dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
cd2440d6 52#include <linux/sched/debug.h>
62635ea8 53#include <linux/nmi.h>
940d71c6 54#include <linux/kvm_para.h>
e22bee78 55
ea138446 56#include "workqueue_internal.h"
1da177e4 57
c8e55f36 58enum {
24647570
TH
59 /*
60 * worker_pool flags
bc2ae0f5 61 *
24647570 62 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
63 * While associated (!DISASSOCIATED), all workers are bound to the
64 * CPU and none has %WORKER_UNBOUND set and concurrency management
65 * is in effect.
66 *
67 * While DISASSOCIATED, the cpu may be offline and all workers have
68 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 69 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 70 *
bc3a1afc 71 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 72 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 73 * worker_attach_to_pool() is in progress.
bc2ae0f5 74 */
692b4825 75 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 76 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 77
c8e55f36 78 /* worker flags */
c8e55f36
TH
79 WORKER_DIE = 1 << 1, /* die die die */
80 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 81 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 82 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 83 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 84 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 85
a9ab775b
TH
86 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
87 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 88
e34cdddb 89 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 90
29c91e99 91 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 92 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 93
e22bee78
TH
94 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
95 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
96
3233cdbd
TH
97 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
98 /* call for help after 10ms
99 (min two ticks) */
e22bee78
TH
100 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
101 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
102
103 /*
104 * Rescue workers are used only on emergencies and shared by
8698a745 105 * all cpus. Give MIN_NICE.
e22bee78 106 */
8698a745
DY
107 RESCUER_NICE_LEVEL = MIN_NICE,
108 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
109
110 WQ_NAME_LEN = 24,
c8e55f36 111};
1da177e4
LT
112
113/*
4690c4ab
TH
114 * Structure fields follow one of the following exclusion rules.
115 *
e41e704b
TH
116 * I: Modifiable by initialization/destruction paths and read-only for
117 * everyone else.
4690c4ab 118 *
e22bee78
TH
119 * P: Preemption protected. Disabling preemption is enough and should
120 * only be modified and accessed from the local cpu.
121 *
d565ed63 122 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 123 *
d565ed63
TH
124 * X: During normal operation, modification requires pool->lock and should
125 * be done only from local cpu. Either disabling preemption on local
126 * cpu or grabbing pool->lock is enough for read access. If
127 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 128 *
1258fae7 129 * A: wq_pool_attach_mutex protected.
822d8405 130 *
68e13a67 131 * PL: wq_pool_mutex protected.
5bcab335 132 *
24acfb71 133 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 134 *
5b95e1af
LJ
135 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
136 *
137 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 138 * RCU for reads.
5b95e1af 139 *
3c25a55d
LJ
140 * WQ: wq->mutex protected.
141 *
24acfb71 142 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
143 *
144 * MD: wq_mayday_lock protected.
cd2440d6
PM
145 *
146 * WD: Used internally by the watchdog.
1da177e4 147 */
1da177e4 148
2eaebdb3 149/* struct worker is defined in workqueue_internal.h */
c34056a3 150
bd7bdd43 151struct worker_pool {
a9b8a985 152 raw_spinlock_t lock; /* the pool lock */
d84ff051 153 int cpu; /* I: the associated cpu */
f3f90ad4 154 int node; /* I: the associated node ID */
9daf9e67 155 int id; /* I: pool ID */
11ebea50 156 unsigned int flags; /* X: flags */
bd7bdd43 157
82607adc 158 unsigned long watchdog_ts; /* L: watchdog timestamp */
cd2440d6 159 bool cpu_stall; /* WD: stalled cpu bound pool */
82607adc 160
bc35f7ef
LJ
161 /*
162 * The counter is incremented in a process context on the associated CPU
163 * w/ preemption disabled, and decremented or reset in the same context
164 * but w/ pool->lock held. The readers grab pool->lock and are
165 * guaranteed to see if the counter reached zero.
166 */
167 int nr_running;
84f91c62 168
bd7bdd43 169 struct list_head worklist; /* L: list of pending works */
ea1abd61 170
5826cc8f
LJ
171 int nr_workers; /* L: total number of workers */
172 int nr_idle; /* L: currently idle workers */
bd7bdd43 173
2c1f1a91 174 struct list_head idle_list; /* L: list of idle workers */
bd7bdd43 175 struct timer_list idle_timer; /* L: worker idle timeout */
3f959aa3
VS
176 struct work_struct idle_cull_work; /* L: worker idle cleanup */
177
178 struct timer_list mayday_timer; /* L: SOS timer for workers */
bd7bdd43 179
c5aa87bb 180 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
181 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
182 /* L: hash of busy workers */
183
2607d7a6 184 struct worker *manager; /* L: purely informational */
92f9c5c4 185 struct list_head workers; /* A: attached workers */
e02b9312 186 struct list_head dying_workers; /* A: workers about to die */
60f5a4bc 187 struct completion *detach_completion; /* all workers detached */
e19e397a 188
7cda9aae 189 struct ida worker_ida; /* worker IDs for task name */
e19e397a 190
7a4e344c 191 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
192 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
193 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 194
29c91e99 195 /*
24acfb71 196 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
197 * from get_work_pool().
198 */
199 struct rcu_head rcu;
84f91c62 200};
8b03ae3c 201
1da177e4 202/*
112202d9
TH
203 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
204 * of work_struct->data are used for flags and the remaining high bits
205 * point to the pwq; thus, pwqs need to be aligned at two's power of the
206 * number of flag bits.
1da177e4 207 */
112202d9 208struct pool_workqueue {
bd7bdd43 209 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 210 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
211 int work_color; /* L: current color */
212 int flush_color; /* L: flushing color */
8864b4e5 213 int refcnt; /* L: reference count */
73f53c4a
TH
214 int nr_in_flight[WORK_NR_COLORS];
215 /* L: nr of in_flight works */
018f3a13
LJ
216
217 /*
218 * nr_active management and WORK_STRUCT_INACTIVE:
219 *
220 * When pwq->nr_active >= max_active, new work item is queued to
221 * pwq->inactive_works instead of pool->worklist and marked with
222 * WORK_STRUCT_INACTIVE.
223 *
224 * All work items marked with WORK_STRUCT_INACTIVE do not participate
225 * in pwq->nr_active and all work items in pwq->inactive_works are
226 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
227 * work items are in pwq->inactive_works. Some of them are ready to
228 * run in pool->worklist or worker->scheduled. Those work itmes are
229 * only struct wq_barrier which is used for flush_work() and should
230 * not participate in pwq->nr_active. For non-barrier work item, it
231 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
232 */
1e19ffc6 233 int nr_active; /* L: nr of active works */
a0a1a5fd 234 int max_active; /* L: max active works */
f97a4a1a 235 struct list_head inactive_works; /* L: inactive works */
3c25a55d 236 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 237 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
238
239 /*
240 * Release of unbound pwq is punted to system_wq. See put_pwq()
241 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 242 * itself is also RCU protected so that the first pwq can be
b09f4fd3 243 * determined without grabbing wq->mutex.
8864b4e5
TH
244 */
245 struct work_struct unbound_release_work;
246 struct rcu_head rcu;
e904e6c2 247} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 248
73f53c4a
TH
249/*
250 * Structure used to wait for workqueue flush.
251 */
252struct wq_flusher {
3c25a55d
LJ
253 struct list_head list; /* WQ: list of flushers */
254 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
255 struct completion done; /* flush completion */
256};
257
226223ab
TH
258struct wq_device;
259
1da177e4 260/*
c5aa87bb
TH
261 * The externally visible workqueue. It relays the issued work items to
262 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
263 */
264struct workqueue_struct {
3c25a55d 265 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 266 struct list_head list; /* PR: list of all workqueues */
73f53c4a 267
3c25a55d
LJ
268 struct mutex mutex; /* protects this wq */
269 int work_color; /* WQ: current work color */
270 int flush_color; /* WQ: current flush color */
112202d9 271 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
272 struct wq_flusher *first_flusher; /* WQ: first flusher */
273 struct list_head flusher_queue; /* WQ: flush waiters */
274 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 275
2e109a28 276 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 277 struct worker *rescuer; /* MD: rescue worker */
e22bee78 278
87fc741e 279 int nr_drainers; /* WQ: drain in progress */
a357fc03 280 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 281
5b95e1af
LJ
282 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
283 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 284
226223ab
TH
285#ifdef CONFIG_SYSFS
286 struct wq_device *wq_dev; /* I: for sysfs interface */
287#endif
4e6045f1 288#ifdef CONFIG_LOCKDEP
669de8bd
BVA
289 char *lock_name;
290 struct lock_class_key key;
4690c4ab 291 struct lockdep_map lockdep_map;
4e6045f1 292#endif
ecf6881f 293 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 294
e2dca7ad 295 /*
24acfb71
TG
296 * Destruction of workqueue_struct is RCU protected to allow walking
297 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
298 * This is used to dump all workqueues from sysrq.
299 */
300 struct rcu_head rcu;
301
2728fd2f
TH
302 /* hot fields used during command issue, aligned to cacheline */
303 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
304 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 305 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
306};
307
e904e6c2
TH
308static struct kmem_cache *pwq_cache;
309
bce90380
TH
310static cpumask_var_t *wq_numa_possible_cpumask;
311 /* possible CPUs of each node */
312
d55262c4
TH
313static bool wq_disable_numa;
314module_param_named(disable_numa, wq_disable_numa, bool, 0444);
315
cee22a15 316/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 317static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
318module_param_named(power_efficient, wq_power_efficient, bool, 0444);
319
863b710b 320static bool wq_online; /* can kworkers be created yet? */
3347fa09 321
bce90380
TH
322static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
323
4c16bd32
TH
324/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
325static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
326
68e13a67 327static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 328static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 329static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
330/* wait for manager to go away */
331static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 332
e2dca7ad 333static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 334static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 335
99c621ef 336/* PL&A: allowable cpus for unbound wqs and work items */
ef557180
MG
337static cpumask_var_t wq_unbound_cpumask;
338
339/* CPU where unbound work was last round robin scheduled from this CPU */
340static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 341
f303fccb
TH
342/*
343 * Local execution of unbound work items is no longer guaranteed. The
344 * following always forces round-robin CPU selection on unbound work items
345 * to uncover usages which depend on it.
346 */
347#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
348static bool wq_debug_force_rr_cpu = true;
349#else
350static bool wq_debug_force_rr_cpu = false;
351#endif
352module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
353
7d19c5ce 354/* the per-cpu worker pools */
25528213 355static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 356
68e13a67 357static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 358
68e13a67 359/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
360static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
361
c5aa87bb 362/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
363static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
364
8a2b7538
TH
365/* I: attributes used when instantiating ordered pools on demand */
366static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
367
d320c038 368struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 369EXPORT_SYMBOL(system_wq);
044c782c 370struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 371EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 372struct workqueue_struct *system_long_wq __read_mostly;
d320c038 373EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 374struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 375EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 376struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 377EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
378struct workqueue_struct *system_power_efficient_wq __read_mostly;
379EXPORT_SYMBOL_GPL(system_power_efficient_wq);
380struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
381EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 382
7d19c5ce 383static int worker_thread(void *__worker);
6ba94429 384static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 385static void show_pwq(struct pool_workqueue *pwq);
55df0933 386static void show_one_worker_pool(struct worker_pool *pool);
7d19c5ce 387
97bd2347
TH
388#define CREATE_TRACE_POINTS
389#include <trace/events/workqueue.h>
390
68e13a67 391#define assert_rcu_or_pool_mutex() \
24acfb71 392 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 393 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 394 "RCU or wq_pool_mutex should be held")
5bcab335 395
5b95e1af 396#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 397 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
398 !lockdep_is_held(&wq->mutex) && \
399 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 400 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 401
f02ae73a
TH
402#define for_each_cpu_worker_pool(pool, cpu) \
403 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
404 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 405 (pool)++)
4ce62e9e 406
17116969
TH
407/**
408 * for_each_pool - iterate through all worker_pools in the system
409 * @pool: iteration cursor
611c92a0 410 * @pi: integer used for iteration
fa1b54e6 411 *
24acfb71 412 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
413 * locked. If the pool needs to be used beyond the locking in effect, the
414 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
415 *
416 * The if/else clause exists only for the lockdep assertion and can be
417 * ignored.
17116969 418 */
611c92a0
TH
419#define for_each_pool(pool, pi) \
420 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 421 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 422 else
17116969 423
822d8405
TH
424/**
425 * for_each_pool_worker - iterate through all workers of a worker_pool
426 * @worker: iteration cursor
822d8405
TH
427 * @pool: worker_pool to iterate workers of
428 *
1258fae7 429 * This must be called with wq_pool_attach_mutex.
822d8405
TH
430 *
431 * The if/else clause exists only for the lockdep assertion and can be
432 * ignored.
433 */
da028469
LJ
434#define for_each_pool_worker(worker, pool) \
435 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 436 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
437 else
438
49e3cf44
TH
439/**
440 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
441 * @pwq: iteration cursor
442 * @wq: the target workqueue
76af4d93 443 *
24acfb71 444 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
445 * If the pwq needs to be used beyond the locking in effect, the caller is
446 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
447 *
448 * The if/else clause exists only for the lockdep assertion and can be
449 * ignored.
49e3cf44
TH
450 */
451#define for_each_pwq(pwq, wq) \
49e9d1a9 452 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 453 lockdep_is_held(&(wq->mutex)))
f3421797 454
dc186ad7
TG
455#ifdef CONFIG_DEBUG_OBJECTS_WORK
456
f9e62f31 457static const struct debug_obj_descr work_debug_descr;
dc186ad7 458
99777288
SG
459static void *work_debug_hint(void *addr)
460{
461 return ((struct work_struct *) addr)->func;
462}
463
b9fdac7f
DC
464static bool work_is_static_object(void *addr)
465{
466 struct work_struct *work = addr;
467
468 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
469}
470
dc186ad7
TG
471/*
472 * fixup_init is called when:
473 * - an active object is initialized
474 */
02a982a6 475static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
476{
477 struct work_struct *work = addr;
478
479 switch (state) {
480 case ODEBUG_STATE_ACTIVE:
481 cancel_work_sync(work);
482 debug_object_init(work, &work_debug_descr);
02a982a6 483 return true;
dc186ad7 484 default:
02a982a6 485 return false;
dc186ad7
TG
486 }
487}
488
dc186ad7
TG
489/*
490 * fixup_free is called when:
491 * - an active object is freed
492 */
02a982a6 493static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
494{
495 struct work_struct *work = addr;
496
497 switch (state) {
498 case ODEBUG_STATE_ACTIVE:
499 cancel_work_sync(work);
500 debug_object_free(work, &work_debug_descr);
02a982a6 501 return true;
dc186ad7 502 default:
02a982a6 503 return false;
dc186ad7
TG
504 }
505}
506
f9e62f31 507static const struct debug_obj_descr work_debug_descr = {
dc186ad7 508 .name = "work_struct",
99777288 509 .debug_hint = work_debug_hint,
b9fdac7f 510 .is_static_object = work_is_static_object,
dc186ad7 511 .fixup_init = work_fixup_init,
dc186ad7
TG
512 .fixup_free = work_fixup_free,
513};
514
515static inline void debug_work_activate(struct work_struct *work)
516{
517 debug_object_activate(work, &work_debug_descr);
518}
519
520static inline void debug_work_deactivate(struct work_struct *work)
521{
522 debug_object_deactivate(work, &work_debug_descr);
523}
524
525void __init_work(struct work_struct *work, int onstack)
526{
527 if (onstack)
528 debug_object_init_on_stack(work, &work_debug_descr);
529 else
530 debug_object_init(work, &work_debug_descr);
531}
532EXPORT_SYMBOL_GPL(__init_work);
533
534void destroy_work_on_stack(struct work_struct *work)
535{
536 debug_object_free(work, &work_debug_descr);
537}
538EXPORT_SYMBOL_GPL(destroy_work_on_stack);
539
ea2e64f2
TG
540void destroy_delayed_work_on_stack(struct delayed_work *work)
541{
542 destroy_timer_on_stack(&work->timer);
543 debug_object_free(&work->work, &work_debug_descr);
544}
545EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
546
dc186ad7
TG
547#else
548static inline void debug_work_activate(struct work_struct *work) { }
549static inline void debug_work_deactivate(struct work_struct *work) { }
550#endif
551
4e8b22bd 552/**
67dc8325 553 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
554 * @pool: the pool pointer of interest
555 *
556 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
557 * successfully, -errno on failure.
558 */
9daf9e67
TH
559static int worker_pool_assign_id(struct worker_pool *pool)
560{
561 int ret;
562
68e13a67 563 lockdep_assert_held(&wq_pool_mutex);
5bcab335 564
4e8b22bd
LB
565 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
566 GFP_KERNEL);
229641a6 567 if (ret >= 0) {
e68035fb 568 pool->id = ret;
229641a6
TH
569 return 0;
570 }
fa1b54e6 571 return ret;
7c3eed5c
TH
572}
573
df2d5ae4
TH
574/**
575 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
576 * @wq: the target workqueue
577 * @node: the node ID
578 *
24acfb71 579 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 580 * read locked.
df2d5ae4
TH
581 * If the pwq needs to be used beyond the locking in effect, the caller is
582 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
583 *
584 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
585 */
586static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
587 int node)
588{
5b95e1af 589 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
590
591 /*
592 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
593 * delayed item is pending. The plan is to keep CPU -> NODE
594 * mapping valid and stable across CPU on/offlines. Once that
595 * happens, this workaround can be removed.
596 */
597 if (unlikely(node == NUMA_NO_NODE))
598 return wq->dfl_pwq;
599
df2d5ae4
TH
600 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
601}
602
73f53c4a
TH
603static unsigned int work_color_to_flags(int color)
604{
605 return color << WORK_STRUCT_COLOR_SHIFT;
606}
607
c4560c2c 608static int get_work_color(unsigned long work_data)
73f53c4a 609{
c4560c2c 610 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
611 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
612}
613
614static int work_next_color(int color)
615{
616 return (color + 1) % WORK_NR_COLORS;
617}
1da177e4 618
14441960 619/*
112202d9
TH
620 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
621 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 622 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 623 *
112202d9
TH
624 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
625 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
626 * work->data. These functions should only be called while the work is
627 * owned - ie. while the PENDING bit is set.
7a22ad75 628 *
112202d9 629 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 630 * corresponding to a work. Pool is available once the work has been
112202d9 631 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 632 * available only while the work item is queued.
7a22ad75 633 *
bbb68dfa
TH
634 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
635 * canceled. While being canceled, a work item may have its PENDING set
636 * but stay off timer and worklist for arbitrarily long and nobody should
637 * try to steal the PENDING bit.
14441960 638 */
7a22ad75
TH
639static inline void set_work_data(struct work_struct *work, unsigned long data,
640 unsigned long flags)
365970a1 641{
6183c009 642 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
643 atomic_long_set(&work->data, data | flags | work_static(work));
644}
365970a1 645
112202d9 646static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
647 unsigned long extra_flags)
648{
112202d9
TH
649 set_work_data(work, (unsigned long)pwq,
650 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
651}
652
4468a00f
LJ
653static void set_work_pool_and_keep_pending(struct work_struct *work,
654 int pool_id)
655{
656 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
657 WORK_STRUCT_PENDING);
658}
659
7c3eed5c
TH
660static void set_work_pool_and_clear_pending(struct work_struct *work,
661 int pool_id)
7a22ad75 662{
23657bb1
TH
663 /*
664 * The following wmb is paired with the implied mb in
665 * test_and_set_bit(PENDING) and ensures all updates to @work made
666 * here are visible to and precede any updates by the next PENDING
667 * owner.
668 */
669 smp_wmb();
7c3eed5c 670 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
671 /*
672 * The following mb guarantees that previous clear of a PENDING bit
673 * will not be reordered with any speculative LOADS or STORES from
674 * work->current_func, which is executed afterwards. This possible
8bdc6201 675 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
676 * the same @work. E.g. consider this case:
677 *
678 * CPU#0 CPU#1
679 * ---------------------------- --------------------------------
680 *
681 * 1 STORE event_indicated
682 * 2 queue_work_on() {
683 * 3 test_and_set_bit(PENDING)
684 * 4 } set_..._and_clear_pending() {
685 * 5 set_work_data() # clear bit
686 * 6 smp_mb()
687 * 7 work->current_func() {
688 * 8 LOAD event_indicated
689 * }
690 *
691 * Without an explicit full barrier speculative LOAD on line 8 can
692 * be executed before CPU#0 does STORE on line 1. If that happens,
693 * CPU#0 observes the PENDING bit is still set and new execution of
694 * a @work is not queued in a hope, that CPU#1 will eventually
695 * finish the queued @work. Meanwhile CPU#1 does not see
696 * event_indicated is set, because speculative LOAD was executed
697 * before actual STORE.
698 */
699 smp_mb();
7a22ad75 700}
f756d5e2 701
7a22ad75 702static void clear_work_data(struct work_struct *work)
1da177e4 703{
7c3eed5c
TH
704 smp_wmb(); /* see set_work_pool_and_clear_pending() */
705 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
706}
707
112202d9 708static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 709{
e120153d 710 unsigned long data = atomic_long_read(&work->data);
7a22ad75 711
112202d9 712 if (data & WORK_STRUCT_PWQ)
e120153d
TH
713 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
714 else
715 return NULL;
4d707b9f
ON
716}
717
7c3eed5c
TH
718/**
719 * get_work_pool - return the worker_pool a given work was associated with
720 * @work: the work item of interest
721 *
68e13a67 722 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
723 * access under RCU read lock. As such, this function should be
724 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
725 *
726 * All fields of the returned pool are accessible as long as the above
727 * mentioned locking is in effect. If the returned pool needs to be used
728 * beyond the critical section, the caller is responsible for ensuring the
729 * returned pool is and stays online.
d185af30
YB
730 *
731 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
732 */
733static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 734{
e120153d 735 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 736 int pool_id;
7a22ad75 737
68e13a67 738 assert_rcu_or_pool_mutex();
fa1b54e6 739
112202d9
TH
740 if (data & WORK_STRUCT_PWQ)
741 return ((struct pool_workqueue *)
7c3eed5c 742 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 743
7c3eed5c
TH
744 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
745 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
746 return NULL;
747
fa1b54e6 748 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
749}
750
751/**
752 * get_work_pool_id - return the worker pool ID a given work is associated with
753 * @work: the work item of interest
754 *
d185af30 755 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
756 * %WORK_OFFQ_POOL_NONE if none.
757 */
758static int get_work_pool_id(struct work_struct *work)
759{
54d5b7d0
LJ
760 unsigned long data = atomic_long_read(&work->data);
761
112202d9
TH
762 if (data & WORK_STRUCT_PWQ)
763 return ((struct pool_workqueue *)
54d5b7d0 764 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 765
54d5b7d0 766 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
767}
768
bbb68dfa
TH
769static void mark_work_canceling(struct work_struct *work)
770{
7c3eed5c 771 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 772
7c3eed5c
TH
773 pool_id <<= WORK_OFFQ_POOL_SHIFT;
774 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
775}
776
777static bool work_is_canceling(struct work_struct *work)
778{
779 unsigned long data = atomic_long_read(&work->data);
780
112202d9 781 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
782}
783
e22bee78 784/*
3270476a
TH
785 * Policy functions. These define the policies on how the global worker
786 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 787 * they're being called with pool->lock held.
e22bee78
TH
788 */
789
63d95a91 790static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 791{
bc35f7ef 792 return !pool->nr_running;
a848e3b6
ON
793}
794
4594bf15 795/*
e22bee78
TH
796 * Need to wake up a worker? Called from anything but currently
797 * running workers.
974271c4
TH
798 *
799 * Note that, because unbound workers never contribute to nr_running, this
706026c2 800 * function will always return %true for unbound pools as long as the
974271c4 801 * worklist isn't empty.
4594bf15 802 */
63d95a91 803static bool need_more_worker(struct worker_pool *pool)
365970a1 804{
63d95a91 805 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 806}
4594bf15 807
e22bee78 808/* Can I start working? Called from busy but !running workers. */
63d95a91 809static bool may_start_working(struct worker_pool *pool)
e22bee78 810{
63d95a91 811 return pool->nr_idle;
e22bee78
TH
812}
813
814/* Do I need to keep working? Called from currently running workers. */
63d95a91 815static bool keep_working(struct worker_pool *pool)
e22bee78 816{
bc35f7ef 817 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
e22bee78
TH
818}
819
820/* Do we need a new worker? Called from manager. */
63d95a91 821static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 822{
63d95a91 823 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 824}
365970a1 825
e22bee78 826/* Do we have too many workers and should some go away? */
63d95a91 827static bool too_many_workers(struct worker_pool *pool)
e22bee78 828{
692b4825 829 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
830 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
831 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
832
833 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
834}
835
4d707b9f 836/*
e22bee78
TH
837 * Wake up functions.
