c 2605 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2606}
2607
affee4b2
TH
2608/**
2609 * process_scheduled_works - process scheduled works
2610 * @worker: self
2611 *
2612 * Process all scheduled works. Please note that the scheduled list
2613 * may change while processing a work, so this function repeatedly
2614 * fetches a work from the top and executes it.
2615 *
2616 * CONTEXT:
a9b8a985 2617 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2618 * multiple times.
2619 */
2620static void process_scheduled_works(struct worker *worker)
1da177e4 2621{
c0ab017d
TH
2622 struct work_struct *work;
2623 bool first = true;
2624
2625 while ((work = list_first_entry_or_null(&worker->scheduled,
2626 struct work_struct, entry))) {
2627 if (first) {
2628 worker->pool->watchdog_ts = jiffies;
2629 first = false;
2630 }
c34056a3 2631 process_one_work(worker, work);
1da177e4 2632 }
1da177e4
LT
2633}
2634
197f6acc
TH
2635static void set_pf_worker(bool val)
2636{
2637 mutex_lock(&wq_pool_attach_mutex);
2638 if (val)
2639 current->flags |= PF_WQ_WORKER;
2640 else
2641 current->flags &= ~PF_WQ_WORKER;
2642 mutex_unlock(&wq_pool_attach_mutex);
2643}
2644
4690c4ab
TH
2645/**
2646 * worker_thread - the worker thread function
c34056a3 2647 * @__worker: self
4690c4ab 2648 *
c5aa87bb
TH
2649 * The worker thread function. All workers belong to a worker_pool -
2650 * either a per-cpu one or dynamic unbound one. These workers process all
2651 * work items regardless of their specific target workqueue. The only
2652 * exception is work items which belong to workqueues with a rescuer which
2653 * will be explained in rescuer_thread().
d185af30
YB
2654 *
2655 * Return: 0
4690c4ab 2656 */
c34056a3 2657static int worker_thread(void *__worker)
1da177e4 2658{
c34056a3 2659 struct worker *worker = __worker;
bd7bdd43 2660 struct worker_pool *pool = worker->pool;
1da177e4 2661
e22bee78 2662 /* tell the scheduler that this is a workqueue worker */
197f6acc 2663 set_pf_worker(true);
c8e55f36 2664woke_up:
a9b8a985 2665 raw_spin_lock_irq(&pool->lock);
1da177e4 2666
a9ab775b
TH
2667 /* am I supposed to die? */
2668 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2669 raw_spin_unlock_irq(&pool->lock);
197f6acc 2670 set_pf_worker(false);
60f5a4bc
LJ
2671
2672 set_task_comm(worker->task, "kworker/dying");
e441b56f 2673 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2674 worker_detach_from_pool(worker);
e02b9312 2675 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 2676 kfree(worker);
a9ab775b 2677 return 0;
c8e55f36 2678 }
affee4b2 2679
c8e55f36 2680 worker_leave_idle(worker);
db7bccf4 2681recheck:
e22bee78 2682 /* no more worker necessary? */
63d95a91 2683 if (!need_more_worker(pool))
e22bee78
TH
2684 goto sleep;
2685
2686 /* do we need to manage? */
63d95a91 2687 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2688 goto recheck;
2689
c8e55f36
TH
2690 /*
2691 * ->scheduled list can only be filled while a worker is
2692 * preparing to process a work or actually processing it.
2693 * Make sure nobody diddled with it while I was sleeping.
2694 */
6183c009 2695 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2696
e22bee78 2697 /*
a9ab775b
TH
2698 * Finish PREP stage. We're guaranteed to have at least one idle
2699 * worker or that someone else has already assumed the manager
2700 * role. This is where @worker starts participating in concurrency
2701 * management if applicable and concurrency management is restored
2702 * after being rebound. See rebind_workers() for details.
e22bee78 2703 */
a9ab775b 2704 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2705
2706 do {
c8e55f36 2707 struct work_struct *work =
bd7bdd43 2708 list_first_entry(&pool->worklist,
c8e55f36
TH
2709 struct work_struct, entry);
2710
c0ab017d
TH
2711 move_linked_works(work, &worker->scheduled, NULL);
2712 process_scheduled_works(worker);
63d95a91 2713 } while (keep_working(pool));
e22bee78 2714
228f1d00 2715 worker_set_flags(worker, WORKER_PREP);
d313dd85 2716sleep:
c8e55f36 2717 /*
d565ed63
TH
2718 * pool->lock is held and there's no work to process and no need to
2719 * manage, sleep. Workers are woken up only while holding
2720 * pool->lock or from local cpu, so setting the current state
2721 * before releasing pool->lock is enough to prevent losing any
2722 * event.
c8e55f36
TH
2723 */
2724 worker_enter_idle(worker);
c5a94a61 2725 __set_current_state(TASK_IDLE);
a9b8a985 2726 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2727 schedule();
2728 goto woke_up;
1da177e4
LT
2729}
2730
e22bee78
TH
2731/**
2732 * rescuer_thread - the rescuer thread function
111c225a 2733 * @__rescuer: self
e22bee78
TH
2734 *
2735 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2736 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2737 *
706026c2 2738 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2739 * worker which uses GFP_KERNEL allocation which has slight chance of
2740 * developing into deadlock if some works currently on the same queue
2741 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2742 * the problem rescuer solves.
2743 *
706026c2
TH
2744 * When such condition is possible, the pool summons rescuers of all
2745 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2746 * those works so that forward progress can be guaranteed.
2747 *
2748 * This should happen rarely.
d185af30
YB
2749 *
2750 * Return: 0
e22bee78 2751 */
111c225a 2752static int rescuer_thread(void *__rescuer)
e22bee78 2753{
111c225a
TH
2754 struct worker *rescuer = __rescuer;
2755 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2756 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2757 bool should_stop;
e22bee78
TH
2758
2759 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2760
2761 /*
2762 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2763 * doesn't participate in concurrency management.
2764 */
197f6acc 2765 set_pf_worker(true);
e22bee78 2766repeat:
c5a94a61 2767 set_current_state(TASK_IDLE);
e22bee78 2768
4d595b86
LJ
2769 /*
2770 * By the time the rescuer is requested to stop, the workqueue
2771 * shouldn't have any work pending, but @wq->maydays may still have
2772 * pwq(s) queued. This can happen by non-rescuer workers consuming
2773 * all the work items before the rescuer got to them. Go through
2774 * @wq->maydays processing before acting on should_stop so that the
2775 * list is always empty on exit.
2776 */
2777 should_stop = kthread_should_stop();
e22bee78 2778
493a1724 2779 /* see whether any pwq is asking for help */
a9b8a985 2780 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2781
2782 while (!list_empty(&wq->maydays)) {
2783 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2784 struct pool_workqueue, mayday_node);
112202d9 2785 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2786 struct work_struct *work, *n;
2787
2788 __set_current_state(TASK_RUNNING);
493a1724
TH
2789 list_del_init(&pwq->mayday_node);
2790
a9b8a985 2791 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2792
51697d39
LJ
2793 worker_attach_to_pool(rescuer, pool);
2794
a9b8a985 2795 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2796
2797 /*
2798 * Slurp in all works issued via this workqueue and
2799 * process'em.
2800 */
0479c8c5 2801 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2802 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2803 if (get_work_pwq(work) == pwq) {
e22bee78 2804 move_linked_works(work, scheduled, &n);
725e8ec5 2805 pwq->stats[PWQ_STAT_RESCUED]++;
82607adc 2806 }
82607adc 2807 }
e22bee78 2808
008847f6
N
2809 if (!list_empty(scheduled)) {
2810 process_scheduled_works(rescuer);
2811
2812 /*
2813 * The above execution of rescued work items could
2814 * have created more to rescue through
f97a4a1a 2815 * pwq_activate_first_inactive() or chained
008847f6
N
2816 * queueing. Let's put @pwq back on mayday list so
2817 * that such back-to-back work items, which may be
2818 * being used to relieve memory pressure, don't
2819 * incur MAYDAY_INTERVAL delay inbetween.
2820 */
4f3f4cf3 2821 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2822 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2823 /*
2824 * Queue iff we aren't racing destruction
2825 * and somebody else hasn't queued it already.
2826 */
2827 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2828 get_pwq(pwq);
2829 list_add_tail(&pwq->mayday_node, &wq->maydays);
2830 }
a9b8a985 2831 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2832 }
2833 }
7576958a 2834
77668c8b
LJ
2835 /*
2836 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2837 * go away while we're still attached to it.
77668c8b
LJ
2838 */
2839 put_pwq(pwq);
2840
7576958a 2841 /*
d8ca83e6 2842 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2843 * regular worker; otherwise, we end up with 0 concurrency
2844 * and stalling the execution.
2845 */
d8ca83e6 2846 if (need_more_worker(pool))
63d95a91 2847 wake_up_worker(pool);
7576958a 2848
a9b8a985 2849 raw_spin_unlock_irq(&pool->lock);
13b1d625 2850
a2d812a2 2851 worker_detach_from_pool(rescuer);
13b1d625 2852
a9b8a985 2853 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2854 }
2855
a9b8a985 2856 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2857
4d595b86
LJ
2858 if (should_stop) {
2859 __set_current_state(TASK_RUNNING);
197f6acc 2860 set_pf_worker(false);
4d595b86
LJ
2861 return 0;
2862 }
2863
111c225a
TH
2864 /* rescuers should never participate in concurrency management */
2865 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2866 schedule();
2867 goto repeat;
1da177e4
LT
2868}
2869
fca839c0
TH
2870/**
2871 * check_flush_dependency - check for flush dependency sanity
2872 * @target_wq: workqueue being flushed
2873 * @target_work: work item being flushed (NULL for workqueue flushes)
2874 *
2875 * %current is trying to flush the whole @target_wq or @target_work on it.
2876 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2877 * reclaiming memory or running on a workqueue which doesn't have
2878 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2879 * a deadlock.
2880 */
2881static void check_flush_dependency(struct workqueue_struct *target_wq,
2882 struct work_struct *target_work)
2883{
2884 work_func_t target_func = target_work ? target_work->func : NULL;
2885 struct worker *worker;
2886
2887 if (target_wq->flags & WQ_MEM_RECLAIM)
2888 return;
2889
2890 worker = current_wq_worker();
2891
2892 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2893 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2894 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2895 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2896 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2897 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2898 worker->current_pwq->wq->name, worker->current_func,
2899 target_wq->name, target_func);
2900}
2901
fc2e4d70
ON
2902struct wq_barrier {
2903 struct work_struct work;
2904 struct completion done;
2607d7a6 2905 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2906};
2907
2908static void wq_barrier_func(struct work_struct *work)
2909{
2910 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2911 complete(&barr->done);
2912}
2913
4690c4ab
TH
2914/**
2915 * insert_wq_barrier - insert a barrier work
112202d9 2916 * @pwq: pwq to insert barrier into
4690c4ab 2917 * @barr: wq_barrier to insert
affee4b2
TH
2918 * @target: target work to attach @barr to
2919 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2920 *
affee4b2
TH
2921 * @barr is linked to @target such that @barr is completed only after
2922 * @target finishes execution. Please note that the ordering
2923 * guarantee is observed only with respect to @target and on the local
2924 * cpu.
2925 *
2926 * Currently, a queued barrier can't be canceled. This is because
2927 * try_to_grab_pending() can't determine whether the work to be
2928 * grabbed is at the head of the queue and thus can't clear LINKED
2929 * flag of the previous work while there must be a valid next work
2930 * after a work with LINKED flag set.
2931 *
2932 * Note that when @worker is non-NULL, @target may be modified
112202d9 2933 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2934 *
2935 * CONTEXT:
a9b8a985 2936 * raw_spin_lock_irq(pool->lock).
4690c4ab 2937 */
112202d9 2938static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2939 struct wq_barrier *barr,
2940 struct work_struct *target, struct worker *worker)
fc2e4d70 2941{
d812796e
LJ
2942 unsigned int work_flags = 0;
2943 unsigned int work_color;
affee4b2 2944 struct list_head *head;
affee4b2 2945
dc186ad7 2946 /*
d565ed63 2947 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2948 * as we know for sure that this will not trigger any of the
2949 * checks and call back into the fixup functions where we
2950 * might deadlock.
2951 */
ca1cab37 2952 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2953 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2954
fd1a5b04
BP
2955 init_completion_map(&barr->done, &target->lockdep_map);
2956
2607d7a6 2957 barr->task = current;
83c22520 2958
018f3a13
LJ
2959 /* The barrier work item does not participate in pwq->nr_active. */
2960 work_flags |= WORK_STRUCT_INACTIVE;
2961
affee4b2
TH
2962 /*
2963 * If @target is currently being executed, schedule the
2964 * barrier to the worker; otherwise, put it after @target.
2965 */
d812796e 2966 if (worker) {
affee4b2 2967 head = worker->scheduled.next;
d812796e
LJ
2968 work_color = worker->current_color;
2969 } else {
affee4b2
TH
2970 unsigned long *bits = work_data_bits(target);
2971
2972 head = target->entry.next;
2973 /* there can already be other linked works, inherit and set */
d21cece0 2974 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2975 work_color = get_work_color(*bits);
affee4b2
TH
2976 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2977 }
2978
d812796e
LJ
2979 pwq->nr_in_flight[work_color]++;
2980 work_flags |= work_color_to_flags(work_color);
2981
d21cece0 2982 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2983}
2984
73f53c4a 2985/**
112202d9 2986 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2987 * @wq: workqueue being flushed
2988 * @flush_color: new flush color, < 0 for no-op
2989 * @work_color: new work color, < 0 for no-op
2990 *
112202d9 2991 * Prepare pwqs for workqueue flushing.
73f53c4a 2992 *
112202d9
TH
2993 * If @flush_color is non-negative, flush_color on all pwqs should be
2994 * -1. If no pwq has in-flight commands at the specified color, all
2995 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2996 * has in flight commands, its pwq->flush_color is set to
2997 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2998 * wakeup logic is armed and %true is returned.
2999 *
3000 * The caller should have initialized @wq->first_flusher prior to
3001 * calling this function with non-negative @flush_color. If
3002 * @flush_color is negative, no flush color update is done and %false
3003 * is returned.
3004 *
112202d9 3005 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
3006 * work_color which is previous to @work_color and all will be
3007 * advanced to @work_color.
3008 *
3009 * CONTEXT:
3c25a55d 3010 * mutex_lock(wq->mutex).
73f53c4a 3011 *
d185af30 3012 * Return:
73f53c4a
TH
3013 * %true if @flush_color >= 0 and there's something to flush. %false
3014 * otherwise.
3015 */
112202d9 3016static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 3017 int flush_color, int work_color)
1da177e4 3018{
73f53c4a 3019 bool wait = false;
49e3cf44 3020 struct pool_workqueue *pwq;
1da177e4 3021
73f53c4a 3022 if (flush_color >= 0) {
6183c009 3023 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 3024 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 3025 }
2355b70f 3026
49e3cf44 3027 for_each_pwq(pwq, wq) {
112202d9 3028 struct worker_pool *pool = pwq->pool;
fc2e4d70 3029
a9b8a985 3030 raw_spin_lock_irq(&pool->lock);
83c22520 3031
73f53c4a 3032 if (flush_color >= 0) {
6183c009 3033 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 3034
112202d9
TH
3035 if (pwq->nr_in_flight[flush_color]) {
3036 pwq->flush_color = flush_color;
3037 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
3038 wait = true;
3039 }
3040 }
1da177e4 3041
73f53c4a 3042 if (work_color >= 0) {
6183c009 3043 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 3044 pwq->work_color = work_color;
73f53c4a 3045 }
1da177e4 3046
a9b8a985 3047 raw_spin_unlock_irq(&pool->lock);
1da177e4 3048 }
2355b70f 3049
112202d9 3050 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 3051 complete(&wq->first_flusher->done);
14441960 3052
73f53c4a 3053 return wait;
1da177e4
LT
3054}
3055
0fcb78c2 3056/**
c4f135d6 3057 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 3058 * @wq: workqueue to flush
1da177e4 3059 *
c5aa87bb
TH
3060 * This function sleeps until all work items which were queued on entry
3061 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 3062 */
c4f135d6 3063void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 3064{
73f53c4a
TH
3065 struct wq_flusher this_flusher = {
3066 .list = LIST_HEAD_INIT(this_flusher.list),
3067 .flush_color = -1,
fd1a5b04 3068 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
3069 };
3070 int next_color;
1da177e4 3071
3347fa09
TH
3072 if (WARN_ON(!wq_online))
3073 return;
3074
87915adc
JB
3075 lock_map_acquire(&wq->lockdep_map);
3076 lock_map_release(&wq->lockdep_map);
3077
3c25a55d 3078 mutex_lock(&wq->mutex);
73f53c4a
TH
3079
3080 /*
3081 * Start-to-wait phase
3082 */
3083 next_color = work_next_color(wq->work_color);
3084
3085 if (next_color != wq->flush_color) {
3086 /*
3087 * Color space is not full. The current work_color
3088 * becomes our flush_color and work_color is advanced
3089 * by one.
