tracing/histogram: Fix UAF in destroy_hist_field()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
940d71c6 53#include <linux/kvm_para.h>
e22bee78 54
ea138446 55#include "workqueue_internal.h"
1da177e4 56
c8e55f36 57enum {
24647570
TH
58 /*
59 * worker_pool flags
bc2ae0f5 60 *
24647570 61 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 68 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 69 *
bc3a1afc 70 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 71 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 72 * worker_attach_to_pool() is in progress.
bc2ae0f5 73 */
692b4825 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 76
c8e55f36 77 /* worker flags */
c8e55f36
TH
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 80 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 84
a9ab775b
TH
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 87
e34cdddb 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 89
29c91e99 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 92
e22bee78
TH
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
3233cdbd
TH
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
e22bee78
TH
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
8698a745 104 * all cpus. Give MIN_NICE.
e22bee78 105 */
8698a745
DY
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
108
109 WQ_NAME_LEN = 24,
c8e55f36 110};
1da177e4
LT
111
112/*
4690c4ab
TH
113 * Structure fields follow one of the following exclusion rules.
114 *
e41e704b
TH
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
4690c4ab 117 *
e22bee78
TH
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
d565ed63 121 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 122 *
d565ed63
TH
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 127 *
1258fae7 128 * A: wq_pool_attach_mutex protected.
822d8405 129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
24acfb71 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 133 *
5b95e1af
LJ
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 137 * RCU for reads.
5b95e1af 138 *
3c25a55d
LJ
139 * WQ: wq->mutex protected.
140 *
24acfb71 141 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
142 *
143 * MD: wq_mayday_lock protected.
1da177e4 144 */
1da177e4 145
2eaebdb3 146/* struct worker is defined in workqueue_internal.h */
c34056a3 147
bd7bdd43 148struct worker_pool {
a9b8a985 149 raw_spinlock_t lock; /* the pool lock */
d84ff051 150 int cpu; /* I: the associated cpu */
f3f90ad4 151 int node; /* I: the associated node ID */
9daf9e67 152 int id; /* I: pool ID */
11ebea50 153 unsigned int flags; /* X: flags */
bd7bdd43 154
82607adc
TH
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
bd7bdd43 157 struct list_head worklist; /* L: list of pending works */
ea1abd61 158
5826cc8f
LJ
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
2607d7a6 170 struct worker *manager; /* L: purely informational */
92f9c5c4 171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
24acfb71 188 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
018f3a13
LJ
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
1e19ffc6 225 int nr_active; /* L: nr of active works */
a0a1a5fd 226 int max_active; /* L: max active works */
f97a4a1a 227 struct list_head inactive_works; /* L: inactive works */
3c25a55d 228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 229 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 234 * itself is also RCU protected so that the first pwq can be
b09f4fd3 235 * determined without grabbing wq->mutex.
8864b4e5
TH
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
e904e6c2 239} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 240
73f53c4a
TH
241/*
242 * Structure used to wait for workqueue flush.
243 */
244struct wq_flusher {
3c25a55d
LJ
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
247 struct completion done; /* flush completion */
248};
249
226223ab
TH
250struct wq_device;
251
1da177e4 252/*
c5aa87bb
TH
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
255 */
256struct workqueue_struct {
3c25a55d 257 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 258 struct list_head list; /* PR: list of all workqueues */
73f53c4a 259
3c25a55d
LJ
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
112202d9 263 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 267
2e109a28 268 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 269 struct worker *rescuer; /* MD: rescue worker */
e22bee78 270
87fc741e 271 int nr_drainers; /* WQ: drain in progress */
a357fc03 272 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 273
5b95e1af
LJ
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 276
226223ab
TH
277#ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279#endif
4e6045f1 280#ifdef CONFIG_LOCKDEP
669de8bd
BVA
281 char *lock_name;
282 struct lock_class_key key;
4690c4ab 283 struct lockdep_map lockdep_map;
4e6045f1 284#endif
ecf6881f 285 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 286
e2dca7ad 287 /*
24acfb71
TG
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
2728fd2f
TH
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
298};
299
e904e6c2
TH
300static struct kmem_cache *pwq_cache;
301
bce90380
TH
302static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
d55262c4
TH
305static bool wq_disable_numa;
306module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
cee22a15 308/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 309static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
310module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
863b710b 312static bool wq_online; /* can kworkers be created yet? */
3347fa09 313
bce90380
TH
314static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
4c16bd32
TH
316/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
68e13a67 319static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 320static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 321static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
322/* wait for manager to go away */
323static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 324
e2dca7ad 325static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 326static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 327
ef557180
MG
328/* PL: allowable cpus for unbound wqs and work items */
329static cpumask_var_t wq_unbound_cpumask;
330
331/* CPU where unbound work was last round robin scheduled from this CPU */
332static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 333
f303fccb
TH
334/*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340static bool wq_debug_force_rr_cpu = true;
341#else
342static bool wq_debug_force_rr_cpu = false;
343#endif
344module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
7d19c5ce 346/* the per-cpu worker pools */
25528213 347static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 348
68e13a67 349static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 350
68e13a67 351/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
352static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
c5aa87bb 354/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
355static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
8a2b7538
TH
357/* I: attributes used when instantiating ordered pools on demand */
358static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
d320c038 360struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 361EXPORT_SYMBOL(system_wq);
044c782c 362struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 363EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 364struct workqueue_struct *system_long_wq __read_mostly;
d320c038 365EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 366struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 367EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 368struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 369EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
370struct workqueue_struct *system_power_efficient_wq __read_mostly;
371EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 374
7d19c5ce 375static int worker_thread(void *__worker);
6ba94429 376static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 377static void show_pwq(struct pool_workqueue *pwq);
55df0933 378static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 379
97bd2347
TH
380#define CREATE_TRACE_POINTS
381#include <trace/events/workqueue.h>
382
68e13a67 383#define assert_rcu_or_pool_mutex() \
24acfb71 384 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 385 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 386 "RCU or wq_pool_mutex should be held")
5bcab335 387
5b95e1af 388#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 389 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
390 !lockdep_is_held(&wq->mutex) && \
391 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 392 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 393
f02ae73a
TH
394#define for_each_cpu_worker_pool(pool, cpu) \
395 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
396 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 397 (pool)++)
4ce62e9e 398
17116969
TH
399/**
400 * for_each_pool - iterate through all worker_pools in the system
401 * @pool: iteration cursor
611c92a0 402 * @pi: integer used for iteration
fa1b54e6 403 *
24acfb71 404 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
405 * locked. If the pool needs to be used beyond the locking in effect, the
406 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
17116969 410 */
611c92a0
TH
411#define for_each_pool(pool, pi) \
412 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 413 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 414 else
17116969 415
822d8405
TH
416/**
417 * for_each_pool_worker - iterate through all workers of a worker_pool
418 * @worker: iteration cursor
822d8405
TH
419 * @pool: worker_pool to iterate workers of
420 *
1258fae7 421 * This must be called with wq_pool_attach_mutex.
822d8405
TH
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
da028469
LJ
426#define for_each_pool_worker(worker, pool) \
427 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 428 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
429 else
430
49e3cf44
TH
431/**
432 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
433 * @pwq: iteration cursor
434 * @wq: the target workqueue
76af4d93 435 *
24acfb71 436 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
437 * If the pwq needs to be used beyond the locking in effect, the caller is
438 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
439 *
440 * The if/else clause exists only for the lockdep assertion and can be
441 * ignored.
49e3cf44
TH
442 */
443#define for_each_pwq(pwq, wq) \
49e9d1a9 444 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 445 lockdep_is_held(&(wq->mutex)))
f3421797 446
dc186ad7
TG
447#ifdef CONFIG_DEBUG_OBJECTS_WORK
448
f9e62f31 449static const struct debug_obj_descr work_debug_descr;
dc186ad7 450
99777288
SG
451static void *work_debug_hint(void *addr)
452{
453 return ((struct work_struct *) addr)->func;
454}
455
b9fdac7f
DC
456static bool work_is_static_object(void *addr)
457{
458 struct work_struct *work = addr;
459
460 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
461}
462
dc186ad7
TG
463/*
464 * fixup_init is called when:
465 * - an active object is initialized
466 */
02a982a6 467static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_init(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
dc186ad7
TG
481/*
482 * fixup_free is called when:
483 * - an active object is freed
484 */
02a982a6 485static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
486{
487 struct work_struct *work = addr;
488
489 switch (state) {
490 case ODEBUG_STATE_ACTIVE:
491 cancel_work_sync(work);
492 debug_object_free(work, &work_debug_descr);
02a982a6 493 return true;
dc186ad7 494 default:
02a982a6 495 return false;
dc186ad7
TG
496 }
497}
498
f9e62f31 499static const struct debug_obj_descr work_debug_descr = {
dc186ad7 500 .name = "work_struct",
99777288 501 .debug_hint = work_debug_hint,
b9fdac7f 502 .is_static_object = work_is_static_object,
dc186ad7 503 .fixup_init = work_fixup_init,
dc186ad7
TG
504 .fixup_free = work_fixup_free,
505};
506
507static inline void debug_work_activate(struct work_struct *work)
508{
509 debug_object_activate(work, &work_debug_descr);
510}
511
512static inline void debug_work_deactivate(struct work_struct *work)
513{
514 debug_object_deactivate(work, &work_debug_descr);
515}
516
517void __init_work(struct work_struct *work, int onstack)
518{
519 if (onstack)
520 debug_object_init_on_stack(work, &work_debug_descr);
521 else
522 debug_object_init(work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(__init_work);
525
526void destroy_work_on_stack(struct work_struct *work)
527{
528 debug_object_free(work, &work_debug_descr);
529}
530EXPORT_SYMBOL_GPL(destroy_work_on_stack);
531
ea2e64f2
TG
532void destroy_delayed_work_on_stack(struct delayed_work *work)
533{
534 destroy_timer_on_stack(&work->timer);
535 debug_object_free(&work->work, &work_debug_descr);
536}
537EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
538
dc186ad7
TG
539#else
540static inline void debug_work_activate(struct work_struct *work) { }
541static inline void debug_work_deactivate(struct work_struct *work) { }
542#endif
543
4e8b22bd 544/**
67dc8325 545 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
546 * @pool: the pool pointer of interest
547 *
548 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
549 * successfully, -errno on failure.
550 */
9daf9e67
TH
551static int worker_pool_assign_id(struct worker_pool *pool)
552{
553 int ret;
554
68e13a67 555 lockdep_assert_held(&wq_pool_mutex);
5bcab335 556
4e8b22bd
LB
557 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
558 GFP_KERNEL);
229641a6 559 if (ret >= 0) {
e68035fb 560 pool->id = ret;
229641a6
TH
561 return 0;
562 }
fa1b54e6 563 return ret;
7c3eed5c
TH
564}
565
df2d5ae4
TH
566/**
567 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
568 * @wq: the target workqueue
569 * @node: the node ID
570 *
24acfb71 571 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 572 * read locked.
df2d5ae4
TH
573 * If the pwq needs to be used beyond the locking in effect, the caller is
574 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
575 *
576 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
577 */
578static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
579 int node)
580{
5b95e1af 581 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
582
583 /*
584 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
585 * delayed item is pending. The plan is to keep CPU -> NODE
586 * mapping valid and stable across CPU on/offlines. Once that
587 * happens, this workaround can be removed.
588 */
589 if (unlikely(node == NUMA_NO_NODE))
590 return wq->dfl_pwq;
591
df2d5ae4
TH
592 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
593}
594
73f53c4a
TH
595static unsigned int work_color_to_flags(int color)
596{
597 return color << WORK_STRUCT_COLOR_SHIFT;
598}
599
c4560c2c 600static int get_work_color(unsigned long work_data)
73f53c4a 601{
c4560c2c 602 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
603 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
604}
605
606static int work_next_color(int color)
607{
608 return (color + 1) % WORK_NR_COLORS;
609}
1da177e4 610
14441960 611/*
112202d9
TH
612 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
613 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 614 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 615 *
112202d9
TH
616 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
617 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
618 * work->data. These functions should only be called while the work is
619 * owned - ie. while the PENDING bit is set.
7a22ad75 620 *
112202d9 621 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 622 * corresponding to a work. Pool is available once the work has been
112202d9 623 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 624 * available only while the work item is queued.
7a22ad75 625 *
bbb68dfa
TH
626 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
627 * canceled. While being canceled, a work item may have its PENDING set
628 * but stay off timer and worklist for arbitrarily long and nobody should
629 * try to steal the PENDING bit.
14441960 630 */
7a22ad75
TH
631static inline void set_work_data(struct work_struct *work, unsigned long data,
632 unsigned long flags)
365970a1 633{
6183c009 634 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
635 atomic_long_set(&work->data, data | flags | work_static(work));
636}
365970a1 637
112202d9 638static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
639 unsigned long extra_flags)
640{
112202d9
TH
641 set_work_data(work, (unsigned long)pwq,
642 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
643}
644
4468a00f
LJ
645static void set_work_pool_and_keep_pending(struct work_struct *work,
646 int pool_id)
647{
648 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
649 WORK_STRUCT_PENDING);
650}
651
7c3eed5c
TH
652static void set_work_pool_and_clear_pending(struct work_struct *work,
653 int pool_id)
7a22ad75 654{
23657bb1
TH
655 /*
656 * The following wmb is paired with the implied mb in
657 * test_and_set_bit(PENDING) and ensures all updates to @work made
658 * here are visible to and precede any updates by the next PENDING
659 * owner.
660 */
661 smp_wmb();
7c3eed5c 662 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
663 /*
664 * The following mb guarantees that previous clear of a PENDING bit
665 * will not be reordered with any speculative LOADS or STORES from
666 * work->current_func, which is executed afterwards. This possible
8bdc6201 667 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
668 * the same @work. E.g. consider this case:
669 *
670 * CPU#0 CPU#1
671 * ---------------------------- --------------------------------
672 *
673 * 1 STORE event_indicated
674 * 2 queue_work_on() {
675 * 3 test_and_set_bit(PENDING)
676 * 4 } set_..._and_clear_pending() {
677 * 5 set_work_data() # clear bit
678 * 6 smp_mb()
679 * 7 work->current_func() {
680 * 8 LOAD event_indicated
681 * }
682 *
683 * Without an explicit full barrier speculative LOAD on line 8 can
684 * be executed before CPU#0 does STORE on line 1. If that happens,
685 * CPU#0 observes the PENDING bit is still set and new execution of
686 * a @work is not queued in a hope, that CPU#1 will eventually
687 * finish the queued @work. Meanwhile CPU#1 does not see
688 * event_indicated is set, because speculative LOAD was executed
689 * before actual STORE.
690 */
691 smp_mb();
7a22ad75 692}
f756d5e2 693
7a22ad75 694static void clear_work_data(struct work_struct *work)
1da177e4 695{
7c3eed5c
TH
696 smp_wmb(); /* see set_work_pool_and_clear_pending() */
697 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
698}
699
112202d9 700static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 701{
e120153d 702 unsigned long data = atomic_long_read(&work->data);
7a22ad75 703
112202d9 704 if (data & WORK_STRUCT_PWQ)
e120153d
TH
705 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
706 else
707 return NULL;
4d707b9f
ON
708}
709
7c3eed5c
TH
710/**
711 * get_work_pool - return the worker_pool a given work was associated with
712 * @work: the work item of interest
713 *
68e13a67 714 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
715 * access under RCU read lock. As such, this function should be
716 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
717 *
718 * All fields of the returned pool are accessible as long as the above
719 * mentioned locking is in effect. If the returned pool needs to be used
720 * beyond the critical section, the caller is responsible for ensuring the
721 * returned pool is and stays online.
d185af30
YB
722 *
723 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
724 */
725static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 726{
e120153d 727 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 728 int pool_id;
7a22ad75 729
68e13a67 730 assert_rcu_or_pool_mutex();
fa1b54e6 731
112202d9
TH
732 if (data & WORK_STRUCT_PWQ)
733 return ((struct pool_workqueue *)
7c3eed5c 734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 735
7c3eed5c
TH
736 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
737 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
738 return NULL;
739
fa1b54e6 740 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
741}
742
743/**
744 * get_work_pool_id - return the worker pool ID a given work is associated with
745 * @work: the work item of interest
746 *
d185af30 747 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
748 * %WORK_OFFQ_POOL_NONE if none.
749 */
750static int get_work_pool_id(struct work_struct *work)
751{
54d5b7d0
LJ
752 unsigned long data = atomic_long_read(&work->data);
753
112202d9
TH
754 if (data & WORK_STRUCT_PWQ)
755 return ((struct pool_workqueue *)
54d5b7d0 756 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 757
54d5b7d0 758 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
759}
760
bbb68dfa
TH
761static void mark_work_canceling(struct work_struct *work)
762{
7c3eed5c 763 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 764
7c3eed5c
TH
765 pool_id <<= WORK_OFFQ_POOL_SHIFT;
766 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
767}
768
769static bool work_is_canceling(struct work_struct *work)
770{
771 unsigned long data = atomic_long_read(&work->data);
772
112202d9 773 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
774}
775
e22bee78 776/*
3270476a
TH
777 * Policy functions. These define the policies on how the global worker
778 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 779 * they're being called with pool->lock held.
e22bee78
TH
780 */
781
63d95a91 782static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 783{
e19e397a 784 return !atomic_read(&pool->nr_running);
a848e3b6
ON
785}
786
4594bf15 787/*
e22bee78
TH
788 * Need to wake up a worker? Called from anything but currently
789 * running workers.
974271c4
TH
790 *
791 * Note that, because unbound workers never contribute to nr_running, this
706026c2 792 * function will always return %true for unbound pools as long as the
974271c4 793 * worklist isn't empty.
4594bf15 794 */
63d95a91 795static bool need_more_worker(struct worker_pool *pool)
365970a1 796{
63d95a91 797 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 798}
4594bf15 799
e22bee78 800/* Can I start working? Called from busy but !running workers. */
63d95a91 801static bool may_start_working(struct worker_pool *pool)
e22bee78 802{
63d95a91 803 return pool->nr_idle;
e22bee78
TH
804}
805
806/* Do I need to keep working? Called from currently running workers. */
63d95a91 807static bool keep_working(struct worker_pool *pool)
e22bee78 808{
e19e397a
TH
809 return !list_empty(&pool->worklist) &&
810 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
811}
812
813/* Do we need a new worker? Called from manager. */
63d95a91 814static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 815{
63d95a91 816 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 817}
365970a1 818
e22bee78 819/* Do we have too many workers and should some go away? */
63d95a91 820static bool too_many_workers(struct worker_pool *pool)
e22bee78 821{
692b4825 822 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
823 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
824 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
825
826 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
827}
828
4d707b9f 829/*
e22bee78
TH
830 * Wake up functions.
831 */
832
1037de36
LJ
833/* Return the first idle worker. Safe with preemption disabled */
834static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 835{
63d95a91 836 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
837 return NULL;
838
63d95a91 839 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
840}
841
842/**
843 * wake_up_worker - wake up an idle worker
63d95a91 844 * @pool: worker pool to wake worker from
7e11629d 845 *
63d95a91 846 * Wake up the first idle worker of @pool.
7e11629d
TH
847 *
848 * CONTEXT:
a9b8a985 849 * raw_spin_lock_irq(pool->lock).
7e11629d 850 */
63d95a91 851static void wake_up_worker(struct worker_pool *pool)
7e11629d 852{
1037de36 853 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
854
855 if (likely(worker))
856 wake_up_process(worker->task);
857}
858
d302f017 859/**
6d25be57 860 * wq_worker_running - a worker is running again
e22bee78 861 * @task: task waking up
e22bee78 862 *
6d25be57 863 * This function is called when a worker returns from schedule()
e22bee78 864 */
6d25be57 865void wq_worker_running(struct task_struct *task)
e22bee78
TH
866{
867 struct worker *worker = kthread_data(task);
868
6d25be57
TG
869 if (!worker->sleeping)
870 return;
871 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 872 atomic_inc(&worker->pool->nr_running);
6d25be57 873 worker->sleeping = 0;
e22bee78
TH
874}
875
876/**
877 * wq_worker_sleeping - a worker is going to sleep
878 * @task: task going to sleep
e22bee78 879 *
6d25be57 880 * This function is called from schedule() when a busy worker is
62849a96
SAS
881 * going to sleep. Preemption needs to be disabled to protect ->sleeping
882 * assignment.
e22bee78 883 */
6d25be57 884void wq_worker_sleeping(struct task_struct *task)
e22bee78 885{
6d25be57 886 struct worker *next, *worker = kthread_data(task);
111c225a 887 struct worker_pool *pool;
e22bee78 888
111c225a
TH
889 /*
890 * Rescuers, which may not have all the fields set up like normal
891 * workers, also reach here, let's not access anything before
892 * checking NOT_RUNNING.
893 */
2d64672e 894 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 895 return;
e22bee78 896
111c225a 897 pool = worker->pool;
111c225a 898
62849a96
SAS
899 /* Return if preempted before wq_worker_running() was reached */
900 if (worker->sleeping)
6d25be57
TG
901 return;
902
903 worker->sleeping = 1;
a9b8a985 904 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
905
906 /*
907 * The counterpart of the following dec_and_test, implied mb,
908 * worklist not empty test sequence is in insert_work().
909 * Please read comment there.
910 *
628c78e7
TH
911 * NOT_RUNNING is clear. This means that we're bound to and
912 * running on the local cpu w/ rq lock held and preemption
913 * disabled, which in turn means that none else could be
d565ed63 914 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 915 * lock is safe.
e22bee78 916 */
e19e397a 917 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
918 !list_empty(&pool->worklist)) {
919 next = first_idle_worker(pool);
920 if (next)
921 wake_up_process(next->task);
922 }
a9b8a985 923 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
924}
925
1b69ac6b
JW
926/**
927 * wq_worker_last_func - retrieve worker's last work function
8194fe94 928 * @task: Task to retrieve last work function of.
1b69ac6b
JW
929 *
930 * Determine the last function a worker executed. This is called from
931 * the scheduler to get a worker's last known identity.
932 *
933 * CONTEXT:
a9b8a985 934 * raw_spin_lock_irq(rq->lock)
1b69ac6b 935 *
4b047002
JW
936 * This function is called during schedule() when a kworker is going
937 * to sleep. It's used by psi to identify aggregation workers during
938 * dequeuing, to allow periodic aggregation to shut-off when that
939 * worker is the last task in the system or cgroup to go to sleep.
940 *
941 * As this function doesn't involve any workqueue-related locking, it
942 * only returns stable values when called from inside the scheduler's
943 * queuing and dequeuing paths, when @task, which must be a kworker,
944 * is guaranteed to not be processing any works.
945 *
1b69ac6b
JW
946 * Return:
947 * The last work function %current executed as a worker, NULL if it
948 * hasn't executed any work yet.
949 */
950work_func_t wq_worker_last_func(struct task_struct *task)
951{
952 struct worker *worker = kthread_data(task);
953
954 return worker->last_func;
955}
956
e22bee78
TH
957/**
958 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 959 * @worker: self
d302f017 960 * @flags: flags to set
d302f017 961 *
228f1d00 962 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 963 *
cb444766 964 * CONTEXT:
a9b8a985 965 * raw_spin_lock_irq(pool->lock)
d302f017 966 */
228f1d00 967static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 968{
bd7bdd43 969 struct worker_pool *pool = worker->pool;
e22bee78 970
cb444766
TH
971 WARN_ON_ONCE(worker->task != current);
972
228f1d00 973 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
974 if ((flags & WORKER_NOT_RUNNING) &&
975 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 976 atomic_dec(&pool->nr_running);
e22bee78
TH
977 }
978
d302f017
TH
979 worker->flags |= flags;
980}
981
982/**
e22bee78 983 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 984 * @worker: self
d302f017
TH
985 * @flags: flags to clear
986 *
e22bee78 987 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 988 *
cb444766 989 * CONTEXT:
a9b8a985 990 * raw_spin_lock_irq(pool->lock)
d302f017
TH
991 */
992static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
993{
63d95a91 994 struct worker_pool *pool = worker->pool;
e22bee78
TH
995 unsigned int oflags = worker->flags;
996
cb444766
TH
997 WARN_ON_ONCE(worker->task != current);
998
d302f017 999 worker->flags &= ~flags;
e22bee78 1000
42c025f3
TH
1001 /*
1002 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1003 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1004 * of multiple flags, not a single flag.