838 */
839
2c1f1a91 840/* Return the first idle worker. Called with pool->lock held. */
1037de36 841static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 842{
63d95a91 843 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
844 return NULL;
845
63d95a91 846 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
847}
848
849/**
850 * wake_up_worker - wake up an idle worker
63d95a91 851 * @pool: worker pool to wake worker from
7e11629d 852 *
63d95a91 853 * Wake up the first idle worker of @pool.
7e11629d
TH
854 *
855 * CONTEXT:
a9b8a985 856 * raw_spin_lock_irq(pool->lock).
7e11629d 857 */
63d95a91 858static void wake_up_worker(struct worker_pool *pool)
7e11629d 859{
1037de36 860 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
861
862 if (likely(worker))
863 wake_up_process(worker->task);
864}
865
d302f017 866/**
6d25be57 867 * wq_worker_running - a worker is running again
e22bee78 868 * @task: task waking up
e22bee78 869 *
6d25be57 870 * This function is called when a worker returns from schedule()
e22bee78 871 */
6d25be57 872void wq_worker_running(struct task_struct *task)
e22bee78
TH
873{
874 struct worker *worker = kthread_data(task);
875
6d25be57
TG
876 if (!worker->sleeping)
877 return;
07edfece
FW
878
879 /*
880 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
881 * and the nr_running increment below, we may ruin the nr_running reset
882 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
883 * pool. Protect against such race.
884 */
885 preempt_disable();
6d25be57 886 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 887 worker->pool->nr_running++;
07edfece 888 preempt_enable();
6d25be57 889 worker->sleeping = 0;
e22bee78
TH
890}
891
892/**
893 * wq_worker_sleeping - a worker is going to sleep
894 * @task: task going to sleep
e22bee78 895 *
6d25be57 896 * This function is called from schedule() when a busy worker is
ccf45156 897 * going to sleep.
e22bee78 898 */
6d25be57 899void wq_worker_sleeping(struct task_struct *task)
e22bee78 900{
cc5bff38 901 struct worker *worker = kthread_data(task);
111c225a 902 struct worker_pool *pool;
e22bee78 903
111c225a
TH
904 /*
905 * Rescuers, which may not have all the fields set up like normal
906 * workers, also reach here, let's not access anything before
907 * checking NOT_RUNNING.
908 */
2d64672e 909 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 910 return;
e22bee78 911
111c225a 912 pool = worker->pool;
111c225a 913
62849a96
SAS
914 /* Return if preempted before wq_worker_running() was reached */
915 if (worker->sleeping)
6d25be57
TG
916 return;
917
918 worker->sleeping = 1;
a9b8a985 919 raw_spin_lock_irq(&pool->lock);
e22bee78 920
45c753f5
FW
921 /*
922 * Recheck in case unbind_workers() preempted us. We don't
923 * want to decrement nr_running after the worker is unbound
924 * and nr_running has been reset.
925 */
926 if (worker->flags & WORKER_NOT_RUNNING) {
927 raw_spin_unlock_irq(&pool->lock);
928 return;
929 }
930
bc35f7ef
LJ
931 pool->nr_running--;
932 if (need_more_worker(pool))
cc5bff38 933 wake_up_worker(pool);
a9b8a985 934 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
935}
936
1b69ac6b
JW
937/**
938 * wq_worker_last_func - retrieve worker's last work function
8194fe94 939 * @task: Task to retrieve last work function of.
1b69ac6b
JW
940 *
941 * Determine the last function a worker executed. This is called from
942 * the scheduler to get a worker's last known identity.
943 *
944 * CONTEXT:
a9b8a985 945 * raw_spin_lock_irq(rq->lock)
1b69ac6b 946 *
4b047002
JW
947 * This function is called during schedule() when a kworker is going
948 * to sleep. It's used by psi to identify aggregation workers during
949 * dequeuing, to allow periodic aggregation to shut-off when that
950 * worker is the last task in the system or cgroup to go to sleep.
951 *
952 * As this function doesn't involve any workqueue-related locking, it
953 * only returns stable values when called from inside the scheduler's
954 * queuing and dequeuing paths, when @task, which must be a kworker,
955 * is guaranteed to not be processing any works.
956 *
1b69ac6b
JW
957 * Return:
958 * The last work function %current executed as a worker, NULL if it
959 * hasn't executed any work yet.
960 */
961work_func_t wq_worker_last_func(struct task_struct *task)
962{
963 struct worker *worker = kthread_data(task);
964
965 return worker->last_func;
966}
967
e22bee78
TH
968/**
969 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 970 * @worker: self
d302f017 971 * @flags: flags to set
d302f017 972 *
228f1d00 973 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 974 *
cb444766 975 * CONTEXT:
a9b8a985 976 * raw_spin_lock_irq(pool->lock)
d302f017 977 */
228f1d00 978static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 979{
bd7bdd43 980 struct worker_pool *pool = worker->pool;
e22bee78 981
cb444766
TH
982 WARN_ON_ONCE(worker->task != current);
983
228f1d00 984 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
985 if ((flags & WORKER_NOT_RUNNING) &&
986 !(worker->flags & WORKER_NOT_RUNNING)) {
bc35f7ef 987 pool->nr_running--;
e22bee78
TH
988 }
989
d302f017
TH
990 worker->flags |= flags;
991}
992
993/**
e22bee78 994 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 995 * @worker: self
d302f017
TH
996 * @flags: flags to clear
997 *
e22bee78 998 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 999 *
cb444766 1000 * CONTEXT:
a9b8a985 1001 * raw_spin_lock_irq(pool->lock)
d302f017
TH
1002 */
1003static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004{
63d95a91 1005 struct worker_pool *pool = worker->pool;
e22bee78
TH
1006 unsigned int oflags = worker->flags;
1007
cb444766
TH
1008 WARN_ON_ONCE(worker->task != current);
1009
d302f017 1010 worker->flags &= ~flags;
e22bee78 1011
42c025f3
TH
1012 /*
1013 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1014 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1015 * of multiple flags, not a single flag.
1016 */
e22bee78
TH
1017 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018 if (!(worker->flags & WORKER_NOT_RUNNING))
bc35f7ef 1019 pool->nr_running++;
d302f017
TH
1020}
1021
8cca0eea
TH
1022/**
1023 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1024 * @pool: pool of interest
8cca0eea
TH
1025 * @work: work to find worker for
1026 *
c9e7cf27
TH
1027 * Find a worker which is executing @work on @pool by searching
1028 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1029 * to match, its current execution should match the address of @work and
1030 * its work function. This is to avoid unwanted dependency between
1031 * unrelated work executions through a work item being recycled while still
1032 * being executed.
1033 *
1034 * This is a bit tricky. A work item may be freed once its execution
1035 * starts and nothing prevents the freed area from being recycled for
1036 * another work item. If the same work item address ends up being reused
1037 * before the original execution finishes, workqueue will identify the
1038 * recycled work item as currently executing and make it wait until the
1039 * current execution finishes, introducing an unwanted dependency.
1040 *
c5aa87bb
TH
1041 * This function checks the work item address and work function to avoid
1042 * false positives. Note that this isn't complete as one may construct a
1043 * work function which can introduce dependency onto itself through a
1044 * recycled work item. Well, if somebody wants to shoot oneself in the
1045 * foot that badly, there's only so much we can do, and if such deadlock
1046 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1047 *
1048 * CONTEXT:
a9b8a985 1049 * raw_spin_lock_irq(pool->lock).
8cca0eea 1050 *
d185af30
YB
1051 * Return:
1052 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1053 * otherwise.
4d707b9f 1054 */
c9e7cf27 1055static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1056 struct work_struct *work)
4d707b9f 1057{
42f8570f 1058 struct worker *worker;
42f8570f 1059
b67bfe0d 1060 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1061 (unsigned long)work)
1062 if (worker->current_work == work &&
1063 worker->current_func == work->func)
42f8570f
SL
1064 return worker;
1065
1066 return NULL;
4d707b9f
ON
1067}
1068
bf4ede01
TH
1069/**
1070 * move_linked_works - move linked works to a list
1071 * @work: start of series of works to be scheduled
1072 * @head: target list to append @work to
402dd89d 1073 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1074 *
1075 * Schedule linked works starting from @work to @head. Work series to
1076 * be scheduled starts at @work and includes any consecutive work with
1077 * WORK_STRUCT_LINKED set in its predecessor.
1078 *
1079 * If @nextp is not NULL, it's updated to point to the next work of
1080 * the last scheduled work. This allows move_linked_works() to be
1081 * nested inside outer list_for_each_entry_safe().
1082 *
1083 * CONTEXT:
a9b8a985 1084 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1085 */
1086static void move_linked_works(struct work_struct *work, struct list_head *head,
1087 struct work_struct **nextp)
1088{
1089 struct work_struct *n;
1090
1091 /*
1092 * Linked worklist will always end before the end of the list,
1093 * use NULL for list head.
1094 */
1095 list_for_each_entry_safe_from(work, n, NULL, entry) {
1096 list_move_tail(&work->entry, head);
1097 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1098 break;
1099 }
1100
1101 /*
1102 * If we're already inside safe list traversal and have moved
1103 * multiple works to the scheduled queue, the next position
1104 * needs to be updated.
1105 */
1106 if (nextp)
1107 *nextp = n;
1108}
1109
8864b4e5
TH
1110/**
1111 * get_pwq - get an extra reference on the specified pool_workqueue
1112 * @pwq: pool_workqueue to get
1113 *
1114 * Obtain an extra reference on @pwq. The caller should guarantee that
1115 * @pwq has positive refcnt and be holding the matching pool->lock.
1116 */
1117static void get_pwq(struct pool_workqueue *pwq)
1118{
1119 lockdep_assert_held(&pwq->pool->lock);
1120 WARN_ON_ONCE(pwq->refcnt <= 0);
1121 pwq->refcnt++;
1122}
1123
1124/**
1125 * put_pwq - put a pool_workqueue reference
1126 * @pwq: pool_workqueue to put
1127 *
1128 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1129 * destruction. The caller should be holding the matching pool->lock.
1130 */
1131static void put_pwq(struct pool_workqueue *pwq)
1132{
1133 lockdep_assert_held(&pwq->pool->lock);
1134 if (likely(--pwq->refcnt))
1135 return;
1136 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1137 return;
1138 /*
1139 * @pwq can't be released under pool->lock, bounce to
1140 * pwq_unbound_release_workfn(). This never recurses on the same
1141 * pool->lock as this path is taken only for unbound workqueues and
1142 * the release work item is scheduled on a per-cpu workqueue. To
1143 * avoid lockdep warning, unbound pool->locks are given lockdep
1144 * subclass of 1 in get_unbound_pool().
1145 */
1146 schedule_work(&pwq->unbound_release_work);
1147}
1148
dce90d47
TH
1149/**
1150 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1151 * @pwq: pool_workqueue to put (can be %NULL)
1152 *
1153 * put_pwq() with locking. This function also allows %NULL @pwq.
1154 */
1155static void put_pwq_unlocked(struct pool_workqueue *pwq)
1156{
1157 if (pwq) {
1158 /*
24acfb71 1159 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1160 * following lock operations are safe.
1161 */
a9b8a985 1162 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1163 put_pwq(pwq);
a9b8a985 1164 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1165 }
1166}
1167
f97a4a1a 1168static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1169{
112202d9 1170 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1171
1172 trace_workqueue_activate_work(work);
82607adc
TH
1173 if (list_empty(&pwq->pool->worklist))
1174 pwq->pool->watchdog_ts = jiffies;
112202d9 1175 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1176 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1177 pwq->nr_active++;
bf4ede01
TH
1178}
1179
f97a4a1a 1180static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1181{
f97a4a1a 1182 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1183 struct work_struct, entry);
1184
f97a4a1a 1185 pwq_activate_inactive_work(work);
3aa62497
LJ
1186}
1187
bf4ede01 1188/**
112202d9
TH
1189 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1190 * @pwq: pwq of interest
c4560c2c 1191 * @work_data: work_data of work which left the queue
bf4ede01
TH
1192 *
1193 * A work either has completed or is removed from pending queue,
112202d9 1194 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1195 *
1196 * CONTEXT:
a9b8a985 1197 * raw_spin_lock_irq(pool->lock).
bf4ede01 1198 */
c4560c2c 1199static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1200{
c4560c2c
LJ
1201 int color = get_work_color(work_data);
1202
018f3a13
LJ
1203 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1204 pwq->nr_active--;
1205 if (!list_empty(&pwq->inactive_works)) {
1206 /* one down, submit an inactive one */
1207 if (pwq->nr_active < pwq->max_active)
1208 pwq_activate_first_inactive(pwq);
1209 }
1210 }
1211
112202d9 1212 pwq->nr_in_flight[color]--;
bf4ede01 1213
bf4ede01 1214 /* is flush in progress and are we at the flushing tip? */
112202d9 1215 if (likely(pwq->flush_color != color))
8864b4e5 1216 goto out_put;
bf4ede01
TH
1217
1218 /* are there still in-flight works? */
112202d9 1219 if (pwq->nr_in_flight[color])
8864b4e5 1220 goto out_put;
bf4ede01 1221
112202d9
TH
1222 /* this pwq is done, clear flush_color */
1223 pwq->flush_color = -1;
bf4ede01
TH
1224
1225 /*
112202d9 1226 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1227 * will handle the rest.
1228 */
112202d9
TH
1229 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1230 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1231out_put:
1232 put_pwq(pwq);
bf4ede01
TH
1233}
1234
36e227d2 1235/**
bbb68dfa 1236 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1237 * @work: work item to steal
1238 * @is_dwork: @work is a delayed_work
bbb68dfa 1239 * @flags: place to store irq state
36e227d2
TH
1240 *
1241 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1242 * stable state - idle, on timer or on worklist.
36e227d2 1243 *
d185af30 1244 * Return:
3eb6b31b
MCC
1245 *
1246 * ======== ================================================================
36e227d2
TH
1247 * 1 if @work was pending and we successfully stole PENDING
1248 * 0 if @work was idle and we claimed PENDING
1249 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1250 * -ENOENT if someone else is canceling @work, this state may persist
1251 * for arbitrarily long
3eb6b31b 1252 * ======== ================================================================
36e227d2 1253 *
d185af30 1254 * Note:
bbb68dfa 1255 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1256 * interrupted while holding PENDING and @work off queue, irq must be
1257 * disabled on entry. This, combined with delayed_work->timer being
1258 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1259 *
1260 * On successful return, >= 0, irq is disabled and the caller is
1261 * responsible for releasing it using local_irq_restore(*@flags).
1262 *
e0aecdd8 1263 * This function is safe to call from any context including IRQ handler.
bf4ede01 1264 */
bbb68dfa
TH
1265static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1266 unsigned long *flags)
bf4ede01 1267{
d565ed63 1268 struct worker_pool *pool;
112202d9 1269 struct pool_workqueue *pwq;
bf4ede01 1270
bbb68dfa
TH
1271 local_irq_save(*flags);
1272
36e227d2
TH
1273 /* try to steal the timer if it exists */
1274 if (is_dwork) {
1275 struct delayed_work *dwork = to_delayed_work(work);
1276
e0aecdd8
TH
1277 /*
1278 * dwork->timer is irqsafe. If del_timer() fails, it's
1279 * guaranteed that the timer is not queued anywhere and not
1280 * running on the local CPU.
1281 */
36e227d2
TH
1282 if (likely(del_timer(&dwork->timer)))
1283 return 1;
1284 }
1285
1286 /* try to claim PENDING the normal way */
bf4ede01
TH
1287 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1288 return 0;
1289
24acfb71 1290 rcu_read_lock();
bf4ede01
TH
1291 /*
1292 * The queueing is in progress, or it is already queued. Try to
1293 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1294 */
d565ed63
TH
1295 pool = get_work_pool(work);
1296 if (!pool)
bbb68dfa 1297 goto fail;
bf4ede01 1298
a9b8a985 1299 raw_spin_lock(&pool->lock);
0b3dae68 1300 /*
112202d9
TH
1301 * work->data is guaranteed to point to pwq only while the work
1302 * item is queued on pwq->wq, and both updating work->data to point
1303 * to pwq on queueing and to pool on dequeueing are done under
1304 * pwq->pool->lock. This in turn guarantees that, if work->data
1305 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1306 * item is currently queued on that pool.
1307 */
112202d9
TH
1308 pwq = get_work_pwq(work);
1309 if (pwq && pwq->pool == pool) {
16062836
TH
1310 debug_work_deactivate(work);
1311
1312 /*
018f3a13
LJ
1313 * A cancelable inactive work item must be in the
1314 * pwq->inactive_works since a queued barrier can't be
1315 * canceled (see the comments in insert_wq_barrier()).
1316 *
f97a4a1a 1317 * An inactive work item cannot be grabbed directly because
d812796e 1318 * it might have linked barrier work items which, if left
f97a4a1a 1319 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1320 * management later on and cause stall. Make sure the work
1321 * item is activated before grabbing.
1322 */
f97a4a1a
LJ
1323 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1324 pwq_activate_inactive_work(work);
16062836
TH
1325
1326 list_del_init(&work->entry);
c4560c2c 1327 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1328
112202d9 1329 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1330 set_work_pool_and_keep_pending(work, pool->id);
1331
a9b8a985 1332 raw_spin_unlock(&pool->lock);
24acfb71 1333 rcu_read_unlock();
16062836 1334 return 1;
bf4ede01 1335 }
a9b8a985 1336 raw_spin_unlock(&pool->lock);
bbb68dfa 1337fail:
24acfb71 1338 rcu_read_unlock();
bbb68dfa
TH
1339 local_irq_restore(*flags);
1340 if (work_is_canceling(work))
1341 return -ENOENT;
1342 cpu_relax();
36e227d2 1343 return -EAGAIN;
bf4ede01
TH
1344}
1345
4690c4ab 1346/**
706026c2 1347 * insert_work - insert a work into a pool
112202d9 1348 * @pwq: pwq @work belongs to
4690c4ab
TH
1349 * @work: work to insert
1350 * @head: insertion point
1351 * @extra_flags: extra WORK_STRUCT_* flags to set
1352 *
112202d9 1353 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1354 * work_struct flags.
4690c4ab
TH
1355 *
1356 * CONTEXT:
a9b8a985 1357 * raw_spin_lock_irq(pool->lock).
4690c4ab 1358 */
112202d9
TH
1359static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1360 struct list_head *head, unsigned int extra_flags)
b89deed3 1361{
112202d9 1362 struct worker_pool *pool = pwq->pool;
e22bee78 1363
e89a85d6 1364 /* record the work call stack in order to print it in KASAN reports */
f70da745 1365 kasan_record_aux_stack_noalloc(work);
e89a85d6 1366
4690c4ab 1367 /* we own @work, set data and link */
112202d9 1368 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1369 list_add_tail(&work->entry, head);
8864b4e5 1370 get_pwq(pwq);
e22bee78 1371
63d95a91
TH
1372 if (__need_more_worker(pool))
1373 wake_up_worker(pool);
b89deed3
ON
1374}
1375
c8efcc25
TH
1376/*
1377 * Test whether @work is being queued from another work executing on the
8d03ecfe 1378 * same workqueue.
c8efcc25
TH
1379 */
1380static bool is_chained_work(struct workqueue_struct *wq)
1381{
8d03ecfe
TH
1382 struct worker *worker;
1383
1384 worker = current_wq_worker();
1385 /*
bf393fd4 1386 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1387 * I'm @worker, it's safe to dereference it without locking.
1388 */
112202d9 1389 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1390}
1391
ef557180
MG
1392/*
1393 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1394 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1395 * avoid perturbing sensitive tasks.
1396 */
1397static int wq_select_unbound_cpu(int cpu)
1398{
1399 int new_cpu;
1400
f303fccb
TH
1401 if (likely(!wq_debug_force_rr_cpu)) {
1402 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1403 return cpu;
a8ec5880
AF
1404 } else {
1405 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
f303fccb
TH
1406 }
1407
ef557180
MG
1408 if (cpumask_empty(wq_unbound_cpumask))
1409 return cpu;
1410
1411 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1412 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids)) {
1414 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1415 if (unlikely(new_cpu >= nr_cpu_ids))
1416 return cpu;
1417 }
1418 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1419
1420 return new_cpu;
1421}
1422
d84ff051 1423static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1424 struct work_struct *work)
1425{
112202d9 1426 struct pool_workqueue *pwq;
c9178087 1427 struct worker_pool *last_pool;
1e19ffc6 1428 struct list_head *worklist;
8a2e8e5d 1429 unsigned int work_flags;
b75cac93 1430 unsigned int req_cpu = cpu;
8930caba
TH
1431
1432 /*
1433 * While a work item is PENDING && off queue, a task trying to
1434 * steal the PENDING will busy-loop waiting for it to either get
1435 * queued or lose PENDING. Grabbing PENDING and queueing should
1436 * happen with IRQ disabled.
1437 */
8e8eb730 1438 lockdep_assert_irqs_disabled();
1da177e4 1439
1e19ffc6 1440
33e3f0a3
RC
1441 /*
1442 * For a draining wq, only works from the same workqueue are
1443 * allowed. The __WQ_DESTROYING helps to spot the issue that
1444 * queues a new work item to a wq after destroy_workqueue(wq).
1445 */
1446 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1447 WARN_ON_ONCE(!is_chained_work(wq))))
e41e704b 1448 return;
24acfb71 1449 rcu_read_lock();
9e8cd2f5 1450retry:
c9178087 1451 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1452 if (wq->flags & WQ_UNBOUND) {
1453 if (req_cpu == WORK_CPU_UNBOUND)
1454 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1455 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1456 } else {
1457 if (req_cpu == WORK_CPU_UNBOUND)
1458 cpu = raw_smp_processor_id();
1459 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1460 }
dbf2576e 1461
c9178087
TH
1462 /*
1463 * If @work was previously on a different pool, it might still be
1464 * running there, in which case the work needs to be queued on that
1465 * pool to guarantee non-reentrancy.
1466 */
1467 last_pool = get_work_pool(work);
1468 if (last_pool && last_pool != pwq->pool) {
1469 struct worker *worker;
18aa9eff 1470
a9b8a985 1471 raw_spin_lock(&last_pool->lock);
18aa9eff 1472
c9178087 1473 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1474
c9178087
TH
1475 if (worker && worker->current_pwq->wq == wq) {
1476 pwq = worker->current_pwq;
8930caba 1477 } else {
c9178087 1478 /* meh... not running there, queue here */
a9b8a985
SAS
1479 raw_spin_unlock(&last_pool->lock);
1480 raw_spin_lock(&pwq->pool->lock);
8930caba 1481 }
f3421797 1482 } else {
a9b8a985 1483 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1484 }
1485
9e8cd2f5
TH
1486 /*
1487 * pwq is determined and locked. For unbound pools, we could have
1488 * raced with pwq release and it could already be dead. If its
1489 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1490 * without another pwq replacing it in the numa_pwq_tbl or while
1491 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1492 * make forward-progress.
1493 */
1494 if (unlikely(!pwq->refcnt)) {
1495 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1496 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1497 cpu_relax();
1498 goto retry;
1499 }
1500 /* oops */
1501 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1502 wq->name, cpu);
1503 }
1504
112202d9
TH
1505 /* pwq determined, queue */
1506 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1507
24acfb71
TG
1508 if (WARN_ON(!list_empty(&work->entry)))
1509 goto out;
1e19ffc6 1510
112202d9
TH
1511 pwq->nr_in_flight[pwq->work_color]++;
1512 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1513
112202d9 1514 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1515 trace_workqueue_activate_work(work);
112202d9
TH
1516 pwq->nr_active++;
1517 worklist = &pwq->pool->worklist;
82607adc
TH
1518 if (list_empty(worklist))
1519 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d 1520 } else {
f97a4a1a
LJ
1521 work_flags |= WORK_STRUCT_INACTIVE;
1522 worklist = &pwq->inactive_works;
8a2e8e5d 1523 }
1e19ffc6 1524
0687c66b 1525 debug_work_activate(work);
112202d9 1526 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1527
24acfb71 1528out:
a9b8a985 1529 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1530 rcu_read_unlock();
1da177e4
LT
1531}
1532
0fcb78c2 1533/**
c1a220e7
ZR
1534 * queue_work_on - queue work on specific cpu
1535 * @cpu: CPU number to execute work on
0fcb78c2
REB
1536 * @wq: workqueue to use
1537 * @work: work to queue
1538 *
c1a220e7 1539 * We queue the work to a specific CPU, the caller must ensure it
443378f0
PM
1540 * can't go away. Callers that fail to ensure that the specified
1541 * CPU cannot go away will execute on a randomly chosen CPU.
d185af30
YB
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1544 */
d4283e93
TH
1545bool queue_work_on(int cpu, struct workqueue_struct *wq,
1546 struct work_struct *work)
1da177e4 1547{
d4283e93 1548 bool ret = false;
8930caba 1549 unsigned long flags;
ef1ca236 1550
8930caba 1551 local_irq_save(flags);
c1a220e7 1552
22df02bb 1553 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1554 __queue_work(cpu, wq, work);
d4283e93 1555 ret = true;
c1a220e7 1556 }
ef1ca236 1557
8930caba 1558 local_irq_restore(flags);
1da177e4
LT
1559 return ret;
1560}
ad7b1f84 1561EXPORT_SYMBOL(queue_work_on);
1da177e4 1562
8204e0c1
AD
1563/**
1564 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1565 * @node: NUMA node ID that we want to select a CPU from
1566 *
1567 * This function will attempt to find a "random" cpu available on a given
1568 * node. If there are no CPUs available on the given node it will return
1569 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1570 * available CPU if we need to schedule this work.