3090 */
6183c009 3091 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
3092 this_flusher.flush_color = wq->work_color;
3093 wq->work_color = next_color;
3094
3095 if (!wq->first_flusher) {
3096 /* no flush in progress, become the first flusher */
6183c009 3097 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3098
3099 wq->first_flusher = &this_flusher;
3100
112202d9 3101 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
3102 wq->work_color)) {
3103 /* nothing to flush, done */
3104 wq->flush_color = next_color;
3105 wq->first_flusher = NULL;
3106 goto out_unlock;
3107 }
3108 } else {
3109 /* wait in queue */
6183c009 3110 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 3111 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 3112 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3113 }
3114 } else {
3115 /*
3116 * Oops, color space is full, wait on overflow queue.
3117 * The next flush completion will assign us
3118 * flush_color and transfer to flusher_queue.
3119 */
3120 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3121 }
3122
fca839c0
TH
3123 check_flush_dependency(wq, NULL);
3124
3c25a55d 3125 mutex_unlock(&wq->mutex);
73f53c4a
TH
3126
3127 wait_for_completion(&this_flusher.done);
3128
3129 /*
3130 * Wake-up-and-cascade phase
3131 *
3132 * First flushers are responsible for cascading flushes and
3133 * handling overflow. Non-first flushers can simply return.
3134 */
00d5d15b 3135 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
3136 return;
3137
3c25a55d 3138 mutex_lock(&wq->mutex);
73f53c4a 3139
4ce48b37
TH
3140 /* we might have raced, check again with mutex held */
3141 if (wq->first_flusher != &this_flusher)
3142 goto out_unlock;
3143
00d5d15b 3144 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 3145
6183c009
TH
3146 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3147 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
3148
3149 while (true) {
3150 struct wq_flusher *next, *tmp;
3151
3152 /* complete all the flushers sharing the current flush color */
3153 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3154 if (next->flush_color != wq->flush_color)
3155 break;
3156 list_del_init(&next->list);
3157 complete(&next->done);
3158 }
3159
6183c009
TH
3160 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3161 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3162
3163 /* this flush_color is finished, advance by one */
3164 wq->flush_color = work_next_color(wq->flush_color);
3165
3166 /* one color has been freed, handle overflow queue */
3167 if (!list_empty(&wq->flusher_overflow)) {
3168 /*
3169 * Assign the same color to all overflowed
3170 * flushers, advance work_color and append to
3171 * flusher_queue. This is the start-to-wait
3172 * phase for these overflowed flushers.
3173 */
3174 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3175 tmp->flush_color = wq->work_color;
3176
3177 wq->work_color = work_next_color(wq->work_color);
3178
3179 list_splice_tail_init(&wq->flusher_overflow,
3180 &wq->flusher_queue);
112202d9 3181 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3182 }
3183
3184 if (list_empty(&wq->flusher_queue)) {
6183c009 3185 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3186 break;
3187 }
3188
3189 /*
3190 * Need to flush more colors. Make the next flusher
112202d9 3191 * the new first flusher and arm pwqs.
73f53c4a 3192 */
6183c009
TH
3193 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3194 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3195
3196 list_del_init(&next->list);
3197 wq->first_flusher = next;
3198
112202d9 3199 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3200 break;
3201
3202 /*
3203 * Meh... this color is already done, clear first
3204 * flusher and repeat cascading.
3205 */
3206 wq->first_flusher = NULL;
3207 }
3208
3209out_unlock:
3c25a55d 3210 mutex_unlock(&wq->mutex);
1da177e4 3211}
c4f135d6 3212EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3213
9c5a2ba7
TH
3214/**
3215 * drain_workqueue - drain a workqueue
3216 * @wq: workqueue to drain
3217 *
3218 * Wait until the workqueue becomes empty. While draining is in progress,
3219 * only chain queueing is allowed. IOW, only currently pending or running
3220 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3221 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3222 * by the depth of chaining and should be relatively short. Whine if it
3223 * takes too long.
3224 */
3225void drain_workqueue(struct workqueue_struct *wq)
3226{
3227 unsigned int flush_cnt = 0;
49e3cf44 3228 struct pool_workqueue *pwq;
9c5a2ba7
TH
3229
3230 /*
3231 * __queue_work() needs to test whether there are drainers, is much
3232 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3233 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3234 */
87fc741e 3235 mutex_lock(&wq->mutex);
9c5a2ba7 3236 if (!wq->nr_drainers++)
618b01eb 3237 wq->flags |= __WQ_DRAINING;
87fc741e 3238 mutex_unlock(&wq->mutex);
9c5a2ba7 3239reflush:
c4f135d6 3240 __flush_workqueue(wq);
9c5a2ba7 3241
b09f4fd3 3242 mutex_lock(&wq->mutex);
76af4d93 3243
49e3cf44 3244 for_each_pwq(pwq, wq) {
fa2563e4 3245 bool drained;
9c5a2ba7 3246
a9b8a985 3247 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 3248 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 3249 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3250
3251 if (drained)
9c5a2ba7
TH
3252 continue;
3253
3254 if (++flush_cnt == 10 ||
3255 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3256 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3257 wq->name, __func__, flush_cnt);
76af4d93 3258
b09f4fd3 3259 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3260 goto reflush;
3261 }
3262
9c5a2ba7 3263 if (!--wq->nr_drainers)
618b01eb 3264 wq->flags &= ~__WQ_DRAINING;
87fc741e 3265 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3266}
3267EXPORT_SYMBOL_GPL(drain_workqueue);
3268
d6e89786
JB
3269static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3270 bool from_cancel)
db700897 3271{
affee4b2 3272 struct worker *worker = NULL;
c9e7cf27 3273 struct worker_pool *pool;
112202d9 3274 struct pool_workqueue *pwq;
db700897
ON
3275
3276 might_sleep();
fa1b54e6 3277
24acfb71 3278 rcu_read_lock();
c9e7cf27 3279 pool = get_work_pool(work);
fa1b54e6 3280 if (!pool) {
24acfb71 3281 rcu_read_unlock();
baf59022 3282 return false;
fa1b54e6 3283 }
db700897 3284
a9b8a985 3285 raw_spin_lock_irq(&pool->lock);
0b3dae68 3286 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3287 pwq = get_work_pwq(work);
3288 if (pwq) {
3289 if (unlikely(pwq->pool != pool))
4690c4ab 3290 goto already_gone;
606a5020 3291 } else {
c9e7cf27 3292 worker = find_worker_executing_work(pool, work);
affee4b2 3293 if (!worker)
4690c4ab 3294 goto already_gone;
112202d9 3295 pwq = worker->current_pwq;
606a5020 3296 }
db700897 3297
fca839c0
TH
3298 check_flush_dependency(pwq->wq, work);
3299
112202d9 3300 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3301 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3302
e159489b 3303 /*
a1d14934
PZ
3304 * Force a lock recursion deadlock when using flush_work() inside a
3305 * single-threaded or rescuer equipped workqueue.
3306 *
3307 * For single threaded workqueues the deadlock happens when the work
3308 * is after the work issuing the flush_work(). For rescuer equipped
3309 * workqueues the deadlock happens when the rescuer stalls, blocking
3310 * forward progress.
e159489b 3311 */
d6e89786
JB
3312 if (!from_cancel &&
3313 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3314 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3315 lock_map_release(&pwq->wq->lockdep_map);
3316 }
24acfb71 3317 rcu_read_unlock();
401a8d04 3318 return true;
4690c4ab 3319already_gone:
a9b8a985 3320 raw_spin_unlock_irq(&pool->lock);
24acfb71 3321 rcu_read_unlock();
401a8d04 3322 return false;
db700897 3323}
baf59022 3324
d6e89786
JB
3325static bool __flush_work(struct work_struct *work, bool from_cancel)
3326{
3327 struct wq_barrier barr;
3328
3329 if (WARN_ON(!wq_online))
3330 return false;
3331
4d43d395
TH
3332 if (WARN_ON(!work->func))
3333 return false;
3334
c0feea59
TH
3335 lock_map_acquire(&work->lockdep_map);
3336 lock_map_release(&work->lockdep_map);
87915adc 3337
d6e89786
JB
3338 if (start_flush_work(work, &barr, from_cancel)) {
3339 wait_for_completion(&barr.done);
3340 destroy_work_on_stack(&barr.work);
3341 return true;
3342 } else {
3343 return false;
3344 }
3345}
3346
baf59022
TH
3347/**
3348 * flush_work - wait for a work to finish executing the last queueing instance
3349 * @work: the work to flush
3350 *
606a5020
TH
3351 * Wait until @work has finished execution. @work is guaranteed to be idle
3352 * on return if it hasn't been requeued since flush started.
baf59022 3353 *
d185af30 3354 * Return:
baf59022
TH
3355 * %true if flush_work() waited for the work to finish execution,
3356 * %false if it was already idle.
3357 */
3358bool flush_work(struct work_struct *work)
3359{
d6e89786 3360 return __flush_work(work, false);
6e84d644 3361}
606a5020 3362EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3363
8603e1b3 3364struct cwt_wait {
ac6424b9 3365 wait_queue_entry_t wait;
8603e1b3
TH
3366 struct work_struct *work;
3367};
3368
ac6424b9 3369static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3370{
3371 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3372
3373 if (cwait->work != key)
3374 return 0;
3375 return autoremove_wake_function(wait, mode, sync, key);
3376}
3377
36e227d2 3378static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3379{
8603e1b3 3380 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3381 unsigned long flags;
1f1f642e
ON
3382 int ret;
3383
3384 do {
bbb68dfa
TH
3385 ret = try_to_grab_pending(work, is_dwork, &flags);
3386 /*
8603e1b3
TH
3387 * If someone else is already canceling, wait for it to
3388 * finish. flush_work() doesn't work for PREEMPT_NONE
3389 * because we may get scheduled between @work's completion
3390 * and the other canceling task resuming and clearing
3391 * CANCELING - flush_work() will return false immediately
3392 * as @work is no longer busy, try_to_grab_pending() will
3393 * return -ENOENT as @work is still being canceled and the
3394 * other canceling task won't be able to clear CANCELING as
3395 * we're hogging the CPU.
3396 *
3397 * Let's wait for completion using a waitqueue. As this
3398 * may lead to the thundering herd problem, use a custom
3399 * wake function which matches @work along with exclusive
3400 * wait and wakeup.
bbb68dfa 3401 */
8603e1b3
TH
3402 if (unlikely(ret == -ENOENT)) {
3403 struct cwt_wait cwait;
3404
3405 init_wait(&cwait.wait);
3406 cwait.wait.func = cwt_wakefn;
3407 cwait.work = work;
3408
3409 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3410 TASK_UNINTERRUPTIBLE);
3411 if (work_is_canceling(work))
3412 schedule();
3413 finish_wait(&cancel_waitq, &cwait.wait);
3414 }
1f1f642e
ON
3415 } while (unlikely(ret < 0));
3416
bbb68dfa
TH
3417 /* tell other tasks trying to grab @work to back off */
3418 mark_work_canceling(work);
3419 local_irq_restore(flags);
3420
3347fa09
TH
3421 /*
3422 * This allows canceling during early boot. We know that @work
3423 * isn't executing.
3424 */
3425 if (wq_online)
d6e89786 3426 __flush_work(work, true);
3347fa09 3427
7a22ad75 3428 clear_work_data(work);
8603e1b3
TH
3429
3430 /*
3431 * Paired with prepare_to_wait() above so that either
3432 * waitqueue_active() is visible here or !work_is_canceling() is
3433 * visible there.
3434 */
3435 smp_mb();
3436 if (waitqueue_active(&cancel_waitq))
3437 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3438
1f1f642e
ON
3439 return ret;
3440}
3441
6e84d644 3442/**
401a8d04
TH
3443 * cancel_work_sync - cancel a work and wait for it to finish
3444 * @work: the work to cancel
6e84d644 3445 *
401a8d04
TH
3446 * Cancel @work and wait for its execution to finish. This function
3447 * can be used even if the work re-queues itself or migrates to
3448 * another workqueue. On return from this function, @work is
3449 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3450 *
401a8d04
TH
3451 * cancel_work_sync(&delayed_work->work) must not be used for
3452 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3453 *
401a8d04 3454 * The caller must ensure that the workqueue on which @work was last
6e84d644 3455 * queued can't be destroyed before this function returns.
401a8d04 3456 *
d185af30 3457 * Return:
401a8d04 3458 * %true if @work was pending, %false otherwise.
6e84d644 3459 */
401a8d04 3460bool cancel_work_sync(struct work_struct *work)
6e84d644 3461{
36e227d2 3462 return __cancel_work_timer(work, false);
b89deed3 3463}
28e53bdd 3464EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3465
6e84d644 3466/**
401a8d04
TH
3467 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3468 * @dwork: the delayed work to flush
6e84d644 3469 *
401a8d04
TH
3470 * Delayed timer is cancelled and the pending work is queued for
3471 * immediate execution. Like flush_work(), this function only
3472 * considers the last queueing instance of @dwork.
1f1f642e 3473 *
d185af30 3474 * Return:
401a8d04
TH
3475 * %true if flush_work() waited for the work to finish execution,
3476 * %false if it was already idle.
6e84d644 3477 */
401a8d04
TH
3478bool flush_delayed_work(struct delayed_work *dwork)
3479{
8930caba 3480 local_irq_disable();
401a8d04 3481 if (del_timer_sync(&dwork->timer))
60c057bc 3482 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3483 local_irq_enable();
401a8d04
TH
3484 return flush_work(&dwork->work);
3485}
3486EXPORT_SYMBOL(flush_delayed_work);
3487
05f0fe6b
TH
3488/**
3489 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3490 * @rwork: the rcu work to flush
3491 *
3492 * Return:
3493 * %true if flush_rcu_work() waited for the work to finish execution,
3494 * %false if it was already idle.
3495 */
3496bool flush_rcu_work(struct rcu_work *rwork)
3497{
3498 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3499 rcu_barrier();
3500 flush_work(&rwork->work);
3501 return true;
3502 } else {
3503 return flush_work(&rwork->work);
3504 }
3505}
3506EXPORT_SYMBOL(flush_rcu_work);
3507
f72b8792
JA
3508static bool __cancel_work(struct work_struct *work, bool is_dwork)
3509{
3510 unsigned long flags;
3511 int ret;
3512
3513 do {
3514 ret = try_to_grab_pending(work, is_dwork, &flags);
3515 } while (unlikely(ret == -EAGAIN));
3516
3517 if (unlikely(ret < 0))
3518 return false;
3519
3520 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3521 local_irq_restore(flags);
3522 return ret;
3523}
3524
73b4b532
AG
3525/*
3526 * See cancel_delayed_work()
3527 */
3528bool cancel_work(struct work_struct *work)
3529{
3530 return __cancel_work(work, false);
3531}
3532EXPORT_SYMBOL(cancel_work);
3533
09383498 3534/**
57b30ae7
TH
3535 * cancel_delayed_work - cancel a delayed work
3536 * @dwork: delayed_work to cancel
09383498 3537 *
d185af30
YB
3538 * Kill off a pending delayed_work.
3539 *
3540 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3541 * pending.
3542 *
3543 * Note:
3544 * The work callback function may still be running on return, unless
3545 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3546 * use cancel_delayed_work_sync() to wait on it.
09383498 3547 *
57b30ae7 3548 * This function is safe to call from any context including IRQ handler.
09383498 3549 */
57b30ae7 3550bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3551{
f72b8792 3552 return __cancel_work(&dwork->work, true);
09383498 3553}
57b30ae7 3554EXPORT_SYMBOL(cancel_delayed_work);
09383498 3555
401a8d04
TH
3556/**
3557 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3558 * @dwork: the delayed work cancel
3559 *
3560 * This is cancel_work_sync() for delayed works.
3561 *
d185af30 3562 * Return:
401a8d04
TH
3563 * %true if @dwork was pending, %false otherwise.
3564 */
3565bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3566{
36e227d2 3567 return __cancel_work_timer(&dwork->work, true);
6e84d644 3568}
f5a421a4 3569EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3570
b6136773 3571/**
31ddd871 3572 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3573 * @func: the function to call
b6136773 3574 *
31ddd871
TH
3575 * schedule_on_each_cpu() executes @func on each online CPU using the
3576 * system workqueue and blocks until all CPUs have completed.
b6136773 3577 * schedule_on_each_cpu() is very slow.