1005 */
e22bee78
TH
1006 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1007 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 1008 atomic_inc(&pool->nr_running);
d302f017
TH
1009}
1010
8cca0eea
TH
1011/**
1012 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1013 * @pool: pool of interest
8cca0eea
TH
1014 * @work: work to find worker for
1015 *
c9e7cf27
TH
1016 * Find a worker which is executing @work on @pool by searching
1017 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1018 * to match, its current execution should match the address of @work and
1019 * its work function. This is to avoid unwanted dependency between
1020 * unrelated work executions through a work item being recycled while still
1021 * being executed.
1022 *
1023 * This is a bit tricky. A work item may be freed once its execution
1024 * starts and nothing prevents the freed area from being recycled for
1025 * another work item. If the same work item address ends up being reused
1026 * before the original execution finishes, workqueue will identify the
1027 * recycled work item as currently executing and make it wait until the
1028 * current execution finishes, introducing an unwanted dependency.
1029 *
c5aa87bb
TH
1030 * This function checks the work item address and work function to avoid
1031 * false positives. Note that this isn't complete as one may construct a
1032 * work function which can introduce dependency onto itself through a
1033 * recycled work item. Well, if somebody wants to shoot oneself in the
1034 * foot that badly, there's only so much we can do, and if such deadlock
1035 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1036 *
1037 * CONTEXT:
a9b8a985 1038 * raw_spin_lock_irq(pool->lock).
8cca0eea 1039 *
d185af30
YB
1040 * Return:
1041 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1042 * otherwise.
4d707b9f 1043 */
c9e7cf27 1044static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1045 struct work_struct *work)
4d707b9f 1046{
42f8570f 1047 struct worker *worker;
42f8570f 1048
b67bfe0d 1049 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1050 (unsigned long)work)
1051 if (worker->current_work == work &&
1052 worker->current_func == work->func)
42f8570f
SL
1053 return worker;
1054
1055 return NULL;
4d707b9f
ON
1056}
1057
bf4ede01
TH
1058/**
1059 * move_linked_works - move linked works to a list
1060 * @work: start of series of works to be scheduled
1061 * @head: target list to append @work to
402dd89d 1062 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1063 *
1064 * Schedule linked works starting from @work to @head. Work series to
1065 * be scheduled starts at @work and includes any consecutive work with
1066 * WORK_STRUCT_LINKED set in its predecessor.
1067 *
1068 * If @nextp is not NULL, it's updated to point to the next work of
1069 * the last scheduled work. This allows move_linked_works() to be
1070 * nested inside outer list_for_each_entry_safe().
1071 *
1072 * CONTEXT:
a9b8a985 1073 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1074 */
1075static void move_linked_works(struct work_struct *work, struct list_head *head,
1076 struct work_struct **nextp)
1077{
1078 struct work_struct *n;
1079
1080 /*
1081 * Linked worklist will always end before the end of the list,
1082 * use NULL for list head.
1083 */
1084 list_for_each_entry_safe_from(work, n, NULL, entry) {
1085 list_move_tail(&work->entry, head);
1086 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1087 break;
1088 }
1089
1090 /*
1091 * If we're already inside safe list traversal and have moved
1092 * multiple works to the scheduled queue, the next position
1093 * needs to be updated.
1094 */
1095 if (nextp)
1096 *nextp = n;
1097}
1098
8864b4e5
TH
1099/**
1100 * get_pwq - get an extra reference on the specified pool_workqueue
1101 * @pwq: pool_workqueue to get
1102 *
1103 * Obtain an extra reference on @pwq. The caller should guarantee that
1104 * @pwq has positive refcnt and be holding the matching pool->lock.
1105 */
1106static void get_pwq(struct pool_workqueue *pwq)
1107{
1108 lockdep_assert_held(&pwq->pool->lock);
1109 WARN_ON_ONCE(pwq->refcnt <= 0);
1110 pwq->refcnt++;
1111}
1112
1113/**
1114 * put_pwq - put a pool_workqueue reference
1115 * @pwq: pool_workqueue to put
1116 *
1117 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1118 * destruction. The caller should be holding the matching pool->lock.
1119 */
1120static void put_pwq(struct pool_workqueue *pwq)
1121{
1122 lockdep_assert_held(&pwq->pool->lock);
1123 if (likely(--pwq->refcnt))
1124 return;
1125 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1126 return;
1127 /*
1128 * @pwq can't be released under pool->lock, bounce to
1129 * pwq_unbound_release_workfn(). This never recurses on the same
1130 * pool->lock as this path is taken only for unbound workqueues and
1131 * the release work item is scheduled on a per-cpu workqueue. To
1132 * avoid lockdep warning, unbound pool->locks are given lockdep
1133 * subclass of 1 in get_unbound_pool().
1134 */
1135 schedule_work(&pwq->unbound_release_work);
1136}
1137
dce90d47
TH
1138/**
1139 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1140 * @pwq: pool_workqueue to put (can be %NULL)
1141 *
1142 * put_pwq() with locking. This function also allows %NULL @pwq.
1143 */
1144static void put_pwq_unlocked(struct pool_workqueue *pwq)
1145{
1146 if (pwq) {
1147 /*
24acfb71 1148 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1149 * following lock operations are safe.
1150 */
a9b8a985 1151 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1152 put_pwq(pwq);
a9b8a985 1153 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1154 }
1155}
1156
f97a4a1a 1157static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1158{
112202d9 1159 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1160
1161 trace_workqueue_activate_work(work);
82607adc
TH
1162 if (list_empty(&pwq->pool->worklist))
1163 pwq->pool->watchdog_ts = jiffies;
112202d9 1164 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1165 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1166 pwq->nr_active++;
bf4ede01
TH
1167}
1168
f97a4a1a 1169static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1170{
f97a4a1a 1171 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1172 struct work_struct, entry);
1173
f97a4a1a 1174 pwq_activate_inactive_work(work);
3aa62497
LJ
1175}
1176
bf4ede01 1177/**
112202d9
TH
1178 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1179 * @pwq: pwq of interest
c4560c2c 1180 * @work_data: work_data of work which left the queue
bf4ede01
TH
1181 *
1182 * A work either has completed or is removed from pending queue,
112202d9 1183 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1184 *
1185 * CONTEXT:
a9b8a985 1186 * raw_spin_lock_irq(pool->lock).
bf4ede01 1187 */
c4560c2c 1188static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1189{
c4560c2c
LJ
1190 int color = get_work_color(work_data);
1191
018f3a13
LJ
1192 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1193 pwq->nr_active--;
1194 if (!list_empty(&pwq->inactive_works)) {
1195 /* one down, submit an inactive one */
1196 if (pwq->nr_active < pwq->max_active)
1197 pwq_activate_first_inactive(pwq);
1198 }
1199 }
1200
112202d9 1201 pwq->nr_in_flight[color]--;
bf4ede01 1202
bf4ede01 1203 /* is flush in progress and are we at the flushing tip? */
112202d9 1204 if (likely(pwq->flush_color != color))
8864b4e5 1205 goto out_put;
bf4ede01
TH
1206
1207 /* are there still in-flight works? */
112202d9 1208 if (pwq->nr_in_flight[color])
8864b4e5 1209 goto out_put;
bf4ede01 1210
112202d9
TH
1211 /* this pwq is done, clear flush_color */
1212 pwq->flush_color = -1;
bf4ede01
TH
1213
1214 /*
112202d9 1215 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1216 * will handle the rest.
1217 */
112202d9
TH
1218 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1219 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1220out_put:
1221 put_pwq(pwq);
bf4ede01
TH
1222}
1223
36e227d2 1224/**
bbb68dfa 1225 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1226 * @work: work item to steal
1227 * @is_dwork: @work is a delayed_work
bbb68dfa 1228 * @flags: place to store irq state
36e227d2
TH
1229 *
1230 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1231 * stable state - idle, on timer or on worklist.
36e227d2 1232 *
d185af30 1233 * Return:
3eb6b31b
MCC
1234 *
1235 * ======== ================================================================
36e227d2
TH
1236 * 1 if @work was pending and we successfully stole PENDING
1237 * 0 if @work was idle and we claimed PENDING
1238 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1239 * -ENOENT if someone else is canceling @work, this state may persist
1240 * for arbitrarily long
3eb6b31b 1241 * ======== ================================================================
36e227d2 1242 *
d185af30 1243 * Note:
bbb68dfa 1244 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1245 * interrupted while holding PENDING and @work off queue, irq must be
1246 * disabled on entry. This, combined with delayed_work->timer being
1247 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1248 *
1249 * On successful return, >= 0, irq is disabled and the caller is
1250 * responsible for releasing it using local_irq_restore(*@flags).
1251 *
e0aecdd8 1252 * This function is safe to call from any context including IRQ handler.
bf4ede01 1253 */
bbb68dfa
TH
1254static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1255 unsigned long *flags)
bf4ede01 1256{
d565ed63 1257 struct worker_pool *pool;
112202d9 1258 struct pool_workqueue *pwq;
bf4ede01 1259
bbb68dfa
TH
1260 local_irq_save(*flags);
1261
36e227d2
TH
1262 /* try to steal the timer if it exists */
1263 if (is_dwork) {
1264 struct delayed_work *dwork = to_delayed_work(work);
1265
e0aecdd8
TH
1266 /*
1267 * dwork->timer is irqsafe. If del_timer() fails, it's
1268 * guaranteed that the timer is not queued anywhere and not
1269 * running on the local CPU.
1270 */
36e227d2
TH
1271 if (likely(del_timer(&dwork->timer)))
1272 return 1;
1273 }
1274
1275 /* try to claim PENDING the normal way */
bf4ede01
TH
1276 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1277 return 0;
1278
24acfb71 1279 rcu_read_lock();
bf4ede01
TH
1280 /*
1281 * The queueing is in progress, or it is already queued. Try to
1282 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1283 */
d565ed63
TH
1284 pool = get_work_pool(work);
1285 if (!pool)
bbb68dfa 1286 goto fail;
bf4ede01 1287
a9b8a985 1288 raw_spin_lock(&pool->lock);
0b3dae68 1289 /*
112202d9
TH
1290 * work->data is guaranteed to point to pwq only while the work
1291 * item is queued on pwq->wq, and both updating work->data to point
1292 * to pwq on queueing and to pool on dequeueing are done under
1293 * pwq->pool->lock. This in turn guarantees that, if work->data
1294 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1295 * item is currently queued on that pool.
1296 */
112202d9
TH
1297 pwq = get_work_pwq(work);
1298 if (pwq && pwq->pool == pool) {
16062836
TH
1299 debug_work_deactivate(work);
1300
1301 /*
018f3a13
LJ
1302 * A cancelable inactive work item must be in the
1303 * pwq->inactive_works since a queued barrier can't be
1304 * canceled (see the comments in insert_wq_barrier()).
1305 *
f97a4a1a 1306 * An inactive work item cannot be grabbed directly because
d812796e 1307 * it might have linked barrier work items which, if left
f97a4a1a 1308 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1309 * management later on and cause stall. Make sure the work
1310 * item is activated before grabbing.
1311 */
f97a4a1a
LJ
1312 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1313 pwq_activate_inactive_work(work);
16062836
TH
1314
1315 list_del_init(&work->entry);
c4560c2c 1316 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1317
112202d9 1318 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1319 set_work_pool_and_keep_pending(work, pool->id);
1320
a9b8a985 1321 raw_spin_unlock(&pool->lock);
24acfb71 1322 rcu_read_unlock();
16062836 1323 return 1;
bf4ede01 1324 }
a9b8a985 1325 raw_spin_unlock(&pool->lock);
bbb68dfa 1326fail:
24acfb71 1327 rcu_read_unlock();
bbb68dfa
TH
1328 local_irq_restore(*flags);
1329 if (work_is_canceling(work))
1330 return -ENOENT;
1331 cpu_relax();
36e227d2 1332 return -EAGAIN;
bf4ede01
TH
1333}
1334
4690c4ab 1335/**
706026c2 1336 * insert_work - insert a work into a pool
112202d9 1337 * @pwq: pwq @work belongs to
4690c4ab
TH
1338 * @work: work to insert
1339 * @head: insertion point
1340 * @extra_flags: extra WORK_STRUCT_* flags to set
1341 *
112202d9 1342 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1343 * work_struct flags.
4690c4ab
TH
1344 *
1345 * CONTEXT:
a9b8a985 1346 * raw_spin_lock_irq(pool->lock).
4690c4ab 1347 */
112202d9
TH
1348static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1349 struct list_head *head, unsigned int extra_flags)
b89deed3 1350{
112202d9 1351 struct worker_pool *pool = pwq->pool;
e22bee78 1352
e89a85d6 1353 /* record the work call stack in order to print it in KASAN reports */
f70da745 1354 kasan_record_aux_stack_noalloc(work);
e89a85d6 1355
4690c4ab 1356 /* we own @work, set data and link */
112202d9 1357 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1358 list_add_tail(&work->entry, head);
8864b4e5 1359 get_pwq(pwq);
e22bee78
TH
1360
1361 /*
c5aa87bb
TH
1362 * Ensure either wq_worker_sleeping() sees the above
1363 * list_add_tail() or we see zero nr_running to avoid workers lying
1364 * around lazily while there are works to be processed.
e22bee78
TH
1365 */
1366 smp_mb();
1367
63d95a91
TH
1368 if (__need_more_worker(pool))
1369 wake_up_worker(pool);
b89deed3
ON
1370}
1371
c8efcc25
TH
1372/*
1373 * Test whether @work is being queued from another work executing on the
8d03ecfe 1374 * same workqueue.
c8efcc25
TH
1375 */
1376static bool is_chained_work(struct workqueue_struct *wq)
1377{
8d03ecfe
TH
1378 struct worker *worker;
1379
1380 worker = current_wq_worker();
1381 /*
bf393fd4 1382 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1383 * I'm @worker, it's safe to dereference it without locking.
1384 */
112202d9 1385 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1386}
1387
ef557180
MG
1388/*
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1392 */
1393static int wq_select_unbound_cpu(int cpu)
1394{
f303fccb 1395 static bool printed_dbg_warning;
ef557180
MG
1396 int new_cpu;
1397
f303fccb
TH
1398 if (likely(!wq_debug_force_rr_cpu)) {
1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400 return cpu;
1401 } else if (!printed_dbg_warning) {
1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 printed_dbg_warning = true;
1404 }
1405
ef557180
MG
1406 if (cpumask_empty(wq_unbound_cpumask))
1407 return cpu;
1408
1409 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids))
1414 return cpu;
1415 }
1416 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1417
1418 return new_cpu;
1419}
1420
d84ff051 1421static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1422 struct work_struct *work)
1423{
112202d9 1424 struct pool_workqueue *pwq;
c9178087 1425 struct worker_pool *last_pool;
1e19ffc6 1426 struct list_head *worklist;
8a2e8e5d 1427 unsigned int work_flags;
b75cac93 1428 unsigned int req_cpu = cpu;
8930caba
TH
1429
1430 /*
1431 * While a work item is PENDING && off queue, a task trying to
1432 * steal the PENDING will busy-loop waiting for it to either get
1433 * queued or lose PENDING. Grabbing PENDING and queueing should
1434 * happen with IRQ disabled.
1435 */
8e8eb730 1436 lockdep_assert_irqs_disabled();
1da177e4 1437
1e19ffc6 1438
9ef28a73 1439 /* if draining, only works from the same workqueue are allowed */
618b01eb 1440 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1441 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1442 return;
24acfb71 1443 rcu_read_lock();
9e8cd2f5 1444retry:
c9178087 1445 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1446 if (wq->flags & WQ_UNBOUND) {
1447 if (req_cpu == WORK_CPU_UNBOUND)
1448 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1449 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1450 } else {
1451 if (req_cpu == WORK_CPU_UNBOUND)
1452 cpu = raw_smp_processor_id();
1453 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1454 }
dbf2576e 1455
c9178087
TH
1456 /*
1457 * If @work was previously on a different pool, it might still be
1458 * running there, in which case the work needs to be queued on that
1459 * pool to guarantee non-reentrancy.
1460 */
1461 last_pool = get_work_pool(work);
1462 if (last_pool && last_pool != pwq->pool) {
1463 struct worker *worker;
18aa9eff 1464
a9b8a985 1465 raw_spin_lock(&last_pool->lock);
18aa9eff 1466
c9178087 1467 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1468
c9178087
TH
1469 if (worker && worker->current_pwq->wq == wq) {
1470 pwq = worker->current_pwq;
8930caba 1471 } else {
c9178087 1472 /* meh... not running there, queue here */
a9b8a985
SAS
1473 raw_spin_unlock(&last_pool->lock);
1474 raw_spin_lock(&pwq->pool->lock);
8930caba 1475 }
f3421797 1476 } else {
a9b8a985 1477 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1478 }
1479
9e8cd2f5
TH
1480 /*
1481 * pwq is determined and locked. For unbound pools, we could have
1482 * raced with pwq release and it could already be dead. If its
1483 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1484 * without another pwq replacing it in the numa_pwq_tbl or while
1485 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1486 * make forward-progress.
1487 */
1488 if (unlikely(!pwq->refcnt)) {
1489 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1490 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1491 cpu_relax();
1492 goto retry;
1493 }
1494 /* oops */
1495 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1496 wq->name, cpu);
1497 }
1498
112202d9
TH
1499 /* pwq determined, queue */
1500 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1501
24acfb71
TG
1502 if (WARN_ON(!list_empty(&work->entry)))
1503 goto out;
1e19ffc6 1504
112202d9
TH
1505 pwq->nr_in_flight[pwq->work_color]++;
1506 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1507
112202d9 1508 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1509 trace_workqueue_activate_work(work);
112202d9
TH
1510 pwq->nr_active++;
1511 worklist = &pwq->pool->worklist;
82607adc
TH
1512 if (list_empty(worklist))
1513 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d 1514 } else {
f97a4a1a
LJ
1515 work_flags |= WORK_STRUCT_INACTIVE;
1516 worklist = &pwq->inactive_works;
8a2e8e5d 1517 }
1e19ffc6 1518
0687c66b 1519 debug_work_activate(work);
112202d9 1520 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1521
24acfb71 1522out:
a9b8a985 1523 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1524 rcu_read_unlock();
1da177e4
LT
1525}
1526
0fcb78c2 1527/**
c1a220e7
ZR
1528 * queue_work_on - queue work on specific cpu
1529 * @cpu: CPU number to execute work on
0fcb78c2
REB
1530 * @wq: workqueue to use
1531 * @work: work to queue
1532 *
c1a220e7
ZR
1533 * We queue the work to a specific CPU, the caller must ensure it
1534 * can't go away.
d185af30
YB
1535 *
1536 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1537 */
d4283e93
TH
1538bool queue_work_on(int cpu, struct workqueue_struct *wq,
1539 struct work_struct *work)
1da177e4 1540{
d4283e93 1541 bool ret = false;
8930caba 1542 unsigned long flags;
ef1ca236 1543
8930caba 1544 local_irq_save(flags);
c1a220e7 1545
22df02bb 1546 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1547 __queue_work(cpu, wq, work);
d4283e93 1548 ret = true;
c1a220e7 1549 }
ef1ca236 1550
8930caba 1551 local_irq_restore(flags);
1da177e4
LT
1552 return ret;
1553}
ad7b1f84 1554EXPORT_SYMBOL(queue_work_on);
1da177e4 1555
8204e0c1
AD
1556/**
1557 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1558 * @node: NUMA node ID that we want to select a CPU from
1559 *
1560 * This function will attempt to find a "random" cpu available on a given
1561 * node. If there are no CPUs available on the given node it will return
1562 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1563 * available CPU if we need to schedule this work.
1564 */
1565static int workqueue_select_cpu_near(int node)
1566{
1567 int cpu;
1568
1569 /* No point in doing this if NUMA isn't enabled for workqueues */
1570 if (!wq_numa_enabled)
1571 return WORK_CPU_UNBOUND;
1572
1573 /* Delay binding to CPU if node is not valid or online */
1574 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1575 return WORK_CPU_UNBOUND;
1576
1577 /* Use local node/cpu if we are already there */
1578 cpu = raw_smp_processor_id();
1579 if (node == cpu_to_node(cpu))
1580 return cpu;
1581
1582 /* Use "random" otherwise know as "first" online CPU of node */
1583 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1584
1585 /* If CPU is valid return that, otherwise just defer */
1586 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1587}
1588
1589/**
1590 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1591 * @node: NUMA node that we are targeting the work for
1592 * @wq: workqueue to use
1593 * @work: work to queue
1594 *
1595 * We queue the work to a "random" CPU within a given NUMA node. The basic
1596 * idea here is to provide a way to somehow associate work with a given
1597 * NUMA node.
1598 *
1599 * This function will only make a best effort attempt at getting this onto
1600 * the right NUMA node. If no node is requested or the requested node is
1601 * offline then we just fall back to standard queue_work behavior.
1602 *
1603 * Currently the "random" CPU ends up being the first available CPU in the
1604 * intersection of cpu_online_mask and the cpumask of the node, unless we
1605 * are running on the node. In that case we just use the current CPU.
1606 *
1607 * Return: %false if @work was already on a queue, %true otherwise.
1608 */
1609bool queue_work_node(int node, struct workqueue_struct *wq,
1610 struct work_struct *work)
1611{
1612 unsigned long flags;
1613 bool ret = false;
1614
1615 /*
1616 * This current implementation is specific to unbound workqueues.
1617 * Specifically we only return the first available CPU for a given
1618 * node instead of cycling through individual CPUs within the node.
1619 *
1620 * If this is used with a per-cpu workqueue then the logic in
1621 * workqueue_select_cpu_near would need to be updated to allow for
1622 * some round robin type logic.
1623 */
1624 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1625
1626 local_irq_save(flags);
1627
1628 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1629 int cpu = workqueue_select_cpu_near(node);
1630
1631 __queue_work(cpu, wq, work);
1632 ret = true;
1633 }
1634
1635 local_irq_restore(flags);
1636 return ret;
1637}
1638EXPORT_SYMBOL_GPL(queue_work_node);
1639
8c20feb6 1640void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1641{
8c20feb6 1642 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1643
e0aecdd8 1644 /* should have been called from irqsafe timer with irq already off */
60c057bc 1645 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1646}
1438ade5 1647EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1648
7beb2edf
TH
1649static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1650 struct delayed_work *dwork, unsigned long delay)
1da177e4 1651{
7beb2edf
TH
1652 struct timer_list *timer = &dwork->timer;
1653 struct work_struct *work = &dwork->work;
7beb2edf 1654
637fdbae 1655 WARN_ON_ONCE(!wq);
98173112 1656 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
fc4b514f
TH
1657 WARN_ON_ONCE(timer_pending(timer));
1658 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1659
8852aac2
TH
1660 /*
1661 * If @delay is 0, queue @dwork->work immediately. This is for
1662 * both optimization and correctness. The earliest @timer can
1663 * expire is on the closest next tick and delayed_work users depend
1664 * on that there's no such delay when @delay is 0.
1665 */
1666 if (!delay) {
1667 __queue_work(cpu, wq, &dwork->work);
1668 return;
1669 }
1670
60c057bc 1671 dwork->wq = wq;
1265057f 1672 dwork->cpu = cpu;
7beb2edf
TH
1673 timer->expires = jiffies + delay;
1674
041bd12e
TH
1675 if (unlikely(cpu != WORK_CPU_UNBOUND))
1676 add_timer_on(timer, cpu);
1677 else
1678 add_timer(timer);
1da177e4
LT
1679}
1680
0fcb78c2
REB
1681/**
1682 * queue_delayed_work_on - queue work on specific CPU after delay
1683 * @cpu: CPU number to execute work on
1684 * @wq: workqueue to use
af9997e4 1685 * @dwork: work to queue
0fcb78c2
REB
1686 * @delay: number of jiffies to wait before queueing
1687 *
d185af30 1688 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1689 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1690 * execution.