1571 */
1572static int workqueue_select_cpu_near(int node)
1573{
1574 int cpu;
1575
1576 /* No point in doing this if NUMA isn't enabled for workqueues */
1577 if (!wq_numa_enabled)
1578 return WORK_CPU_UNBOUND;
1579
1580 /* Delay binding to CPU if node is not valid or online */
1581 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1582 return WORK_CPU_UNBOUND;
1583
1584 /* Use local node/cpu if we are already there */
1585 cpu = raw_smp_processor_id();
1586 if (node == cpu_to_node(cpu))
1587 return cpu;
1588
1589 /* Use "random" otherwise know as "first" online CPU of node */
1590 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1591
1592 /* If CPU is valid return that, otherwise just defer */
1593 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1594}
1595
1596/**
1597 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1598 * @node: NUMA node that we are targeting the work for
1599 * @wq: workqueue to use
1600 * @work: work to queue
1601 *
1602 * We queue the work to a "random" CPU within a given NUMA node. The basic
1603 * idea here is to provide a way to somehow associate work with a given
1604 * NUMA node.
1605 *
1606 * This function will only make a best effort attempt at getting this onto
1607 * the right NUMA node. If no node is requested or the requested node is
1608 * offline then we just fall back to standard queue_work behavior.
1609 *
1610 * Currently the "random" CPU ends up being the first available CPU in the
1611 * intersection of cpu_online_mask and the cpumask of the node, unless we
1612 * are running on the node. In that case we just use the current CPU.
1613 *
1614 * Return: %false if @work was already on a queue, %true otherwise.
1615 */
1616bool queue_work_node(int node, struct workqueue_struct *wq,
1617 struct work_struct *work)
1618{
1619 unsigned long flags;
1620 bool ret = false;
1621
1622 /*
1623 * This current implementation is specific to unbound workqueues.
1624 * Specifically we only return the first available CPU for a given
1625 * node instead of cycling through individual CPUs within the node.
1626 *
1627 * If this is used with a per-cpu workqueue then the logic in
1628 * workqueue_select_cpu_near would need to be updated to allow for
1629 * some round robin type logic.
1630 */
1631 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1632
1633 local_irq_save(flags);
1634
1635 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1636 int cpu = workqueue_select_cpu_near(node);
1637
1638 __queue_work(cpu, wq, work);
1639 ret = true;
1640 }
1641
1642 local_irq_restore(flags);
1643 return ret;
1644}
1645EXPORT_SYMBOL_GPL(queue_work_node);
1646
8c20feb6 1647void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1648{
8c20feb6 1649 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1650
e0aecdd8 1651 /* should have been called from irqsafe timer with irq already off */
60c057bc 1652 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1653}
1438ade5 1654EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1655
7beb2edf
TH
1656static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1657 struct delayed_work *dwork, unsigned long delay)
1da177e4 1658{
7beb2edf
TH
1659 struct timer_list *timer = &dwork->timer;
1660 struct work_struct *work = &dwork->work;
7beb2edf 1661
637fdbae 1662 WARN_ON_ONCE(!wq);
4b243563 1663 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1664 WARN_ON_ONCE(timer_pending(timer));
1665 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1666
8852aac2
TH
1667 /*
1668 * If @delay is 0, queue @dwork->work immediately. This is for
1669 * both optimization and correctness. The earliest @timer can
1670 * expire is on the closest next tick and delayed_work users depend
1671 * on that there's no such delay when @delay is 0.
1672 */
1673 if (!delay) {
1674 __queue_work(cpu, wq, &dwork->work);
1675 return;
1676 }
1677
60c057bc 1678 dwork->wq = wq;
1265057f 1679 dwork->cpu = cpu;
7beb2edf
TH
1680 timer->expires = jiffies + delay;
1681
041bd12e
TH
1682 if (unlikely(cpu != WORK_CPU_UNBOUND))
1683 add_timer_on(timer, cpu);
1684 else
1685 add_timer(timer);
1da177e4
LT
1686}
1687
0fcb78c2
REB
1688/**
1689 * queue_delayed_work_on - queue work on specific CPU after delay
1690 * @cpu: CPU number to execute work on
1691 * @wq: workqueue to use
af9997e4 1692 * @dwork: work to queue
0fcb78c2
REB
1693 * @delay: number of jiffies to wait before queueing
1694 *
d185af30 1695 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1696 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1697 * execution.
0fcb78c2 1698 */
d4283e93
TH
1699bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1700 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1701{
52bad64d 1702 struct work_struct *work = &dwork->work;
d4283e93 1703 bool ret = false;
8930caba 1704 unsigned long flags;
7a6bc1cd 1705
8930caba
TH
1706 /* read the comment in __queue_work() */
1707 local_irq_save(flags);
7a6bc1cd 1708
22df02bb 1709 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1710 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1711 ret = true;
7a6bc1cd 1712 }
8a3e77cc 1713
8930caba 1714 local_irq_restore(flags);
7a6bc1cd
VP
1715 return ret;
1716}
ad7b1f84 1717EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1718
8376fe22
TH
1719/**
1720 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1721 * @cpu: CPU number to execute work on
1722 * @wq: workqueue to use
1723 * @dwork: work to queue
1724 * @delay: number of jiffies to wait before queueing
1725 *
1726 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1727 * modify @dwork's timer so that it expires after @delay. If @delay is
1728 * zero, @work is guaranteed to be scheduled immediately regardless of its
1729 * current state.
1730 *
d185af30 1731 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1732 * pending and its timer was modified.
1733 *
e0aecdd8 1734 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1735 * See try_to_grab_pending() for details.
1736 */
1737bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1738 struct delayed_work *dwork, unsigned long delay)
1739{
1740 unsigned long flags;
1741 int ret;
c7fc77f7 1742
8376fe22
TH
1743 do {
1744 ret = try_to_grab_pending(&dwork->work, true, &flags);
1745 } while (unlikely(ret == -EAGAIN));
63bc0362 1746
8376fe22
TH
1747 if (likely(ret >= 0)) {
1748 __queue_delayed_work(cpu, wq, dwork, delay);
1749 local_irq_restore(flags);
7a6bc1cd 1750 }
8376fe22
TH
1751
1752 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1753 return ret;
1754}
8376fe22
TH
1755EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1756
05f0fe6b
TH
1757static void rcu_work_rcufn(struct rcu_head *rcu)
1758{
1759 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1760
1761 /* read the comment in __queue_work() */
1762 local_irq_disable();
1763 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1764 local_irq_enable();
1765}
1766
1767/**
1768 * queue_rcu_work - queue work after a RCU grace period
1769 * @wq: workqueue to use
1770 * @rwork: work to queue
1771 *
1772 * Return: %false if @rwork was already pending, %true otherwise. Note
1773 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1774 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1775 * execution may happen before a full RCU grace period has passed.
1776 */
1777bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1778{
1779 struct work_struct *work = &rwork->work;
1780
1781 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1782 rwork->wq = wq;
a7e30c0e 1783 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
05f0fe6b
TH
1784 return true;
1785 }
1786
1787 return false;
1788}
1789EXPORT_SYMBOL(queue_rcu_work);
1790
c8e55f36
TH
1791/**
1792 * worker_enter_idle - enter idle state
1793 * @worker: worker which is entering idle state
1794 *
1795 * @worker is entering idle state. Update stats and idle timer if
1796 * necessary.
1797 *
1798 * LOCKING:
a9b8a985 1799 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1800 */
1801static void worker_enter_idle(struct worker *worker)
1da177e4 1802{
bd7bdd43 1803 struct worker_pool *pool = worker->pool;
c8e55f36 1804
6183c009
TH
1805 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1806 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1807 (worker->hentry.next || worker->hentry.pprev)))
1808 return;
c8e55f36 1809
051e1850 1810 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1811 worker->flags |= WORKER_IDLE;
bd7bdd43 1812 pool->nr_idle++;
e22bee78 1813 worker->last_active = jiffies;
c8e55f36
TH
1814
1815 /* idle_list is LIFO */
bd7bdd43 1816 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1817
628c78e7
TH
1818 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1819 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1820
989442d7 1821 /* Sanity check nr_running. */
bc35f7ef 1822 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
c8e55f36
TH
1823}
1824
1825/**
1826 * worker_leave_idle - leave idle state
1827 * @worker: worker which is leaving idle state
1828 *
1829 * @worker is leaving idle state. Update stats.
1830 *
1831 * LOCKING:
a9b8a985 1832 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1833 */
1834static void worker_leave_idle(struct worker *worker)
1835{
bd7bdd43 1836 struct worker_pool *pool = worker->pool;
c8e55f36 1837
6183c009
TH
1838 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1839 return;
d302f017 1840 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1841 pool->nr_idle--;
c8e55f36
TH
1842 list_del_init(&worker->entry);
1843}
1844
f7537df5 1845static struct worker *alloc_worker(int node)
c34056a3
TH
1846{
1847 struct worker *worker;
1848
f7537df5 1849 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1850 if (worker) {
1851 INIT_LIST_HEAD(&worker->entry);
affee4b2 1852 INIT_LIST_HEAD(&worker->scheduled);
da028469 1853 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1854 /* on creation a worker is in !idle && prep state */
1855 worker->flags = WORKER_PREP;
c8e55f36 1856 }
c34056a3
TH
1857 return worker;
1858}
1859
4736cbf7
LJ
1860/**
1861 * worker_attach_to_pool() - attach a worker to a pool
1862 * @worker: worker to be attached
1863 * @pool: the target pool
1864 *
1865 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1866 * cpu-binding of @worker are kept coordinated with the pool across
1867 * cpu-[un]hotplugs.
1868 */
1869static void worker_attach_to_pool(struct worker *worker,
1870 struct worker_pool *pool)
1871{
1258fae7 1872 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1873
4736cbf7 1874 /*
1258fae7
TH
1875 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1876 * stable across this function. See the comments above the flag
1877 * definition for details.
4736cbf7
LJ
1878 */
1879 if (pool->flags & POOL_DISASSOCIATED)
1880 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
1881 else
1882 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 1883
640f17c8
PZ
1884 if (worker->rescue_wq)
1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886
4736cbf7 1887 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1888 worker->pool = pool;
4736cbf7 1889
1258fae7 1890 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1891}
1892
60f5a4bc
LJ
1893/**
1894 * worker_detach_from_pool() - detach a worker from its pool
1895 * @worker: worker which is attached to its pool
60f5a4bc 1896 *
4736cbf7
LJ
1897 * Undo the attaching which had been done in worker_attach_to_pool(). The
1898 * caller worker shouldn't access to the pool after detached except it has
1899 * other reference to the pool.
60f5a4bc 1900 */
a2d812a2 1901static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1902{
a2d812a2 1903 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1904 struct completion *detach_completion = NULL;
1905
1258fae7 1906 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1907
5c25b5ff 1908 kthread_set_per_cpu(worker->task, -1);
da028469 1909 list_del(&worker->node);
a2d812a2
TH
1910 worker->pool = NULL;
1911
e02b9312 1912 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
60f5a4bc 1913 detach_completion = pool->detach_completion;
1258fae7 1914 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1915
b62c0751
LJ
1916 /* clear leftover flags without pool->lock after it is detached */
1917 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1918
60f5a4bc
LJ
1919 if (detach_completion)
1920 complete(detach_completion);
1921}
1922
c34056a3
TH
1923/**
1924 * create_worker - create a new workqueue worker
63d95a91 1925 * @pool: pool the new worker will belong to
c34056a3 1926 *
051e1850 1927 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1928 *
1929 * CONTEXT:
1930 * Might sleep. Does GFP_KERNEL allocations.
1931 *
d185af30 1932 * Return:
c34056a3
TH
1933 * Pointer to the newly created worker.
1934 */
bc2ae0f5 1935static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1936{
e441b56f
ZL
1937 struct worker *worker;
1938 int id;
e3c916a4 1939 char id_buf[16];
c34056a3 1940
7cda9aae 1941 /* ID is needed to determine kthread name */
e441b56f 1942 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
3f0ea0b8
PM
1943 if (id < 0) {
1944 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
1945 ERR_PTR(id));
e441b56f 1946 return NULL;
3f0ea0b8 1947 }
c34056a3 1948
f7537df5 1949 worker = alloc_worker(pool->node);
3f0ea0b8
PM
1950 if (!worker) {
1951 pr_err_once("workqueue: Failed to allocate a worker\n");
c34056a3 1952 goto fail;
3f0ea0b8 1953 }
c34056a3 1954
c34056a3
TH
1955 worker->id = id;
1956
29c91e99 1957 if (pool->cpu >= 0)
e3c916a4
TH
1958 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1959 pool->attrs->nice < 0 ? "H" : "");
f3421797 1960 else
e3c916a4
TH
1961 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1962
f3f90ad4 1963 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1964 "kworker/%s", id_buf);
3f0ea0b8 1965 if (IS_ERR(worker->task)) {
60f54038
PM
1966 if (PTR_ERR(worker->task) == -EINTR) {
1967 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
1968 id_buf);
1969 } else {
1970 pr_err_once("workqueue: Failed to create a worker thread: %pe",
1971 worker->task);
1972 }
c34056a3 1973 goto fail;
3f0ea0b8 1974 }
c34056a3 1975
91151228 1976 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1977 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1978
da028469 1979 /* successful, attach the worker to the pool */
4736cbf7 1980 worker_attach_to_pool(worker, pool);
822d8405 1981
051e1850 1982 /* start the newly created worker */
a9b8a985 1983 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1984 worker->pool->nr_workers++;
1985 worker_enter_idle(worker);
1986 wake_up_process(worker->task);
a9b8a985 1987 raw_spin_unlock_irq(&pool->lock);
051e1850 1988
c34056a3 1989 return worker;
822d8405 1990
c34056a3 1991fail:
e441b56f 1992 ida_free(&pool->worker_ida, id);
c34056a3
TH
1993 kfree(worker);
1994 return NULL;
1995}
1996
793777bc
VS
1997static void unbind_worker(struct worker *worker)
1998{
1999 lockdep_assert_held(&wq_pool_attach_mutex);
2000
2001 kthread_set_per_cpu(worker->task, -1);
2002 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2003 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2004 else
2005 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2006}
2007
e02b9312
VS
2008static void wake_dying_workers(struct list_head *cull_list)
2009{
2010 struct worker *worker, *tmp;
2011
2012 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2013 list_del_init(&worker->entry);
2014 unbind_worker(worker);
2015 /*
2016 * If the worker was somehow already running, then it had to be
2017 * in pool->idle_list when set_worker_dying() happened or we
2018 * wouldn't have gotten here.
2019 *
2020 * Thus, the worker must either have observed the WORKER_DIE
2021 * flag, or have set its state to TASK_IDLE. Either way, the
2022 * below will be observed by the worker and is safe to do
2023 * outside of pool->lock.
2024 */
2025 wake_up_process(worker->task);
2026 }
2027}
2028
c34056a3 2029/**
e02b9312 2030 * set_worker_dying - Tag a worker for destruction
c34056a3 2031 * @worker: worker to be destroyed
e02b9312 2032 * @list: transfer worker away from its pool->idle_list and into list
c34056a3 2033 *
e02b9312
VS
2034 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2035 * should be idle.
c8e55f36
TH
2036 *
2037 * CONTEXT:
a9b8a985 2038 * raw_spin_lock_irq(pool->lock).
c34056a3 2039 */
e02b9312 2040static void set_worker_dying(struct worker *worker, struct list_head *list)
c34056a3 2041{
bd7bdd43 2042 struct worker_pool *pool = worker->pool;
c34056a3 2043
cd549687 2044 lockdep_assert_held(&pool->lock);
e02b9312 2045 lockdep_assert_held(&wq_pool_attach_mutex);
cd549687 2046
c34056a3 2047 /* sanity check frenzy */
6183c009 2048 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2049 WARN_ON(!list_empty(&worker->scheduled)) ||
2050 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2051 return;
c34056a3 2052
73eb7fe7
LJ
2053 pool->nr_workers--;
2054 pool->nr_idle--;
5bdfff96 2055
cb444766 2056 worker->flags |= WORKER_DIE;
e02b9312
VS
2057
2058 list_move(&worker->entry, list);
2059 list_move(&worker->node, &pool->dying_workers);
c34056a3
TH
2060}
2061
3f959aa3
VS
2062/**
2063 * idle_worker_timeout - check if some idle workers can now be deleted.
2064 * @t: The pool's idle_timer that just expired
2065 *
2066 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2067 * worker_leave_idle(), as a worker flicking between idle and active while its
2068 * pool is at the too_many_workers() tipping point would cause too much timer
2069 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2070 * it expire and re-evaluate things from there.
2071 */
32a6c723 2072static void idle_worker_timeout(struct timer_list *t)
e22bee78 2073{
32a6c723 2074 struct worker_pool *pool = from_timer(pool, t, idle_timer);
3f959aa3
VS
2075 bool do_cull = false;
2076
2077 if (work_pending(&pool->idle_cull_work))
2078 return;
e22bee78 2079
a9b8a985 2080 raw_spin_lock_irq(&pool->lock);
e22bee78 2081
3f959aa3 2082 if (too_many_workers(pool)) {
e22bee78
TH
2083 struct worker *worker;
2084 unsigned long expires;
2085
2086 /* idle_list is kept in LIFO order, check the last one */
3f959aa3
VS
2087 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2088 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2089 do_cull = !time_before(jiffies, expires);
2090
2091 if (!do_cull)
2092 mod_timer(&pool->idle_timer, expires);
2093 }
2094 raw_spin_unlock_irq(&pool->lock);
2095
2096 if (do_cull)
2097 queue_work(system_unbound_wq, &pool->idle_cull_work);
2098}
2099
2100/**
2101 * idle_cull_fn - cull workers that have been idle for too long.
2102 * @work: the pool's work for handling these idle workers
2103 *
2104 * This goes through a pool's idle workers and gets rid of those that have been
2105 * idle for at least IDLE_WORKER_TIMEOUT seconds.
e02b9312
VS
2106 *
2107 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2108 * culled, so this also resets worker affinity. This requires a sleepable
2109 * context, hence the split between timer callback and work item.
3f959aa3
VS
2110 */
2111static void idle_cull_fn(struct work_struct *work)
2112{
2113 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
e02b9312 2114 struct list_head cull_list;
3f959aa3 2115
e02b9312
VS
2116 INIT_LIST_HEAD(&cull_list);
2117 /*
2118 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2119 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2120 * path. This is required as a previously-preempted worker could run after
2121 * set_worker_dying() has happened but before wake_dying_workers() did.
2122 */
2123 mutex_lock(&wq_pool_attach_mutex);
3f959aa3
VS
2124 raw_spin_lock_irq(&pool->lock);
2125
2126 while (too_many_workers(pool)) {
2127 struct worker *worker;
2128 unsigned long expires;
2129
63d95a91 2130 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2131 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2132
3347fc9f 2133 if (time_before(jiffies, expires)) {
63d95a91 2134 mod_timer(&pool->idle_timer, expires);
3347fc9f 2135 break;
d5abe669 2136 }
3347fc9f 2137
e02b9312 2138 set_worker_dying(worker, &cull_list);
e22bee78
TH
2139 }
2140
a9b8a985 2141 raw_spin_unlock_irq(&pool->lock);
e02b9312
VS
2142 wake_dying_workers(&cull_list);
2143 mutex_unlock(&wq_pool_attach_mutex);
e22bee78 2144}
d5abe669 2145
493a1724 2146static void send_mayday(struct work_struct *work)
e22bee78 2147{
112202d9
TH
2148 struct pool_workqueue *pwq = get_work_pwq(work);
2149 struct workqueue_struct *wq = pwq->wq;
493a1724 2150
2e109a28 2151 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2152
493008a8 2153 if (!wq->rescuer)
493a1724 2154 return;
e22bee78
TH
2155
2156 /* mayday mayday mayday */
493a1724 2157 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2158 /*
2159 * If @pwq is for an unbound wq, its base ref may be put at
2160 * any time due to an attribute change. Pin @pwq until the
2161 * rescuer is done with it.
2162 */
2163 get_pwq(pwq);
493a1724 2164 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2165 wake_up_process(wq->rescuer->task);
493a1724 2166 }
e22bee78
TH
2167}
2168
32a6c723 2169static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2170{
32a6c723 2171 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2172 struct work_struct *work;
2173
a9b8a985
SAS
2174 raw_spin_lock_irq(&pool->lock);
2175 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2176
63d95a91 2177 if (need_to_create_worker(pool)) {
e22bee78
TH
2178 /*
2179 * We've been trying to create a new worker but
2180 * haven't been successful. We might be hitting an
2181 * allocation deadlock. Send distress signals to
2182 * rescuers.
2183 */
63d95a91 2184 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2185 send_mayday(work);
1da177e4 2186 }
e22bee78 2187
a9b8a985
SAS
2188 raw_spin_unlock(&wq_mayday_lock);
2189 raw_spin_unlock_irq(&pool->lock);
e22bee78 2190
63d95a91 2191 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2192}
2193
e22bee78
TH
2194/**
2195 * maybe_create_worker - create a new worker if necessary
63d95a91 2196 * @pool: pool to create a new worker for
e22bee78 2197 *
63d95a91 2198 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2199 * have at least one idle worker on return from this function. If
2200 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2201 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2202 * possible allocation deadlock.
2203 *
c5aa87bb
TH
2204 * On return, need_to_create_worker() is guaranteed to be %false and
2205 * may_start_working() %true.
e22bee78
TH
2206 *
2207 * LOCKING:
a9b8a985 2208 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2209 * multiple times. Does GFP_KERNEL allocations. Called only from
2210 * manager.
e22bee78 2211 */
29187a9e 2212static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2213__releases(&pool->lock)
2214__acquires(&pool->lock)
1da177e4 2215{
e22bee78 2216restart:
a9b8a985 2217 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2218
e22bee78 2219 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2220 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2221
2222 while (true) {
051e1850 2223 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2224 break;
1da177e4 2225
e212f361 2226 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2227
63d95a91 2228 if (!need_to_create_worker(pool))
e22bee78
TH
2229 break;
2230 }
2231
63d95a91 2232 del_timer_sync(&pool->mayday_timer);
a9b8a985 2233 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2234 /*
2235 * This is necessary even after a new worker was just successfully
2236 * created as @pool->lock was dropped and the new worker might have
2237 * already become busy.
2238 */
63d95a91 2239 if (need_to_create_worker(pool))
e22bee78 2240 goto restart;
e22bee78
TH
2241}
2242
73f53c4a 2243/**
e22bee78
TH
2244 * manage_workers - manage worker pool
2245 * @worker: self
73f53c4a 2246 *
706026c2 2247 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2248 * to. At any given time, there can be only zero or one manager per
706026c2 2249 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2250 *
2251 * The caller can safely start processing works on false return. On
2252 * true return, it's guaranteed that need_to_create_worker() is false
2253 * and may_start_working() is true.
73f53c4a
TH
2254 *
2255 * CONTEXT:
a9b8a985 2256 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2257 * multiple times. Does GFP_KERNEL allocations.
2258 *
d185af30 2259 * Return:
29187a9e
TH
2260 * %false if the pool doesn't need management and the caller can safely
2261 * start processing works, %true if management function was performed and
2262 * the conditions that the caller verified before calling the function may
2263 * no longer be true.
