io_uring: remove extra tw trylocks
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
940d71c6 53#include <linux/kvm_para.h>
e22bee78 54
ea138446 55#include "workqueue_internal.h"
1da177e4 56
c8e55f36 57enum {
24647570
TH
58 /*
59 * worker_pool flags
bc2ae0f5 60 *
24647570 61 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 68 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 69 *
bc3a1afc 70 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 71 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 72 * worker_attach_to_pool() is in progress.
bc2ae0f5 73 */
692b4825 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 76
c8e55f36 77 /* worker flags */
c8e55f36
TH
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 80 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 84
a9ab775b
TH
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 87
e34cdddb 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 89
29c91e99 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 92
e22bee78
TH
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
3233cdbd
TH
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
e22bee78
TH
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
8698a745 104 * all cpus. Give MIN_NICE.
e22bee78 105 */
8698a745
DY
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
108
109 WQ_NAME_LEN = 24,
c8e55f36 110};
1da177e4
LT
111
112/*
4690c4ab
TH
113 * Structure fields follow one of the following exclusion rules.
114 *
e41e704b
TH
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
4690c4ab 117 *
e22bee78
TH
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
d565ed63 121 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 122 *
d565ed63
TH
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 127 *
1258fae7 128 * A: wq_pool_attach_mutex protected.
822d8405 129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
24acfb71 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 133 *
5b95e1af
LJ
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 137 * RCU for reads.
5b95e1af 138 *
3c25a55d
LJ
139 * WQ: wq->mutex protected.
140 *
24acfb71 141 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
142 *
143 * MD: wq_mayday_lock protected.
1da177e4 144 */
1da177e4 145
2eaebdb3 146/* struct worker is defined in workqueue_internal.h */
c34056a3 147
bd7bdd43 148struct worker_pool {
a9b8a985 149 raw_spinlock_t lock; /* the pool lock */
d84ff051 150 int cpu; /* I: the associated cpu */
f3f90ad4 151 int node; /* I: the associated node ID */
9daf9e67 152 int id; /* I: pool ID */
11ebea50 153 unsigned int flags; /* X: flags */
bd7bdd43 154
82607adc
TH
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
bc35f7ef
LJ
157 /*
158 * The counter is incremented in a process context on the associated CPU
159 * w/ preemption disabled, and decremented or reset in the same context
160 * but w/ pool->lock held. The readers grab pool->lock and are
161 * guaranteed to see if the counter reached zero.
162 */
163 int nr_running;
84f91c62 164
bd7bdd43 165 struct list_head worklist; /* L: list of pending works */
ea1abd61 166
5826cc8f
LJ
167 int nr_workers; /* L: total number of workers */
168 int nr_idle; /* L: currently idle workers */
bd7bdd43 169
2c1f1a91 170 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 171 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
172 struct work_struct idle_cull_work; /* L: worker idle cleanup */
173
174 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 175
c5aa87bb 176 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
177 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
178 /* L: hash of busy workers */
179
2607d7a6 180 struct worker *manager; /* L: purely informational */
92f9c5c4 181 struct list_head workers; /* A: attached workers */
e02b9312 182 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 183 struct completion *detach_completion; /* all workers detached */
e19e397a 184
7cda9aae 185 struct ida worker_ida; /* worker IDs for task name */
e19e397a 186
7a4e344c 187 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
188 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
189 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 190
29c91e99 191 /*
24acfb71 192 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
193 * from get_work_pool().
194 */
195 struct rcu_head rcu;
84f91c62 196};
8b03ae3c 197
1da177e4 198/*
112202d9
TH
199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
200 * of work_struct->data are used for flags and the remaining high bits
201 * point to the pwq; thus, pwqs need to be aligned at two's power of the
202 * number of flag bits.
1da177e4 203 */
112202d9 204struct pool_workqueue {
bd7bdd43 205 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 206 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
207 int work_color; /* L: current color */
208 int flush_color; /* L: flushing color */
8864b4e5 209 int refcnt; /* L: reference count */
73f53c4a
TH
210 int nr_in_flight[WORK_NR_COLORS];
211 /* L: nr of in_flight works */
018f3a13
LJ
212
213 /*
214 * nr_active management and WORK_STRUCT_INACTIVE:
215 *
216 * When pwq->nr_active >= max_active, new work item is queued to
217 * pwq->inactive_works instead of pool->worklist and marked with
218 * WORK_STRUCT_INACTIVE.
219 *
220 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 * in pwq->nr_active and all work items in pwq->inactive_works are
222 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
223 * work items are in pwq->inactive_works. Some of them are ready to
224 * run in pool->worklist or worker->scheduled. Those work itmes are
225 * only struct wq_barrier which is used for flush_work() and should
226 * not participate in pwq->nr_active. For non-barrier work item, it
227 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 */
1e19ffc6 229 int nr_active; /* L: nr of active works */
a0a1a5fd 230 int max_active; /* L: max active works */
f97a4a1a 231 struct list_head inactive_works; /* L: inactive works */
3c25a55d 232 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 233 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
234
235 /*
236 * Release of unbound pwq is punted to system_wq. See put_pwq()
237 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 238 * itself is also RCU protected so that the first pwq can be
b09f4fd3 239 * determined without grabbing wq->mutex.
8864b4e5
TH
240 */
241 struct work_struct unbound_release_work;
242 struct rcu_head rcu;
e904e6c2 243} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 244
73f53c4a
TH
245/*
246 * Structure used to wait for workqueue flush.
247 */
248struct wq_flusher {
3c25a55d
LJ
249 struct list_head list; /* WQ: list of flushers */
250 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
251 struct completion done; /* flush completion */
252};
253
226223ab
TH
254struct wq_device;
255
1da177e4 256/*
c5aa87bb
TH
257 * The externally visible workqueue. It relays the issued work items to
258 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
259 */
260struct workqueue_struct {
3c25a55d 261 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 262 struct list_head list; /* PR: list of all workqueues */
73f53c4a 263
3c25a55d
LJ
264 struct mutex mutex; /* protects this wq */
265 int work_color; /* WQ: current work color */
266 int flush_color; /* WQ: current flush color */
112202d9 267 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
268 struct wq_flusher *first_flusher; /* WQ: first flusher */
269 struct list_head flusher_queue; /* WQ: flush waiters */
270 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 271
2e109a28 272 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 273 struct worker *rescuer; /* MD: rescue worker */
e22bee78 274
87fc741e 275 int nr_drainers; /* WQ: drain in progress */
a357fc03 276 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 277
5b95e1af
LJ
278 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
279 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 280
226223ab
TH
281#ifdef CONFIG_SYSFS
282 struct wq_device *wq_dev; /* I: for sysfs interface */
283#endif
4e6045f1 284#ifdef CONFIG_LOCKDEP
669de8bd
BVA
285 char *lock_name;
286 struct lock_class_key key;
4690c4ab 287 struct lockdep_map lockdep_map;
4e6045f1 288#endif
ecf6881f 289 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 290
e2dca7ad 291 /*
24acfb71
TG
292 * Destruction of workqueue_struct is RCU protected to allow walking
293 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
294 * This is used to dump all workqueues from sysrq.
295 */
296 struct rcu_head rcu;
297
2728fd2f
TH
298 /* hot fields used during command issue, aligned to cacheline */
299 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 301 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
302};
303
e904e6c2
TH
304static struct kmem_cache *pwq_cache;
305
bce90380
TH
306static cpumask_var_t *wq_numa_possible_cpumask;
307 /* possible CPUs of each node */
308
d55262c4
TH
309static bool wq_disable_numa;
310module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311
cee22a15 312/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 313static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
314module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315
863b710b 316static bool wq_online; /* can kworkers be created yet? */
3347fa09 317
bce90380
TH
318static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
319
4c16bd32
TH
320/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322
68e13a67 323static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 324static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 325static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
326/* wait for manager to go away */
327static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 328
e2dca7ad 329static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 330static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 331
99c621ef 332/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
333static cpumask_var_t wq_unbound_cpumask;
334
335/* CPU where unbound work was last round robin scheduled from this CPU */
336static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 337
f303fccb
TH
338/*
339 * Local execution of unbound work items is no longer guaranteed. The
340 * following always forces round-robin CPU selection on unbound work items
341 * to uncover usages which depend on it.
342 */
343#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344static bool wq_debug_force_rr_cpu = true;
345#else
346static bool wq_debug_force_rr_cpu = false;
347#endif
348module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349
7d19c5ce 350/* the per-cpu worker pools */
25528213 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 352
68e13a67 353static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 354
68e13a67 355/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
356static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357
c5aa87bb 358/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
359static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360
8a2b7538
TH
361/* I: attributes used when instantiating ordered pools on demand */
362static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363
d320c038 364struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 365EXPORT_SYMBOL(system_wq);
044c782c 366struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 367EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 368struct workqueue_struct *system_long_wq __read_mostly;
d320c038 369EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 370struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 371EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 372struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 373EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
374struct workqueue_struct *system_power_efficient_wq __read_mostly;
375EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 378
7d19c5ce 379static int worker_thread(void *__worker);
6ba94429 380static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 381static void show_pwq(struct pool_workqueue *pwq);
55df0933 382static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 383
97bd2347
TH
384#define CREATE_TRACE_POINTS
385#include <trace/events/workqueue.h>
386
68e13a67 387#define assert_rcu_or_pool_mutex() \
24acfb71 388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 389 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 390 "RCU or wq_pool_mutex should be held")
5bcab335 391
5b95e1af 392#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 393 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
394 !lockdep_is_held(&wq->mutex) && \
395 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 396 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 397
f02ae73a
TH
398#define for_each_cpu_worker_pool(pool, cpu) \
399 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
400 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 401 (pool)++)
4ce62e9e 402
17116969
TH
403/**
404 * for_each_pool - iterate through all worker_pools in the system
405 * @pool: iteration cursor
611c92a0 406 * @pi: integer used for iteration
fa1b54e6 407 *
24acfb71 408 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
409 * locked. If the pool needs to be used beyond the locking in effect, the
410 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
411 *
412 * The if/else clause exists only for the lockdep assertion and can be
413 * ignored.
17116969 414 */
611c92a0
TH
415#define for_each_pool(pool, pi) \
416 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 417 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 418 else
17116969 419
822d8405
TH
420/**
421 * for_each_pool_worker - iterate through all workers of a worker_pool
422 * @worker: iteration cursor
822d8405
TH
423 * @pool: worker_pool to iterate workers of
424 *
1258fae7 425 * This must be called with wq_pool_attach_mutex.
822d8405
TH
426 *
427 * The if/else clause exists only for the lockdep assertion and can be
428 * ignored.
429 */
da028469
LJ
430#define for_each_pool_worker(worker, pool) \
431 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 432 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
433 else
434
49e3cf44
TH
435/**
436 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
437 * @pwq: iteration cursor
438 * @wq: the target workqueue
76af4d93 439 *
24acfb71 440 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
441 * If the pwq needs to be used beyond the locking in effect, the caller is
442 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
443 *
444 * The if/else clause exists only for the lockdep assertion and can be
445 * ignored.
49e3cf44
TH
446 */
447#define for_each_pwq(pwq, wq) \
49e9d1a9 448 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 449 lockdep_is_held(&(wq->mutex)))
f3421797 450
dc186ad7
TG
451#ifdef CONFIG_DEBUG_OBJECTS_WORK
452
f9e62f31 453static const struct debug_obj_descr work_debug_descr;
dc186ad7 454
99777288
SG
455static void *work_debug_hint(void *addr)
456{
457 return ((struct work_struct *) addr)->func;
458}
459
b9fdac7f
DC
460static bool work_is_static_object(void *addr)
461{
462 struct work_struct *work = addr;
463
464 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
465}
466
dc186ad7
TG
467/*
468 * fixup_init is called when:
469 * - an active object is initialized
470 */
02a982a6 471static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
472{
473 struct work_struct *work = addr;
474
475 switch (state) {
476 case ODEBUG_STATE_ACTIVE:
477 cancel_work_sync(work);
478 debug_object_init(work, &work_debug_descr);
02a982a6 479 return true;
dc186ad7 480 default:
02a982a6 481 return false;
dc186ad7
TG
482 }
483}
484
dc186ad7
TG
485/*
486 * fixup_free is called when:
487 * - an active object is freed
488 */
02a982a6 489static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
490{
491 struct work_struct *work = addr;
492
493 switch (state) {
494 case ODEBUG_STATE_ACTIVE:
495 cancel_work_sync(work);
496 debug_object_free(work, &work_debug_descr);
02a982a6 497 return true;
dc186ad7 498 default:
02a982a6 499 return false;
dc186ad7
TG
500 }
501}
502
f9e62f31 503static const struct debug_obj_descr work_debug_descr = {
dc186ad7 504 .name = "work_struct",
99777288 505 .debug_hint = work_debug_hint,
b9fdac7f 506 .is_static_object = work_is_static_object,
dc186ad7 507 .fixup_init = work_fixup_init,
dc186ad7
TG
508 .fixup_free = work_fixup_free,
509};
510
511static inline void debug_work_activate(struct work_struct *work)
512{
513 debug_object_activate(work, &work_debug_descr);
514}
515
516static inline void debug_work_deactivate(struct work_struct *work)
517{
518 debug_object_deactivate(work, &work_debug_descr);
519}
520
521void __init_work(struct work_struct *work, int onstack)
522{
523 if (onstack)
524 debug_object_init_on_stack(work, &work_debug_descr);
525 else
526 debug_object_init(work, &work_debug_descr);
527}
528EXPORT_SYMBOL_GPL(__init_work);
529
530void destroy_work_on_stack(struct work_struct *work)
531{
532 debug_object_free(work, &work_debug_descr);
533}
534EXPORT_SYMBOL_GPL(destroy_work_on_stack);
535
ea2e64f2
TG
536void destroy_delayed_work_on_stack(struct delayed_work *work)
537{
538 destroy_timer_on_stack(&work->timer);
539 debug_object_free(&work->work, &work_debug_descr);
540}
541EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
542
dc186ad7
TG
543#else
544static inline void debug_work_activate(struct work_struct *work) { }
545static inline void debug_work_deactivate(struct work_struct *work) { }
546#endif
547
4e8b22bd 548/**
67dc8325 549 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
550 * @pool: the pool pointer of interest
551 *
552 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
553 * successfully, -errno on failure.
554 */
9daf9e67
TH
555static int worker_pool_assign_id(struct worker_pool *pool)
556{
557 int ret;
558
68e13a67 559 lockdep_assert_held(&wq_pool_mutex);
5bcab335 560
4e8b22bd
LB
561 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
562 GFP_KERNEL);
229641a6 563 if (ret >= 0) {
e68035fb 564 pool->id = ret;
229641a6
TH
565 return 0;
566 }
fa1b54e6 567 return ret;
7c3eed5c
TH
568}
569
df2d5ae4
TH
570/**
571 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
572 * @wq: the target workqueue
573 * @node: the node ID
574 *
24acfb71 575 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 576 * read locked.
df2d5ae4
TH
577 * If the pwq needs to be used beyond the locking in effect, the caller is
578 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
579 *
580 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
581 */
582static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
583 int node)
584{
5b95e1af 585 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
586
587 /*
588 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
589 * delayed item is pending. The plan is to keep CPU -> NODE
590 * mapping valid and stable across CPU on/offlines. Once that
591 * happens, this workaround can be removed.
592 */
593 if (unlikely(node == NUMA_NO_NODE))
594 return wq->dfl_pwq;
595
df2d5ae4
TH
596 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
597}
598
73f53c4a
TH
599static unsigned int work_color_to_flags(int color)
600{
601 return color << WORK_STRUCT_COLOR_SHIFT;
602}
603
c4560c2c 604static int get_work_color(unsigned long work_data)
73f53c4a 605{
c4560c2c 606 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
607 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
608}
609
610static int work_next_color(int color)
611{
612 return (color + 1) % WORK_NR_COLORS;
613}
1da177e4 614
14441960 615/*
112202d9
TH
616 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
617 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 618 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 619 *
112202d9
TH
620 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
621 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
622 * work->data. These functions should only be called while the work is
623 * owned - ie. while the PENDING bit is set.
7a22ad75 624 *
112202d9 625 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 626 * corresponding to a work. Pool is available once the work has been
112202d9 627 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 628 * available only while the work item is queued.
7a22ad75 629 *
bbb68dfa
TH
630 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
631 * canceled. While being canceled, a work item may have its PENDING set
632 * but stay off timer and worklist for arbitrarily long and nobody should
633 * try to steal the PENDING bit.
14441960 634 */
7a22ad75
TH
635static inline void set_work_data(struct work_struct *work, unsigned long data,
636 unsigned long flags)
365970a1 637{
6183c009 638 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
639 atomic_long_set(&work->data, data | flags | work_static(work));
640}
365970a1 641
112202d9 642static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
643 unsigned long extra_flags)
644{
112202d9
TH
645 set_work_data(work, (unsigned long)pwq,
646 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
647}
648
4468a00f
LJ
649static void set_work_pool_and_keep_pending(struct work_struct *work,
650 int pool_id)
651{
652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
653 WORK_STRUCT_PENDING);
654}
655
7c3eed5c
TH
656static void set_work_pool_and_clear_pending(struct work_struct *work,
657 int pool_id)
7a22ad75 658{
23657bb1
TH
659 /*
660 * The following wmb is paired with the implied mb in
661 * test_and_set_bit(PENDING) and ensures all updates to @work made
662 * here are visible to and precede any updates by the next PENDING
663 * owner.
664 */
665 smp_wmb();
7c3eed5c 666 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
667 /*
668 * The following mb guarantees that previous clear of a PENDING bit
669 * will not be reordered with any speculative LOADS or STORES from
670 * work->current_func, which is executed afterwards. This possible
8bdc6201 671 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
672 * the same @work. E.g. consider this case:
673 *
674 * CPU#0 CPU#1
675 * ---------------------------- --------------------------------
676 *
677 * 1 STORE event_indicated
678 * 2 queue_work_on() {
679 * 3 test_and_set_bit(PENDING)
680 * 4 } set_..._and_clear_pending() {
681 * 5 set_work_data() # clear bit
682 * 6 smp_mb()
683 * 7 work->current_func() {
684 * 8 LOAD event_indicated
685 * }
686 *
687 * Without an explicit full barrier speculative LOAD on line 8 can
688 * be executed before CPU#0 does STORE on line 1. If that happens,
689 * CPU#0 observes the PENDING bit is still set and new execution of
690 * a @work is not queued in a hope, that CPU#1 will eventually
691 * finish the queued @work. Meanwhile CPU#1 does not see
692 * event_indicated is set, because speculative LOAD was executed
693 * before actual STORE.
694 */
695 smp_mb();
7a22ad75 696}
f756d5e2 697
7a22ad75 698static void clear_work_data(struct work_struct *work)
1da177e4 699{
7c3eed5c
TH
700 smp_wmb(); /* see set_work_pool_and_clear_pending() */
701 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
702}
703
112202d9 704static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 705{
e120153d 706 unsigned long data = atomic_long_read(&work->data);
7a22ad75 707
112202d9 708 if (data & WORK_STRUCT_PWQ)
e120153d
TH
709 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 else
711 return NULL;
4d707b9f
ON
712}
713
7c3eed5c
TH
714/**
715 * get_work_pool - return the worker_pool a given work was associated with
716 * @work: the work item of interest
717 *
68e13a67 718 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
719 * access under RCU read lock. As such, this function should be
720 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
721 *
722 * All fields of the returned pool are accessible as long as the above
723 * mentioned locking is in effect. If the returned pool needs to be used
724 * beyond the critical section, the caller is responsible for ensuring the
725 * returned pool is and stays online.
d185af30
YB
726 *
727 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
728 */
729static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 730{
e120153d 731 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 732 int pool_id;
7a22ad75 733
68e13a67 734 assert_rcu_or_pool_mutex();
fa1b54e6 735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
7c3eed5c 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 739
7c3eed5c
TH
740 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
741 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
742 return NULL;
743
fa1b54e6 744 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
745}
746
747/**
748 * get_work_pool_id - return the worker pool ID a given work is associated with
749 * @work: the work item of interest
750 *
d185af30 751 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
752 * %WORK_OFFQ_POOL_NONE if none.
753 */
754static int get_work_pool_id(struct work_struct *work)
755{
54d5b7d0
LJ
756 unsigned long data = atomic_long_read(&work->data);
757
112202d9
TH
758 if (data & WORK_STRUCT_PWQ)
759 return ((struct pool_workqueue *)
54d5b7d0 760 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 761
54d5b7d0 762 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
763}
764
bbb68dfa
TH
765static void mark_work_canceling(struct work_struct *work)
766{
7c3eed5c 767 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 768
7c3eed5c
TH
769 pool_id <<= WORK_OFFQ_POOL_SHIFT;
770 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
771}
772
773static bool work_is_canceling(struct work_struct *work)
774{
775 unsigned long data = atomic_long_read(&work->data);
776
112202d9 777 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
778}
779
e22bee78 780/*
3270476a
TH
781 * Policy functions. These define the policies on how the global worker
782 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 783 * they're being called with pool->lock held.
e22bee78
TH
784 */
785
63d95a91 786static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 787{
bc35f7ef 788 return !pool->nr_running;
a848e3b6
ON
789}
790
4594bf15 791/*
e22bee78
TH
792 * Need to wake up a worker? Called from anything but currently
793 * running workers.
974271c4
TH
794 *
795 * Note that, because unbound workers never contribute to nr_running, this
706026c2 796 * function will always return %true for unbound pools as long as the
974271c4 797 * worklist isn't empty.
4594bf15 798 */
63d95a91 799static bool need_more_worker(struct worker_pool *pool)
365970a1 800{
63d95a91 801 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 802}
4594bf15 803
e22bee78 804/* Can I start working? Called from busy but !running workers. */
63d95a91 805static bool may_start_working(struct worker_pool *pool)
e22bee78 806{
63d95a91 807 return pool->nr_idle;
e22bee78
TH
808}
809
810/* Do I need to keep working? Called from currently running workers. */
63d95a91 811static bool keep_working(struct worker_pool *pool)
e22bee78 812{
bc35f7ef 813 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
814}
815
816/* Do we need a new worker? Called from manager. */
63d95a91 817static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 818{
63d95a91 819 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 820}
365970a1 821
e22bee78 822/* Do we have too many workers and should some go away? */
63d95a91 823static bool too_many_workers(struct worker_pool *pool)
e22bee78 824{
692b4825 825 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
826 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
827 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
828
829 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
830}
831
4d707b9f 832/*
e22bee78
TH
833 * Wake up functions.
834 */
835
2c1f1a91 836/* Return the first idle worker. Called with pool->lock held. */
1037de36 837static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 838{
63d95a91 839 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
840 return NULL;
841
63d95a91 842 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
843}
844
845/**
846 * wake_up_worker - wake up an idle worker
63d95a91 847 * @pool: worker pool to wake worker from
7e11629d 848 *
63d95a91 849 * Wake up the first idle worker of @pool.
7e11629d
TH
850 *
851 * CONTEXT:
a9b8a985 852 * raw_spin_lock_irq(pool->lock).
7e11629d 853 */
63d95a91 854static void wake_up_worker(struct worker_pool *pool)
7e11629d 855{
1037de36 856 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
857
858 if (likely(worker))
859 wake_up_process(worker->task);
860}
861
d302f017 862/**
6d25be57 863 * wq_worker_running - a worker is running again
e22bee78 864 * @task: task waking up
e22bee78 865 *
6d25be57 866 * This function is called when a worker returns from schedule()
e22bee78 867 */
6d25be57 868void wq_worker_running(struct task_struct *task)
e22bee78
TH
869{
870 struct worker *worker = kthread_data(task);
871
6d25be57
TG
872 if (!worker->sleeping)
873 return;
07edfece
FW
874
875 /*
876 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
877 * and the nr_running increment below, we may ruin the nr_running reset
878 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
879 * pool. Protect against such race.
880 */
881 preempt_disable();
6d25be57 882 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 883 worker->pool->nr_running++;
07edfece 884 preempt_enable();
6d25be57 885 worker->sleeping = 0;
e22bee78
TH
886}
887
888/**
889 * wq_worker_sleeping - a worker is going to sleep
890 * @task: task going to sleep
e22bee78 891 *
6d25be57 892 * This function is called from schedule() when a busy worker is
ccf45156 893 * going to sleep.
e22bee78 894 */
6d25be57 895void wq_worker_sleeping(struct task_struct *task)
e22bee78 896{
cc5bff38 897 struct worker *worker = kthread_data(task);
111c225a 898 struct worker_pool *pool;
e22bee78 899
111c225a
TH
900 /*
901 * Rescuers, which may not have all the fields set up like normal
902 * workers, also reach here, let's not access anything before
903 * checking NOT_RUNNING.
904 */
2d64672e 905 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 906 return;
e22bee78 907
111c225a 908 pool = worker->pool;
111c225a 909
62849a96
SAS
910 /* Return if preempted before wq_worker_running() was reached */
911 if (worker->sleeping)
6d25be57
TG
912 return;
913
914 worker->sleeping = 1;
a9b8a985 915 raw_spin_lock_irq(&pool->lock);
e22bee78 916
45c753f5
FW
917 /*
918 * Recheck in case unbind_workers() preempted us. We don't
919 * want to decrement nr_running after the worker is unbound
920 * and nr_running has been reset.