31ddd871 3578 *
d185af30 3579 * Return:
31ddd871 3580 * 0 on success, -errno on failure.
b6136773 3581 */
65f27f38 3582int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3583{
3584 int cpu;
38f51568 3585 struct work_struct __percpu *works;
15316ba8 3586
b6136773
AM
3587 works = alloc_percpu(struct work_struct);
3588 if (!works)
15316ba8 3589 return -ENOMEM;
b6136773 3590
ffd8bea8 3591 cpus_read_lock();
93981800 3592
15316ba8 3593 for_each_online_cpu(cpu) {
9bfb1839
IM
3594 struct work_struct *work = per_cpu_ptr(works, cpu);
3595
3596 INIT_WORK(work, func);
b71ab8c2 3597 schedule_work_on(cpu, work);
65a64464 3598 }
93981800
TH
3599
3600 for_each_online_cpu(cpu)
3601 flush_work(per_cpu_ptr(works, cpu));
3602
ffd8bea8 3603 cpus_read_unlock();
b6136773 3604 free_percpu(works);
15316ba8
CL
3605 return 0;
3606}
3607
1fa44eca
JB
3608/**
3609 * execute_in_process_context - reliably execute the routine with user context
3610 * @fn: the function to execute
1fa44eca
JB
3611 * @ew: guaranteed storage for the execute work structure (must
3612 * be available when the work executes)
3613 *
3614 * Executes the function immediately if process context is available,
3615 * otherwise schedules the function for delayed execution.
3616 *
d185af30 3617 * Return: 0 - function was executed
1fa44eca
JB
3618 * 1 - function was scheduled for execution
3619 */
65f27f38 3620int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3621{
3622 if (!in_interrupt()) {
65f27f38 3623 fn(&ew->work);
1fa44eca
JB
3624 return 0;
3625 }
3626
65f27f38 3627 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3628 schedule_work(&ew->work);
3629
3630 return 1;
3631}
3632EXPORT_SYMBOL_GPL(execute_in_process_context);
3633
6ba94429
FW
3634/**
3635 * free_workqueue_attrs - free a workqueue_attrs
3636 * @attrs: workqueue_attrs to free
226223ab 3637 *
6ba94429 3638 * Undo alloc_workqueue_attrs().
226223ab 3639 */
513c98d0 3640void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3641{
6ba94429
FW
3642 if (attrs) {
3643 free_cpumask_var(attrs->cpumask);
3644 kfree(attrs);
3645 }
226223ab
TH
3646}
3647
6ba94429
FW
3648/**
3649 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3650 *
3651 * Allocate a new workqueue_attrs, initialize with default settings and
3652 * return it.
3653 *
3654 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3655 */
513c98d0 3656struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3657{
6ba94429 3658 struct workqueue_attrs *attrs;
226223ab 3659
be69d00d 3660 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3661 if (!attrs)
3662 goto fail;
be69d00d 3663 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3664 goto fail;
3665
3666 cpumask_copy(attrs->cpumask, cpu_possible_mask);
84193c07 3667 attrs->affn_scope = WQ_AFFN_DFL;
6ba94429
FW
3668 return attrs;
3669fail:
3670 free_workqueue_attrs(attrs);
3671 return NULL;
226223ab
TH
3672}
3673
6ba94429
FW
3674static void copy_workqueue_attrs(struct workqueue_attrs *to,
3675 const struct workqueue_attrs *from)
226223ab 3676{
6ba94429
FW
3677 to->nice = from->nice;
3678 cpumask_copy(to->cpumask, from->cpumask);
84193c07 3679
6ba94429 3680 /*
84193c07
TH
3681 * Unlike hash and equality test, copying shouldn't ignore wq-only
3682 * fields as copying is used for both pool and wq attrs. Instead,
3683 * get_unbound_pool() explicitly clears the fields.
6ba94429 3684 */
84193c07 3685 to->affn_scope = from->affn_scope;
af73f5c9 3686 to->ordered = from->ordered;
226223ab
TH
3687}
3688
5de7a03c
TH
3689/*
3690 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3691 * comments in 'struct workqueue_attrs' definition.
3692 */
3693static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3694{
84193c07 3695 attrs->affn_scope = WQ_AFFN_NR_TYPES;
5de7a03c
TH
3696 attrs->ordered = false;
3697}
3698
6ba94429
FW
3699/* hash value of the content of @attr */
3700static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3701{
6ba94429 3702 u32 hash = 0;
226223ab 3703
6ba94429
FW
3704 hash = jhash_1word(attrs->nice, hash);
3705 hash = jhash(cpumask_bits(attrs->cpumask),
3706 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3707 return hash;
226223ab 3708}
226223ab 3709
6ba94429
FW
3710/* content equality test */
3711static bool wqattrs_equal(const struct workqueue_attrs *a,
3712 const struct workqueue_attrs *b)
226223ab 3713{
6ba94429
FW
3714 if (a->nice != b->nice)
3715 return false;
3716 if (!cpumask_equal(a->cpumask, b->cpumask))
3717 return false;
3718 return true;
226223ab
TH
3719}
3720
0f36ee24
TH
3721/* Update @attrs with actually available CPUs */
3722static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3723 const cpumask_t *unbound_cpumask)
3724{
3725 /*
3726 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3727 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3728 * @unbound_cpumask.
3729 */
3730 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3731 if (unlikely(cpumask_empty(attrs->cpumask)))
3732 cpumask_copy(attrs->cpumask, unbound_cpumask);
3733}
3734
84193c07
TH
3735/* find wq_pod_type to use for @attrs */
3736static const struct wq_pod_type *
3737wqattrs_pod_type(const struct workqueue_attrs *attrs)
3738{
3739 struct wq_pod_type *pt = &wq_pod_types[attrs->affn_scope];
3740
3741 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3742 likely(pt->nr_pods))
3743 return pt;
3744
3745 /*
3746 * Before workqueue_init_topology(), only SYSTEM is available which is
3747 * initialized in workqueue_init_early().
3748 */
3749 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3750 BUG_ON(!pt->nr_pods);
3751 return pt;
3752}
3753
6ba94429
FW
3754/**
3755 * init_worker_pool - initialize a newly zalloc'd worker_pool
3756 * @pool: worker_pool to initialize
3757 *
402dd89d 3758 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3759 *
3760 * Return: 0 on success, -errno on failure. Even on failure, all fields
3761 * inside @pool proper are initialized and put_unbound_pool() can be called
3762 * on @pool safely to release it.
3763 */
3764static int init_worker_pool(struct worker_pool *pool)
226223ab 3765{
a9b8a985 3766 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3767 pool->id = -1;
3768 pool->cpu = -1;
3769 pool->node = NUMA_NO_NODE;
3770 pool->flags |= POOL_DISASSOCIATED;
82607adc 3771 pool->watchdog_ts = jiffies;
6ba94429
FW
3772 INIT_LIST_HEAD(&pool->worklist);
3773 INIT_LIST_HEAD(&pool->idle_list);
3774 hash_init(pool->busy_hash);
226223ab 3775
32a6c723 3776 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 3777 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 3778
32a6c723 3779 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3780
6ba94429 3781 INIT_LIST_HEAD(&pool->workers);
e02b9312 3782 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 3783
6ba94429
FW
3784 ida_init(&pool->worker_ida);
3785 INIT_HLIST_NODE(&pool->hash_node);
3786 pool->refcnt = 1;
226223ab 3787
6ba94429 3788 /* shouldn't fail above this point */
be69d00d 3789 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3790 if (!pool->attrs)
3791 return -ENOMEM;
5de7a03c
TH
3792
3793 wqattrs_clear_for_pool(pool->attrs);
3794
6ba94429 3795 return 0;
226223ab
TH
3796}
3797
669de8bd
BVA
3798#ifdef CONFIG_LOCKDEP
3799static void wq_init_lockdep(struct workqueue_struct *wq)
3800{
3801 char *lock_name;
3802
3803 lockdep_register_key(&wq->key);
3804 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3805 if (!lock_name)
3806 lock_name = wq->name;
69a106c0
QC
3807
3808 wq->lock_name = lock_name;
669de8bd
BVA
3809 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3810}
3811
3812static void wq_unregister_lockdep(struct workqueue_struct *wq)
3813{
3814 lockdep_unregister_key(&wq->key);
3815}
3816
3817static void wq_free_lockdep(struct workqueue_struct *wq)
3818{
3819 if (wq->lock_name != wq->name)
3820 kfree(wq->lock_name);
3821}
3822#else
3823static void wq_init_lockdep(struct workqueue_struct *wq)
3824{
3825}
3826
3827static void wq_unregister_lockdep(struct workqueue_struct *wq)
3828{
3829}
3830
3831static void wq_free_lockdep(struct workqueue_struct *wq)
3832{
3833}
3834#endif
3835
6ba94429 3836static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3837{
6ba94429
FW
3838 struct workqueue_struct *wq =
3839 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3840
669de8bd 3841 wq_free_lockdep(wq);
636b927e
TH
3842 free_percpu(wq->cpu_pwq);
3843 free_workqueue_attrs(wq->unbound_attrs);
6ba94429 3844 kfree(wq);
226223ab
TH
3845}
3846
6ba94429 3847static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3848{
6ba94429 3849 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3850
6ba94429
FW
3851 ida_destroy(&pool->worker_ida);
3852 free_workqueue_attrs(pool->attrs);
3853 kfree(pool);
226223ab
TH
3854}
3855
6ba94429
FW
3856/**
3857 * put_unbound_pool - put a worker_pool
3858 * @pool: worker_pool to put
3859 *
24acfb71 3860 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3861 * safe manner. get_unbound_pool() calls this function on its failure path
3862 * and this function should be able to release pools which went through,
3863 * successfully or not, init_worker_pool().
3864 *
3865 * Should be called with wq_pool_mutex held.
3866 */
3867static void put_unbound_pool(struct worker_pool *pool)
226223ab 3868{
6ba94429
FW
3869 DECLARE_COMPLETION_ONSTACK(detach_completion);
3870 struct worker *worker;
9680540c 3871 LIST_HEAD(cull_list);
e02b9312 3872
6ba94429 3873 lockdep_assert_held(&wq_pool_mutex);
226223ab 3874
6ba94429
FW
3875 if (--pool->refcnt)
3876 return;
226223ab 3877
6ba94429
FW
3878 /* sanity checks */
3879 if (WARN_ON(!(pool->cpu < 0)) ||
3880 WARN_ON(!list_empty(&pool->worklist)))
3881 return;
226223ab 3882
6ba94429
FW
3883 /* release id and unhash */
3884 if (pool->id >= 0)
3885 idr_remove(&worker_pool_idr, pool->id);
3886 hash_del(&pool->hash_node);
d55262c4 3887
6ba94429 3888 /*
692b4825
TH
3889 * Become the manager and destroy all workers. This prevents
3890 * @pool's workers from blocking on attach_mutex. We're the last
3891 * manager and @pool gets freed with the flag set.
9ab03be4
VS
3892 *
3893 * Having a concurrent manager is quite unlikely to happen as we can
3894 * only get here with
3895 * pwq->refcnt == pool->refcnt == 0
3896 * which implies no work queued to the pool, which implies no worker can
3897 * become the manager. However a worker could have taken the role of
3898 * manager before the refcnts dropped to 0, since maybe_create_worker()
3899 * drops pool->lock
6ba94429 3900 */
9ab03be4
VS
3901 while (true) {
3902 rcuwait_wait_event(&manager_wait,
3903 !(pool->flags & POOL_MANAGER_ACTIVE),
3904 TASK_UNINTERRUPTIBLE);
e02b9312
VS
3905
3906 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
3907 raw_spin_lock_irq(&pool->lock);
3908 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3909 pool->flags |= POOL_MANAGER_ACTIVE;
3910 break;
3911 }
3912 raw_spin_unlock_irq(&pool->lock);
e02b9312 3913 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 3914 }
692b4825 3915
6ba94429 3916 while ((worker = first_idle_worker(pool)))
e02b9312 3917 set_worker_dying(worker, &cull_list);
6ba94429 3918 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3919 raw_spin_unlock_irq(&pool->lock);
d55262c4 3920
e02b9312
VS
3921 wake_dying_workers(&cull_list);
3922
3923 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 3924 pool->detach_completion = &detach_completion;
1258fae7 3925 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3926
6ba94429
FW
3927 if (pool->detach_completion)
3928 wait_for_completion(pool->detach_completion);
226223ab 3929
6ba94429
FW
3930 /* shut down the timers */
3931 del_timer_sync(&pool->idle_timer);
3f959aa3 3932 cancel_work_sync(&pool->idle_cull_work);
6ba94429 3933 del_timer_sync(&pool->mayday_timer);
226223ab 3934
24acfb71 3935 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3936 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3937}
3938
3939/**
6ba94429
FW
3940 * get_unbound_pool - get a worker_pool with the specified attributes
3941 * @attrs: the attributes of the worker_pool to get
226223ab 3942 *
6ba94429
FW
3943 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3944 * reference count and return it. If there already is a matching
3945 * worker_pool, it will be used; otherwise, this function attempts to
3946 * create a new one.
226223ab 3947 *
6ba94429 3948 * Should be called with wq_pool_mutex held.
226223ab 3949 *
6ba94429
FW
3950 * Return: On success, a worker_pool with the same attributes as @attrs.
3951 * On failure, %NULL.
226223ab 3952 */
6ba94429 3953static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3954{
84193c07 3955 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6ba94429
FW
3956 u32 hash = wqattrs_hash(attrs);
3957 struct worker_pool *pool;
84193c07 3958 int pod, node = NUMA_NO_NODE;
226223ab 3959
6ba94429 3960 lockdep_assert_held(&wq_pool_mutex);
226223ab 3961
6ba94429
FW
3962 /* do we already have a matching pool? */
3963 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3964 if (wqattrs_equal(pool->attrs, attrs)) {
3965 pool->refcnt++;
3966 return pool;
3967 }
3968 }
226223ab 3969
84193c07
TH
3970 /* If cpumask is contained inside a NUMA pod, that's our NUMA node */
3971 for (pod = 0; pod < pt->nr_pods; pod++) {
3972 if (cpumask_subset(attrs->cpumask, pt->pod_cpus[pod])) {
3973 node = pt->pod_node[pod];
3974 break;
e2273584
XP
3975 }
3976 }
3977
6ba94429 3978 /* nope, create a new one */
84193c07 3979 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
6ba94429
FW
3980 if (!pool || init_worker_pool(pool) < 0)
3981 goto fail;
3982
84193c07 3983 pool->node = node;
5de7a03c
TH
3984 copy_workqueue_attrs(pool->attrs, attrs);
3985 wqattrs_clear_for_pool(pool->attrs);
226223ab 3986
6ba94429
FW
3987 if (worker_pool_assign_id(pool) < 0)
3988 goto fail;
226223ab 3989
6ba94429 3990 /* create and start the initial worker */
3347fa09 3991 if (wq_online && !create_worker(pool))
6ba94429 3992 goto fail;
226223ab 3993
6ba94429
FW
3994 /* install */
3995 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3996
6ba94429
FW
3997 return pool;
3998fail:
3999 if (pool)
4000 put_unbound_pool(pool);
4001 return NULL;
226223ab 4002}
226223ab 4003
6ba94429 4004static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 4005{
6ba94429
FW
4006 kmem_cache_free(pwq_cache,
4007 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
4008}
4009
6ba94429 4010/*
967b494e
TH
4011 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4012 * refcnt and needs to be destroyed.
7a4e344c 4013 */
687a9aa5 4014static void pwq_release_workfn(struct kthread_work *work)
7a4e344c 4015{
6ba94429 4016 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
687a9aa5 4017 release_work);
6ba94429
FW
4018 struct workqueue_struct *wq = pwq->wq;
4019 struct worker_pool *pool = pwq->pool;
b42b0bdd 4020 bool is_last = false;
7a4e344c 4021
b42b0bdd 4022 /*
687a9aa5 4023 * When @pwq is not linked, it doesn't hold any reference to the
b42b0bdd
YY
4024 * @wq, and @wq is invalid to access.
4025 */
4026 if (!list_empty(&pwq->pwqs_node)) {
b42b0bdd
YY
4027 mutex_lock(&wq->mutex);
4028 list_del_rcu(&pwq->pwqs_node);
4029 is_last = list_empty(&wq->pwqs);
4030 mutex_unlock(&wq->mutex);
4031 }
6ba94429 4032
687a9aa5
TH
4033 if (wq->flags & WQ_UNBOUND) {
4034 mutex_lock(&wq_pool_mutex);
4035 put_unbound_pool(pool);
4036 mutex_unlock(&wq_pool_mutex);
4037 }
6ba94429 4038
25b00775 4039 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 4040
2865a8fb 4041 /*
6ba94429
FW
4042 * If we're the last pwq going away, @wq is already dead and no one
4043 * is gonna access it anymore. Schedule RCU free.