73f53c4a 2264 */
e22bee78 2265static bool manage_workers(struct worker *worker)
73f53c4a 2266{
63d95a91 2267 struct worker_pool *pool = worker->pool;
73f53c4a 2268
692b4825 2269 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2270 return false;
692b4825
TH
2271
2272 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2273 pool->manager = worker;
1e19ffc6 2274
29187a9e 2275 maybe_create_worker(pool);
e22bee78 2276
2607d7a6 2277 pool->manager = NULL;
692b4825 2278 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2279 rcuwait_wake_up(&manager_wait);
29187a9e 2280 return true;
73f53c4a
TH
2281}
2282
a62428c0
TH
2283/**
2284 * process_one_work - process single work
c34056a3 2285 * @worker: self
a62428c0
TH
2286 * @work: work to process
2287 *
2288 * Process @work. This function contains all the logics necessary to
2289 * process a single work including synchronization against and
2290 * interaction with other workers on the same cpu, queueing and
2291 * flushing. As long as context requirement is met, any worker can
2292 * call this function to process a work.
2293 *
2294 * CONTEXT:
a9b8a985 2295 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2296 */
c34056a3 2297static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2298__releases(&pool->lock)
2299__acquires(&pool->lock)
a62428c0 2300{
112202d9 2301 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2302 struct worker_pool *pool = worker->pool;
112202d9 2303 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
c4560c2c 2304 unsigned long work_data;
7e11629d 2305 struct worker *collision;
a62428c0
TH
2306#ifdef CONFIG_LOCKDEP
2307 /*
2308 * It is permissible to free the struct work_struct from
2309 * inside the function that is called from it, this we need to
2310 * take into account for lockdep too. To avoid bogus "held
2311 * lock freed" warnings as well as problems when looking into
2312 * work->lockdep_map, make a copy and use that here.
2313 */
4d82a1de
PZ
2314 struct lockdep_map lockdep_map;
2315
2316 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2317#endif
807407c0 2318 /* ensure we're on the correct CPU */
85327af6 2319 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2320 raw_smp_processor_id() != pool->cpu);
25511a47 2321
7e11629d
TH
2322 /*
2323 * A single work shouldn't be executed concurrently by
2324 * multiple workers on a single cpu. Check whether anyone is
2325 * already processing the work. If so, defer the work to the
2326 * currently executing one.
2327 */
c9e7cf27 2328 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2329 if (unlikely(collision)) {
2330 move_linked_works(work, &collision->scheduled, NULL);
2331 return;
2332 }
2333
8930caba 2334 /* claim and dequeue */
a62428c0 2335 debug_work_deactivate(work);
c9e7cf27 2336 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2337 worker->current_work = work;
a2c1c57b 2338 worker->current_func = work->func;
112202d9 2339 worker->current_pwq = pwq;
c4560c2c 2340 work_data = *work_data_bits(work);
d812796e 2341 worker->current_color = get_work_color(work_data);
7a22ad75 2342
8bf89593
TH
2343 /*
2344 * Record wq name for cmdline and debug reporting, may get
2345 * overridden through set_worker_desc().
2346 */
2347 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2348
a62428c0
TH
2349 list_del_init(&work->entry);
2350
fb0e7beb 2351 /*
228f1d00
LJ
2352 * CPU intensive works don't participate in concurrency management.
2353 * They're the scheduler's responsibility. This takes @worker out
2354 * of concurrency management and the next code block will chain
2355 * execution of the pending work items.
fb0e7beb
TH
2356 */
2357 if (unlikely(cpu_intensive))
228f1d00 2358 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2359
974271c4 2360 /*
a489a03e
LJ
2361 * Wake up another worker if necessary. The condition is always
2362 * false for normal per-cpu workers since nr_running would always
2363 * be >= 1 at this point. This is used to chain execution of the
2364 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2365 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2366 */
a489a03e 2367 if (need_more_worker(pool))
63d95a91 2368 wake_up_worker(pool);
974271c4 2369
8930caba 2370 /*
7c3eed5c 2371 * Record the last pool and clear PENDING which should be the last
d565ed63 2372 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2373 * PENDING and queued state changes happen together while IRQ is
2374 * disabled.
8930caba 2375 */
7c3eed5c 2376 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2377
a9b8a985 2378 raw_spin_unlock_irq(&pool->lock);
a62428c0 2379
a1d14934 2380 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2381 lock_map_acquire(&lockdep_map);
e6f3faa7 2382 /*
f52be570
PZ
2383 * Strictly speaking we should mark the invariant state without holding
2384 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2385 *
2386 * However, that would result in:
2387 *
2388 * A(W1)
2389 * WFC(C)
2390 * A(W1)
2391 * C(C)
2392 *
2393 * Which would create W1->C->W1 dependencies, even though there is no
2394 * actual deadlock possible. There are two solutions, using a
2395 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2396 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2397 * these locks.
2398 *
2399 * AFAICT there is no possible deadlock scenario between the
2400 * flush_work() and complete() primitives (except for single-threaded
2401 * workqueues), so hiding them isn't a problem.
2402 */
f52be570 2403 lockdep_invariant_state(true);
e36c886a 2404 trace_workqueue_execute_start(work);
a2c1c57b 2405 worker->current_func(work);
e36c886a
AV
2406 /*
2407 * While we must be careful to not use "work" after this, the trace
2408 * point will only record its address.
2409 */
1c5da0ec 2410 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2411 lock_map_release(&lockdep_map);
112202d9 2412 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2413
2414 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2415 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2416 " last function: %ps\n",
a2c1c57b
TH
2417 current->comm, preempt_count(), task_pid_nr(current),
2418 worker->current_func);
a62428c0
TH
2419 debug_show_held_locks(current);
2420 dump_stack();
2421 }
2422
b22ce278 2423 /*
025f50f3 2424 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2425 * kernels, where a requeueing work item waiting for something to
2426 * happen could deadlock with stop_machine as such work item could
2427 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2428 * stop_machine. At the same time, report a quiescent RCU state so
2429 * the same condition doesn't freeze RCU.
b22ce278 2430 */
a7e6425e 2431 cond_resched();
b22ce278 2432
a9b8a985 2433 raw_spin_lock_irq(&pool->lock);
a62428c0 2434
fb0e7beb
TH
2435 /* clear cpu intensive status */
2436 if (unlikely(cpu_intensive))
2437 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2438
1b69ac6b
JW
2439 /* tag the worker for identification in schedule() */
2440 worker->last_func = worker->current_func;
2441
a62428c0 2442 /* we're done with it, release */
42f8570f 2443 hash_del(&worker->hentry);
c34056a3 2444 worker->current_work = NULL;
a2c1c57b 2445 worker->current_func = NULL;
112202d9 2446 worker->current_pwq = NULL;
d812796e 2447 worker->current_color = INT_MAX;
c4560c2c 2448 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2449}
2450
affee4b2
TH
2451/**
2452 * process_scheduled_works - process scheduled works
2453 * @worker: self
2454 *
2455 * Process all scheduled works. Please note that the scheduled list
2456 * may change while processing a work, so this function repeatedly
2457 * fetches a work from the top and executes it.
2458 *
2459 * CONTEXT:
a9b8a985 2460 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2461 * multiple times.
2462 */
2463static void process_scheduled_works(struct worker *worker)
1da177e4 2464{
affee4b2
TH
2465 while (!list_empty(&worker->scheduled)) {
2466 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2467 struct work_struct, entry);
c34056a3 2468 process_one_work(worker, work);
1da177e4 2469 }
1da177e4
LT
2470}
2471
197f6acc
TH
2472static void set_pf_worker(bool val)
2473{
2474 mutex_lock(&wq_pool_attach_mutex);
2475 if (val)
2476 current->flags |= PF_WQ_WORKER;
2477 else
2478 current->flags &= ~PF_WQ_WORKER;
2479 mutex_unlock(&wq_pool_attach_mutex);
2480}
2481
4690c4ab
TH
2482/**
2483 * worker_thread - the worker thread function
c34056a3 2484 * @__worker: self
4690c4ab 2485 *
c5aa87bb
TH
2486 * The worker thread function. All workers belong to a worker_pool -
2487 * either a per-cpu one or dynamic unbound one. These workers process all
2488 * work items regardless of their specific target workqueue. The only
2489 * exception is work items which belong to workqueues with a rescuer which
2490 * will be explained in rescuer_thread().
d185af30
YB
2491 *
2492 * Return: 0
4690c4ab 2493 */
c34056a3 2494static int worker_thread(void *__worker)
1da177e4 2495{
c34056a3 2496 struct worker *worker = __worker;
bd7bdd43 2497 struct worker_pool *pool = worker->pool;
1da177e4 2498
e22bee78 2499 /* tell the scheduler that this is a workqueue worker */
197f6acc 2500 set_pf_worker(true);
c8e55f36 2501woke_up:
a9b8a985 2502 raw_spin_lock_irq(&pool->lock);
1da177e4 2503
a9ab775b
TH
2504 /* am I supposed to die? */
2505 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2506 raw_spin_unlock_irq(&pool->lock);
197f6acc 2507 set_pf_worker(false);
60f5a4bc
LJ
2508
2509 set_task_comm(worker->task, "kworker/dying");
e441b56f 2510 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2511 worker_detach_from_pool(worker);
e02b9312 2512 WARN_ON_ONCE(!list_empty(&worker->entry));
60f5a4bc 2513 kfree(worker);
a9ab775b 2514 return 0;
c8e55f36 2515 }
affee4b2 2516
c8e55f36 2517 worker_leave_idle(worker);
db7bccf4 2518recheck:
e22bee78 2519 /* no more worker necessary? */
63d95a91 2520 if (!need_more_worker(pool))
e22bee78
TH
2521 goto sleep;
2522
2523 /* do we need to manage? */
63d95a91 2524 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2525 goto recheck;
2526
c8e55f36
TH
2527 /*
2528 * ->scheduled list can only be filled while a worker is
2529 * preparing to process a work or actually processing it.
2530 * Make sure nobody diddled with it while I was sleeping.
2531 */
6183c009 2532 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2533
e22bee78 2534 /*
a9ab775b
TH
2535 * Finish PREP stage. We're guaranteed to have at least one idle
2536 * worker or that someone else has already assumed the manager
2537 * role. This is where @worker starts participating in concurrency
2538 * management if applicable and concurrency management is restored
2539 * after being rebound. See rebind_workers() for details.
e22bee78 2540 */
a9ab775b 2541 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2542
2543 do {
c8e55f36 2544 struct work_struct *work =
bd7bdd43 2545 list_first_entry(&pool->worklist,
c8e55f36
TH
2546 struct work_struct, entry);
2547
82607adc
TH
2548 pool->watchdog_ts = jiffies;
2549
c8e55f36
TH
2550 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2551 /* optimization path, not strictly necessary */
2552 process_one_work(worker, work);
2553 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2554 process_scheduled_works(worker);
c8e55f36
TH
2555 } else {
2556 move_linked_works(work, &worker->scheduled, NULL);
2557 process_scheduled_works(worker);
affee4b2 2558 }
63d95a91 2559 } while (keep_working(pool));
e22bee78 2560
228f1d00 2561 worker_set_flags(worker, WORKER_PREP);
d313dd85 2562sleep:
c8e55f36 2563 /*
d565ed63
TH
2564 * pool->lock is held and there's no work to process and no need to
2565 * manage, sleep. Workers are woken up only while holding
2566 * pool->lock or from local cpu, so setting the current state
2567 * before releasing pool->lock is enough to prevent losing any
2568 * event.
c8e55f36
TH
2569 */
2570 worker_enter_idle(worker);
c5a94a61 2571 __set_current_state(TASK_IDLE);
a9b8a985 2572 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2573 schedule();
2574 goto woke_up;
1da177e4
LT
2575}
2576
e22bee78
TH
2577/**
2578 * rescuer_thread - the rescuer thread function
111c225a 2579 * @__rescuer: self
e22bee78
TH
2580 *
2581 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2582 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2583 *
706026c2 2584 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2585 * worker which uses GFP_KERNEL allocation which has slight chance of
2586 * developing into deadlock if some works currently on the same queue
2587 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2588 * the problem rescuer solves.
2589 *
706026c2
TH
2590 * When such condition is possible, the pool summons rescuers of all
2591 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2592 * those works so that forward progress can be guaranteed.
2593 *
2594 * This should happen rarely.
d185af30
YB
2595 *
2596 * Return: 0
e22bee78 2597 */
111c225a 2598static int rescuer_thread(void *__rescuer)
e22bee78 2599{
111c225a
TH
2600 struct worker *rescuer = __rescuer;
2601 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2602 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2603 bool should_stop;
e22bee78
TH
2604
2605 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2606
2607 /*
2608 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2609 * doesn't participate in concurrency management.
2610 */
197f6acc 2611 set_pf_worker(true);
e22bee78 2612repeat:
c5a94a61 2613 set_current_state(TASK_IDLE);
e22bee78 2614
4d595b86
LJ
2615 /*
2616 * By the time the rescuer is requested to stop, the workqueue
2617 * shouldn't have any work pending, but @wq->maydays may still have
2618 * pwq(s) queued. This can happen by non-rescuer workers consuming
2619 * all the work items before the rescuer got to them. Go through
2620 * @wq->maydays processing before acting on should_stop so that the
2621 * list is always empty on exit.
2622 */
2623 should_stop = kthread_should_stop();
e22bee78 2624
493a1724 2625 /* see whether any pwq is asking for help */
a9b8a985 2626 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2627
2628 while (!list_empty(&wq->maydays)) {
2629 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2630 struct pool_workqueue, mayday_node);
112202d9 2631 struct worker_pool *pool = pwq->pool;
e22bee78 2632 struct work_struct *work, *n;
82607adc 2633 bool first = true;
e22bee78
TH
2634
2635 __set_current_state(TASK_RUNNING);
493a1724
TH
2636 list_del_init(&pwq->mayday_node);
2637
a9b8a985 2638 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2639
51697d39
LJ
2640 worker_attach_to_pool(rescuer, pool);
2641
a9b8a985 2642 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2643
2644 /*
2645 * Slurp in all works issued via this workqueue and
2646 * process'em.
2647 */
0479c8c5 2648 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2649 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2650 if (get_work_pwq(work) == pwq) {
2651 if (first)
2652 pool->watchdog_ts = jiffies;
e22bee78 2653 move_linked_works(work, scheduled, &n);
82607adc
TH
2654 }
2655 first = false;
2656 }
e22bee78 2657
008847f6
N
2658 if (!list_empty(scheduled)) {
2659 process_scheduled_works(rescuer);
2660
2661 /*
2662 * The above execution of rescued work items could
2663 * have created more to rescue through
f97a4a1a 2664 * pwq_activate_first_inactive() or chained
008847f6
N
2665 * queueing. Let's put @pwq back on mayday list so
2666 * that such back-to-back work items, which may be
2667 * being used to relieve memory pressure, don't
2668 * incur MAYDAY_INTERVAL delay inbetween.
2669 */
4f3f4cf3 2670 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2671 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2672 /*
2673 * Queue iff we aren't racing destruction
2674 * and somebody else hasn't queued it already.
2675 */
2676 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2677 get_pwq(pwq);
2678 list_add_tail(&pwq->mayday_node, &wq->maydays);
2679 }
a9b8a985 2680 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2681 }
2682 }
7576958a 2683
77668c8b
LJ
2684 /*
2685 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2686 * go away while we're still attached to it.
77668c8b
LJ
2687 */
2688 put_pwq(pwq);
2689
7576958a 2690 /*
d8ca83e6 2691 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2692 * regular worker; otherwise, we end up with 0 concurrency
2693 * and stalling the execution.
2694 */
d8ca83e6 2695 if (need_more_worker(pool))
63d95a91 2696 wake_up_worker(pool);
7576958a 2697
a9b8a985 2698 raw_spin_unlock_irq(&pool->lock);
13b1d625 2699
a2d812a2 2700 worker_detach_from_pool(rescuer);
13b1d625 2701
a9b8a985 2702 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2703 }
2704
a9b8a985 2705 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2706
4d595b86
LJ
2707 if (should_stop) {
2708 __set_current_state(TASK_RUNNING);
197f6acc 2709 set_pf_worker(false);
4d595b86
LJ
2710 return 0;
2711 }
2712
111c225a
TH
2713 /* rescuers should never participate in concurrency management */
2714 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2715 schedule();
2716 goto repeat;
1da177e4
LT
2717}
2718
fca839c0
TH
2719/**
2720 * check_flush_dependency - check for flush dependency sanity
2721 * @target_wq: workqueue being flushed
2722 * @target_work: work item being flushed (NULL for workqueue flushes)
2723 *
2724 * %current is trying to flush the whole @target_wq or @target_work on it.
2725 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2726 * reclaiming memory or running on a workqueue which doesn't have
2727 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2728 * a deadlock.
2729 */
2730static void check_flush_dependency(struct workqueue_struct *target_wq,
2731 struct work_struct *target_work)
2732{
2733 work_func_t target_func = target_work ? target_work->func : NULL;
2734 struct worker *worker;
2735
2736 if (target_wq->flags & WQ_MEM_RECLAIM)
2737 return;
2738
2739 worker = current_wq_worker();
2740
2741 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2742 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2743 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2744 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2745 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2746 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2747 worker->current_pwq->wq->name, worker->current_func,
2748 target_wq->name, target_func);
2749}
2750
fc2e4d70
ON
2751struct wq_barrier {
2752 struct work_struct work;
2753 struct completion done;
2607d7a6 2754 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2755};
2756
2757static void wq_barrier_func(struct work_struct *work)
2758{
2759 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2760 complete(&barr->done);
2761}
2762
4690c4ab
TH
2763/**
2764 * insert_wq_barrier - insert a barrier work
112202d9 2765 * @pwq: pwq to insert barrier into
4690c4ab 2766 * @barr: wq_barrier to insert
affee4b2
TH
2767 * @target: target work to attach @barr to
2768 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2769 *
affee4b2
TH
2770 * @barr is linked to @target such that @barr is completed only after
2771 * @target finishes execution. Please note that the ordering
2772 * guarantee is observed only with respect to @target and on the local
2773 * cpu.
2774 *
2775 * Currently, a queued barrier can't be canceled. This is because
2776 * try_to_grab_pending() can't determine whether the work to be
2777 * grabbed is at the head of the queue and thus can't clear LINKED
2778 * flag of the previous work while there must be a valid next work
2779 * after a work with LINKED flag set.
2780 *
2781 * Note that when @worker is non-NULL, @target may be modified
112202d9 2782 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2783 *
2784 * CONTEXT:
a9b8a985 2785 * raw_spin_lock_irq(pool->lock).
4690c4ab 2786 */
112202d9 2787static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2788 struct wq_barrier *barr,
2789 struct work_struct *target, struct worker *worker)
fc2e4d70 2790{
d812796e
LJ
2791 unsigned int work_flags = 0;
2792 unsigned int work_color;
affee4b2 2793 struct list_head *head;
affee4b2 2794
dc186ad7 2795 /*
d565ed63 2796 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2797 * as we know for sure that this will not trigger any of the
2798 * checks and call back into the fixup functions where we
2799 * might deadlock.
2800 */
ca1cab37 2801 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2802 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2803
fd1a5b04
BP
2804 init_completion_map(&barr->done, &target->lockdep_map);
2805
2607d7a6 2806 barr->task = current;
83c22520 2807
018f3a13
LJ
2808 /* The barrier work item does not participate in pwq->nr_active. */
2809 work_flags |= WORK_STRUCT_INACTIVE;
2810
affee4b2
TH
2811 /*
2812 * If @target is currently being executed, schedule the
2813 * barrier to the worker; otherwise, put it after @target.
2814 */
d812796e 2815 if (worker) {
affee4b2 2816 head = worker->scheduled.next;
d812796e
LJ
2817 work_color = worker->current_color;
2818 } else {
affee4b2
TH
2819 unsigned long *bits = work_data_bits(target);
2820
2821 head = target->entry.next;
2822 /* there can already be other linked works, inherit and set */
d21cece0 2823 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2824 work_color = get_work_color(*bits);
affee4b2
TH
2825 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2826 }
2827
d812796e
LJ
2828 pwq->nr_in_flight[work_color]++;
2829 work_flags |= work_color_to_flags(work_color);
2830
dc186ad7 2831 debug_work_activate(&barr->work);
d21cece0 2832 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2833}
2834
73f53c4a 2835/**
112202d9 2836 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2837 * @wq: workqueue being flushed
2838 * @flush_color: new flush color, < 0 for no-op
2839 * @work_color: new work color, < 0 for no-op
2840 *
112202d9 2841 * Prepare pwqs for workqueue flushing.
73f53c4a 2842 *
112202d9
TH
2843 * If @flush_color is non-negative, flush_color on all pwqs should be
2844 * -1. If no pwq has in-flight commands at the specified color, all
2845 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2846 * has in flight commands, its pwq->flush_color is set to
2847 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2848 * wakeup logic is armed and %true is returned.
2849 *
2850 * The caller should have initialized @wq->first_flusher prior to
2851 * calling this function with non-negative @flush_color. If
2852 * @flush_color is negative, no flush color update is done and %false
2853 * is returned.
2854 *
112202d9 2855 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2856 * work_color which is previous to @work_color and all will be
2857 * advanced to @work_color.
2858 *
2859 * CONTEXT:
3c25a55d 2860 * mutex_lock(wq->mutex).
73f53c4a 2861 *
d185af30 2862 * Return:
73f53c4a
TH
2863 * %true if @flush_color >= 0 and there's something to flush. %false
2864 * otherwise.
2865 */
112202d9 2866static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2867 int flush_color, int work_color)
1da177e4 2868{
73f53c4a 2869 bool wait = false;
49e3cf44 2870 struct pool_workqueue *pwq;
1da177e4 2871
73f53c4a 2872 if (flush_color >= 0) {
6183c009 2873 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2874 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2875 }
2355b70f 2876
49e3cf44 2877 for_each_pwq(pwq, wq) {
112202d9 2878 struct worker_pool *pool = pwq->pool;
fc2e4d70 2879
a9b8a985 2880 raw_spin_lock_irq(&pool->lock);
83c22520 2881
73f53c4a 2882 if (flush_color >= 0) {
6183c009 2883 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2884
112202d9
TH
2885 if (pwq->nr_in_flight[flush_color]) {
2886 pwq->flush_color = flush_color;
2887 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2888 wait = true;
2889 }
2890 }
1da177e4 2891
73f53c4a 2892 if (work_color >= 0) {
6183c009 2893 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2894 pwq->work_color = work_color;
73f53c4a 2895 }
1da177e4 2896
a9b8a985 2897 raw_spin_unlock_irq(&pool->lock);
1da177e4 2898 }
2355b70f 2899
112202d9 2900 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2901 complete(&wq->first_flusher->done);
14441960 2902
73f53c4a 2903 return wait;
1da177e4
LT
2904}
2905
0fcb78c2 2906/**
c4f135d6 2907 * __flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2908 * @wq: workqueue to flush
1da177e4 2909 *
c5aa87bb
TH
2910 * This function sleeps until all work items which were queued on entry
2911 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2912 */
c4f135d6 2913void __flush_workqueue(struct workqueue_struct *wq)
1da177e4 2914{
73f53c4a
TH
2915 struct wq_flusher this_flusher = {
2916 .list = LIST_HEAD_INIT(this_flusher.list),
2917 .flush_color = -1,
fd1a5b04 2918 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2919 };
2920 int next_color;
1da177e4 2921
3347fa09
TH
2922 if (WARN_ON(!wq_online))
2923 return;
2924
87915adc
JB
2925 lock_map_acquire(&wq->lockdep_map);
2926 lock_map_release(&wq->lockdep_map);
2927
3c25a55d 2928 mutex_lock(&wq->mutex);
73f53c4a
TH
2929
2930 /*
2931 * Start-to-wait phase
2932 */
2933 next_color = work_next_color(wq->work_color);
2934
2935 if (next_color != wq->flush_color) {
2936 /*
2937 * Color space is not full. The current work_color
2938 * becomes our flush_color and work_color is advanced
2939 * by one.
2940 */
6183c009 2941 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2942 this_flusher.flush_color = wq->work_color;
2943 wq->work_color = next_color;
2944
2945 if (!wq->first_flusher) {
2946 /* no flush in progress, become the first flusher */
6183c009 2947 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2948
2949 wq->first_flusher = &this_flusher;
2950
112202d9 2951 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2952 wq->work_color)) {
2953 /* nothing to flush, done */
2954 wq->flush_color = next_color;
2955 wq->first_flusher = NULL;
2956 goto out_unlock;
2957 }
2958 } else {
2959 /* wait in queue */
6183c009 2960 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2961 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2962 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2963 }
2964 } else {
2965 /*
2966 * Oops, color space is full, wait on overflow queue.
2967 * The next flush completion will assign us
2968 * flush_color and transfer to flusher_queue.