921 */
922 if (worker->flags & WORKER_NOT_RUNNING) {
923 raw_spin_unlock_irq(&pool->lock);
924 return;
925 }
926
bc35f7ef
LJ
927 pool->nr_running--;
928 if (need_more_worker(pool))
cc5bff38 929 wake_up_worker(pool);
a9b8a985 930 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
931}
932
1b69ac6b
JW
933/**
934 * wq_worker_last_func - retrieve worker's last work function
8194fe94 935 * @task: Task to retrieve last work function of.
1b69ac6b
JW
936 *
937 * Determine the last function a worker executed. This is called from
938 * the scheduler to get a worker's last known identity.
939 *
940 * CONTEXT:
a9b8a985 941 * raw_spin_lock_irq(rq->lock)
1b69ac6b 942 *
4b047002
JW
943 * This function is called during schedule() when a kworker is going
944 * to sleep. It's used by psi to identify aggregation workers during
945 * dequeuing, to allow periodic aggregation to shut-off when that
946 * worker is the last task in the system or cgroup to go to sleep.
947 *
948 * As this function doesn't involve any workqueue-related locking, it
949 * only returns stable values when called from inside the scheduler's
950 * queuing and dequeuing paths, when @task, which must be a kworker,
951 * is guaranteed to not be processing any works.
952 *
1b69ac6b
JW
953 * Return:
954 * The last work function %current executed as a worker, NULL if it
955 * hasn't executed any work yet.
956 */
957work_func_t wq_worker_last_func(struct task_struct *task)
958{
959 struct worker *worker = kthread_data(task);
960
961 return worker->last_func;
962}
963
e22bee78
TH
964/**
965 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 966 * @worker: self
d302f017 967 * @flags: flags to set
d302f017 968 *
228f1d00 969 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 970 *
cb444766 971 * CONTEXT:
a9b8a985 972 * raw_spin_lock_irq(pool->lock)
d302f017 973 */
228f1d00 974static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 975{
bd7bdd43 976 struct worker_pool *pool = worker->pool;
e22bee78 977
cb444766
TH
978 WARN_ON_ONCE(worker->task != current);
979
228f1d00 980 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
981 if ((flags & WORKER_NOT_RUNNING) &&
982 !(worker->flags & WORKER_NOT_RUNNING)) {
bc35f7ef 983 pool->nr_running--;
e22bee78
TH
984 }
985
d302f017
TH
986 worker->flags |= flags;
987}
988
989/**
e22bee78 990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 991 * @worker: self
d302f017
TH
992 * @flags: flags to clear
993 *
e22bee78 994 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 995 *
cb444766 996 * CONTEXT:
a9b8a985 997 * raw_spin_lock_irq(pool->lock)
d302f017
TH
998 */
999static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1000{
63d95a91 1001 struct worker_pool *pool = worker->pool;
e22bee78
TH
1002 unsigned int oflags = worker->flags;
1003
cb444766
TH
1004 WARN_ON_ONCE(worker->task != current);
1005
d302f017 1006 worker->flags &= ~flags;
e22bee78 1007
42c025f3
TH
1008 /*
1009 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1010 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1011 * of multiple flags, not a single flag.
1012 */
e22bee78
TH
1013 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1014 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1015 pool->nr_running++;
d302f017
TH
1016}
1017
8cca0eea
TH
1018/**
1019 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1020 * @pool: pool of interest
8cca0eea
TH
1021 * @work: work to find worker for
1022 *
c9e7cf27
TH
1023 * Find a worker which is executing @work on @pool by searching
1024 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1025 * to match, its current execution should match the address of @work and
1026 * its work function. This is to avoid unwanted dependency between
1027 * unrelated work executions through a work item being recycled while still
1028 * being executed.
1029 *
1030 * This is a bit tricky. A work item may be freed once its execution
1031 * starts and nothing prevents the freed area from being recycled for
1032 * another work item. If the same work item address ends up being reused
1033 * before the original execution finishes, workqueue will identify the
1034 * recycled work item as currently executing and make it wait until the
1035 * current execution finishes, introducing an unwanted dependency.
1036 *
c5aa87bb
TH
1037 * This function checks the work item address and work function to avoid
1038 * false positives. Note that this isn't complete as one may construct a
1039 * work function which can introduce dependency onto itself through a
1040 * recycled work item. Well, if somebody wants to shoot oneself in the
1041 * foot that badly, there's only so much we can do, and if such deadlock
1042 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1043 *
1044 * CONTEXT:
a9b8a985 1045 * raw_spin_lock_irq(pool->lock).
8cca0eea 1046 *
d185af30
YB
1047 * Return:
1048 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1049 * otherwise.
4d707b9f 1050 */
c9e7cf27 1051static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1052 struct work_struct *work)
4d707b9f 1053{
42f8570f 1054 struct worker *worker;
42f8570f 1055
b67bfe0d 1056 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1057 (unsigned long)work)
1058 if (worker->current_work == work &&
1059 worker->current_func == work->func)
42f8570f
SL
1060 return worker;
1061
1062 return NULL;
4d707b9f
ON
1063}
1064
bf4ede01
TH
1065/**
1066 * move_linked_works - move linked works to a list
1067 * @work: start of series of works to be scheduled
1068 * @head: target list to append @work to
402dd89d 1069 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1070 *
1071 * Schedule linked works starting from @work to @head. Work series to
1072 * be scheduled starts at @work and includes any consecutive work with
1073 * WORK_STRUCT_LINKED set in its predecessor.
1074 *
1075 * If @nextp is not NULL, it's updated to point to the next work of
1076 * the last scheduled work. This allows move_linked_works() to be
1077 * nested inside outer list_for_each_entry_safe().
1078 *
1079 * CONTEXT:
a9b8a985 1080 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1081 */
1082static void move_linked_works(struct work_struct *work, struct list_head *head,
1083 struct work_struct **nextp)
1084{
1085 struct work_struct *n;
1086
1087 /*
1088 * Linked worklist will always end before the end of the list,
1089 * use NULL for list head.
1090 */
1091 list_for_each_entry_safe_from(work, n, NULL, entry) {
1092 list_move_tail(&work->entry, head);
1093 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1094 break;
1095 }
1096
1097 /*
1098 * If we're already inside safe list traversal and have moved
1099 * multiple works to the scheduled queue, the next position
1100 * needs to be updated.
1101 */
1102 if (nextp)
1103 *nextp = n;
1104}
1105
8864b4e5
TH
1106/**
1107 * get_pwq - get an extra reference on the specified pool_workqueue
1108 * @pwq: pool_workqueue to get
1109 *
1110 * Obtain an extra reference on @pwq. The caller should guarantee that
1111 * @pwq has positive refcnt and be holding the matching pool->lock.
1112 */
1113static void get_pwq(struct pool_workqueue *pwq)
1114{
1115 lockdep_assert_held(&pwq->pool->lock);
1116 WARN_ON_ONCE(pwq->refcnt <= 0);
1117 pwq->refcnt++;
1118}
1119
1120/**
1121 * put_pwq - put a pool_workqueue reference
1122 * @pwq: pool_workqueue to put
1123 *
1124 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1125 * destruction. The caller should be holding the matching pool->lock.
1126 */
1127static void put_pwq(struct pool_workqueue *pwq)
1128{
1129 lockdep_assert_held(&pwq->pool->lock);
1130 if (likely(--pwq->refcnt))
1131 return;
1132 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1133 return;
1134 /*
1135 * @pwq can't be released under pool->lock, bounce to
1136 * pwq_unbound_release_workfn(). This never recurses on the same
1137 * pool->lock as this path is taken only for unbound workqueues and
1138 * the release work item is scheduled on a per-cpu workqueue. To
1139 * avoid lockdep warning, unbound pool->locks are given lockdep
1140 * subclass of 1 in get_unbound_pool().
1141 */
1142 schedule_work(&pwq->unbound_release_work);
1143}
1144
dce90d47
TH
1145/**
1146 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1147 * @pwq: pool_workqueue to put (can be %NULL)
1148 *
1149 * put_pwq() with locking. This function also allows %NULL @pwq.
1150 */
1151static void put_pwq_unlocked(struct pool_workqueue *pwq)
1152{
1153 if (pwq) {
1154 /*
24acfb71 1155 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1156 * following lock operations are safe.
1157 */
a9b8a985 1158 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1159 put_pwq(pwq);
a9b8a985 1160 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1161 }
1162}
1163
f97a4a1a 1164static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1165{
112202d9 1166 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1167
1168 trace_workqueue_activate_work(work);
82607adc
TH
1169 if (list_empty(&pwq->pool->worklist))
1170 pwq->pool->watchdog_ts = jiffies;
112202d9 1171 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1172 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1173 pwq->nr_active++;
bf4ede01
TH
1174}
1175
f97a4a1a 1176static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1177{
f97a4a1a 1178 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1179 struct work_struct, entry);
1180
f97a4a1a 1181 pwq_activate_inactive_work(work);
3aa62497
LJ
1182}
1183
bf4ede01 1184/**
112202d9
TH
1185 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1186 * @pwq: pwq of interest
c4560c2c 1187 * @work_data: work_data of work which left the queue
bf4ede01
TH
1188 *
1189 * A work either has completed or is removed from pending queue,
112202d9 1190 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1191 *
1192 * CONTEXT:
a9b8a985 1193 * raw_spin_lock_irq(pool->lock).
bf4ede01 1194 */
c4560c2c 1195static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1196{
c4560c2c
LJ
1197 int color = get_work_color(work_data);
1198
018f3a13
LJ
1199 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1200 pwq->nr_active--;
1201 if (!list_empty(&pwq->inactive_works)) {
1202 /* one down, submit an inactive one */
1203 if (pwq->nr_active < pwq->max_active)
1204 pwq_activate_first_inactive(pwq);
1205 }
1206 }
1207
112202d9 1208 pwq->nr_in_flight[color]--;
bf4ede01 1209
bf4ede01 1210 /* is flush in progress and are we at the flushing tip? */
112202d9 1211 if (likely(pwq->flush_color != color))
8864b4e5 1212 goto out_put;
bf4ede01
TH
1213
1214 /* are there still in-flight works? */
112202d9 1215 if (pwq->nr_in_flight[color])
8864b4e5 1216 goto out_put;
bf4ede01 1217
112202d9
TH
1218 /* this pwq is done, clear flush_color */
1219 pwq->flush_color = -1;
bf4ede01
TH
1220
1221 /*
112202d9 1222 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1223 * will handle the rest.
1224 */
112202d9
TH
1225 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1226 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1227out_put:
1228 put_pwq(pwq);
bf4ede01
TH
1229}
1230
36e227d2 1231/**
bbb68dfa 1232 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1233 * @work: work item to steal
1234 * @is_dwork: @work is a delayed_work
bbb68dfa 1235 * @flags: place to store irq state
36e227d2
TH
1236 *
1237 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1238 * stable state - idle, on timer or on worklist.
36e227d2 1239 *
d185af30 1240 * Return:
3eb6b31b
MCC
1241 *
1242 * ======== ================================================================
36e227d2
TH
1243 * 1 if @work was pending and we successfully stole PENDING
1244 * 0 if @work was idle and we claimed PENDING
1245 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1246 * -ENOENT if someone else is canceling @work, this state may persist
1247 * for arbitrarily long
3eb6b31b 1248 * ======== ================================================================
36e227d2 1249 *
d185af30 1250 * Note:
bbb68dfa 1251 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1252 * interrupted while holding PENDING and @work off queue, irq must be
1253 * disabled on entry. This, combined with delayed_work->timer being
1254 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1255 *
1256 * On successful return, >= 0, irq is disabled and the caller is
1257 * responsible for releasing it using local_irq_restore(*@flags).
1258 *
e0aecdd8 1259 * This function is safe to call from any context including IRQ handler.
bf4ede01 1260 */
bbb68dfa
TH
1261static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1262 unsigned long *flags)
bf4ede01 1263{
d565ed63 1264 struct worker_pool *pool;
112202d9 1265 struct pool_workqueue *pwq;
bf4ede01 1266
bbb68dfa
TH
1267 local_irq_save(*flags);
1268
36e227d2
TH
1269 /* try to steal the timer if it exists */
1270 if (is_dwork) {
1271 struct delayed_work *dwork = to_delayed_work(work);
1272
e0aecdd8
TH
1273 /*
1274 * dwork->timer is irqsafe. If del_timer() fails, it's
1275 * guaranteed that the timer is not queued anywhere and not
1276 * running on the local CPU.
1277 */
36e227d2
TH
1278 if (likely(del_timer(&dwork->timer)))
1279 return 1;
1280 }
1281
1282 /* try to claim PENDING the normal way */
bf4ede01
TH
1283 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1284 return 0;
1285
24acfb71 1286 rcu_read_lock();
bf4ede01
TH
1287 /*
1288 * The queueing is in progress, or it is already queued. Try to
1289 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1290 */
d565ed63
TH
1291 pool = get_work_pool(work);
1292 if (!pool)
bbb68dfa 1293 goto fail;
bf4ede01 1294
a9b8a985 1295 raw_spin_lock(&pool->lock);
0b3dae68 1296 /*
112202d9
TH
1297 * work->data is guaranteed to point to pwq only while the work
1298 * item is queued on pwq->wq, and both updating work->data to point
1299 * to pwq on queueing and to pool on dequeueing are done under
1300 * pwq->pool->lock. This in turn guarantees that, if work->data
1301 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1302 * item is currently queued on that pool.
1303 */
112202d9
TH
1304 pwq = get_work_pwq(work);
1305 if (pwq && pwq->pool == pool) {
16062836
TH
1306 debug_work_deactivate(work);
1307
1308 /*
018f3a13
LJ
1309 * A cancelable inactive work item must be in the
1310 * pwq->inactive_works since a queued barrier can't be
1311 * canceled (see the comments in insert_wq_barrier()).
1312 *
f97a4a1a 1313 * An inactive work item cannot be grabbed directly because
d812796e 1314 * it might have linked barrier work items which, if left
f97a4a1a 1315 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1316 * management later on and cause stall. Make sure the work
1317 * item is activated before grabbing.
1318 */
f97a4a1a
LJ
1319 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1320 pwq_activate_inactive_work(work);
16062836
TH
1321
1322 list_del_init(&work->entry);
c4560c2c 1323 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1324
112202d9 1325 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1326 set_work_pool_and_keep_pending(work, pool->id);
1327
a9b8a985 1328 raw_spin_unlock(&pool->lock);
24acfb71 1329 rcu_read_unlock();
16062836 1330 return 1;
bf4ede01 1331 }
a9b8a985 1332 raw_spin_unlock(&pool->lock);
bbb68dfa 1333fail:
24acfb71 1334 rcu_read_unlock();
bbb68dfa
TH
1335 local_irq_restore(*flags);
1336 if (work_is_canceling(work))
1337 return -ENOENT;
1338 cpu_relax();
36e227d2 1339 return -EAGAIN;
bf4ede01
TH
1340}
1341
4690c4ab 1342/**
706026c2 1343 * insert_work - insert a work into a pool
112202d9 1344 * @pwq: pwq @work belongs to
4690c4ab
TH
1345 * @work: work to insert
1346 * @head: insertion point
1347 * @extra_flags: extra WORK_STRUCT_* flags to set
1348 *
112202d9 1349 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1350 * work_struct flags.
4690c4ab
TH
1351 *
1352 * CONTEXT:
a9b8a985 1353 * raw_spin_lock_irq(pool->lock).
4690c4ab 1354 */
112202d9
TH
1355static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1356 struct list_head *head, unsigned int extra_flags)
b89deed3 1357{
112202d9 1358 struct worker_pool *pool = pwq->pool;
e22bee78 1359
e89a85d6 1360 /* record the work call stack in order to print it in KASAN reports */
f70da745 1361 kasan_record_aux_stack_noalloc(work);
e89a85d6 1362
4690c4ab 1363 /* we own @work, set data and link */
112202d9 1364 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1365 list_add_tail(&work->entry, head);
8864b4e5 1366 get_pwq(pwq);
e22bee78 1367
63d95a91
TH
1368 if (__need_more_worker(pool))
1369 wake_up_worker(pool);
b89deed3
ON
1370}
1371
c8efcc25
TH
1372/*
1373 * Test whether @work is being queued from another work executing on the
8d03ecfe 1374 * same workqueue.
c8efcc25
TH
1375 */
1376static bool is_chained_work(struct workqueue_struct *wq)
1377{
8d03ecfe
TH
1378 struct worker *worker;
1379
1380 worker = current_wq_worker();
1381 /*
bf393fd4 1382 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1383 * I'm @worker, it's safe to dereference it without locking.
1384 */
112202d9 1385 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1386}
1387
ef557180
MG
1388/*
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1392 */
1393static int wq_select_unbound_cpu(int cpu)
1394{
f303fccb 1395 static bool printed_dbg_warning;
ef557180
MG
1396 int new_cpu;
1397
f303fccb
TH
1398 if (likely(!wq_debug_force_rr_cpu)) {
1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400 return cpu;
1401 } else if (!printed_dbg_warning) {
1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 printed_dbg_warning = true;
1404 }
1405
ef557180
MG
1406 if (cpumask_empty(wq_unbound_cpumask))
1407 return cpu;
1408
1409 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids))
1414 return cpu;
1415 }
1416 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1417
1418 return new_cpu;
1419}
1420
d84ff051 1421static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1422 struct work_struct *work)
1423{
112202d9 1424 struct pool_workqueue *pwq;
c9178087 1425 struct worker_pool *last_pool;
1e19ffc6 1426 struct list_head *worklist;
8a2e8e5d 1427 unsigned int work_flags;
b75cac93 1428 unsigned int req_cpu = cpu;
8930caba
TH
1429
1430 /*
1431 * While a work item is PENDING && off queue, a task trying to
1432 * steal the PENDING will busy-loop waiting for it to either get
1433 * queued or lose PENDING. Grabbing PENDING and queueing should
1434 * happen with IRQ disabled.
1435 */
8e8eb730 1436 lockdep_assert_irqs_disabled();
1da177e4 1437
1e19ffc6 1438
33e3f0a3
RC
1439 /*
1440 * For a draining wq, only works from the same workqueue are
1441 * allowed. The __WQ_DESTROYING helps to spot the issue that
1442 * queues a new work item to a wq after destroy_workqueue(wq).
1443 */
1444 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1445 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 1446 return;
24acfb71 1447 rcu_read_lock();
9e8cd2f5 1448retry:
c9178087 1449 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1450 if (wq->flags & WQ_UNBOUND) {
1451 if (req_cpu == WORK_CPU_UNBOUND)
1452 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1453 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1454 } else {
1455 if (req_cpu == WORK_CPU_UNBOUND)
1456 cpu = raw_smp_processor_id();
1457 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1458 }
dbf2576e 1459
c9178087
TH
1460 /*
1461 * If @work was previously on a different pool, it might still be
1462 * running there, in which case the work needs to be queued on that
1463 * pool to guarantee non-reentrancy.
1464 */
1465 last_pool = get_work_pool(work);
1466 if (last_pool && last_pool != pwq->pool) {
1467 struct worker *worker;
18aa9eff 1468
a9b8a985 1469 raw_spin_lock(&last_pool->lock);
18aa9eff 1470
c9178087 1471 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1472
c9178087
TH
1473 if (worker && worker->current_pwq->wq == wq) {
1474 pwq = worker->current_pwq;
8930caba 1475 } else {
c9178087 1476 /* meh... not running there, queue here */
a9b8a985
SAS
1477 raw_spin_unlock(&last_pool->lock);
1478 raw_spin_lock(&pwq->pool->lock);
8930caba 1479 }
f3421797 1480 } else {
a9b8a985 1481 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1482 }
1483
9e8cd2f5
TH
1484 /*
1485 * pwq is determined and locked. For unbound pools, we could have
1486 * raced with pwq release and it could already be dead. If its
1487 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1488 * without another pwq replacing it in the numa_pwq_tbl or while
1489 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1490 * make forward-progress.
1491 */
1492 if (unlikely(!pwq->refcnt)) {
1493 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1494 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1495 cpu_relax();
1496 goto retry;
1497 }
1498 /* oops */
1499 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1500 wq->name, cpu);
1501 }
1502
112202d9
TH
1503 /* pwq determined, queue */
1504 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1505
24acfb71
TG
1506 if (WARN_ON(!list_empty(&work->entry)))
1507 goto out;
1e19ffc6 1508
112202d9
TH
1509 pwq->nr_in_flight[pwq->work_color]++;
1510 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1511
112202d9 1512 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1513 trace_workqueue_activate_work(work);
112202d9
TH
1514 pwq->nr_active++;
1515 worklist = &pwq->pool->worklist;
82607adc
TH
1516 if (list_empty(worklist))
1517 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d 1518 } else {
f97a4a1a
LJ
1519 work_flags |= WORK_STRUCT_INACTIVE;
1520 worklist = &pwq->inactive_works;
8a2e8e5d 1521 }
1e19ffc6 1522
0687c66b 1523 debug_work_activate(work);
112202d9 1524 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1525
24acfb71 1526out:
a9b8a985 1527 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1528 rcu_read_unlock();
1da177e4
LT
1529}
1530
0fcb78c2 1531/**
c1a220e7
ZR
1532 * queue_work_on - queue work on specific cpu
1533 * @cpu: CPU number to execute work on
0fcb78c2
REB
1534 * @wq: workqueue to use
1535 * @work: work to queue
1536 *
c1a220e7 1537 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
1538 * can't go away. Callers that fail to ensure that the specified
1539 * CPU cannot go away will execute on a randomly chosen CPU.
d185af30
YB
1540 *
1541 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1542 */
d4283e93
TH
1543bool queue_work_on(int cpu, struct workqueue_struct *wq,
1544 struct work_struct *work)
1da177e4 1545{
d4283e93 1546 bool ret = false;
8930caba 1547 unsigned long flags;
ef1ca236 1548
8930caba 1549 local_irq_save(flags);
c1a220e7 1550
22df02bb 1551 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1552 __queue_work(cpu, wq, work);
d4283e93 1553 ret = true;
c1a220e7 1554 }
ef1ca236 1555
8930caba 1556 local_irq_restore(flags);
1da177e4
LT
1557 return ret;
1558}
ad7b1f84 1559EXPORT_SYMBOL(queue_work_on);
1da177e4 1560
8204e0c1
AD
1561/**
1562 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1563 * @node: NUMA node ID that we want to select a CPU from
1564 *
1565 * This function will attempt to find a "random" cpu available on a given
1566 * node. If there are no CPUs available on the given node it will return
1567 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1568 * available CPU if we need to schedule this work.
1569 */
1570static int workqueue_select_cpu_near(int node)
1571{
1572 int cpu;
1573
1574 /* No point in doing this if NUMA isn't enabled for workqueues */
1575 if (!wq_numa_enabled)
1576 return WORK_CPU_UNBOUND;
1577
1578 /* Delay binding to CPU if node is not valid or online */
1579 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1580 return WORK_CPU_UNBOUND;
1581
1582 /* Use local node/cpu if we are already there */
1583 cpu = raw_smp_processor_id();
1584 if (node == cpu_to_node(cpu))
1585 return cpu;
1586
1587 /* Use "random" otherwise know as "first" online CPU of node */
1588 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1589
1590 /* If CPU is valid return that, otherwise just defer */
1591 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1592}
1593
1594/**
1595 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1596 * @node: NUMA node that we are targeting the work for
1597 * @wq: workqueue to use
1598 * @work: work to queue
1599 *
1600 * We queue the work to a "random" CPU within a given NUMA node. The basic
1601 * idea here is to provide a way to somehow associate work with a given
1602 * NUMA node.
1603 *
1604 * This function will only make a best effort attempt at getting this onto
1605 * the right NUMA node. If no node is requested or the requested node is
1606 * offline then we just fall back to standard queue_work behavior.
1607 *
1608 * Currently the "random" CPU ends up being the first available CPU in the
1609 * intersection of cpu_online_mask and the cpumask of the node, unless we
1610 * are running on the node. In that case we just use the current CPU.
1611 *
1612 * Return: %false if @work was already on a queue, %true otherwise.
1613 */
1614bool queue_work_node(int node, struct workqueue_struct *wq,
1615 struct work_struct *work)
1616{
1617 unsigned long flags;
1618 bool ret = false;
1619
1620 /*
1621 * This current implementation is specific to unbound workqueues.
1622 * Specifically we only return the first available CPU for a given
1623 * node instead of cycling through individual CPUs within the node.
1624 *
1625 * If this is used with a per-cpu workqueue then the logic in
1626 * workqueue_select_cpu_near would need to be updated to allow for
1627 * some round robin type logic.