0fcb78c2 1691 */
d4283e93
TH
1692bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1693 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1694{
52bad64d 1695 struct work_struct *work = &dwork->work;
d4283e93 1696 bool ret = false;
8930caba 1697 unsigned long flags;
7a6bc1cd 1698
8930caba
TH
1699 /* read the comment in __queue_work() */
1700 local_irq_save(flags);
7a6bc1cd 1701
22df02bb 1702 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1703 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1704 ret = true;
7a6bc1cd 1705 }
8a3e77cc 1706
8930caba 1707 local_irq_restore(flags);
7a6bc1cd
VP
1708 return ret;
1709}
ad7b1f84 1710EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1711
8376fe22
TH
1712/**
1713 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1714 * @cpu: CPU number to execute work on
1715 * @wq: workqueue to use
1716 * @dwork: work to queue
1717 * @delay: number of jiffies to wait before queueing
1718 *
1719 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1720 * modify @dwork's timer so that it expires after @delay. If @delay is
1721 * zero, @work is guaranteed to be scheduled immediately regardless of its
1722 * current state.
1723 *
d185af30 1724 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1725 * pending and its timer was modified.
1726 *
e0aecdd8 1727 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1728 * See try_to_grab_pending() for details.
1729 */
1730bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1731 struct delayed_work *dwork, unsigned long delay)
1732{
1733 unsigned long flags;
1734 int ret;
c7fc77f7 1735
8376fe22
TH
1736 do {
1737 ret = try_to_grab_pending(&dwork->work, true, &flags);
1738 } while (unlikely(ret == -EAGAIN));
63bc0362 1739
8376fe22
TH
1740 if (likely(ret >= 0)) {
1741 __queue_delayed_work(cpu, wq, dwork, delay);
1742 local_irq_restore(flags);
7a6bc1cd 1743 }
8376fe22
TH
1744
1745 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1746 return ret;
1747}
8376fe22
TH
1748EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1749
05f0fe6b
TH
1750static void rcu_work_rcufn(struct rcu_head *rcu)
1751{
1752 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1753
1754 /* read the comment in __queue_work() */
1755 local_irq_disable();
1756 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1757 local_irq_enable();
1758}
1759
1760/**
1761 * queue_rcu_work - queue work after a RCU grace period
1762 * @wq: workqueue to use
1763 * @rwork: work to queue
1764 *
1765 * Return: %false if @rwork was already pending, %true otherwise. Note
1766 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1767 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1768 * execution may happen before a full RCU grace period has passed.
1769 */
1770bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1771{
1772 struct work_struct *work = &rwork->work;
1773
1774 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1775 rwork->wq = wq;
1776 call_rcu(&rwork->rcu, rcu_work_rcufn);
1777 return true;
1778 }
1779
1780 return false;
1781}
1782EXPORT_SYMBOL(queue_rcu_work);
1783
c8e55f36
TH
1784/**
1785 * worker_enter_idle - enter idle state
1786 * @worker: worker which is entering idle state
1787 *
1788 * @worker is entering idle state. Update stats and idle timer if
1789 * necessary.
1790 *
1791 * LOCKING:
a9b8a985 1792 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1793 */
1794static void worker_enter_idle(struct worker *worker)
1da177e4 1795{
bd7bdd43 1796 struct worker_pool *pool = worker->pool;
c8e55f36 1797
6183c009
TH
1798 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1799 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1800 (worker->hentry.next || worker->hentry.pprev)))
1801 return;
c8e55f36 1802
051e1850 1803 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1804 worker->flags |= WORKER_IDLE;
bd7bdd43 1805 pool->nr_idle++;
e22bee78 1806 worker->last_active = jiffies;
c8e55f36
TH
1807
1808 /* idle_list is LIFO */
bd7bdd43 1809 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1810
628c78e7
TH
1811 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1812 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1813
544ecf31 1814 /*
e8b3f8db 1815 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1816 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1817 * nr_running, the warning may trigger spuriously. Check iff
1818 * unbind is not in progress.
544ecf31 1819 */
24647570 1820 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1821 pool->nr_workers == pool->nr_idle &&
e19e397a 1822 atomic_read(&pool->nr_running));
c8e55f36
TH
1823}
1824
1825/**
1826 * worker_leave_idle - leave idle state
1827 * @worker: worker which is leaving idle state
1828 *
1829 * @worker is leaving idle state. Update stats.
1830 *
1831 * LOCKING:
a9b8a985 1832 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1833 */
1834static void worker_leave_idle(struct worker *worker)
1835{
bd7bdd43 1836 struct worker_pool *pool = worker->pool;
c8e55f36 1837
6183c009
TH
1838 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1839 return;
d302f017 1840 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1841 pool->nr_idle--;
c8e55f36
TH
1842 list_del_init(&worker->entry);
1843}
1844
f7537df5 1845static struct worker *alloc_worker(int node)
c34056a3
TH
1846{
1847 struct worker *worker;
1848
f7537df5 1849 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1850 if (worker) {
1851 INIT_LIST_HEAD(&worker->entry);
affee4b2 1852 INIT_LIST_HEAD(&worker->scheduled);
da028469 1853 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1854 /* on creation a worker is in !idle && prep state */
1855 worker->flags = WORKER_PREP;
c8e55f36 1856 }
c34056a3
TH
1857 return worker;
1858}
1859
4736cbf7
LJ
1860/**
1861 * worker_attach_to_pool() - attach a worker to a pool
1862 * @worker: worker to be attached
1863 * @pool: the target pool
1864 *
1865 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1866 * cpu-binding of @worker are kept coordinated with the pool across
1867 * cpu-[un]hotplugs.
1868 */
1869static void worker_attach_to_pool(struct worker *worker,
1870 struct worker_pool *pool)
1871{
1258fae7 1872 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1873
4736cbf7 1874 /*
1258fae7
TH
1875 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1876 * stable across this function. See the comments above the flag
1877 * definition for details.
4736cbf7
LJ
1878 */
1879 if (pool->flags & POOL_DISASSOCIATED)
1880 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
1881 else
1882 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 1883
640f17c8
PZ
1884 if (worker->rescue_wq)
1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886
4736cbf7 1887 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1888 worker->pool = pool;
4736cbf7 1889
1258fae7 1890 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1891}
1892
60f5a4bc
LJ
1893/**
1894 * worker_detach_from_pool() - detach a worker from its pool
1895 * @worker: worker which is attached to its pool
60f5a4bc 1896 *
4736cbf7
LJ
1897 * Undo the attaching which had been done in worker_attach_to_pool(). The
1898 * caller worker shouldn't access to the pool after detached except it has
1899 * other reference to the pool.
60f5a4bc 1900 */
a2d812a2 1901static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1902{
a2d812a2 1903 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1904 struct completion *detach_completion = NULL;
1905
1258fae7 1906 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1907
5c25b5ff 1908 kthread_set_per_cpu(worker->task, -1);
da028469 1909 list_del(&worker->node);
a2d812a2
TH
1910 worker->pool = NULL;
1911
da028469 1912 if (list_empty(&pool->workers))
60f5a4bc 1913 detach_completion = pool->detach_completion;
1258fae7 1914 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1915
b62c0751
LJ
1916 /* clear leftover flags without pool->lock after it is detached */
1917 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1918
60f5a4bc
LJ
1919 if (detach_completion)
1920 complete(detach_completion);
1921}
1922
c34056a3
TH
1923/**
1924 * create_worker - create a new workqueue worker
63d95a91 1925 * @pool: pool the new worker will belong to
c34056a3 1926 *
051e1850 1927 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1928 *
1929 * CONTEXT:
1930 * Might sleep. Does GFP_KERNEL allocations.
1931 *
d185af30 1932 * Return:
c34056a3
TH
1933 * Pointer to the newly created worker.
1934 */
bc2ae0f5 1935static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1936{
e441b56f
ZL
1937 struct worker *worker;
1938 int id;
e3c916a4 1939 char id_buf[16];
c34056a3 1940
7cda9aae 1941 /* ID is needed to determine kthread name */
e441b56f 1942 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
822d8405 1943 if (id < 0)
e441b56f 1944 return NULL;
c34056a3 1945
f7537df5 1946 worker = alloc_worker(pool->node);
c34056a3
TH
1947 if (!worker)
1948 goto fail;
1949
c34056a3
TH
1950 worker->id = id;
1951
29c91e99 1952 if (pool->cpu >= 0)
e3c916a4
TH
1953 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1954 pool->attrs->nice < 0 ? "H" : "");
f3421797 1955 else
e3c916a4
TH
1956 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1957
f3f90ad4 1958 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1959 "kworker/%s", id_buf);
c34056a3
TH
1960 if (IS_ERR(worker->task))
1961 goto fail;
1962
91151228 1963 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1964 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1965
da028469 1966 /* successful, attach the worker to the pool */
4736cbf7 1967 worker_attach_to_pool(worker, pool);
822d8405 1968
051e1850 1969 /* start the newly created worker */
a9b8a985 1970 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1971 worker->pool->nr_workers++;
1972 worker_enter_idle(worker);
1973 wake_up_process(worker->task);
a9b8a985 1974 raw_spin_unlock_irq(&pool->lock);
051e1850 1975
c34056a3 1976 return worker;
822d8405 1977
c34056a3 1978fail:
e441b56f 1979 ida_free(&pool->worker_ida, id);
c34056a3
TH
1980 kfree(worker);
1981 return NULL;
1982}
1983
c34056a3
TH
1984/**
1985 * destroy_worker - destroy a workqueue worker
1986 * @worker: worker to be destroyed
1987 *
73eb7fe7
LJ
1988 * Destroy @worker and adjust @pool stats accordingly. The worker should
1989 * be idle.
c8e55f36
TH
1990 *
1991 * CONTEXT:
a9b8a985 1992 * raw_spin_lock_irq(pool->lock).
c34056a3
TH
1993 */
1994static void destroy_worker(struct worker *worker)
1995{
bd7bdd43 1996 struct worker_pool *pool = worker->pool;
c34056a3 1997
cd549687
TH
1998 lockdep_assert_held(&pool->lock);
1999
c34056a3 2000 /* sanity check frenzy */
6183c009 2001 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2002 WARN_ON(!list_empty(&worker->scheduled)) ||
2003 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2004 return;
c34056a3 2005
73eb7fe7
LJ
2006 pool->nr_workers--;
2007 pool->nr_idle--;
5bdfff96 2008
c8e55f36 2009 list_del_init(&worker->entry);
cb444766 2010 worker->flags |= WORKER_DIE;
60f5a4bc 2011 wake_up_process(worker->task);
c34056a3
TH
2012}
2013
32a6c723 2014static void idle_worker_timeout(struct timer_list *t)
e22bee78 2015{
32a6c723 2016 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 2017
a9b8a985 2018 raw_spin_lock_irq(&pool->lock);
e22bee78 2019
3347fc9f 2020 while (too_many_workers(pool)) {
e22bee78
TH
2021 struct worker *worker;
2022 unsigned long expires;
2023
2024 /* idle_list is kept in LIFO order, check the last one */
63d95a91 2025 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2026 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2027
3347fc9f 2028 if (time_before(jiffies, expires)) {
63d95a91 2029 mod_timer(&pool->idle_timer, expires);
3347fc9f 2030 break;
d5abe669 2031 }
3347fc9f
LJ
2032
2033 destroy_worker(worker);
e22bee78
TH
2034 }
2035
a9b8a985 2036 raw_spin_unlock_irq(&pool->lock);
e22bee78 2037}
d5abe669 2038
493a1724 2039static void send_mayday(struct work_struct *work)
e22bee78 2040{
112202d9
TH
2041 struct pool_workqueue *pwq = get_work_pwq(work);
2042 struct workqueue_struct *wq = pwq->wq;
493a1724 2043
2e109a28 2044 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2045
493008a8 2046 if (!wq->rescuer)
493a1724 2047 return;
e22bee78
TH
2048
2049 /* mayday mayday mayday */
493a1724 2050 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2051 /*
2052 * If @pwq is for an unbound wq, its base ref may be put at
2053 * any time due to an attribute change. Pin @pwq until the
2054 * rescuer is done with it.
2055 */
2056 get_pwq(pwq);
493a1724 2057 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2058 wake_up_process(wq->rescuer->task);
493a1724 2059 }
e22bee78
TH
2060}
2061
32a6c723 2062static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2063{
32a6c723 2064 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2065 struct work_struct *work;
2066
a9b8a985
SAS
2067 raw_spin_lock_irq(&pool->lock);
2068 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2069
63d95a91 2070 if (need_to_create_worker(pool)) {
e22bee78
TH
2071 /*
2072 * We've been trying to create a new worker but
2073 * haven't been successful. We might be hitting an
2074 * allocation deadlock. Send distress signals to
2075 * rescuers.
2076 */
63d95a91 2077 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2078 send_mayday(work);
1da177e4 2079 }
e22bee78 2080
a9b8a985
SAS
2081 raw_spin_unlock(&wq_mayday_lock);
2082 raw_spin_unlock_irq(&pool->lock);
e22bee78 2083
63d95a91 2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2085}
2086
e22bee78
TH
2087/**
2088 * maybe_create_worker - create a new worker if necessary
63d95a91 2089 * @pool: pool to create a new worker for
e22bee78 2090 *
63d95a91 2091 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2092 * have at least one idle worker on return from this function. If
2093 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2094 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2095 * possible allocation deadlock.
2096 *
c5aa87bb
TH
2097 * On return, need_to_create_worker() is guaranteed to be %false and
2098 * may_start_working() %true.
e22bee78
TH
2099 *
2100 * LOCKING:
a9b8a985 2101 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2102 * multiple times. Does GFP_KERNEL allocations. Called only from
2103 * manager.
e22bee78 2104 */
29187a9e 2105static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2106__releases(&pool->lock)
2107__acquires(&pool->lock)
1da177e4 2108{
e22bee78 2109restart:
a9b8a985 2110 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2111
e22bee78 2112 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2113 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2114
2115 while (true) {
051e1850 2116 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2117 break;
1da177e4 2118
e212f361 2119 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2120
63d95a91 2121 if (!need_to_create_worker(pool))
e22bee78
TH
2122 break;
2123 }
2124
63d95a91 2125 del_timer_sync(&pool->mayday_timer);
a9b8a985 2126 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2127 /*
2128 * This is necessary even after a new worker was just successfully
2129 * created as @pool->lock was dropped and the new worker might have
2130 * already become busy.
2131 */
63d95a91 2132 if (need_to_create_worker(pool))
e22bee78 2133 goto restart;
e22bee78
TH
2134}
2135
73f53c4a 2136/**
e22bee78
TH
2137 * manage_workers - manage worker pool
2138 * @worker: self
73f53c4a 2139 *
706026c2 2140 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2141 * to. At any given time, there can be only zero or one manager per
706026c2 2142 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2143 *
2144 * The caller can safely start processing works on false return. On
2145 * true return, it's guaranteed that need_to_create_worker() is false
2146 * and may_start_working() is true.
73f53c4a
TH
2147 *
2148 * CONTEXT:
a9b8a985 2149 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2150 * multiple times. Does GFP_KERNEL allocations.
2151 *
d185af30 2152 * Return:
29187a9e
TH
2153 * %false if the pool doesn't need management and the caller can safely
2154 * start processing works, %true if management function was performed and
2155 * the conditions that the caller verified before calling the function may
2156 * no longer be true.
73f53c4a 2157 */
e22bee78 2158static bool manage_workers(struct worker *worker)
73f53c4a 2159{
63d95a91 2160 struct worker_pool *pool = worker->pool;
73f53c4a 2161
692b4825 2162 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2163 return false;
692b4825
TH
2164
2165 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2166 pool->manager = worker;
1e19ffc6 2167
29187a9e 2168 maybe_create_worker(pool);
e22bee78 2169
2607d7a6 2170 pool->manager = NULL;
692b4825 2171 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2172 rcuwait_wake_up(&manager_wait);
29187a9e 2173 return true;
73f53c4a
TH
2174}
2175
a62428c0
TH
2176/**
2177 * process_one_work - process single work
c34056a3 2178 * @worker: self
a62428c0
TH
2179 * @work: work to process
2180 *
2181 * Process @work. This function contains all the logics necessary to
2182 * process a single work including synchronization against and
2183 * interaction with other workers on the same cpu, queueing and
2184 * flushing. As long as context requirement is met, any worker can
2185 * call this function to process a work.
2186 *
2187 * CONTEXT:
a9b8a985 2188 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2189 */
c34056a3 2190static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2191__releases(&pool->lock)
2192__acquires(&pool->lock)
a62428c0 2193{
112202d9 2194 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2195 struct worker_pool *pool = worker->pool;
112202d9 2196 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
c4560c2c 2197 unsigned long work_data;
7e11629d 2198 struct worker *collision;
a62428c0
TH
2199#ifdef CONFIG_LOCKDEP
2200 /*
2201 * It is permissible to free the struct work_struct from
2202 * inside the function that is called from it, this we need to
2203 * take into account for lockdep too. To avoid bogus "held
2204 * lock freed" warnings as well as problems when looking into
2205 * work->lockdep_map, make a copy and use that here.
2206 */
4d82a1de
PZ
2207 struct lockdep_map lockdep_map;
2208
2209 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2210#endif
807407c0 2211 /* ensure we're on the correct CPU */
85327af6 2212 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2213 raw_smp_processor_id() != pool->cpu);
25511a47 2214
7e11629d
TH
2215 /*
2216 * A single work shouldn't be executed concurrently by
2217 * multiple workers on a single cpu. Check whether anyone is
2218 * already processing the work. If so, defer the work to the
2219 * currently executing one.
2220 */
c9e7cf27 2221 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2222 if (unlikely(collision)) {
2223 move_linked_works(work, &collision->scheduled, NULL);
2224 return;
2225 }
2226
8930caba 2227 /* claim and dequeue */
a62428c0 2228 debug_work_deactivate(work);
c9e7cf27 2229 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2230 worker->current_work = work;
a2c1c57b 2231 worker->current_func = work->func;
112202d9 2232 worker->current_pwq = pwq;
c4560c2c 2233 work_data = *work_data_bits(work);
d812796e 2234 worker->current_color = get_work_color(work_data);
7a22ad75 2235
8bf89593
TH
2236 /*
2237 * Record wq name for cmdline and debug reporting, may get
2238 * overridden through set_worker_desc().
2239 */
2240 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2241
a62428c0
TH
2242 list_del_init(&work->entry);
2243
fb0e7beb 2244 /*
228f1d00
LJ
2245 * CPU intensive works don't participate in concurrency management.
2246 * They're the scheduler's responsibility. This takes @worker out
2247 * of concurrency management and the next code block will chain
2248 * execution of the pending work items.
fb0e7beb
TH
2249 */
2250 if (unlikely(cpu_intensive))
228f1d00 2251 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2252
974271c4 2253 /*
a489a03e
LJ
2254 * Wake up another worker if necessary. The condition is always
2255 * false for normal per-cpu workers since nr_running would always
2256 * be >= 1 at this point. This is used to chain execution of the
2257 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2258 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2259 */
a489a03e 2260 if (need_more_worker(pool))
63d95a91 2261 wake_up_worker(pool);
974271c4 2262
8930caba 2263 /*
7c3eed5c 2264 * Record the last pool and clear PENDING which should be the last
d565ed63 2265 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2266 * PENDING and queued state changes happen together while IRQ is
2267 * disabled.
8930caba 2268 */
7c3eed5c 2269 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2270
a9b8a985 2271 raw_spin_unlock_irq(&pool->lock);
a62428c0 2272
a1d14934 2273 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2274 lock_map_acquire(&lockdep_map);
e6f3faa7 2275 /*
f52be570
PZ
2276 * Strictly speaking we should mark the invariant state without holding
2277 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2278 *
2279 * However, that would result in:
2280 *
2281 * A(W1)
2282 * WFC(C)
2283 * A(W1)
2284 * C(C)
2285 *
2286 * Which would create W1->C->W1 dependencies, even though there is no
2287 * actual deadlock possible. There are two solutions, using a
2288 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2289 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2290 * these locks.
2291 *
2292 * AFAICT there is no possible deadlock scenario between the
2293 * flush_work() and complete() primitives (except for single-threaded
2294 * workqueues), so hiding them isn't a problem.
2295 */
f52be570 2296 lockdep_invariant_state(true);
e36c886a 2297 trace_workqueue_execute_start(work);
a2c1c57b 2298 worker->current_func(work);
e36c886a
AV
2299 /*
2300 * While we must be careful to not use "work" after this, the trace
2301 * point will only record its address.
2302 */
1c5da0ec 2303 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2304 lock_map_release(&lockdep_map);
112202d9 2305 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2306
2307 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2308 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2309 " last function: %ps\n",
a2c1c57b
TH
2310 current->comm, preempt_count(), task_pid_nr(current),
2311 worker->current_func);
a62428c0
TH
2312 debug_show_held_locks(current);
2313 dump_stack();
2314 }
2315
b22ce278 2316 /*
025f50f3 2317 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2318 * kernels, where a requeueing work item waiting for something to
2319 * happen could deadlock with stop_machine as such work item could
2320 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2321 * stop_machine. At the same time, report a quiescent RCU state so
2322 * the same condition doesn't freeze RCU.
b22ce278 2323 */
a7e6425e 2324 cond_resched();
b22ce278 2325
a9b8a985 2326 raw_spin_lock_irq(&pool->lock);
a62428c0 2327
fb0e7beb
TH
2328 /* clear cpu intensive status */
2329 if (unlikely(cpu_intensive))
2330 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2331
1b69ac6b
JW
2332 /* tag the worker for identification in schedule() */
2333 worker->last_func = worker->current_func;
2334
a62428c0 2335 /* we're done with it, release */
42f8570f 2336 hash_del(&worker->hentry);
c34056a3 2337 worker->current_work = NULL;
a2c1c57b 2338 worker->current_func = NULL;
112202d9 2339 worker->current_pwq = NULL;
d812796e 2340 worker->current_color = INT_MAX;
c4560c2c 2341 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2342}
2343
affee4b2
TH
2344/**
2345 * process_scheduled_works - process scheduled works
2346 * @worker: self
2347 *
2348 * Process all scheduled works. Please note that the scheduled list
2349 * may change while processing a work, so this function repeatedly
2350 * fetches a work from the top and executes it.
2351 *
2352 * CONTEXT:
a9b8a985 2353 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2354 * multiple times.
2355 */
2356static void process_scheduled_works(struct worker *worker)
1da177e4 2357{
affee4b2
TH
2358 while (!list_empty(&worker->scheduled)) {
2359 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2360 struct work_struct, entry);
c34056a3 2361 process_one_work(worker, work);
1da177e4 2362 }
1da177e4
LT
2363}
2364
197f6acc
TH
2365static void set_pf_worker(bool val)
2366{
2367 mutex_lock(&wq_pool_attach_mutex);
2368 if (val)
2369 current->flags |= PF_WQ_WORKER;
2370 else
2371 current->flags &= ~PF_WQ_WORKER;
2372 mutex_unlock(&wq_pool_attach_mutex);
2373}
2374
4690c4ab
TH
2375/**
2376 * worker_thread - the worker thread function
c34056a3 2377 * @__worker: self
4690c4ab 2378 *
c5aa87bb
TH
2379 * The worker thread function. All workers belong to a worker_pool -
2380 * either a per-cpu one or dynamic unbound one. These workers process all
2381 * work items regardless of their specific target workqueue. The only
2382 * exception is work items which belong to workqueues with a rescuer which
2383 * will be explained in rescuer_thread().
d185af30
YB
2384 *
2385 * Return: 0
4690c4ab 2386 */
c34056a3 2387static int worker_thread(void *__worker)
1da177e4 2388{
c34056a3 2389 struct worker *worker = __worker;
bd7bdd43 2390 struct worker_pool *pool = worker->pool;
1da177e4 2391
e22bee78 2392 /* tell the scheduler that this is a workqueue worker */
197f6acc 2393 set_pf_worker(true);
c8e55f36 2394woke_up:
a9b8a985 2395 raw_spin_lock_irq(&pool->lock);
1da177e4 2396
a9ab775b
TH
2397 /* am I supposed to die? */
2398 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2399 raw_spin_unlock_irq(&pool->lock);
a9ab775b 2400 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2401 set_pf_worker(false);
60f5a4bc
LJ
2402
2403 set_task_comm(worker->task, "kworker/dying");
e441b56f 2404 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2405 worker_detach_from_pool(worker);
60f5a4bc 2406 kfree(worker);
a9ab775b 2407 return 0;
c8e55f36 2408 }
affee4b2 2409
c8e55f36 2410 worker_leave_idle(worker);
db7bccf4 2411recheck:
e22bee78 2412 /* no more worker necessary? */
63d95a91 2413 if (!need_more_worker(pool))
e22bee78
TH
2414 goto sleep;
2415
2416 /* do we need to manage? */
63d95a91 2417 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2418 goto recheck;
2419
c8e55f36
TH
2420 /*
2421 * ->scheduled list can only be filled while a worker is
2422 * preparing to process a work or actually processing it.