2969 */
2970 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2971 }
2972
fca839c0
TH
2973 check_flush_dependency(wq, NULL);
2974
3c25a55d 2975 mutex_unlock(&wq->mutex);
73f53c4a
TH
2976
2977 wait_for_completion(&this_flusher.done);
2978
2979 /*
2980 * Wake-up-and-cascade phase
2981 *
2982 * First flushers are responsible for cascading flushes and
2983 * handling overflow. Non-first flushers can simply return.
2984 */
00d5d15b 2985 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2986 return;
2987
3c25a55d 2988 mutex_lock(&wq->mutex);
73f53c4a 2989
4ce48b37
TH
2990 /* we might have raced, check again with mutex held */
2991 if (wq->first_flusher != &this_flusher)
2992 goto out_unlock;
2993
00d5d15b 2994 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2995
6183c009
TH
2996 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2997 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2998
2999 while (true) {
3000 struct wq_flusher *next, *tmp;
3001
3002 /* complete all the flushers sharing the current flush color */
3003 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3004 if (next->flush_color != wq->flush_color)
3005 break;
3006 list_del_init(&next->list);
3007 complete(&next->done);
3008 }
3009
6183c009
TH
3010 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3011 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
3012
3013 /* this flush_color is finished, advance by one */
3014 wq->flush_color = work_next_color(wq->flush_color);
3015
3016 /* one color has been freed, handle overflow queue */
3017 if (!list_empty(&wq->flusher_overflow)) {
3018 /*
3019 * Assign the same color to all overflowed
3020 * flushers, advance work_color and append to
3021 * flusher_queue. This is the start-to-wait
3022 * phase for these overflowed flushers.
3023 */
3024 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3025 tmp->flush_color = wq->work_color;
3026
3027 wq->work_color = work_next_color(wq->work_color);
3028
3029 list_splice_tail_init(&wq->flusher_overflow,
3030 &wq->flusher_queue);
112202d9 3031 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
3032 }
3033
3034 if (list_empty(&wq->flusher_queue)) {
6183c009 3035 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
3036 break;
3037 }
3038
3039 /*
3040 * Need to flush more colors. Make the next flusher
112202d9 3041 * the new first flusher and arm pwqs.
73f53c4a 3042 */
6183c009
TH
3043 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3044 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
3045
3046 list_del_init(&next->list);
3047 wq->first_flusher = next;
3048
112202d9 3049 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
3050 break;
3051
3052 /*
3053 * Meh... this color is already done, clear first
3054 * flusher and repeat cascading.
3055 */
3056 wq->first_flusher = NULL;
3057 }
3058
3059out_unlock:
3c25a55d 3060 mutex_unlock(&wq->mutex);
1da177e4 3061}
c4f135d6 3062EXPORT_SYMBOL(__flush_workqueue);
1da177e4 3063
9c5a2ba7
TH
3064/**
3065 * drain_workqueue - drain a workqueue
3066 * @wq: workqueue to drain
3067 *
3068 * Wait until the workqueue becomes empty. While draining is in progress,
3069 * only chain queueing is allowed. IOW, only currently pending or running
3070 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 3071 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
3072 * by the depth of chaining and should be relatively short. Whine if it
3073 * takes too long.
3074 */
3075void drain_workqueue(struct workqueue_struct *wq)
3076{
3077 unsigned int flush_cnt = 0;
49e3cf44 3078 struct pool_workqueue *pwq;
9c5a2ba7
TH
3079
3080 /*
3081 * __queue_work() needs to test whether there are drainers, is much
3082 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 3083 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 3084 */
87fc741e 3085 mutex_lock(&wq->mutex);
9c5a2ba7 3086 if (!wq->nr_drainers++)
618b01eb 3087 wq->flags |= __WQ_DRAINING;
87fc741e 3088 mutex_unlock(&wq->mutex);
9c5a2ba7 3089reflush:
c4f135d6 3090 __flush_workqueue(wq);
9c5a2ba7 3091
b09f4fd3 3092 mutex_lock(&wq->mutex);
76af4d93 3093
49e3cf44 3094 for_each_pwq(pwq, wq) {
fa2563e4 3095 bool drained;
9c5a2ba7 3096
a9b8a985 3097 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 3098 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 3099 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3100
3101 if (drained)
9c5a2ba7
TH
3102 continue;
3103
3104 if (++flush_cnt == 10 ||
3105 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3106 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3107 wq->name, __func__, flush_cnt);
76af4d93 3108
b09f4fd3 3109 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3110 goto reflush;
3111 }
3112
9c5a2ba7 3113 if (!--wq->nr_drainers)
618b01eb 3114 wq->flags &= ~__WQ_DRAINING;
87fc741e 3115 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3116}
3117EXPORT_SYMBOL_GPL(drain_workqueue);
3118
d6e89786
JB
3119static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3120 bool from_cancel)
db700897 3121{
affee4b2 3122 struct worker *worker = NULL;
c9e7cf27 3123 struct worker_pool *pool;
112202d9 3124 struct pool_workqueue *pwq;
db700897
ON
3125
3126 might_sleep();
fa1b54e6 3127
24acfb71 3128 rcu_read_lock();
c9e7cf27 3129 pool = get_work_pool(work);
fa1b54e6 3130 if (!pool) {
24acfb71 3131 rcu_read_unlock();
baf59022 3132 return false;
fa1b54e6 3133 }
db700897 3134
a9b8a985 3135 raw_spin_lock_irq(&pool->lock);
0b3dae68 3136 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3137 pwq = get_work_pwq(work);
3138 if (pwq) {
3139 if (unlikely(pwq->pool != pool))
4690c4ab 3140 goto already_gone;
606a5020 3141 } else {
c9e7cf27 3142 worker = find_worker_executing_work(pool, work);
affee4b2 3143 if (!worker)
4690c4ab 3144 goto already_gone;
112202d9 3145 pwq = worker->current_pwq;
606a5020 3146 }
db700897 3147
fca839c0
TH
3148 check_flush_dependency(pwq->wq, work);
3149
112202d9 3150 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3151 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3152
e159489b 3153 /*
a1d14934
PZ
3154 * Force a lock recursion deadlock when using flush_work() inside a
3155 * single-threaded or rescuer equipped workqueue.
3156 *
3157 * For single threaded workqueues the deadlock happens when the work
3158 * is after the work issuing the flush_work(). For rescuer equipped
3159 * workqueues the deadlock happens when the rescuer stalls, blocking
3160 * forward progress.
e159489b 3161 */
d6e89786
JB
3162 if (!from_cancel &&
3163 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3164 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3165 lock_map_release(&pwq->wq->lockdep_map);
3166 }
24acfb71 3167 rcu_read_unlock();
401a8d04 3168 return true;
4690c4ab 3169already_gone:
a9b8a985 3170 raw_spin_unlock_irq(&pool->lock);
24acfb71 3171 rcu_read_unlock();
401a8d04 3172 return false;
db700897 3173}
baf59022 3174
d6e89786
JB
3175static bool __flush_work(struct work_struct *work, bool from_cancel)
3176{
3177 struct wq_barrier barr;
3178
3179 if (WARN_ON(!wq_online))
3180 return false;
3181
4d43d395
TH
3182 if (WARN_ON(!work->func))
3183 return false;
3184
c0feea59
TH
3185 lock_map_acquire(&work->lockdep_map);
3186 lock_map_release(&work->lockdep_map);
87915adc 3187
d6e89786
JB
3188 if (start_flush_work(work, &barr, from_cancel)) {
3189 wait_for_completion(&barr.done);
3190 destroy_work_on_stack(&barr.work);
3191 return true;
3192 } else {
3193 return false;
3194 }
3195}
3196
baf59022
TH
3197/**
3198 * flush_work - wait for a work to finish executing the last queueing instance
3199 * @work: the work to flush
3200 *
606a5020
TH
3201 * Wait until @work has finished execution. @work is guaranteed to be idle
3202 * on return if it hasn't been requeued since flush started.
baf59022 3203 *
d185af30 3204 * Return:
baf59022
TH
3205 * %true if flush_work() waited for the work to finish execution,
3206 * %false if it was already idle.
3207 */
3208bool flush_work(struct work_struct *work)
3209{
d6e89786 3210 return __flush_work(work, false);
6e84d644 3211}
606a5020 3212EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3213
8603e1b3 3214struct cwt_wait {
ac6424b9 3215 wait_queue_entry_t wait;
8603e1b3
TH
3216 struct work_struct *work;
3217};
3218
ac6424b9 3219static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3220{
3221 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3222
3223 if (cwait->work != key)
3224 return 0;
3225 return autoremove_wake_function(wait, mode, sync, key);
3226}
3227
36e227d2 3228static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3229{
8603e1b3 3230 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3231 unsigned long flags;
1f1f642e
ON
3232 int ret;
3233
3234 do {
bbb68dfa
TH
3235 ret = try_to_grab_pending(work, is_dwork, &flags);
3236 /*
8603e1b3
TH
3237 * If someone else is already canceling, wait for it to
3238 * finish. flush_work() doesn't work for PREEMPT_NONE
3239 * because we may get scheduled between @work's completion
3240 * and the other canceling task resuming and clearing
3241 * CANCELING - flush_work() will return false immediately
3242 * as @work is no longer busy, try_to_grab_pending() will
3243 * return -ENOENT as @work is still being canceled and the
3244 * other canceling task won't be able to clear CANCELING as
3245 * we're hogging the CPU.
3246 *
3247 * Let's wait for completion using a waitqueue. As this
3248 * may lead to the thundering herd problem, use a custom
3249 * wake function which matches @work along with exclusive
3250 * wait and wakeup.
bbb68dfa 3251 */
8603e1b3
TH
3252 if (unlikely(ret == -ENOENT)) {
3253 struct cwt_wait cwait;
3254
3255 init_wait(&cwait.wait);
3256 cwait.wait.func = cwt_wakefn;
3257 cwait.work = work;
3258
3259 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3260 TASK_UNINTERRUPTIBLE);
3261 if (work_is_canceling(work))
3262 schedule();
3263 finish_wait(&cancel_waitq, &cwait.wait);
3264 }
1f1f642e
ON
3265 } while (unlikely(ret < 0));
3266
bbb68dfa
TH
3267 /* tell other tasks trying to grab @work to back off */
3268 mark_work_canceling(work);
3269 local_irq_restore(flags);
3270
3347fa09
TH
3271 /*
3272 * This allows canceling during early boot. We know that @work
3273 * isn't executing.
3274 */
3275 if (wq_online)
d6e89786 3276 __flush_work(work, true);
3347fa09 3277
7a22ad75 3278 clear_work_data(work);
8603e1b3
TH
3279
3280 /*
3281 * Paired with prepare_to_wait() above so that either
3282 * waitqueue_active() is visible here or !work_is_canceling() is
3283 * visible there.
3284 */
3285 smp_mb();
3286 if (waitqueue_active(&cancel_waitq))
3287 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3288
1f1f642e
ON
3289 return ret;
3290}
3291
6e84d644 3292/**
401a8d04
TH
3293 * cancel_work_sync - cancel a work and wait for it to finish
3294 * @work: the work to cancel
6e84d644 3295 *
401a8d04
TH
3296 * Cancel @work and wait for its execution to finish. This function
3297 * can be used even if the work re-queues itself or migrates to
3298 * another workqueue. On return from this function, @work is
3299 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3300 *
401a8d04
TH
3301 * cancel_work_sync(&delayed_work->work) must not be used for
3302 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3303 *
401a8d04 3304 * The caller must ensure that the workqueue on which @work was last
6e84d644 3305 * queued can't be destroyed before this function returns.
401a8d04 3306 *
d185af30 3307 * Return:
401a8d04 3308 * %true if @work was pending, %false otherwise.
6e84d644 3309 */
401a8d04 3310bool cancel_work_sync(struct work_struct *work)
6e84d644 3311{
36e227d2 3312 return __cancel_work_timer(work, false);
b89deed3 3313}
28e53bdd 3314EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3315
6e84d644 3316/**
401a8d04
TH
3317 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3318 * @dwork: the delayed work to flush
6e84d644 3319 *
401a8d04
TH
3320 * Delayed timer is cancelled and the pending work is queued for
3321 * immediate execution. Like flush_work(), this function only
3322 * considers the last queueing instance of @dwork.
1f1f642e 3323 *
d185af30 3324 * Return:
401a8d04
TH
3325 * %true if flush_work() waited for the work to finish execution,
3326 * %false if it was already idle.
6e84d644 3327 */
401a8d04
TH
3328bool flush_delayed_work(struct delayed_work *dwork)
3329{
8930caba 3330 local_irq_disable();
401a8d04 3331 if (del_timer_sync(&dwork->timer))
60c057bc 3332 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3333 local_irq_enable();
401a8d04
TH
3334 return flush_work(&dwork->work);
3335}
3336EXPORT_SYMBOL(flush_delayed_work);
3337
05f0fe6b
TH
3338/**
3339 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3340 * @rwork: the rcu work to flush
3341 *
3342 * Return:
3343 * %true if flush_rcu_work() waited for the work to finish execution,
3344 * %false if it was already idle.
3345 */
3346bool flush_rcu_work(struct rcu_work *rwork)
3347{
3348 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3349 rcu_barrier();
3350 flush_work(&rwork->work);
3351 return true;
3352 } else {
3353 return flush_work(&rwork->work);
3354 }
3355}
3356EXPORT_SYMBOL(flush_rcu_work);
3357
f72b8792
JA
3358static bool __cancel_work(struct work_struct *work, bool is_dwork)
3359{
3360 unsigned long flags;
3361 int ret;
3362
3363 do {
3364 ret = try_to_grab_pending(work, is_dwork, &flags);
3365 } while (unlikely(ret == -EAGAIN));
3366
3367 if (unlikely(ret < 0))
3368 return false;
3369
3370 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3371 local_irq_restore(flags);
3372 return ret;
3373}
3374
73b4b532
AG
3375/*
3376 * See cancel_delayed_work()
3377 */
3378bool cancel_work(struct work_struct *work)
3379{
3380 return __cancel_work(work, false);
3381}
3382EXPORT_SYMBOL(cancel_work);
3383
09383498 3384/**
57b30ae7
TH
3385 * cancel_delayed_work - cancel a delayed work
3386 * @dwork: delayed_work to cancel
09383498 3387 *
d185af30
YB
3388 * Kill off a pending delayed_work.
3389 *
3390 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3391 * pending.
3392 *
3393 * Note:
3394 * The work callback function may still be running on return, unless
3395 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3396 * use cancel_delayed_work_sync() to wait on it.
09383498 3397 *
57b30ae7 3398 * This function is safe to call from any context including IRQ handler.
09383498 3399 */
57b30ae7 3400bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3401{
f72b8792 3402 return __cancel_work(&dwork->work, true);
09383498 3403}
57b30ae7 3404EXPORT_SYMBOL(cancel_delayed_work);
09383498 3405
401a8d04
TH
3406/**
3407 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3408 * @dwork: the delayed work cancel
3409 *
3410 * This is cancel_work_sync() for delayed works.
3411 *
d185af30 3412 * Return:
401a8d04
TH
3413 * %true if @dwork was pending, %false otherwise.
3414 */
3415bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3416{
36e227d2 3417 return __cancel_work_timer(&dwork->work, true);
6e84d644 3418}
f5a421a4 3419EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3420
b6136773 3421/**
31ddd871 3422 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3423 * @func: the function to call
b6136773 3424 *
31ddd871
TH
3425 * schedule_on_each_cpu() executes @func on each online CPU using the
3426 * system workqueue and blocks until all CPUs have completed.
b6136773 3427 * schedule_on_each_cpu() is very slow.
31ddd871 3428 *
d185af30 3429 * Return:
31ddd871 3430 * 0 on success, -errno on failure.
b6136773 3431 */
65f27f38 3432int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3433{
3434 int cpu;
38f51568 3435 struct work_struct __percpu *works;
15316ba8 3436
b6136773
AM
3437 works = alloc_percpu(struct work_struct);
3438 if (!works)
15316ba8 3439 return -ENOMEM;
b6136773 3440
ffd8bea8 3441 cpus_read_lock();
93981800 3442
15316ba8 3443 for_each_online_cpu(cpu) {
9bfb1839
IM
3444 struct work_struct *work = per_cpu_ptr(works, cpu);
3445
3446 INIT_WORK(work, func);
b71ab8c2 3447 schedule_work_on(cpu, work);
65a64464 3448 }
93981800
TH
3449
3450 for_each_online_cpu(cpu)
3451 flush_work(per_cpu_ptr(works, cpu));
3452
ffd8bea8 3453 cpus_read_unlock();
b6136773 3454 free_percpu(works);
15316ba8
CL
3455 return 0;
3456}
3457
1fa44eca
JB
3458/**
3459 * execute_in_process_context - reliably execute the routine with user context
3460 * @fn: the function to execute
1fa44eca
JB
3461 * @ew: guaranteed storage for the execute work structure (must
3462 * be available when the work executes)
3463 *
3464 * Executes the function immediately if process context is available,
3465 * otherwise schedules the function for delayed execution.
3466 *
d185af30 3467 * Return: 0 - function was executed
1fa44eca
JB
3468 * 1 - function was scheduled for execution
3469 */
65f27f38 3470int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3471{
3472 if (!in_interrupt()) {
65f27f38 3473 fn(&ew->work);
1fa44eca
JB
3474 return 0;
3475 }
3476
65f27f38 3477 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3478 schedule_work(&ew->work);
3479
3480 return 1;
3481}
3482EXPORT_SYMBOL_GPL(execute_in_process_context);
3483
6ba94429
FW
3484/**
3485 * free_workqueue_attrs - free a workqueue_attrs
3486 * @attrs: workqueue_attrs to free
226223ab 3487 *
6ba94429 3488 * Undo alloc_workqueue_attrs().
226223ab 3489 */
513c98d0 3490void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3491{
6ba94429
FW
3492 if (attrs) {
3493 free_cpumask_var(attrs->cpumask);
3494 kfree(attrs);
3495 }
226223ab
TH
3496}
3497
6ba94429
FW
3498/**
3499 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3500 *
3501 * Allocate a new workqueue_attrs, initialize with default settings and
3502 * return it.
3503 *
3504 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3505 */
513c98d0 3506struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3507{
6ba94429 3508 struct workqueue_attrs *attrs;
226223ab 3509
be69d00d 3510 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3511 if (!attrs)
3512 goto fail;
be69d00d 3513 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3514 goto fail;
3515
3516 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3517 return attrs;
3518fail:
3519 free_workqueue_attrs(attrs);
3520 return NULL;
226223ab
TH
3521}
3522
6ba94429
FW
3523static void copy_workqueue_attrs(struct workqueue_attrs *to,
3524 const struct workqueue_attrs *from)
226223ab 3525{
6ba94429
FW
3526 to->nice = from->nice;
3527 cpumask_copy(to->cpumask, from->cpumask);
3528 /*
3529 * Unlike hash and equality test, this function doesn't ignore
3530 * ->no_numa as it is used for both pool and wq attrs. Instead,
3531 * get_unbound_pool() explicitly clears ->no_numa after copying.
3532 */
3533 to->no_numa = from->no_numa;
226223ab
TH
3534}
3535
6ba94429
FW
3536/* hash value of the content of @attr */
3537static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3538{
6ba94429 3539 u32 hash = 0;
226223ab 3540
6ba94429
FW
3541 hash = jhash_1word(attrs->nice, hash);
3542 hash = jhash(cpumask_bits(attrs->cpumask),
3543 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3544 return hash;
226223ab 3545}
226223ab 3546
6ba94429
FW
3547/* content equality test */
3548static bool wqattrs_equal(const struct workqueue_attrs *a,
3549 const struct workqueue_attrs *b)
226223ab 3550{
6ba94429
FW
3551 if (a->nice != b->nice)
3552 return false;
3553 if (!cpumask_equal(a->cpumask, b->cpumask))
3554 return false;
3555 return true;
226223ab
TH
3556}
3557
6ba94429
FW
3558/**
3559 * init_worker_pool - initialize a newly zalloc'd worker_pool
3560 * @pool: worker_pool to initialize
3561 *
402dd89d 3562 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3563 *
3564 * Return: 0 on success, -errno on failure. Even on failure, all fields
3565 * inside @pool proper are initialized and put_unbound_pool() can be called
3566 * on @pool safely to release it.
3567 */
3568static int init_worker_pool(struct worker_pool *pool)
226223ab 3569{
a9b8a985 3570 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3571 pool->id = -1;
3572 pool->cpu = -1;
3573 pool->node = NUMA_NO_NODE;
3574 pool->flags |= POOL_DISASSOCIATED;
82607adc 3575 pool->watchdog_ts = jiffies;
6ba94429
FW
3576 INIT_LIST_HEAD(&pool->worklist);
3577 INIT_LIST_HEAD(&pool->idle_list);
3578 hash_init(pool->busy_hash);
226223ab 3579
32a6c723 3580 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3f959aa3 3581 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
226223ab 3582
32a6c723 3583 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3584
6ba94429 3585 INIT_LIST_HEAD(&pool->workers);
e02b9312 3586 INIT_LIST_HEAD(&pool->dying_workers);
226223ab 3587
6ba94429
FW
3588 ida_init(&pool->worker_ida);
3589 INIT_HLIST_NODE(&pool->hash_node);
3590 pool->refcnt = 1;
226223ab 3591
6ba94429 3592 /* shouldn't fail above this point */
be69d00d 3593 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3594 if (!pool->attrs)
3595 return -ENOMEM;
3596 return 0;
226223ab
TH
3597}
3598
669de8bd
BVA
3599#ifdef CONFIG_LOCKDEP
3600static void wq_init_lockdep(struct workqueue_struct *wq)
3601{
3602 char *lock_name;
3603
3604 lockdep_register_key(&wq->key);
3605 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3606 if (!lock_name)
3607 lock_name = wq->name;
69a106c0
QC
3608
3609 wq->lock_name = lock_name;
669de8bd
BVA
3610 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3611}
3612
3613static void wq_unregister_lockdep(struct workqueue_struct *wq)
3614{
3615 lockdep_unregister_key(&wq->key);
3616}
3617
3618static void wq_free_lockdep(struct workqueue_struct *wq)
3619{
3620 if (wq->lock_name != wq->name)
3621 kfree(wq->lock_name);
3622}
3623#else
3624static void wq_init_lockdep(struct workqueue_struct *wq)
3625{
3626}
3627
3628static void wq_unregister_lockdep(struct workqueue_struct *wq)
3629{
3630}
3631
3632static void wq_free_lockdep(struct workqueue_struct *wq)
3633{
3634}
3635#endif
3636
6ba94429 3637static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3638{
6ba94429
FW
3639 struct workqueue_struct *wq =
3640 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3641
669de8bd
BVA
3642 wq_free_lockdep(wq);
3643
6ba94429
FW
3644 if (!(wq->flags & WQ_UNBOUND))
3645 free_percpu(wq->cpu_pwqs);
226223ab 3646 else
6ba94429 3647 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3648
6ba94429 3649 kfree(wq);
226223ab
TH
3650}
3651
6ba94429 3652static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3653{
6ba94429 3654 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3655
6ba94429
FW
3656 ida_destroy(&pool->worker_ida);
3657 free_workqueue_attrs(pool->attrs);
3658 kfree(pool);
226223ab
TH
3659}
3660
6ba94429
FW
3661/**
3662 * put_unbound_pool - put a worker_pool
3663 * @pool: worker_pool to put
3664 *
24acfb71 3665 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3666 * safe manner. get_unbound_pool() calls this function on its failure path
3667 * and this function should be able to release pools which went through,
3668 * successfully or not, init_worker_pool().
3669 *
3670 * Should be called with wq_pool_mutex held.
3671 */
3672static void put_unbound_pool(struct worker_pool *pool)
226223ab 3673{
6ba94429 3674 DECLARE_COMPLETION_ONSTACK(detach_completion);
e02b9312 3675 struct list_head cull_list;
6ba94429 3676 struct worker *worker;
226223ab 3677
e02b9312
VS
3678 INIT_LIST_HEAD(&cull_list);
3679
6ba94429 3680 lockdep_assert_held(&wq_pool_mutex);
226223ab 3681
6ba94429
FW
3682 if (--pool->refcnt)
3683 return;
226223ab 3684
6ba94429
FW
3685 /* sanity checks */
3686 if (WARN_ON(!(pool->cpu < 0)) ||
3687 WARN_ON(!list_empty(&pool->worklist)))
3688 return;
226223ab 3689
6ba94429
FW
3690 /* release id and unhash */
3691 if (pool->id >= 0)
3692 idr_remove(&worker_pool_idr, pool->id);
3693 hash_del(&pool->hash_node);
d55262c4 3694
6ba94429 3695 /*
692b4825
TH
3696 * Become the manager and destroy all workers. This prevents
3697 * @pool's workers from blocking on attach_mutex. We're the last
3698 * manager and @pool gets freed with the flag set.