1628 */
1629 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1630
1631 local_irq_save(flags);
1632
1633 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1634 int cpu = workqueue_select_cpu_near(node);
1635
1636 __queue_work(cpu, wq, work);
1637 ret = true;
1638 }
1639
1640 local_irq_restore(flags);
1641 return ret;
1642}
1643EXPORT_SYMBOL_GPL(queue_work_node);
1644
8c20feb6 1645void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1646{
8c20feb6 1647 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1648
e0aecdd8 1649 /* should have been called from irqsafe timer with irq already off */
60c057bc 1650 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1651}
1438ade5 1652EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1653
7beb2edf
TH
1654static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1655 struct delayed_work *dwork, unsigned long delay)
1da177e4 1656{
7beb2edf
TH
1657 struct timer_list *timer = &dwork->timer;
1658 struct work_struct *work = &dwork->work;
7beb2edf 1659
637fdbae 1660 WARN_ON_ONCE(!wq);
4b243563 1661 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1662 WARN_ON_ONCE(timer_pending(timer));
1663 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1664
8852aac2
TH
1665 /*
1666 * If @delay is 0, queue @dwork->work immediately. This is for
1667 * both optimization and correctness. The earliest @timer can
1668 * expire is on the closest next tick and delayed_work users depend
1669 * on that there's no such delay when @delay is 0.
1670 */
1671 if (!delay) {
1672 __queue_work(cpu, wq, &dwork->work);
1673 return;
1674 }
1675
60c057bc 1676 dwork->wq = wq;
1265057f 1677 dwork->cpu = cpu;
7beb2edf
TH
1678 timer->expires = jiffies + delay;
1679
041bd12e
TH
1680 if (unlikely(cpu != WORK_CPU_UNBOUND))
1681 add_timer_on(timer, cpu);
1682 else
1683 add_timer(timer);
1da177e4
LT
1684}
1685
0fcb78c2
REB
1686/**
1687 * queue_delayed_work_on - queue work on specific CPU after delay
1688 * @cpu: CPU number to execute work on
1689 * @wq: workqueue to use
af9997e4 1690 * @dwork: work to queue
0fcb78c2
REB
1691 * @delay: number of jiffies to wait before queueing
1692 *
d185af30 1693 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1694 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1695 * execution.
0fcb78c2 1696 */
d4283e93
TH
1697bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1698 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1699{
52bad64d 1700 struct work_struct *work = &dwork->work;
d4283e93 1701 bool ret = false;
8930caba 1702 unsigned long flags;
7a6bc1cd 1703
8930caba
TH
1704 /* read the comment in __queue_work() */
1705 local_irq_save(flags);
7a6bc1cd 1706
22df02bb 1707 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1708 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1709 ret = true;
7a6bc1cd 1710 }
8a3e77cc 1711
8930caba 1712 local_irq_restore(flags);
7a6bc1cd
VP
1713 return ret;
1714}
ad7b1f84 1715EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1716
8376fe22
TH
1717/**
1718 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1719 * @cpu: CPU number to execute work on
1720 * @wq: workqueue to use
1721 * @dwork: work to queue
1722 * @delay: number of jiffies to wait before queueing
1723 *
1724 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1725 * modify @dwork's timer so that it expires after @delay. If @delay is
1726 * zero, @work is guaranteed to be scheduled immediately regardless of its
1727 * current state.
1728 *
d185af30 1729 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1730 * pending and its timer was modified.
1731 *
e0aecdd8 1732 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1733 * See try_to_grab_pending() for details.
1734 */
1735bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1736 struct delayed_work *dwork, unsigned long delay)
1737{
1738 unsigned long flags;
1739 int ret;
c7fc77f7 1740
8376fe22
TH
1741 do {
1742 ret = try_to_grab_pending(&dwork->work, true, &flags);
1743 } while (unlikely(ret == -EAGAIN));
63bc0362 1744
8376fe22
TH
1745 if (likely(ret >= 0)) {
1746 __queue_delayed_work(cpu, wq, dwork, delay);
1747 local_irq_restore(flags);
7a6bc1cd 1748 }
8376fe22
TH
1749
1750 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1751 return ret;
1752}
8376fe22
TH
1753EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1754
05f0fe6b
TH
1755static void rcu_work_rcufn(struct rcu_head *rcu)
1756{
1757 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1758
1759 /* read the comment in __queue_work() */
1760 local_irq_disable();
1761 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1762 local_irq_enable();
1763}
1764
1765/**
1766 * queue_rcu_work - queue work after a RCU grace period
1767 * @wq: workqueue to use
1768 * @rwork: work to queue
1769 *
1770 * Return: %false if @rwork was already pending, %true otherwise. Note
1771 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1772 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1773 * execution may happen before a full RCU grace period has passed.
1774 */
1775bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1776{
1777 struct work_struct *work = &rwork->work;
1778
1779 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1780 rwork->wq = wq;
a7e30c0e 1781 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
1782 return true;
1783 }
1784
1785 return false;
1786}
1787EXPORT_SYMBOL(queue_rcu_work);
1788
c8e55f36
TH
1789/**
1790 * worker_enter_idle - enter idle state
1791 * @worker: worker which is entering idle state
1792 *
1793 * @worker is entering idle state. Update stats and idle timer if
1794 * necessary.
1795 *
1796 * LOCKING:
a9b8a985 1797 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1798 */
1799static void worker_enter_idle(struct worker *worker)
1da177e4 1800{
bd7bdd43 1801 struct worker_pool *pool = worker->pool;
c8e55f36 1802
6183c009
TH
1803 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1804 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1805 (worker->hentry.next || worker->hentry.pprev)))
1806 return;
c8e55f36 1807
051e1850 1808 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1809 worker->flags |= WORKER_IDLE;
bd7bdd43 1810 pool->nr_idle++;
e22bee78 1811 worker->last_active = jiffies;
c8e55f36
TH
1812
1813 /* idle_list is LIFO */
bd7bdd43 1814 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1815
628c78e7
TH
1816 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1817 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1818
989442d7 1819 /* Sanity check nr_running. */
bc35f7ef 1820 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
c8e55f36
TH
1821}
1822
1823/**
1824 * worker_leave_idle - leave idle state
1825 * @worker: worker which is leaving idle state
1826 *
1827 * @worker is leaving idle state. Update stats.
1828 *
1829 * LOCKING:
a9b8a985 1830 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1831 */
1832static void worker_leave_idle(struct worker *worker)
1833{
bd7bdd43 1834 struct worker_pool *pool = worker->pool;
c8e55f36 1835
6183c009
TH
1836 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1837 return;
d302f017 1838 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1839 pool->nr_idle--;
c8e55f36
TH
1840 list_del_init(&worker->entry);
1841}
1842
f7537df5 1843static struct worker *alloc_worker(int node)
c34056a3
TH
1844{
1845 struct worker *worker;
1846
f7537df5 1847 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1848 if (worker) {
1849 INIT_LIST_HEAD(&worker->entry);
affee4b2 1850 INIT_LIST_HEAD(&worker->scheduled);
da028469 1851 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1852 /* on creation a worker is in !idle && prep state */
1853 worker->flags = WORKER_PREP;
c8e55f36 1854 }
c34056a3
TH
1855 return worker;
1856}
1857
4736cbf7
LJ
1858/**
1859 * worker_attach_to_pool() - attach a worker to a pool
1860 * @worker: worker to be attached
1861 * @pool: the target pool
1862 *
1863 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1864 * cpu-binding of @worker are kept coordinated with the pool across
1865 * cpu-[un]hotplugs.
1866 */
1867static void worker_attach_to_pool(struct worker *worker,
1868 struct worker_pool *pool)
1869{
1258fae7 1870 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1871
4736cbf7 1872 /*
1258fae7
TH
1873 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1874 * stable across this function. See the comments above the flag
1875 * definition for details.
4736cbf7
LJ
1876 */
1877 if (pool->flags & POOL_DISASSOCIATED)
1878 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
1879 else
1880 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 1881
640f17c8
PZ
1882 if (worker->rescue_wq)
1883 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1884
4736cbf7 1885 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1886 worker->pool = pool;
4736cbf7 1887
1258fae7 1888 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1889}
1890
60f5a4bc
LJ
1891/**
1892 * worker_detach_from_pool() - detach a worker from its pool
1893 * @worker: worker which is attached to its pool
60f5a4bc 1894 *
4736cbf7
LJ
1895 * Undo the attaching which had been done in worker_attach_to_pool(). The
1896 * caller worker shouldn't access to the pool after detached except it has
1897 * other reference to the pool.
60f5a4bc 1898 */
a2d812a2 1899static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1900{
a2d812a2 1901 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1902 struct completion *detach_completion = NULL;
1903
1258fae7 1904 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1905
5c25b5ff 1906 kthread_set_per_cpu(worker->task, -1);
da028469 1907 list_del(&worker->node);
a2d812a2
TH
1908 worker->pool = NULL;
1909
e02b9312 1910 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 1911 detach_completion = pool->detach_completion;
1258fae7 1912 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1913
b62c0751
LJ
1914 /* clear leftover flags without pool->lock after it is detached */
1915 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1916
60f5a4bc
LJ
1917 if (detach_completion)
1918 complete(detach_completion);
1919}
1920
c34056a3
TH
1921/**
1922 * create_worker - create a new workqueue worker
63d95a91 1923 * @pool: pool the new worker will belong to
c34056a3 1924 *
051e1850 1925 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1926 *
1927 * CONTEXT:
1928 * Might sleep. Does GFP_KERNEL allocations.
1929 *
d185af30 1930 * Return:
c34056a3
TH
1931 * Pointer to the newly created worker.
1932 */
bc2ae0f5 1933static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1934{
e441b56f
ZL
1935 struct worker *worker;
1936 int id;
e3c916a4 1937 char id_buf[16];
c34056a3 1938
7cda9aae 1939 /* ID is needed to determine kthread name */
e441b56f 1940 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
822d8405 1941 if (id < 0)
e441b56f 1942 return NULL;
c34056a3 1943
f7537df5 1944 worker = alloc_worker(pool->node);
c34056a3
TH
1945 if (!worker)
1946 goto fail;
1947
c34056a3
TH
1948 worker->id = id;
1949
29c91e99 1950 if (pool->cpu >= 0)
e3c916a4
TH
1951 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1952 pool->attrs->nice < 0 ? "H" : "");
f3421797 1953 else
e3c916a4
TH
1954 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1955
f3f90ad4 1956 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1957 "kworker/%s", id_buf);
c34056a3
TH
1958 if (IS_ERR(worker->task))
1959 goto fail;
1960
91151228 1961 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1962 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1963
da028469 1964 /* successful, attach the worker to the pool */
4736cbf7 1965 worker_attach_to_pool(worker, pool);
822d8405 1966
051e1850 1967 /* start the newly created worker */
a9b8a985 1968 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1969 worker->pool->nr_workers++;
1970 worker_enter_idle(worker);
1971 wake_up_process(worker->task);
a9b8a985 1972 raw_spin_unlock_irq(&pool->lock);
051e1850 1973
c34056a3 1974 return worker;
822d8405 1975
c34056a3 1976fail:
e441b56f 1977 ida_free(&pool->worker_ida, id);
c34056a3
TH
1978 kfree(worker);
1979 return NULL;
1980}
1981
793777bc
VS
1982static void unbind_worker(struct worker *worker)
1983{
1984 lockdep_assert_held(&wq_pool_attach_mutex);
1985
1986 kthread_set_per_cpu(worker->task, -1);
1987 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
1988 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
1989 else
1990 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
1991}
1992
e02b9312
VS
1993static void wake_dying_workers(struct list_head *cull_list)
1994{
1995 struct worker *worker, *tmp;
1996
1997 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
1998 list_del_init(&worker->entry);
1999 unbind_worker(worker);
2000 /*
2001 * If the worker was somehow already running, then it had to be
2002 * in pool->idle_list when set_worker_dying() happened or we
2003 * wouldn't have gotten here.
2004 *
2005 * Thus, the worker must either have observed the WORKER_DIE
2006 * flag, or have set its state to TASK_IDLE. Either way, the
2007 * below will be observed by the worker and is safe to do
2008 * outside of pool->lock.
2009 */
2010 wake_up_process(worker->task);
2011 }
2012}
2013
c34056a3 2014/**
e02b9312 2015 * set_worker_dying - Tag a worker for destruction
c34056a3 2016 * @worker: worker to be destroyed
e02b9312 2017 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2018 *
e02b9312
VS
2019 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2020 * should be idle.
c8e55f36
TH
2021 *
2022 * CONTEXT:
a9b8a985 2023 * raw_spin_lock_irq(pool->lock).
c34056a3 2024 */
e02b9312 2025static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2026{
bd7bdd43 2027 struct worker_pool *pool = worker->pool;
c34056a3 2028
cd549687 2029 lockdep_assert_held(&pool->lock);
e02b9312 2030 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2031
c34056a3 2032 /* sanity check frenzy */
6183c009 2033 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2034 WARN_ON(!list_empty(&worker->scheduled)) ||
2035 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2036 return;
c34056a3 2037
73eb7fe7
LJ
2038 pool->nr_workers--;
2039 pool->nr_idle--;
5bdfff96 2040
cb444766 2041 worker->flags |= WORKER_DIE;
e02b9312
VS
2042
2043 list_move(&worker->entry, list);
2044 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2045}
2046
3f959aa3
VS
2047/**
2048 * idle_worker_timeout - check if some idle workers can now be deleted.
2049 * @t: The pool's idle_timer that just expired
2050 *
2051 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2052 * worker_leave_idle(), as a worker flicking between idle and active while its
2053 * pool is at the too_many_workers() tipping point would cause too much timer
2054 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2055 * it expire and re-evaluate things from there.
2056 */
32a6c723 2057static void idle_worker_timeout(struct timer_list *t)
e22bee78 2058{
32a6c723 2059 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2060 bool do_cull = false;
2061
2062 if (work_pending(&pool->idle_cull_work))
2063 return;
e22bee78 2064
a9b8a985 2065 raw_spin_lock_irq(&pool->lock);
e22bee78 2066
3f959aa3 2067 if (too_many_workers(pool)) {
e22bee78
TH
2068 struct worker *worker;
2069 unsigned long expires;
2070
2071 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2072 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2073 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2074 do_cull = !time_before(jiffies, expires);
2075
2076 if (!do_cull)
2077 mod_timer(&pool->idle_timer, expires);
2078 }
2079 raw_spin_unlock_irq(&pool->lock);
2080
2081 if (do_cull)
2082 queue_work(system_unbound_wq, &pool->idle_cull_work);
2083}
2084
2085/**
2086 * idle_cull_fn - cull workers that have been idle for too long.
2087 * @work: the pool's work for handling these idle workers
2088 *
2089 * This goes through a pool's idle workers and gets rid of those that have been
2090 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2091 *
2092 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2093 * culled, so this also resets worker affinity. This requires a sleepable
2094 * context, hence the split between timer callback and work item.
3f959aa3
VS
2095 */
2096static void idle_cull_fn(struct work_struct *work)
2097{
2098 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
e02b9312 2099 struct list_head cull_list;
3f959aa3 2100
e02b9312
VS
2101 INIT_LIST_HEAD(&cull_list);
2102 /*
2103 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2104 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2105 * path. This is required as a previously-preempted worker could run after
2106 * set_worker_dying() has happened but before wake_dying_workers() did.
2107 */
2108 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2109 raw_spin_lock_irq(&pool->lock);
2110
2111 while (too_many_workers(pool)) {
2112 struct worker *worker;
2113 unsigned long expires;
2114
63d95a91 2115 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2116 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2117
3347fc9f 2118 if (time_before(jiffies, expires)) {
63d95a91 2119 mod_timer(&pool->idle_timer, expires);
3347fc9f 2120 break;
d5abe669 2121 }
3347fc9f 2122
e02b9312 2123 set_worker_dying(worker, &cull_list);
e22bee78
TH
2124 }
2125
a9b8a985 2126 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2127 wake_dying_workers(&cull_list);
2128 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2129}
d5abe669 2130
493a1724 2131static void send_mayday(struct work_struct *work)
e22bee78 2132{
112202d9
TH
2133 struct pool_workqueue *pwq = get_work_pwq(work);
2134 struct workqueue_struct *wq = pwq->wq;
493a1724 2135
2e109a28 2136 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2137
493008a8 2138 if (!wq->rescuer)
493a1724 2139 return;
e22bee78
TH
2140
2141 /* mayday mayday mayday */
493a1724 2142 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2143 /*
2144 * If @pwq is for an unbound wq, its base ref may be put at
2145 * any time due to an attribute change. Pin @pwq until the
2146 * rescuer is done with it.
2147 */
2148 get_pwq(pwq);
493a1724 2149 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2150 wake_up_process(wq->rescuer->task);
493a1724 2151 }
e22bee78
TH
2152}
2153
32a6c723 2154static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2155{
32a6c723 2156 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2157 struct work_struct *work;
2158
a9b8a985
SAS
2159 raw_spin_lock_irq(&pool->lock);
2160 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2161
63d95a91 2162 if (need_to_create_worker(pool)) {
e22bee78
TH
2163 /*
2164 * We've been trying to create a new worker but
2165 * haven't been successful. We might be hitting an
2166 * allocation deadlock. Send distress signals to
2167 * rescuers.
2168 */
63d95a91 2169 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2170 send_mayday(work);
1da177e4 2171 }
e22bee78 2172
a9b8a985
SAS
2173 raw_spin_unlock(&wq_mayday_lock);
2174 raw_spin_unlock_irq(&pool->lock);
e22bee78 2175
63d95a91 2176 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2177}
2178
e22bee78
TH
2179/**
2180 * maybe_create_worker - create a new worker if necessary
63d95a91 2181 * @pool: pool to create a new worker for
e22bee78 2182 *
63d95a91 2183 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2184 * have at least one idle worker on return from this function. If
2185 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2186 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2187 * possible allocation deadlock.
2188 *
c5aa87bb
TH
2189 * On return, need_to_create_worker() is guaranteed to be %false and
2190 * may_start_working() %true.
e22bee78
TH
2191 *
2192 * LOCKING:
a9b8a985 2193 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2194 * multiple times. Does GFP_KERNEL allocations. Called only from
2195 * manager.
e22bee78 2196 */
29187a9e 2197static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2198__releases(&pool->lock)
2199__acquires(&pool->lock)
1da177e4 2200{
e22bee78 2201restart:
a9b8a985 2202 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2203
e22bee78 2204 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2205 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2206
2207 while (true) {
051e1850 2208 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2209 break;
1da177e4 2210
e212f361 2211 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2212
63d95a91 2213 if (!need_to_create_worker(pool))
e22bee78
TH
2214 break;
2215 }
2216
63d95a91 2217 del_timer_sync(&pool->mayday_timer);
a9b8a985 2218 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2219 /*
2220 * This is necessary even after a new worker was just successfully
2221 * created as @pool->lock was dropped and the new worker might have
2222 * already become busy.
2223 */
63d95a91 2224 if (need_to_create_worker(pool))
e22bee78 2225 goto restart;
e22bee78
TH
2226}
2227
73f53c4a 2228/**
e22bee78
TH
2229 * manage_workers - manage worker pool
2230 * @worker: self
73f53c4a 2231 *
706026c2 2232 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2233 * to. At any given time, there can be only zero or one manager per
706026c2 2234 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2235 *
2236 * The caller can safely start processing works on false return. On
2237 * true return, it's guaranteed that need_to_create_worker() is false
2238 * and may_start_working() is true.
73f53c4a
TH
2239 *
2240 * CONTEXT:
a9b8a985 2241 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2242 * multiple times. Does GFP_KERNEL allocations.
2243 *
d185af30 2244 * Return:
29187a9e
TH
2245 * %false if the pool doesn't need management and the caller can safely
2246 * start processing works, %true if management function was performed and
2247 * the conditions that the caller verified before calling the function may
2248 * no longer be true.
73f53c4a 2249 */
e22bee78 2250static bool manage_workers(struct worker *worker)
73f53c4a 2251{
63d95a91 2252 struct worker_pool *pool = worker->pool;
73f53c4a 2253
692b4825 2254 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2255 return false;
692b4825
TH
2256
2257 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2258 pool->manager = worker;
1e19ffc6 2259
29187a9e 2260 maybe_create_worker(pool);
e22bee78 2261
2607d7a6 2262 pool->manager = NULL;
692b4825 2263 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2264 rcuwait_wake_up(&manager_wait);
29187a9e 2265 return true;
73f53c4a
TH
2266}
2267
a62428c0
TH
2268/**
2269 * process_one_work - process single work
c34056a3 2270 * @worker: self
a62428c0
TH
2271 * @work: work to process
2272 *
2273 * Process @work. This function contains all the logics necessary to
2274 * process a single work including synchronization against and
2275 * interaction with other workers on the same cpu, queueing and
2276 * flushing. As long as context requirement is met, any worker can
2277 * call this function to process a work.
2278 *
2279 * CONTEXT:
a9b8a985 2280 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2281 */
c34056a3 2282static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2283__releases(&pool->lock)
2284__acquires(&pool->lock)
a62428c0 2285{
112202d9 2286 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2287 struct worker_pool *pool = worker->pool;
112202d9 2288 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
c4560c2c 2289 unsigned long work_data;
7e11629d 2290 struct worker *collision;
a62428c0
TH
2291#ifdef CONFIG_LOCKDEP
2292 /*
2293 * It is permissible to free the struct work_struct from
2294 * inside the function that is called from it, this we need to
2295 * take into account for lockdep too. To avoid bogus "held
2296 * lock freed" warnings as well as problems when looking into
2297 * work->lockdep_map, make a copy and use that here.
2298 */
4d82a1de
PZ
2299 struct lockdep_map lockdep_map;
2300
2301 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2302#endif
807407c0 2303 /* ensure we're on the correct CPU */
85327af6 2304 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2305 raw_smp_processor_id() != pool->cpu);
25511a47 2306
7e11629d
TH
2307 /*
2308 * A single work shouldn't be executed concurrently by
2309 * multiple workers on a single cpu. Check whether anyone is
2310 * already processing the work. If so, defer the work to the
2311 * currently executing one.
2312 */
c9e7cf27 2313 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2314 if (unlikely(collision)) {
2315 move_linked_works(work, &collision->scheduled, NULL);
2316 return;
2317 }
2318
8930caba 2319 /* claim and dequeue */
a62428c0 2320 debug_work_deactivate(work);
c9e7cf27 2321 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2322 worker->current_work = work;
a2c1c57b 2323 worker->current_func = work->func;
112202d9 2324 worker->current_pwq = pwq;
c4560c2c 2325 work_data = *work_data_bits(work);
d812796e 2326 worker->current_color = get_work_color(work_data);
7a22ad75 2327
8bf89593
TH
2328 /*
2329 * Record wq name for cmdline and debug reporting, may get
2330 * overridden through set_worker_desc().
2331 */
2332 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2333
a62428c0
TH
2334 list_del_init(&work->entry);
2335
fb0e7beb 2336 /*
228f1d00
LJ
2337 * CPU intensive works don't participate in concurrency management.
2338 * They're the scheduler's responsibility. This takes @worker out
2339 * of concurrency management and the next code block will chain
2340 * execution of the pending work items.
fb0e7beb
TH
2341 */
2342 if (unlikely(cpu_intensive))
228f1d00 2343 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2344
974271c4 2345 /*
a489a03e
LJ
2346 * Wake up another worker if necessary. The condition is always
2347 * false for normal per-cpu workers since nr_running would always
2348 * be >= 1 at this point. This is used to chain execution of the
2349 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2350 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2351 */
a489a03e 2352 if (need_more_worker(pool))
63d95a91 2353 wake_up_worker(pool);
974271c4 2354
8930caba 2355 /*
7c3eed5c 2356 * Record the last pool and clear PENDING which should be the last
d565ed63 2357 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2358 * PENDING and queued state changes happen together while IRQ is
2359 * disabled.
8930caba 2360 */
7c3eed5c 2361 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2362
a9b8a985 2363 raw_spin_unlock_irq(&pool->lock);
a62428c0 2364
a1d14934 2365 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2366 lock_map_acquire(&lockdep_map);
e6f3faa7 2367 /*
f52be570
PZ
2368 * Strictly speaking we should mark the invariant state without holding
2369 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2370 *
2371 * However, that would result in:
2372 *
2373 * A(W1)
2374 * WFC(C)
2375 * A(W1)
2376 * C(C)
2377 *
2378 * Which would create W1->C->W1 dependencies, even though there is no
2379 * actual deadlock possible. There are two solutions, using a
2380 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2381 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2382 * these locks.
2383 *
2384 * AFAICT there is no possible deadlock scenario between the
2385 * flush_work() and complete() primitives (except for single-threaded
2386 * workqueues), so hiding them isn't a problem.
2387 */
f52be570 2388 lockdep_invariant_state(true);
e36c886a 2389 trace_workqueue_execute_start(work);
a2c1c57b 2390 worker->current_func(work);
e36c886a
AV
2391 /*
2392 * While we must be careful to not use "work" after this, the trace
2393 * point will only record its address.