2423 * Make sure nobody diddled with it while I was sleeping.
2424 */
6183c009 2425 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2426
e22bee78 2427 /*
a9ab775b
TH
2428 * Finish PREP stage. We're guaranteed to have at least one idle
2429 * worker or that someone else has already assumed the manager
2430 * role. This is where @worker starts participating in concurrency
2431 * management if applicable and concurrency management is restored
2432 * after being rebound. See rebind_workers() for details.
e22bee78 2433 */
a9ab775b 2434 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2435
2436 do {
c8e55f36 2437 struct work_struct *work =
bd7bdd43 2438 list_first_entry(&pool->worklist,
c8e55f36
TH
2439 struct work_struct, entry);
2440
82607adc
TH
2441 pool->watchdog_ts = jiffies;
2442
c8e55f36
TH
2443 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2444 /* optimization path, not strictly necessary */
2445 process_one_work(worker, work);
2446 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2447 process_scheduled_works(worker);
c8e55f36
TH
2448 } else {
2449 move_linked_works(work, &worker->scheduled, NULL);
2450 process_scheduled_works(worker);
affee4b2 2451 }
63d95a91 2452 } while (keep_working(pool));
e22bee78 2453
228f1d00 2454 worker_set_flags(worker, WORKER_PREP);
d313dd85 2455sleep:
c8e55f36 2456 /*
d565ed63
TH
2457 * pool->lock is held and there's no work to process and no need to
2458 * manage, sleep. Workers are woken up only while holding
2459 * pool->lock or from local cpu, so setting the current state
2460 * before releasing pool->lock is enough to prevent losing any
2461 * event.
c8e55f36
TH
2462 */
2463 worker_enter_idle(worker);
c5a94a61 2464 __set_current_state(TASK_IDLE);
a9b8a985 2465 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2466 schedule();
2467 goto woke_up;
1da177e4
LT
2468}
2469
e22bee78
TH
2470/**
2471 * rescuer_thread - the rescuer thread function
111c225a 2472 * @__rescuer: self
e22bee78
TH
2473 *
2474 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2475 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2476 *
706026c2 2477 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2478 * worker which uses GFP_KERNEL allocation which has slight chance of
2479 * developing into deadlock if some works currently on the same queue
2480 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2481 * the problem rescuer solves.
2482 *
706026c2
TH
2483 * When such condition is possible, the pool summons rescuers of all
2484 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2485 * those works so that forward progress can be guaranteed.
2486 *
2487 * This should happen rarely.
d185af30
YB
2488 *
2489 * Return: 0
e22bee78 2490 */
111c225a 2491static int rescuer_thread(void *__rescuer)
e22bee78 2492{
111c225a
TH
2493 struct worker *rescuer = __rescuer;
2494 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2495 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2496 bool should_stop;
e22bee78
TH
2497
2498 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2499
2500 /*
2501 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2502 * doesn't participate in concurrency management.
2503 */
197f6acc 2504 set_pf_worker(true);
e22bee78 2505repeat:
c5a94a61 2506 set_current_state(TASK_IDLE);
e22bee78 2507
4d595b86
LJ
2508 /*
2509 * By the time the rescuer is requested to stop, the workqueue
2510 * shouldn't have any work pending, but @wq->maydays may still have
2511 * pwq(s) queued. This can happen by non-rescuer workers consuming
2512 * all the work items before the rescuer got to them. Go through
2513 * @wq->maydays processing before acting on should_stop so that the
2514 * list is always empty on exit.
2515 */
2516 should_stop = kthread_should_stop();
e22bee78 2517
493a1724 2518 /* see whether any pwq is asking for help */
a9b8a985 2519 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2520
2521 while (!list_empty(&wq->maydays)) {
2522 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2523 struct pool_workqueue, mayday_node);
112202d9 2524 struct worker_pool *pool = pwq->pool;
e22bee78 2525 struct work_struct *work, *n;
82607adc 2526 bool first = true;
e22bee78
TH
2527
2528 __set_current_state(TASK_RUNNING);
493a1724
TH
2529 list_del_init(&pwq->mayday_node);
2530
a9b8a985 2531 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2532
51697d39
LJ
2533 worker_attach_to_pool(rescuer, pool);
2534
a9b8a985 2535 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2536
2537 /*
2538 * Slurp in all works issued via this workqueue and
2539 * process'em.
2540 */
0479c8c5 2541 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2542 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2543 if (get_work_pwq(work) == pwq) {
2544 if (first)
2545 pool->watchdog_ts = jiffies;
e22bee78 2546 move_linked_works(work, scheduled, &n);
82607adc
TH
2547 }
2548 first = false;
2549 }
e22bee78 2550
008847f6
N
2551 if (!list_empty(scheduled)) {
2552 process_scheduled_works(rescuer);
2553
2554 /*
2555 * The above execution of rescued work items could
2556 * have created more to rescue through
f97a4a1a 2557 * pwq_activate_first_inactive() or chained
008847f6
N
2558 * queueing. Let's put @pwq back on mayday list so
2559 * that such back-to-back work items, which may be
2560 * being used to relieve memory pressure, don't
2561 * incur MAYDAY_INTERVAL delay inbetween.
2562 */
4f3f4cf3 2563 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2564 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2565 /*
2566 * Queue iff we aren't racing destruction
2567 * and somebody else hasn't queued it already.
2568 */
2569 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2570 get_pwq(pwq);
2571 list_add_tail(&pwq->mayday_node, &wq->maydays);
2572 }
a9b8a985 2573 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2574 }
2575 }
7576958a 2576
77668c8b
LJ
2577 /*
2578 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2579 * go away while we're still attached to it.
77668c8b
LJ
2580 */
2581 put_pwq(pwq);
2582
7576958a 2583 /*
d8ca83e6 2584 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2585 * regular worker; otherwise, we end up with 0 concurrency
2586 * and stalling the execution.
2587 */
d8ca83e6 2588 if (need_more_worker(pool))
63d95a91 2589 wake_up_worker(pool);
7576958a 2590
a9b8a985 2591 raw_spin_unlock_irq(&pool->lock);
13b1d625 2592
a2d812a2 2593 worker_detach_from_pool(rescuer);
13b1d625 2594
a9b8a985 2595 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2596 }
2597
a9b8a985 2598 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2599
4d595b86
LJ
2600 if (should_stop) {
2601 __set_current_state(TASK_RUNNING);
197f6acc 2602 set_pf_worker(false);
4d595b86
LJ
2603 return 0;
2604 }
2605
111c225a
TH
2606 /* rescuers should never participate in concurrency management */
2607 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2608 schedule();
2609 goto repeat;
1da177e4
LT
2610}
2611
fca839c0
TH
2612/**
2613 * check_flush_dependency - check for flush dependency sanity
2614 * @target_wq: workqueue being flushed
2615 * @target_work: work item being flushed (NULL for workqueue flushes)
2616 *
2617 * %current is trying to flush the whole @target_wq or @target_work on it.
2618 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2619 * reclaiming memory or running on a workqueue which doesn't have
2620 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2621 * a deadlock.
2622 */
2623static void check_flush_dependency(struct workqueue_struct *target_wq,
2624 struct work_struct *target_work)
2625{
2626 work_func_t target_func = target_work ? target_work->func : NULL;
2627 struct worker *worker;
2628
2629 if (target_wq->flags & WQ_MEM_RECLAIM)
2630 return;
2631
2632 worker = current_wq_worker();
2633
2634 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2635 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2636 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2637 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2638 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2639 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2640 worker->current_pwq->wq->name, worker->current_func,
2641 target_wq->name, target_func);
2642}
2643
fc2e4d70
ON
2644struct wq_barrier {
2645 struct work_struct work;
2646 struct completion done;
2607d7a6 2647 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2648};
2649
2650static void wq_barrier_func(struct work_struct *work)
2651{
2652 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2653 complete(&barr->done);
2654}
2655
4690c4ab
TH
2656/**
2657 * insert_wq_barrier - insert a barrier work
112202d9 2658 * @pwq: pwq to insert barrier into
4690c4ab 2659 * @barr: wq_barrier to insert
affee4b2
TH
2660 * @target: target work to attach @barr to
2661 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2662 *
affee4b2
TH
2663 * @barr is linked to @target such that @barr is completed only after
2664 * @target finishes execution. Please note that the ordering
2665 * guarantee is observed only with respect to @target and on the local
2666 * cpu.
2667 *
2668 * Currently, a queued barrier can't be canceled. This is because
2669 * try_to_grab_pending() can't determine whether the work to be
2670 * grabbed is at the head of the queue and thus can't clear LINKED
2671 * flag of the previous work while there must be a valid next work
2672 * after a work with LINKED flag set.
2673 *
2674 * Note that when @worker is non-NULL, @target may be modified
112202d9 2675 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2676 *
2677 * CONTEXT:
a9b8a985 2678 * raw_spin_lock_irq(pool->lock).
4690c4ab 2679 */
112202d9 2680static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2681 struct wq_barrier *barr,
2682 struct work_struct *target, struct worker *worker)
fc2e4d70 2683{
d812796e
LJ
2684 unsigned int work_flags = 0;
2685 unsigned int work_color;
affee4b2 2686 struct list_head *head;
affee4b2 2687
dc186ad7 2688 /*
d565ed63 2689 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2690 * as we know for sure that this will not trigger any of the
2691 * checks and call back into the fixup functions where we
2692 * might deadlock.
2693 */
ca1cab37 2694 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2695 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2696
fd1a5b04
BP
2697 init_completion_map(&barr->done, &target->lockdep_map);
2698
2607d7a6 2699 barr->task = current;
83c22520 2700
018f3a13
LJ
2701 /* The barrier work item does not participate in pwq->nr_active. */
2702 work_flags |= WORK_STRUCT_INACTIVE;
2703
affee4b2
TH
2704 /*
2705 * If @target is currently being executed, schedule the
2706 * barrier to the worker; otherwise, put it after @target.
2707 */
d812796e 2708 if (worker) {
affee4b2 2709 head = worker->scheduled.next;
d812796e
LJ
2710 work_color = worker->current_color;
2711 } else {
affee4b2
TH
2712 unsigned long *bits = work_data_bits(target);
2713
2714 head = target->entry.next;
2715 /* there can already be other linked works, inherit and set */
d21cece0 2716 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2717 work_color = get_work_color(*bits);
affee4b2
TH
2718 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2719 }
2720
d812796e
LJ
2721 pwq->nr_in_flight[work_color]++;
2722 work_flags |= work_color_to_flags(work_color);
2723
dc186ad7 2724 debug_work_activate(&barr->work);
d21cece0 2725 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2726}
2727
73f53c4a 2728/**
112202d9 2729 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2730 * @wq: workqueue being flushed
2731 * @flush_color: new flush color, < 0 for no-op
2732 * @work_color: new work color, < 0 for no-op
2733 *
112202d9 2734 * Prepare pwqs for workqueue flushing.
73f53c4a 2735 *
112202d9
TH
2736 * If @flush_color is non-negative, flush_color on all pwqs should be
2737 * -1. If no pwq has in-flight commands at the specified color, all
2738 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2739 * has in flight commands, its pwq->flush_color is set to
2740 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2741 * wakeup logic is armed and %true is returned.
2742 *
2743 * The caller should have initialized @wq->first_flusher prior to
2744 * calling this function with non-negative @flush_color. If
2745 * @flush_color is negative, no flush color update is done and %false
2746 * is returned.
2747 *
112202d9 2748 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2749 * work_color which is previous to @work_color and all will be
2750 * advanced to @work_color.
2751 *
2752 * CONTEXT:
3c25a55d 2753 * mutex_lock(wq->mutex).
73f53c4a 2754 *
d185af30 2755 * Return:
73f53c4a
TH
2756 * %true if @flush_color >= 0 and there's something to flush. %false
2757 * otherwise.
2758 */
112202d9 2759static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2760 int flush_color, int work_color)
1da177e4 2761{
73f53c4a 2762 bool wait = false;
49e3cf44 2763 struct pool_workqueue *pwq;
1da177e4 2764
73f53c4a 2765 if (flush_color >= 0) {
6183c009 2766 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2767 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2768 }
2355b70f 2769
49e3cf44 2770 for_each_pwq(pwq, wq) {
112202d9 2771 struct worker_pool *pool = pwq->pool;
fc2e4d70 2772
a9b8a985 2773 raw_spin_lock_irq(&pool->lock);
83c22520 2774
73f53c4a 2775 if (flush_color >= 0) {
6183c009 2776 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2777
112202d9
TH
2778 if (pwq->nr_in_flight[flush_color]) {
2779 pwq->flush_color = flush_color;
2780 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2781 wait = true;
2782 }
2783 }
1da177e4 2784
73f53c4a 2785 if (work_color >= 0) {
6183c009 2786 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2787 pwq->work_color = work_color;
73f53c4a 2788 }
1da177e4 2789
a9b8a985 2790 raw_spin_unlock_irq(&pool->lock);
1da177e4 2791 }
2355b70f 2792
112202d9 2793 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2794 complete(&wq->first_flusher->done);
14441960 2795
73f53c4a 2796 return wait;
1da177e4
LT
2797}
2798
0fcb78c2 2799/**
1da177e4 2800 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2801 * @wq: workqueue to flush
1da177e4 2802 *
c5aa87bb
TH
2803 * This function sleeps until all work items which were queued on entry
2804 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2805 */
7ad5b3a5 2806void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2807{
73f53c4a
TH
2808 struct wq_flusher this_flusher = {
2809 .list = LIST_HEAD_INIT(this_flusher.list),
2810 .flush_color = -1,
fd1a5b04 2811 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2812 };
2813 int next_color;
1da177e4 2814
3347fa09
TH
2815 if (WARN_ON(!wq_online))
2816 return;
2817
87915adc
JB
2818 lock_map_acquire(&wq->lockdep_map);
2819 lock_map_release(&wq->lockdep_map);
2820
3c25a55d 2821 mutex_lock(&wq->mutex);
73f53c4a
TH
2822
2823 /*
2824 * Start-to-wait phase
2825 */
2826 next_color = work_next_color(wq->work_color);
2827
2828 if (next_color != wq->flush_color) {
2829 /*
2830 * Color space is not full. The current work_color
2831 * becomes our flush_color and work_color is advanced
2832 * by one.
2833 */
6183c009 2834 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2835 this_flusher.flush_color = wq->work_color;
2836 wq->work_color = next_color;
2837
2838 if (!wq->first_flusher) {
2839 /* no flush in progress, become the first flusher */
6183c009 2840 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2841
2842 wq->first_flusher = &this_flusher;
2843
112202d9 2844 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2845 wq->work_color)) {
2846 /* nothing to flush, done */
2847 wq->flush_color = next_color;
2848 wq->first_flusher = NULL;
2849 goto out_unlock;
2850 }
2851 } else {
2852 /* wait in queue */
6183c009 2853 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2854 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2855 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2856 }
2857 } else {
2858 /*
2859 * Oops, color space is full, wait on overflow queue.
2860 * The next flush completion will assign us
2861 * flush_color and transfer to flusher_queue.
2862 */
2863 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2864 }
2865
fca839c0
TH
2866 check_flush_dependency(wq, NULL);
2867
3c25a55d 2868 mutex_unlock(&wq->mutex);
73f53c4a
TH
2869
2870 wait_for_completion(&this_flusher.done);
2871
2872 /*
2873 * Wake-up-and-cascade phase
2874 *
2875 * First flushers are responsible for cascading flushes and
2876 * handling overflow. Non-first flushers can simply return.
2877 */
00d5d15b 2878 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2879 return;
2880
3c25a55d 2881 mutex_lock(&wq->mutex);
73f53c4a 2882
4ce48b37
TH
2883 /* we might have raced, check again with mutex held */
2884 if (wq->first_flusher != &this_flusher)
2885 goto out_unlock;
2886
00d5d15b 2887 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2888
6183c009
TH
2889 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2890 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2891
2892 while (true) {
2893 struct wq_flusher *next, *tmp;
2894
2895 /* complete all the flushers sharing the current flush color */
2896 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2897 if (next->flush_color != wq->flush_color)
2898 break;
2899 list_del_init(&next->list);
2900 complete(&next->done);
2901 }
2902
6183c009
TH
2903 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2904 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2905
2906 /* this flush_color is finished, advance by one */
2907 wq->flush_color = work_next_color(wq->flush_color);
2908
2909 /* one color has been freed, handle overflow queue */
2910 if (!list_empty(&wq->flusher_overflow)) {
2911 /*
2912 * Assign the same color to all overflowed
2913 * flushers, advance work_color and append to
2914 * flusher_queue. This is the start-to-wait
2915 * phase for these overflowed flushers.
2916 */
2917 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2918 tmp->flush_color = wq->work_color;
2919
2920 wq->work_color = work_next_color(wq->work_color);
2921
2922 list_splice_tail_init(&wq->flusher_overflow,
2923 &wq->flusher_queue);
112202d9 2924 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2925 }
2926
2927 if (list_empty(&wq->flusher_queue)) {
6183c009 2928 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2929 break;
2930 }
2931
2932 /*
2933 * Need to flush more colors. Make the next flusher
112202d9 2934 * the new first flusher and arm pwqs.
73f53c4a 2935 */
6183c009
TH
2936 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2937 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2938
2939 list_del_init(&next->list);
2940 wq->first_flusher = next;
2941
112202d9 2942 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2943 break;
2944
2945 /*
2946 * Meh... this color is already done, clear first
2947 * flusher and repeat cascading.
2948 */
2949 wq->first_flusher = NULL;
2950 }
2951
2952out_unlock:
3c25a55d 2953 mutex_unlock(&wq->mutex);
1da177e4 2954}
1dadafa8 2955EXPORT_SYMBOL(flush_workqueue);
1da177e4 2956
9c5a2ba7
TH
2957/**
2958 * drain_workqueue - drain a workqueue
2959 * @wq: workqueue to drain
2960 *
2961 * Wait until the workqueue becomes empty. While draining is in progress,
2962 * only chain queueing is allowed. IOW, only currently pending or running
2963 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2964 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2965 * by the depth of chaining and should be relatively short. Whine if it
2966 * takes too long.
2967 */
2968void drain_workqueue(struct workqueue_struct *wq)
2969{
2970 unsigned int flush_cnt = 0;
49e3cf44 2971 struct pool_workqueue *pwq;
9c5a2ba7
TH
2972
2973 /*
2974 * __queue_work() needs to test whether there are drainers, is much
2975 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2976 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2977 */
87fc741e 2978 mutex_lock(&wq->mutex);
9c5a2ba7 2979 if (!wq->nr_drainers++)
618b01eb 2980 wq->flags |= __WQ_DRAINING;
87fc741e 2981 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2982reflush:
2983 flush_workqueue(wq);
2984
b09f4fd3 2985 mutex_lock(&wq->mutex);
76af4d93 2986
49e3cf44 2987 for_each_pwq(pwq, wq) {
fa2563e4 2988 bool drained;
9c5a2ba7 2989
a9b8a985 2990 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 2991 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 2992 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2993
2994 if (drained)
9c5a2ba7
TH
2995 continue;
2996
2997 if (++flush_cnt == 10 ||
2998 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
2999 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3000 wq->name, __func__, flush_cnt);
76af4d93 3001
b09f4fd3 3002 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3003 goto reflush;
3004 }
3005
9c5a2ba7 3006 if (!--wq->nr_drainers)
618b01eb 3007 wq->flags &= ~__WQ_DRAINING;
87fc741e 3008 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3009}
3010EXPORT_SYMBOL_GPL(drain_workqueue);
3011
d6e89786
JB
3012static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3013 bool from_cancel)
db700897 3014{
affee4b2 3015 struct worker *worker = NULL;
c9e7cf27 3016 struct worker_pool *pool;
112202d9 3017 struct pool_workqueue *pwq;
db700897
ON
3018
3019 might_sleep();
fa1b54e6 3020
24acfb71 3021 rcu_read_lock();
c9e7cf27 3022 pool = get_work_pool(work);
fa1b54e6 3023 if (!pool) {
24acfb71 3024 rcu_read_unlock();
baf59022 3025 return false;
fa1b54e6 3026 }
db700897 3027
a9b8a985 3028 raw_spin_lock_irq(&pool->lock);
0b3dae68 3029 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3030 pwq = get_work_pwq(work);
3031 if (pwq) {
3032 if (unlikely(pwq->pool != pool))
4690c4ab 3033 goto already_gone;
606a5020 3034 } else {
c9e7cf27 3035 worker = find_worker_executing_work(pool, work);
affee4b2 3036 if (!worker)
4690c4ab 3037 goto already_gone;
112202d9 3038 pwq = worker->current_pwq;
606a5020 3039 }
db700897 3040
fca839c0
TH
3041 check_flush_dependency(pwq->wq, work);
3042
112202d9 3043 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3044 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3045
e159489b 3046 /*
a1d14934
PZ
3047 * Force a lock recursion deadlock when using flush_work() inside a
3048 * single-threaded or rescuer equipped workqueue.
3049 *
3050 * For single threaded workqueues the deadlock happens when the work
3051 * is after the work issuing the flush_work(). For rescuer equipped
3052 * workqueues the deadlock happens when the rescuer stalls, blocking
3053 * forward progress.
e159489b 3054 */
d6e89786
JB
3055 if (!from_cancel &&
3056 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3057 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3058 lock_map_release(&pwq->wq->lockdep_map);
3059 }
24acfb71 3060 rcu_read_unlock();
401a8d04 3061 return true;
4690c4ab 3062already_gone:
a9b8a985 3063 raw_spin_unlock_irq(&pool->lock);
24acfb71 3064 rcu_read_unlock();
401a8d04 3065 return false;
db700897 3066}
baf59022 3067
d6e89786
JB
3068static bool __flush_work(struct work_struct *work, bool from_cancel)
3069{
3070 struct wq_barrier barr;
3071
3072 if (WARN_ON(!wq_online))
3073 return false;
3074
4d43d395
TH
3075 if (WARN_ON(!work->func))
3076 return false;
3077
87915adc
JB
3078 if (!from_cancel) {
3079 lock_map_acquire(&work->lockdep_map);
3080 lock_map_release(&work->lockdep_map);
3081 }
3082
d6e89786
JB
3083 if (start_flush_work(work, &barr, from_cancel)) {
3084 wait_for_completion(&barr.done);
3085 destroy_work_on_stack(&barr.work);
3086 return true;
3087 } else {
3088 return false;
3089 }
3090}
3091
baf59022
TH
3092/**
3093 * flush_work - wait for a work to finish executing the last queueing instance
3094 * @work: the work to flush
3095 *
606a5020
TH
3096 * Wait until @work has finished execution. @work is guaranteed to be idle
3097 * on return if it hasn't been requeued since flush started.
baf59022 3098 *
d185af30 3099 * Return:
baf59022
TH
3100 * %true if flush_work() waited for the work to finish execution,
3101 * %false if it was already idle.
3102 */
3103bool flush_work(struct work_struct *work)
3104{
d6e89786 3105 return __flush_work(work, false);
6e84d644 3106}
606a5020 3107EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3108
8603e1b3 3109struct cwt_wait {
ac6424b9 3110 wait_queue_entry_t wait;
8603e1b3
TH
3111 struct work_struct *work;
3112};
3113
ac6424b9 3114static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3115{
3116 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3117
3118 if (cwait->work != key)
3119 return 0;
3120 return autoremove_wake_function(wait, mode, sync, key);
3121}
3122
36e227d2 3123static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3124{
8603e1b3 3125 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3126 unsigned long flags;
1f1f642e
ON
3127 int ret;
3128
3129 do {
bbb68dfa
TH
3130 ret = try_to_grab_pending(work, is_dwork, &flags);
3131 /*
8603e1b3
TH
3132 * If someone else is already canceling, wait for it to
3133 * finish. flush_work() doesn't work for PREEMPT_NONE
3134 * because we may get scheduled between @work's completion
3135 * and the other canceling task resuming and clearing
3136 * CANCELING - flush_work() will return false immediately
3137 * as @work is no longer busy, try_to_grab_pending() will
3138 * return -ENOENT as @work is still being canceled and the
3139 * other canceling task won't be able to clear CANCELING as
3140 * we're hogging the CPU.