9ab03be4
VS
3699 *
3700 * Having a concurrent manager is quite unlikely to happen as we can
3701 * only get here with
3702 * pwq->refcnt == pool->refcnt == 0
3703 * which implies no work queued to the pool, which implies no worker can
3704 * become the manager. However a worker could have taken the role of
3705 * manager before the refcnts dropped to 0, since maybe_create_worker()
3706 * drops pool->lock
6ba94429 3707 */
9ab03be4
VS
3708 while (true) {
3709 rcuwait_wait_event(&manager_wait,
3710 !(pool->flags & POOL_MANAGER_ACTIVE),
3711 TASK_UNINTERRUPTIBLE);
e02b9312
VS
3712
3713 mutex_lock(&wq_pool_attach_mutex);
9ab03be4
VS
3714 raw_spin_lock_irq(&pool->lock);
3715 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3716 pool->flags |= POOL_MANAGER_ACTIVE;
3717 break;
3718 }
3719 raw_spin_unlock_irq(&pool->lock);
e02b9312 3720 mutex_unlock(&wq_pool_attach_mutex);
9ab03be4 3721 }
692b4825 3722
6ba94429 3723 while ((worker = first_idle_worker(pool)))
e02b9312 3724 set_worker_dying(worker, &cull_list);
6ba94429 3725 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3726 raw_spin_unlock_irq(&pool->lock);
d55262c4 3727
e02b9312
VS
3728 wake_dying_workers(&cull_list);
3729
3730 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
6ba94429 3731 pool->detach_completion = &detach_completion;
1258fae7 3732 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3733
6ba94429
FW
3734 if (pool->detach_completion)
3735 wait_for_completion(pool->detach_completion);
226223ab 3736
6ba94429
FW
3737 /* shut down the timers */
3738 del_timer_sync(&pool->idle_timer);
3f959aa3 3739 cancel_work_sync(&pool->idle_cull_work);
6ba94429 3740 del_timer_sync(&pool->mayday_timer);
226223ab 3741
24acfb71 3742 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3743 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3744}
3745
3746/**
6ba94429
FW
3747 * get_unbound_pool - get a worker_pool with the specified attributes
3748 * @attrs: the attributes of the worker_pool to get
226223ab 3749 *
6ba94429
FW
3750 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3751 * reference count and return it. If there already is a matching
3752 * worker_pool, it will be used; otherwise, this function attempts to
3753 * create a new one.
226223ab 3754 *
6ba94429 3755 * Should be called with wq_pool_mutex held.
226223ab 3756 *
6ba94429
FW
3757 * Return: On success, a worker_pool with the same attributes as @attrs.
3758 * On failure, %NULL.
226223ab 3759 */
6ba94429 3760static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3761{
6ba94429
FW
3762 u32 hash = wqattrs_hash(attrs);
3763 struct worker_pool *pool;
3764 int node;
e2273584 3765 int target_node = NUMA_NO_NODE;
226223ab 3766
6ba94429 3767 lockdep_assert_held(&wq_pool_mutex);
226223ab 3768
6ba94429
FW
3769 /* do we already have a matching pool? */
3770 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3771 if (wqattrs_equal(pool->attrs, attrs)) {
3772 pool->refcnt++;
3773 return pool;
3774 }
3775 }
226223ab 3776
e2273584
XP
3777 /* if cpumask is contained inside a NUMA node, we belong to that node */
3778 if (wq_numa_enabled) {
3779 for_each_node(node) {
3780 if (cpumask_subset(attrs->cpumask,
3781 wq_numa_possible_cpumask[node])) {
3782 target_node = node;
3783 break;
3784 }
3785 }
3786 }
3787
6ba94429 3788 /* nope, create a new one */
e2273584 3789 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3790 if (!pool || init_worker_pool(pool) < 0)
3791 goto fail;
3792
3793 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3794 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3795 pool->node = target_node;
226223ab
TH
3796
3797 /*
6ba94429
FW
3798 * no_numa isn't a worker_pool attribute, always clear it. See
3799 * 'struct workqueue_attrs' comments for detail.
226223ab 3800 */
6ba94429 3801 pool->attrs->no_numa = false;
226223ab 3802
6ba94429
FW
3803 if (worker_pool_assign_id(pool) < 0)
3804 goto fail;
226223ab 3805
6ba94429 3806 /* create and start the initial worker */
3347fa09 3807 if (wq_online && !create_worker(pool))
6ba94429 3808 goto fail;
226223ab 3809
6ba94429
FW
3810 /* install */
3811 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3812
6ba94429
FW
3813 return pool;
3814fail:
3815 if (pool)
3816 put_unbound_pool(pool);
3817 return NULL;
226223ab 3818}
226223ab 3819
6ba94429 3820static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3821{
6ba94429
FW
3822 kmem_cache_free(pwq_cache,
3823 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3824}
3825
6ba94429
FW
3826/*
3827 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3828 * and needs to be destroyed.
7a4e344c 3829 */
6ba94429 3830static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3831{
6ba94429
FW
3832 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3833 unbound_release_work);
3834 struct workqueue_struct *wq = pwq->wq;
3835 struct worker_pool *pool = pwq->pool;
b42b0bdd 3836 bool is_last = false;
7a4e344c 3837
b42b0bdd
YY
3838 /*
3839 * when @pwq is not linked, it doesn't hold any reference to the
3840 * @wq, and @wq is invalid to access.
3841 */
3842 if (!list_empty(&pwq->pwqs_node)) {
3843 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3844 return;
7a4e344c 3845
b42b0bdd
YY
3846 mutex_lock(&wq->mutex);
3847 list_del_rcu(&pwq->pwqs_node);
3848 is_last = list_empty(&wq->pwqs);
3849 mutex_unlock(&wq->mutex);
3850 }
6ba94429
FW
3851
3852 mutex_lock(&wq_pool_mutex);
3853 put_unbound_pool(pool);
3854 mutex_unlock(&wq_pool_mutex);
3855
25b00775 3856 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3857
2865a8fb 3858 /*
6ba94429
FW
3859 * If we're the last pwq going away, @wq is already dead and no one
3860 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3861 */
669de8bd
BVA
3862 if (is_last) {
3863 wq_unregister_lockdep(wq);
25b00775 3864 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3865 }
29c91e99
TH
3866}
3867
7a4e344c 3868/**
6ba94429
FW
3869 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3870 * @pwq: target pool_workqueue
d185af30 3871 *
6ba94429 3872 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 3873 * workqueue's saved_max_active and activate inactive work items
6ba94429 3874 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3875 */
6ba94429 3876static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3877{
6ba94429
FW
3878 struct workqueue_struct *wq = pwq->wq;
3879 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3880 unsigned long flags;
4e1a1f9a 3881
6ba94429
FW
3882 /* for @wq->saved_max_active */
3883 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3884
6ba94429
FW
3885 /* fast exit for non-freezable wqs */
3886 if (!freezable && pwq->max_active == wq->saved_max_active)
3887 return;
7a4e344c 3888
3347fa09 3889 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3890 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3891
6ba94429
FW
3892 /*
3893 * During [un]freezing, the caller is responsible for ensuring that
3894 * this function is called at least once after @workqueue_freezing
3895 * is updated and visible.
3896 */
3897 if (!freezable || !workqueue_freezing) {
01341fbd
YY
3898 bool kick = false;
3899
6ba94429 3900 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3901
f97a4a1a 3902 while (!list_empty(&pwq->inactive_works) &&
01341fbd 3903 pwq->nr_active < pwq->max_active) {
f97a4a1a 3904 pwq_activate_first_inactive(pwq);
01341fbd
YY
3905 kick = true;
3906 }
e2dca7ad 3907
6ba94429
FW
3908 /*
3909 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
3910 * max_active is bumped. In realtime scenarios, always kicking a
3911 * worker will cause interference on the isolated cpu cores, so
3912 * let's kick iff work items were activated.
6ba94429 3913 */
01341fbd
YY
3914 if (kick)
3915 wake_up_worker(pwq->pool);
6ba94429
FW
3916 } else {
3917 pwq->max_active = 0;
3918 }
e2dca7ad 3919
a9b8a985 3920 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3921}
3922
67dc8325 3923/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
3924static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3925 struct worker_pool *pool)
29c91e99 3926{
6ba94429 3927 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3928
6ba94429
FW
3929 memset(pwq, 0, sizeof(*pwq));
3930
3931 pwq->pool = pool;
3932 pwq->wq = wq;
3933 pwq->flush_color = -1;
3934 pwq->refcnt = 1;
f97a4a1a 3935 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
3936 INIT_LIST_HEAD(&pwq->pwqs_node);
3937 INIT_LIST_HEAD(&pwq->mayday_node);
3938 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3939}
3940
6ba94429
FW
3941/* sync @pwq with the current state of its associated wq and link it */
3942static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3943{
6ba94429 3944 struct workqueue_struct *wq = pwq->wq;
29c91e99 3945
6ba94429 3946 lockdep_assert_held(&wq->mutex);
a892cacc 3947
6ba94429
FW
3948 /* may be called multiple times, ignore if already linked */
3949 if (!list_empty(&pwq->pwqs_node))
29c91e99 3950 return;
29c91e99 3951
6ba94429
FW
3952 /* set the matching work_color */
3953 pwq->work_color = wq->work_color;
29c91e99 3954
6ba94429
FW
3955 /* sync max_active to the current setting */
3956 pwq_adjust_max_active(pwq);
29c91e99 3957
6ba94429
FW
3958 /* link in @pwq */
3959 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3960}
29c91e99 3961
6ba94429
FW
3962/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3963static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3964 const struct workqueue_attrs *attrs)
3965{
3966 struct worker_pool *pool;
3967 struct pool_workqueue *pwq;
60f5a4bc 3968
6ba94429 3969 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3970
6ba94429
FW
3971 pool = get_unbound_pool(attrs);
3972 if (!pool)
3973 return NULL;
60f5a4bc 3974
6ba94429
FW
3975 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3976 if (!pwq) {
3977 put_unbound_pool(pool);
3978 return NULL;
3979 }
29c91e99 3980
6ba94429
FW
3981 init_pwq(pwq, wq, pool);
3982 return pwq;
3983}
29c91e99 3984
29c91e99 3985/**
30186c6f 3986 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3987 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3988 * @node: the target NUMA node
3989 * @cpu_going_down: if >= 0, the CPU to consider as offline
3990 * @cpumask: outarg, the resulting cpumask
29c91e99 3991 *
6ba94429
FW
3992 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3993 * @cpu_going_down is >= 0, that cpu is considered offline during
3994 * calculation. The result is stored in @cpumask.
a892cacc 3995 *
6ba94429
FW
3996 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3997 * enabled and @node has online CPUs requested by @attrs, the returned
3998 * cpumask is the intersection of the possible CPUs of @node and
3999 * @attrs->cpumask.
d185af30 4000 *
6ba94429
FW
4001 * The caller is responsible for ensuring that the cpumask of @node stays
4002 * stable.
4003 *
4004 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
4005 * %false if equal.
29c91e99 4006 */
6ba94429
FW
4007static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
4008 int cpu_going_down, cpumask_t *cpumask)
29c91e99 4009{
6ba94429
FW
4010 if (!wq_numa_enabled || attrs->no_numa)
4011 goto use_dfl;
29c91e99 4012
6ba94429
FW
4013 /* does @node have any online CPUs @attrs wants? */
4014 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4015 if (cpu_going_down >= 0)
4016 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 4017
6ba94429
FW
4018 if (cpumask_empty(cpumask))
4019 goto use_dfl;
4c16bd32
TH
4020
4021 /* yeap, return possible CPUs in @node that @attrs wants */
4022 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
4023
4024 if (cpumask_empty(cpumask)) {
4025 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4026 "possible intersect\n");
4027 return false;
4028 }
4029
4c16bd32
TH
4030 return !cpumask_equal(cpumask, attrs->cpumask);
4031
4032use_dfl:
4033 cpumask_copy(cpumask, attrs->cpumask);
4034 return false;
4035}
4036
1befcf30
TH
4037/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4038static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4039 int node,
4040 struct pool_workqueue *pwq)
4041{
4042 struct pool_workqueue *old_pwq;
4043
5b95e1af 4044 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
4045 lockdep_assert_held(&wq->mutex);
4046
4047 /* link_pwq() can handle duplicate calls */
4048 link_pwq(pwq);
4049
4050 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4051 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4052 return old_pwq;
4053}
4054
2d5f0764
LJ
4055/* context to store the prepared attrs & pwqs before applying */
4056struct apply_wqattrs_ctx {
4057 struct workqueue_struct *wq; /* target workqueue */
4058 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 4059 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
4060 struct pool_workqueue *dfl_pwq;
4061 struct pool_workqueue *pwq_tbl[];
4062};
4063
4064/* free the resources after success or abort */
4065static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4066{
4067 if (ctx) {
4068 int node;
4069
4070 for_each_node(node)
4071 put_pwq_unlocked(ctx->pwq_tbl[node]);
4072 put_pwq_unlocked(ctx->dfl_pwq);
4073
4074 free_workqueue_attrs(ctx->attrs);
4075
4076 kfree(ctx);
4077 }
4078}
4079
4080/* allocate the attrs and pwqs for later installation */
4081static struct apply_wqattrs_ctx *
4082apply_wqattrs_prepare(struct workqueue_struct *wq,
99c621ef
LJ
4083 const struct workqueue_attrs *attrs,
4084 const cpumask_var_t unbound_cpumask)
9e8cd2f5 4085{
2d5f0764 4086 struct apply_wqattrs_ctx *ctx;
4c16bd32 4087 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 4088 int node;
9e8cd2f5 4089
2d5f0764 4090 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 4091
acafe7e3 4092 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 4093
be69d00d
TG
4094 new_attrs = alloc_workqueue_attrs();
4095 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
4096 if (!ctx || !new_attrs || !tmp_attrs)
4097 goto out_free;
13e2e556 4098
042f7df1 4099 /*
99c621ef
LJ
4100 * Calculate the attrs of the default pwq with unbound_cpumask
4101 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
042f7df1
LJ
4102 * If the user configured cpumask doesn't overlap with the
4103 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4104 */
13e2e556 4105 copy_workqueue_attrs(new_attrs, attrs);
99c621ef 4106 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
042f7df1 4107 if (unlikely(cpumask_empty(new_attrs->cpumask)))
99c621ef 4108 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
13e2e556 4109
4c16bd32
TH
4110 /*
4111 * We may create multiple pwqs with differing cpumasks. Make a
4112 * copy of @new_attrs which will be modified and used to obtain
4113 * pools.
4114 */
4115 copy_workqueue_attrs(tmp_attrs, new_attrs);
4116
4c16bd32
TH
4117 /*
4118 * If something goes wrong during CPU up/down, we'll fall back to
4119 * the default pwq covering whole @attrs->cpumask. Always create
4120 * it even if we don't use it immediately.
4121 */
2d5f0764
LJ
4122 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4123 if (!ctx->dfl_pwq)
4124 goto out_free;
4c16bd32
TH
4125
4126 for_each_node(node) {
042f7df1 4127 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
4128 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4129 if (!ctx->pwq_tbl[node])
4130 goto out_free;
4c16bd32 4131 } else {
2d5f0764
LJ
4132 ctx->dfl_pwq->refcnt++;
4133 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
4134 }
4135 }
4136
042f7df1
LJ
4137 /* save the user configured attrs and sanitize it. */
4138 copy_workqueue_attrs(new_attrs, attrs);
4139 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4140 ctx->attrs = new_attrs;
042f7df1 4141
2d5f0764
LJ
4142 ctx->wq = wq;
4143 free_workqueue_attrs(tmp_attrs);
4144 return ctx;
4145
4146out_free:
4147 free_workqueue_attrs(tmp_attrs);
4148 free_workqueue_attrs(new_attrs);
4149 apply_wqattrs_cleanup(ctx);
4150 return NULL;
4151}
4152
4153/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4154static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4155{
4156 int node;
9e8cd2f5 4157
4c16bd32 4158 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4159 mutex_lock(&ctx->wq->mutex);
a892cacc 4160
2d5f0764 4161 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4162
4163 /* save the previous pwq and install the new one */
f147f29e 4164 for_each_node(node)
2d5f0764
LJ
4165 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4166 ctx->pwq_tbl[node]);
4c16bd32
TH
4167
4168 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4169 link_pwq(ctx->dfl_pwq);
4170 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4171
2d5f0764
LJ
4172 mutex_unlock(&ctx->wq->mutex);
4173}
9e8cd2f5 4174
a0111cf6
LJ
4175static void apply_wqattrs_lock(void)
4176{
4177 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4178 cpus_read_lock();
a0111cf6
LJ
4179 mutex_lock(&wq_pool_mutex);
4180}
4181
4182static void apply_wqattrs_unlock(void)
4183{
4184 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4185 cpus_read_unlock();
a0111cf6
LJ
4186}
4187
4188static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4189 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4190{
4191 struct apply_wqattrs_ctx *ctx;
4c16bd32 4192
2d5f0764
LJ
4193 /* only unbound workqueues can change attributes */
4194 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4195 return -EINVAL;
13e2e556 4196
2d5f0764 4197 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4198 if (!list_empty(&wq->pwqs)) {
4199 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4200 return -EINVAL;
4201
4202 wq->flags &= ~__WQ_ORDERED;
4203 }
2d5f0764 4204
99c621ef 4205 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
6201171e 4206 if (!ctx)
4207 return -ENOMEM;
2d5f0764
LJ
4208
4209 /* the ctx has been prepared successfully, let's commit it */
6201171e 4210 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4211 apply_wqattrs_cleanup(ctx);
4212
6201171e 4213 return 0;
9e8cd2f5
TH
4214}
4215
a0111cf6
LJ
4216/**
4217 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4218 * @wq: the target workqueue
4219 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4220 *
4221 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4222 * machines, this function maps a separate pwq to each NUMA node with
4223 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4224 * NUMA node it was issued on. Older pwqs are released as in-flight work
4225 * items finish. Note that a work item which repeatedly requeues itself
4226 * back-to-back will stay on its current pwq.
4227 *
4228 * Performs GFP_KERNEL allocations.
4229 *
ffd8bea8 4230 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4231 *
a0111cf6
LJ
4232 * Return: 0 on success and -errno on failure.
4233 */
513c98d0 4234int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4235 const struct workqueue_attrs *attrs)
4236{
4237 int ret;
4238
509b3204
DJ
4239 lockdep_assert_cpus_held();
4240
4241 mutex_lock(&wq_pool_mutex);
a0111cf6 4242 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4243 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4244
4245 return ret;
4246}
4247
4c16bd32
TH
4248/**
4249 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4250 * @wq: the target workqueue
4251 * @cpu: the CPU coming up or going down
4252 * @online: whether @cpu is coming up or going down
4253 *
4254 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4255 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4256 * @wq accordingly.
4257 *
4258 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4259 * falls back to @wq->dfl_pwq which may not be optimal but is always
4260 * correct.
4261 *
4262 * Note that when the last allowed CPU of a NUMA node goes offline for a
4263 * workqueue with a cpumask spanning multiple nodes, the workers which were
4264 * already executing the work items for the workqueue will lose their CPU
4265 * affinity and may execute on any CPU. This is similar to how per-cpu
4266 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4267 * affinity, it's the user's responsibility to flush the work item from
4268 * CPU_DOWN_PREPARE.
4269 */
4270static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4271 bool online)
4272{
4273 int node = cpu_to_node(cpu);
4274 int cpu_off = online ? -1 : cpu;
4275 struct pool_workqueue *old_pwq = NULL, *pwq;
4276 struct workqueue_attrs *target_attrs;
4277 cpumask_t *cpumask;
4278
4279 lockdep_assert_held(&wq_pool_mutex);
4280
f7142ed4
LJ
4281 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4282 wq->unbound_attrs->no_numa)
4c16bd32
TH
4283 return;
4284
4285 /*
4286 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4287 * Let's use a preallocated one. The following buf is protected by
4288 * CPU hotplug exclusion.
4289 */
4290 target_attrs = wq_update_unbound_numa_attrs_buf;
4291 cpumask = target_attrs->cpumask;
4292
4c16bd32
TH
4293 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4294 pwq = unbound_pwq_by_node(wq, node);
4295
4296 /*
4297 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4298 * different from the default pwq's, we need to compare it to @pwq's
4299 * and create a new one if they don't match. If the target cpumask
4300 * equals the default pwq's, the default pwq should be used.
4c16bd32 4301 */
042f7df1 4302 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4303 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4304 return;
4c16bd32 4305 } else {
534a3fbb 4306 goto use_dfl_pwq;
4c16bd32
TH
4307 }
4308
4c16bd32
TH
4309 /* create a new pwq */
4310 pwq = alloc_unbound_pwq(wq, target_attrs);
4311 if (!pwq) {
2d916033
FF
4312 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4313 wq->name);
77f300b1 4314 goto use_dfl_pwq;
4c16bd32
TH
4315 }
4316
f7142ed4 4317 /* Install the new pwq. */
4c16bd32
TH
4318 mutex_lock(&wq->mutex);
4319 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4320 goto out_unlock;
4321
4322use_dfl_pwq:
f7142ed4 4323 mutex_lock(&wq->mutex);
a9b8a985 4324 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4325 get_pwq(wq->dfl_pwq);
a9b8a985 4326 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4327 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4328out_unlock:
4329 mutex_unlock(&wq->mutex);
4330 put_pwq_unlocked(old_pwq);
4331}
4332
30cdf249 4333static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4334{
49e3cf44 4335 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4336 int cpu, ret;
30cdf249
TH
4337
4338 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4339 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4340 if (!wq->cpu_pwqs)
30cdf249
TH
4341 return -ENOMEM;
4342
4343 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4344 struct pool_workqueue *pwq =
4345 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4346 struct worker_pool *cpu_pools =
f02ae73a 4347 per_cpu(cpu_worker_pools, cpu);
f3421797 4348
f147f29e
TH
4349 init_pwq(pwq, wq, &cpu_pools[highpri]);
4350
4351 mutex_lock(&wq->mutex);
1befcf30 4352 link_pwq(pwq);
f147f29e 4353 mutex_unlock(&wq->mutex);
30cdf249 4354 }
9e8cd2f5 4355 return 0;
509b3204
DJ
4356 }
4357
ffd8bea8 4358 cpus_read_lock();
509b3204 4359 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4360 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4361 /* there should only be single pwq for ordering guarantee */
4362 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4363 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4364 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4365 } else {
509b3204 4366 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4367 }
ffd8bea8 4368 cpus_read_unlock();
509b3204
DJ
4369
4370 return ret;
0f900049
TH
4371}
4372
f3421797
TH
4373static int wq_clamp_max_active(int max_active, unsigned int flags,
4374 const char *name)
b71ab8c2 4375{
f3421797
TH
4376 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4377
4378 if (max_active < 1 || max_active > lim)
044c782c
VI
4379 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4380 max_active, name, 1, lim);
b71ab8c2 4381
f3421797 4382 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4383}
4384
983c7515
TH
4385/*
4386 * Workqueues which may be used during memory reclaim should have a rescuer
4387 * to guarantee forward progress.
4388 */
4389static int init_rescuer(struct workqueue_struct *wq)
4390{
4391 struct worker *rescuer;
b92b36ea 4392 int ret;
983c7515
TH
4393
4394 if (!(wq->flags & WQ_MEM_RECLAIM))
4395 return 0;
4396
4397 rescuer = alloc_worker(NUMA_NO_NODE);
4c0736a7
PM
4398 if (!rescuer) {
4399 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4400 wq->name);
983c7515 4401 return -ENOMEM;
4c0736a7 4402 }
983c7515
TH
4403
4404 rescuer->rescue_wq = wq;
4405 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4406 if (IS_ERR(rescuer->task)) {
b92b36ea 4407 ret = PTR_ERR(rescuer->task);
4c0736a7
PM
4408 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4409 wq->name, ERR_PTR(ret));
983c7515 4410 kfree(rescuer);
b92b36ea 4411 return ret;
983c7515
TH
4412 }
4413
4414 wq->rescuer = rescuer;
4415 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4416 wake_up_process(rescuer->task);
4417
4418 return 0;
4419}
4420
a2775bbc 4421__printf(1, 4)
669de8bd
BVA
4422struct workqueue_struct *alloc_workqueue(const char *fmt,
4423 unsigned int flags,
4424 int max_active, ...)