2394 */
1c5da0ec 2395 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2396 lock_map_release(&lockdep_map);
112202d9 2397 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2398
2399 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2400 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2401 " last function: %ps\n",
a2c1c57b
TH
2402 current->comm, preempt_count(), task_pid_nr(current),
2403 worker->current_func);
a62428c0
TH
2404 debug_show_held_locks(current);
2405 dump_stack();
2406 }
2407
b22ce278 2408 /*
025f50f3 2409 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2410 * kernels, where a requeueing work item waiting for something to
2411 * happen could deadlock with stop_machine as such work item could
2412 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2413 * stop_machine. At the same time, report a quiescent RCU state so
2414 * the same condition doesn't freeze RCU.
b22ce278 2415 */
a7e6425e 2416 cond_resched();
b22ce278 2417
a9b8a985 2418 raw_spin_lock_irq(&pool->lock);
a62428c0 2419
fb0e7beb
TH
2420 /* clear cpu intensive status */
2421 if (unlikely(cpu_intensive))
2422 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2423
1b69ac6b
JW
2424 /* tag the worker for identification in schedule() */
2425 worker->last_func = worker->current_func;
2426
a62428c0 2427 /* we're done with it, release */
42f8570f 2428 hash_del(&worker->hentry);
c34056a3 2429 worker->current_work = NULL;
a2c1c57b 2430 worker->current_func = NULL;
112202d9 2431 worker->current_pwq = NULL;
d812796e 2432 worker->current_color = INT_MAX;
c4560c2c 2433 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2434}
2435
affee4b2
TH
2436/**
2437 * process_scheduled_works - process scheduled works
2438 * @worker: self
2439 *
2440 * Process all scheduled works. Please note that the scheduled list
2441 * may change while processing a work, so this function repeatedly
2442 * fetches a work from the top and executes it.
2443 *
2444 * CONTEXT:
a9b8a985 2445 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2446 * multiple times.
2447 */
2448static void process_scheduled_works(struct worker *worker)
1da177e4 2449{
affee4b2
TH
2450 while (!list_empty(&worker->scheduled)) {
2451 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2452 struct work_struct, entry);
c34056a3 2453 process_one_work(worker, work);
1da177e4 2454 }
1da177e4
LT
2455}
2456
197f6acc
TH
2457static void set_pf_worker(bool val)
2458{
2459 mutex_lock(&wq_pool_attach_mutex);
2460 if (val)
2461 current->flags |= PF_WQ_WORKER;
2462 else
2463 current->flags &= ~PF_WQ_WORKER;
2464 mutex_unlock(&wq_pool_attach_mutex);
2465}
2466
4690c4ab
TH
2467/**
2468 * worker_thread - the worker thread function
c34056a3 2469 * @__worker: self
4690c4ab 2470 *
c5aa87bb
TH
2471 * The worker thread function. All workers belong to a worker_pool -
2472 * either a per-cpu one or dynamic unbound one. These workers process all
2473 * work items regardless of their specific target workqueue. The only
2474 * exception is work items which belong to workqueues with a rescuer which
2475 * will be explained in rescuer_thread().
d185af30
YB
2476 *
2477 * Return: 0
4690c4ab 2478 */
c34056a3 2479static int worker_thread(void *__worker)
1da177e4 2480{
c34056a3 2481 struct worker *worker = __worker;
bd7bdd43 2482 struct worker_pool *pool = worker->pool;
1da177e4 2483
e22bee78 2484 /* tell the scheduler that this is a workqueue worker */
197f6acc 2485 set_pf_worker(true);
c8e55f36 2486woke_up:
a9b8a985 2487 raw_spin_lock_irq(&pool->lock);
1da177e4 2488
a9ab775b
TH
2489 /* am I supposed to die? */
2490 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2491 raw_spin_unlock_irq(&pool->lock);
197f6acc 2492 set_pf_worker(false);
60f5a4bc
LJ
2493
2494 set_task_comm(worker->task, "kworker/dying");
e441b56f 2495 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2496 worker_detach_from_pool(worker);
e02b9312 2497 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 2498 kfree(worker);
a9ab775b 2499 return 0;
c8e55f36 2500 }
affee4b2 2501
c8e55f36 2502 worker_leave_idle(worker);
db7bccf4 2503recheck:
e22bee78 2504 /* no more worker necessary? */
63d95a91 2505 if (!need_more_worker(pool))
e22bee78
TH
2506 goto sleep;
2507
2508 /* do we need to manage? */
63d95a91 2509 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2510 goto recheck;
2511
c8e55f36
TH
2512 /*
2513 * ->scheduled list can only be filled while a worker is
2514 * preparing to process a work or actually processing it.
2515 * Make sure nobody diddled with it while I was sleeping.
2516 */
6183c009 2517 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2518
e22bee78 2519 /*
a9ab775b
TH
2520 * Finish PREP stage. We're guaranteed to have at least one idle
2521 * worker or that someone else has already assumed the manager
2522 * role. This is where @worker starts participating in concurrency
2523 * management if applicable and concurrency management is restored
2524 * after being rebound. See rebind_workers() for details.
e22bee78 2525 */
a9ab775b 2526 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2527
2528 do {
c8e55f36 2529 struct work_struct *work =
bd7bdd43 2530 list_first_entry(&pool->worklist,
c8e55f36
TH
2531 struct work_struct, entry);
2532
82607adc
TH
2533 pool->watchdog_ts = jiffies;
2534
c8e55f36
TH
2535 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2536 /* optimization path, not strictly necessary */
2537 process_one_work(worker, work);
2538 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2539 process_scheduled_works(worker);
c8e55f36
TH
2540 } else {
2541 move_linked_works(work, &worker->scheduled, NULL);
2542 process_scheduled_works(worker);
affee4b2 2543 }
63d95a91 2544 } while (keep_working(pool));
e22bee78 2545
228f1d00 2546 worker_set_flags(worker, WORKER_PREP);
d313dd85 2547sleep:
c8e55f36 2548 /*
d565ed63
TH
2549 * pool->lock is held and there's no work to process and no need to
2550 * manage, sleep. Workers are woken up only while holding
2551 * pool->lock or from local cpu, so setting the current state
2552 * before releasing pool->lock is enough to prevent losing any
2553 * event.
c8e55f36
TH
2554 */
2555 worker_enter_idle(worker);
c5a94a61 2556 __set_current_state(TASK_IDLE);
a9b8a985 2557 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2558 schedule();
2559 goto woke_up;
1da177e4
LT
2560}
2561
e22bee78
TH
2562/**
2563 * rescuer_thread - the rescuer thread function
111c225a 2564 * @__rescuer: self
e22bee78
TH
2565 *
2566 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2567 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2568 *
706026c2 2569 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2570 * worker which uses GFP_KERNEL allocation which has slight chance of
2571 * developing into deadlock if some works currently on the same queue
2572 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2573 * the problem rescuer solves.
2574 *
706026c2
TH
2575 * When such condition is possible, the pool summons rescuers of all
2576 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2577 * those works so that forward progress can be guaranteed.
2578 *
2579 * This should happen rarely.
d185af30
YB
2580 *
2581 * Return: 0
e22bee78 2582 */
111c225a 2583static int rescuer_thread(void *__rescuer)
e22bee78 2584{
111c225a
TH
2585 struct worker *rescuer = __rescuer;
2586 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2587 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2588 bool should_stop;
e22bee78
TH
2589
2590 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2591
2592 /*
2593 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2594 * doesn't participate in concurrency management.
2595 */
197f6acc 2596 set_pf_worker(true);
e22bee78 2597repeat:
c5a94a61 2598 set_current_state(TASK_IDLE);
e22bee78 2599
4d595b86
LJ
2600 /*
2601 * By the time the rescuer is requested to stop, the workqueue
2602 * shouldn't have any work pending, but @wq->maydays may still have
2603 * pwq(s) queued. This can happen by non-rescuer workers consuming
2604 * all the work items before the rescuer got to them. Go through
2605 * @wq->maydays processing before acting on should_stop so that the
2606 * list is always empty on exit.
2607 */
2608 should_stop = kthread_should_stop();
e22bee78 2609
493a1724 2610 /* see whether any pwq is asking for help */
a9b8a985 2611 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2612
2613 while (!list_empty(&wq->maydays)) {
2614 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2615 struct pool_workqueue, mayday_node);
112202d9 2616 struct worker_pool *pool = pwq->pool;
e22bee78 2617 struct work_struct *work, *n;
82607adc 2618 bool first = true;
e22bee78
TH
2619
2620 __set_current_state(TASK_RUNNING);
493a1724
TH
2621 list_del_init(&pwq->mayday_node);
2622
a9b8a985 2623 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2624
51697d39
LJ
2625 worker_attach_to_pool(rescuer, pool);
2626
a9b8a985 2627 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2628
2629 /*
2630 * Slurp in all works issued via this workqueue and
2631 * process'em.
2632 */
0479c8c5 2633 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2634 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2635 if (get_work_pwq(work) == pwq) {
2636 if (first)
2637 pool->watchdog_ts = jiffies;
e22bee78 2638 move_linked_works(work, scheduled, &n);
82607adc
TH
2639 }
2640 first = false;
2641 }
e22bee78 2642
008847f6
N
2643 if (!list_empty(scheduled)) {
2644 process_scheduled_works(rescuer);
2645
2646 /*
2647 * The above execution of rescued work items could
2648 * have created more to rescue through
f97a4a1a 2649 * pwq_activate_first_inactive() or chained
008847f6
N
2650 * queueing. Let's put @pwq back on mayday list so
2651 * that such back-to-back work items, which may be
2652 * being used to relieve memory pressure, don't
2653 * incur MAYDAY_INTERVAL delay inbetween.
2654 */
4f3f4cf3 2655 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2656 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2657 /*
2658 * Queue iff we aren't racing destruction
2659 * and somebody else hasn't queued it already.
2660 */
2661 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2662 get_pwq(pwq);
2663 list_add_tail(&pwq->mayday_node, &wq->maydays);
2664 }
a9b8a985 2665 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2666 }
2667 }
7576958a 2668
77668c8b
LJ
2669 /*
2670 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2671 * go away while we're still attached to it.
77668c8b
LJ
2672 */
2673 put_pwq(pwq);
2674
7576958a 2675 /*
d8ca83e6 2676 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2677 * regular worker; otherwise, we end up with 0 concurrency
2678 * and stalling the execution.
2679 */
d8ca83e6 2680 if (need_more_worker(pool))
63d95a91 2681 wake_up_worker(pool);
7576958a 2682
a9b8a985 2683 raw_spin_unlock_irq(&pool->lock);
13b1d625 2684
a2d812a2 2685 worker_detach_from_pool(rescuer);
13b1d625 2686
a9b8a985 2687 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2688 }
2689
a9b8a985 2690 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2691
4d595b86
LJ
2692 if (should_stop) {
2693 __set_current_state(TASK_RUNNING);
197f6acc 2694 set_pf_worker(false);
4d595b86
LJ
2695 return 0;
2696 }
2697
111c225a
TH
2698 /* rescuers should never participate in concurrency management */
2699 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2700 schedule();
2701 goto repeat;
1da177e4
LT
2702}
2703
fca839c0
TH
2704/**
2705 * check_flush_dependency - check for flush dependency sanity
2706 * @target_wq: workqueue being flushed
2707 * @target_work: work item being flushed (NULL for workqueue flushes)
2708 *
2709 * %current is trying to flush the whole @target_wq or @target_work on it.
2710 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2711 * reclaiming memory or running on a workqueue which doesn't have
2712 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2713 * a deadlock.
2714 */
2715static void check_flush_dependency(struct workqueue_struct *target_wq,
2716 struct work_struct *target_work)
2717{
2718 work_func_t target_func = target_work ? target_work->func : NULL;
2719 struct worker *worker;
2720
2721 if (target_wq->flags & WQ_MEM_RECLAIM)
2722 return;
2723
2724 worker = current_wq_worker();
2725
2726 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2727 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2728 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2729 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2730 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2731 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2732 worker->current_pwq->wq->name, worker->current_func,
2733 target_wq->name, target_func);
2734}
2735
fc2e4d70
ON
2736struct wq_barrier {
2737 struct work_struct work;
2738 struct completion done;
2607d7a6 2739 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2740};
2741
2742static void wq_barrier_func(struct work_struct *work)
2743{
2744 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2745 complete(&barr->done);
2746}
2747
4690c4ab
TH
2748/**
2749 * insert_wq_barrier - insert a barrier work
112202d9 2750 * @pwq: pwq to insert barrier into
4690c4ab 2751 * @barr: wq_barrier to insert
affee4b2
TH
2752 * @target: target work to attach @barr to
2753 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2754 *
affee4b2
TH
2755 * @barr is linked to @target such that @barr is completed only after
2756 * @target finishes execution. Please note that the ordering
2757 * guarantee is observed only with respect to @target and on the local
2758 * cpu.
2759 *
2760 * Currently, a queued barrier can't be canceled. This is because
2761 * try_to_grab_pending() can't determine whether the work to be
2762 * grabbed is at the head of the queue and thus can't clear LINKED
2763 * flag of the previous work while there must be a valid next work
2764 * after a work with LINKED flag set.
2765 *
2766 * Note that when @worker is non-NULL, @target may be modified
112202d9 2767 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2768 *
2769 * CONTEXT:
a9b8a985 2770 * raw_spin_lock_irq(pool->lock).
4690c4ab 2771 */
112202d9 2772static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2773 struct wq_barrier *barr,
2774 struct work_struct *target, struct worker *worker)
fc2e4d70 2775{
d812796e
LJ
2776 unsigned int work_flags = 0;
2777 unsigned int work_color;
affee4b2 2778 struct list_head *head;
affee4b2 2779
dc186ad7 2780 /*
d565ed63 2781 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2782 * as we know for sure that this will not trigger any of the
2783 * checks and call back into the fixup functions where we
2784 * might deadlock.
2785 */
ca1cab37 2786 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2787 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2788
fd1a5b04
BP
2789 init_completion_map(&barr->done, &target->lockdep_map);
2790
2607d7a6 2791 barr->task = current;
83c22520 2792
018f3a13
LJ
2793 /* The barrier work item does not participate in pwq->nr_active. */
2794 work_flags |= WORK_STRUCT_INACTIVE;
2795
affee4b2
TH
2796 /*
2797 * If @target is currently being executed, schedule the
2798 * barrier to the worker; otherwise, put it after @target.
2799 */
d812796e 2800 if (worker) {
affee4b2 2801 head = worker->scheduled.next;
d812796e
LJ
2802 work_color = worker->current_color;
2803 } else {
affee4b2
TH
2804 unsigned long *bits = work_data_bits(target);
2805
2806 head = target->entry.next;
2807 /* there can already be other linked works, inherit and set */
d21cece0 2808 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2809 work_color = get_work_color(*bits);
affee4b2
TH
2810 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2811 }
2812
d812796e
LJ
2813 pwq->nr_in_flight[work_color]++;
2814 work_flags |= work_color_to_flags(work_color);
2815
dc186ad7 2816 debug_work_activate(&barr->work);
d21cece0 2817 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2818}
2819
73f53c4a 2820/**
112202d9 2821 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2822 * @wq: workqueue being flushed
2823 * @flush_color: new flush color, < 0 for no-op
2824 * @work_color: new work color, < 0 for no-op
2825 *
112202d9 2826 * Prepare pwqs for workqueue flushing.
73f53c4a 2827 *
112202d9
TH
2828 * If @flush_color is non-negative, flush_color on all pwqs should be
2829 * -1. If no pwq has in-flight commands at the specified color, all
2830 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2831 * has in flight commands, its pwq->flush_color is set to
2832 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2833 * wakeup logic is armed and %true is returned.
2834 *
2835 * The caller should have initialized @wq->first_flusher prior to
2836 * calling this function with non-negative @flush_color. If
2837 * @flush_color is negative, no flush color update is done and %false
2838 * is returned.
2839 *
112202d9 2840 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2841 * work_color which is previous to @work_color and all will be
2842 * advanced to @work_color.
2843 *
2844 * CONTEXT:
3c25a55d 2845 * mutex_lock(wq->mutex).
73f53c4a 2846 *
d185af30 2847 * Return:
73f53c4a
TH
2848 * %true if @flush_color >= 0 and there's something to flush. %false
2849 * otherwise.
2850 */
112202d9 2851static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2852 int flush_color, int work_color)
1da177e4 2853{
73f53c4a 2854 bool wait = false;
49e3cf44 2855 struct pool_workqueue *pwq;
1da177e4 2856
73f53c4a 2857 if (flush_color >= 0) {
6183c009 2858 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2859 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2860 }
2355b70f 2861
49e3cf44 2862 for_each_pwq(pwq, wq) {
112202d9 2863 struct worker_pool *pool = pwq->pool;
fc2e4d70 2864
a9b8a985 2865 raw_spin_lock_irq(&pool->lock);
83c22520 2866
73f53c4a 2867 if (flush_color >= 0) {
6183c009 2868 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2869
112202d9
TH
2870 if (pwq->nr_in_flight[flush_color]) {
2871 pwq->flush_color = flush_color;
2872 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2873 wait = true;
2874 }
2875 }
1da177e4 2876
73f53c4a 2877 if (work_color >= 0) {
6183c009 2878 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2879 pwq->work_color = work_color;
73f53c4a 2880 }
1da177e4 2881
a9b8a985 2882 raw_spin_unlock_irq(&pool->lock);
1da177e4 2883 }
2355b70f 2884
112202d9 2885 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2886 complete(&wq->first_flusher->done);
14441960 2887
73f53c4a 2888 return wait;
1da177e4
LT
2889}
2890
0fcb78c2 2891/**
c4f135d6 2892 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2893 * @wq: workqueue to flush
1da177e4 2894 *
c5aa87bb
TH
2895 * This function sleeps until all work items which were queued on entry
2896 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2897 */
c4f135d6 2898void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 2899{
73f53c4a
TH
2900 struct wq_flusher this_flusher = {
2901 .list = LIST_HEAD_INIT(this_flusher.list),
2902 .flush_color = -1,
fd1a5b04 2903 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2904 };
2905 int next_color;
1da177e4 2906
3347fa09
TH
2907 if (WARN_ON(!wq_online))
2908 return;
2909
87915adc
JB
2910 lock_map_acquire(&wq->lockdep_map);
2911 lock_map_release(&wq->lockdep_map);
2912
3c25a55d 2913 mutex_lock(&wq->mutex);
73f53c4a
TH
2914
2915 /*
2916 * Start-to-wait phase
2917 */
2918 next_color = work_next_color(wq->work_color);
2919
2920 if (next_color != wq->flush_color) {
2921 /*
2922 * Color space is not full. The current work_color
2923 * becomes our flush_color and work_color is advanced
2924 * by one.
2925 */
6183c009 2926 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2927 this_flusher.flush_color = wq->work_color;
2928 wq->work_color = next_color;
2929
2930 if (!wq->first_flusher) {
2931 /* no flush in progress, become the first flusher */
6183c009 2932 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2933
2934 wq->first_flusher = &this_flusher;
2935
112202d9 2936 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2937 wq->work_color)) {
2938 /* nothing to flush, done */
2939 wq->flush_color = next_color;
2940 wq->first_flusher = NULL;
2941 goto out_unlock;
2942 }
2943 } else {
2944 /* wait in queue */
6183c009 2945 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2946 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2947 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2948 }
2949 } else {
2950 /*
2951 * Oops, color space is full, wait on overflow queue.
2952 * The next flush completion will assign us
2953 * flush_color and transfer to flusher_queue.
2954 */
2955 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2956 }
2957
fca839c0
TH
2958 check_flush_dependency(wq, NULL);
2959
3c25a55d 2960 mutex_unlock(&wq->mutex);
73f53c4a
TH
2961
2962 wait_for_completion(&this_flusher.done);
2963
2964 /*
2965 * Wake-up-and-cascade phase
2966 *
2967 * First flushers are responsible for cascading flushes and
2968 * handling overflow. Non-first flushers can simply return.
2969 */
00d5d15b 2970 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2971 return;
2972
3c25a55d 2973 mutex_lock(&wq->mutex);
73f53c4a 2974
4ce48b37
TH
2975 /* we might have raced, check again with mutex held */
2976 if (wq->first_flusher != &this_flusher)
2977 goto out_unlock;
2978
00d5d15b 2979 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2980
6183c009
TH
2981 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2982 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2983
2984 while (true) {
2985 struct wq_flusher *next, *tmp;
2986
2987 /* complete all the flushers sharing the current flush color */
2988 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2989 if (next->flush_color != wq->flush_color)
2990 break;
2991 list_del_init(&next->list);
2992 complete(&next->done);
2993 }
2994
6183c009
TH
2995 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2996 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2997
2998 /* this flush_color is finished, advance by one */
2999 wq->flush_color = work_next_color(wq->flush_color);
3000
3001 /* one color has been freed, handle overflow queue */
3002 if (!list_empty(&wq->flusher_overflow)) {
3003 /*
3004 * Assign the same color to all overflowed
3005 * flushers, advance work_color and append to
3006 * flusher_queue. This is the start-to-wait
3007 * phase for these overflowed flushers.
3008 */
3009 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3010 tmp->flush_color = wq->work_color;
3011
3012 wq->work_color = work_next_color(wq->work_color);
3013
3014 list_splice_tail_init(&wq->flusher_overflow,
3015 &wq->flusher_queue);
112202d9 3016 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3017 }
3018
3019 if (list_empty(&wq->flusher_queue)) {
6183c009 3020 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3021 break;
3022 }
3023
3024 /*
3025 * Need to flush more colors. Make the next flusher
112202d9 3026 * the new first flusher and arm pwqs.
73f53c4a 3027 */
6183c009
TH
3028 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3029 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3030
3031 list_del_init(&next->list);
3032 wq->first_flusher = next;
3033
112202d9 3034 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3035 break;
3036
3037 /*
3038 * Meh... this color is already done, clear first
3039 * flusher and repeat cascading.
3040 */
3041 wq->first_flusher = NULL;
3042 }
3043
3044out_unlock:
3c25a55d 3045 mutex_unlock(&wq->mutex);
1da177e4 3046}
c4f135d6 3047EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3048
9c5a2ba7
TH
3049/**
3050 * drain_workqueue - drain a workqueue
3051 * @wq: workqueue to drain
3052 *
3053 * Wait until the workqueue becomes empty. While draining is in progress,
3054 * only chain queueing is allowed. IOW, only currently pending or running
3055 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3056 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3057 * by the depth of chaining and should be relatively short. Whine if it
3058 * takes too long.
3059 */
3060void drain_workqueue(struct workqueue_struct *wq)
3061{
3062 unsigned int flush_cnt = 0;
49e3cf44 3063 struct pool_workqueue *pwq;
9c5a2ba7
TH
3064
3065 /*
3066 * __queue_work() needs to test whether there are drainers, is much
3067 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3068 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3069 */
87fc741e 3070 mutex_lock(&wq->mutex);
9c5a2ba7 3071 if (!wq->nr_drainers++)
618b01eb 3072 wq->flags |= __WQ_DRAINING;
87fc741e 3073 mutex_unlock(&wq->mutex);
9c5a2ba7 3074reflush:
c4f135d6 3075 __flush_workqueue(wq);
9c5a2ba7 3076
b09f4fd3 3077 mutex_lock(&wq->mutex);
76af4d93 3078
49e3cf44 3079 for_each_pwq(pwq, wq) {
fa2563e4 3080 bool drained;
9c5a2ba7 3081
a9b8a985 3082 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 3083 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 3084 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3085
3086 if (drained)
9c5a2ba7
TH
3087 continue;
3088
3089 if (++flush_cnt == 10 ||
3090 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3091 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3092 wq->name, __func__, flush_cnt);
76af4d93 3093
b09f4fd3 3094 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3095 goto reflush;
3096 }
3097
9c5a2ba7 3098 if (!--wq->nr_drainers)
618b01eb 3099 wq->flags &= ~__WQ_DRAINING;
87fc741e 3100 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3101}
3102EXPORT_SYMBOL_GPL(drain_workqueue);
3103
d6e89786
JB
3104static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3105 bool from_cancel)
db700897 3106{
affee4b2 3107 struct worker *worker = NULL;
c9e7cf27 3108 struct worker_pool *pool;
112202d9 3109 struct pool_workqueue *pwq;
db700897
ON
3110
3111 might_sleep();
fa1b54e6 3112
24acfb71 3113 rcu_read_lock();
c9e7cf27 3114 pool = get_work_pool(work);
fa1b54e6 3115 if (!pool) {
24acfb71 3116 rcu_read_unlock();
baf59022 3117 return false;
fa1b54e6 3118 }
db700897 3119
a9b8a985 3120 raw_spin_lock_irq(&pool->lock);
0b3dae68 3121 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3122 pwq = get_work_pwq(work);
3123 if (pwq) {
3124 if (unlikely(pwq->pool != pool))
4690c4ab 3125 goto already_gone;
606a5020 3126 } else {
c9e7cf27 3127 worker = find_worker_executing_work(pool, work);
affee4b2 3128 if (!worker)
4690c4ab 3129 goto already_gone;
112202d9 3130 pwq = worker->current_pwq;
606a5020 3131 }
db700897 3132
fca839c0
TH
3133 check_flush_dependency(pwq->wq, work);
3134
112202d9 3135 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3136 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3137
e159489b 3138 /*
a1d14934
PZ
3139 * Force a lock recursion deadlock when using flush_work() inside a
3140 * single-threaded or rescuer equipped workqueue.