3141 *
3142 * Let's wait for completion using a waitqueue. As this
3143 * may lead to the thundering herd problem, use a custom
3144 * wake function which matches @work along with exclusive
3145 * wait and wakeup.
bbb68dfa 3146 */
8603e1b3
TH
3147 if (unlikely(ret == -ENOENT)) {
3148 struct cwt_wait cwait;
3149
3150 init_wait(&cwait.wait);
3151 cwait.wait.func = cwt_wakefn;
3152 cwait.work = work;
3153
3154 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3155 TASK_UNINTERRUPTIBLE);
3156 if (work_is_canceling(work))
3157 schedule();
3158 finish_wait(&cancel_waitq, &cwait.wait);
3159 }
1f1f642e
ON
3160 } while (unlikely(ret < 0));
3161
bbb68dfa
TH
3162 /* tell other tasks trying to grab @work to back off */
3163 mark_work_canceling(work);
3164 local_irq_restore(flags);
3165
3347fa09
TH
3166 /*
3167 * This allows canceling during early boot. We know that @work
3168 * isn't executing.
3169 */
3170 if (wq_online)
d6e89786 3171 __flush_work(work, true);
3347fa09 3172
7a22ad75 3173 clear_work_data(work);
8603e1b3
TH
3174
3175 /*
3176 * Paired with prepare_to_wait() above so that either
3177 * waitqueue_active() is visible here or !work_is_canceling() is
3178 * visible there.
3179 */
3180 smp_mb();
3181 if (waitqueue_active(&cancel_waitq))
3182 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3183
1f1f642e
ON
3184 return ret;
3185}
3186
6e84d644 3187/**
401a8d04
TH
3188 * cancel_work_sync - cancel a work and wait for it to finish
3189 * @work: the work to cancel
6e84d644 3190 *
401a8d04
TH
3191 * Cancel @work and wait for its execution to finish. This function
3192 * can be used even if the work re-queues itself or migrates to
3193 * another workqueue. On return from this function, @work is
3194 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3195 *
401a8d04
TH
3196 * cancel_work_sync(&delayed_work->work) must not be used for
3197 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3198 *
401a8d04 3199 * The caller must ensure that the workqueue on which @work was last
6e84d644 3200 * queued can't be destroyed before this function returns.
401a8d04 3201 *
d185af30 3202 * Return:
401a8d04 3203 * %true if @work was pending, %false otherwise.
6e84d644 3204 */
401a8d04 3205bool cancel_work_sync(struct work_struct *work)
6e84d644 3206{
36e227d2 3207 return __cancel_work_timer(work, false);
b89deed3 3208}
28e53bdd 3209EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3210
6e84d644 3211/**
401a8d04
TH
3212 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3213 * @dwork: the delayed work to flush
6e84d644 3214 *
401a8d04
TH
3215 * Delayed timer is cancelled and the pending work is queued for
3216 * immediate execution. Like flush_work(), this function only
3217 * considers the last queueing instance of @dwork.
1f1f642e 3218 *
d185af30 3219 * Return:
401a8d04
TH
3220 * %true if flush_work() waited for the work to finish execution,
3221 * %false if it was already idle.
6e84d644 3222 */
401a8d04
TH
3223bool flush_delayed_work(struct delayed_work *dwork)
3224{
8930caba 3225 local_irq_disable();
401a8d04 3226 if (del_timer_sync(&dwork->timer))
60c057bc 3227 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3228 local_irq_enable();
401a8d04
TH
3229 return flush_work(&dwork->work);
3230}
3231EXPORT_SYMBOL(flush_delayed_work);
3232
05f0fe6b
TH
3233/**
3234 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3235 * @rwork: the rcu work to flush
3236 *
3237 * Return:
3238 * %true if flush_rcu_work() waited for the work to finish execution,
3239 * %false if it was already idle.
3240 */
3241bool flush_rcu_work(struct rcu_work *rwork)
3242{
3243 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3244 rcu_barrier();
3245 flush_work(&rwork->work);
3246 return true;
3247 } else {
3248 return flush_work(&rwork->work);
3249 }
3250}
3251EXPORT_SYMBOL(flush_rcu_work);
3252
f72b8792
JA
3253static bool __cancel_work(struct work_struct *work, bool is_dwork)
3254{
3255 unsigned long flags;
3256 int ret;
3257
3258 do {
3259 ret = try_to_grab_pending(work, is_dwork, &flags);
3260 } while (unlikely(ret == -EAGAIN));
3261
3262 if (unlikely(ret < 0))
3263 return false;
3264
3265 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3266 local_irq_restore(flags);
3267 return ret;
3268}
3269
09383498 3270/**
57b30ae7
TH
3271 * cancel_delayed_work - cancel a delayed work
3272 * @dwork: delayed_work to cancel
09383498 3273 *
d185af30
YB
3274 * Kill off a pending delayed_work.
3275 *
3276 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3277 * pending.
3278 *
3279 * Note:
3280 * The work callback function may still be running on return, unless
3281 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3282 * use cancel_delayed_work_sync() to wait on it.
09383498 3283 *
57b30ae7 3284 * This function is safe to call from any context including IRQ handler.
09383498 3285 */
57b30ae7 3286bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3287{
f72b8792 3288 return __cancel_work(&dwork->work, true);
09383498 3289}
57b30ae7 3290EXPORT_SYMBOL(cancel_delayed_work);
09383498 3291
401a8d04
TH
3292/**
3293 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3294 * @dwork: the delayed work cancel
3295 *
3296 * This is cancel_work_sync() for delayed works.
3297 *
d185af30 3298 * Return:
401a8d04
TH
3299 * %true if @dwork was pending, %false otherwise.
3300 */
3301bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3302{
36e227d2 3303 return __cancel_work_timer(&dwork->work, true);
6e84d644 3304}
f5a421a4 3305EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3306
b6136773 3307/**
31ddd871 3308 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3309 * @func: the function to call
b6136773 3310 *
31ddd871
TH
3311 * schedule_on_each_cpu() executes @func on each online CPU using the
3312 * system workqueue and blocks until all CPUs have completed.
b6136773 3313 * schedule_on_each_cpu() is very slow.
31ddd871 3314 *
d185af30 3315 * Return:
31ddd871 3316 * 0 on success, -errno on failure.
b6136773 3317 */
65f27f38 3318int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3319{
3320 int cpu;
38f51568 3321 struct work_struct __percpu *works;
15316ba8 3322
b6136773
AM
3323 works = alloc_percpu(struct work_struct);
3324 if (!works)
15316ba8 3325 return -ENOMEM;
b6136773 3326
ffd8bea8 3327 cpus_read_lock();
93981800 3328
15316ba8 3329 for_each_online_cpu(cpu) {
9bfb1839
IM
3330 struct work_struct *work = per_cpu_ptr(works, cpu);
3331
3332 INIT_WORK(work, func);
b71ab8c2 3333 schedule_work_on(cpu, work);
65a64464 3334 }
93981800
TH
3335
3336 for_each_online_cpu(cpu)
3337 flush_work(per_cpu_ptr(works, cpu));
3338
ffd8bea8 3339 cpus_read_unlock();
b6136773 3340 free_percpu(works);
15316ba8
CL
3341 return 0;
3342}
3343
1fa44eca
JB
3344/**
3345 * execute_in_process_context - reliably execute the routine with user context
3346 * @fn: the function to execute
1fa44eca
JB
3347 * @ew: guaranteed storage for the execute work structure (must
3348 * be available when the work executes)
3349 *
3350 * Executes the function immediately if process context is available,
3351 * otherwise schedules the function for delayed execution.
3352 *
d185af30 3353 * Return: 0 - function was executed
1fa44eca
JB
3354 * 1 - function was scheduled for execution
3355 */
65f27f38 3356int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3357{
3358 if (!in_interrupt()) {
65f27f38 3359 fn(&ew->work);
1fa44eca
JB
3360 return 0;
3361 }
3362
65f27f38 3363 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3364 schedule_work(&ew->work);
3365
3366 return 1;
3367}
3368EXPORT_SYMBOL_GPL(execute_in_process_context);
3369
6ba94429
FW
3370/**
3371 * free_workqueue_attrs - free a workqueue_attrs
3372 * @attrs: workqueue_attrs to free
226223ab 3373 *
6ba94429 3374 * Undo alloc_workqueue_attrs().
226223ab 3375 */
513c98d0 3376void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3377{
6ba94429
FW
3378 if (attrs) {
3379 free_cpumask_var(attrs->cpumask);
3380 kfree(attrs);
3381 }
226223ab
TH
3382}
3383
6ba94429
FW
3384/**
3385 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3386 *
3387 * Allocate a new workqueue_attrs, initialize with default settings and
3388 * return it.
3389 *
3390 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3391 */
513c98d0 3392struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3393{
6ba94429 3394 struct workqueue_attrs *attrs;
226223ab 3395
be69d00d 3396 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3397 if (!attrs)
3398 goto fail;
be69d00d 3399 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3400 goto fail;
3401
3402 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3403 return attrs;
3404fail:
3405 free_workqueue_attrs(attrs);
3406 return NULL;
226223ab
TH
3407}
3408
6ba94429
FW
3409static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410 const struct workqueue_attrs *from)
226223ab 3411{
6ba94429
FW
3412 to->nice = from->nice;
3413 cpumask_copy(to->cpumask, from->cpumask);
3414 /*
3415 * Unlike hash and equality test, this function doesn't ignore
3416 * ->no_numa as it is used for both pool and wq attrs. Instead,
3417 * get_unbound_pool() explicitly clears ->no_numa after copying.
3418 */
3419 to->no_numa = from->no_numa;
226223ab
TH
3420}
3421
6ba94429
FW
3422/* hash value of the content of @attr */
3423static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3424{
6ba94429 3425 u32 hash = 0;
226223ab 3426
6ba94429
FW
3427 hash = jhash_1word(attrs->nice, hash);
3428 hash = jhash(cpumask_bits(attrs->cpumask),
3429 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3430 return hash;
226223ab 3431}
226223ab 3432
6ba94429
FW
3433/* content equality test */
3434static bool wqattrs_equal(const struct workqueue_attrs *a,
3435 const struct workqueue_attrs *b)
226223ab 3436{
6ba94429
FW
3437 if (a->nice != b->nice)
3438 return false;
3439 if (!cpumask_equal(a->cpumask, b->cpumask))
3440 return false;
3441 return true;
226223ab
TH
3442}
3443
6ba94429
FW
3444/**
3445 * init_worker_pool - initialize a newly zalloc'd worker_pool
3446 * @pool: worker_pool to initialize
3447 *
402dd89d 3448 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3449 *
3450 * Return: 0 on success, -errno on failure. Even on failure, all fields
3451 * inside @pool proper are initialized and put_unbound_pool() can be called
3452 * on @pool safely to release it.
3453 */
3454static int init_worker_pool(struct worker_pool *pool)
226223ab 3455{
a9b8a985 3456 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3457 pool->id = -1;
3458 pool->cpu = -1;
3459 pool->node = NUMA_NO_NODE;
3460 pool->flags |= POOL_DISASSOCIATED;
82607adc 3461 pool->watchdog_ts = jiffies;
6ba94429
FW
3462 INIT_LIST_HEAD(&pool->worklist);
3463 INIT_LIST_HEAD(&pool->idle_list);
3464 hash_init(pool->busy_hash);
226223ab 3465
32a6c723 3466 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3467
32a6c723 3468 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3469
6ba94429 3470 INIT_LIST_HEAD(&pool->workers);
226223ab 3471
6ba94429
FW
3472 ida_init(&pool->worker_ida);
3473 INIT_HLIST_NODE(&pool->hash_node);
3474 pool->refcnt = 1;
226223ab 3475
6ba94429 3476 /* shouldn't fail above this point */
be69d00d 3477 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3478 if (!pool->attrs)
3479 return -ENOMEM;
3480 return 0;
226223ab
TH
3481}
3482
669de8bd
BVA
3483#ifdef CONFIG_LOCKDEP
3484static void wq_init_lockdep(struct workqueue_struct *wq)
3485{
3486 char *lock_name;
3487
3488 lockdep_register_key(&wq->key);
3489 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3490 if (!lock_name)
3491 lock_name = wq->name;
69a106c0
QC
3492
3493 wq->lock_name = lock_name;
669de8bd
BVA
3494 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3495}
3496
3497static void wq_unregister_lockdep(struct workqueue_struct *wq)
3498{
3499 lockdep_unregister_key(&wq->key);
3500}
3501
3502static void wq_free_lockdep(struct workqueue_struct *wq)
3503{
3504 if (wq->lock_name != wq->name)
3505 kfree(wq->lock_name);
3506}
3507#else
3508static void wq_init_lockdep(struct workqueue_struct *wq)
3509{
3510}
3511
3512static void wq_unregister_lockdep(struct workqueue_struct *wq)
3513{
3514}
3515
3516static void wq_free_lockdep(struct workqueue_struct *wq)
3517{
3518}
3519#endif
3520
6ba94429 3521static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3522{
6ba94429
FW
3523 struct workqueue_struct *wq =
3524 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3525
669de8bd
BVA
3526 wq_free_lockdep(wq);
3527
6ba94429
FW
3528 if (!(wq->flags & WQ_UNBOUND))
3529 free_percpu(wq->cpu_pwqs);
226223ab 3530 else
6ba94429 3531 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3532
6ba94429 3533 kfree(wq);
226223ab
TH
3534}
3535
6ba94429 3536static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3537{
6ba94429 3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3539
6ba94429
FW
3540 ida_destroy(&pool->worker_ida);
3541 free_workqueue_attrs(pool->attrs);
3542 kfree(pool);
226223ab
TH
3543}
3544
d8bb65ab
SAS
3545/* This returns with the lock held on success (pool manager is inactive). */
3546static bool wq_manager_inactive(struct worker_pool *pool)
3547{
a9b8a985 3548 raw_spin_lock_irq(&pool->lock);
d8bb65ab
SAS
3549
3550 if (pool->flags & POOL_MANAGER_ACTIVE) {
a9b8a985 3551 raw_spin_unlock_irq(&pool->lock);
d8bb65ab
SAS
3552 return false;
3553 }
3554 return true;
3555}
3556
6ba94429
FW
3557/**
3558 * put_unbound_pool - put a worker_pool
3559 * @pool: worker_pool to put
3560 *
24acfb71 3561 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3562 * safe manner. get_unbound_pool() calls this function on its failure path
3563 * and this function should be able to release pools which went through,
3564 * successfully or not, init_worker_pool().
3565 *
3566 * Should be called with wq_pool_mutex held.
3567 */
3568static void put_unbound_pool(struct worker_pool *pool)
226223ab 3569{
6ba94429
FW
3570 DECLARE_COMPLETION_ONSTACK(detach_completion);
3571 struct worker *worker;
226223ab 3572
6ba94429 3573 lockdep_assert_held(&wq_pool_mutex);
226223ab 3574
6ba94429
FW
3575 if (--pool->refcnt)
3576 return;
226223ab 3577
6ba94429
FW
3578 /* sanity checks */
3579 if (WARN_ON(!(pool->cpu < 0)) ||
3580 WARN_ON(!list_empty(&pool->worklist)))
3581 return;
226223ab 3582
6ba94429
FW
3583 /* release id and unhash */
3584 if (pool->id >= 0)
3585 idr_remove(&worker_pool_idr, pool->id);
3586 hash_del(&pool->hash_node);
d55262c4 3587
6ba94429 3588 /*
692b4825
TH
3589 * Become the manager and destroy all workers. This prevents
3590 * @pool's workers from blocking on attach_mutex. We're the last
3591 * manager and @pool gets freed with the flag set.
d8bb65ab
SAS
3592 * Because of how wq_manager_inactive() works, we will hold the
3593 * spinlock after a successful wait.
6ba94429 3594 */
d8bb65ab
SAS
3595 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3596 TASK_UNINTERRUPTIBLE);
692b4825
TH
3597 pool->flags |= POOL_MANAGER_ACTIVE;
3598
6ba94429
FW
3599 while ((worker = first_idle_worker(pool)))
3600 destroy_worker(worker);
3601 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3602 raw_spin_unlock_irq(&pool->lock);
d55262c4 3603
1258fae7 3604 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3605 if (!list_empty(&pool->workers))
3606 pool->detach_completion = &detach_completion;
1258fae7 3607 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3608
6ba94429
FW
3609 if (pool->detach_completion)
3610 wait_for_completion(pool->detach_completion);
226223ab 3611
6ba94429
FW
3612 /* shut down the timers */
3613 del_timer_sync(&pool->idle_timer);
3614 del_timer_sync(&pool->mayday_timer);
226223ab 3615
24acfb71 3616 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3617 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3618}
3619
3620/**
6ba94429
FW
3621 * get_unbound_pool - get a worker_pool with the specified attributes
3622 * @attrs: the attributes of the worker_pool to get
226223ab 3623 *
6ba94429
FW
3624 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3625 * reference count and return it. If there already is a matching
3626 * worker_pool, it will be used; otherwise, this function attempts to
3627 * create a new one.
226223ab 3628 *
6ba94429 3629 * Should be called with wq_pool_mutex held.
226223ab 3630 *
6ba94429
FW
3631 * Return: On success, a worker_pool with the same attributes as @attrs.
3632 * On failure, %NULL.
226223ab 3633 */
6ba94429 3634static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3635{
6ba94429
FW
3636 u32 hash = wqattrs_hash(attrs);
3637 struct worker_pool *pool;
3638 int node;
e2273584 3639 int target_node = NUMA_NO_NODE;
226223ab 3640
6ba94429 3641 lockdep_assert_held(&wq_pool_mutex);
226223ab 3642
6ba94429
FW
3643 /* do we already have a matching pool? */
3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645 if (wqattrs_equal(pool->attrs, attrs)) {
3646 pool->refcnt++;
3647 return pool;
3648 }
3649 }
226223ab 3650
e2273584
XP
3651 /* if cpumask is contained inside a NUMA node, we belong to that node */
3652 if (wq_numa_enabled) {
3653 for_each_node(node) {
3654 if (cpumask_subset(attrs->cpumask,
3655 wq_numa_possible_cpumask[node])) {
3656 target_node = node;
3657 break;
3658 }
3659 }
3660 }
3661
6ba94429 3662 /* nope, create a new one */
e2273584 3663 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3664 if (!pool || init_worker_pool(pool) < 0)
3665 goto fail;
3666
3667 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3668 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3669 pool->node = target_node;
226223ab
TH
3670
3671 /*
6ba94429
FW
3672 * no_numa isn't a worker_pool attribute, always clear it. See
3673 * 'struct workqueue_attrs' comments for detail.
226223ab 3674 */
6ba94429 3675 pool->attrs->no_numa = false;
226223ab 3676
6ba94429
FW
3677 if (worker_pool_assign_id(pool) < 0)
3678 goto fail;
226223ab 3679
6ba94429 3680 /* create and start the initial worker */
3347fa09 3681 if (wq_online && !create_worker(pool))
6ba94429 3682 goto fail;
226223ab 3683
6ba94429
FW
3684 /* install */
3685 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3686
6ba94429
FW
3687 return pool;
3688fail:
3689 if (pool)
3690 put_unbound_pool(pool);
3691 return NULL;
226223ab 3692}
226223ab 3693
6ba94429 3694static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3695{
6ba94429
FW
3696 kmem_cache_free(pwq_cache,
3697 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3698}
3699
6ba94429
FW
3700/*
3701 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3702 * and needs to be destroyed.
7a4e344c 3703 */
6ba94429 3704static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3705{
6ba94429
FW
3706 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3707 unbound_release_work);
3708 struct workqueue_struct *wq = pwq->wq;
3709 struct worker_pool *pool = pwq->pool;
b42b0bdd 3710 bool is_last = false;
7a4e344c 3711
b42b0bdd
YY
3712 /*
3713 * when @pwq is not linked, it doesn't hold any reference to the
3714 * @wq, and @wq is invalid to access.
3715 */
3716 if (!list_empty(&pwq->pwqs_node)) {
3717 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3718 return;
7a4e344c 3719
b42b0bdd
YY
3720 mutex_lock(&wq->mutex);
3721 list_del_rcu(&pwq->pwqs_node);
3722 is_last = list_empty(&wq->pwqs);
3723 mutex_unlock(&wq->mutex);
3724 }
6ba94429
FW
3725
3726 mutex_lock(&wq_pool_mutex);
3727 put_unbound_pool(pool);
3728 mutex_unlock(&wq_pool_mutex);
3729
25b00775 3730 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3731
2865a8fb 3732 /*
6ba94429
FW
3733 * If we're the last pwq going away, @wq is already dead and no one
3734 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3735 */
669de8bd
BVA
3736 if (is_last) {
3737 wq_unregister_lockdep(wq);
25b00775 3738 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3739 }
29c91e99
TH
3740}
3741
7a4e344c 3742/**
6ba94429
FW
3743 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3744 * @pwq: target pool_workqueue
d185af30 3745 *
6ba94429 3746 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 3747 * workqueue's saved_max_active and activate inactive work items
6ba94429 3748 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3749 */
6ba94429 3750static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3751{
6ba94429
FW
3752 struct workqueue_struct *wq = pwq->wq;
3753 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3754 unsigned long flags;
4e1a1f9a 3755
6ba94429
FW
3756 /* for @wq->saved_max_active */
3757 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3758
6ba94429
FW
3759 /* fast exit for non-freezable wqs */
3760 if (!freezable && pwq->max_active == wq->saved_max_active)
3761 return;
7a4e344c 3762
3347fa09 3763 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3764 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3765
6ba94429
FW
3766 /*
3767 * During [un]freezing, the caller is responsible for ensuring that
3768 * this function is called at least once after @workqueue_freezing
3769 * is updated and visible.
3770 */
3771 if (!freezable || !workqueue_freezing) {
01341fbd
YY
3772 bool kick = false;
3773
6ba94429 3774 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3775
f97a4a1a 3776 while (!list_empty(&pwq->inactive_works) &&
01341fbd 3777 pwq->nr_active < pwq->max_active) {
f97a4a1a 3778 pwq_activate_first_inactive(pwq);
01341fbd
YY
3779 kick = true;
3780 }
e2dca7ad 3781
6ba94429
FW
3782 /*
3783 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
3784 * max_active is bumped. In realtime scenarios, always kicking a
3785 * worker will cause interference on the isolated cpu cores, so
3786 * let's kick iff work items were activated.
6ba94429 3787 */
01341fbd
YY
3788 if (kick)
3789 wake_up_worker(pwq->pool);
6ba94429
FW
3790 } else {
3791 pwq->max_active = 0;
3792 }
e2dca7ad 3793
a9b8a985 3794 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3795}
3796
67dc8325 3797/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
3798static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3799 struct worker_pool *pool)
29c91e99 3800{
6ba94429 3801 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3802
6ba94429
FW
3803 memset(pwq, 0, sizeof(*pwq));
3804
3805 pwq->pool = pool;
3806 pwq->wq = wq;
3807 pwq->flush_color = -1;
3808 pwq->refcnt = 1;
f97a4a1a 3809 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
3810 INIT_LIST_HEAD(&pwq->pwqs_node);
3811 INIT_LIST_HEAD(&pwq->mayday_node);
3812 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3813}
3814
6ba94429
FW
3815/* sync @pwq with the current state of its associated wq and link it */
3816static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3817{
6ba94429 3818 struct workqueue_struct *wq = pwq->wq;
29c91e99 3819
6ba94429 3820 lockdep_assert_held(&wq->mutex);
a892cacc 3821
6ba94429
FW
3822 /* may be called multiple times, ignore if already linked */
3823 if (!list_empty(&pwq->pwqs_node))
29c91e99 3824 return;
29c91e99 3825
6ba94429
FW
3826 /* set the matching work_color */
3827 pwq->work_color = wq->work_color;
29c91e99 3828
6ba94429
FW
3829 /* sync max_active to the current setting */
3830 pwq_adjust_max_active(pwq);
29c91e99 3831
6ba94429
FW
3832 /* link in @pwq */
3833 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3834}
29c91e99 3835
6ba94429
FW
3836/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3837static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3838 const struct workqueue_attrs *attrs)
3839{
3840 struct worker_pool *pool;
3841 struct pool_workqueue *pwq;
60f5a4bc 3842
6ba94429 3843 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3844
6ba94429
FW
3845 pool = get_unbound_pool(attrs);
3846 if (!pool)
3847 return NULL;
60f5a4bc 3848
6ba94429
FW
3849 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3850 if (!pwq) {
3851 put_unbound_pool(pool);
3852 return NULL;
3853 }
29c91e99 3854
6ba94429
FW
3855 init_pwq(pwq, wq, pool);
3856 return pwq;
3857}
29c91e99 3858
29c91e99 3859/**
30186c6f 3860 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3861 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3862 * @node: the target NUMA node
3863 * @cpu_going_down: if >= 0, the CPU to consider as offline
3864 * @cpumask: outarg, the resulting cpumask
29c91e99 3865 *
6ba94429
FW
3866 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3867 * @cpu_going_down is >= 0, that cpu is considered offline during
3868 * calculation. The result is stored in @cpumask.
a892cacc 3869 *
6ba94429
FW
3870 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3871 * enabled and @node has online CPUs requested by @attrs, the returned
3872 * cpumask is the intersection of the possible CPUs of @node and
3873 * @attrs->cpumask.
d185af30 3874 *
6ba94429
FW
3875 * The caller is responsible for ensuring that the cpumask of @node stays
3876 * stable.