1da177e4 4425{
df2d5ae4 4426 size_t tbl_size = 0;
ecf6881f 4427 va_list args;
1da177e4 4428 struct workqueue_struct *wq;
49e3cf44 4429 struct pool_workqueue *pwq;
b196be89 4430
5c0338c6
TH
4431 /*
4432 * Unbound && max_active == 1 used to imply ordered, which is no
4433 * longer the case on NUMA machines due to per-node pools. While
4434 * alloc_ordered_workqueue() is the right way to create an ordered
4435 * workqueue, keep the previous behavior to avoid subtle breakages
4436 * on NUMA.
4437 */
4438 if ((flags & WQ_UNBOUND) && max_active == 1)
4439 flags |= __WQ_ORDERED;
4440
cee22a15
VK
4441 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4442 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4443 flags |= WQ_UNBOUND;
4444
ecf6881f 4445 /* allocate wq and format name */
df2d5ae4 4446 if (flags & WQ_UNBOUND)
ddcb57e2 4447 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4448
4449 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4450 if (!wq)
d2c1d404 4451 return NULL;
b196be89 4452
6029a918 4453 if (flags & WQ_UNBOUND) {
be69d00d 4454 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4455 if (!wq->unbound_attrs)
4456 goto err_free_wq;
4457 }
4458
669de8bd 4459 va_start(args, max_active);
ecf6881f 4460 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4461 va_end(args);
1da177e4 4462
d320c038 4463 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4464 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4465
b196be89 4466 /* init wq */
97e37d7b 4467 wq->flags = flags;
a0a1a5fd 4468 wq->saved_max_active = max_active;
3c25a55d 4469 mutex_init(&wq->mutex);
112202d9 4470 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4471 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4472 INIT_LIST_HEAD(&wq->flusher_queue);
4473 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4474 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4475
669de8bd 4476 wq_init_lockdep(wq);
cce1a165 4477 INIT_LIST_HEAD(&wq->list);
3af24433 4478
30cdf249 4479 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4480 goto err_unreg_lockdep;
1537663f 4481
40c17f75 4482 if (wq_online && init_rescuer(wq) < 0)
983c7515 4483 goto err_destroy;
3af24433 4484
226223ab
TH
4485 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4486 goto err_destroy;
4487
a0a1a5fd 4488 /*
68e13a67
LJ
4489 * wq_pool_mutex protects global freeze state and workqueues list.
4490 * Grab it, adjust max_active and add the new @wq to workqueues
4491 * list.
a0a1a5fd 4492 */
68e13a67 4493 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4494
a357fc03 4495 mutex_lock(&wq->mutex);
699ce097
TH
4496 for_each_pwq(pwq, wq)
4497 pwq_adjust_max_active(pwq);
a357fc03 4498 mutex_unlock(&wq->mutex);
a0a1a5fd 4499
e2dca7ad 4500 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4501
68e13a67 4502 mutex_unlock(&wq_pool_mutex);
1537663f 4503
3af24433 4504 return wq;
d2c1d404 4505
82efcab3 4506err_unreg_lockdep:
009bb421
BVA
4507 wq_unregister_lockdep(wq);
4508 wq_free_lockdep(wq);
82efcab3 4509err_free_wq:
6029a918 4510 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4511 kfree(wq);
4512 return NULL;
4513err_destroy:
4514 destroy_workqueue(wq);
4690c4ab 4515 return NULL;
3af24433 4516}
669de8bd 4517EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4518
c29eb853
TH
4519static bool pwq_busy(struct pool_workqueue *pwq)
4520{
4521 int i;
4522
4523 for (i = 0; i < WORK_NR_COLORS; i++)
4524 if (pwq->nr_in_flight[i])
4525 return true;
4526
4527 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4528 return true;
f97a4a1a 4529 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4530 return true;
4531
4532 return false;
4533}
4534
3af24433
ON
4535/**
4536 * destroy_workqueue - safely terminate a workqueue
4537 * @wq: target workqueue
4538 *
4539 * Safely destroy a workqueue. All work currently pending will be done first.
4540 */
4541void destroy_workqueue(struct workqueue_struct *wq)
4542{
49e3cf44 4543 struct pool_workqueue *pwq;
4c16bd32 4544 int node;
3af24433 4545
def98c84
TH
4546 /*
4547 * Remove it from sysfs first so that sanity check failure doesn't
4548 * lead to sysfs name conflicts.
4549 */
4550 workqueue_sysfs_unregister(wq);
4551
33e3f0a3
RC
4552 /* mark the workqueue destruction is in progress */
4553 mutex_lock(&wq->mutex);
4554 wq->flags |= __WQ_DESTROYING;
4555 mutex_unlock(&wq->mutex);
4556
9c5a2ba7
TH
4557 /* drain it before proceeding with destruction */
4558 drain_workqueue(wq);
c8efcc25 4559
def98c84
TH
4560 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4561 if (wq->rescuer) {
4562 struct worker *rescuer = wq->rescuer;
4563
4564 /* this prevents new queueing */
a9b8a985 4565 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4566 wq->rescuer = NULL;
a9b8a985 4567 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4568
4569 /* rescuer will empty maydays list before exiting */
4570 kthread_stop(rescuer->task);
8efe1223 4571 kfree(rescuer);
def98c84
TH
4572 }
4573
c29eb853
TH
4574 /*
4575 * Sanity checks - grab all the locks so that we wait for all
4576 * in-flight operations which may do put_pwq().
4577 */
4578 mutex_lock(&wq_pool_mutex);
b09f4fd3 4579 mutex_lock(&wq->mutex);
49e3cf44 4580 for_each_pwq(pwq, wq) {
a9b8a985 4581 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4582 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4583 pr_warn("%s: %s has the following busy pwq\n",
4584 __func__, wq->name);
c29eb853 4585 show_pwq(pwq);
a9b8a985 4586 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4587 mutex_unlock(&wq->mutex);
c29eb853 4588 mutex_unlock(&wq_pool_mutex);
55df0933 4589 show_one_workqueue(wq);
6183c009 4590 return;
76af4d93 4591 }
a9b8a985 4592 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4593 }
b09f4fd3 4594 mutex_unlock(&wq->mutex);
6183c009 4595
a0a1a5fd
TH
4596 /*
4597 * wq list is used to freeze wq, remove from list after
4598 * flushing is complete in case freeze races us.
4599 */
e2dca7ad 4600 list_del_rcu(&wq->list);
68e13a67 4601 mutex_unlock(&wq_pool_mutex);
3af24433 4602
8864b4e5 4603 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4604 wq_unregister_lockdep(wq);
8864b4e5
TH
4605 /*
4606 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4607 * schedule RCU free.
8864b4e5 4608 */
25b00775 4609 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4610 } else {
4611 /*
4612 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4613 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4614 * @wq will be freed when the last pwq is released.
8864b4e5 4615 */
4c16bd32
TH
4616 for_each_node(node) {
4617 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4618 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4619 put_pwq_unlocked(pwq);
4620 }
4621
4622 /*
4623 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4624 * put. Don't access it afterwards.
4625 */
4626 pwq = wq->dfl_pwq;
4627 wq->dfl_pwq = NULL;
dce90d47 4628 put_pwq_unlocked(pwq);
29c91e99 4629 }
3af24433
ON
4630}
4631EXPORT_SYMBOL_GPL(destroy_workqueue);
4632
dcd989cb
TH
4633/**
4634 * workqueue_set_max_active - adjust max_active of a workqueue
4635 * @wq: target workqueue
4636 * @max_active: new max_active value.
4637 *
4638 * Set max_active of @wq to @max_active.
4639 *
4640 * CONTEXT:
4641 * Don't call from IRQ context.
4642 */
4643void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4644{
49e3cf44 4645 struct pool_workqueue *pwq;
dcd989cb 4646
8719dcea 4647 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4648 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4649 return;
4650
f3421797 4651 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4652
a357fc03 4653 mutex_lock(&wq->mutex);
dcd989cb 4654
0a94efb5 4655 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4656 wq->saved_max_active = max_active;
4657
699ce097
TH
4658 for_each_pwq(pwq, wq)
4659 pwq_adjust_max_active(pwq);
93981800 4660
a357fc03 4661 mutex_unlock(&wq->mutex);
15316ba8 4662}
dcd989cb 4663EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4664
27d4ee03
LW
4665/**
4666 * current_work - retrieve %current task's work struct
4667 *
4668 * Determine if %current task is a workqueue worker and what it's working on.
4669 * Useful to find out the context that the %current task is running in.
4670 *
4671 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4672 */
4673struct work_struct *current_work(void)
4674{
4675 struct worker *worker = current_wq_worker();
4676
4677 return worker ? worker->current_work : NULL;
4678}
4679EXPORT_SYMBOL(current_work);
4680
e6267616
TH
4681/**
4682 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4683 *
4684 * Determine whether %current is a workqueue rescuer. Can be used from
4685 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4686 *
4687 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4688 */
4689bool current_is_workqueue_rescuer(void)
4690{
4691 struct worker *worker = current_wq_worker();
4692
6a092dfd 4693 return worker && worker->rescue_wq;
e6267616
TH
4694}
4695
eef6a7d5 4696/**
dcd989cb
TH
4697 * workqueue_congested - test whether a workqueue is congested
4698 * @cpu: CPU in question
4699 * @wq: target workqueue
eef6a7d5 4700 *
dcd989cb
TH
4701 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4702 * no synchronization around this function and the test result is
4703 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4704 *
d3251859
TH
4705 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4706 * Note that both per-cpu and unbound workqueues may be associated with
4707 * multiple pool_workqueues which have separate congested states. A
4708 * workqueue being congested on one CPU doesn't mean the workqueue is also
4709 * contested on other CPUs / NUMA nodes.
4710 *
d185af30 4711 * Return:
dcd989cb 4712 * %true if congested, %false otherwise.
eef6a7d5 4713 */
d84ff051 4714bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4715{
7fb98ea7 4716 struct pool_workqueue *pwq;
76af4d93
TH
4717 bool ret;
4718
24acfb71
TG
4719 rcu_read_lock();
4720 preempt_disable();
7fb98ea7 4721
d3251859
TH
4722 if (cpu == WORK_CPU_UNBOUND)
4723 cpu = smp_processor_id();
4724
7fb98ea7
TH
4725 if (!(wq->flags & WQ_UNBOUND))
4726 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4727 else
df2d5ae4 4728 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4729
f97a4a1a 4730 ret = !list_empty(&pwq->inactive_works);
24acfb71
TG
4731 preempt_enable();
4732 rcu_read_unlock();
76af4d93
TH
4733
4734 return ret;
1da177e4 4735}
dcd989cb 4736EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4737
dcd989cb
TH
4738/**
4739 * work_busy - test whether a work is currently pending or running
4740 * @work: the work to be tested
4741 *
4742 * Test whether @work is currently pending or running. There is no
4743 * synchronization around this function and the test result is
4744 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4745 *
d185af30 4746 * Return:
dcd989cb
TH
4747 * OR'd bitmask of WORK_BUSY_* bits.
4748 */
4749unsigned int work_busy(struct work_struct *work)
1da177e4 4750{
fa1b54e6 4751 struct worker_pool *pool;
dcd989cb
TH
4752 unsigned long flags;
4753 unsigned int ret = 0;
1da177e4 4754
dcd989cb
TH
4755 if (work_pending(work))
4756 ret |= WORK_BUSY_PENDING;
1da177e4 4757
24acfb71 4758 rcu_read_lock();
fa1b54e6 4759 pool = get_work_pool(work);
038366c5 4760 if (pool) {
a9b8a985 4761 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4762 if (find_worker_executing_work(pool, work))
4763 ret |= WORK_BUSY_RUNNING;
a9b8a985 4764 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4765 }
24acfb71 4766 rcu_read_unlock();
1da177e4 4767
dcd989cb 4768 return ret;
1da177e4 4769}
dcd989cb 4770EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4771
3d1cb205
TH
4772/**
4773 * set_worker_desc - set description for the current work item
4774 * @fmt: printf-style format string
4775 * @...: arguments for the format string
4776 *
4777 * This function can be called by a running work function to describe what
4778 * the work item is about. If the worker task gets dumped, this
4779 * information will be printed out together to help debugging. The
4780 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4781 */
4782void set_worker_desc(const char *fmt, ...)
4783{
4784 struct worker *worker = current_wq_worker();
4785 va_list args;
4786
4787 if (worker) {
4788 va_start(args, fmt);
4789 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4790 va_end(args);
3d1cb205
TH
4791 }
4792}
5c750d58 4793EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4794
4795/**
4796 * print_worker_info - print out worker information and description
4797 * @log_lvl: the log level to use when printing
4798 * @task: target task
4799 *
4800 * If @task is a worker and currently executing a work item, print out the
4801 * name of the workqueue being serviced and worker description set with
4802 * set_worker_desc() by the currently executing work item.
4803 *
4804 * This function can be safely called on any task as long as the
4805 * task_struct itself is accessible. While safe, this function isn't
4806 * synchronized and may print out mixups or garbages of limited length.
4807 */
4808void print_worker_info(const char *log_lvl, struct task_struct *task)
4809{
4810 work_func_t *fn = NULL;
4811 char name[WQ_NAME_LEN] = { };
4812 char desc[WORKER_DESC_LEN] = { };
4813 struct pool_workqueue *pwq = NULL;
4814 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4815 struct worker *worker;
4816
4817 if (!(task->flags & PF_WQ_WORKER))
4818 return;
4819
4820 /*
4821 * This function is called without any synchronization and @task
4822 * could be in any state. Be careful with dereferences.
4823 */
e700591a 4824 worker = kthread_probe_data(task);
3d1cb205
TH
4825
4826 /*
8bf89593
TH
4827 * Carefully copy the associated workqueue's workfn, name and desc.
4828 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4829 */
fe557319
CH
4830 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4831 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4832 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4833 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4834 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4835
4836 if (fn || name[0] || desc[0]) {
d75f773c 4837 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4838 if (strcmp(name, desc))
3d1cb205
TH
4839 pr_cont(" (%s)", desc);
4840 pr_cont("\n");
4841 }
4842}
4843
3494fc30
TH
4844static void pr_cont_pool_info(struct worker_pool *pool)
4845{
4846 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4847 if (pool->node != NUMA_NO_NODE)
4848 pr_cont(" node=%d", pool->node);
4849 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4850}
4851
c76feb0d
PM
4852struct pr_cont_work_struct {
4853 bool comma;
4854 work_func_t func;
4855 long ctr;
4856};
4857
4858static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4859{
4860 if (!pcwsp->ctr)
4861 goto out_record;
4862 if (func == pcwsp->func) {
4863 pcwsp->ctr++;
4864 return;
4865 }
4866 if (pcwsp->ctr == 1)
4867 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4868 else
4869 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4870 pcwsp->ctr = 0;
4871out_record:
4872 if ((long)func == -1L)
4873 return;
4874 pcwsp->comma = comma;
4875 pcwsp->func = func;
4876 pcwsp->ctr = 1;
4877}
4878
4879static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
3494fc30
TH
4880{
4881 if (work->func == wq_barrier_func) {
4882 struct wq_barrier *barr;
4883
4884 barr = container_of(work, struct wq_barrier, work);
4885
c76feb0d 4886 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
3494fc30
TH
4887 pr_cont("%s BAR(%d)", comma ? "," : "",
4888 task_pid_nr(barr->task));
4889 } else {
c76feb0d
PM
4890 if (!comma)
4891 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4892 pr_cont_work_flush(comma, work->func, pcwsp);
3494fc30
TH
4893 }
4894}
4895
4896static void show_pwq(struct pool_workqueue *pwq)
4897{
c76feb0d 4898 struct pr_cont_work_struct pcws = { .ctr = 0, };
3494fc30
TH
4899 struct worker_pool *pool = pwq->pool;
4900 struct work_struct *work;
4901 struct worker *worker;
4902 bool has_in_flight = false, has_pending = false;
4903 int bkt;
4904
4905 pr_info(" pwq %d:", pool->id);
4906 pr_cont_pool_info(pool);
4907
e66b39af
TH
4908 pr_cont(" active=%d/%d refcnt=%d%s\n",
4909 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4910 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4911
4912 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4913 if (worker->current_pwq == pwq) {
4914 has_in_flight = true;
4915 break;
4916 }
4917 }
4918 if (has_in_flight) {
4919 bool comma = false;
4920
4921 pr_info(" in-flight:");
4922 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4923 if (worker->current_pwq != pwq)
4924 continue;
4925
d75f773c 4926 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4927 task_pid_nr(worker->task),
30ae2fc0 4928 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4929 worker->current_func);
4930 list_for_each_entry(work, &worker->scheduled, entry)
c76feb0d
PM
4931 pr_cont_work(false, work, &pcws);
4932 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4933 comma = true;
4934 }
4935 pr_cont("\n");
4936 }
4937
4938 list_for_each_entry(work, &pool->worklist, entry) {
4939 if (get_work_pwq(work) == pwq) {
4940 has_pending = true;
4941 break;
4942 }
4943 }
4944 if (has_pending) {
4945 bool comma = false;
4946
4947 pr_info(" pending:");
4948 list_for_each_entry(work, &pool->worklist, entry) {
4949 if (get_work_pwq(work) != pwq)
4950 continue;
4951
c76feb0d 4952 pr_cont_work(comma, work, &pcws);
3494fc30
TH
4953 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4954 }
c76feb0d 4955 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4956 pr_cont("\n");
4957 }
4958
f97a4a1a 4959 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
4960 bool comma = false;
4961
f97a4a1a
LJ
4962 pr_info(" inactive:");
4963 list_for_each_entry(work, &pwq->inactive_works, entry) {
c76feb0d 4964 pr_cont_work(comma, work, &pcws);
3494fc30
TH
4965 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4966 }
c76feb0d 4967 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
3494fc30
TH
4968 pr_cont("\n");
4969 }
4970}
4971
4972/**
55df0933
IK
4973 * show_one_workqueue - dump state of specified workqueue
4974 * @wq: workqueue whose state will be printed
3494fc30 4975 */
55df0933 4976void show_one_workqueue(struct workqueue_struct *wq)
3494fc30 4977{
55df0933
IK
4978 struct pool_workqueue *pwq;
4979 bool idle = true;
3494fc30 4980 unsigned long flags;
3494fc30 4981
55df0933
IK
4982 for_each_pwq(pwq, wq) {
4983 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4984 idle = false;
4985 break;
3494fc30 4986 }
55df0933
IK
4987 }
4988 if (idle) /* Nothing to print for idle workqueue */
4989 return;
3494fc30 4990
55df0933 4991 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
3494fc30 4992
55df0933
IK
4993 for_each_pwq(pwq, wq) {
4994 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4995 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
62635ea8 4996 /*
55df0933
IK
4997 * Defer printing to avoid deadlocks in console
4998 * drivers that queue work while holding locks
4999 * also taken in their write paths.
62635ea8 5000 */
55df0933
IK
5001 printk_deferred_enter();
5002 show_pwq(pwq);
5003 printk_deferred_exit();
3494fc30 5004 }
55df0933 5005 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
5006 /*
5007 * We could be printing a lot from atomic context, e.g.
55df0933 5008 * sysrq-t -> show_all_workqueues(). Avoid triggering
62635ea8
SS
5009 * hard lockup.
5010 */
5011 touch_nmi_watchdog();
3494fc30
TH
5012 }
5013
55df0933
IK
5014}
5015
5016/**
5017 * show_one_worker_pool - dump state of specified worker pool
5018 * @pool: worker pool whose state will be printed
5019 */
5020static void show_one_worker_pool(struct worker_pool *pool)
5021{
5022 struct worker *worker;
5023 bool first = true;
5024 unsigned long flags;
335a42eb 5025 unsigned long hung = 0;
55df0933
IK
5026
5027 raw_spin_lock_irqsave(&pool->lock, flags);
5028 if (pool->nr_workers == pool->nr_idle)
5029 goto next_pool;
335a42eb
PM
5030
5031 /* How long the first pending work is waiting for a worker. */
5032 if (!list_empty(&pool->worklist))
5033 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5034
55df0933
IK
5035 /*
5036 * Defer printing to avoid deadlocks in console drivers that
5037 * queue work while holding locks also taken in their write
5038 * paths.
5039 */
5040 printk_deferred_enter();
5041 pr_info("pool %d:", pool->id);
5042 pr_cont_pool_info(pool);
335a42eb 5043 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
55df0933
IK
5044 if (pool->manager)
5045 pr_cont(" manager: %d",
5046 task_pid_nr(pool->manager->task));
5047 list_for_each_entry(worker, &pool->idle_list, entry) {
5048 pr_cont(" %s%d", first ? "idle: " : "",
5049 task_pid_nr(worker->task));
5050 first = false;
5051 }
5052 pr_cont("\n");
5053 printk_deferred_exit();
5054next_pool:
5055 raw_spin_unlock_irqrestore(&pool->lock, flags);
5056 /*
5057 * We could be printing a lot from atomic context, e.g.
5058 * sysrq-t -> show_all_workqueues(). Avoid triggering
5059 * hard lockup.
5060 */
5061 touch_nmi_watchdog();
5062
5063}
5064
5065/**
5066 * show_all_workqueues - dump workqueue state
5067 *
704bc669 5068 * Called from a sysrq handler and prints out all busy workqueues and pools.
55df0933
IK
5069 */
5070void show_all_workqueues(void)
5071{
5072 struct workqueue_struct *wq;
5073 struct worker_pool *pool;
5074 int pi;
5075
5076 rcu_read_lock();
5077
5078 pr_info("Showing busy workqueues and worker pools:\n");
5079
5080 list_for_each_entry_rcu(wq, &workqueues, list)
5081 show_one_workqueue(wq);
5082
5083 for_each_pool(pool, pi)
5084 show_one_worker_pool(pool);
5085
24acfb71 5086 rcu_read_unlock();
3494fc30
TH
5087}
5088
704bc669
JL
5089/**
5090 * show_freezable_workqueues - dump freezable workqueue state
5091 *
5092 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5093 * still busy.
5094 */
5095void show_freezable_workqueues(void)
5096{
5097 struct workqueue_struct *wq;
5098
5099 rcu_read_lock();
5100
5101 pr_info("Showing freezable workqueues that are still busy:\n");
5102
5103 list_for_each_entry_rcu(wq, &workqueues, list) {
5104 if (!(wq->flags & WQ_FREEZABLE))
5105 continue;
5106 show_one_workqueue(wq);
5107 }
5108
5109 rcu_read_unlock();
5110}
5111
6b59808b
TH
5112/* used to show worker information through /proc/PID/{comm,stat,status} */
5113void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5114{
6b59808b
TH
5115 int off;
5116
5117 /* always show the actual comm */
5118 off = strscpy(buf, task->comm, size);
5119 if (off < 0)
5120 return;
5121
197f6acc 5122 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
5123 mutex_lock(&wq_pool_attach_mutex);
5124
197f6acc
TH
5125 if (task->flags & PF_WQ_WORKER) {
5126 struct worker *worker = kthread_data(task);
5127 struct worker_pool *pool = worker->pool;
6b59808b 5128
197f6acc 5129 if (pool) {
a9b8a985 5130 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
5131 /*
5132 * ->desc tracks information (wq name or
5133 * set_worker_desc()) for the latest execution. If
5134 * current, prepend '+', otherwise '-'.
5135 */
5136 if (worker->desc[0] != '\0') {
5137 if (worker->current_work)
5138 scnprintf(buf + off, size - off, "+%s",
5139 worker->desc);
5140 else
5141 scnprintf(buf + off, size - off, "-%s",
5142 worker->desc);
5143 }
a9b8a985 5144 raw_spin_unlock_irq(&pool->lock);
6b59808b 5145 }
6b59808b
TH
5146 }
5147
5148 mutex_unlock(&wq_pool_attach_mutex);
5149}
5150
66448bc2
MM
5151#ifdef CONFIG_SMP
5152
db7bccf4
TH
5153/*
5154 * CPU hotplug.
5155 *
e22bee78 5156 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 5157 * are a lot of assumptions on strong associations among work, pwq and
706026c2 5158 * pool which make migrating pending and scheduled works very
e22bee78 5159 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 5160 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
5161 * blocked draining impractical.
5162 *
24647570 5163 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
5164 * running as an unbound one and allowing it to be reattached later if the
5165 * cpu comes back online.
db7bccf4 5166 */
1da177e4 5167
e8b3f8db 5168static void unbind_workers(int cpu)
3af24433 5169{
4ce62e9e 5170 struct worker_pool *pool;
db7bccf4 5171 struct worker *worker;
3af24433 5172
f02ae73a 5173 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 5174 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 5175 raw_spin_lock_irq(&pool->lock);
3af24433 5176
94cf58bb 5177 /*
92f9c5c4 5178 * We've blocked all attach/detach operations. Make all workers
94cf58bb 5179 * unbound and set DISASSOCIATED. Before this, all workers
11b45b0b 5180 * must be on the cpu. After this, they may become diasporas.
b4ac9384
LJ
5181 * And the preemption disabled section in their sched callbacks
5182 * are guaranteed to see WORKER_UNBOUND since the code here
5183 * is on the same cpu.