2865a8fb 4044 */
669de8bd
BVA
4045 if (is_last) {
4046 wq_unregister_lockdep(wq);
25b00775 4047 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 4048 }
29c91e99
TH
4049}
4050
7a4e344c 4051/**
6ba94429
FW
4052 * pwq_adjust_max_active - update a pwq's max_active to the current setting
4053 * @pwq: target pool_workqueue
d185af30 4054 *
6ba94429 4055 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 4056 * workqueue's saved_max_active and activate inactive work items
6ba94429 4057 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 4058 */
6ba94429 4059static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 4060{
6ba94429
FW
4061 struct workqueue_struct *wq = pwq->wq;
4062 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 4063 unsigned long flags;
4e1a1f9a 4064
6ba94429
FW
4065 /* for @wq->saved_max_active */
4066 lockdep_assert_held(&wq->mutex);
4e1a1f9a 4067
6ba94429
FW
4068 /* fast exit for non-freezable wqs */
4069 if (!freezable && pwq->max_active == wq->saved_max_active)
4070 return;
7a4e344c 4071
3347fa09 4072 /* this function can be called during early boot w/ irq disabled */
a9b8a985 4073 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 4074
6ba94429
FW
4075 /*
4076 * During [un]freezing, the caller is responsible for ensuring that
4077 * this function is called at least once after @workqueue_freezing
4078 * is updated and visible.
4079 */
4080 if (!freezable || !workqueue_freezing) {
01341fbd
YY
4081 bool kick = false;
4082
6ba94429 4083 pwq->max_active = wq->saved_max_active;
4e1a1f9a 4084
f97a4a1a 4085 while (!list_empty(&pwq->inactive_works) &&
01341fbd 4086 pwq->nr_active < pwq->max_active) {
f97a4a1a 4087 pwq_activate_first_inactive(pwq);
01341fbd
YY
4088 kick = true;
4089 }
e2dca7ad 4090
6ba94429
FW
4091 /*
4092 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
4093 * max_active is bumped. In realtime scenarios, always kicking a
4094 * worker will cause interference on the isolated cpu cores, so
4095 * let's kick iff work items were activated.
6ba94429 4096 */
01341fbd
YY
4097 if (kick)
4098 wake_up_worker(pwq->pool);
6ba94429
FW
4099 } else {
4100 pwq->max_active = 0;
4101 }
e2dca7ad 4102
a9b8a985 4103 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
4104}
4105
67dc8325 4106/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
4107static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4108 struct worker_pool *pool)
29c91e99 4109{
6ba94429 4110 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 4111
6ba94429
FW
4112 memset(pwq, 0, sizeof(*pwq));
4113
4114 pwq->pool = pool;
4115 pwq->wq = wq;
4116 pwq->flush_color = -1;
4117 pwq->refcnt = 1;
f97a4a1a 4118 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
4119 INIT_LIST_HEAD(&pwq->pwqs_node);
4120 INIT_LIST_HEAD(&pwq->mayday_node);
687a9aa5 4121 kthread_init_work(&pwq->release_work, pwq_release_workfn);
29c91e99
TH
4122}
4123
6ba94429
FW
4124/* sync @pwq with the current state of its associated wq and link it */
4125static void link_pwq(struct pool_workqueue *pwq)
29c91e99 4126{
6ba94429 4127 struct workqueue_struct *wq = pwq->wq;
29c91e99 4128
6ba94429 4129 lockdep_assert_held(&wq->mutex);
a892cacc 4130
6ba94429
FW
4131 /* may be called multiple times, ignore if already linked */
4132 if (!list_empty(&pwq->pwqs_node))
29c91e99 4133 return;
29c91e99 4134
6ba94429
FW
4135 /* set the matching work_color */
4136 pwq->work_color = wq->work_color;
29c91e99 4137
6ba94429
FW
4138 /* sync max_active to the current setting */
4139 pwq_adjust_max_active(pwq);
29c91e99 4140
6ba94429
FW
4141 /* link in @pwq */
4142 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4143}
29c91e99 4144
6ba94429
FW
4145/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4146static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4147 const struct workqueue_attrs *attrs)
4148{
4149 struct worker_pool *pool;
4150 struct pool_workqueue *pwq;
60f5a4bc 4151
6ba94429 4152 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 4153
6ba94429
FW
4154 pool = get_unbound_pool(attrs);
4155 if (!pool)
4156 return NULL;
60f5a4bc 4157
6ba94429
FW
4158 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4159 if (!pwq) {
4160 put_unbound_pool(pool);
4161 return NULL;
4162 }
29c91e99 4163
6ba94429
FW
4164 init_pwq(pwq, wq, pool);
4165 return pwq;
4166}
29c91e99 4167
29c91e99 4168/**
fef59c9c 4169 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
042f7df1 4170 * @attrs: the wq_attrs of the default pwq of the target workqueue
84193c07 4171 * @cpu: the target CPU
6ba94429
FW
4172 * @cpu_going_down: if >= 0, the CPU to consider as offline
4173 * @cpumask: outarg, the resulting cpumask
29c91e99 4174 *
fef59c9c
TH
4175 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4176 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4177 * The result is stored in @cpumask.
a892cacc 4178 *
fef59c9c
TH
4179 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4180 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4181 * intersection of the possible CPUs of @pod and @attrs->cpumask.
d185af30 4182 *
fef59c9c 4183 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
29c91e99 4184 */
84193c07
TH
4185static void wq_calc_pod_cpumask(const struct workqueue_attrs *attrs, int cpu,
4186 int cpu_going_down, cpumask_t *cpumask)
29c91e99 4187{
84193c07
TH
4188 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4189 int pod = pt->cpu_pod[cpu];
29c91e99 4190
fef59c9c 4191 /* does @pod have any online CPUs @attrs wants? */
84193c07
TH
4192 cpumask_and(cpumask, pt->pod_cpus[pod], attrs->cpumask);
4193 cpumask_and(cpumask, cpumask, cpu_online_mask);
6ba94429
FW
4194 if (cpu_going_down >= 0)
4195 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 4196
84193c07
TH
4197 if (cpumask_empty(cpumask)) {
4198 cpumask_copy(cpumask, attrs->cpumask);
4199 return;
4200 }
4c16bd32 4201
fef59c9c 4202 /* yeap, return possible CPUs in @pod that @attrs wants */
84193c07 4203 cpumask_and(cpumask, attrs->cpumask, pt->pod_cpus[pod]);
1ad0f0a7 4204
636b927e 4205 if (cpumask_empty(cpumask))
1ad0f0a7
MB
4206 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4207 "possible intersect\n");
4c16bd32
TH
4208}
4209
636b927e
TH
4210/* install @pwq into @wq's cpu_pwq and return the old pwq */
4211static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4212 int cpu, struct pool_workqueue *pwq)
1befcf30
TH
4213{
4214 struct pool_workqueue *old_pwq;
4215
5b95e1af 4216 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4217 lockdep_assert_held(&wq->mutex);
4218
4219 /* link_pwq() can handle duplicate calls */
4220 link_pwq(pwq);
4221
636b927e
TH
4222 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4223 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
1befcf30
TH
4224 return old_pwq;
4225}
4226
2d5f0764
LJ
4227/* context to store the prepared attrs & pwqs before applying */
4228struct apply_wqattrs_ctx {
4229 struct workqueue_struct *wq; /* target workqueue */
4230 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4231 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4232 struct pool_workqueue *dfl_pwq;
4233 struct pool_workqueue *pwq_tbl[];
4234};
4235
4236/* free the resources after success or abort */
4237static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4238{
4239 if (ctx) {
636b927e 4240 int cpu;
2d5f0764 4241
636b927e
TH
4242 for_each_possible_cpu(cpu)
4243 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
2d5f0764
LJ
4244 put_pwq_unlocked(ctx->dfl_pwq);
4245
4246 free_workqueue_attrs(ctx->attrs);
4247
4248 kfree(ctx);
4249 }
4250}
4251
4252/* allocate the attrs and pwqs for later installation */
4253static struct apply_wqattrs_ctx *
4254apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4255 const struct workqueue_attrs *attrs,
4256 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4257{
2d5f0764 4258 struct apply_wqattrs_ctx *ctx;
4c16bd32 4259 struct workqueue_attrs *new_attrs, *tmp_attrs;
636b927e 4260 int cpu;
9e8cd2f5 4261
2d5f0764 4262 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4263
84193c07
TH
4264 if (WARN_ON(attrs->affn_scope < 0 ||
4265 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4266 return ERR_PTR(-EINVAL);
4267
636b927e 4268 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
8719dcea 4269
be69d00d
TG
4270 new_attrs = alloc_workqueue_attrs();
4271 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
4272 if (!ctx || !new_attrs || !tmp_attrs)
4273 goto out_free;
13e2e556 4274
4c16bd32
TH
4275 /*
4276 * If something goes wrong during CPU up/down, we'll fall back to
4277 * the default pwq covering whole @attrs->cpumask. Always create
4278 * it even if we don't use it immediately.
4279 */
0f36ee24
TH
4280 copy_workqueue_attrs(new_attrs, attrs);
4281 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
2d5f0764
LJ
4282 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4283 if (!ctx->dfl_pwq)
4284 goto out_free;
4c16bd32 4285
0f36ee24
TH
4286 /*
4287 * We may create multiple pwqs with differing cpumasks. Make a copy of
4288 * @new_attrs which will be modified and used to obtain pools.
4289 */
4290 copy_workqueue_attrs(tmp_attrs, new_attrs);
4291
636b927e 4292 for_each_possible_cpu(cpu) {
af73f5c9 4293 if (new_attrs->ordered) {
2d5f0764 4294 ctx->dfl_pwq->refcnt++;
636b927e
TH
4295 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4296 } else {
84193c07 4297 wq_calc_pod_cpumask(new_attrs, cpu, -1, tmp_attrs->cpumask);
636b927e
TH
4298 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, tmp_attrs);
4299 if (!ctx->pwq_tbl[cpu])
4300 goto out_free;
4c16bd32
TH
4301 }
4302 }
4303
042f7df1
LJ
4304 /* save the user configured attrs and sanitize it. */
4305 copy_workqueue_attrs(new_attrs, attrs);
4306 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4307 ctx->attrs = new_attrs;
042f7df1 4308
2d5f0764
LJ
4309 ctx->wq = wq;
4310 free_workqueue_attrs(tmp_attrs);
4311 return ctx;
4312
4313out_free:
4314 free_workqueue_attrs(tmp_attrs);
4315 free_workqueue_attrs(new_attrs);
4316 apply_wqattrs_cleanup(ctx);
84193c07 4317 return ERR_PTR(-ENOMEM);
2d5f0764
LJ
4318}
4319
4320/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4321static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4322{
636b927e 4323 int cpu;
9e8cd2f5 4324
4c16bd32 4325 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4326 mutex_lock(&ctx->wq->mutex);
a892cacc 4327
2d5f0764 4328 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4329
4330 /* save the previous pwq and install the new one */
636b927e
TH
4331 for_each_possible_cpu(cpu)
4332 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4333 ctx->pwq_tbl[cpu]);
4c16bd32
TH
4334
4335 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4336 link_pwq(ctx->dfl_pwq);
4337 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4338
2d5f0764
LJ
4339 mutex_unlock(&ctx->wq->mutex);
4340}
9e8cd2f5 4341
a0111cf6
LJ
4342static void apply_wqattrs_lock(void)
4343{
4344 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4345 cpus_read_lock();
a0111cf6
LJ
4346 mutex_lock(&wq_pool_mutex);
4347}
4348
4349static void apply_wqattrs_unlock(void)
4350{
4351 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4352 cpus_read_unlock();
a0111cf6
LJ
4353}
4354
4355static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4356 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4357{
4358 struct apply_wqattrs_ctx *ctx;
4c16bd32 4359
2d5f0764
LJ
4360 /* only unbound workqueues can change attributes */
4361 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4362 return -EINVAL;
13e2e556 4363
2d5f0764 4364 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4365 if (!list_empty(&wq->pwqs)) {
4366 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4367 return -EINVAL;
4368
4369 wq->flags &= ~__WQ_ORDERED;
4370 }
2d5f0764 4371
99c621ef 4372 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
84193c07
TH
4373 if (IS_ERR(ctx))
4374 return PTR_ERR(ctx);
2d5f0764
LJ
4375
4376 /* the ctx has been prepared successfully, let's commit it */
6201171e 4377 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4378 apply_wqattrs_cleanup(ctx);
4379
6201171e 4380 return 0;
9e8cd2f5
TH
4381}
4382
a0111cf6
LJ
4383/**
4384 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4385 * @wq: the target workqueue
4386 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4387 *
fef59c9c
TH
4388 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4389 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4390 * work items are affine to the pod it was issued on. Older pwqs are released as
4391 * in-flight work items finish. Note that a work item which repeatedly requeues
4392 * itself back-to-back will stay on its current pwq.
a0111cf6
LJ
4393 *
4394 * Performs GFP_KERNEL allocations.
4395 *
ffd8bea8 4396 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4397 *
a0111cf6
LJ
4398 * Return: 0 on success and -errno on failure.
4399 */
513c98d0 4400int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4401 const struct workqueue_attrs *attrs)
4402{
4403 int ret;
4404
509b3204
DJ
4405 lockdep_assert_cpus_held();
4406
4407 mutex_lock(&wq_pool_mutex);
a0111cf6 4408 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4409 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4410
4411 return ret;
4412}
4413
4c16bd32 4414/**
fef59c9c 4415 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4c16bd32 4416 * @wq: the target workqueue
4cbfd3de
TH
4417 * @cpu: the CPU to update pool association for
4418 * @hotplug_cpu: the CPU coming up or going down
4c16bd32
TH
4419 * @online: whether @cpu is coming up or going down
4420 *
4421 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
fef59c9c 4422 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4c16bd32
TH
4423 * @wq accordingly.
4424 *
fef59c9c
TH
4425 *
4426 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4427 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4428 *
4429 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4430 * with a cpumask spanning multiple pods, the workers which were already
4431 * executing the work items for the workqueue will lose their CPU affinity and
4432 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4433 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4434 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4c16bd32 4435 */
fef59c9c
TH
4436static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4437 int hotplug_cpu, bool online)
4c16bd32 4438{
4cbfd3de 4439 int off_cpu = online ? -1 : hotplug_cpu;
4c16bd32
TH
4440 struct pool_workqueue *old_pwq = NULL, *pwq;
4441 struct workqueue_attrs *target_attrs;
4442 cpumask_t *cpumask;
4443
4444 lockdep_assert_held(&wq_pool_mutex);
4445
84193c07 4446 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4c16bd32
TH
4447 return;
4448
4449 /*
4450 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4451 * Let's use a preallocated one. The following buf is protected by
4452 * CPU hotplug exclusion.