3141 *
3142 * For single threaded workqueues the deadlock happens when the work
3143 * is after the work issuing the flush_work(). For rescuer equipped
3144 * workqueues the deadlock happens when the rescuer stalls, blocking
3145 * forward progress.
e159489b 3146 */
d6e89786
JB
3147 if (!from_cancel &&
3148 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3149 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3150 lock_map_release(&pwq->wq->lockdep_map);
3151 }
24acfb71 3152 rcu_read_unlock();
401a8d04 3153 return true;
4690c4ab 3154already_gone:
a9b8a985 3155 raw_spin_unlock_irq(&pool->lock);
24acfb71 3156 rcu_read_unlock();
401a8d04 3157 return false;
db700897 3158}
baf59022 3159
d6e89786
JB
3160static bool __flush_work(struct work_struct *work, bool from_cancel)
3161{
3162 struct wq_barrier barr;
3163
3164 if (WARN_ON(!wq_online))
3165 return false;
3166
4d43d395
TH
3167 if (WARN_ON(!work->func))
3168 return false;
3169
c0feea59
TH
3170 lock_map_acquire(&work->lockdep_map);
3171 lock_map_release(&work->lockdep_map);
87915adc 3172
d6e89786
JB
3173 if (start_flush_work(work, &barr, from_cancel)) {
3174 wait_for_completion(&barr.done);
3175 destroy_work_on_stack(&barr.work);
3176 return true;
3177 } else {
3178 return false;
3179 }
3180}
3181
baf59022
TH
3182/**
3183 * flush_work - wait for a work to finish executing the last queueing instance
3184 * @work: the work to flush
3185 *
606a5020
TH
3186 * Wait until @work has finished execution. @work is guaranteed to be idle
3187 * on return if it hasn't been requeued since flush started.
baf59022 3188 *
d185af30 3189 * Return:
baf59022
TH
3190 * %true if flush_work() waited for the work to finish execution,
3191 * %false if it was already idle.
3192 */
3193bool flush_work(struct work_struct *work)
3194{
d6e89786 3195 return __flush_work(work, false);
6e84d644 3196}
606a5020 3197EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3198
8603e1b3 3199struct cwt_wait {
ac6424b9 3200 wait_queue_entry_t wait;
8603e1b3
TH
3201 struct work_struct *work;
3202};
3203
ac6424b9 3204static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3205{
3206 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3207
3208 if (cwait->work != key)
3209 return 0;
3210 return autoremove_wake_function(wait, mode, sync, key);
3211}
3212
36e227d2 3213static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3214{
8603e1b3 3215 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3216 unsigned long flags;
1f1f642e
ON
3217 int ret;
3218
3219 do {
bbb68dfa
TH
3220 ret = try_to_grab_pending(work, is_dwork, &flags);
3221 /*
8603e1b3
TH
3222 * If someone else is already canceling, wait for it to
3223 * finish. flush_work() doesn't work for PREEMPT_NONE
3224 * because we may get scheduled between @work's completion
3225 * and the other canceling task resuming and clearing
3226 * CANCELING - flush_work() will return false immediately
3227 * as @work is no longer busy, try_to_grab_pending() will
3228 * return -ENOENT as @work is still being canceled and the
3229 * other canceling task won't be able to clear CANCELING as
3230 * we're hogging the CPU.
3231 *
3232 * Let's wait for completion using a waitqueue. As this
3233 * may lead to the thundering herd problem, use a custom
3234 * wake function which matches @work along with exclusive
3235 * wait and wakeup.
bbb68dfa 3236 */
8603e1b3
TH
3237 if (unlikely(ret == -ENOENT)) {
3238 struct cwt_wait cwait;
3239
3240 init_wait(&cwait.wait);
3241 cwait.wait.func = cwt_wakefn;
3242 cwait.work = work;
3243
3244 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3245 TASK_UNINTERRUPTIBLE);
3246 if (work_is_canceling(work))
3247 schedule();
3248 finish_wait(&cancel_waitq, &cwait.wait);
3249 }
1f1f642e
ON
3250 } while (unlikely(ret < 0));
3251
bbb68dfa
TH
3252 /* tell other tasks trying to grab @work to back off */
3253 mark_work_canceling(work);
3254 local_irq_restore(flags);
3255
3347fa09
TH
3256 /*
3257 * This allows canceling during early boot. We know that @work
3258 * isn't executing.
3259 */
3260 if (wq_online)
d6e89786 3261 __flush_work(work, true);
3347fa09 3262
7a22ad75 3263 clear_work_data(work);
8603e1b3
TH
3264
3265 /*
3266 * Paired with prepare_to_wait() above so that either
3267 * waitqueue_active() is visible here or !work_is_canceling() is
3268 * visible there.
3269 */
3270 smp_mb();
3271 if (waitqueue_active(&cancel_waitq))
3272 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3273
1f1f642e
ON
3274 return ret;
3275}
3276
6e84d644 3277/**
401a8d04
TH
3278 * cancel_work_sync - cancel a work and wait for it to finish
3279 * @work: the work to cancel
6e84d644 3280 *
401a8d04
TH
3281 * Cancel @work and wait for its execution to finish. This function
3282 * can be used even if the work re-queues itself or migrates to
3283 * another workqueue. On return from this function, @work is
3284 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3285 *
401a8d04
TH
3286 * cancel_work_sync(&delayed_work->work) must not be used for
3287 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3288 *
401a8d04 3289 * The caller must ensure that the workqueue on which @work was last
6e84d644 3290 * queued can't be destroyed before this function returns.
401a8d04 3291 *
d185af30 3292 * Return:
401a8d04 3293 * %true if @work was pending, %false otherwise.
6e84d644 3294 */
401a8d04 3295bool cancel_work_sync(struct work_struct *work)
6e84d644 3296{
36e227d2 3297 return __cancel_work_timer(work, false);
b89deed3 3298}
28e53bdd 3299EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3300
6e84d644 3301/**
401a8d04
TH
3302 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3303 * @dwork: the delayed work to flush
6e84d644 3304 *
401a8d04
TH
3305 * Delayed timer is cancelled and the pending work is queued for
3306 * immediate execution. Like flush_work(), this function only
3307 * considers the last queueing instance of @dwork.
1f1f642e 3308 *
d185af30 3309 * Return:
401a8d04
TH
3310 * %true if flush_work() waited for the work to finish execution,
3311 * %false if it was already idle.
6e84d644 3312 */
401a8d04
TH
3313bool flush_delayed_work(struct delayed_work *dwork)
3314{
8930caba 3315 local_irq_disable();
401a8d04 3316 if (del_timer_sync(&dwork->timer))
60c057bc 3317 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3318 local_irq_enable();
401a8d04
TH
3319 return flush_work(&dwork->work);
3320}
3321EXPORT_SYMBOL(flush_delayed_work);
3322
05f0fe6b
TH
3323/**
3324 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3325 * @rwork: the rcu work to flush
3326 *
3327 * Return:
3328 * %true if flush_rcu_work() waited for the work to finish execution,
3329 * %false if it was already idle.
3330 */
3331bool flush_rcu_work(struct rcu_work *rwork)
3332{
3333 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3334 rcu_barrier();
3335 flush_work(&rwork->work);
3336 return true;
3337 } else {
3338 return flush_work(&rwork->work);
3339 }
3340}
3341EXPORT_SYMBOL(flush_rcu_work);
3342
f72b8792
JA
3343static bool __cancel_work(struct work_struct *work, bool is_dwork)
3344{
3345 unsigned long flags;
3346 int ret;
3347
3348 do {
3349 ret = try_to_grab_pending(work, is_dwork, &flags);
3350 } while (unlikely(ret == -EAGAIN));
3351
3352 if (unlikely(ret < 0))
3353 return false;
3354
3355 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3356 local_irq_restore(flags);
3357 return ret;
3358}
3359
73b4b532
AG
3360/*
3361 * See cancel_delayed_work()
3362 */
3363bool cancel_work(struct work_struct *work)
3364{
3365 return __cancel_work(work, false);
3366}
3367EXPORT_SYMBOL(cancel_work);
3368
09383498 3369/**
57b30ae7
TH
3370 * cancel_delayed_work - cancel a delayed work
3371 * @dwork: delayed_work to cancel
09383498 3372 *
d185af30
YB
3373 * Kill off a pending delayed_work.
3374 *
3375 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3376 * pending.
3377 *
3378 * Note:
3379 * The work callback function may still be running on return, unless
3380 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3381 * use cancel_delayed_work_sync() to wait on it.
09383498 3382 *
57b30ae7 3383 * This function is safe to call from any context including IRQ handler.
09383498 3384 */
57b30ae7 3385bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3386{
f72b8792 3387 return __cancel_work(&dwork->work, true);
09383498 3388}
57b30ae7 3389EXPORT_SYMBOL(cancel_delayed_work);
09383498 3390
401a8d04
TH
3391/**
3392 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3393 * @dwork: the delayed work cancel
3394 *
3395 * This is cancel_work_sync() for delayed works.
3396 *
d185af30 3397 * Return:
401a8d04
TH
3398 * %true if @dwork was pending, %false otherwise.
3399 */
3400bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3401{
36e227d2 3402 return __cancel_work_timer(&dwork->work, true);
6e84d644 3403}
f5a421a4 3404EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3405
b6136773 3406/**
31ddd871 3407 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3408 * @func: the function to call
b6136773 3409 *
31ddd871
TH
3410 * schedule_on_each_cpu() executes @func on each online CPU using the
3411 * system workqueue and blocks until all CPUs have completed.
b6136773 3412 * schedule_on_each_cpu() is very slow.
31ddd871 3413 *
d185af30 3414 * Return:
31ddd871 3415 * 0 on success, -errno on failure.
b6136773 3416 */
65f27f38 3417int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3418{
3419 int cpu;
38f51568 3420 struct work_struct __percpu *works;
15316ba8 3421
b6136773
AM
3422 works = alloc_percpu(struct work_struct);
3423 if (!works)
15316ba8 3424 return -ENOMEM;
b6136773 3425
ffd8bea8 3426 cpus_read_lock();
93981800 3427
15316ba8 3428 for_each_online_cpu(cpu) {
9bfb1839
IM
3429 struct work_struct *work = per_cpu_ptr(works, cpu);
3430
3431 INIT_WORK(work, func);
b71ab8c2 3432 schedule_work_on(cpu, work);
65a64464 3433 }
93981800
TH
3434
3435 for_each_online_cpu(cpu)
3436 flush_work(per_cpu_ptr(works, cpu));
3437
ffd8bea8 3438 cpus_read_unlock();
b6136773 3439 free_percpu(works);
15316ba8
CL
3440 return 0;
3441}
3442
1fa44eca
JB
3443/**
3444 * execute_in_process_context - reliably execute the routine with user context
3445 * @fn: the function to execute
1fa44eca
JB
3446 * @ew: guaranteed storage for the execute work structure (must
3447 * be available when the work executes)
3448 *
3449 * Executes the function immediately if process context is available,
3450 * otherwise schedules the function for delayed execution.
3451 *
d185af30 3452 * Return: 0 - function was executed
1fa44eca
JB
3453 * 1 - function was scheduled for execution
3454 */
65f27f38 3455int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3456{
3457 if (!in_interrupt()) {
65f27f38 3458 fn(&ew->work);
1fa44eca
JB
3459 return 0;
3460 }
3461
65f27f38 3462 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3463 schedule_work(&ew->work);
3464
3465 return 1;
3466}
3467EXPORT_SYMBOL_GPL(execute_in_process_context);
3468
6ba94429
FW
3469/**
3470 * free_workqueue_attrs - free a workqueue_attrs
3471 * @attrs: workqueue_attrs to free
226223ab 3472 *
6ba94429 3473 * Undo alloc_workqueue_attrs().
226223ab 3474 */
513c98d0 3475void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3476{
6ba94429
FW
3477 if (attrs) {
3478 free_cpumask_var(attrs->cpumask);
3479 kfree(attrs);
3480 }
226223ab
TH
3481}
3482
6ba94429
FW
3483/**
3484 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3485 *
3486 * Allocate a new workqueue_attrs, initialize with default settings and
3487 * return it.
3488 *
3489 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3490 */
513c98d0 3491struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3492{
6ba94429 3493 struct workqueue_attrs *attrs;
226223ab 3494
be69d00d 3495 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3496 if (!attrs)
3497 goto fail;
be69d00d 3498 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3499 goto fail;
3500
3501 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3502 return attrs;
3503fail:
3504 free_workqueue_attrs(attrs);
3505 return NULL;
226223ab
TH
3506}
3507
6ba94429
FW
3508static void copy_workqueue_attrs(struct workqueue_attrs *to,
3509 const struct workqueue_attrs *from)
226223ab 3510{
6ba94429
FW
3511 to->nice = from->nice;
3512 cpumask_copy(to->cpumask, from->cpumask);
3513 /*
3514 * Unlike hash and equality test, this function doesn't ignore
3515 * ->no_numa as it is used for both pool and wq attrs. Instead,
3516 * get_unbound_pool() explicitly clears ->no_numa after copying.
3517 */
3518 to->no_numa = from->no_numa;
226223ab
TH
3519}
3520
6ba94429
FW
3521/* hash value of the content of @attr */
3522static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3523{
6ba94429 3524 u32 hash = 0;
226223ab 3525
6ba94429
FW
3526 hash = jhash_1word(attrs->nice, hash);
3527 hash = jhash(cpumask_bits(attrs->cpumask),
3528 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3529 return hash;
226223ab 3530}
226223ab 3531
6ba94429
FW
3532/* content equality test */
3533static bool wqattrs_equal(const struct workqueue_attrs *a,
3534 const struct workqueue_attrs *b)
226223ab 3535{
6ba94429
FW
3536 if (a->nice != b->nice)
3537 return false;
3538 if (!cpumask_equal(a->cpumask, b->cpumask))
3539 return false;
3540 return true;
226223ab
TH
3541}
3542
6ba94429
FW
3543/**
3544 * init_worker_pool - initialize a newly zalloc'd worker_pool
3545 * @pool: worker_pool to initialize
3546 *
402dd89d 3547 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3548 *
3549 * Return: 0 on success, -errno on failure. Even on failure, all fields
3550 * inside @pool proper are initialized and put_unbound_pool() can be called
3551 * on @pool safely to release it.
3552 */
3553static int init_worker_pool(struct worker_pool *pool)
226223ab 3554{
a9b8a985 3555 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3556 pool->id = -1;
3557 pool->cpu = -1;
3558 pool->node = NUMA_NO_NODE;
3559 pool->flags |= POOL_DISASSOCIATED;
82607adc 3560 pool->watchdog_ts = jiffies;
6ba94429
FW
3561 INIT_LIST_HEAD(&pool->worklist);
3562 INIT_LIST_HEAD(&pool->idle_list);
3563 hash_init(pool->busy_hash);
226223ab 3564
32a6c723 3565 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 3566 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 3567
32a6c723 3568 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3569
6ba94429 3570 INIT_LIST_HEAD(&pool->workers);
e02b9312 3571 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 3572
6ba94429
FW
3573 ida_init(&pool->worker_ida);
3574 INIT_HLIST_NODE(&pool->hash_node);
3575 pool->refcnt = 1;
226223ab 3576
6ba94429 3577 /* shouldn't fail above this point */
be69d00d 3578 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3579 if (!pool->attrs)
3580 return -ENOMEM;
3581 return 0;
226223ab
TH
3582}
3583
669de8bd
BVA
3584#ifdef CONFIG_LOCKDEP
3585static void wq_init_lockdep(struct workqueue_struct *wq)
3586{
3587 char *lock_name;
3588
3589 lockdep_register_key(&wq->key);
3590 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3591 if (!lock_name)
3592 lock_name = wq->name;
69a106c0
QC
3593
3594 wq->lock_name = lock_name;
669de8bd
BVA
3595 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3596}
3597
3598static void wq_unregister_lockdep(struct workqueue_struct *wq)
3599{
3600 lockdep_unregister_key(&wq->key);
3601}
3602
3603static void wq_free_lockdep(struct workqueue_struct *wq)
3604{
3605 if (wq->lock_name != wq->name)
3606 kfree(wq->lock_name);
3607}
3608#else
3609static void wq_init_lockdep(struct workqueue_struct *wq)
3610{
3611}
3612
3613static void wq_unregister_lockdep(struct workqueue_struct *wq)
3614{
3615}
3616
3617static void wq_free_lockdep(struct workqueue_struct *wq)
3618{
3619}
3620#endif
3621
6ba94429 3622static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3623{
6ba94429
FW
3624 struct workqueue_struct *wq =
3625 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3626
669de8bd
BVA
3627 wq_free_lockdep(wq);
3628
6ba94429
FW
3629 if (!(wq->flags & WQ_UNBOUND))
3630 free_percpu(wq->cpu_pwqs);
226223ab 3631 else
6ba94429 3632 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3633
6ba94429 3634 kfree(wq);
226223ab
TH
3635}
3636
6ba94429 3637static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3638{
6ba94429 3639 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3640
6ba94429
FW
3641 ida_destroy(&pool->worker_ida);
3642 free_workqueue_attrs(pool->attrs);
3643 kfree(pool);
226223ab
TH
3644}
3645
6ba94429
FW
3646/**
3647 * put_unbound_pool - put a worker_pool
3648 * @pool: worker_pool to put
3649 *
24acfb71 3650 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3651 * safe manner. get_unbound_pool() calls this function on its failure path
3652 * and this function should be able to release pools which went through,
3653 * successfully or not, init_worker_pool().
3654 *
3655 * Should be called with wq_pool_mutex held.
3656 */
3657static void put_unbound_pool(struct worker_pool *pool)
226223ab 3658{
6ba94429 3659 DECLARE_COMPLETION_ONSTACK(detach_completion);
e02b9312 3660 struct list_head cull_list;
6ba94429 3661 struct worker *worker;
226223ab 3662
e02b9312
VS
3663 INIT_LIST_HEAD(&cull_list);
3664
6ba94429 3665 lockdep_assert_held(&wq_pool_mutex);
226223ab 3666
6ba94429
FW
3667 if (--pool->refcnt)
3668 return;
226223ab 3669
6ba94429
FW
3670 /* sanity checks */
3671 if (WARN_ON(!(pool->cpu < 0)) ||
3672 WARN_ON(!list_empty(&pool->worklist)))
3673 return;
226223ab 3674
6ba94429
FW
3675 /* release id and unhash */
3676 if (pool->id >= 0)
3677 idr_remove(&worker_pool_idr, pool->id);
3678 hash_del(&pool->hash_node);
d55262c4 3679
6ba94429 3680 /*
692b4825
TH
3681 * Become the manager and destroy all workers. This prevents
3682 * @pool's workers from blocking on attach_mutex. We're the last
3683 * manager and @pool gets freed with the flag set.
9ab03be4
VS
3684 *
3685 * Having a concurrent manager is quite unlikely to happen as we can
3686 * only get here with
3687 * pwq->refcnt == pool->refcnt == 0
3688 * which implies no work queued to the pool, which implies no worker can
3689 * become the manager. However a worker could have taken the role of
3690 * manager before the refcnts dropped to 0, since maybe_create_worker()
3691 * drops pool->lock
6ba94429 3692 */
9ab03be4
VS
3693 while (true) {
3694 rcuwait_wait_event(&manager_wait,
3695 !(pool->flags & POOL_MANAGER_ACTIVE),
3696 TASK_UNINTERRUPTIBLE);
e02b9312
VS
3697
3698 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
3699 raw_spin_lock_irq(&pool->lock);
3700 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3701 pool->flags |= POOL_MANAGER_ACTIVE;
3702 break;
3703 }
3704 raw_spin_unlock_irq(&pool->lock);
e02b9312 3705 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 3706 }
692b4825 3707
6ba94429 3708 while ((worker = first_idle_worker(pool)))
e02b9312 3709 set_worker_dying(worker, &cull_list);
6ba94429 3710 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3711 raw_spin_unlock_irq(&pool->lock);
d55262c4 3712
e02b9312
VS
3713 wake_dying_workers(&cull_list);
3714
3715 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 3716 pool->detach_completion = &detach_completion;
1258fae7 3717 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3718
6ba94429
FW
3719 if (pool->detach_completion)
3720 wait_for_completion(pool->detach_completion);
226223ab 3721
6ba94429
FW
3722 /* shut down the timers */
3723 del_timer_sync(&pool->idle_timer);
3f959aa3 3724 cancel_work_sync(&pool->idle_cull_work);
6ba94429 3725 del_timer_sync(&pool->mayday_timer);
226223ab 3726
24acfb71 3727 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3728 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3729}
3730
3731/**
6ba94429
FW
3732 * get_unbound_pool - get a worker_pool with the specified attributes
3733 * @attrs: the attributes of the worker_pool to get
226223ab 3734 *
6ba94429
FW
3735 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3736 * reference count and return it. If there already is a matching
3737 * worker_pool, it will be used; otherwise, this function attempts to
3738 * create a new one.
226223ab 3739 *
6ba94429 3740 * Should be called with wq_pool_mutex held.
226223ab 3741 *
6ba94429
FW
3742 * Return: On success, a worker_pool with the same attributes as @attrs.
3743 * On failure, %NULL.
226223ab 3744 */
6ba94429 3745static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3746{
6ba94429
FW
3747 u32 hash = wqattrs_hash(attrs);
3748 struct worker_pool *pool;
3749 int node;
e2273584 3750 int target_node = NUMA_NO_NODE;
226223ab 3751
6ba94429 3752 lockdep_assert_held(&wq_pool_mutex);
226223ab 3753
6ba94429
FW
3754 /* do we already have a matching pool? */
3755 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3756 if (wqattrs_equal(pool->attrs, attrs)) {
3757 pool->refcnt++;
3758 return pool;
3759 }
3760 }
226223ab 3761
e2273584
XP
3762 /* if cpumask is contained inside a NUMA node, we belong to that node */
3763 if (wq_numa_enabled) {
3764 for_each_node(node) {
3765 if (cpumask_subset(attrs->cpumask,
3766 wq_numa_possible_cpumask[node])) {
3767 target_node = node;
3768 break;
3769 }
3770 }
3771 }
3772
6ba94429 3773 /* nope, create a new one */
e2273584 3774 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3775 if (!pool || init_worker_pool(pool) < 0)
3776 goto fail;
3777
3778 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3779 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3780 pool->node = target_node;
226223ab
TH
3781
3782 /*
6ba94429
FW
3783 * no_numa isn't a worker_pool attribute, always clear it. See
3784 * 'struct workqueue_attrs' comments for detail.
226223ab 3785 */
6ba94429 3786 pool->attrs->no_numa = false;
226223ab 3787
6ba94429
FW
3788 if (worker_pool_assign_id(pool) < 0)
3789 goto fail;
226223ab 3790
6ba94429 3791 /* create and start the initial worker */
3347fa09 3792 if (wq_online && !create_worker(pool))
6ba94429 3793 goto fail;
226223ab 3794
6ba94429
FW
3795 /* install */
3796 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3797
6ba94429
FW
3798 return pool;
3799fail:
3800 if (pool)
3801 put_unbound_pool(pool);
3802 return NULL;
226223ab 3803}
226223ab 3804
6ba94429 3805static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3806{
6ba94429
FW
3807 kmem_cache_free(pwq_cache,
3808 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3809}
3810
6ba94429
FW
3811/*
3812 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3813 * and needs to be destroyed.
7a4e344c 3814 */
6ba94429 3815static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3816{
6ba94429
FW
3817 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3818 unbound_release_work);
3819 struct workqueue_struct *wq = pwq->wq;
3820 struct worker_pool *pool = pwq->pool;
b42b0bdd 3821 bool is_last = false;
7a4e344c 3822
b42b0bdd
YY
3823 /*
3824 * when @pwq is not linked, it doesn't hold any reference to the
3825 * @wq, and @wq is invalid to access.
3826 */
3827 if (!list_empty(&pwq->pwqs_node)) {
3828 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3829 return;
7a4e344c 3830
b42b0bdd
YY
3831 mutex_lock(&wq->mutex);
3832 list_del_rcu(&pwq->pwqs_node);
3833 is_last = list_empty(&wq->pwqs);
3834 mutex_unlock(&wq->mutex);
3835 }
6ba94429
FW
3836
3837 mutex_lock(&wq_pool_mutex);
3838 put_unbound_pool(pool);
3839 mutex_unlock(&wq_pool_mutex);
3840
25b00775 3841 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3842
2865a8fb 3843 /*
6ba94429
FW
3844 * If we're the last pwq going away, @wq is already dead and no one
3845 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3846 */
669de8bd
BVA
3847 if (is_last) {
3848 wq_unregister_lockdep(wq);
25b00775 3849 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3850 }
29c91e99
TH
3851}
3852
7a4e344c 3853/**
6ba94429
FW
3854 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3855 * @pwq: target pool_workqueue
d185af30 3856 *
6ba94429 3857 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 3858 * workqueue's saved_max_active and activate inactive work items
6ba94429 3859 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3860 */
6ba94429 3861static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3862{
6ba94429
FW
3863 struct workqueue_struct *wq = pwq->wq;
3864 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3865 unsigned long flags;
4e1a1f9a 3866
6ba94429
FW
3867 /* for @wq->saved_max_active */
3868 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3869
6ba94429
FW
3870 /* fast exit for non-freezable wqs */
3871 if (!freezable && pwq->max_active == wq->saved_max_active)
3872 return;
7a4e344c 3873
3347fa09 3874 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3875 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3876
6ba94429
FW
3877 /*
3878 * During [un]freezing, the caller is responsible for ensuring that
3879 * this function is called at least once after @workqueue_freezing
3880 * is updated and visible.