3877 *
3878 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3879 * %false if equal.
29c91e99 3880 */
6ba94429
FW
3881static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3882 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3883{
6ba94429
FW
3884 if (!wq_numa_enabled || attrs->no_numa)
3885 goto use_dfl;
29c91e99 3886
6ba94429
FW
3887 /* does @node have any online CPUs @attrs wants? */
3888 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3889 if (cpu_going_down >= 0)
3890 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3891
6ba94429
FW
3892 if (cpumask_empty(cpumask))
3893 goto use_dfl;
4c16bd32
TH
3894
3895 /* yeap, return possible CPUs in @node that @attrs wants */
3896 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3897
3898 if (cpumask_empty(cpumask)) {
3899 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3900 "possible intersect\n");
3901 return false;
3902 }
3903
4c16bd32
TH
3904 return !cpumask_equal(cpumask, attrs->cpumask);
3905
3906use_dfl:
3907 cpumask_copy(cpumask, attrs->cpumask);
3908 return false;
3909}
3910
1befcf30
TH
3911/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3912static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3913 int node,
3914 struct pool_workqueue *pwq)
3915{
3916 struct pool_workqueue *old_pwq;
3917
5b95e1af 3918 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3919 lockdep_assert_held(&wq->mutex);
3920
3921 /* link_pwq() can handle duplicate calls */
3922 link_pwq(pwq);
3923
3924 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3925 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3926 return old_pwq;
3927}
3928
2d5f0764
LJ
3929/* context to store the prepared attrs & pwqs before applying */
3930struct apply_wqattrs_ctx {
3931 struct workqueue_struct *wq; /* target workqueue */
3932 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3933 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3934 struct pool_workqueue *dfl_pwq;
3935 struct pool_workqueue *pwq_tbl[];
3936};
3937
3938/* free the resources after success or abort */
3939static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3940{
3941 if (ctx) {
3942 int node;
3943
3944 for_each_node(node)
3945 put_pwq_unlocked(ctx->pwq_tbl[node]);
3946 put_pwq_unlocked(ctx->dfl_pwq);
3947
3948 free_workqueue_attrs(ctx->attrs);
3949
3950 kfree(ctx);
3951 }
3952}
3953
3954/* allocate the attrs and pwqs for later installation */
3955static struct apply_wqattrs_ctx *
3956apply_wqattrs_prepare(struct workqueue_struct *wq,
3957 const struct workqueue_attrs *attrs)
9e8cd2f5 3958{
2d5f0764 3959 struct apply_wqattrs_ctx *ctx;
4c16bd32 3960 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3961 int node;
9e8cd2f5 3962
2d5f0764 3963 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3964
acafe7e3 3965 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3966
be69d00d
TG
3967 new_attrs = alloc_workqueue_attrs();
3968 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3969 if (!ctx || !new_attrs || !tmp_attrs)
3970 goto out_free;
13e2e556 3971
042f7df1
LJ
3972 /*
3973 * Calculate the attrs of the default pwq.
3974 * If the user configured cpumask doesn't overlap with the
3975 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3976 */
13e2e556 3977 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3978 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3979 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3980 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3981
4c16bd32
TH
3982 /*
3983 * We may create multiple pwqs with differing cpumasks. Make a
3984 * copy of @new_attrs which will be modified and used to obtain
3985 * pools.
3986 */
3987 copy_workqueue_attrs(tmp_attrs, new_attrs);
3988
4c16bd32
TH
3989 /*
3990 * If something goes wrong during CPU up/down, we'll fall back to
3991 * the default pwq covering whole @attrs->cpumask. Always create
3992 * it even if we don't use it immediately.
3993 */
2d5f0764
LJ
3994 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3995 if (!ctx->dfl_pwq)
3996 goto out_free;
4c16bd32
TH
3997
3998 for_each_node(node) {
042f7df1 3999 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
4000 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4001 if (!ctx->pwq_tbl[node])
4002 goto out_free;
4c16bd32 4003 } else {
2d5f0764
LJ
4004 ctx->dfl_pwq->refcnt++;
4005 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
4006 }
4007 }
4008
042f7df1
LJ
4009 /* save the user configured attrs and sanitize it. */
4010 copy_workqueue_attrs(new_attrs, attrs);
4011 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4012 ctx->attrs = new_attrs;
042f7df1 4013
2d5f0764
LJ
4014 ctx->wq = wq;
4015 free_workqueue_attrs(tmp_attrs);
4016 return ctx;
4017
4018out_free:
4019 free_workqueue_attrs(tmp_attrs);
4020 free_workqueue_attrs(new_attrs);
4021 apply_wqattrs_cleanup(ctx);
4022 return NULL;
4023}
4024
4025/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4026static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4027{
4028 int node;
9e8cd2f5 4029
4c16bd32 4030 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4031 mutex_lock(&ctx->wq->mutex);
a892cacc 4032
2d5f0764 4033 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4034
4035 /* save the previous pwq and install the new one */
f147f29e 4036 for_each_node(node)
2d5f0764
LJ
4037 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4038 ctx->pwq_tbl[node]);
4c16bd32
TH
4039
4040 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4041 link_pwq(ctx->dfl_pwq);
4042 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4043
2d5f0764
LJ
4044 mutex_unlock(&ctx->wq->mutex);
4045}
9e8cd2f5 4046
a0111cf6
LJ
4047static void apply_wqattrs_lock(void)
4048{
4049 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4050 cpus_read_lock();
a0111cf6
LJ
4051 mutex_lock(&wq_pool_mutex);
4052}
4053
4054static void apply_wqattrs_unlock(void)
4055{
4056 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4057 cpus_read_unlock();
a0111cf6
LJ
4058}
4059
4060static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4061 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4062{
4063 struct apply_wqattrs_ctx *ctx;
4c16bd32 4064
2d5f0764
LJ
4065 /* only unbound workqueues can change attributes */
4066 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4067 return -EINVAL;
13e2e556 4068
2d5f0764 4069 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4070 if (!list_empty(&wq->pwqs)) {
4071 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4072 return -EINVAL;
4073
4074 wq->flags &= ~__WQ_ORDERED;
4075 }
2d5f0764 4076
2d5f0764 4077 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4078 if (!ctx)
4079 return -ENOMEM;
2d5f0764
LJ
4080
4081 /* the ctx has been prepared successfully, let's commit it */
6201171e 4082 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4083 apply_wqattrs_cleanup(ctx);
4084
6201171e 4085 return 0;
9e8cd2f5
TH
4086}
4087
a0111cf6
LJ
4088/**
4089 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4090 * @wq: the target workqueue
4091 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4092 *
4093 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4094 * machines, this function maps a separate pwq to each NUMA node with
4095 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4096 * NUMA node it was issued on. Older pwqs are released as in-flight work
4097 * items finish. Note that a work item which repeatedly requeues itself
4098 * back-to-back will stay on its current pwq.
4099 *
4100 * Performs GFP_KERNEL allocations.
4101 *
ffd8bea8 4102 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4103 *
a0111cf6
LJ
4104 * Return: 0 on success and -errno on failure.
4105 */
513c98d0 4106int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4107 const struct workqueue_attrs *attrs)
4108{
4109 int ret;
4110
509b3204
DJ
4111 lockdep_assert_cpus_held();
4112
4113 mutex_lock(&wq_pool_mutex);
a0111cf6 4114 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4115 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4116
4117 return ret;
4118}
4119
4c16bd32
TH
4120/**
4121 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4122 * @wq: the target workqueue
4123 * @cpu: the CPU coming up or going down
4124 * @online: whether @cpu is coming up or going down
4125 *
4126 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4127 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4128 * @wq accordingly.
4129 *
4130 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4131 * falls back to @wq->dfl_pwq which may not be optimal but is always
4132 * correct.
4133 *
4134 * Note that when the last allowed CPU of a NUMA node goes offline for a
4135 * workqueue with a cpumask spanning multiple nodes, the workers which were
4136 * already executing the work items for the workqueue will lose their CPU
4137 * affinity and may execute on any CPU. This is similar to how per-cpu
4138 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4139 * affinity, it's the user's responsibility to flush the work item from
4140 * CPU_DOWN_PREPARE.
4141 */
4142static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4143 bool online)
4144{
4145 int node = cpu_to_node(cpu);
4146 int cpu_off = online ? -1 : cpu;
4147 struct pool_workqueue *old_pwq = NULL, *pwq;
4148 struct workqueue_attrs *target_attrs;
4149 cpumask_t *cpumask;
4150
4151 lockdep_assert_held(&wq_pool_mutex);
4152
f7142ed4
LJ
4153 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4154 wq->unbound_attrs->no_numa)
4c16bd32
TH
4155 return;
4156
4157 /*
4158 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4159 * Let's use a preallocated one. The following buf is protected by
4160 * CPU hotplug exclusion.
4161 */
4162 target_attrs = wq_update_unbound_numa_attrs_buf;
4163 cpumask = target_attrs->cpumask;
4164
4c16bd32
TH
4165 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4166 pwq = unbound_pwq_by_node(wq, node);
4167
4168 /*
4169 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4170 * different from the default pwq's, we need to compare it to @pwq's
4171 * and create a new one if they don't match. If the target cpumask
4172 * equals the default pwq's, the default pwq should be used.
4c16bd32 4173 */
042f7df1 4174 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4175 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4176 return;
4c16bd32 4177 } else {
534a3fbb 4178 goto use_dfl_pwq;
4c16bd32
TH
4179 }
4180
4c16bd32
TH
4181 /* create a new pwq */
4182 pwq = alloc_unbound_pwq(wq, target_attrs);
4183 if (!pwq) {
2d916033
FF
4184 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4185 wq->name);
77f300b1 4186 goto use_dfl_pwq;
4c16bd32
TH
4187 }
4188
f7142ed4 4189 /* Install the new pwq. */
4c16bd32
TH
4190 mutex_lock(&wq->mutex);
4191 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4192 goto out_unlock;
4193
4194use_dfl_pwq:
f7142ed4 4195 mutex_lock(&wq->mutex);
a9b8a985 4196 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4197 get_pwq(wq->dfl_pwq);
a9b8a985 4198 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4199 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4200out_unlock:
4201 mutex_unlock(&wq->mutex);
4202 put_pwq_unlocked(old_pwq);
4203}
4204
30cdf249 4205static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4206{
49e3cf44 4207 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4208 int cpu, ret;
30cdf249
TH
4209
4210 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4211 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4212 if (!wq->cpu_pwqs)
30cdf249
TH
4213 return -ENOMEM;
4214
4215 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4216 struct pool_workqueue *pwq =
4217 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4218 struct worker_pool *cpu_pools =
f02ae73a 4219 per_cpu(cpu_worker_pools, cpu);
f3421797 4220
f147f29e
TH
4221 init_pwq(pwq, wq, &cpu_pools[highpri]);
4222
4223 mutex_lock(&wq->mutex);
1befcf30 4224 link_pwq(pwq);
f147f29e 4225 mutex_unlock(&wq->mutex);
30cdf249 4226 }
9e8cd2f5 4227 return 0;
509b3204
DJ
4228 }
4229
ffd8bea8 4230 cpus_read_lock();
509b3204 4231 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4232 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4233 /* there should only be single pwq for ordering guarantee */
4234 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4235 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4236 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4237 } else {
509b3204 4238 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4239 }
ffd8bea8 4240 cpus_read_unlock();
509b3204
DJ
4241
4242 return ret;
0f900049
TH
4243}
4244
f3421797
TH
4245static int wq_clamp_max_active(int max_active, unsigned int flags,
4246 const char *name)
b71ab8c2 4247{
f3421797
TH
4248 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4249
4250 if (max_active < 1 || max_active > lim)
044c782c
VI
4251 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4252 max_active, name, 1, lim);
b71ab8c2 4253
f3421797 4254 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4255}
4256
983c7515
TH
4257/*
4258 * Workqueues which may be used during memory reclaim should have a rescuer
4259 * to guarantee forward progress.
4260 */
4261static int init_rescuer(struct workqueue_struct *wq)
4262{
4263 struct worker *rescuer;
b92b36ea 4264 int ret;
983c7515
TH
4265
4266 if (!(wq->flags & WQ_MEM_RECLAIM))
4267 return 0;
4268
4269 rescuer = alloc_worker(NUMA_NO_NODE);
4270 if (!rescuer)
4271 return -ENOMEM;
4272
4273 rescuer->rescue_wq = wq;
4274 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4275 if (IS_ERR(rescuer->task)) {
b92b36ea 4276 ret = PTR_ERR(rescuer->task);
983c7515 4277 kfree(rescuer);
b92b36ea 4278 return ret;
983c7515
TH
4279 }
4280
4281 wq->rescuer = rescuer;
4282 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4283 wake_up_process(rescuer->task);
4284
4285 return 0;
4286}
4287
a2775bbc 4288__printf(1, 4)
669de8bd
BVA
4289struct workqueue_struct *alloc_workqueue(const char *fmt,
4290 unsigned int flags,
4291 int max_active, ...)
1da177e4 4292{
df2d5ae4 4293 size_t tbl_size = 0;
ecf6881f 4294 va_list args;
1da177e4 4295 struct workqueue_struct *wq;
49e3cf44 4296 struct pool_workqueue *pwq;
b196be89 4297
5c0338c6
TH
4298 /*
4299 * Unbound && max_active == 1 used to imply ordered, which is no
4300 * longer the case on NUMA machines due to per-node pools. While
4301 * alloc_ordered_workqueue() is the right way to create an ordered
4302 * workqueue, keep the previous behavior to avoid subtle breakages
4303 * on NUMA.
4304 */
4305 if ((flags & WQ_UNBOUND) && max_active == 1)
4306 flags |= __WQ_ORDERED;
4307
cee22a15
VK
4308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4309 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4310 flags |= WQ_UNBOUND;
4311
ecf6881f 4312 /* allocate wq and format name */
df2d5ae4 4313 if (flags & WQ_UNBOUND)
ddcb57e2 4314 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4315
4316 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4317 if (!wq)
d2c1d404 4318 return NULL;
b196be89 4319
6029a918 4320 if (flags & WQ_UNBOUND) {
be69d00d 4321 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4322 if (!wq->unbound_attrs)
4323 goto err_free_wq;
4324 }
4325
669de8bd 4326 va_start(args, max_active);
ecf6881f 4327 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4328 va_end(args);
1da177e4 4329
d320c038 4330 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4331 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4332
b196be89 4333 /* init wq */
97e37d7b 4334 wq->flags = flags;
a0a1a5fd 4335 wq->saved_max_active = max_active;
3c25a55d 4336 mutex_init(&wq->mutex);
112202d9 4337 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4338 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4339 INIT_LIST_HEAD(&wq->flusher_queue);
4340 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4341 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4342
669de8bd 4343 wq_init_lockdep(wq);
cce1a165 4344 INIT_LIST_HEAD(&wq->list);
3af24433 4345
30cdf249 4346 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4347 goto err_unreg_lockdep;
1537663f 4348
40c17f75 4349 if (wq_online && init_rescuer(wq) < 0)
983c7515 4350 goto err_destroy;
3af24433 4351
226223ab
TH
4352 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4353 goto err_destroy;
4354
a0a1a5fd 4355 /*
68e13a67
LJ
4356 * wq_pool_mutex protects global freeze state and workqueues list.
4357 * Grab it, adjust max_active and add the new @wq to workqueues
4358 * list.
a0a1a5fd 4359 */
68e13a67 4360 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4361
a357fc03 4362 mutex_lock(&wq->mutex);
699ce097
TH
4363 for_each_pwq(pwq, wq)
4364 pwq_adjust_max_active(pwq);
a357fc03 4365 mutex_unlock(&wq->mutex);
a0a1a5fd 4366
e2dca7ad 4367 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4368
68e13a67 4369 mutex_unlock(&wq_pool_mutex);
1537663f 4370
3af24433 4371 return wq;
d2c1d404 4372
82efcab3 4373err_unreg_lockdep:
009bb421
BVA
4374 wq_unregister_lockdep(wq);
4375 wq_free_lockdep(wq);
82efcab3 4376err_free_wq:
6029a918 4377 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4378 kfree(wq);
4379 return NULL;
4380err_destroy:
4381 destroy_workqueue(wq);
4690c4ab 4382 return NULL;
3af24433 4383}
669de8bd 4384EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4385
c29eb853
TH
4386static bool pwq_busy(struct pool_workqueue *pwq)
4387{
4388 int i;
4389
4390 for (i = 0; i < WORK_NR_COLORS; i++)
4391 if (pwq->nr_in_flight[i])
4392 return true;
4393
4394 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4395 return true;
f97a4a1a 4396 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4397 return true;
4398
4399 return false;
4400}
4401
3af24433
ON
4402/**
4403 * destroy_workqueue - safely terminate a workqueue
4404 * @wq: target workqueue
4405 *
4406 * Safely destroy a workqueue. All work currently pending will be done first.
4407 */
4408void destroy_workqueue(struct workqueue_struct *wq)
4409{
49e3cf44 4410 struct pool_workqueue *pwq;
4c16bd32 4411 int node;
3af24433 4412
def98c84
TH
4413 /*
4414 * Remove it from sysfs first so that sanity check failure doesn't
4415 * lead to sysfs name conflicts.
4416 */
4417 workqueue_sysfs_unregister(wq);
4418
9c5a2ba7
TH
4419 /* drain it before proceeding with destruction */
4420 drain_workqueue(wq);
c8efcc25 4421
def98c84
TH
4422 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4423 if (wq->rescuer) {
4424 struct worker *rescuer = wq->rescuer;
4425
4426 /* this prevents new queueing */
a9b8a985 4427 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4428 wq->rescuer = NULL;
a9b8a985 4429 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4430
4431 /* rescuer will empty maydays list before exiting */
4432 kthread_stop(rescuer->task);
8efe1223 4433 kfree(rescuer);
def98c84
TH
4434 }
4435
c29eb853
TH
4436 /*
4437 * Sanity checks - grab all the locks so that we wait for all
4438 * in-flight operations which may do put_pwq().
4439 */
4440 mutex_lock(&wq_pool_mutex);
b09f4fd3 4441 mutex_lock(&wq->mutex);
49e3cf44 4442 for_each_pwq(pwq, wq) {
a9b8a985 4443 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4444 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4445 pr_warn("%s: %s has the following busy pwq\n",
4446 __func__, wq->name);
c29eb853 4447 show_pwq(pwq);
a9b8a985 4448 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4449 mutex_unlock(&wq->mutex);
c29eb853 4450 mutex_unlock(&wq_pool_mutex);
55df0933 4451 show_one_workqueue(wq);
6183c009 4452 return;
76af4d93 4453 }
a9b8a985 4454 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4455 }
b09f4fd3 4456 mutex_unlock(&wq->mutex);
6183c009 4457
a0a1a5fd
TH
4458 /*
4459 * wq list is used to freeze wq, remove from list after
4460 * flushing is complete in case freeze races us.
4461 */
e2dca7ad 4462 list_del_rcu(&wq->list);
68e13a67 4463 mutex_unlock(&wq_pool_mutex);
3af24433 4464
8864b4e5 4465 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4466 wq_unregister_lockdep(wq);
8864b4e5
TH
4467 /*
4468 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4469 * schedule RCU free.
8864b4e5 4470 */
25b00775 4471 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4472 } else {
4473 /*
4474 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4475 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4476 * @wq will be freed when the last pwq is released.
8864b4e5 4477 */
4c16bd32
TH
4478 for_each_node(node) {
4479 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4480 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4481 put_pwq_unlocked(pwq);
4482 }
4483
4484 /*
4485 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4486 * put. Don't access it afterwards.
4487 */
4488 pwq = wq->dfl_pwq;
4489 wq->dfl_pwq = NULL;
dce90d47 4490 put_pwq_unlocked(pwq);
29c91e99 4491 }
3af24433
ON
4492}
4493EXPORT_SYMBOL_GPL(destroy_workqueue);
4494
dcd989cb
TH
4495/**
4496 * workqueue_set_max_active - adjust max_active of a workqueue
4497 * @wq: target workqueue
4498 * @max_active: new max_active value.
4499 *
4500 * Set max_active of @wq to @max_active.
4501 *
4502 * CONTEXT:
4503 * Don't call from IRQ context.
4504 */
4505void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4506{
49e3cf44 4507 struct pool_workqueue *pwq;
dcd989cb 4508
8719dcea 4509 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4510 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4511 return;
4512
f3421797 4513 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4514
a357fc03 4515 mutex_lock(&wq->mutex);
dcd989cb 4516
0a94efb5 4517 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4518 wq->saved_max_active = max_active;
4519
699ce097
TH
4520 for_each_pwq(pwq, wq)
4521 pwq_adjust_max_active(pwq);
93981800 4522
a357fc03 4523 mutex_unlock(&wq->mutex);
15316ba8 4524}
dcd989cb 4525EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4526
27d4ee03
LW
4527/**
4528 * current_work - retrieve %current task's work struct
4529 *
4530 * Determine if %current task is a workqueue worker and what it's working on.
4531 * Useful to find out the context that the %current task is running in.
4532 *
4533 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4534 */
4535struct work_struct *current_work(void)
4536{
4537 struct worker *worker = current_wq_worker();
4538
4539 return worker ? worker->current_work : NULL;
4540}
4541EXPORT_SYMBOL(current_work);
4542
e6267616
TH
4543/**
4544 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4545 *
4546 * Determine whether %current is a workqueue rescuer. Can be used from
4547 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4548 *
4549 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4550 */
4551bool current_is_workqueue_rescuer(void)
4552{
4553 struct worker *worker = current_wq_worker();
4554
6a092dfd 4555 return worker && worker->rescue_wq;
e6267616
TH
4556}
4557
eef6a7d5 4558/**
dcd989cb
TH
4559 * workqueue_congested - test whether a workqueue is congested
4560 * @cpu: CPU in question
4561 * @wq: target workqueue
eef6a7d5 4562 *
dcd989cb
TH
4563 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4564 * no synchronization around this function and the test result is
4565 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4566 *
d3251859
TH
4567 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4568 * Note that both per-cpu and unbound workqueues may be associated with
4569 * multiple pool_workqueues which have separate congested states. A
4570 * workqueue being congested on one CPU doesn't mean the workqueue is also
4571 * contested on other CPUs / NUMA nodes.
4572 *
d185af30 4573 * Return:
dcd989cb 4574 * %true if congested, %false otherwise.
eef6a7d5 4575 */
d84ff051 4576bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4577{
7fb98ea7 4578 struct pool_workqueue *pwq;
76af4d93
TH
4579 bool ret;
4580
24acfb71
TG
4581 rcu_read_lock();
4582 preempt_disable();
7fb98ea7 4583
d3251859
TH
4584 if (cpu == WORK_CPU_UNBOUND)
4585 cpu = smp_processor_id();
4586
7fb98ea7
TH
4587 if (!(wq->flags & WQ_UNBOUND))
4588 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4589 else
df2d5ae4 4590 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4591
f97a4a1a 4592 ret = !list_empty(&pwq->inactive_works);
24acfb71
TG
4593 preempt_enable();
4594 rcu_read_unlock();
76af4d93
TH
4595
4596 return ret;
1da177e4 4597}
dcd989cb 4598EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4599
dcd989cb
TH
4600/**
4601 * work_busy - test whether a work is currently pending or running
4602 * @work: the work to be tested
4603 *
4604 * Test whether @work is currently pending or running. There is no
4605 * synchronization around this function and the test result is
4606 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4607 *
d185af30 4608 * Return:
dcd989cb
TH
4609 * OR'd bitmask of WORK_BUSY_* bits.