4453 */
fef59c9c 4454 target_attrs = wq_update_pod_attrs_buf;
0f36ee24 4455 cpumask = wq_update_pod_cpumask_buf;
4c16bd32 4456
4c16bd32 4457 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
0f36ee24 4458 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4c16bd32 4459
636b927e 4460 /* nothing to do if the target cpumask matches the current pwq */
84193c07 4461 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu, cpumask);
636b927e
TH
4462 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4463 lockdep_is_held(&wq_pool_mutex));
4464 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4465 return;
4c16bd32 4466
4c16bd32 4467 /* create a new pwq */
0f36ee24 4468 cpumask_copy(target_attrs->cpumask, cpumask);
4c16bd32
TH
4469 pwq = alloc_unbound_pwq(wq, target_attrs);
4470 if (!pwq) {
fef59c9c 4471 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
2d916033 4472 wq->name);
77f300b1 4473 goto use_dfl_pwq;
4c16bd32
TH
4474 }
4475
f7142ed4 4476 /* Install the new pwq. */
4c16bd32 4477 mutex_lock(&wq->mutex);
636b927e 4478 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4c16bd32
TH
4479 goto out_unlock;
4480
4481use_dfl_pwq:
f7142ed4 4482 mutex_lock(&wq->mutex);
a9b8a985 4483 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4484 get_pwq(wq->dfl_pwq);
a9b8a985 4485 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
636b927e 4486 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4c16bd32
TH
4487out_unlock:
4488 mutex_unlock(&wq->mutex);
4489 put_pwq_unlocked(old_pwq);
4490}
4491
30cdf249 4492static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4493{
49e3cf44 4494 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4495 int cpu, ret;
30cdf249 4496
636b927e
TH
4497 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4498 if (!wq->cpu_pwq)
4499 goto enomem;
30cdf249 4500
636b927e 4501 if (!(wq->flags & WQ_UNBOUND)) {
30cdf249 4502 for_each_possible_cpu(cpu) {
687a9aa5 4503 struct pool_workqueue **pwq_p =
ee1ceef7 4504 per_cpu_ptr(wq->cpu_pwq, cpu);
687a9aa5
TH
4505 struct worker_pool *pool =
4506 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4507
4508 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4509 pool->node);
4510 if (!*pwq_p)
4511 goto enomem;
f3421797 4512
687a9aa5 4513 init_pwq(*pwq_p, wq, pool);
f147f29e
TH
4514
4515 mutex_lock(&wq->mutex);
687a9aa5 4516 link_pwq(*pwq_p);
f147f29e 4517 mutex_unlock(&wq->mutex);
30cdf249 4518 }
9e8cd2f5 4519 return 0;
509b3204
DJ
4520 }
4521
ffd8bea8 4522 cpus_read_lock();
509b3204 4523 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4524 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4525 /* there should only be single pwq for ordering guarantee */
4526 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4527 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4528 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4529 } else {
509b3204 4530 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4531 }
ffd8bea8 4532 cpus_read_unlock();
509b3204
DJ
4533
4534 return ret;
687a9aa5
TH
4535
4536enomem:
4537 if (wq->cpu_pwq) {
4538 for_each_possible_cpu(cpu)
4539 kfree(*per_cpu_ptr(wq->cpu_pwq, cpu));
4540 free_percpu(wq->cpu_pwq);
4541 wq->cpu_pwq = NULL;
4542 }
4543 return -ENOMEM;
0f900049
TH
4544}
4545
f3421797
TH
4546static int wq_clamp_max_active(int max_active, unsigned int flags,
4547 const char *name)
b71ab8c2 4548{
636b927e 4549 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
044c782c 4550 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
636b927e 4551 max_active, name, 1, WQ_MAX_ACTIVE);
b71ab8c2 4552
636b927e 4553 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
b71ab8c2
TH
4554}
4555
983c7515
TH
4556/*
4557 * Workqueues which may be used during memory reclaim should have a rescuer
4558 * to guarantee forward progress.
4559 */
4560static int init_rescuer(struct workqueue_struct *wq)
4561{
4562 struct worker *rescuer;
b92b36ea 4563 int ret;
983c7515
TH
4564
4565 if (!(wq->flags & WQ_MEM_RECLAIM))
4566 return 0;
4567
4568 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
4569 if (!rescuer) {
4570 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4571 wq->name);
983c7515 4572 return -ENOMEM;
4c0736a7 4573 }
983c7515
TH
4574
4575 rescuer->rescue_wq = wq;
4576 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4577 if (IS_ERR(rescuer->task)) {
b92b36ea 4578 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
4579 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4580 wq->name, ERR_PTR(ret));
983c7515 4581 kfree(rescuer);
b92b36ea 4582 return ret;
983c7515
TH
4583 }
4584
4585 wq->rescuer = rescuer;
4586 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4587 wake_up_process(rescuer->task);
4588
4589 return 0;
4590}
4591
a2775bbc 4592__printf(1, 4)
669de8bd
BVA
4593struct workqueue_struct *alloc_workqueue(const char *fmt,
4594 unsigned int flags,
4595 int max_active, ...)
1da177e4 4596{
ecf6881f 4597 va_list args;
1da177e4 4598 struct workqueue_struct *wq;
49e3cf44 4599 struct pool_workqueue *pwq;
b196be89 4600
5c0338c6 4601 /*
fef59c9c
TH
4602 * Unbound && max_active == 1 used to imply ordered, which is no longer
4603 * the case on many machines due to per-pod pools. While
5c0338c6 4604 * alloc_ordered_workqueue() is the right way to create an ordered
fef59c9c 4605 * workqueue, keep the previous behavior to avoid subtle breakages.
5c0338c6
TH
4606 */
4607 if ((flags & WQ_UNBOUND) && max_active == 1)
4608 flags |= __WQ_ORDERED;
4609
cee22a15
VK
4610 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4611 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4612 flags |= WQ_UNBOUND;
4613
ecf6881f 4614 /* allocate wq and format name */
636b927e 4615 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
b196be89 4616 if (!wq)
d2c1d404 4617 return NULL;
b196be89 4618
6029a918 4619 if (flags & WQ_UNBOUND) {
be69d00d 4620 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4621 if (!wq->unbound_attrs)
4622 goto err_free_wq;
4623 }
4624
669de8bd 4625 va_start(args, max_active);
ecf6881f 4626 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4627 va_end(args);
1da177e4 4628
d320c038 4629 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4630 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4631
b196be89 4632 /* init wq */
97e37d7b 4633 wq->flags = flags;
a0a1a5fd 4634 wq->saved_max_active = max_active;
3c25a55d 4635 mutex_init(&wq->mutex);
112202d9 4636 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4637 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4638 INIT_LIST_HEAD(&wq->flusher_queue);
4639 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4640 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4641
669de8bd 4642 wq_init_lockdep(wq);
cce1a165 4643 INIT_LIST_HEAD(&wq->list);
3af24433 4644
30cdf249 4645 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4646 goto err_unreg_lockdep;
1537663f 4647
40c17f75 4648 if (wq_online && init_rescuer(wq) < 0)
983c7515 4649 goto err_destroy;
3af24433 4650
226223ab
TH
4651 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4652 goto err_destroy;
4653
a0a1a5fd 4654 /*
68e13a67
LJ
4655 * wq_pool_mutex protects global freeze state and workqueues list.
4656 * Grab it, adjust max_active and add the new @wq to workqueues
4657 * list.
a0a1a5fd 4658 */
68e13a67 4659 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4660
a357fc03 4661 mutex_lock(&wq->mutex);
699ce097
TH
4662 for_each_pwq(pwq, wq)
4663 pwq_adjust_max_active(pwq);
a357fc03 4664 mutex_unlock(&wq->mutex);
a0a1a5fd 4665
e2dca7ad 4666 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4667
68e13a67 4668 mutex_unlock(&wq_pool_mutex);
1537663f 4669
3af24433 4670 return wq;
d2c1d404 4671
82efcab3 4672err_unreg_lockdep:
009bb421
BVA
4673 wq_unregister_lockdep(wq);
4674 wq_free_lockdep(wq);
82efcab3 4675err_free_wq:
6029a918 4676 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4677 kfree(wq);
4678 return NULL;
4679err_destroy:
4680 destroy_workqueue(wq);
4690c4ab 4681 return NULL;
3af24433 4682}
669de8bd 4683EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4684
c29eb853
TH
4685static bool pwq_busy(struct pool_workqueue *pwq)
4686{
4687 int i;
4688
4689 for (i = 0; i < WORK_NR_COLORS; i++)
4690 if (pwq->nr_in_flight[i])
4691 return true;
4692
4693 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4694 return true;
f97a4a1a 4695 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4696 return true;
4697
4698 return false;
4699}
4700
3af24433
ON
4701/**
4702 * destroy_workqueue - safely terminate a workqueue
4703 * @wq: target workqueue
4704 *
4705 * Safely destroy a workqueue. All work currently pending will be done first.
4706 */
4707void destroy_workqueue(struct workqueue_struct *wq)
4708{
49e3cf44 4709 struct pool_workqueue *pwq;
636b927e 4710 int cpu;
3af24433 4711
def98c84
TH
4712 /*
4713 * Remove it from sysfs first so that sanity check failure doesn't
4714 * lead to sysfs name conflicts.
4715 */
4716 workqueue_sysfs_unregister(wq);
4717
33e3f0a3
RC
4718 /* mark the workqueue destruction is in progress */
4719 mutex_lock(&wq->mutex);
4720 wq->flags |= __WQ_DESTROYING;
4721 mutex_unlock(&wq->mutex);
4722
9c5a2ba7
TH
4723 /* drain it before proceeding with destruction */
4724 drain_workqueue(wq);
c8efcc25 4725
def98c84
TH
4726 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4727 if (wq->rescuer) {
4728 struct worker *rescuer = wq->rescuer;
4729
4730 /* this prevents new queueing */
a9b8a985 4731 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4732 wq->rescuer = NULL;
a9b8a985 4733 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4734
4735 /* rescuer will empty maydays list before exiting */
4736 kthread_stop(rescuer->task);
8efe1223 4737 kfree(rescuer);
def98c84
TH
4738 }
4739
c29eb853
TH
4740 /*
4741 * Sanity checks - grab all the locks so that we wait for all
4742 * in-flight operations which may do put_pwq().
4743 */
4744 mutex_lock(&wq_pool_mutex);
b09f4fd3 4745 mutex_lock(&wq->mutex);
49e3cf44 4746 for_each_pwq(pwq, wq) {
a9b8a985 4747 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4748 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4749 pr_warn("%s: %s has the following busy pwq\n",
4750 __func__, wq->name);
c29eb853 4751 show_pwq(pwq);
a9b8a985 4752 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4753 mutex_unlock(&wq->mutex);
c29eb853 4754 mutex_unlock(&wq_pool_mutex);
55df0933 4755 show_one_workqueue(wq);
6183c009 4756 return;
76af4d93 4757 }
a9b8a985 4758 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4759 }
b09f4fd3 4760 mutex_unlock(&wq->mutex);
6183c009 4761
a0a1a5fd
TH
4762 /*
4763 * wq list is used to freeze wq, remove from list after
4764 * flushing is complete in case freeze races us.
4765 */
e2dca7ad 4766 list_del_rcu(&wq->list);
68e13a67 4767 mutex_unlock(&wq_pool_mutex);
3af24433 4768
636b927e
TH
4769 /*
4770 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4771 * to put the base refs. @wq will be auto-destroyed from the last
4772 * pwq_put. RCU read lock prevents @wq from going away from under us.
4773 */
4774 rcu_read_lock();
4c16bd32 4775
636b927e
TH
4776 for_each_possible_cpu(cpu) {
4777 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4778 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
dce90d47 4779 put_pwq_unlocked(pwq);
29c91e99 4780 }
636b927e
TH
4781
4782 put_pwq_unlocked(wq->dfl_pwq);
4783 wq->dfl_pwq = NULL;
4784
4785 rcu_read_unlock();
3af24433
ON
4786}
4787EXPORT_SYMBOL_GPL(destroy_workqueue);
4788
dcd989cb
TH
4789/**
4790 * workqueue_set_max_active - adjust max_active of a workqueue
4791 * @wq: target workqueue
4792 * @max_active: new max_active value.
4793 *
4794 * Set max_active of @wq to @max_active.
4795 *
4796 * CONTEXT:
4797 * Don't call from IRQ context.
4798 */
4799void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4800{
49e3cf44 4801 struct pool_workqueue *pwq;
dcd989cb 4802
8719dcea 4803 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4804 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4805 return;
4806
f3421797 4807 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4808
a357fc03 4809 mutex_lock(&wq->mutex);
dcd989cb 4810
0a94efb5 4811 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4812 wq->saved_max_active = max_active;
4813
699ce097
TH
4814 for_each_pwq(pwq, wq)
4815 pwq_adjust_max_active(pwq);
93981800 4816
a357fc03 4817 mutex_unlock(&wq->mutex);
15316ba8 4818}
dcd989cb 4819EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4820
27d4ee03
LW
4821/**
4822 * current_work - retrieve %current task's work struct
4823 *
4824 * Determine if %current task is a workqueue worker and what it's working on.
4825 * Useful to find out the context that the %current task is running in.
4826 *
4827 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4828 */
4829struct work_struct *current_work(void)
4830{
4831 struct worker *worker = current_wq_worker();
4832
4833 return worker ? worker->current_work : NULL;
4834}
4835EXPORT_SYMBOL(current_work);
4836
e6267616
TH
4837/**
4838 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4839 *
4840 * Determine whether %current is a workqueue rescuer. Can be used from
4841 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4842 *
4843 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4844 */
4845bool current_is_workqueue_rescuer(void)
4846{
4847 struct worker *worker = current_wq_worker();
4848
6a092dfd 4849 return worker && worker->rescue_wq;
e6267616
TH
4850}
4851
eef6a7d5 4852/**
dcd989cb
TH
4853 * workqueue_congested - test whether a workqueue is congested
4854 * @cpu: CPU in question
4855 * @wq: target workqueue
eef6a7d5 4856 *
dcd989cb
TH
4857 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4858 * no synchronization around this function and the test result is
4859 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4860 *
d3251859 4861 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
636b927e
TH
4862 *
4863 * With the exception of ordered workqueues, all workqueues have per-cpu
4864 * pool_workqueues, each with its own congested state. A workqueue being
4865 * congested on one CPU doesn't mean that the workqueue is contested on any
4866 * other CPUs.
d3251859 4867 *
d185af30 4868 * Return:
dcd989cb 4869 * %true if congested, %false otherwise.
eef6a7d5 4870 */
d84ff051 4871bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4872{
7fb98ea7 4873 struct pool_workqueue *pwq;
76af4d93
TH
4874 bool ret;
4875
24acfb71
TG
4876 rcu_read_lock();
4877 preempt_disable();
7fb98ea7 4878
d3251859
TH
4879 if (cpu == WORK_CPU_UNBOUND)
4880 cpu = smp_processor_id();
4881
636b927e 4882 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
f97a4a1a 4883 ret = !list_empty(&pwq->inactive_works);
636b927e 4884
24acfb71
TG
4885 preempt_enable();
4886 rcu_read_unlock();
76af4d93
TH
4887
4888 return ret;
1da177e4 4889}
dcd989cb 4890EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4891
dcd989cb
TH
4892/**
4893 * work_busy - test whether a work is currently pending or running
4894 * @work: the work to be tested
4895 *
4896 * Test whether @work is currently pending or running. There is no
4897 * synchronization around this function and the test result is
4898 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4899 *
d185af30 4900 * Return:
dcd989cb
TH
4901 * OR'd bitmask of WORK_BUSY_* bits.
4902 */
4903unsigned int work_busy(struct work_struct *work)
1da177e4 4904{
fa1b54e6 4905 struct worker_pool *pool;
dcd989cb
TH
4906 unsigned long flags;
4907 unsigned int ret = 0;
1da177e4 4908
dcd989cb
TH
4909 if (work_pending(work))
4910 ret |= WORK_BUSY_PENDING;
1da177e4 4911
24acfb71 4912 rcu_read_lock();
fa1b54e6 4913 pool = get_work_pool(work);
038366c5 4914 if (pool) {
a9b8a985 4915 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4916 if (find_worker_executing_work(pool, work))
4917 ret |= WORK_BUSY_RUNNING;
a9b8a985 4918 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4919 }
24acfb71 4920 rcu_read_unlock();
1da177e4 4921
dcd989cb 4922 return ret;
1da177e4 4923}
dcd989cb 4924EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4925
3d1cb205
TH
4926/**
4927 * set_worker_desc - set description for the current work item
4928 * @fmt: printf-style format string
4929 * @...: arguments for the format string
4930 *
4931 * This function can be called by a running work function to describe what
4932 * the work item is about. If the worker task gets dumped, this
4933 * information will be printed out together to help debugging. The
4934 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4935 */
4936void set_worker_desc(const char *fmt, ...)
4937{
4938 struct worker *worker = current_wq_worker();
4939 va_list args;
4940
4941 if (worker) {
4942 va_start(args, fmt);
4943 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4944 va_end(args);
3d1cb205
TH
4945 }
4946}
5c750d58 4947EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4948
4949/**
4950 * print_worker_info - print out worker information and description
4951 * @log_lvl: the log level to use when printing
4952 * @task: target task
4953 *
4954 * If @task is a worker and currently executing a work item, print out the
4955 * name of the workqueue being serviced and worker description set with
4956 * set_worker_desc() by the currently executing work item.
4957 *
4958 * This function can be safely called on any task as long as the
4959 * task_struct itself is accessible. While safe, this function isn't
4960 * synchronized and may print out mixups or garbages of limited length.
4961 */
4962void print_worker_info(const char *log_lvl, struct task_struct *task)
4963{
4964 work_func_t *fn = NULL;
4965 char name[WQ_NAME_LEN] = { };
4966 char desc[WORKER_DESC_LEN] = { };
4967 struct pool_workqueue *pwq = NULL;
4968 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4969 struct worker *worker;
4970
4971 if (!(task->flags & PF_WQ_WORKER))
4972 return;
4973
4974 /*
4975 * This function is called without any synchronization and @task
4976 * could be in any state. Be careful with dereferences.
4977 */
e700591a 4978 worker = kthread_probe_data(task);
3d1cb205
TH
4979
4980 /*
8bf89593
TH
4981 * Carefully copy the associated workqueue's workfn, name and desc.