3881 */
3882 if (!freezable || !workqueue_freezing) {
01341fbd
YY
3883 bool kick = false;
3884
6ba94429 3885 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3886
f97a4a1a 3887 while (!list_empty(&pwq->inactive_works) &&
01341fbd 3888 pwq->nr_active < pwq->max_active) {
f97a4a1a 3889 pwq_activate_first_inactive(pwq);
01341fbd
YY
3890 kick = true;
3891 }
e2dca7ad 3892
6ba94429
FW
3893 /*
3894 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
3895 * max_active is bumped. In realtime scenarios, always kicking a
3896 * worker will cause interference on the isolated cpu cores, so
3897 * let's kick iff work items were activated.
6ba94429 3898 */
01341fbd
YY
3899 if (kick)
3900 wake_up_worker(pwq->pool);
6ba94429
FW
3901 } else {
3902 pwq->max_active = 0;
3903 }
e2dca7ad 3904
a9b8a985 3905 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3906}
3907
67dc8325 3908/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
3909static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3910 struct worker_pool *pool)
29c91e99 3911{
6ba94429 3912 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3913
6ba94429
FW
3914 memset(pwq, 0, sizeof(*pwq));
3915
3916 pwq->pool = pool;
3917 pwq->wq = wq;
3918 pwq->flush_color = -1;
3919 pwq->refcnt = 1;
f97a4a1a 3920 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
3921 INIT_LIST_HEAD(&pwq->pwqs_node);
3922 INIT_LIST_HEAD(&pwq->mayday_node);
3923 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3924}
3925
6ba94429
FW
3926/* sync @pwq with the current state of its associated wq and link it */
3927static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3928{
6ba94429 3929 struct workqueue_struct *wq = pwq->wq;
29c91e99 3930
6ba94429 3931 lockdep_assert_held(&wq->mutex);
a892cacc 3932
6ba94429
FW
3933 /* may be called multiple times, ignore if already linked */
3934 if (!list_empty(&pwq->pwqs_node))
29c91e99 3935 return;
29c91e99 3936
6ba94429
FW
3937 /* set the matching work_color */
3938 pwq->work_color = wq->work_color;
29c91e99 3939
6ba94429
FW
3940 /* sync max_active to the current setting */
3941 pwq_adjust_max_active(pwq);
29c91e99 3942
6ba94429
FW
3943 /* link in @pwq */
3944 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3945}
29c91e99 3946
6ba94429
FW
3947/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3948static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3949 const struct workqueue_attrs *attrs)
3950{
3951 struct worker_pool *pool;
3952 struct pool_workqueue *pwq;
60f5a4bc 3953
6ba94429 3954 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3955
6ba94429
FW
3956 pool = get_unbound_pool(attrs);
3957 if (!pool)
3958 return NULL;
60f5a4bc 3959
6ba94429
FW
3960 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3961 if (!pwq) {
3962 put_unbound_pool(pool);
3963 return NULL;
3964 }
29c91e99 3965
6ba94429
FW
3966 init_pwq(pwq, wq, pool);
3967 return pwq;
3968}
29c91e99 3969
29c91e99 3970/**
30186c6f 3971 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3972 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3973 * @node: the target NUMA node
3974 * @cpu_going_down: if >= 0, the CPU to consider as offline
3975 * @cpumask: outarg, the resulting cpumask
29c91e99 3976 *
6ba94429
FW
3977 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3978 * @cpu_going_down is >= 0, that cpu is considered offline during
3979 * calculation. The result is stored in @cpumask.
a892cacc 3980 *
6ba94429
FW
3981 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3982 * enabled and @node has online CPUs requested by @attrs, the returned
3983 * cpumask is the intersection of the possible CPUs of @node and
3984 * @attrs->cpumask.
d185af30 3985 *
6ba94429
FW
3986 * The caller is responsible for ensuring that the cpumask of @node stays
3987 * stable.
3988 *
3989 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3990 * %false if equal.
29c91e99 3991 */
6ba94429
FW
3992static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3993 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3994{
6ba94429
FW
3995 if (!wq_numa_enabled || attrs->no_numa)
3996 goto use_dfl;
29c91e99 3997
6ba94429
FW
3998 /* does @node have any online CPUs @attrs wants? */
3999 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4000 if (cpu_going_down >= 0)
4001 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 4002
6ba94429
FW
4003 if (cpumask_empty(cpumask))
4004 goto use_dfl;
4c16bd32
TH
4005
4006 /* yeap, return possible CPUs in @node that @attrs wants */
4007 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
4008
4009 if (cpumask_empty(cpumask)) {
4010 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4011 "possible intersect\n");
4012 return false;
4013 }
4014
4c16bd32
TH
4015 return !cpumask_equal(cpumask, attrs->cpumask);
4016
4017use_dfl:
4018 cpumask_copy(cpumask, attrs->cpumask);
4019 return false;
4020}
4021
1befcf30
TH
4022/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4023static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4024 int node,
4025 struct pool_workqueue *pwq)
4026{
4027 struct pool_workqueue *old_pwq;
4028
5b95e1af 4029 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4030 lockdep_assert_held(&wq->mutex);
4031
4032 /* link_pwq() can handle duplicate calls */
4033 link_pwq(pwq);
4034
4035 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4036 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4037 return old_pwq;
4038}
4039
2d5f0764
LJ
4040/* context to store the prepared attrs & pwqs before applying */
4041struct apply_wqattrs_ctx {
4042 struct workqueue_struct *wq; /* target workqueue */
4043 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4044 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4045 struct pool_workqueue *dfl_pwq;
4046 struct pool_workqueue *pwq_tbl[];
4047};
4048
4049/* free the resources after success or abort */
4050static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4051{
4052 if (ctx) {
4053 int node;
4054
4055 for_each_node(node)
4056 put_pwq_unlocked(ctx->pwq_tbl[node]);
4057 put_pwq_unlocked(ctx->dfl_pwq);
4058
4059 free_workqueue_attrs(ctx->attrs);
4060
4061 kfree(ctx);
4062 }
4063}
4064
4065/* allocate the attrs and pwqs for later installation */
4066static struct apply_wqattrs_ctx *
4067apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4068 const struct workqueue_attrs *attrs,
4069 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4070{
2d5f0764 4071 struct apply_wqattrs_ctx *ctx;
4c16bd32 4072 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 4073 int node;
9e8cd2f5 4074
2d5f0764 4075 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4076
acafe7e3 4077 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 4078
be69d00d
TG
4079 new_attrs = alloc_workqueue_attrs();
4080 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
4081 if (!ctx || !new_attrs || !tmp_attrs)
4082 goto out_free;
13e2e556 4083
042f7df1 4084 /*
99c621ef
LJ
4085 * Calculate the attrs of the default pwq with unbound_cpumask
4086 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
042f7df1
LJ
4087 * If the user configured cpumask doesn't overlap with the
4088 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4089 */
13e2e556 4090 copy_workqueue_attrs(new_attrs, attrs);
99c621ef 4091 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
042f7df1 4092 if (unlikely(cpumask_empty(new_attrs->cpumask)))
99c621ef 4093 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
13e2e556 4094
4c16bd32
TH
4095 /*
4096 * We may create multiple pwqs with differing cpumasks. Make a
4097 * copy of @new_attrs which will be modified and used to obtain
4098 * pools.
4099 */
4100 copy_workqueue_attrs(tmp_attrs, new_attrs);
4101
4c16bd32
TH
4102 /*
4103 * If something goes wrong during CPU up/down, we'll fall back to
4104 * the default pwq covering whole @attrs->cpumask. Always create
4105 * it even if we don't use it immediately.
4106 */
2d5f0764
LJ
4107 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4108 if (!ctx->dfl_pwq)
4109 goto out_free;
4c16bd32
TH
4110
4111 for_each_node(node) {
042f7df1 4112 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
4113 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4114 if (!ctx->pwq_tbl[node])
4115 goto out_free;
4c16bd32 4116 } else {
2d5f0764
LJ
4117 ctx->dfl_pwq->refcnt++;
4118 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
4119 }
4120 }
4121
042f7df1
LJ
4122 /* save the user configured attrs and sanitize it. */
4123 copy_workqueue_attrs(new_attrs, attrs);
4124 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4125 ctx->attrs = new_attrs;
042f7df1 4126
2d5f0764
LJ
4127 ctx->wq = wq;
4128 free_workqueue_attrs(tmp_attrs);
4129 return ctx;
4130
4131out_free:
4132 free_workqueue_attrs(tmp_attrs);
4133 free_workqueue_attrs(new_attrs);
4134 apply_wqattrs_cleanup(ctx);
4135 return NULL;
4136}
4137
4138/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4139static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4140{
4141 int node;
9e8cd2f5 4142
4c16bd32 4143 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4144 mutex_lock(&ctx->wq->mutex);
a892cacc 4145
2d5f0764 4146 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4147
4148 /* save the previous pwq and install the new one */
f147f29e 4149 for_each_node(node)
2d5f0764
LJ
4150 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4151 ctx->pwq_tbl[node]);
4c16bd32
TH
4152
4153 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4154 link_pwq(ctx->dfl_pwq);
4155 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4156
2d5f0764
LJ
4157 mutex_unlock(&ctx->wq->mutex);
4158}
9e8cd2f5 4159
a0111cf6
LJ
4160static void apply_wqattrs_lock(void)
4161{
4162 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4163 cpus_read_lock();
a0111cf6
LJ
4164 mutex_lock(&wq_pool_mutex);
4165}
4166
4167static void apply_wqattrs_unlock(void)
4168{
4169 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4170 cpus_read_unlock();
a0111cf6
LJ
4171}
4172
4173static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4174 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4175{
4176 struct apply_wqattrs_ctx *ctx;
4c16bd32 4177
2d5f0764
LJ
4178 /* only unbound workqueues can change attributes */
4179 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4180 return -EINVAL;
13e2e556 4181
2d5f0764 4182 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4183 if (!list_empty(&wq->pwqs)) {
4184 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4185 return -EINVAL;
4186
4187 wq->flags &= ~__WQ_ORDERED;
4188 }
2d5f0764 4189
99c621ef 4190 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
6201171e 4191 if (!ctx)
4192 return -ENOMEM;
2d5f0764
LJ
4193
4194 /* the ctx has been prepared successfully, let's commit it */
6201171e 4195 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4196 apply_wqattrs_cleanup(ctx);
4197
6201171e 4198 return 0;
9e8cd2f5
TH
4199}
4200
a0111cf6
LJ
4201/**
4202 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4203 * @wq: the target workqueue
4204 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4205 *
4206 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4207 * machines, this function maps a separate pwq to each NUMA node with
4208 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4209 * NUMA node it was issued on. Older pwqs are released as in-flight work
4210 * items finish. Note that a work item which repeatedly requeues itself
4211 * back-to-back will stay on its current pwq.
4212 *
4213 * Performs GFP_KERNEL allocations.
4214 *
ffd8bea8 4215 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4216 *
a0111cf6
LJ
4217 * Return: 0 on success and -errno on failure.
4218 */
513c98d0 4219int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4220 const struct workqueue_attrs *attrs)
4221{
4222 int ret;
4223
509b3204
DJ
4224 lockdep_assert_cpus_held();
4225
4226 mutex_lock(&wq_pool_mutex);
a0111cf6 4227 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4228 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4229
4230 return ret;
4231}
4232
4c16bd32
TH
4233/**
4234 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4235 * @wq: the target workqueue
4236 * @cpu: the CPU coming up or going down
4237 * @online: whether @cpu is coming up or going down
4238 *
4239 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4240 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4241 * @wq accordingly.
4242 *
4243 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4244 * falls back to @wq->dfl_pwq which may not be optimal but is always
4245 * correct.
4246 *
4247 * Note that when the last allowed CPU of a NUMA node goes offline for a
4248 * workqueue with a cpumask spanning multiple nodes, the workers which were
4249 * already executing the work items for the workqueue will lose their CPU
4250 * affinity and may execute on any CPU. This is similar to how per-cpu
4251 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4252 * affinity, it's the user's responsibility to flush the work item from
4253 * CPU_DOWN_PREPARE.
4254 */
4255static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4256 bool online)
4257{
4258 int node = cpu_to_node(cpu);
4259 int cpu_off = online ? -1 : cpu;
4260 struct pool_workqueue *old_pwq = NULL, *pwq;
4261 struct workqueue_attrs *target_attrs;
4262 cpumask_t *cpumask;
4263
4264 lockdep_assert_held(&wq_pool_mutex);
4265
f7142ed4
LJ
4266 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4267 wq->unbound_attrs->no_numa)
4c16bd32
TH
4268 return;
4269
4270 /*
4271 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4272 * Let's use a preallocated one. The following buf is protected by
4273 * CPU hotplug exclusion.
4274 */
4275 target_attrs = wq_update_unbound_numa_attrs_buf;
4276 cpumask = target_attrs->cpumask;
4277
4c16bd32
TH
4278 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4279 pwq = unbound_pwq_by_node(wq, node);
4280
4281 /*
4282 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4283 * different from the default pwq's, we need to compare it to @pwq's
4284 * and create a new one if they don't match. If the target cpumask
4285 * equals the default pwq's, the default pwq should be used.
4c16bd32 4286 */
042f7df1 4287 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4288 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4289 return;
4c16bd32 4290 } else {
534a3fbb 4291 goto use_dfl_pwq;
4c16bd32
TH
4292 }
4293
4c16bd32
TH
4294 /* create a new pwq */
4295 pwq = alloc_unbound_pwq(wq, target_attrs);
4296 if (!pwq) {
2d916033
FF
4297 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4298 wq->name);
77f300b1 4299 goto use_dfl_pwq;
4c16bd32
TH
4300 }
4301
f7142ed4 4302 /* Install the new pwq. */
4c16bd32
TH
4303 mutex_lock(&wq->mutex);
4304 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4305 goto out_unlock;
4306
4307use_dfl_pwq:
f7142ed4 4308 mutex_lock(&wq->mutex);
a9b8a985 4309 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4310 get_pwq(wq->dfl_pwq);
a9b8a985 4311 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4312 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4313out_unlock:
4314 mutex_unlock(&wq->mutex);
4315 put_pwq_unlocked(old_pwq);
4316}
4317
30cdf249 4318static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4319{
49e3cf44 4320 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4321 int cpu, ret;
30cdf249
TH
4322
4323 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4324 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4325 if (!wq->cpu_pwqs)
30cdf249
TH
4326 return -ENOMEM;
4327
4328 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4329 struct pool_workqueue *pwq =
4330 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4331 struct worker_pool *cpu_pools =
f02ae73a 4332 per_cpu(cpu_worker_pools, cpu);
f3421797 4333
f147f29e
TH
4334 init_pwq(pwq, wq, &cpu_pools[highpri]);
4335
4336 mutex_lock(&wq->mutex);
1befcf30 4337 link_pwq(pwq);
f147f29e 4338 mutex_unlock(&wq->mutex);
30cdf249 4339 }
9e8cd2f5 4340 return 0;
509b3204
DJ
4341 }
4342
ffd8bea8 4343 cpus_read_lock();
509b3204 4344 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4345 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4346 /* there should only be single pwq for ordering guarantee */
4347 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4348 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4349 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4350 } else {
509b3204 4351 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4352 }
ffd8bea8 4353 cpus_read_unlock();
509b3204
DJ
4354
4355 return ret;
0f900049
TH
4356}
4357
f3421797
TH
4358static int wq_clamp_max_active(int max_active, unsigned int flags,
4359 const char *name)
b71ab8c2 4360{
f3421797
TH
4361 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4362
4363 if (max_active < 1 || max_active > lim)
044c782c
VI
4364 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4365 max_active, name, 1, lim);
b71ab8c2 4366
f3421797 4367 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4368}
4369
983c7515
TH
4370/*
4371 * Workqueues which may be used during memory reclaim should have a rescuer
4372 * to guarantee forward progress.
4373 */
4374static int init_rescuer(struct workqueue_struct *wq)
4375{
4376 struct worker *rescuer;
b92b36ea 4377 int ret;
983c7515
TH
4378
4379 if (!(wq->flags & WQ_MEM_RECLAIM))
4380 return 0;
4381
4382 rescuer = alloc_worker(NUMA_NO_NODE);
4383 if (!rescuer)
4384 return -ENOMEM;
4385
4386 rescuer->rescue_wq = wq;
4387 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4388 if (IS_ERR(rescuer->task)) {
b92b36ea 4389 ret = PTR_ERR(rescuer->task);
983c7515 4390 kfree(rescuer);
b92b36ea 4391 return ret;
983c7515
TH
4392 }
4393
4394 wq->rescuer = rescuer;
4395 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4396 wake_up_process(rescuer->task);
4397
4398 return 0;
4399}
4400
a2775bbc 4401__printf(1, 4)
669de8bd
BVA
4402struct workqueue_struct *alloc_workqueue(const char *fmt,
4403 unsigned int flags,
4404 int max_active, ...)
1da177e4 4405{
df2d5ae4 4406 size_t tbl_size = 0;
ecf6881f 4407 va_list args;
1da177e4 4408 struct workqueue_struct *wq;
49e3cf44 4409 struct pool_workqueue *pwq;
b196be89 4410
5c0338c6
TH
4411 /*
4412 * Unbound && max_active == 1 used to imply ordered, which is no
4413 * longer the case on NUMA machines due to per-node pools. While
4414 * alloc_ordered_workqueue() is the right way to create an ordered
4415 * workqueue, keep the previous behavior to avoid subtle breakages
4416 * on NUMA.
4417 */
4418 if ((flags & WQ_UNBOUND) && max_active == 1)
4419 flags |= __WQ_ORDERED;
4420
cee22a15
VK
4421 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4422 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4423 flags |= WQ_UNBOUND;
4424
ecf6881f 4425 /* allocate wq and format name */
df2d5ae4 4426 if (flags & WQ_UNBOUND)
ddcb57e2 4427 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4428
4429 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4430 if (!wq)
d2c1d404 4431 return NULL;
b196be89 4432
6029a918 4433 if (flags & WQ_UNBOUND) {
be69d00d 4434 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4435 if (!wq->unbound_attrs)
4436 goto err_free_wq;
4437 }
4438
669de8bd 4439 va_start(args, max_active);
ecf6881f 4440 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4441 va_end(args);
1da177e4 4442
d320c038 4443 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4444 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4445
b196be89 4446 /* init wq */
97e37d7b 4447 wq->flags = flags;
a0a1a5fd 4448 wq->saved_max_active = max_active;
3c25a55d 4449 mutex_init(&wq->mutex);
112202d9 4450 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4451 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4452 INIT_LIST_HEAD(&wq->flusher_queue);
4453 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4454 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4455
669de8bd 4456 wq_init_lockdep(wq);
cce1a165 4457 INIT_LIST_HEAD(&wq->list);
3af24433 4458
30cdf249 4459 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4460 goto err_unreg_lockdep;
1537663f 4461
40c17f75 4462 if (wq_online && init_rescuer(wq) < 0)
983c7515 4463 goto err_destroy;
3af24433 4464
226223ab
TH
4465 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4466 goto err_destroy;
4467
a0a1a5fd 4468 /*
68e13a67
LJ
4469 * wq_pool_mutex protects global freeze state and workqueues list.
4470 * Grab it, adjust max_active and add the new @wq to workqueues
4471 * list.
a0a1a5fd 4472 */
68e13a67 4473 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4474
a357fc03 4475 mutex_lock(&wq->mutex);
699ce097
TH
4476 for_each_pwq(pwq, wq)
4477 pwq_adjust_max_active(pwq);
a357fc03 4478 mutex_unlock(&wq->mutex);
a0a1a5fd 4479
e2dca7ad 4480 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4481
68e13a67 4482 mutex_unlock(&wq_pool_mutex);
1537663f 4483
3af24433 4484 return wq;
d2c1d404 4485
82efcab3 4486err_unreg_lockdep:
009bb421
BVA
4487 wq_unregister_lockdep(wq);
4488 wq_free_lockdep(wq);
82efcab3 4489err_free_wq:
6029a918 4490 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4491 kfree(wq);
4492 return NULL;
4493err_destroy:
4494 destroy_workqueue(wq);
4690c4ab 4495 return NULL;
3af24433 4496}
669de8bd 4497EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4498
c29eb853
TH
4499static bool pwq_busy(struct pool_workqueue *pwq)
4500{
4501 int i;
4502
4503 for (i = 0; i < WORK_NR_COLORS; i++)
4504 if (pwq->nr_in_flight[i])
4505 return true;
4506
4507 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4508 return true;
f97a4a1a 4509 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4510 return true;
4511
4512 return false;
4513}
4514
3af24433
ON
4515/**
4516 * destroy_workqueue - safely terminate a workqueue
4517 * @wq: target workqueue
4518 *
4519 * Safely destroy a workqueue. All work currently pending will be done first.
4520 */
4521void destroy_workqueue(struct workqueue_struct *wq)
4522{
49e3cf44 4523 struct pool_workqueue *pwq;
4c16bd32 4524 int node;
3af24433 4525
def98c84
TH
4526 /*
4527 * Remove it from sysfs first so that sanity check failure doesn't
4528 * lead to sysfs name conflicts.
4529 */
4530 workqueue_sysfs_unregister(wq);
4531
33e3f0a3
RC
4532 /* mark the workqueue destruction is in progress */
4533 mutex_lock(&wq->mutex);
4534 wq->flags |= __WQ_DESTROYING;
4535 mutex_unlock(&wq->mutex);
4536
9c5a2ba7
TH
4537 /* drain it before proceeding with destruction */
4538 drain_workqueue(wq);
c8efcc25 4539
def98c84
TH
4540 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4541 if (wq->rescuer) {
4542 struct worker *rescuer = wq->rescuer;
4543
4544 /* this prevents new queueing */
a9b8a985 4545 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4546 wq->rescuer = NULL;
a9b8a985 4547 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4548
4549 /* rescuer will empty maydays list before exiting */
4550 kthread_stop(rescuer->task);
8efe1223 4551 kfree(rescuer);
def98c84
TH
4552 }
4553
c29eb853
TH
4554 /*
4555 * Sanity checks - grab all the locks so that we wait for all
4556 * in-flight operations which may do put_pwq().
4557 */
4558 mutex_lock(&wq_pool_mutex);
b09f4fd3 4559 mutex_lock(&wq->mutex);
49e3cf44 4560 for_each_pwq(pwq, wq) {
a9b8a985 4561 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4562 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4563 pr_warn("%s: %s has the following busy pwq\n",
4564 __func__, wq->name);
c29eb853 4565 show_pwq(pwq);
a9b8a985 4566 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4567 mutex_unlock(&wq->mutex);
c29eb853 4568 mutex_unlock(&wq_pool_mutex);
55df0933 4569 show_one_workqueue(wq);
6183c009 4570 return;
76af4d93 4571 }
a9b8a985 4572 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4573 }
b09f4fd3 4574 mutex_unlock(&wq->mutex);
6183c009 4575
a0a1a5fd
TH
4576 /*
4577 * wq list is used to freeze wq, remove from list after
4578 * flushing is complete in case freeze races us.
4579 */
e2dca7ad 4580 list_del_rcu(&wq->list);
68e13a67 4581 mutex_unlock(&wq_pool_mutex);
3af24433 4582
8864b4e5 4583 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4584 wq_unregister_lockdep(wq);
8864b4e5
TH
4585 /*
4586 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4587 * schedule RCU free.
8864b4e5 4588 */
25b00775 4589 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4590 } else {
4591 /*
4592 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4593 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4594 * @wq will be freed when the last pwq is released.
8864b4e5 4595 */
4c16bd32
TH
4596 for_each_node(node) {
4597 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4598 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4599 put_pwq_unlocked(pwq);
4600 }
4601
4602 /*
4603 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4604 * put. Don't access it afterwards.
4605 */
4606 pwq = wq->dfl_pwq;
4607 wq->dfl_pwq = NULL;
dce90d47 4608 put_pwq_unlocked(pwq);
29c91e99 4609 }
3af24433
ON
4610}
4611EXPORT_SYMBOL_GPL(destroy_workqueue);
4612
dcd989cb
TH
4613/**
4614 * workqueue_set_max_active - adjust max_active of a workqueue
4615 * @wq: target workqueue
4616 * @max_active: new max_active value.
4617 *
4618 * Set max_active of @wq to @max_active.
4619 *
4620 * CONTEXT:
4621 * Don't call from IRQ context.
4622 */
4623void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4624{
49e3cf44 4625 struct pool_workqueue *pwq;
dcd989cb 4626
8719dcea 4627 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4628 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4629 return;
4630
f3421797 4631 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4632
a357fc03 4633 mutex_lock(&wq->mutex);
dcd989cb 4634
0a94efb5 4635 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4636 wq->saved_max_active = max_active;
4637
699ce097
TH
4638 for_each_pwq(pwq, wq)
4639 pwq_adjust_max_active(pwq);
93981800 4640
a357fc03 4641 mutex_unlock(&wq->mutex);
15316ba8 4642}
dcd989cb 4643EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4644
27d4ee03
LW
4645/**
4646 * current_work - retrieve %current task's work struct
4647 *
4648 * Determine if %current task is a workqueue worker and what it's working on.
4649 * Useful to find out the context that the %current task is running in.