4610 */
4611unsigned int work_busy(struct work_struct *work)
1da177e4 4612{
fa1b54e6 4613 struct worker_pool *pool;
dcd989cb
TH
4614 unsigned long flags;
4615 unsigned int ret = 0;
1da177e4 4616
dcd989cb
TH
4617 if (work_pending(work))
4618 ret |= WORK_BUSY_PENDING;
1da177e4 4619
24acfb71 4620 rcu_read_lock();
fa1b54e6 4621 pool = get_work_pool(work);
038366c5 4622 if (pool) {
a9b8a985 4623 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4624 if (find_worker_executing_work(pool, work))
4625 ret |= WORK_BUSY_RUNNING;
a9b8a985 4626 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4627 }
24acfb71 4628 rcu_read_unlock();
1da177e4 4629
dcd989cb 4630 return ret;
1da177e4 4631}
dcd989cb 4632EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4633
3d1cb205
TH
4634/**
4635 * set_worker_desc - set description for the current work item
4636 * @fmt: printf-style format string
4637 * @...: arguments for the format string
4638 *
4639 * This function can be called by a running work function to describe what
4640 * the work item is about. If the worker task gets dumped, this
4641 * information will be printed out together to help debugging. The
4642 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4643 */
4644void set_worker_desc(const char *fmt, ...)
4645{
4646 struct worker *worker = current_wq_worker();
4647 va_list args;
4648
4649 if (worker) {
4650 va_start(args, fmt);
4651 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4652 va_end(args);
3d1cb205
TH
4653 }
4654}
5c750d58 4655EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4656
4657/**
4658 * print_worker_info - print out worker information and description
4659 * @log_lvl: the log level to use when printing
4660 * @task: target task
4661 *
4662 * If @task is a worker and currently executing a work item, print out the
4663 * name of the workqueue being serviced and worker description set with
4664 * set_worker_desc() by the currently executing work item.
4665 *
4666 * This function can be safely called on any task as long as the
4667 * task_struct itself is accessible. While safe, this function isn't
4668 * synchronized and may print out mixups or garbages of limited length.
4669 */
4670void print_worker_info(const char *log_lvl, struct task_struct *task)
4671{
4672 work_func_t *fn = NULL;
4673 char name[WQ_NAME_LEN] = { };
4674 char desc[WORKER_DESC_LEN] = { };
4675 struct pool_workqueue *pwq = NULL;
4676 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4677 struct worker *worker;
4678
4679 if (!(task->flags & PF_WQ_WORKER))
4680 return;
4681
4682 /*
4683 * This function is called without any synchronization and @task
4684 * could be in any state. Be careful with dereferences.
4685 */
e700591a 4686 worker = kthread_probe_data(task);
3d1cb205
TH
4687
4688 /*
8bf89593
TH
4689 * Carefully copy the associated workqueue's workfn, name and desc.
4690 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4691 */
fe557319
CH
4692 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4693 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4694 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4695 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4696 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4697
4698 if (fn || name[0] || desc[0]) {
d75f773c 4699 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4700 if (strcmp(name, desc))
3d1cb205
TH
4701 pr_cont(" (%s)", desc);
4702 pr_cont("\n");
4703 }
4704}
4705
3494fc30
TH
4706static void pr_cont_pool_info(struct worker_pool *pool)
4707{
4708 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4709 if (pool->node != NUMA_NO_NODE)
4710 pr_cont(" node=%d", pool->node);
4711 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4712}
4713
4714static void pr_cont_work(bool comma, struct work_struct *work)
4715{
4716 if (work->func == wq_barrier_func) {
4717 struct wq_barrier *barr;
4718
4719 barr = container_of(work, struct wq_barrier, work);
4720
4721 pr_cont("%s BAR(%d)", comma ? "," : "",
4722 task_pid_nr(barr->task));
4723 } else {
d75f773c 4724 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4725 }
4726}
4727
4728static void show_pwq(struct pool_workqueue *pwq)
4729{
4730 struct worker_pool *pool = pwq->pool;
4731 struct work_struct *work;
4732 struct worker *worker;
4733 bool has_in_flight = false, has_pending = false;
4734 int bkt;
4735
4736 pr_info(" pwq %d:", pool->id);
4737 pr_cont_pool_info(pool);
4738
e66b39af
TH
4739 pr_cont(" active=%d/%d refcnt=%d%s\n",
4740 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4741 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4742
4743 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4744 if (worker->current_pwq == pwq) {
4745 has_in_flight = true;
4746 break;
4747 }
4748 }
4749 if (has_in_flight) {
4750 bool comma = false;
4751
4752 pr_info(" in-flight:");
4753 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754 if (worker->current_pwq != pwq)
4755 continue;
4756
d75f773c 4757 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4758 task_pid_nr(worker->task),
30ae2fc0 4759 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4760 worker->current_func);
4761 list_for_each_entry(work, &worker->scheduled, entry)
4762 pr_cont_work(false, work);
4763 comma = true;
4764 }
4765 pr_cont("\n");
4766 }
4767
4768 list_for_each_entry(work, &pool->worklist, entry) {
4769 if (get_work_pwq(work) == pwq) {
4770 has_pending = true;
4771 break;
4772 }
4773 }
4774 if (has_pending) {
4775 bool comma = false;
4776
4777 pr_info(" pending:");
4778 list_for_each_entry(work, &pool->worklist, entry) {
4779 if (get_work_pwq(work) != pwq)
4780 continue;
4781
4782 pr_cont_work(comma, work);
4783 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4784 }
4785 pr_cont("\n");
4786 }
4787
f97a4a1a 4788 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
4789 bool comma = false;
4790
f97a4a1a
LJ
4791 pr_info(" inactive:");
4792 list_for_each_entry(work, &pwq->inactive_works, entry) {
3494fc30
TH
4793 pr_cont_work(comma, work);
4794 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4795 }
4796 pr_cont("\n");
4797 }
4798}
4799
4800/**
55df0933
IK
4801 * show_one_workqueue - dump state of specified workqueue
4802 * @wq: workqueue whose state will be printed
3494fc30 4803 */
55df0933 4804void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 4805{
55df0933
IK
4806 struct pool_workqueue *pwq;
4807 bool idle = true;
3494fc30 4808 unsigned long flags;
3494fc30 4809
55df0933
IK
4810 for_each_pwq(pwq, wq) {
4811 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4812 idle = false;
4813 break;
3494fc30 4814 }
55df0933
IK
4815 }
4816 if (idle) /* Nothing to print for idle workqueue */
4817 return;
3494fc30 4818
55df0933 4819 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 4820
55df0933
IK
4821 for_each_pwq(pwq, wq) {
4822 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4823 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
62635ea8 4824 /*
55df0933
IK
4825 * Defer printing to avoid deadlocks in console
4826 * drivers that queue work while holding locks
4827 * also taken in their write paths.
62635ea8 4828 */
55df0933
IK
4829 printk_deferred_enter();
4830 show_pwq(pwq);
4831 printk_deferred_exit();
3494fc30 4832 }
55df0933 4833 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4834 /*
4835 * We could be printing a lot from atomic context, e.g.
55df0933 4836 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
4837 * hard lockup.
4838 */
4839 touch_nmi_watchdog();
3494fc30
TH
4840 }
4841
55df0933
IK
4842}
4843
4844/**
4845 * show_one_worker_pool - dump state of specified worker pool
4846 * @pool: worker pool whose state will be printed
4847 */
4848static void show_one_worker_pool(struct worker_pool *pool)
4849{
4850 struct worker *worker;
4851 bool first = true;
4852 unsigned long flags;
4853
4854 raw_spin_lock_irqsave(&pool->lock, flags);
4855 if (pool->nr_workers == pool->nr_idle)
4856 goto next_pool;
4857 /*
4858 * Defer printing to avoid deadlocks in console drivers that
4859 * queue work while holding locks also taken in their write
4860 * paths.
4861 */
4862 printk_deferred_enter();
4863 pr_info("pool %d:", pool->id);
4864 pr_cont_pool_info(pool);
4865 pr_cont(" hung=%us workers=%d",
4866 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4867 pool->nr_workers);
4868 if (pool->manager)
4869 pr_cont(" manager: %d",
4870 task_pid_nr(pool->manager->task));
4871 list_for_each_entry(worker, &pool->idle_list, entry) {
4872 pr_cont(" %s%d", first ? "idle: " : "",
4873 task_pid_nr(worker->task));
4874 first = false;
4875 }
4876 pr_cont("\n");
4877 printk_deferred_exit();
4878next_pool:
4879 raw_spin_unlock_irqrestore(&pool->lock, flags);
4880 /*
4881 * We could be printing a lot from atomic context, e.g.
4882 * sysrq-t -> show_all_workqueues(). Avoid triggering
4883 * hard lockup.
4884 */
4885 touch_nmi_watchdog();
4886
4887}
4888
4889/**
4890 * show_all_workqueues - dump workqueue state
4891 *
4892 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4893 * all busy workqueues and pools.
4894 */
4895void show_all_workqueues(void)
4896{
4897 struct workqueue_struct *wq;
4898 struct worker_pool *pool;
4899 int pi;
4900
4901 rcu_read_lock();
4902
4903 pr_info("Showing busy workqueues and worker pools:\n");
4904
4905 list_for_each_entry_rcu(wq, &workqueues, list)
4906 show_one_workqueue(wq);
4907
4908 for_each_pool(pool, pi)
4909 show_one_worker_pool(pool);
4910
24acfb71 4911 rcu_read_unlock();
3494fc30
TH
4912}
4913
6b59808b
TH
4914/* used to show worker information through /proc/PID/{comm,stat,status} */
4915void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4916{
6b59808b
TH
4917 int off;
4918
4919 /* always show the actual comm */
4920 off = strscpy(buf, task->comm, size);
4921 if (off < 0)
4922 return;
4923
197f6acc 4924 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4925 mutex_lock(&wq_pool_attach_mutex);
4926
197f6acc
TH
4927 if (task->flags & PF_WQ_WORKER) {
4928 struct worker *worker = kthread_data(task);
4929 struct worker_pool *pool = worker->pool;
6b59808b 4930
197f6acc 4931 if (pool) {
a9b8a985 4932 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
4933 /*
4934 * ->desc tracks information (wq name or
4935 * set_worker_desc()) for the latest execution. If
4936 * current, prepend '+', otherwise '-'.
4937 */
4938 if (worker->desc[0] != '\0') {
4939 if (worker->current_work)
4940 scnprintf(buf + off, size - off, "+%s",
4941 worker->desc);
4942 else
4943 scnprintf(buf + off, size - off, "-%s",
4944 worker->desc);
4945 }
a9b8a985 4946 raw_spin_unlock_irq(&pool->lock);
6b59808b 4947 }
6b59808b
TH
4948 }
4949
4950 mutex_unlock(&wq_pool_attach_mutex);
4951}
4952
66448bc2
MM
4953#ifdef CONFIG_SMP
4954
db7bccf4
TH
4955/*
4956 * CPU hotplug.
4957 *
e22bee78 4958 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4959 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4960 * pool which make migrating pending and scheduled works very
e22bee78 4961 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4962 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4963 * blocked draining impractical.
4964 *
24647570 4965 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4966 * running as an unbound one and allowing it to be reattached later if the
4967 * cpu comes back online.
db7bccf4 4968 */
1da177e4 4969
e8b3f8db 4970static void unbind_workers(int cpu)
3af24433 4971{
4ce62e9e 4972 struct worker_pool *pool;
db7bccf4 4973 struct worker *worker;
3af24433 4974
f02ae73a 4975 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4976 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 4977 raw_spin_lock_irq(&pool->lock);
3af24433 4978
94cf58bb 4979 /*
92f9c5c4 4980 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4981 * unbound and set DISASSOCIATED. Before this, all workers
4982 * except for the ones which are still executing works from
4983 * before the last CPU down must be on the cpu. After
4984 * this, they may become diasporas.
4985 */
da028469 4986 for_each_pool_worker(worker, pool)
c9e7cf27 4987 worker->flags |= WORKER_UNBOUND;
06ba38a9 4988
24647570 4989 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4990
a9b8a985 4991 raw_spin_unlock_irq(&pool->lock);
06249738 4992
5c25b5ff
PZ
4993 for_each_pool_worker(worker, pool) {
4994 kthread_set_per_cpu(worker->task, -1);
547a77d0 4995 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5c25b5ff 4996 }
06249738 4997
1258fae7 4998 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4999
eb283428
LJ
5000 /*
5001 * Call schedule() so that we cross rq->lock and thus can
5002 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5003 * This is necessary as scheduler callbacks may be invoked
5004 * from other cpus.
5005 */
5006 schedule();
06ba38a9 5007
eb283428
LJ
5008 /*
5009 * Sched callbacks are disabled now. Zap nr_running.
5010 * After this, nr_running stays zero and need_more_worker()
5011 * and keep_working() are always true as long as the
5012 * worklist is not empty. This pool now behaves as an
5013 * unbound (in terms of concurrency management) pool which
5014 * are served by workers tied to the pool.
5015 */
e19e397a 5016 atomic_set(&pool->nr_running, 0);
eb283428
LJ
5017
5018 /*
5019 * With concurrency management just turned off, a busy
5020 * worker blocking could lead to lengthy stalls. Kick off
5021 * unbound chain execution of currently pending work items.
5022 */
a9b8a985 5023 raw_spin_lock_irq(&pool->lock);
eb283428 5024 wake_up_worker(pool);
a9b8a985 5025 raw_spin_unlock_irq(&pool->lock);
eb283428 5026 }
3af24433 5027}
3af24433 5028
bd7c089e
TH
5029/**
5030 * rebind_workers - rebind all workers of a pool to the associated CPU
5031 * @pool: pool of interest
5032 *
a9ab775b 5033 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5034 */
5035static void rebind_workers(struct worker_pool *pool)
5036{
a9ab775b 5037 struct worker *worker;
bd7c089e 5038
1258fae7 5039 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5040
a9ab775b
TH
5041 /*
5042 * Restore CPU affinity of all workers. As all idle workers should
5043 * be on the run-queue of the associated CPU before any local
402dd89d 5044 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5045 * of all workers first and then clear UNBOUND. As we're called
5046 * from CPU_ONLINE, the following shouldn't fail.
5047 */
5c25b5ff
PZ
5048 for_each_pool_worker(worker, pool) {
5049 kthread_set_per_cpu(worker->task, pool->cpu);
a9ab775b
TH
5050 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5051 pool->attrs->cpumask) < 0);
5c25b5ff 5052 }
bd7c089e 5053
a9b8a985 5054 raw_spin_lock_irq(&pool->lock);
f7c17d26 5055
3de5e884 5056 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5057
da028469 5058 for_each_pool_worker(worker, pool) {
a9ab775b 5059 unsigned int worker_flags = worker->flags;
bd7c089e
TH
5060
5061 /*
a9ab775b
TH
5062 * A bound idle worker should actually be on the runqueue
5063 * of the associated CPU for local wake-ups targeting it to
5064 * work. Kick all idle workers so that they migrate to the
5065 * associated CPU. Doing this in the same loop as
5066 * replacing UNBOUND with REBOUND is safe as no worker will
5067 * be bound before @pool->lock is released.
bd7c089e 5068 */
a9ab775b
TH
5069 if (worker_flags & WORKER_IDLE)
5070 wake_up_process(worker->task);
bd7c089e 5071
a9ab775b
TH
5072 /*
5073 * We want to clear UNBOUND but can't directly call
5074 * worker_clr_flags() or adjust nr_running. Atomically
5075 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5076 * @worker will clear REBOUND using worker_clr_flags() when
5077 * it initiates the next execution cycle thus restoring
5078 * concurrency management. Note that when or whether
5079 * @worker clears REBOUND doesn't affect correctness.
5080 *
c95491ed 5081 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5082 * tested without holding any lock in
6d25be57 5083 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5084 * fail incorrectly leading to premature concurrency
5085 * management operations.
5086 */
5087 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5088 worker_flags |= WORKER_REBOUND;
5089 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5090 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5091 }
a9ab775b 5092
a9b8a985 5093 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5094}
5095
7dbc725e
TH
5096/**
5097 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5098 * @pool: unbound pool of interest
5099 * @cpu: the CPU which is coming up
5100 *
5101 * An unbound pool may end up with a cpumask which doesn't have any online
5102 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5103 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5104 * online CPU before, cpus_allowed of all its workers should be restored.
5105 */
5106static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5107{
5108 static cpumask_t cpumask;
5109 struct worker *worker;
7dbc725e 5110
1258fae7 5111 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5112
5113 /* is @cpu allowed for @pool? */
5114 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5115 return;
5116
7dbc725e 5117 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5118
5119 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5120 for_each_pool_worker(worker, pool)
d945b5e9 5121 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5122}
5123
7ee681b2
TG
5124int workqueue_prepare_cpu(unsigned int cpu)
5125{
5126 struct worker_pool *pool;
5127
5128 for_each_cpu_worker_pool(pool, cpu) {
5129 if (pool->nr_workers)
5130 continue;
5131 if (!create_worker(pool))
5132 return -ENOMEM;
5133 }
5134 return 0;
5135}
5136
5137int workqueue_online_cpu(unsigned int cpu)
3af24433 5138{
4ce62e9e 5139 struct worker_pool *pool;
4c16bd32 5140 struct workqueue_struct *wq;
7dbc725e 5141 int pi;
3ce63377 5142
7ee681b2 5143 mutex_lock(&wq_pool_mutex);
7dbc725e 5144
7ee681b2 5145 for_each_pool(pool, pi) {
1258fae7 5146 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5147
7ee681b2
TG
5148 if (pool->cpu == cpu)
5149 rebind_workers(pool);
5150 else if (pool->cpu < 0)
5151 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5152
1258fae7 5153 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5154 }
6ba94429 5155
7ee681b2
TG
5156 /* update NUMA affinity of unbound workqueues */
5157 list_for_each_entry(wq, &workqueues, list)
5158 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5159
7ee681b2
TG
5160 mutex_unlock(&wq_pool_mutex);
5161 return 0;
6ba94429
FW
5162}
5163
7ee681b2 5164int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5165{
6ba94429
FW
5166 struct workqueue_struct *wq;
5167
7ee681b2 5168 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5169 if (WARN_ON(cpu != smp_processor_id()))
5170 return -1;
5171
5172 unbind_workers(cpu);
7ee681b2
TG
5173
5174 /* update NUMA affinity of unbound workqueues */
5175 mutex_lock(&wq_pool_mutex);
5176 list_for_each_entry(wq, &workqueues, list)
5177 wq_update_unbound_numa(wq, cpu, false);
5178 mutex_unlock(&wq_pool_mutex);
5179
7ee681b2 5180 return 0;
6ba94429
FW
5181}
5182
6ba94429
FW
5183struct work_for_cpu {
5184 struct work_struct work;
5185 long (*fn)(void *);
5186 void *arg;
5187 long ret;
5188};
5189
5190static void work_for_cpu_fn(struct work_struct *work)
5191{
5192 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5193
5194 wfc->ret = wfc->fn(wfc->arg);
5195}
5196
5197/**
22aceb31 5198 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5199 * @cpu: the cpu to run on
5200 * @fn: the function to run
5201 * @arg: the function arg
5202 *
5203 * It is up to the caller to ensure that the cpu doesn't go offline.
5204 * The caller must not hold any locks which would prevent @fn from completing.
5205 *
5206 * Return: The value @fn returns.
5207 */
5208long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5209{
5210 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5211
5212 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5213 schedule_work_on(cpu, &wfc.work);
5214 flush_work(&wfc.work);
5215 destroy_work_on_stack(&wfc.work);
5216 return wfc.ret;
5217}
5218EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5219
5220/**
5221 * work_on_cpu_safe - run a function in thread context on a particular cpu
5222 * @cpu: the cpu to run on
5223 * @fn: the function to run
5224 * @arg: the function argument
5225 *
5226 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5227 * any locks which would prevent @fn from completing.
5228 *
5229 * Return: The value @fn returns.
5230 */
5231long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5232{
5233 long ret = -ENODEV;
5234
ffd8bea8 5235 cpus_read_lock();
0e8d6a93
TG
5236 if (cpu_online(cpu))
5237 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5238 cpus_read_unlock();
0e8d6a93
TG
5239 return ret;
5240}
5241EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5242#endif /* CONFIG_SMP */
5243
5244#ifdef CONFIG_FREEZER
5245
5246/**
5247 * freeze_workqueues_begin - begin freezing workqueues
5248 *
5249 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5250 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5251 * pool->worklist.
5252 *
5253 * CONTEXT:
5254 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5255 */
5256void freeze_workqueues_begin(void)
5257{
5258 struct workqueue_struct *wq;
5259 struct pool_workqueue *pwq;
5260
5261 mutex_lock(&wq_pool_mutex);
5262
5263 WARN_ON_ONCE(workqueue_freezing);
5264 workqueue_freezing = true;
5265
5266 list_for_each_entry(wq, &workqueues, list) {
5267 mutex_lock(&wq->mutex);
5268 for_each_pwq(pwq, wq)
5269 pwq_adjust_max_active(pwq);
5270 mutex_unlock(&wq->mutex);
5271 }
5272
5273 mutex_unlock(&wq_pool_mutex);
5274}
5275
5276/**
5277 * freeze_workqueues_busy - are freezable workqueues still busy?
5278 *
5279 * Check whether freezing is complete. This function must be called
5280 * between freeze_workqueues_begin() and thaw_workqueues().
5281 *
5282 * CONTEXT:
5283 * Grabs and releases wq_pool_mutex.
5284 *
5285 * Return:
5286 * %true if some freezable workqueues are still busy. %false if freezing
5287 * is complete.
5288 */
5289bool freeze_workqueues_busy(void)
5290{
5291 bool busy = false;
5292 struct workqueue_struct *wq;
5293 struct pool_workqueue *pwq;
5294
5295 mutex_lock(&wq_pool_mutex);
5296
5297 WARN_ON_ONCE(!workqueue_freezing);
5298
5299 list_for_each_entry(wq, &workqueues, list) {
5300 if (!(wq->flags & WQ_FREEZABLE))
5301 continue;
5302 /*
5303 * nr_active is monotonically decreasing. It's safe
5304 * to peek without lock.
5305 */
24acfb71 5306 rcu_read_lock();
6ba94429
FW
5307 for_each_pwq(pwq, wq) {
5308 WARN_ON_ONCE(pwq->nr_active < 0);
5309 if (pwq->nr_active) {
5310 busy = true;
24acfb71 5311 rcu_read_unlock();
6ba94429
FW
5312 goto out_unlock;
5313 }
5314 }
24acfb71 5315 rcu_read_unlock();
6ba94429
FW
5316 }
5317out_unlock:
5318 mutex_unlock(&wq_pool_mutex);
5319 return busy;
5320}
5321
5322/**
5323 * thaw_workqueues - thaw workqueues
5324 *
5325 * Thaw workqueues. Normal queueing is restored and all collected
5326 * frozen works are transferred to their respective pool worklists.