4982 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4983 */
fe557319
CH
4984 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4985 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4986 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4987 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4988 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4989
4990 if (fn || name[0] || desc[0]) {
d75f773c 4991 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4992 if (strcmp(name, desc))
3d1cb205
TH
4993 pr_cont(" (%s)", desc);
4994 pr_cont("\n");
4995 }
4996}
4997
3494fc30
TH
4998static void pr_cont_pool_info(struct worker_pool *pool)
4999{
5000 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5001 if (pool->node != NUMA_NO_NODE)
5002 pr_cont(" node=%d", pool->node);
5003 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5004}
5005
c76feb0d
PM
5006struct pr_cont_work_struct {
5007 bool comma;
5008 work_func_t func;
5009 long ctr;
5010};
5011
5012static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5013{
5014 if (!pcwsp->ctr)
5015 goto out_record;
5016 if (func == pcwsp->func) {
5017 pcwsp->ctr++;
5018 return;
5019 }
5020 if (pcwsp->ctr == 1)
5021 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5022 else
5023 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5024 pcwsp->ctr = 0;
5025out_record:
5026 if ((long)func == -1L)
5027 return;
5028 pcwsp->comma = comma;
5029 pcwsp->func = func;
5030 pcwsp->ctr = 1;
5031}
5032
5033static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
5034{
5035 if (work->func == wq_barrier_func) {
5036 struct wq_barrier *barr;
5037
5038 barr = container_of(work, struct wq_barrier, work);
5039
c76feb0d 5040 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
5041 pr_cont("%s BAR(%d)", comma ? "," : "",
5042 task_pid_nr(barr->task));
5043 } else {
c76feb0d
PM
5044 if (!comma)
5045 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5046 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
5047 }
5048}
5049
5050static void show_pwq(struct pool_workqueue *pwq)
5051{
c76feb0d 5052 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
5053 struct worker_pool *pool = pwq->pool;
5054 struct work_struct *work;
5055 struct worker *worker;
5056 bool has_in_flight = false, has_pending = false;
5057 int bkt;
5058
5059 pr_info(" pwq %d:", pool->id);
5060 pr_cont_pool_info(pool);
5061
e66b39af
TH
5062 pr_cont(" active=%d/%d refcnt=%d%s\n",
5063 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
5064 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5065
5066 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5067 if (worker->current_pwq == pwq) {
5068 has_in_flight = true;
5069 break;
5070 }
5071 }
5072 if (has_in_flight) {
5073 bool comma = false;
5074
5075 pr_info(" in-flight:");
5076 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5077 if (worker->current_pwq != pwq)
5078 continue;
5079
d75f773c 5080 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 5081 task_pid_nr(worker->task),
30ae2fc0 5082 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
5083 worker->current_func);
5084 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
5085 pr_cont_work(false, work, &pcws);
5086 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5087 comma = true;
5088 }
5089 pr_cont("\n");
5090 }
5091
5092 list_for_each_entry(work, &pool->worklist, entry) {
5093 if (get_work_pwq(work) == pwq) {
5094 has_pending = true;
5095 break;
5096 }
5097 }
5098 if (has_pending) {
5099 bool comma = false;
5100
5101 pr_info(" pending:");
5102 list_for_each_entry(work, &pool->worklist, entry) {
5103 if (get_work_pwq(work) != pwq)
5104 continue;
5105
c76feb0d 5106 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5107 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5108 }
c76feb0d 5109 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5110 pr_cont("\n");
5111 }
5112
f97a4a1a 5113 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
5114 bool comma = false;
5115
f97a4a1a
LJ
5116 pr_info(" inactive:");
5117 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 5118 pr_cont_work(comma, work, &pcws);
3494fc30
TH
5119 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5120 }
c76feb0d 5121 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
5122 pr_cont("\n");
5123 }
5124}
5125
5126/**
55df0933
IK
5127 * show_one_workqueue - dump state of specified workqueue
5128 * @wq: workqueue whose state will be printed
3494fc30 5129 */
55df0933 5130void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 5131{
55df0933
IK
5132 struct pool_workqueue *pwq;
5133 bool idle = true;
3494fc30 5134 unsigned long flags;
3494fc30 5135
55df0933
IK
5136 for_each_pwq(pwq, wq) {
5137 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5138 idle = false;
5139 break;
3494fc30 5140 }
55df0933
IK
5141 }
5142 if (idle) /* Nothing to print for idle workqueue */
5143 return;
3494fc30 5144
55df0933 5145 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 5146
55df0933
IK
5147 for_each_pwq(pwq, wq) {
5148 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5149 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
62635ea8 5150 /*
55df0933
IK
5151 * Defer printing to avoid deadlocks in console
5152 * drivers that queue work while holding locks
5153 * also taken in their write paths.
62635ea8 5154 */
55df0933
IK
5155 printk_deferred_enter();
5156 show_pwq(pwq);
5157 printk_deferred_exit();
3494fc30 5158 }
55df0933 5159 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
5160 /*
5161 * We could be printing a lot from atomic context, e.g.
55df0933 5162 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
5163 * hard lockup.
5164 */
5165 touch_nmi_watchdog();
3494fc30
TH
5166 }
5167
55df0933
IK
5168}
5169
5170/**
5171 * show_one_worker_pool - dump state of specified worker pool
5172 * @pool: worker pool whose state will be printed
5173 */
5174static void show_one_worker_pool(struct worker_pool *pool)
5175{
5176 struct worker *worker;
5177 bool first = true;
5178 unsigned long flags;
335a42eb 5179 unsigned long hung = 0;
55df0933
IK
5180
5181 raw_spin_lock_irqsave(&pool->lock, flags);
5182 if (pool->nr_workers == pool->nr_idle)
5183 goto next_pool;
335a42eb
PM
5184
5185 /* How long the first pending work is waiting for a worker. */
5186 if (!list_empty(&pool->worklist))
5187 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5188
55df0933
IK
5189 /*
5190 * Defer printing to avoid deadlocks in console drivers that
5191 * queue work while holding locks also taken in their write
5192 * paths.
5193 */
5194 printk_deferred_enter();
5195 pr_info("pool %d:", pool->id);
5196 pr_cont_pool_info(pool);
335a42eb 5197 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
5198 if (pool->manager)
5199 pr_cont(" manager: %d",
5200 task_pid_nr(pool->manager->task));
5201 list_for_each_entry(worker, &pool->idle_list, entry) {
5202 pr_cont(" %s%d", first ? "idle: " : "",
5203 task_pid_nr(worker->task));
5204 first = false;
5205 }
5206 pr_cont("\n");
5207 printk_deferred_exit();
5208next_pool:
5209 raw_spin_unlock_irqrestore(&pool->lock, flags);
5210 /*
5211 * We could be printing a lot from atomic context, e.g.
5212 * sysrq-t -> show_all_workqueues(). Avoid triggering
5213 * hard lockup.
5214 */
5215 touch_nmi_watchdog();
5216
5217}
5218
5219/**
5220 * show_all_workqueues - dump workqueue state
5221 *
704bc669 5222 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
5223 */
5224void show_all_workqueues(void)
5225{
5226 struct workqueue_struct *wq;
5227 struct worker_pool *pool;
5228 int pi;
5229
5230 rcu_read_lock();
5231
5232 pr_info("Showing busy workqueues and worker pools:\n");
5233
5234 list_for_each_entry_rcu(wq, &workqueues, list)
5235 show_one_workqueue(wq);
5236
5237 for_each_pool(pool, pi)
5238 show_one_worker_pool(pool);
5239
24acfb71 5240 rcu_read_unlock();
3494fc30
TH
5241}
5242
704bc669
JL
5243/**
5244 * show_freezable_workqueues - dump freezable workqueue state
5245 *
5246 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5247 * still busy.
5248 */
5249void show_freezable_workqueues(void)
5250{
5251 struct workqueue_struct *wq;
5252
5253 rcu_read_lock();
5254
5255 pr_info("Showing freezable workqueues that are still busy:\n");
5256
5257 list_for_each_entry_rcu(wq, &workqueues, list) {
5258 if (!(wq->flags & WQ_FREEZABLE))
5259 continue;
5260 show_one_workqueue(wq);
5261 }
5262
5263 rcu_read_unlock();
5264}
5265
6b59808b
TH
5266/* used to show worker information through /proc/PID/{comm,stat,status} */
5267void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5268{
6b59808b
TH
5269 int off;
5270
5271 /* always show the actual comm */
5272 off = strscpy(buf, task->comm, size);
5273 if (off < 0)
5274 return;
5275
197f6acc 5276 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
5277 mutex_lock(&wq_pool_attach_mutex);
5278
197f6acc
TH
5279 if (task->flags & PF_WQ_WORKER) {
5280 struct worker *worker = kthread_data(task);
5281 struct worker_pool *pool = worker->pool;
6b59808b 5282
197f6acc 5283 if (pool) {
a9b8a985 5284 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
5285 /*
5286 * ->desc tracks information (wq name or
5287 * set_worker_desc()) for the latest execution. If
5288 * current, prepend '+', otherwise '-'.
5289 */
5290 if (worker->desc[0] != '\0') {
5291 if (worker->current_work)
5292 scnprintf(buf + off, size - off, "+%s",
5293 worker->desc);
5294 else
5295 scnprintf(buf + off, size - off, "-%s",
5296 worker->desc);
5297 }
a9b8a985 5298 raw_spin_unlock_irq(&pool->lock);
6b59808b 5299 }
6b59808b
TH
5300 }
5301
5302 mutex_unlock(&wq_pool_attach_mutex);
5303}
5304
66448bc2
MM
5305#ifdef CONFIG_SMP
5306
db7bccf4
TH
5307/*
5308 * CPU hotplug.
5309 *
e22bee78 5310 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 5311 * are a lot of assumptions on strong associations among work, pwq and
706026c2 5312 * pool which make migrating pending and scheduled works very
e22bee78 5313 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 5314 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
5315 * blocked draining impractical.
5316 *
24647570 5317 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
5318 * running as an unbound one and allowing it to be reattached later if the
5319 * cpu comes back online.
db7bccf4 5320 */
1da177e4 5321
e8b3f8db 5322static void unbind_workers(int cpu)
3af24433 5323{
4ce62e9e 5324 struct worker_pool *pool;
db7bccf4 5325 struct worker *worker;
3af24433 5326
f02ae73a 5327 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 5328 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 5329 raw_spin_lock_irq(&pool->lock);
3af24433 5330
94cf58bb 5331 /*
92f9c5c4 5332 * We've blocked all attach/detach operations. Make all workers
94cf58bb 5333 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 5334 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
5335 * And the preemption disabled section in their sched callbacks
5336 * are guaranteed to see WORKER_UNBOUND since the code here
5337 * is on the same cpu.
94cf58bb 5338 */
da028469 5339 for_each_pool_worker(worker, pool)
c9e7cf27 5340 worker->flags |= WORKER_UNBOUND;
06ba38a9 5341
24647570 5342 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 5343
eb283428 5344 /*
989442d7
LJ
5345 * The handling of nr_running in sched callbacks are disabled
5346 * now. Zap nr_running. After this, nr_running stays zero and
5347 * need_more_worker() and keep_working() are always true as
5348 * long as the worklist is not empty. This pool now behaves as
5349 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
5350 * are served by workers tied to the pool.
5351 */
bc35f7ef 5352 pool->nr_running = 0;
eb283428
LJ
5353
5354 /*
5355 * With concurrency management just turned off, a busy
5356 * worker blocking could lead to lengthy stalls. Kick off
5357 * unbound chain execution of currently pending work items.
5358 */
eb283428 5359 wake_up_worker(pool);
989442d7 5360
a9b8a985 5361 raw_spin_unlock_irq(&pool->lock);
989442d7 5362
793777bc
VS
5363 for_each_pool_worker(worker, pool)
5364 unbind_worker(worker);
989442d7
LJ
5365
5366 mutex_unlock(&wq_pool_attach_mutex);
eb283428 5367 }
3af24433 5368}
3af24433 5369
bd7c089e
TH
5370/**
5371 * rebind_workers - rebind all workers of a pool to the associated CPU
5372 * @pool: pool of interest
5373 *
a9ab775b 5374 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5375 */
5376static void rebind_workers(struct worker_pool *pool)
5377{
a9ab775b 5378 struct worker *worker;
bd7c089e 5379
1258fae7 5380 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5381
a9ab775b
TH
5382 /*
5383 * Restore CPU affinity of all workers. As all idle workers should
5384 * be on the run-queue of the associated CPU before any local
402dd89d 5385 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5386 * of all workers first and then clear UNBOUND. As we're called
5387 * from CPU_ONLINE, the following shouldn't fail.
5388 */
c63a2e52
VS
5389 for_each_pool_worker(worker, pool) {
5390 kthread_set_per_cpu(worker->task, pool->cpu);
5391 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5392 pool->attrs->cpumask) < 0);
5393 }
bd7c089e 5394
a9b8a985 5395 raw_spin_lock_irq(&pool->lock);
f7c17d26 5396
3de5e884 5397 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5398
da028469 5399 for_each_pool_worker(worker, pool) {
a9ab775b 5400 unsigned int worker_flags = worker->flags;
bd7c089e 5401
a9ab775b
TH
5402 /*
5403 * We want to clear UNBOUND but can't directly call
5404 * worker_clr_flags() or adjust nr_running. Atomically
5405 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5406 * @worker will clear REBOUND using worker_clr_flags() when
5407 * it initiates the next execution cycle thus restoring
5408 * concurrency management. Note that when or whether
5409 * @worker clears REBOUND doesn't affect correctness.
5410 *
c95491ed 5411 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5412 * tested without holding any lock in
6d25be57 5413 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5414 * fail incorrectly leading to premature concurrency
5415 * management operations.
5416 */
5417 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5418 worker_flags |= WORKER_REBOUND;
5419 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5420 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5421 }
a9ab775b 5422
a9b8a985 5423 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5424}
5425
7dbc725e
TH
5426/**
5427 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5428 * @pool: unbound pool of interest
5429 * @cpu: the CPU which is coming up
5430 *
5431 * An unbound pool may end up with a cpumask which doesn't have any online
5432 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5433 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5434 * online CPU before, cpus_allowed of all its workers should be restored.
5435 */
5436static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5437{
5438 static cpumask_t cpumask;
5439 struct worker *worker;
7dbc725e 5440
1258fae7 5441 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5442
5443 /* is @cpu allowed for @pool? */
5444 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5445 return;
5446
7dbc725e 5447 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5448
5449 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5450 for_each_pool_worker(worker, pool)
d945b5e9 5451 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5452}
5453
7ee681b2
TG
5454int workqueue_prepare_cpu(unsigned int cpu)
5455{
5456 struct worker_pool *pool;
5457
5458 for_each_cpu_worker_pool(pool, cpu) {
5459 if (pool->nr_workers)
5460 continue;
5461 if (!create_worker(pool))
5462 return -ENOMEM;
5463 }
5464 return 0;
5465}
5466
5467int workqueue_online_cpu(unsigned int cpu)
3af24433 5468{
4ce62e9e 5469 struct worker_pool *pool;
4c16bd32 5470 struct workqueue_struct *wq;
7dbc725e 5471 int pi;
3ce63377 5472
7ee681b2 5473 mutex_lock(&wq_pool_mutex);
7dbc725e 5474
7ee681b2 5475 for_each_pool(pool, pi) {
1258fae7 5476 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5477
7ee681b2
TG
5478 if (pool->cpu == cpu)
5479 rebind_workers(pool);
5480 else if (pool->cpu < 0)
5481 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5482
1258fae7 5483 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5484 }
6ba94429 5485
fef59c9c 5486 /* update pod affinity of unbound workqueues */
4cbfd3de 5487 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
5488 struct workqueue_attrs *attrs = wq->unbound_attrs;
5489
5490 if (attrs) {
5491 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5492 int tcpu;
4cbfd3de 5493
84193c07 5494 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 5495 wq_update_pod(wq, tcpu, cpu, true);
4cbfd3de
TH
5496 }
5497 }
6ba94429 5498
7ee681b2
TG
5499 mutex_unlock(&wq_pool_mutex);
5500 return 0;
6ba94429
FW
5501}
5502
7ee681b2 5503int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5504{
6ba94429
FW
5505 struct workqueue_struct *wq;
5506
7ee681b2 5507 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5508 if (WARN_ON(cpu != smp_processor_id()))
5509 return -1;
5510
5511 unbind_workers(cpu);
7ee681b2 5512
fef59c9c 5513 /* update pod affinity of unbound workqueues */
7ee681b2 5514 mutex_lock(&wq_pool_mutex);
4cbfd3de 5515 list_for_each_entry(wq, &workqueues, list) {
84193c07
TH
5516 struct workqueue_attrs *attrs = wq->unbound_attrs;
5517
5518 if (attrs) {
5519 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5520 int tcpu;
4cbfd3de 5521
84193c07 5522 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
fef59c9c 5523 wq_update_pod(wq, tcpu, cpu, false);
4cbfd3de
TH
5524 }
5525 }
7ee681b2
TG
5526 mutex_unlock(&wq_pool_mutex);
5527
7ee681b2 5528 return 0;
6ba94429
FW
5529}
5530
6ba94429
FW
5531struct work_for_cpu {
5532 struct work_struct work;
5533 long (*fn)(void *);
5534 void *arg;
5535 long ret;
5536};
5537
5538static void work_for_cpu_fn(struct work_struct *work)
5539{
5540 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5541
5542 wfc->ret = wfc->fn(wfc->arg);
5543}
5544
5545/**
22aceb31 5546 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5547 * @cpu: the cpu to run on
5548 * @fn: the function to run
5549 * @arg: the function arg
5550 *
5551 * It is up to the caller to ensure that the cpu doesn't go offline.