4650 *
4651 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4652 */
4653struct work_struct *current_work(void)
4654{
4655 struct worker *worker = current_wq_worker();
4656
4657 return worker ? worker->current_work : NULL;
4658}
4659EXPORT_SYMBOL(current_work);
4660
e6267616
TH
4661/**
4662 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4663 *
4664 * Determine whether %current is a workqueue rescuer. Can be used from
4665 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4666 *
4667 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4668 */
4669bool current_is_workqueue_rescuer(void)
4670{
4671 struct worker *worker = current_wq_worker();
4672
6a092dfd 4673 return worker && worker->rescue_wq;
e6267616
TH
4674}
4675
eef6a7d5 4676/**
dcd989cb
TH
4677 * workqueue_congested - test whether a workqueue is congested
4678 * @cpu: CPU in question
4679 * @wq: target workqueue
eef6a7d5 4680 *
dcd989cb
TH
4681 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4682 * no synchronization around this function and the test result is
4683 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4684 *
d3251859
TH
4685 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4686 * Note that both per-cpu and unbound workqueues may be associated with
4687 * multiple pool_workqueues which have separate congested states. A
4688 * workqueue being congested on one CPU doesn't mean the workqueue is also
4689 * contested on other CPUs / NUMA nodes.
4690 *
d185af30 4691 * Return:
dcd989cb 4692 * %true if congested, %false otherwise.
eef6a7d5 4693 */
d84ff051 4694bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4695{
7fb98ea7 4696 struct pool_workqueue *pwq;
76af4d93
TH
4697 bool ret;
4698
24acfb71
TG
4699 rcu_read_lock();
4700 preempt_disable();
7fb98ea7 4701
d3251859
TH
4702 if (cpu == WORK_CPU_UNBOUND)
4703 cpu = smp_processor_id();
4704
7fb98ea7
TH
4705 if (!(wq->flags & WQ_UNBOUND))
4706 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4707 else
df2d5ae4 4708 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4709
f97a4a1a 4710 ret = !list_empty(&pwq->inactive_works);
24acfb71
TG
4711 preempt_enable();
4712 rcu_read_unlock();
76af4d93
TH
4713
4714 return ret;
1da177e4 4715}
dcd989cb 4716EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4717
dcd989cb
TH
4718/**
4719 * work_busy - test whether a work is currently pending or running
4720 * @work: the work to be tested
4721 *
4722 * Test whether @work is currently pending or running. There is no
4723 * synchronization around this function and the test result is
4724 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4725 *
d185af30 4726 * Return:
dcd989cb
TH
4727 * OR'd bitmask of WORK_BUSY_* bits.
4728 */
4729unsigned int work_busy(struct work_struct *work)
1da177e4 4730{
fa1b54e6 4731 struct worker_pool *pool;
dcd989cb
TH
4732 unsigned long flags;
4733 unsigned int ret = 0;
1da177e4 4734
dcd989cb
TH
4735 if (work_pending(work))
4736 ret |= WORK_BUSY_PENDING;
1da177e4 4737
24acfb71 4738 rcu_read_lock();
fa1b54e6 4739 pool = get_work_pool(work);
038366c5 4740 if (pool) {
a9b8a985 4741 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4742 if (find_worker_executing_work(pool, work))
4743 ret |= WORK_BUSY_RUNNING;
a9b8a985 4744 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4745 }
24acfb71 4746 rcu_read_unlock();
1da177e4 4747
dcd989cb 4748 return ret;
1da177e4 4749}
dcd989cb 4750EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4751
3d1cb205
TH
4752/**
4753 * set_worker_desc - set description for the current work item
4754 * @fmt: printf-style format string
4755 * @...: arguments for the format string
4756 *
4757 * This function can be called by a running work function to describe what
4758 * the work item is about. If the worker task gets dumped, this
4759 * information will be printed out together to help debugging. The
4760 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4761 */
4762void set_worker_desc(const char *fmt, ...)
4763{
4764 struct worker *worker = current_wq_worker();
4765 va_list args;
4766
4767 if (worker) {
4768 va_start(args, fmt);
4769 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4770 va_end(args);
3d1cb205
TH
4771 }
4772}
5c750d58 4773EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4774
4775/**
4776 * print_worker_info - print out worker information and description
4777 * @log_lvl: the log level to use when printing
4778 * @task: target task
4779 *
4780 * If @task is a worker and currently executing a work item, print out the
4781 * name of the workqueue being serviced and worker description set with
4782 * set_worker_desc() by the currently executing work item.
4783 *
4784 * This function can be safely called on any task as long as the
4785 * task_struct itself is accessible. While safe, this function isn't
4786 * synchronized and may print out mixups or garbages of limited length.
4787 */
4788void print_worker_info(const char *log_lvl, struct task_struct *task)
4789{
4790 work_func_t *fn = NULL;
4791 char name[WQ_NAME_LEN] = { };
4792 char desc[WORKER_DESC_LEN] = { };
4793 struct pool_workqueue *pwq = NULL;
4794 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4795 struct worker *worker;
4796
4797 if (!(task->flags & PF_WQ_WORKER))
4798 return;
4799
4800 /*
4801 * This function is called without any synchronization and @task
4802 * could be in any state. Be careful with dereferences.
4803 */
e700591a 4804 worker = kthread_probe_data(task);
3d1cb205
TH
4805
4806 /*
8bf89593
TH
4807 * Carefully copy the associated workqueue's workfn, name and desc.
4808 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4809 */
fe557319
CH
4810 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4811 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4812 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4813 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4814 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4815
4816 if (fn || name[0] || desc[0]) {
d75f773c 4817 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4818 if (strcmp(name, desc))
3d1cb205
TH
4819 pr_cont(" (%s)", desc);
4820 pr_cont("\n");
4821 }
4822}
4823
3494fc30
TH
4824static void pr_cont_pool_info(struct worker_pool *pool)
4825{
4826 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4827 if (pool->node != NUMA_NO_NODE)
4828 pr_cont(" node=%d", pool->node);
4829 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4830}
4831
c76feb0d
PM
4832struct pr_cont_work_struct {
4833 bool comma;
4834 work_func_t func;
4835 long ctr;
4836};
4837
4838static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4839{
4840 if (!pcwsp->ctr)
4841 goto out_record;
4842 if (func == pcwsp->func) {
4843 pcwsp->ctr++;
4844 return;
4845 }
4846 if (pcwsp->ctr == 1)
4847 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4848 else
4849 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4850 pcwsp->ctr = 0;
4851out_record:
4852 if ((long)func == -1L)
4853 return;
4854 pcwsp->comma = comma;
4855 pcwsp->func = func;
4856 pcwsp->ctr = 1;
4857}
4858
4859static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
4860{
4861 if (work->func == wq_barrier_func) {
4862 struct wq_barrier *barr;
4863
4864 barr = container_of(work, struct wq_barrier, work);
4865
c76feb0d 4866 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
4867 pr_cont("%s BAR(%d)", comma ? "," : "",
4868 task_pid_nr(barr->task));
4869 } else {
c76feb0d
PM
4870 if (!comma)
4871 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4872 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
4873 }
4874}
4875
4876static void show_pwq(struct pool_workqueue *pwq)
4877{
c76feb0d 4878 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
4879 struct worker_pool *pool = pwq->pool;
4880 struct work_struct *work;
4881 struct worker *worker;
4882 bool has_in_flight = false, has_pending = false;
4883 int bkt;
4884
4885 pr_info(" pwq %d:", pool->id);
4886 pr_cont_pool_info(pool);
4887
e66b39af
TH
4888 pr_cont(" active=%d/%d refcnt=%d%s\n",
4889 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4890 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4891
4892 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4893 if (worker->current_pwq == pwq) {
4894 has_in_flight = true;
4895 break;
4896 }
4897 }
4898 if (has_in_flight) {
4899 bool comma = false;
4900
4901 pr_info(" in-flight:");
4902 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4903 if (worker->current_pwq != pwq)
4904 continue;
4905
d75f773c 4906 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4907 task_pid_nr(worker->task),
30ae2fc0 4908 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4909 worker->current_func);
4910 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
4911 pr_cont_work(false, work, &pcws);
4912 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4913 comma = true;
4914 }
4915 pr_cont("\n");
4916 }
4917
4918 list_for_each_entry(work, &pool->worklist, entry) {
4919 if (get_work_pwq(work) == pwq) {
4920 has_pending = true;
4921 break;
4922 }
4923 }
4924 if (has_pending) {
4925 bool comma = false;
4926
4927 pr_info(" pending:");
4928 list_for_each_entry(work, &pool->worklist, entry) {
4929 if (get_work_pwq(work) != pwq)
4930 continue;
4931
c76feb0d 4932 pr_cont_work(comma, work, &pcws);
3494fc30
TH
4933 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4934 }
c76feb0d 4935 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4936 pr_cont("\n");
4937 }
4938
f97a4a1a 4939 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
4940 bool comma = false;
4941
f97a4a1a
LJ
4942 pr_info(" inactive:");
4943 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 4944 pr_cont_work(comma, work, &pcws);
3494fc30
TH
4945 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4946 }
c76feb0d 4947 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4948 pr_cont("\n");
4949 }
4950}
4951
4952/**
55df0933
IK
4953 * show_one_workqueue - dump state of specified workqueue
4954 * @wq: workqueue whose state will be printed
3494fc30 4955 */
55df0933 4956void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 4957{
55df0933
IK
4958 struct pool_workqueue *pwq;
4959 bool idle = true;
3494fc30 4960 unsigned long flags;
3494fc30 4961
55df0933
IK
4962 for_each_pwq(pwq, wq) {
4963 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4964 idle = false;
4965 break;
3494fc30 4966 }
55df0933
IK
4967 }
4968 if (idle) /* Nothing to print for idle workqueue */
4969 return;
3494fc30 4970
55df0933 4971 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 4972
55df0933
IK
4973 for_each_pwq(pwq, wq) {
4974 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4975 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
62635ea8 4976 /*
55df0933
IK
4977 * Defer printing to avoid deadlocks in console
4978 * drivers that queue work while holding locks
4979 * also taken in their write paths.
62635ea8 4980 */
55df0933
IK
4981 printk_deferred_enter();
4982 show_pwq(pwq);
4983 printk_deferred_exit();
3494fc30 4984 }
55df0933 4985 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4986 /*
4987 * We could be printing a lot from atomic context, e.g.
55df0933 4988 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
4989 * hard lockup.
4990 */
4991 touch_nmi_watchdog();
3494fc30
TH
4992 }
4993
55df0933
IK
4994}
4995
4996/**
4997 * show_one_worker_pool - dump state of specified worker pool
4998 * @pool: worker pool whose state will be printed
4999 */
5000static void show_one_worker_pool(struct worker_pool *pool)
5001{
5002 struct worker *worker;
5003 bool first = true;
5004 unsigned long flags;
5005
5006 raw_spin_lock_irqsave(&pool->lock, flags);
5007 if (pool->nr_workers == pool->nr_idle)
5008 goto next_pool;
5009 /*
5010 * Defer printing to avoid deadlocks in console drivers that
5011 * queue work while holding locks also taken in their write
5012 * paths.
5013 */
5014 printk_deferred_enter();
5015 pr_info("pool %d:", pool->id);
5016 pr_cont_pool_info(pool);
5017 pr_cont(" hung=%us workers=%d",
5018 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
5019 pool->nr_workers);
5020 if (pool->manager)
5021 pr_cont(" manager: %d",
5022 task_pid_nr(pool->manager->task));
5023 list_for_each_entry(worker, &pool->idle_list, entry) {
5024 pr_cont(" %s%d", first ? "idle: " : "",
5025 task_pid_nr(worker->task));
5026 first = false;
5027 }
5028 pr_cont("\n");
5029 printk_deferred_exit();
5030next_pool:
5031 raw_spin_unlock_irqrestore(&pool->lock, flags);
5032 /*
5033 * We could be printing a lot from atomic context, e.g.
5034 * sysrq-t -> show_all_workqueues(). Avoid triggering
5035 * hard lockup.
5036 */
5037 touch_nmi_watchdog();
5038
5039}
5040
5041/**
5042 * show_all_workqueues - dump workqueue state
5043 *
5044 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
5045 * all busy workqueues and pools.
5046 */
5047void show_all_workqueues(void)
5048{
5049 struct workqueue_struct *wq;
5050 struct worker_pool *pool;
5051 int pi;
5052
5053 rcu_read_lock();
5054
5055 pr_info("Showing busy workqueues and worker pools:\n");
5056
5057 list_for_each_entry_rcu(wq, &workqueues, list)
5058 show_one_workqueue(wq);
5059
5060 for_each_pool(pool, pi)
5061 show_one_worker_pool(pool);
5062
24acfb71 5063 rcu_read_unlock();
3494fc30
TH
5064}
5065
6b59808b
TH
5066/* used to show worker information through /proc/PID/{comm,stat,status} */
5067void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5068{
6b59808b
TH
5069 int off;
5070
5071 /* always show the actual comm */
5072 off = strscpy(buf, task->comm, size);
5073 if (off < 0)
5074 return;
5075
197f6acc 5076 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
5077 mutex_lock(&wq_pool_attach_mutex);
5078
197f6acc
TH
5079 if (task->flags & PF_WQ_WORKER) {
5080 struct worker *worker = kthread_data(task);
5081 struct worker_pool *pool = worker->pool;
6b59808b 5082
197f6acc 5083 if (pool) {
a9b8a985 5084 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
5085 /*
5086 * ->desc tracks information (wq name or
5087 * set_worker_desc()) for the latest execution. If
5088 * current, prepend '+', otherwise '-'.
5089 */
5090 if (worker->desc[0] != '\0') {
5091 if (worker->current_work)
5092 scnprintf(buf + off, size - off, "+%s",
5093 worker->desc);
5094 else
5095 scnprintf(buf + off, size - off, "-%s",
5096 worker->desc);
5097 }
a9b8a985 5098 raw_spin_unlock_irq(&pool->lock);
6b59808b 5099 }
6b59808b
TH
5100 }
5101
5102 mutex_unlock(&wq_pool_attach_mutex);
5103}
5104
66448bc2
MM
5105#ifdef CONFIG_SMP
5106
db7bccf4
TH
5107/*
5108 * CPU hotplug.
5109 *
e22bee78 5110 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 5111 * are a lot of assumptions on strong associations among work, pwq and
706026c2 5112 * pool which make migrating pending and scheduled works very
e22bee78 5113 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 5114 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
5115 * blocked draining impractical.
5116 *
24647570 5117 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
5118 * running as an unbound one and allowing it to be reattached later if the
5119 * cpu comes back online.
db7bccf4 5120 */
1da177e4 5121
e8b3f8db 5122static void unbind_workers(int cpu)
3af24433 5123{
4ce62e9e 5124 struct worker_pool *pool;
db7bccf4 5125 struct worker *worker;
3af24433 5126
f02ae73a 5127 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 5128 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 5129 raw_spin_lock_irq(&pool->lock);
3af24433 5130
94cf58bb 5131 /*
92f9c5c4 5132 * We've blocked all attach/detach operations. Make all workers
94cf58bb 5133 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 5134 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
5135 * And the preemption disabled section in their sched callbacks
5136 * are guaranteed to see WORKER_UNBOUND since the code here
5137 * is on the same cpu.
94cf58bb 5138 */
da028469 5139 for_each_pool_worker(worker, pool)
c9e7cf27 5140 worker->flags |= WORKER_UNBOUND;
06ba38a9 5141
24647570 5142 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 5143
eb283428 5144 /*
989442d7
LJ
5145 * The handling of nr_running in sched callbacks are disabled
5146 * now. Zap nr_running. After this, nr_running stays zero and
5147 * need_more_worker() and keep_working() are always true as
5148 * long as the worklist is not empty. This pool now behaves as
5149 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
5150 * are served by workers tied to the pool.
5151 */
bc35f7ef 5152 pool->nr_running = 0;
eb283428
LJ
5153
5154 /*
5155 * With concurrency management just turned off, a busy
5156 * worker blocking could lead to lengthy stalls. Kick off
5157 * unbound chain execution of currently pending work items.
5158 */
eb283428 5159 wake_up_worker(pool);
989442d7 5160
a9b8a985 5161 raw_spin_unlock_irq(&pool->lock);
989442d7 5162
793777bc
VS
5163 for_each_pool_worker(worker, pool)
5164 unbind_worker(worker);
989442d7
LJ
5165
5166 mutex_unlock(&wq_pool_attach_mutex);
eb283428 5167 }
3af24433 5168}
3af24433 5169
bd7c089e
TH
5170/**
5171 * rebind_workers - rebind all workers of a pool to the associated CPU
5172 * @pool: pool of interest
5173 *
a9ab775b 5174 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5175 */
5176static void rebind_workers(struct worker_pool *pool)
5177{
a9ab775b 5178 struct worker *worker;
bd7c089e 5179
1258fae7 5180 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5181
a9ab775b
TH
5182 /*
5183 * Restore CPU affinity of all workers. As all idle workers should
5184 * be on the run-queue of the associated CPU before any local
402dd89d 5185 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5186 * of all workers first and then clear UNBOUND. As we're called
5187 * from CPU_ONLINE, the following shouldn't fail.
5188 */
c63a2e52
VS
5189 for_each_pool_worker(worker, pool) {
5190 kthread_set_per_cpu(worker->task, pool->cpu);
5191 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5192 pool->attrs->cpumask) < 0);
5193 }
bd7c089e 5194
a9b8a985 5195 raw_spin_lock_irq(&pool->lock);
f7c17d26 5196
3de5e884 5197 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5198
da028469 5199 for_each_pool_worker(worker, pool) {
a9ab775b 5200 unsigned int worker_flags = worker->flags;
bd7c089e 5201
a9ab775b
TH
5202 /*
5203 * We want to clear UNBOUND but can't directly call
5204 * worker_clr_flags() or adjust nr_running. Atomically
5205 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5206 * @worker will clear REBOUND using worker_clr_flags() when
5207 * it initiates the next execution cycle thus restoring
5208 * concurrency management. Note that when or whether
5209 * @worker clears REBOUND doesn't affect correctness.
5210 *
c95491ed 5211 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5212 * tested without holding any lock in
6d25be57 5213 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5214 * fail incorrectly leading to premature concurrency
5215 * management operations.
5216 */
5217 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5218 worker_flags |= WORKER_REBOUND;
5219 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5220 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5221 }
a9ab775b 5222
a9b8a985 5223 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5224}
5225
7dbc725e
TH
5226/**
5227 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5228 * @pool: unbound pool of interest
5229 * @cpu: the CPU which is coming up
5230 *
5231 * An unbound pool may end up with a cpumask which doesn't have any online
5232 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5233 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5234 * online CPU before, cpus_allowed of all its workers should be restored.
5235 */
5236static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5237{
5238 static cpumask_t cpumask;
5239 struct worker *worker;
7dbc725e 5240
1258fae7 5241 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5242
5243 /* is @cpu allowed for @pool? */
5244 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5245 return;
5246
7dbc725e 5247 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5248
5249 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5250 for_each_pool_worker(worker, pool)
d945b5e9 5251 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5252}
5253
7ee681b2
TG
5254int workqueue_prepare_cpu(unsigned int cpu)
5255{
5256 struct worker_pool *pool;
5257
5258 for_each_cpu_worker_pool(pool, cpu) {
5259 if (pool->nr_workers)
5260 continue;
5261 if (!create_worker(pool))
5262 return -ENOMEM;
5263 }
5264 return 0;
5265}
5266
5267int workqueue_online_cpu(unsigned int cpu)
3af24433 5268{
4ce62e9e 5269 struct worker_pool *pool;
4c16bd32 5270 struct workqueue_struct *wq;
7dbc725e 5271 int pi;
3ce63377 5272
7ee681b2 5273 mutex_lock(&wq_pool_mutex);
7dbc725e 5274
7ee681b2 5275 for_each_pool(pool, pi) {
1258fae7 5276 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5277
7ee681b2
TG
5278 if (pool->cpu == cpu)
5279 rebind_workers(pool);
5280 else if (pool->cpu < 0)
5281 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5282
1258fae7 5283 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5284 }
6ba94429 5285
7ee681b2
TG
5286 /* update NUMA affinity of unbound workqueues */
5287 list_for_each_entry(wq, &workqueues, list)
5288 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5289
7ee681b2
TG
5290 mutex_unlock(&wq_pool_mutex);
5291 return 0;
6ba94429
FW
5292}
5293
7ee681b2 5294int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5295{
6ba94429
FW
5296 struct workqueue_struct *wq;
5297
7ee681b2 5298 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5299 if (WARN_ON(cpu != smp_processor_id()))
5300 return -1;
5301
5302 unbind_workers(cpu);
7ee681b2
TG
5303
5304 /* update NUMA affinity of unbound workqueues */
5305 mutex_lock(&wq_pool_mutex);
5306 list_for_each_entry(wq, &workqueues, list)
5307 wq_update_unbound_numa(wq, cpu, false);
5308 mutex_unlock(&wq_pool_mutex);
5309
7ee681b2 5310 return 0;
6ba94429
FW
5311}
5312
6ba94429
FW
5313struct work_for_cpu {
5314 struct work_struct work;
5315 long (*fn)(void *);
5316 void *arg;
5317 long ret;
5318};
5319
5320static void work_for_cpu_fn(struct work_struct *work)
5321{
5322 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5323
5324 wfc->ret = wfc->fn(wfc->arg);
5325}
5326
5327/**
22aceb31 5328 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5329 * @cpu: the cpu to run on
5330 * @fn: the function to run
5331 * @arg: the function arg
5332 *
5333 * It is up to the caller to ensure that the cpu doesn't go offline.
5334 * The caller must not hold any locks which would prevent @fn from completing.
5335 *
5336 * Return: The value @fn returns.
5337 */
5338long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5339{
5340 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5341
5342 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5343 schedule_work_on(cpu, &wfc.work);
5344 flush_work(&wfc.work);
5345 destroy_work_on_stack(&wfc.work);
5346 return wfc.ret;
5347}
5348EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5349
5350/**
5351 * work_on_cpu_safe - run a function in thread context on a particular cpu
5352 * @cpu: the cpu to run on
5353 * @fn: the function to run
5354 * @arg: the function argument
5355 *
5356 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5357 * any locks which would prevent @fn from completing.
5358 *
5359 * Return: The value @fn returns.
5360 */
5361long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5362{
5363 long ret = -ENODEV;
5364
ffd8bea8 5365 cpus_read_lock();
0e8d6a93
TG
5366 if (cpu_online(cpu))
5367 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5368 cpus_read_unlock();
0e8d6a93
TG
5369 return ret;
5370}
5371EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5372#endif /* CONFIG_SMP */
5373
5374#ifdef CONFIG_FREEZER
5375
5376/**
5377 * freeze_workqueues_begin - begin freezing workqueues
5378 *
5379 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5380 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5381 * pool->worklist.
5382 *
5383 * CONTEXT:
5384 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5385 */
5386void freeze_workqueues_begin(void)
5387{
5388 struct workqueue_struct *wq;
5389 struct pool_workqueue *pwq;
5390
5391 mutex_lock(&wq_pool_mutex);
5392
5393 WARN_ON_ONCE(workqueue_freezing);
5394 workqueue_freezing = true;
5395
5396 list_for_each_entry(wq, &workqueues, list) {
5397 mutex_lock(&wq->mutex);
5398 for_each_pwq(pwq, wq)
5399 pwq_adjust_max_active(pwq);
5400 mutex_unlock(&wq->mutex);
5401 }
5402
5403 mutex_unlock(&wq_pool_mutex);
5404}
5405
5406/**
5407 * freeze_workqueues_busy - are freezable workqueues still busy?
5408 *
5409 * Check whether freezing is complete. This function must be called
5410 * between freeze_workqueues_begin() and thaw_workqueues().
5411 *
5412 * CONTEXT:
5413 * Grabs and releases wq_pool_mutex.
5414 *
5415 * Return:
5416 * %true if some freezable workqueues are still busy. %false if freezing
5417 * is complete.
5418 */
5419bool freeze_workqueues_busy(void)
5420{
5421 bool busy = false;
5422 struct workqueue_struct *wq;
5423 struct pool_workqueue *pwq;
5424
5425 mutex_lock(&wq_pool_mutex);
5426
5427 WARN_ON_ONCE(!workqueue_freezing);
5428
5429 list_for_each_entry(wq, &workqueues, list) {
5430 if (!(wq->flags & WQ_FREEZABLE))
5431 continue;
5432 /*
5433 * nr_active is monotonically decreasing. It's safe
5434 * to peek without lock.
5435 */
24acfb71 5436 rcu_read_lock();
6ba94429
FW
5437 for_each_pwq(pwq, wq) {
5438 WARN_ON_ONCE(pwq->nr_active < 0);
5439 if (pwq->nr_active) {
5440 busy = true;
24acfb71 5441 rcu_read_unlock();
6ba94429
FW
5442 goto out_unlock;
5443 }
5444 }
24acfb71 5445 rcu_read_unlock();
6ba94429
FW
5446 }
5447out_unlock:
5448 mutex_unlock(&wq_pool_mutex);
5449 return busy;
5450}
5451
5452/**
5453 * thaw_workqueues - thaw workqueues
5454 *
5455 * Thaw workqueues. Normal queueing is restored and all collected
5456 * frozen works are transferred to their respective pool worklists.