5327 *
5328 * CONTEXT:
5329 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5330 */
5331void thaw_workqueues(void)
5332{
5333 struct workqueue_struct *wq;
5334 struct pool_workqueue *pwq;
5335
5336 mutex_lock(&wq_pool_mutex);
5337
5338 if (!workqueue_freezing)
5339 goto out_unlock;
5340
5341 workqueue_freezing = false;
5342
5343 /* restore max_active and repopulate worklist */
5344 list_for_each_entry(wq, &workqueues, list) {
5345 mutex_lock(&wq->mutex);
5346 for_each_pwq(pwq, wq)
5347 pwq_adjust_max_active(pwq);
5348 mutex_unlock(&wq->mutex);
5349 }
5350
5351out_unlock:
5352 mutex_unlock(&wq_pool_mutex);
5353}
5354#endif /* CONFIG_FREEZER */
5355
042f7df1
LJ
5356static int workqueue_apply_unbound_cpumask(void)
5357{
5358 LIST_HEAD(ctxs);
5359 int ret = 0;
5360 struct workqueue_struct *wq;
5361 struct apply_wqattrs_ctx *ctx, *n;
5362
5363 lockdep_assert_held(&wq_pool_mutex);
5364
5365 list_for_each_entry(wq, &workqueues, list) {
5366 if (!(wq->flags & WQ_UNBOUND))
5367 continue;
5368 /* creating multiple pwqs breaks ordering guarantee */
5369 if (wq->flags & __WQ_ORDERED)
5370 continue;
5371
5372 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5373 if (!ctx) {
5374 ret = -ENOMEM;
5375 break;
5376 }
5377
5378 list_add_tail(&ctx->list, &ctxs);
5379 }
5380
5381 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5382 if (!ret)
5383 apply_wqattrs_commit(ctx);
5384 apply_wqattrs_cleanup(ctx);
5385 }
5386
5387 return ret;
5388}
5389
5390/**
5391 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5392 * @cpumask: the cpumask to set
5393 *
5394 * The low-level workqueues cpumask is a global cpumask that limits
5395 * the affinity of all unbound workqueues. This function check the @cpumask
5396 * and apply it to all unbound workqueues and updates all pwqs of them.
5397 *
67dc8325 5398 * Return: 0 - Success
042f7df1
LJ
5399 * -EINVAL - Invalid @cpumask
5400 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5401 */
5402int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5403{
5404 int ret = -EINVAL;
5405 cpumask_var_t saved_cpumask;
5406
c98a9805
TS
5407 /*
5408 * Not excluding isolated cpus on purpose.
5409 * If the user wishes to include them, we allow that.
5410 */
042f7df1
LJ
5411 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5412 if (!cpumask_empty(cpumask)) {
a0111cf6 5413 apply_wqattrs_lock();
d25302e4
MD
5414 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5415 ret = 0;
5416 goto out_unlock;
5417 }
5418
5419 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5420 ret = -ENOMEM;
5421 goto out_unlock;
5422 }
042f7df1
LJ
5423
5424 /* save the old wq_unbound_cpumask. */
5425 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5426
5427 /* update wq_unbound_cpumask at first and apply it to wqs. */
5428 cpumask_copy(wq_unbound_cpumask, cpumask);
5429 ret = workqueue_apply_unbound_cpumask();
5430
5431 /* restore the wq_unbound_cpumask when failed. */
5432 if (ret < 0)
5433 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5434
d25302e4
MD
5435 free_cpumask_var(saved_cpumask);
5436out_unlock:
a0111cf6 5437 apply_wqattrs_unlock();
042f7df1 5438 }
042f7df1 5439
042f7df1
LJ
5440 return ret;
5441}
5442
6ba94429
FW
5443#ifdef CONFIG_SYSFS
5444/*
5445 * Workqueues with WQ_SYSFS flag set is visible to userland via
5446 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5447 * following attributes.
5448 *
5449 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5450 * max_active RW int : maximum number of in-flight work items
5451 *
5452 * Unbound workqueues have the following extra attributes.
5453 *
9a19b463 5454 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5455 * nice RW int : nice value of the workers
5456 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5457 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5458 */
5459struct wq_device {
5460 struct workqueue_struct *wq;
5461 struct device dev;
5462};
5463
5464static struct workqueue_struct *dev_to_wq(struct device *dev)
5465{
5466 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5467
5468 return wq_dev->wq;
5469}
5470
5471static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5472 char *buf)
5473{
5474 struct workqueue_struct *wq = dev_to_wq(dev);
5475
5476 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5477}
5478static DEVICE_ATTR_RO(per_cpu);
5479
5480static ssize_t max_active_show(struct device *dev,
5481 struct device_attribute *attr, char *buf)
5482{
5483 struct workqueue_struct *wq = dev_to_wq(dev);
5484
5485 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5486}
5487
5488static ssize_t max_active_store(struct device *dev,
5489 struct device_attribute *attr, const char *buf,
5490 size_t count)
5491{
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 int val;
5494
5495 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5496 return -EINVAL;
5497
5498 workqueue_set_max_active(wq, val);
5499 return count;
5500}
5501static DEVICE_ATTR_RW(max_active);
5502
5503static struct attribute *wq_sysfs_attrs[] = {
5504 &dev_attr_per_cpu.attr,
5505 &dev_attr_max_active.attr,
5506 NULL,
5507};
5508ATTRIBUTE_GROUPS(wq_sysfs);
5509
5510static ssize_t wq_pool_ids_show(struct device *dev,
5511 struct device_attribute *attr, char *buf)
5512{
5513 struct workqueue_struct *wq = dev_to_wq(dev);
5514 const char *delim = "";
5515 int node, written = 0;
5516
ffd8bea8 5517 cpus_read_lock();
24acfb71 5518 rcu_read_lock();
6ba94429
FW
5519 for_each_node(node) {
5520 written += scnprintf(buf + written, PAGE_SIZE - written,
5521 "%s%d:%d", delim, node,
5522 unbound_pwq_by_node(wq, node)->pool->id);
5523 delim = " ";
5524 }
5525 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71 5526 rcu_read_unlock();
ffd8bea8 5527 cpus_read_unlock();
6ba94429
FW
5528
5529 return written;
5530}
5531
5532static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5533 char *buf)
5534{
5535 struct workqueue_struct *wq = dev_to_wq(dev);
5536 int written;
5537
5538 mutex_lock(&wq->mutex);
5539 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5540 mutex_unlock(&wq->mutex);
5541
5542 return written;
5543}
5544
5545/* prepare workqueue_attrs for sysfs store operations */
5546static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5547{
5548 struct workqueue_attrs *attrs;
5549
899a94fe
LJ
5550 lockdep_assert_held(&wq_pool_mutex);
5551
be69d00d 5552 attrs = alloc_workqueue_attrs();
6ba94429
FW
5553 if (!attrs)
5554 return NULL;
5555
6ba94429 5556 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5557 return attrs;
5558}
5559
5560static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5561 const char *buf, size_t count)
5562{
5563 struct workqueue_struct *wq = dev_to_wq(dev);
5564 struct workqueue_attrs *attrs;
d4d3e257
LJ
5565 int ret = -ENOMEM;
5566
5567 apply_wqattrs_lock();
6ba94429
FW
5568
5569 attrs = wq_sysfs_prep_attrs(wq);
5570 if (!attrs)
d4d3e257 5571 goto out_unlock;
6ba94429
FW
5572
5573 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5574 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5575 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5576 else
5577 ret = -EINVAL;
5578
d4d3e257
LJ
5579out_unlock:
5580 apply_wqattrs_unlock();
6ba94429
FW
5581 free_workqueue_attrs(attrs);
5582 return ret ?: count;
5583}
5584
5585static ssize_t wq_cpumask_show(struct device *dev,
5586 struct device_attribute *attr, char *buf)
5587{
5588 struct workqueue_struct *wq = dev_to_wq(dev);
5589 int written;
5590
5591 mutex_lock(&wq->mutex);
5592 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5593 cpumask_pr_args(wq->unbound_attrs->cpumask));
5594 mutex_unlock(&wq->mutex);
5595 return written;
5596}
5597
5598static ssize_t wq_cpumask_store(struct device *dev,
5599 struct device_attribute *attr,
5600 const char *buf, size_t count)
5601{
5602 struct workqueue_struct *wq = dev_to_wq(dev);
5603 struct workqueue_attrs *attrs;
d4d3e257
LJ
5604 int ret = -ENOMEM;
5605
5606 apply_wqattrs_lock();
6ba94429
FW
5607
5608 attrs = wq_sysfs_prep_attrs(wq);
5609 if (!attrs)
d4d3e257 5610 goto out_unlock;
6ba94429
FW
5611
5612 ret = cpumask_parse(buf, attrs->cpumask);
5613 if (!ret)
d4d3e257 5614 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5615
d4d3e257
LJ
5616out_unlock:
5617 apply_wqattrs_unlock();
6ba94429
FW
5618 free_workqueue_attrs(attrs);
5619 return ret ?: count;
5620}
5621
5622static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5623 char *buf)
5624{
5625 struct workqueue_struct *wq = dev_to_wq(dev);
5626 int written;
7dbc725e 5627
6ba94429
FW
5628 mutex_lock(&wq->mutex);
5629 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5630 !wq->unbound_attrs->no_numa);
5631 mutex_unlock(&wq->mutex);
4c16bd32 5632
6ba94429 5633 return written;
65758202
TH
5634}
5635
6ba94429
FW
5636static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5637 const char *buf, size_t count)
65758202 5638{
6ba94429
FW
5639 struct workqueue_struct *wq = dev_to_wq(dev);
5640 struct workqueue_attrs *attrs;
d4d3e257
LJ
5641 int v, ret = -ENOMEM;
5642
5643 apply_wqattrs_lock();
4c16bd32 5644
6ba94429
FW
5645 attrs = wq_sysfs_prep_attrs(wq);
5646 if (!attrs)
d4d3e257 5647 goto out_unlock;
4c16bd32 5648
6ba94429
FW
5649 ret = -EINVAL;
5650 if (sscanf(buf, "%d", &v) == 1) {
5651 attrs->no_numa = !v;
d4d3e257 5652 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5653 }
6ba94429 5654
d4d3e257
LJ
5655out_unlock:
5656 apply_wqattrs_unlock();
6ba94429
FW
5657 free_workqueue_attrs(attrs);
5658 return ret ?: count;
65758202
TH
5659}
5660
6ba94429
FW
5661static struct device_attribute wq_sysfs_unbound_attrs[] = {
5662 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5663 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5664 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5665 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5666 __ATTR_NULL,
5667};
8ccad40d 5668
6ba94429
FW
5669static struct bus_type wq_subsys = {
5670 .name = "workqueue",
5671 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5672};
5673
b05a7928
FW
5674static ssize_t wq_unbound_cpumask_show(struct device *dev,
5675 struct device_attribute *attr, char *buf)
5676{
5677 int written;
5678
042f7df1 5679 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5680 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5681 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5682 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5683
5684 return written;
5685}
5686
042f7df1
LJ
5687static ssize_t wq_unbound_cpumask_store(struct device *dev,
5688 struct device_attribute *attr, const char *buf, size_t count)
5689{
5690 cpumask_var_t cpumask;
5691 int ret;
5692
5693 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5694 return -ENOMEM;
5695
5696 ret = cpumask_parse(buf, cpumask);
5697 if (!ret)
5698 ret = workqueue_set_unbound_cpumask(cpumask);
5699
5700 free_cpumask_var(cpumask);
5701 return ret ? ret : count;
5702}
5703
b05a7928 5704static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5705 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5706 wq_unbound_cpumask_store);
b05a7928 5707
6ba94429 5708static int __init wq_sysfs_init(void)
2d3854a3 5709{
b05a7928
FW
5710 int err;
5711
5712 err = subsys_virtual_register(&wq_subsys, NULL);
5713 if (err)
5714 return err;
5715
5716 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5717}
6ba94429 5718core_initcall(wq_sysfs_init);
2d3854a3 5719
6ba94429 5720static void wq_device_release(struct device *dev)
2d3854a3 5721{
6ba94429 5722 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5723
6ba94429 5724 kfree(wq_dev);
2d3854a3 5725}
a0a1a5fd
TH
5726
5727/**
6ba94429
FW
5728 * workqueue_sysfs_register - make a workqueue visible in sysfs
5729 * @wq: the workqueue to register
a0a1a5fd 5730 *
6ba94429
FW
5731 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5732 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5733 * which is the preferred method.
a0a1a5fd 5734 *
6ba94429
FW
5735 * Workqueue user should use this function directly iff it wants to apply
5736 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5737 * apply_workqueue_attrs() may race against userland updating the
5738 * attributes.
5739 *
5740 * Return: 0 on success, -errno on failure.
a0a1a5fd 5741 */
6ba94429 5742int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5743{
6ba94429
FW
5744 struct wq_device *wq_dev;
5745 int ret;
a0a1a5fd 5746
6ba94429 5747 /*
402dd89d 5748 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5749 * attributes breaks ordering guarantee. Disallow exposing ordered
5750 * workqueues.
5751 */
0a94efb5 5752 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5753 return -EINVAL;
a0a1a5fd 5754
6ba94429
FW
5755 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5756 if (!wq_dev)
5757 return -ENOMEM;
5bcab335 5758
6ba94429
FW
5759 wq_dev->wq = wq;
5760 wq_dev->dev.bus = &wq_subsys;
6ba94429 5761 wq_dev->dev.release = wq_device_release;
23217b44 5762 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5763
6ba94429
FW
5764 /*
5765 * unbound_attrs are created separately. Suppress uevent until
5766 * everything is ready.
5767 */
5768 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5769
6ba94429
FW
5770 ret = device_register(&wq_dev->dev);
5771 if (ret) {
537f4146 5772 put_device(&wq_dev->dev);
6ba94429
FW
5773 wq->wq_dev = NULL;
5774 return ret;
5775 }
a0a1a5fd 5776
6ba94429
FW
5777 if (wq->flags & WQ_UNBOUND) {
5778 struct device_attribute *attr;
a0a1a5fd 5779
6ba94429
FW
5780 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5781 ret = device_create_file(&wq_dev->dev, attr);
5782 if (ret) {
5783 device_unregister(&wq_dev->dev);
5784 wq->wq_dev = NULL;
5785 return ret;
a0a1a5fd
TH
5786 }
5787 }
5788 }
6ba94429
FW
5789
5790 dev_set_uevent_suppress(&wq_dev->dev, false);
5791 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5792 return 0;
a0a1a5fd
TH
5793}
5794
5795/**
6ba94429
FW
5796 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5797 * @wq: the workqueue to unregister
a0a1a5fd 5798 *
6ba94429 5799 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5800 */
6ba94429 5801static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5802{
6ba94429 5803 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5804
6ba94429
FW
5805 if (!wq->wq_dev)
5806 return;
a0a1a5fd 5807
6ba94429
FW
5808 wq->wq_dev = NULL;
5809 device_unregister(&wq_dev->dev);
a0a1a5fd 5810}
6ba94429
FW
5811#else /* CONFIG_SYSFS */
5812static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5813#endif /* CONFIG_SYSFS */
a0a1a5fd 5814
82607adc
TH
5815/*
5816 * Workqueue watchdog.
5817 *
5818 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5819 * flush dependency, a concurrency managed work item which stays RUNNING
5820 * indefinitely. Workqueue stalls can be very difficult to debug as the
5821 * usual warning mechanisms don't trigger and internal workqueue state is
5822 * largely opaque.
5823 *
5824 * Workqueue watchdog monitors all worker pools periodically and dumps
5825 * state if some pools failed to make forward progress for a while where
5826 * forward progress is defined as the first item on ->worklist changing.
5827 *
5828 * This mechanism is controlled through the kernel parameter
5829 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5830 * corresponding sysfs parameter file.
5831 */
5832#ifdef CONFIG_WQ_WATCHDOG
5833
82607adc 5834static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5835static struct timer_list wq_watchdog_timer;
82607adc
TH
5836
5837static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5838static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5839
5840static void wq_watchdog_reset_touched(void)
5841{
5842 int cpu;
5843
5844 wq_watchdog_touched = jiffies;
5845 for_each_possible_cpu(cpu)
5846 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5847}
5848
5cd79d6a 5849static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5850{
5851 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5852 bool lockup_detected = false;
940d71c6 5853 unsigned long now = jiffies;
82607adc
TH
5854 struct worker_pool *pool;
5855 int pi;
5856
5857 if (!thresh)
5858 return;
5859
5860 rcu_read_lock();
5861
5862 for_each_pool(pool, pi) {
5863 unsigned long pool_ts, touched, ts;
5864
5865 if (list_empty(&pool->worklist))
5866 continue;
5867
940d71c6
SS
5868 /*
5869 * If a virtual machine is stopped by the host it can look to
5870 * the watchdog like a stall.
5871 */
5872 kvm_check_and_clear_guest_paused();
5873
82607adc 5874 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
5875 if (pool->cpu >= 0)
5876 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5877 else
5878 touched = READ_ONCE(wq_watchdog_touched);
82607adc 5879 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
5880
5881 if (time_after(pool_ts, touched))
5882 ts = pool_ts;
5883 else
5884 ts = touched;
5885
82607adc 5886 /* did we stall? */
940d71c6 5887 if (time_after(now, ts + thresh)) {
82607adc
TH
5888 lockup_detected = true;
5889 pr_emerg("BUG: workqueue lockup - pool");
5890 pr_cont_pool_info(pool);
5891 pr_cont(" stuck for %us!\n",
940d71c6 5892 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
5893 }
5894 }
5895
5896 rcu_read_unlock();
5897
5898 if (lockup_detected)
55df0933 5899 show_all_workqueues();
82607adc
TH
5900
5901 wq_watchdog_reset_touched();
5902 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5903}
5904
cb9d7fd5 5905notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5906{
5907 if (cpu >= 0)
5908 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
5909
5910 wq_watchdog_touched = jiffies;
82607adc
TH
5911}
5912
5913static void wq_watchdog_set_thresh(unsigned long thresh)
5914{
5915 wq_watchdog_thresh = 0;
5916 del_timer_sync(&wq_watchdog_timer);
5917
5918 if (thresh) {
5919 wq_watchdog_thresh = thresh;
5920 wq_watchdog_reset_touched();
5921 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5922 }
5923}
5924
5925static int wq_watchdog_param_set_thresh(const char *val,
5926 const struct kernel_param *kp)
5927{
5928 unsigned long thresh;
5929 int ret;
5930
5931 ret = kstrtoul(val, 0, &thresh);
5932 if (ret)
5933 return ret;
5934
5935 if (system_wq)
5936 wq_watchdog_set_thresh(thresh);
5937 else
5938 wq_watchdog_thresh = thresh;
5939
5940 return 0;
5941}
5942
5943static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5944 .set = wq_watchdog_param_set_thresh,
5945 .get = param_get_ulong,
5946};
5947
5948module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5949 0644);
5950
5951static void wq_watchdog_init(void)
5952{
5cd79d6a 5953 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5954 wq_watchdog_set_thresh(wq_watchdog_thresh);
5955}
5956
5957#else /* CONFIG_WQ_WATCHDOG */
5958
5959static inline void wq_watchdog_init(void) { }
5960
5961#endif /* CONFIG_WQ_WATCHDOG */
5962
bce90380
TH
5963static void __init wq_numa_init(void)
5964{
5965 cpumask_var_t *tbl;
5966 int node, cpu;
5967
bce90380
TH
5968 if (num_possible_nodes() <= 1)
5969 return;
5970
d55262c4
TH
5971 if (wq_disable_numa) {
5972 pr_info("workqueue: NUMA affinity support disabled\n");
5973 return;
5974 }
5975
f728c4a9
ZL
5976 for_each_possible_cpu(cpu) {
5977 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5978 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5979 return;
5980 }
5981 }
5982
be69d00d 5983 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5984 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5985
bce90380
TH
5986 /*
5987 * We want masks of possible CPUs of each node which isn't readily
5988 * available. Build one from cpu_to_node() which should have been
5989 * fully initialized by now.
5990 */
6396bb22 5991 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5992 BUG_ON(!tbl);
5993
5994 for_each_node(node)
5a6024f1 5995 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5996 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5997
5998 for_each_possible_cpu(cpu) {
5999 node = cpu_to_node(cpu);
bce90380
TH
6000 cpumask_set_cpu(cpu, tbl[node]);
6001 }
6002
6003 wq_numa_possible_cpumask = tbl;
6004 wq_numa_enabled = true;
6005}
6006
3347fa09
TH
6007/**
6008 * workqueue_init_early - early init for workqueue subsystem
6009 *
6010 * This is the first half of two-staged workqueue subsystem initialization
6011 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6012 * idr are up. It sets up all the data structures and system workqueues
6013 * and allows early boot code to create workqueues and queue/cancel work
6014 * items. Actual work item execution starts only after kthreads can be
6015 * created and scheduled right before early initcalls.
6016 */
2333e829 6017void __init workqueue_init_early(void)
1da177e4 6018{
7a4e344c 6019 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 6020 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 6021 int i, cpu;
c34056a3 6022
10cdb157 6023 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 6024
b05a7928 6025 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 6026 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 6027
e904e6c2
TH
6028 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6029
706026c2 6030 /* initialize CPU pools */
29c91e99 6031 for_each_possible_cpu(cpu) {
4ce62e9e 6032 struct worker_pool *pool;
8b03ae3c 6033
7a4e344c 6034 i = 0;
f02ae73a 6035 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 6036 BUG_ON(init_worker_pool(pool));
ec22ca5e 6037 pool->cpu = cpu;
29c91e99 6038 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 6039 pool->attrs->nice = std_nice[i++];
f3f90ad4 6040 pool->node = cpu_to_node(cpu);
7a4e344c 6041
9daf9e67 6042 /* alloc pool ID */
68e13a67 6043 mutex_lock(&wq_pool_mutex);
9daf9e67 6044 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6045 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6046 }
8b03ae3c
TH
6047 }
6048
8a2b7538 6049 /* create default unbound and ordered wq attrs */
29c91e99
TH
6050 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6051 struct workqueue_attrs *attrs;
6052
be69d00d 6053 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6054 attrs->nice = std_nice[i];
29c91e99 6055 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6056
6057 /*
6058 * An ordered wq should have only one pwq as ordering is
6059 * guaranteed by max_active which is enforced by pwqs.
6060 * Turn off NUMA so that dfl_pwq is used for all nodes.
6061 */
be69d00d 6062 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
6063 attrs->nice = std_nice[i];
6064 attrs->no_numa = true;
6065 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6066 }
6067
d320c038 6068 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6069 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6070 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
6071 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6072 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
6073 system_freezable_wq = alloc_workqueue("events_freezable",
6074 WQ_FREEZABLE, 0);
0668106c
VK
6075 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6076 WQ_POWER_EFFICIENT, 0);
6077 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6078 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6079 0);
1aabe902 6080 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6081 !system_unbound_wq || !system_freezable_wq ||
6082 !system_power_efficient_wq ||
6083 !system_freezable_power_efficient_wq);
3347fa09
TH
6084}
6085
6086/**
6087 * workqueue_init - bring workqueue subsystem fully online
6088 *
6089 * This is the latter half of two-staged workqueue subsystem initialization
6090 * and invoked as soon as kthreads can be created and scheduled.
6091 * Workqueues have been created and work items queued on them, but there
6092 * are no kworkers executing the work items yet. Populate the worker pools
6093 * with the initial workers and enable future kworker creations.
6094 */
2333e829 6095void __init workqueue_init(void)
3347fa09 6096{
2186d9f9 6097 struct workqueue_struct *wq;
3347fa09
TH
6098 struct worker_pool *pool;
6099 int cpu, bkt;
6100
2186d9f9
TH
6101 /*
6102 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6103 * CPU to node mapping may not be available that early on some
6104 * archs such as power and arm64. As per-cpu pools created
6105 * previously could be missing node hint and unbound pools NUMA
6106 * affinity, fix them up.
40c17f75
TH
6107 *
6108 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6109 */
6110 wq_numa_init();
6111
6112 mutex_lock(&wq_pool_mutex);
6113
6114 for_each_possible_cpu(cpu) {
6115 for_each_cpu_worker_pool(pool, cpu) {
6116 pool->node = cpu_to_node(cpu);
6117 }
6118 }
6119
40c17f75 6120 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6121 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6122 WARN(init_rescuer(wq),
6123 "workqueue: failed to create early rescuer for %s",
6124 wq->name);
6125 }
2186d9f9
TH
6126
6127 mutex_unlock(&wq_pool_mutex);
6128
3347fa09
TH
6129 /* create the initial workers */
6130 for_each_online_cpu(cpu) {
6131 for_each_cpu_worker_pool(pool, cpu) {
6132 pool->flags &= ~POOL_DISASSOCIATED;
6133 BUG_ON(!create_worker(pool));
6134 }
6135 }
6136
6137 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6138 BUG_ON(!create_worker(pool));
6139
6140 wq_online = true;
82607adc 6141 wq_watchdog_init();
1da177e4 6142}