5552 * The caller must not hold any locks which would prevent @fn from completing.
5553 *
5554 * Return: The value @fn returns.
5555 */
5556long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5557{
5558 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5559
5560 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5561 schedule_work_on(cpu, &wfc.work);
5562 flush_work(&wfc.work);
5563 destroy_work_on_stack(&wfc.work);
5564 return wfc.ret;
5565}
5566EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5567
5568/**
5569 * work_on_cpu_safe - run a function in thread context on a particular cpu
5570 * @cpu: the cpu to run on
5571 * @fn: the function to run
5572 * @arg: the function argument
5573 *
5574 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5575 * any locks which would prevent @fn from completing.
5576 *
5577 * Return: The value @fn returns.
5578 */
5579long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5580{
5581 long ret = -ENODEV;
5582
ffd8bea8 5583 cpus_read_lock();
0e8d6a93
TG
5584 if (cpu_online(cpu))
5585 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5586 cpus_read_unlock();
0e8d6a93
TG
5587 return ret;
5588}
5589EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5590#endif /* CONFIG_SMP */
5591
5592#ifdef CONFIG_FREEZER
5593
5594/**
5595 * freeze_workqueues_begin - begin freezing workqueues
5596 *
5597 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5598 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5599 * pool->worklist.
5600 *
5601 * CONTEXT:
5602 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5603 */
5604void freeze_workqueues_begin(void)
5605{
5606 struct workqueue_struct *wq;
5607 struct pool_workqueue *pwq;
5608
5609 mutex_lock(&wq_pool_mutex);
5610
5611 WARN_ON_ONCE(workqueue_freezing);
5612 workqueue_freezing = true;
5613
5614 list_for_each_entry(wq, &workqueues, list) {
5615 mutex_lock(&wq->mutex);
5616 for_each_pwq(pwq, wq)
5617 pwq_adjust_max_active(pwq);
5618 mutex_unlock(&wq->mutex);
5619 }
5620
5621 mutex_unlock(&wq_pool_mutex);
5622}
5623
5624/**
5625 * freeze_workqueues_busy - are freezable workqueues still busy?
5626 *
5627 * Check whether freezing is complete. This function must be called
5628 * between freeze_workqueues_begin() and thaw_workqueues().
5629 *
5630 * CONTEXT:
5631 * Grabs and releases wq_pool_mutex.
5632 *
5633 * Return:
5634 * %true if some freezable workqueues are still busy. %false if freezing
5635 * is complete.
5636 */
5637bool freeze_workqueues_busy(void)
5638{
5639 bool busy = false;
5640 struct workqueue_struct *wq;
5641 struct pool_workqueue *pwq;
5642
5643 mutex_lock(&wq_pool_mutex);
5644
5645 WARN_ON_ONCE(!workqueue_freezing);
5646
5647 list_for_each_entry(wq, &workqueues, list) {
5648 if (!(wq->flags & WQ_FREEZABLE))
5649 continue;
5650 /*
5651 * nr_active is monotonically decreasing. It's safe
5652 * to peek without lock.
5653 */
24acfb71 5654 rcu_read_lock();
6ba94429
FW
5655 for_each_pwq(pwq, wq) {
5656 WARN_ON_ONCE(pwq->nr_active < 0);
5657 if (pwq->nr_active) {
5658 busy = true;
24acfb71 5659 rcu_read_unlock();
6ba94429
FW
5660 goto out_unlock;
5661 }
5662 }
24acfb71 5663 rcu_read_unlock();
6ba94429
FW
5664 }
5665out_unlock:
5666 mutex_unlock(&wq_pool_mutex);
5667 return busy;
5668}
5669
5670/**
5671 * thaw_workqueues - thaw workqueues
5672 *
5673 * Thaw workqueues. Normal queueing is restored and all collected
5674 * frozen works are transferred to their respective pool worklists.
5675 *
5676 * CONTEXT:
5677 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5678 */
5679void thaw_workqueues(void)
5680{
5681 struct workqueue_struct *wq;
5682 struct pool_workqueue *pwq;
5683
5684 mutex_lock(&wq_pool_mutex);
5685
5686 if (!workqueue_freezing)
5687 goto out_unlock;
5688
5689 workqueue_freezing = false;
5690
5691 /* restore max_active and repopulate worklist */
5692 list_for_each_entry(wq, &workqueues, list) {
5693 mutex_lock(&wq->mutex);
5694 for_each_pwq(pwq, wq)
5695 pwq_adjust_max_active(pwq);
5696 mutex_unlock(&wq->mutex);
5697 }
5698
5699out_unlock:
5700 mutex_unlock(&wq_pool_mutex);
5701}
5702#endif /* CONFIG_FREEZER */
5703
99c621ef 5704static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
5705{
5706 LIST_HEAD(ctxs);
5707 int ret = 0;
5708 struct workqueue_struct *wq;
5709 struct apply_wqattrs_ctx *ctx, *n;
5710
5711 lockdep_assert_held(&wq_pool_mutex);
5712
5713 list_for_each_entry(wq, &workqueues, list) {
5714 if (!(wq->flags & WQ_UNBOUND))
5715 continue;
5716 /* creating multiple pwqs breaks ordering guarantee */
5717 if (wq->flags & __WQ_ORDERED)
5718 continue;
5719
99c621ef 5720 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
84193c07
TH
5721 if (IS_ERR(ctx)) {
5722 ret = PTR_ERR(ctx);
042f7df1
LJ
5723 break;
5724 }
5725
5726 list_add_tail(&ctx->list, &ctxs);
5727 }
5728
5729 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5730 if (!ret)
5731 apply_wqattrs_commit(ctx);
5732 apply_wqattrs_cleanup(ctx);
5733 }
5734
99c621ef
LJ
5735 if (!ret) {
5736 mutex_lock(&wq_pool_attach_mutex);
5737 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5738 mutex_unlock(&wq_pool_attach_mutex);
5739 }
042f7df1
LJ
5740 return ret;
5741}
5742
5743/**
5744 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5745 * @cpumask: the cpumask to set
5746 *
5747 * The low-level workqueues cpumask is a global cpumask that limits
5748 * the affinity of all unbound workqueues. This function check the @cpumask
5749 * and apply it to all unbound workqueues and updates all pwqs of them.
5750 *
67dc8325 5751 * Return: 0 - Success
042f7df1
LJ
5752 * -EINVAL - Invalid @cpumask
5753 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5754 */
5755int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5756{
5757 int ret = -EINVAL;
042f7df1 5758
c98a9805
TS
5759 /*
5760 * Not excluding isolated cpus on purpose.
5761 * If the user wishes to include them, we allow that.
5762 */
042f7df1
LJ
5763 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5764 if (!cpumask_empty(cpumask)) {
a0111cf6 5765 apply_wqattrs_lock();
d25302e4
MD
5766 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5767 ret = 0;
5768 goto out_unlock;
5769 }
5770
99c621ef 5771 ret = workqueue_apply_unbound_cpumask(cpumask);
042f7df1 5772
d25302e4 5773out_unlock:
a0111cf6 5774 apply_wqattrs_unlock();
042f7df1 5775 }
042f7df1 5776
042f7df1
LJ
5777 return ret;
5778}
5779
6ba94429
FW
5780#ifdef CONFIG_SYSFS
5781/*
5782 * Workqueues with WQ_SYSFS flag set is visible to userland via
5783 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5784 * following attributes.
5785 *
5786 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5787 * max_active RW int : maximum number of in-flight work items
5788 *
5789 * Unbound workqueues have the following extra attributes.
5790 *
6ba94429
FW
5791 * nice RW int : nice value of the workers
5792 * cpumask RW mask : bitmask of allowed CPUs for the workers
5793 */
5794struct wq_device {
5795 struct workqueue_struct *wq;
5796 struct device dev;
5797};
5798
5799static struct workqueue_struct *dev_to_wq(struct device *dev)
5800{
5801 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5802
5803 return wq_dev->wq;
5804}
5805
5806static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5807 char *buf)
5808{
5809 struct workqueue_struct *wq = dev_to_wq(dev);
5810
5811 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5812}
5813static DEVICE_ATTR_RO(per_cpu);
5814
5815static ssize_t max_active_show(struct device *dev,
5816 struct device_attribute *attr, char *buf)
5817{
5818 struct workqueue_struct *wq = dev_to_wq(dev);
5819
5820 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5821}
5822
5823static ssize_t max_active_store(struct device *dev,
5824 struct device_attribute *attr, const char *buf,
5825 size_t count)
5826{
5827 struct workqueue_struct *wq = dev_to_wq(dev);
5828 int val;
5829
5830 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5831 return -EINVAL;
5832
5833 workqueue_set_max_active(wq, val);
5834 return count;
5835}
5836static DEVICE_ATTR_RW(max_active);
5837
5838static struct attribute *wq_sysfs_attrs[] = {
5839 &dev_attr_per_cpu.attr,
5840 &dev_attr_max_active.attr,
5841 NULL,
5842};
5843ATTRIBUTE_GROUPS(wq_sysfs);
5844
6ba94429
FW
5845static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5846 char *buf)
5847{
5848 struct workqueue_struct *wq = dev_to_wq(dev);
5849 int written;
5850
5851 mutex_lock(&wq->mutex);
5852 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5853 mutex_unlock(&wq->mutex);
5854
5855 return written;
5856}
5857
5858/* prepare workqueue_attrs for sysfs store operations */
5859static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5860{
5861 struct workqueue_attrs *attrs;
5862
899a94fe
LJ
5863 lockdep_assert_held(&wq_pool_mutex);
5864
be69d00d 5865 attrs = alloc_workqueue_attrs();
6ba94429
FW
5866 if (!attrs)
5867 return NULL;
5868
6ba94429 5869 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5870 return attrs;
5871}
5872
5873static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5874 const char *buf, size_t count)
5875{
5876 struct workqueue_struct *wq = dev_to_wq(dev);
5877 struct workqueue_attrs *attrs;
d4d3e257
LJ
5878 int ret = -ENOMEM;
5879
5880 apply_wqattrs_lock();
6ba94429
FW
5881
5882 attrs = wq_sysfs_prep_attrs(wq);
5883 if (!attrs)
d4d3e257 5884 goto out_unlock;
6ba94429
FW
5885
5886 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5887 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5888 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5889 else
5890 ret = -EINVAL;
5891
d4d3e257
LJ
5892out_unlock:
5893 apply_wqattrs_unlock();
6ba94429
FW
5894 free_workqueue_attrs(attrs);
5895 return ret ?: count;
5896}
5897
5898static ssize_t wq_cpumask_show(struct device *dev,
5899 struct device_attribute *attr, char *buf)
5900{
5901 struct workqueue_struct *wq = dev_to_wq(dev);
5902 int written;
5903
5904 mutex_lock(&wq->mutex);
5905 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5906 cpumask_pr_args(wq->unbound_attrs->cpumask));
5907 mutex_unlock(&wq->mutex);
5908 return written;
5909}
5910
5911static ssize_t wq_cpumask_store(struct device *dev,
5912 struct device_attribute *attr,
5913 const char *buf, size_t count)
5914{
5915 struct workqueue_struct *wq = dev_to_wq(dev);
5916 struct workqueue_attrs *attrs;
d4d3e257
LJ
5917 int ret = -ENOMEM;
5918
5919 apply_wqattrs_lock();
6ba94429
FW
5920
5921 attrs = wq_sysfs_prep_attrs(wq);
5922 if (!attrs)
d4d3e257 5923 goto out_unlock;
6ba94429
FW
5924
5925 ret = cpumask_parse(buf, attrs->cpumask);
5926 if (!ret)
d4d3e257 5927 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5928
d4d3e257
LJ
5929out_unlock:
5930 apply_wqattrs_unlock();
6ba94429
FW
5931 free_workqueue_attrs(attrs);
5932 return ret ?: count;
5933}
5934
6ba94429 5935static struct device_attribute wq_sysfs_unbound_attrs[] = {
6ba94429
FW
5936 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5937 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6ba94429
FW
5938 __ATTR_NULL,
5939};
8ccad40d 5940
6ba94429
FW
5941static struct bus_type wq_subsys = {
5942 .name = "workqueue",
5943 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5944};
5945
b05a7928
FW
5946static ssize_t wq_unbound_cpumask_show(struct device *dev,
5947 struct device_attribute *attr, char *buf)
5948{
5949 int written;
5950
042f7df1 5951 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5952 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5953 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5954 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5955
5956 return written;
5957}
5958
042f7df1
LJ
5959static ssize_t wq_unbound_cpumask_store(struct device *dev,
5960 struct device_attribute *attr, const char *buf, size_t count)
5961{
5962 cpumask_var_t cpumask;
5963 int ret;
5964
5965 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5966 return -ENOMEM;
5967
5968 ret = cpumask_parse(buf, cpumask);
5969 if (!ret)
5970 ret = workqueue_set_unbound_cpumask(cpumask);
5971
5972 free_cpumask_var(cpumask);
5973 return ret ? ret : count;
5974}
5975
b05a7928 5976static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5977 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5978 wq_unbound_cpumask_store);
b05a7928 5979
6ba94429 5980static int __init wq_sysfs_init(void)
2d3854a3 5981{
686f6697 5982 struct device *dev_root;
b05a7928
FW
5983 int err;
5984
5985 err = subsys_virtual_register(&wq_subsys, NULL);
5986 if (err)
5987 return err;
5988
686f6697
GKH
5989 dev_root = bus_get_dev_root(&wq_subsys);
5990 if (dev_root) {
5991 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
5992 put_device(dev_root);
5993 }
5994 return err;
2d3854a3 5995}
6ba94429 5996core_initcall(wq_sysfs_init);
2d3854a3 5997
6ba94429 5998static void wq_device_release(struct device *dev)
2d3854a3 5999{
6ba94429 6000 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 6001
6ba94429 6002 kfree(wq_dev);
2d3854a3 6003}
a0a1a5fd
TH
6004
6005/**
6ba94429
FW
6006 * workqueue_sysfs_register - make a workqueue visible in sysfs
6007 * @wq: the workqueue to register
a0a1a5fd 6008 *
6ba94429
FW
6009 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6010 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6011 * which is the preferred method.
a0a1a5fd 6012 *
6ba94429
FW
6013 * Workqueue user should use this function directly iff it wants to apply
6014 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6015 * apply_workqueue_attrs() may race against userland updating the
6016 * attributes.
6017 *
6018 * Return: 0 on success, -errno on failure.
a0a1a5fd 6019 */
6ba94429 6020int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 6021{
6ba94429
FW
6022 struct wq_device *wq_dev;
6023 int ret;
a0a1a5fd 6024
6ba94429 6025 /*
402dd89d 6026 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
6027 * attributes breaks ordering guarantee. Disallow exposing ordered
6028 * workqueues.
6029 */
0a94efb5 6030 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 6031 return -EINVAL;
a0a1a5fd 6032
6ba94429
FW
6033 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6034 if (!wq_dev)
6035 return -ENOMEM;
5bcab335 6036
6ba94429
FW
6037 wq_dev->wq = wq;
6038 wq_dev->dev.bus = &wq_subsys;
6ba94429 6039 wq_dev->dev.release = wq_device_release;
23217b44 6040 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 6041
6ba94429
FW
6042 /*
6043 * unbound_attrs are created separately. Suppress uevent until
6044 * everything is ready.