5457 *
5458 * CONTEXT:
5459 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5460 */
5461void thaw_workqueues(void)
5462{
5463 struct workqueue_struct *wq;
5464 struct pool_workqueue *pwq;
5465
5466 mutex_lock(&wq_pool_mutex);
5467
5468 if (!workqueue_freezing)
5469 goto out_unlock;
5470
5471 workqueue_freezing = false;
5472
5473 /* restore max_active and repopulate worklist */
5474 list_for_each_entry(wq, &workqueues, list) {
5475 mutex_lock(&wq->mutex);
5476 for_each_pwq(pwq, wq)
5477 pwq_adjust_max_active(pwq);
5478 mutex_unlock(&wq->mutex);
5479 }
5480
5481out_unlock:
5482 mutex_unlock(&wq_pool_mutex);
5483}
5484#endif /* CONFIG_FREEZER */
5485
99c621ef 5486static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
5487{
5488 LIST_HEAD(ctxs);
5489 int ret = 0;
5490 struct workqueue_struct *wq;
5491 struct apply_wqattrs_ctx *ctx, *n;
5492
5493 lockdep_assert_held(&wq_pool_mutex);
5494
5495 list_for_each_entry(wq, &workqueues, list) {
5496 if (!(wq->flags & WQ_UNBOUND))
5497 continue;
5498 /* creating multiple pwqs breaks ordering guarantee */
5499 if (wq->flags & __WQ_ORDERED)
5500 continue;
5501
99c621ef 5502 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
042f7df1
LJ
5503 if (!ctx) {
5504 ret = -ENOMEM;
5505 break;
5506 }
5507
5508 list_add_tail(&ctx->list, &ctxs);
5509 }
5510
5511 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5512 if (!ret)
5513 apply_wqattrs_commit(ctx);
5514 apply_wqattrs_cleanup(ctx);
5515 }
5516
99c621ef
LJ
5517 if (!ret) {
5518 mutex_lock(&wq_pool_attach_mutex);
5519 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5520 mutex_unlock(&wq_pool_attach_mutex);
5521 }
042f7df1
LJ
5522 return ret;
5523}
5524
5525/**
5526 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5527 * @cpumask: the cpumask to set
5528 *
5529 * The low-level workqueues cpumask is a global cpumask that limits
5530 * the affinity of all unbound workqueues. This function check the @cpumask
5531 * and apply it to all unbound workqueues and updates all pwqs of them.
5532 *
67dc8325 5533 * Return: 0 - Success
042f7df1
LJ
5534 * -EINVAL - Invalid @cpumask
5535 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5536 */
5537int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5538{
5539 int ret = -EINVAL;
042f7df1 5540
c98a9805
TS
5541 /*
5542 * Not excluding isolated cpus on purpose.
5543 * If the user wishes to include them, we allow that.
5544 */
042f7df1
LJ
5545 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5546 if (!cpumask_empty(cpumask)) {
a0111cf6 5547 apply_wqattrs_lock();
d25302e4
MD
5548 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5549 ret = 0;
5550 goto out_unlock;
5551 }
5552
99c621ef 5553 ret = workqueue_apply_unbound_cpumask(cpumask);
042f7df1 5554
d25302e4 5555out_unlock:
a0111cf6 5556 apply_wqattrs_unlock();
042f7df1 5557 }
042f7df1 5558
042f7df1
LJ
5559 return ret;
5560}
5561
6ba94429
FW
5562#ifdef CONFIG_SYSFS
5563/*
5564 * Workqueues with WQ_SYSFS flag set is visible to userland via
5565 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5566 * following attributes.
5567 *
5568 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5569 * max_active RW int : maximum number of in-flight work items
5570 *
5571 * Unbound workqueues have the following extra attributes.
5572 *
9a19b463 5573 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5574 * nice RW int : nice value of the workers
5575 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5576 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5577 */
5578struct wq_device {
5579 struct workqueue_struct *wq;
5580 struct device dev;
5581};
5582
5583static struct workqueue_struct *dev_to_wq(struct device *dev)
5584{
5585 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5586
5587 return wq_dev->wq;
5588}
5589
5590static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5591 char *buf)
5592{
5593 struct workqueue_struct *wq = dev_to_wq(dev);
5594
5595 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5596}
5597static DEVICE_ATTR_RO(per_cpu);
5598
5599static ssize_t max_active_show(struct device *dev,
5600 struct device_attribute *attr, char *buf)
5601{
5602 struct workqueue_struct *wq = dev_to_wq(dev);
5603
5604 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5605}
5606
5607static ssize_t max_active_store(struct device *dev,
5608 struct device_attribute *attr, const char *buf,
5609 size_t count)
5610{
5611 struct workqueue_struct *wq = dev_to_wq(dev);
5612 int val;
5613
5614 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5615 return -EINVAL;
5616
5617 workqueue_set_max_active(wq, val);
5618 return count;
5619}
5620static DEVICE_ATTR_RW(max_active);
5621
5622static struct attribute *wq_sysfs_attrs[] = {
5623 &dev_attr_per_cpu.attr,
5624 &dev_attr_max_active.attr,
5625 NULL,
5626};
5627ATTRIBUTE_GROUPS(wq_sysfs);
5628
5629static ssize_t wq_pool_ids_show(struct device *dev,
5630 struct device_attribute *attr, char *buf)
5631{
5632 struct workqueue_struct *wq = dev_to_wq(dev);
5633 const char *delim = "";
5634 int node, written = 0;
5635
ffd8bea8 5636 cpus_read_lock();
24acfb71 5637 rcu_read_lock();
6ba94429
FW
5638 for_each_node(node) {
5639 written += scnprintf(buf + written, PAGE_SIZE - written,
5640 "%s%d:%d", delim, node,
5641 unbound_pwq_by_node(wq, node)->pool->id);
5642 delim = " ";
5643 }
5644 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71 5645 rcu_read_unlock();
ffd8bea8 5646 cpus_read_unlock();
6ba94429
FW
5647
5648 return written;
5649}
5650
5651static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5652 char *buf)
5653{
5654 struct workqueue_struct *wq = dev_to_wq(dev);
5655 int written;
5656
5657 mutex_lock(&wq->mutex);
5658 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5659 mutex_unlock(&wq->mutex);
5660
5661 return written;
5662}
5663
5664/* prepare workqueue_attrs for sysfs store operations */
5665static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5666{
5667 struct workqueue_attrs *attrs;
5668
899a94fe
LJ
5669 lockdep_assert_held(&wq_pool_mutex);
5670
be69d00d 5671 attrs = alloc_workqueue_attrs();
6ba94429
FW
5672 if (!attrs)
5673 return NULL;
5674
6ba94429 5675 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5676 return attrs;
5677}
5678
5679static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5680 const char *buf, size_t count)
5681{
5682 struct workqueue_struct *wq = dev_to_wq(dev);
5683 struct workqueue_attrs *attrs;
d4d3e257
LJ
5684 int ret = -ENOMEM;
5685
5686 apply_wqattrs_lock();
6ba94429
FW
5687
5688 attrs = wq_sysfs_prep_attrs(wq);
5689 if (!attrs)
d4d3e257 5690 goto out_unlock;
6ba94429
FW
5691
5692 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5693 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5694 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5695 else
5696 ret = -EINVAL;
5697
d4d3e257
LJ
5698out_unlock:
5699 apply_wqattrs_unlock();
6ba94429
FW
5700 free_workqueue_attrs(attrs);
5701 return ret ?: count;
5702}
5703
5704static ssize_t wq_cpumask_show(struct device *dev,
5705 struct device_attribute *attr, char *buf)
5706{
5707 struct workqueue_struct *wq = dev_to_wq(dev);
5708 int written;
5709
5710 mutex_lock(&wq->mutex);
5711 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5712 cpumask_pr_args(wq->unbound_attrs->cpumask));
5713 mutex_unlock(&wq->mutex);
5714 return written;
5715}
5716
5717static ssize_t wq_cpumask_store(struct device *dev,
5718 struct device_attribute *attr,
5719 const char *buf, size_t count)
5720{
5721 struct workqueue_struct *wq = dev_to_wq(dev);
5722 struct workqueue_attrs *attrs;
d4d3e257
LJ
5723 int ret = -ENOMEM;
5724
5725 apply_wqattrs_lock();
6ba94429
FW
5726
5727 attrs = wq_sysfs_prep_attrs(wq);
5728 if (!attrs)
d4d3e257 5729 goto out_unlock;
6ba94429
FW
5730
5731 ret = cpumask_parse(buf, attrs->cpumask);
5732 if (!ret)
d4d3e257 5733 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5734
d4d3e257
LJ
5735out_unlock:
5736 apply_wqattrs_unlock();
6ba94429
FW
5737 free_workqueue_attrs(attrs);
5738 return ret ?: count;
5739}
5740
5741static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5742 char *buf)
5743{
5744 struct workqueue_struct *wq = dev_to_wq(dev);
5745 int written;
7dbc725e 5746
6ba94429
FW
5747 mutex_lock(&wq->mutex);
5748 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5749 !wq->unbound_attrs->no_numa);
5750 mutex_unlock(&wq->mutex);
4c16bd32 5751
6ba94429 5752 return written;
65758202
TH
5753}
5754
6ba94429
FW
5755static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5756 const char *buf, size_t count)
65758202 5757{
6ba94429
FW
5758 struct workqueue_struct *wq = dev_to_wq(dev);
5759 struct workqueue_attrs *attrs;
d4d3e257
LJ
5760 int v, ret = -ENOMEM;
5761
5762 apply_wqattrs_lock();
4c16bd32 5763
6ba94429
FW
5764 attrs = wq_sysfs_prep_attrs(wq);
5765 if (!attrs)
d4d3e257 5766 goto out_unlock;
4c16bd32 5767
6ba94429
FW
5768 ret = -EINVAL;
5769 if (sscanf(buf, "%d", &v) == 1) {
5770 attrs->no_numa = !v;
d4d3e257 5771 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5772 }
6ba94429 5773
d4d3e257
LJ
5774out_unlock:
5775 apply_wqattrs_unlock();
6ba94429
FW
5776 free_workqueue_attrs(attrs);
5777 return ret ?: count;
65758202
TH
5778}
5779
6ba94429
FW
5780static struct device_attribute wq_sysfs_unbound_attrs[] = {
5781 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5782 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5783 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5784 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5785 __ATTR_NULL,
5786};
8ccad40d 5787
6ba94429
FW
5788static struct bus_type wq_subsys = {
5789 .name = "workqueue",
5790 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5791};
5792
b05a7928
FW
5793static ssize_t wq_unbound_cpumask_show(struct device *dev,
5794 struct device_attribute *attr, char *buf)
5795{
5796 int written;
5797
042f7df1 5798 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5799 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5800 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5801 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5802
5803 return written;
5804}
5805
042f7df1
LJ
5806static ssize_t wq_unbound_cpumask_store(struct device *dev,
5807 struct device_attribute *attr, const char *buf, size_t count)
5808{
5809 cpumask_var_t cpumask;
5810 int ret;
5811
5812 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5813 return -ENOMEM;
5814
5815 ret = cpumask_parse(buf, cpumask);
5816 if (!ret)
5817 ret = workqueue_set_unbound_cpumask(cpumask);
5818
5819 free_cpumask_var(cpumask);
5820 return ret ? ret : count;
5821}
5822
b05a7928 5823static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5824 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5825 wq_unbound_cpumask_store);
b05a7928 5826
6ba94429 5827static int __init wq_sysfs_init(void)
2d3854a3 5828{
b05a7928
FW
5829 int err;
5830
5831 err = subsys_virtual_register(&wq_subsys, NULL);
5832 if (err)
5833 return err;
5834
5835 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5836}
6ba94429 5837core_initcall(wq_sysfs_init);
2d3854a3 5838
6ba94429 5839static void wq_device_release(struct device *dev)
2d3854a3 5840{
6ba94429 5841 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5842
6ba94429 5843 kfree(wq_dev);
2d3854a3 5844}
a0a1a5fd
TH
5845
5846/**
6ba94429
FW
5847 * workqueue_sysfs_register - make a workqueue visible in sysfs
5848 * @wq: the workqueue to register
a0a1a5fd 5849 *
6ba94429
FW
5850 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5851 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5852 * which is the preferred method.
a0a1a5fd 5853 *
6ba94429
FW
5854 * Workqueue user should use this function directly iff it wants to apply
5855 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5856 * apply_workqueue_attrs() may race against userland updating the
5857 * attributes.
5858 *
5859 * Return: 0 on success, -errno on failure.
a0a1a5fd 5860 */
6ba94429 5861int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5862{
6ba94429
FW
5863 struct wq_device *wq_dev;
5864 int ret;
a0a1a5fd 5865
6ba94429 5866 /*
402dd89d 5867 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5868 * attributes breaks ordering guarantee. Disallow exposing ordered
5869 * workqueues.
5870 */
0a94efb5 5871 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5872 return -EINVAL;
a0a1a5fd 5873
6ba94429
FW
5874 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5875 if (!wq_dev)
5876 return -ENOMEM;
5bcab335 5877
6ba94429
FW
5878 wq_dev->wq = wq;
5879 wq_dev->dev.bus = &wq_subsys;
6ba94429 5880 wq_dev->dev.release = wq_device_release;
23217b44 5881 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5882
6ba94429
FW
5883 /*
5884 * unbound_attrs are created separately. Suppress uevent until
5885 * everything is ready.
5886 */
5887 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5888
6ba94429
FW
5889 ret = device_register(&wq_dev->dev);
5890 if (ret) {
537f4146 5891 put_device(&wq_dev->dev);
6ba94429
FW
5892 wq->wq_dev = NULL;
5893 return ret;
5894 }
a0a1a5fd 5895
6ba94429
FW
5896 if (wq->flags & WQ_UNBOUND) {
5897 struct device_attribute *attr;
a0a1a5fd 5898
6ba94429
FW
5899 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5900 ret = device_create_file(&wq_dev->dev, attr);
5901 if (ret) {
5902 device_unregister(&wq_dev->dev);
5903 wq->wq_dev = NULL;
5904 return ret;
a0a1a5fd
TH
5905 }
5906 }
5907 }
6ba94429
FW
5908
5909 dev_set_uevent_suppress(&wq_dev->dev, false);
5910 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5911 return 0;
a0a1a5fd
TH
5912}
5913
5914/**
6ba94429
FW
5915 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5916 * @wq: the workqueue to unregister
a0a1a5fd 5917 *
6ba94429 5918 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5919 */
6ba94429 5920static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5921{
6ba94429 5922 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5923
6ba94429
FW
5924 if (!wq->wq_dev)
5925 return;
a0a1a5fd 5926
6ba94429
FW
5927 wq->wq_dev = NULL;
5928 device_unregister(&wq_dev->dev);
a0a1a5fd 5929}
6ba94429
FW
5930#else /* CONFIG_SYSFS */
5931static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5932#endif /* CONFIG_SYSFS */
a0a1a5fd 5933
82607adc
TH
5934/*
5935 * Workqueue watchdog.
5936 *
5937 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5938 * flush dependency, a concurrency managed work item which stays RUNNING
5939 * indefinitely. Workqueue stalls can be very difficult to debug as the
5940 * usual warning mechanisms don't trigger and internal workqueue state is
5941 * largely opaque.
5942 *
5943 * Workqueue watchdog monitors all worker pools periodically and dumps
5944 * state if some pools failed to make forward progress for a while where
5945 * forward progress is defined as the first item on ->worklist changing.
5946 *
5947 * This mechanism is controlled through the kernel parameter
5948 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5949 * corresponding sysfs parameter file.
5950 */
5951#ifdef CONFIG_WQ_WATCHDOG
5952
82607adc 5953static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5954static struct timer_list wq_watchdog_timer;
82607adc
TH
5955
5956static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5957static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5958
5959static void wq_watchdog_reset_touched(void)
5960{
5961 int cpu;
5962
5963 wq_watchdog_touched = jiffies;
5964 for_each_possible_cpu(cpu)
5965 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5966}
5967
5cd79d6a 5968static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5969{
5970 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5971 bool lockup_detected = false;
940d71c6 5972 unsigned long now = jiffies;
82607adc
TH
5973 struct worker_pool *pool;
5974 int pi;
5975
5976 if (!thresh)
5977 return;
5978
5979 rcu_read_lock();
5980
5981 for_each_pool(pool, pi) {
5982 unsigned long pool_ts, touched, ts;
5983
5984 if (list_empty(&pool->worklist))
5985 continue;
5986
940d71c6
SS
5987 /*
5988 * If a virtual machine is stopped by the host it can look to
5989 * the watchdog like a stall.
5990 */
5991 kvm_check_and_clear_guest_paused();
5992
82607adc 5993 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
5994 if (pool->cpu >= 0)
5995 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5996 else
5997 touched = READ_ONCE(wq_watchdog_touched);
82607adc 5998 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
5999
6000 if (time_after(pool_ts, touched))
6001 ts = pool_ts;
6002 else
6003 ts = touched;
6004
82607adc 6005 /* did we stall? */
940d71c6 6006 if (time_after(now, ts + thresh)) {
82607adc
TH
6007 lockup_detected = true;
6008 pr_emerg("BUG: workqueue lockup - pool");
6009 pr_cont_pool_info(pool);
6010 pr_cont(" stuck for %us!\n",
940d71c6 6011 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
6012 }
6013 }
6014
6015 rcu_read_unlock();
6016
6017 if (lockup_detected)
55df0933 6018 show_all_workqueues();
82607adc
TH
6019
6020 wq_watchdog_reset_touched();
6021 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6022}
6023
cb9d7fd5 6024notrace void wq_watchdog_touch(int cpu)
82607adc
TH
6025{
6026 if (cpu >= 0)
6027 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
6028
6029 wq_watchdog_touched = jiffies;
82607adc
TH
6030}
6031
6032static void wq_watchdog_set_thresh(unsigned long thresh)
6033{
6034 wq_watchdog_thresh = 0;
6035 del_timer_sync(&wq_watchdog_timer);
6036
6037 if (thresh) {
6038 wq_watchdog_thresh = thresh;
6039 wq_watchdog_reset_touched();
6040 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6041 }
6042}
6043
6044static int wq_watchdog_param_set_thresh(const char *val,
6045 const struct kernel_param *kp)
6046{
6047 unsigned long thresh;
6048 int ret;
6049
6050 ret = kstrtoul(val, 0, &thresh);
6051 if (ret)
6052 return ret;
6053
6054 if (system_wq)
6055 wq_watchdog_set_thresh(thresh);
6056 else
6057 wq_watchdog_thresh = thresh;
6058
6059 return 0;
6060}
6061
6062static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6063 .set = wq_watchdog_param_set_thresh,
6064 .get = param_get_ulong,
6065};
6066
6067module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6068 0644);
6069
6070static void wq_watchdog_init(void)
6071{
5cd79d6a 6072 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
6073 wq_watchdog_set_thresh(wq_watchdog_thresh);
6074}
6075
6076#else /* CONFIG_WQ_WATCHDOG */
6077
6078static inline void wq_watchdog_init(void) { }
6079
6080#endif /* CONFIG_WQ_WATCHDOG */
6081
bce90380
TH
6082static void __init wq_numa_init(void)
6083{
6084 cpumask_var_t *tbl;
6085 int node, cpu;
6086
bce90380
TH
6087 if (num_possible_nodes() <= 1)
6088 return;
6089
d55262c4
TH
6090 if (wq_disable_numa) {
6091 pr_info("workqueue: NUMA affinity support disabled\n");
6092 return;
6093 }
6094
f728c4a9
ZL
6095 for_each_possible_cpu(cpu) {
6096 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6097 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6098 return;
6099 }
6100 }
6101
be69d00d 6102 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
6103 BUG_ON(!wq_update_unbound_numa_attrs_buf);
6104
bce90380
TH
6105 /*
6106 * We want masks of possible CPUs of each node which isn't readily
6107 * available. Build one from cpu_to_node() which should have been
6108 * fully initialized by now.
6109 */
6396bb22 6110 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
6111 BUG_ON(!tbl);
6112
6113 for_each_node(node)
5a6024f1 6114 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 6115 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
6116
6117 for_each_possible_cpu(cpu) {
6118 node = cpu_to_node(cpu);
bce90380
TH
6119 cpumask_set_cpu(cpu, tbl[node]);
6120 }
6121
6122 wq_numa_possible_cpumask = tbl;
6123 wq_numa_enabled = true;
6124}
6125
3347fa09
TH
6126/**
6127 * workqueue_init_early - early init for workqueue subsystem
6128 *
6129 * This is the first half of two-staged workqueue subsystem initialization
6130 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6131 * idr are up. It sets up all the data structures and system workqueues
6132 * and allows early boot code to create workqueues and queue/cancel work
6133 * items. Actual work item execution starts only after kthreads can be
6134 * created and scheduled right before early initcalls.
6135 */
2333e829 6136void __init workqueue_init_early(void)
1da177e4 6137{
7a4e344c
TH
6138 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6139 int i, cpu;
c34056a3 6140
10cdb157 6141 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 6142
b05a7928 6143 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
04d4e665
FW
6144 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6145 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
b05a7928 6146
e904e6c2
TH
6147 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6148
706026c2 6149 /* initialize CPU pools */
29c91e99 6150 for_each_possible_cpu(cpu) {
4ce62e9e 6151 struct worker_pool *pool;
8b03ae3c 6152
7a4e344c 6153 i = 0;
f02ae73a 6154 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 6155 BUG_ON(init_worker_pool(pool));
ec22ca5e 6156 pool->cpu = cpu;
29c91e99 6157 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 6158 pool->attrs->nice = std_nice[i++];
f3f90ad4 6159 pool->node = cpu_to_node(cpu);
7a4e344c 6160
9daf9e67 6161 /* alloc pool ID */
68e13a67 6162 mutex_lock(&wq_pool_mutex);
9daf9e67 6163 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6164 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6165 }
8b03ae3c
TH
6166 }
6167
8a2b7538 6168 /* create default unbound and ordered wq attrs */
29c91e99
TH
6169 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6170 struct workqueue_attrs *attrs;
6171
be69d00d 6172 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6173 attrs->nice = std_nice[i];
29c91e99 6174 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6175
6176 /*
6177 * An ordered wq should have only one pwq as ordering is
6178 * guaranteed by max_active which is enforced by pwqs.
6179 * Turn off NUMA so that dfl_pwq is used for all nodes.
6180 */
be69d00d 6181 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
6182 attrs->nice = std_nice[i];
6183 attrs->no_numa = true;
6184 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6185 }
6186
d320c038 6187 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6188 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6189 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
6190 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6191 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
6192 system_freezable_wq = alloc_workqueue("events_freezable",
6193 WQ_FREEZABLE, 0);
0668106c
VK
6194 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6195 WQ_POWER_EFFICIENT, 0);
6196 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6197 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6198 0);
1aabe902 6199 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6200 !system_unbound_wq || !system_freezable_wq ||
6201 !system_power_efficient_wq ||
6202 !system_freezable_power_efficient_wq);
3347fa09
TH
6203}
6204
6205/**
6206 * workqueue_init - bring workqueue subsystem fully online
6207 *
6208 * This is the latter half of two-staged workqueue subsystem initialization
6209 * and invoked as soon as kthreads can be created and scheduled.
6210 * Workqueues have been created and work items queued on them, but there
6211 * are no kworkers executing the work items yet. Populate the worker pools
6212 * with the initial workers and enable future kworker creations.
6213 */
2333e829 6214void __init workqueue_init(void)
3347fa09 6215{
2186d9f9 6216 struct workqueue_struct *wq;
3347fa09
TH
6217 struct worker_pool *pool;
6218 int cpu, bkt;
6219
2186d9f9
TH
6220 /*
6221 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6222 * CPU to node mapping may not be available that early on some
6223 * archs such as power and arm64. As per-cpu pools created
6224 * previously could be missing node hint and unbound pools NUMA
6225 * affinity, fix them up.
40c17f75
TH
6226 *
6227 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6228 */
6229 wq_numa_init();
6230
6231 mutex_lock(&wq_pool_mutex);
6232
6233 for_each_possible_cpu(cpu) {
6234 for_each_cpu_worker_pool(pool, cpu) {
6235 pool->node = cpu_to_node(cpu);
6236 }
6237 }
6238
40c17f75 6239 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6240 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6241 WARN(init_rescuer(wq),
6242 "workqueue: failed to create early rescuer for %s",
6243 wq->name);
6244 }
2186d9f9
TH
6245
6246 mutex_unlock(&wq_pool_mutex);
6247
3347fa09
TH
6248 /* create the initial workers */
6249 for_each_online_cpu(cpu) {
6250 for_each_cpu_worker_pool(pool, cpu) {
6251 pool->flags &= ~POOL_DISASSOCIATED;
6252 BUG_ON(!create_worker(pool));
6253 }
6254 }
6255
6256 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6257 BUG_ON(!create_worker(pool));
6258
6259 wq_online = true;
82607adc 6260 wq_watchdog_init();
1da177e4 6261}
c4f135d6
TH
6262
6263/*
6264 * Despite the naming, this is a no-op function which is here only for avoiding
6265 * link error. Since compile-time warning may fail to catch, we will need to
6266 * emit run-time warning from __flush_workqueue().
6267 */
6268void __warn_flushing_systemwide_wq(void) { }
6269EXPORT_SYMBOL(__warn_flushing_systemwide_wq);