6045 */
6046 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 6047
6ba94429
FW
6048 ret = device_register(&wq_dev->dev);
6049 if (ret) {
537f4146 6050 put_device(&wq_dev->dev);
6ba94429
FW
6051 wq->wq_dev = NULL;
6052 return ret;
6053 }
a0a1a5fd 6054
6ba94429
FW
6055 if (wq->flags & WQ_UNBOUND) {
6056 struct device_attribute *attr;
a0a1a5fd 6057
6ba94429
FW
6058 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6059 ret = device_create_file(&wq_dev->dev, attr);
6060 if (ret) {
6061 device_unregister(&wq_dev->dev);
6062 wq->wq_dev = NULL;
6063 return ret;
a0a1a5fd
TH
6064 }
6065 }
6066 }
6ba94429
FW
6067
6068 dev_set_uevent_suppress(&wq_dev->dev, false);
6069 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6070 return 0;
a0a1a5fd
TH
6071}
6072
6073/**
6ba94429
FW
6074 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6075 * @wq: the workqueue to unregister
a0a1a5fd 6076 *
6ba94429 6077 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 6078 */
6ba94429 6079static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 6080{
6ba94429 6081 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 6082
6ba94429
FW
6083 if (!wq->wq_dev)
6084 return;
a0a1a5fd 6085
6ba94429
FW
6086 wq->wq_dev = NULL;
6087 device_unregister(&wq_dev->dev);
a0a1a5fd 6088}
6ba94429
FW
6089#else /* CONFIG_SYSFS */
6090static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6091#endif /* CONFIG_SYSFS */
a0a1a5fd 6092
82607adc
TH
6093/*
6094 * Workqueue watchdog.
6095 *
6096 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6097 * flush dependency, a concurrency managed work item which stays RUNNING
6098 * indefinitely. Workqueue stalls can be very difficult to debug as the
6099 * usual warning mechanisms don't trigger and internal workqueue state is
6100 * largely opaque.
6101 *
6102 * Workqueue watchdog monitors all worker pools periodically and dumps
6103 * state if some pools failed to make forward progress for a while where
6104 * forward progress is defined as the first item on ->worklist changing.
6105 *
6106 * This mechanism is controlled through the kernel parameter
6107 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6108 * corresponding sysfs parameter file.
6109 */
6110#ifdef CONFIG_WQ_WATCHDOG
6111
82607adc 6112static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 6113static struct timer_list wq_watchdog_timer;
82607adc
TH
6114
6115static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6116static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6117
cd2440d6
PM
6118/*
6119 * Show workers that might prevent the processing of pending work items.
6120 * The only candidates are CPU-bound workers in the running state.
6121 * Pending work items should be handled by another idle worker
6122 * in all other situations.
6123 */
6124static void show_cpu_pool_hog(struct worker_pool *pool)
6125{
6126 struct worker *worker;
6127 unsigned long flags;
6128 int bkt;
6129
6130 raw_spin_lock_irqsave(&pool->lock, flags);
6131
6132 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6133 if (task_is_running(worker->task)) {
6134 /*
6135 * Defer printing to avoid deadlocks in console
6136 * drivers that queue work while holding locks
6137 * also taken in their write paths.
6138 */
6139 printk_deferred_enter();
6140
6141 pr_info("pool %d:\n", pool->id);
6142 sched_show_task(worker->task);
6143
6144 printk_deferred_exit();
6145 }
6146 }
6147
6148 raw_spin_unlock_irqrestore(&pool->lock, flags);
6149}
6150
6151static void show_cpu_pools_hogs(void)
6152{
6153 struct worker_pool *pool;
6154 int pi;
6155
6156 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6157
6158 rcu_read_lock();
6159
6160 for_each_pool(pool, pi) {
6161 if (pool->cpu_stall)
6162 show_cpu_pool_hog(pool);
6163
6164 }
6165
6166 rcu_read_unlock();
6167}
6168
82607adc
TH
6169static void wq_watchdog_reset_touched(void)
6170{
6171 int cpu;
6172
6173 wq_watchdog_touched = jiffies;
6174 for_each_possible_cpu(cpu)
6175 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6176}
6177
5cd79d6a 6178static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
6179{
6180 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6181 bool lockup_detected = false;
cd2440d6 6182 bool cpu_pool_stall = false;
940d71c6 6183 unsigned long now = jiffies;
82607adc
TH
6184 struct worker_pool *pool;
6185 int pi;
6186
6187 if (!thresh)
6188 return;
6189
6190 rcu_read_lock();
6191
6192 for_each_pool(pool, pi) {
6193 unsigned long pool_ts, touched, ts;
6194
cd2440d6 6195 pool->cpu_stall = false;
82607adc
TH
6196 if (list_empty(&pool->worklist))
6197 continue;
6198
940d71c6
SS
6199 /*
6200 * If a virtual machine is stopped by the host it can look to
6201 * the watchdog like a stall.
6202 */
6203 kvm_check_and_clear_guest_paused();
6204
82607adc 6205 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
6206 if (pool->cpu >= 0)
6207 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6208 else
6209 touched = READ_ONCE(wq_watchdog_touched);
82607adc 6210 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
6211
6212 if (time_after(pool_ts, touched))
6213 ts = pool_ts;
6214 else
6215 ts = touched;
6216
82607adc 6217 /* did we stall? */
940d71c6 6218 if (time_after(now, ts + thresh)) {
82607adc 6219 lockup_detected = true;
cd2440d6
PM
6220 if (pool->cpu >= 0) {
6221 pool->cpu_stall = true;
6222 cpu_pool_stall = true;
6223 }
82607adc
TH
6224 pr_emerg("BUG: workqueue lockup - pool");
6225 pr_cont_pool_info(pool);
6226 pr_cont(" stuck for %us!\n",
940d71c6 6227 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 6228 }
cd2440d6
PM
6229
6230
82607adc
TH
6231 }
6232
6233 rcu_read_unlock();
6234
6235 if (lockup_detected)
55df0933 6236 show_all_workqueues();
82607adc 6237
cd2440d6
PM
6238 if (cpu_pool_stall)
6239 show_cpu_pools_hogs();
6240
82607adc
TH
6241 wq_watchdog_reset_touched();
6242 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6243}
6244
cb9d7fd5 6245notrace void wq_watchdog_touch(int cpu)
82607adc
TH
6246{
6247 if (cpu >= 0)
6248 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
6249
6250 wq_watchdog_touched = jiffies;
82607adc
TH
6251}
6252
6253static void wq_watchdog_set_thresh(unsigned long thresh)
6254{
6255 wq_watchdog_thresh = 0;
6256 del_timer_sync(&wq_watchdog_timer);
6257
6258 if (thresh) {
6259 wq_watchdog_thresh = thresh;
6260 wq_watchdog_reset_touched();
6261 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6262 }
6263}
6264
6265static int wq_watchdog_param_set_thresh(const char *val,
6266 const struct kernel_param *kp)
6267{
6268 unsigned long thresh;
6269 int ret;
6270
6271 ret = kstrtoul(val, 0, &thresh);
6272 if (ret)
6273 return ret;
6274
6275 if (system_wq)
6276 wq_watchdog_set_thresh(thresh);
6277 else
6278 wq_watchdog_thresh = thresh;
6279
6280 return 0;
6281}
6282
6283static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6284 .set = wq_watchdog_param_set_thresh,
6285 .get = param_get_ulong,
6286};
6287
6288module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6289 0644);
6290
6291static void wq_watchdog_init(void)
6292{
5cd79d6a 6293 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
6294 wq_watchdog_set_thresh(wq_watchdog_thresh);
6295}
6296
6297#else /* CONFIG_WQ_WATCHDOG */
6298
6299static inline void wq_watchdog_init(void) { }
6300
6301#endif /* CONFIG_WQ_WATCHDOG */
6302
3347fa09
TH
6303/**
6304 * workqueue_init_early - early init for workqueue subsystem
6305 *
2930155b
TH
6306 * This is the first step of three-staged workqueue subsystem initialization and
6307 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6308 * up. It sets up all the data structures and system workqueues and allows early
6309 * boot code to create workqueues and queue/cancel work items. Actual work item
6310 * execution starts only after kthreads can be created and scheduled right
6311 * before early initcalls.
3347fa09 6312 */
2333e829 6313void __init workqueue_init_early(void)
1da177e4 6314{
84193c07 6315 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7a4e344c
TH
6316 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6317 int i, cpu;
c34056a3 6318
10cdb157 6319 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 6320
b05a7928 6321 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
04d4e665
FW
6322 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6323 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
b05a7928 6324
ace3c549 6325 if (!cpumask_empty(&wq_cmdline_cpumask))
6326 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, &wq_cmdline_cpumask);
6327
e904e6c2
TH
6328 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6329
2930155b
TH
6330 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6331 BUG_ON(!wq_update_pod_attrs_buf);
6332
0f36ee24
TH
6333 BUG_ON(!alloc_cpumask_var(&wq_update_pod_cpumask_buf, GFP_KERNEL));
6334
84193c07
TH
6335 /* initialize WQ_AFFN_SYSTEM pods */
6336 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6337 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6338 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6339 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6340
6341 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6342
6343 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6344 BUG_ON(!wq_update_pod_attrs_buf);
6345
6346 pt->nr_pods = 1;
6347 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6348 pt->pod_node[0] = NUMA_NO_NODE;
6349 pt->cpu_pod[0] = 0;
6350
706026c2 6351 /* initialize CPU pools */
29c91e99 6352 for_each_possible_cpu(cpu) {
4ce62e9e 6353 struct worker_pool *pool;
8b03ae3c 6354
7a4e344c 6355 i = 0;
f02ae73a 6356 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 6357 BUG_ON(init_worker_pool(pool));
ec22ca5e 6358 pool->cpu = cpu;
29c91e99 6359 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 6360 pool->attrs->nice = std_nice[i++];
f3f90ad4 6361 pool->node = cpu_to_node(cpu);
7a4e344c 6362
9daf9e67 6363 /* alloc pool ID */
68e13a67 6364 mutex_lock(&wq_pool_mutex);
9daf9e67 6365 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6366 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6367 }
8b03ae3c
TH
6368 }
6369
8a2b7538 6370 /* create default unbound and ordered wq attrs */
29c91e99
TH
6371 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6372 struct workqueue_attrs *attrs;
6373
be69d00d 6374 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6375 attrs->nice = std_nice[i];
29c91e99 6376 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6377
6378 /*
6379 * An ordered wq should have only one pwq as ordering is
6380 * guaranteed by max_active which is enforced by pwqs.
8a2b7538 6381 */
be69d00d 6382 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538 6383 attrs->nice = std_nice[i];
af73f5c9 6384 attrs->ordered = true;
8a2b7538 6385 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6386 }
6387
d320c038 6388 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6389 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6390 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797 6391 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
636b927e 6392 WQ_MAX_ACTIVE);
24d51add
TH
6393 system_freezable_wq = alloc_workqueue("events_freezable",
6394 WQ_FREEZABLE, 0);
0668106c
VK
6395 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6396 WQ_POWER_EFFICIENT, 0);
6397 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6398 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6399 0);
1aabe902 6400 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6401 !system_unbound_wq || !system_freezable_wq ||
6402 !system_power_efficient_wq ||
6403 !system_freezable_power_efficient_wq);
3347fa09
TH
6404}
6405
aa6fde93
TH
6406static void __init wq_cpu_intensive_thresh_init(void)
6407{
6408 unsigned long thresh;
6409 unsigned long bogo;
6410
6411 /* if the user set it to a specific value, keep it */
6412 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6413 return;
6414
967b494e
TH
6415 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6416 BUG_ON(IS_ERR(pwq_release_worker));
6417
aa6fde93
TH
6418 /*
6419 * The default of 10ms is derived from the fact that most modern (as of
6420 * 2023) processors can do a lot in 10ms and that it's just below what
6421 * most consider human-perceivable. However, the kernel also runs on a
6422 * lot slower CPUs including microcontrollers where the threshold is way
6423 * too low.
6424 *
6425 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6426 * This is by no means accurate but it doesn't have to be. The mechanism
6427 * is still useful even when the threshold is fully scaled up. Also, as
6428 * the reports would usually be applicable to everyone, some machines
6429 * operating on longer thresholds won't significantly diminish their
6430 * usefulness.
6431 */
6432 thresh = 10 * USEC_PER_MSEC;
6433
6434 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
6435 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6436 if (bogo < 4000)
6437 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6438
6439 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6440 loops_per_jiffy, bogo, thresh);
6441
6442 wq_cpu_intensive_thresh_us = thresh;
6443}
6444
3347fa09
TH
6445/**
6446 * workqueue_init - bring workqueue subsystem fully online
6447 *
2930155b
TH
6448 * This is the second step of three-staged workqueue subsystem initialization
6449 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6450 * been created and work items queued on them, but there are no kworkers
6451 * executing the work items yet. Populate the worker pools with the initial
6452 * workers and enable future kworker creations.
3347fa09 6453 */
2333e829 6454void __init workqueue_init(void)
3347fa09 6455{
2186d9f9 6456 struct workqueue_struct *wq;
3347fa09
TH
6457 struct worker_pool *pool;
6458 int cpu, bkt;
6459
aa6fde93
TH
6460 wq_cpu_intensive_thresh_init();
6461
2186d9f9
TH
6462 mutex_lock(&wq_pool_mutex);
6463
2930155b
TH
6464 /*
6465 * Per-cpu pools created earlier could be missing node hint. Fix them
6466 * up. Also, create a rescuer for workqueues that requested it.
6467 */
2186d9f9
TH
6468 for_each_possible_cpu(cpu) {
6469 for_each_cpu_worker_pool(pool, cpu) {
6470 pool->node = cpu_to_node(cpu);
6471 }
6472 }
6473
40c17f75 6474 list_for_each_entry(wq, &workqueues, list) {
40c17f75
TH
6475 WARN(init_rescuer(wq),
6476 "workqueue: failed to create early rescuer for %s",
6477 wq->name);
6478 }
2186d9f9
TH
6479
6480 mutex_unlock(&wq_pool_mutex);
6481
3347fa09
TH
6482 /* create the initial workers */
6483 for_each_online_cpu(cpu) {
6484 for_each_cpu_worker_pool(pool, cpu) {
6485 pool->flags &= ~POOL_DISASSOCIATED;
6486 BUG_ON(!create_worker(pool));
6487 }
6488 }
6489
6490 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6491 BUG_ON(!create_worker(pool));
6492
6493 wq_online = true;
82607adc 6494 wq_watchdog_init();
1da177e4 6495}
c4f135d6 6496
025e1684
TH
6497/*
6498 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6499 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6500 * and consecutive pod ID. The rest of @pt is initialized accordingly.
6501 */
6502static void __init init_pod_type(struct wq_pod_type *pt,
6503 bool (*cpus_share_pod)(int, int))
6504{
6505 int cur, pre, cpu, pod;
6506
6507 pt->nr_pods = 0;
6508
6509 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
6510 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6511 BUG_ON(!pt->cpu_pod);
6512
6513 for_each_possible_cpu(cur) {
6514 for_each_possible_cpu(pre) {
6515 if (pre >= cur) {
6516 pt->cpu_pod[cur] = pt->nr_pods++;
6517 break;
6518 }
6519 if (cpus_share_pod(cur, pre)) {
6520 pt->cpu_pod[cur] = pt->cpu_pod[pre];
6521 break;
6522 }
6523 }
6524 }
6525
6526 /* init the rest to match @pt->cpu_pod[] */
6527 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6528 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6529 BUG_ON(!pt->pod_cpus || !pt->pod_node);
6530
6531 for (pod = 0; pod < pt->nr_pods; pod++)
6532 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6533
6534 for_each_possible_cpu(cpu) {
6535 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6536 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6537 }
6538}
6539
6540static bool __init cpus_share_numa(int cpu0, int cpu1)
6541{
6542 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6543}
6544
2930155b
TH
6545/**
6546 * workqueue_init_topology - initialize CPU pods for unbound workqueues
6547 *
6548 * This is the third step of there-staged workqueue subsystem initialization and
6549 * invoked after SMP and topology information are fully initialized. It
6550 * initializes the unbound CPU pods accordingly.
6551 */
6552void __init workqueue_init_topology(void)
a86feae6 6553{
2930155b 6554 struct workqueue_struct *wq;
025e1684 6555 int cpu;
a86feae6 6556
025e1684 6557 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
a86feae6 6558
2930155b 6559 mutex_lock(&wq_pool_mutex);
a86feae6 6560
2930155b
TH
6561 /*
6562 * Workqueues allocated earlier would have all CPUs sharing the default
6563 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6564 * combinations to apply per-pod sharing.
6565 */
6566 list_for_each_entry(wq, &workqueues, list) {
6567 for_each_online_cpu(cpu) {
6568 wq_update_pod(wq, cpu, cpu, true);
6569 }
6570 }
6571
6572 mutex_unlock(&wq_pool_mutex);
a86feae6
TH
6573}
6574
20bdedaf
TH
6575void __warn_flushing_systemwide_wq(void)
6576{
6577 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6578 dump_stack();
6579}
c4f135d6 6580EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
ace3c549 6581
6582static int __init workqueue_unbound_cpus_setup(char *str)
6583{
6584 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6585 cpumask_clear(&wq_cmdline_cpumask);
6586 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6587 }
6588
6589 return 1;
6590}
6591__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);