94cf58bb 5184 */
da028469 5185 for_each_pool_worker(worker, pool)
c9e7cf27 5186 worker->flags |= WORKER_UNBOUND;
06ba38a9 5187
24647570 5188 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 5189
eb283428 5190 /*
989442d7
LJ
5191 * The handling of nr_running in sched callbacks are disabled
5192 * now. Zap nr_running. After this, nr_running stays zero and
5193 * need_more_worker() and keep_working() are always true as
5194 * long as the worklist is not empty. This pool now behaves as
5195 * an unbound (in terms of concurrency management) pool which
eb283428
LJ
5196 * are served by workers tied to the pool.
5197 */
bc35f7ef 5198 pool->nr_running = 0;
eb283428
LJ
5199
5200 /*
5201 * With concurrency management just turned off, a busy
5202 * worker blocking could lead to lengthy stalls. Kick off
5203 * unbound chain execution of currently pending work items.
5204 */
eb283428 5205 wake_up_worker(pool);
989442d7 5206
a9b8a985 5207 raw_spin_unlock_irq(&pool->lock);
989442d7 5208
793777bc
VS
5209 for_each_pool_worker(worker, pool)
5210 unbind_worker(worker);
989442d7
LJ
5211
5212 mutex_unlock(&wq_pool_attach_mutex);
eb283428 5213 }
3af24433 5214}
3af24433 5215
bd7c089e
TH
5216/**
5217 * rebind_workers - rebind all workers of a pool to the associated CPU
5218 * @pool: pool of interest
5219 *
a9ab775b 5220 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5221 */
5222static void rebind_workers(struct worker_pool *pool)
5223{
a9ab775b 5224 struct worker *worker;
bd7c089e 5225
1258fae7 5226 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5227
a9ab775b
TH
5228 /*
5229 * Restore CPU affinity of all workers. As all idle workers should
5230 * be on the run-queue of the associated CPU before any local
402dd89d 5231 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5232 * of all workers first and then clear UNBOUND. As we're called
5233 * from CPU_ONLINE, the following shouldn't fail.
5234 */
c63a2e52
VS
5235 for_each_pool_worker(worker, pool) {
5236 kthread_set_per_cpu(worker->task, pool->cpu);
5237 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5238 pool->attrs->cpumask) < 0);
5239 }
bd7c089e 5240
a9b8a985 5241 raw_spin_lock_irq(&pool->lock);
f7c17d26 5242
3de5e884 5243 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5244
da028469 5245 for_each_pool_worker(worker, pool) {
a9ab775b 5246 unsigned int worker_flags = worker->flags;
bd7c089e 5247
a9ab775b
TH
5248 /*
5249 * We want to clear UNBOUND but can't directly call
5250 * worker_clr_flags() or adjust nr_running. Atomically
5251 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5252 * @worker will clear REBOUND using worker_clr_flags() when
5253 * it initiates the next execution cycle thus restoring
5254 * concurrency management. Note that when or whether
5255 * @worker clears REBOUND doesn't affect correctness.
5256 *
c95491ed 5257 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5258 * tested without holding any lock in
6d25be57 5259 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5260 * fail incorrectly leading to premature concurrency
5261 * management operations.
5262 */
5263 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5264 worker_flags |= WORKER_REBOUND;
5265 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5266 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5267 }
a9ab775b 5268
a9b8a985 5269 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5270}
5271
7dbc725e
TH
5272/**
5273 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5274 * @pool: unbound pool of interest
5275 * @cpu: the CPU which is coming up
5276 *
5277 * An unbound pool may end up with a cpumask which doesn't have any online
5278 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5279 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5280 * online CPU before, cpus_allowed of all its workers should be restored.
5281 */
5282static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5283{
5284 static cpumask_t cpumask;
5285 struct worker *worker;
7dbc725e 5286
1258fae7 5287 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5288
5289 /* is @cpu allowed for @pool? */
5290 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5291 return;
5292
7dbc725e 5293 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5294
5295 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5296 for_each_pool_worker(worker, pool)
d945b5e9 5297 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5298}
5299
7ee681b2
TG
5300int workqueue_prepare_cpu(unsigned int cpu)
5301{
5302 struct worker_pool *pool;
5303
5304 for_each_cpu_worker_pool(pool, cpu) {
5305 if (pool->nr_workers)
5306 continue;
5307 if (!create_worker(pool))
5308 return -ENOMEM;
5309 }
5310 return 0;
5311}
5312
5313int workqueue_online_cpu(unsigned int cpu)
3af24433 5314{
4ce62e9e 5315 struct worker_pool *pool;
4c16bd32 5316 struct workqueue_struct *wq;
7dbc725e 5317 int pi;
3ce63377 5318
7ee681b2 5319 mutex_lock(&wq_pool_mutex);
7dbc725e 5320
7ee681b2 5321 for_each_pool(pool, pi) {
1258fae7 5322 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5323
7ee681b2
TG
5324 if (pool->cpu == cpu)
5325 rebind_workers(pool);
5326 else if (pool->cpu < 0)
5327 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5328
1258fae7 5329 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5330 }
6ba94429 5331
7ee681b2
TG
5332 /* update NUMA affinity of unbound workqueues */
5333 list_for_each_entry(wq, &workqueues, list)
5334 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5335
7ee681b2
TG
5336 mutex_unlock(&wq_pool_mutex);
5337 return 0;
6ba94429
FW
5338}
5339
7ee681b2 5340int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5341{
6ba94429
FW
5342 struct workqueue_struct *wq;
5343
7ee681b2 5344 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5345 if (WARN_ON(cpu != smp_processor_id()))
5346 return -1;
5347
5348 unbind_workers(cpu);
7ee681b2
TG
5349
5350 /* update NUMA affinity of unbound workqueues */
5351 mutex_lock(&wq_pool_mutex);
5352 list_for_each_entry(wq, &workqueues, list)
5353 wq_update_unbound_numa(wq, cpu, false);
5354 mutex_unlock(&wq_pool_mutex);
5355
7ee681b2 5356 return 0;
6ba94429
FW
5357}
5358
6ba94429
FW
5359struct work_for_cpu {
5360 struct work_struct work;
5361 long (*fn)(void *);
5362 void *arg;
5363 long ret;
5364};
5365
5366static void work_for_cpu_fn(struct work_struct *work)
5367{
5368 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5369
5370 wfc->ret = wfc->fn(wfc->arg);
5371}
5372
5373/**
22aceb31 5374 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5375 * @cpu: the cpu to run on
5376 * @fn: the function to run
5377 * @arg: the function arg
5378 *
5379 * It is up to the caller to ensure that the cpu doesn't go offline.
5380 * The caller must not hold any locks which would prevent @fn from completing.
5381 *
5382 * Return: The value @fn returns.
5383 */
5384long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5385{
5386 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5387
5388 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5389 schedule_work_on(cpu, &wfc.work);
5390 flush_work(&wfc.work);
5391 destroy_work_on_stack(&wfc.work);
5392 return wfc.ret;
5393}
5394EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5395
5396/**
5397 * work_on_cpu_safe - run a function in thread context on a particular cpu
5398 * @cpu: the cpu to run on
5399 * @fn: the function to run
5400 * @arg: the function argument
5401 *
5402 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5403 * any locks which would prevent @fn from completing.
5404 *
5405 * Return: The value @fn returns.
5406 */
5407long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5408{
5409 long ret = -ENODEV;
5410
ffd8bea8 5411 cpus_read_lock();
0e8d6a93
TG
5412 if (cpu_online(cpu))
5413 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5414 cpus_read_unlock();
0e8d6a93
TG
5415 return ret;
5416}
5417EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5418#endif /* CONFIG_SMP */
5419
5420#ifdef CONFIG_FREEZER
5421
5422/**
5423 * freeze_workqueues_begin - begin freezing workqueues
5424 *
5425 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5426 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5427 * pool->worklist.
5428 *
5429 * CONTEXT:
5430 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5431 */
5432void freeze_workqueues_begin(void)
5433{
5434 struct workqueue_struct *wq;
5435 struct pool_workqueue *pwq;
5436
5437 mutex_lock(&wq_pool_mutex);
5438
5439 WARN_ON_ONCE(workqueue_freezing);
5440 workqueue_freezing = true;
5441
5442 list_for_each_entry(wq, &workqueues, list) {
5443 mutex_lock(&wq->mutex);
5444 for_each_pwq(pwq, wq)
5445 pwq_adjust_max_active(pwq);
5446 mutex_unlock(&wq->mutex);
5447 }
5448
5449 mutex_unlock(&wq_pool_mutex);
5450}
5451
5452/**
5453 * freeze_workqueues_busy - are freezable workqueues still busy?
5454 *
5455 * Check whether freezing is complete. This function must be called
5456 * between freeze_workqueues_begin() and thaw_workqueues().
5457 *
5458 * CONTEXT:
5459 * Grabs and releases wq_pool_mutex.
5460 *
5461 * Return:
5462 * %true if some freezable workqueues are still busy. %false if freezing
5463 * is complete.
5464 */
5465bool freeze_workqueues_busy(void)
5466{
5467 bool busy = false;
5468 struct workqueue_struct *wq;
5469 struct pool_workqueue *pwq;
5470
5471 mutex_lock(&wq_pool_mutex);
5472
5473 WARN_ON_ONCE(!workqueue_freezing);
5474
5475 list_for_each_entry(wq, &workqueues, list) {
5476 if (!(wq->flags & WQ_FREEZABLE))
5477 continue;
5478 /*
5479 * nr_active is monotonically decreasing. It's safe
5480 * to peek without lock.
5481 */
24acfb71 5482 rcu_read_lock();
6ba94429
FW
5483 for_each_pwq(pwq, wq) {
5484 WARN_ON_ONCE(pwq->nr_active < 0);
5485 if (pwq->nr_active) {
5486 busy = true;
24acfb71 5487 rcu_read_unlock();
6ba94429
FW
5488 goto out_unlock;
5489 }
5490 }
24acfb71 5491 rcu_read_unlock();
6ba94429
FW
5492 }
5493out_unlock:
5494 mutex_unlock(&wq_pool_mutex);
5495 return busy;
5496}
5497
5498/**
5499 * thaw_workqueues - thaw workqueues
5500 *
5501 * Thaw workqueues. Normal queueing is restored and all collected
5502 * frozen works are transferred to their respective pool worklists.
5503 *
5504 * CONTEXT:
5505 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5506 */
5507void thaw_workqueues(void)
5508{
5509 struct workqueue_struct *wq;
5510 struct pool_workqueue *pwq;
5511
5512 mutex_lock(&wq_pool_mutex);
5513
5514 if (!workqueue_freezing)
5515 goto out_unlock;
5516
5517 workqueue_freezing = false;
5518
5519 /* restore max_active and repopulate worklist */
5520 list_for_each_entry(wq, &workqueues, list) {
5521 mutex_lock(&wq->mutex);
5522 for_each_pwq(pwq, wq)
5523 pwq_adjust_max_active(pwq);
5524 mutex_unlock(&wq->mutex);
5525 }
5526
5527out_unlock:
5528 mutex_unlock(&wq_pool_mutex);
5529}
5530#endif /* CONFIG_FREEZER */
5531
99c621ef 5532static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
042f7df1
LJ
5533{
5534 LIST_HEAD(ctxs);
5535 int ret = 0;
5536 struct workqueue_struct *wq;
5537 struct apply_wqattrs_ctx *ctx, *n;
5538
5539 lockdep_assert_held(&wq_pool_mutex);
5540
5541 list_for_each_entry(wq, &workqueues, list) {
5542 if (!(wq->flags & WQ_UNBOUND))
5543 continue;
5544 /* creating multiple pwqs breaks ordering guarantee */
5545 if (wq->flags & __WQ_ORDERED)
5546 continue;
5547
99c621ef 5548 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
042f7df1
LJ
5549 if (!ctx) {
5550 ret = -ENOMEM;
5551 break;
5552 }
5553
5554 list_add_tail(&ctx->list, &ctxs);
5555 }
5556
5557 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5558 if (!ret)
5559 apply_wqattrs_commit(ctx);
5560 apply_wqattrs_cleanup(ctx);
5561 }
5562
99c621ef
LJ
5563 if (!ret) {
5564 mutex_lock(&wq_pool_attach_mutex);
5565 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5566 mutex_unlock(&wq_pool_attach_mutex);
5567 }
042f7df1
LJ
5568 return ret;
5569}
5570
5571/**
5572 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5573 * @cpumask: the cpumask to set
5574 *
5575 * The low-level workqueues cpumask is a global cpumask that limits
5576 * the affinity of all unbound workqueues. This function check the @cpumask
5577 * and apply it to all unbound workqueues and updates all pwqs of them.
5578 *
67dc8325 5579 * Return: 0 - Success
042f7df1
LJ
5580 * -EINVAL - Invalid @cpumask
5581 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5582 */
5583int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5584{
5585 int ret = -EINVAL;
042f7df1 5586
c98a9805
TS
5587 /*
5588 * Not excluding isolated cpus on purpose.
5589 * If the user wishes to include them, we allow that.
5590 */
042f7df1
LJ
5591 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5592 if (!cpumask_empty(cpumask)) {
a0111cf6 5593 apply_wqattrs_lock();
d25302e4
MD
5594 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5595 ret = 0;
5596 goto out_unlock;
5597 }
5598
99c621ef 5599 ret = workqueue_apply_unbound_cpumask(cpumask);
042f7df1 5600
d25302e4 5601out_unlock:
a0111cf6 5602 apply_wqattrs_unlock();
042f7df1 5603 }
042f7df1 5604
042f7df1
LJ
5605 return ret;
5606}
5607
6ba94429
FW
5608#ifdef CONFIG_SYSFS
5609/*
5610 * Workqueues with WQ_SYSFS flag set is visible to userland via
5611 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5612 * following attributes.
5613 *
5614 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5615 * max_active RW int : maximum number of in-flight work items
5616 *
5617 * Unbound workqueues have the following extra attributes.
5618 *
9a19b463 5619 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5620 * nice RW int : nice value of the workers
5621 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5622 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5623 */
5624struct wq_device {
5625 struct workqueue_struct *wq;
5626 struct device dev;
5627};
5628
5629static struct workqueue_struct *dev_to_wq(struct device *dev)
5630{
5631 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5632
5633 return wq_dev->wq;
5634}
5635
5636static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5637 char *buf)
5638{
5639 struct workqueue_struct *wq = dev_to_wq(dev);
5640
5641 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5642}
5643static DEVICE_ATTR_RO(per_cpu);
5644
5645static ssize_t max_active_show(struct device *dev,
5646 struct device_attribute *attr, char *buf)
5647{
5648 struct workqueue_struct *wq = dev_to_wq(dev);
5649
5650 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5651}
5652
5653static ssize_t max_active_store(struct device *dev,
5654 struct device_attribute *attr, const char *buf,
5655 size_t count)
5656{
5657 struct workqueue_struct *wq = dev_to_wq(dev);
5658 int val;
5659
5660 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5661 return -EINVAL;
5662
5663 workqueue_set_max_active(wq, val);
5664 return count;
5665}
5666static DEVICE_ATTR_RW(max_active);
5667
5668static struct attribute *wq_sysfs_attrs[] = {
5669 &dev_attr_per_cpu.attr,
5670 &dev_attr_max_active.attr,
5671 NULL,
5672};
5673ATTRIBUTE_GROUPS(wq_sysfs);
5674
5675static ssize_t wq_pool_ids_show(struct device *dev,
5676 struct device_attribute *attr, char *buf)
5677{
5678 struct workqueue_struct *wq = dev_to_wq(dev);
5679 const char *delim = "";
5680 int node, written = 0;
5681
ffd8bea8 5682 cpus_read_lock();
24acfb71 5683 rcu_read_lock();
6ba94429
FW
5684 for_each_node(node) {
5685 written += scnprintf(buf + written, PAGE_SIZE - written,
5686 "%s%d:%d", delim, node,
5687 unbound_pwq_by_node(wq, node)->pool->id);
5688 delim = " ";
5689 }
5690 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71 5691 rcu_read_unlock();
ffd8bea8 5692 cpus_read_unlock();
6ba94429
FW
5693
5694 return written;
5695}
5696
5697static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5698 char *buf)
5699{
5700 struct workqueue_struct *wq = dev_to_wq(dev);
5701 int written;
5702
5703 mutex_lock(&wq->mutex);
5704 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5705 mutex_unlock(&wq->mutex);
5706
5707 return written;
5708}
5709
5710/* prepare workqueue_attrs for sysfs store operations */
5711static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5712{
5713 struct workqueue_attrs *attrs;
5714
899a94fe
LJ
5715 lockdep_assert_held(&wq_pool_mutex);
5716
be69d00d 5717 attrs = alloc_workqueue_attrs();
6ba94429
FW
5718 if (!attrs)
5719 return NULL;
5720
6ba94429 5721 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5722 return attrs;
5723}
5724
5725static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5726 const char *buf, size_t count)
5727{
5728 struct workqueue_struct *wq = dev_to_wq(dev);
5729 struct workqueue_attrs *attrs;
d4d3e257
LJ
5730 int ret = -ENOMEM;
5731
5732 apply_wqattrs_lock();
6ba94429
FW
5733
5734 attrs = wq_sysfs_prep_attrs(wq);
5735 if (!attrs)
d4d3e257 5736 goto out_unlock;
6ba94429
FW
5737
5738 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5739 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5740 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5741 else
5742 ret = -EINVAL;
5743
d4d3e257
LJ
5744out_unlock:
5745 apply_wqattrs_unlock();
6ba94429
FW
5746 free_workqueue_attrs(attrs);
5747 return ret ?: count;
5748}
5749
5750static ssize_t wq_cpumask_show(struct device *dev,
5751 struct device_attribute *attr, char *buf)
5752{
5753 struct workqueue_struct *wq = dev_to_wq(dev);
5754 int written;
5755
5756 mutex_lock(&wq->mutex);
5757 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5758 cpumask_pr_args(wq->unbound_attrs->cpumask));
5759 mutex_unlock(&wq->mutex);
5760 return written;
5761}
5762
5763static ssize_t wq_cpumask_store(struct device *dev,
5764 struct device_attribute *attr,
5765 const char *buf, size_t count)
5766{
5767 struct workqueue_struct *wq = dev_to_wq(dev);
5768 struct workqueue_attrs *attrs;
d4d3e257
LJ
5769 int ret = -ENOMEM;
5770
5771 apply_wqattrs_lock();
6ba94429
FW
5772
5773 attrs = wq_sysfs_prep_attrs(wq);
5774 if (!attrs)
d4d3e257 5775 goto out_unlock;
6ba94429
FW
5776
5777 ret = cpumask_parse(buf, attrs->cpumask);
5778 if (!ret)
d4d3e257 5779 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5780
d4d3e257
LJ
5781out_unlock:
5782 apply_wqattrs_unlock();
6ba94429
FW
5783 free_workqueue_attrs(attrs);
5784 return ret ?: count;
5785}
5786
5787static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5788 char *buf)
5789{
5790 struct workqueue_struct *wq = dev_to_wq(dev);
5791 int written;
7dbc725e 5792
6ba94429
FW
5793 mutex_lock(&wq->mutex);
5794 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5795 !wq->unbound_attrs->no_numa);
5796 mutex_unlock(&wq->mutex);
4c16bd32 5797
6ba94429 5798 return written;
65758202
TH
5799}
5800
6ba94429
FW
5801static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5802 const char *buf, size_t count)
65758202 5803{
6ba94429
FW
5804 struct workqueue_struct *wq = dev_to_wq(dev);
5805 struct workqueue_attrs *attrs;
d4d3e257
LJ
5806 int v, ret = -ENOMEM;
5807
5808 apply_wqattrs_lock();
4c16bd32 5809
6ba94429
FW
5810 attrs = wq_sysfs_prep_attrs(wq);
5811 if (!attrs)
d4d3e257 5812 goto out_unlock;
4c16bd32 5813
6ba94429
FW
5814 ret = -EINVAL;
5815 if (sscanf(buf, "%d", &v) == 1) {
5816 attrs->no_numa = !v;
d4d3e257 5817 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5818 }
6ba94429 5819
d4d3e257
LJ
5820out_unlock:
5821 apply_wqattrs_unlock();
6ba94429
FW
5822 free_workqueue_attrs(attrs);
5823 return ret ?: count;
65758202
TH
5824}
5825
6ba94429
FW
5826static struct device_attribute wq_sysfs_unbound_attrs[] = {
5827 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5828 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5829 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5830 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5831 __ATTR_NULL,
5832};
8ccad40d 5833
6ba94429
FW
5834static struct bus_type wq_subsys = {
5835 .name = "workqueue",
5836 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5837};
5838
b05a7928
FW
5839static ssize_t wq_unbound_cpumask_show(struct device *dev,
5840 struct device_attribute *attr, char *buf)
5841{
5842 int written;
5843
042f7df1 5844 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5845 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5846 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5847 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5848
5849 return written;
5850}
5851
042f7df1
LJ
5852static ssize_t wq_unbound_cpumask_store(struct device *dev,
5853 struct device_attribute *attr, const char *buf, size_t count)
5854{
5855 cpumask_var_t cpumask;
5856 int ret;
5857
5858 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5859 return -ENOMEM;
5860
5861 ret = cpumask_parse(buf, cpumask);
5862 if (!ret)
5863 ret = workqueue_set_unbound_cpumask(cpumask);
5864
5865 free_cpumask_var(cpumask);
5866 return ret ? ret : count;
5867}
5868
b05a7928 5869static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5870 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5871 wq_unbound_cpumask_store);
b05a7928 5872
6ba94429 5873static int __init wq_sysfs_init(void)
2d3854a3 5874{
686f6697 5875 struct device *dev_root;
b05a7928
FW
5876 int err;
5877
5878 err = subsys_virtual_register(&wq_subsys, NULL);
5879 if (err)
5880 return err;
5881
686f6697
GKH
5882 dev_root = bus_get_dev_root(&wq_subsys);
5883 if (dev_root) {
5884 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
5885 put_device(dev_root);
5886 }
5887 return err;
2d3854a3 5888}
6ba94429 5889core_initcall(wq_sysfs_init);
2d3854a3 5890
6ba94429 5891static void wq_device_release(struct device *dev)
2d3854a3 5892{
6ba94429 5893 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5894
6ba94429 5895 kfree(wq_dev);
2d3854a3 5896}
a0a1a5fd
TH
5897
5898/**
6ba94429
FW
5899 * workqueue_sysfs_register - make a workqueue visible in sysfs
5900 * @wq: the workqueue to register
a0a1a5fd 5901 *
6ba94429
FW
5902 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5903 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5904 * which is the preferred method.
a0a1a5fd 5905 *
6ba94429
FW
5906 * Workqueue user should use this function directly iff it wants to apply
5907 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5908 * apply_workqueue_attrs() may race against userland updating the
5909 * attributes.
5910 *
5911 * Return: 0 on success, -errno on failure.
a0a1a5fd 5912 */
6ba94429 5913int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5914{
6ba94429
FW
5915 struct wq_device *wq_dev;
5916 int ret;
a0a1a5fd 5917
6ba94429 5918 /*
402dd89d 5919 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5920 * attributes breaks ordering guarantee. Disallow exposing ordered
5921 * workqueues.
5922 */
0a94efb5 5923 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5924 return -EINVAL;
a0a1a5fd 5925
6ba94429
FW
5926 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5927 if (!wq_dev)
5928 return -ENOMEM;
5bcab335 5929
6ba94429
FW
5930 wq_dev->wq = wq;
5931 wq_dev->dev.bus = &wq_subsys;
6ba94429 5932 wq_dev->dev.release = wq_device_release;
23217b44 5933 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5934
6ba94429
FW
5935 /*
5936 * unbound_attrs are created separately. Suppress uevent until
5937 * everything is ready.
5938 */
5939 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5940
6ba94429
FW
5941 ret = device_register(&wq_dev->dev);
5942 if (ret) {
537f4146 5943 put_device(&wq_dev->dev);
6ba94429
FW
5944 wq->wq_dev = NULL;
5945 return ret;
5946 }
a0a1a5fd 5947
6ba94429
FW
5948 if (wq->flags & WQ_UNBOUND) {
5949 struct device_attribute *attr;
a0a1a5fd 5950
6ba94429
FW
5951 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5952 ret = device_create_file(&wq_dev->dev, attr);
5953 if (ret) {
5954 device_unregister(&wq_dev->dev);
5955 wq->wq_dev = NULL;
5956 return ret;
a0a1a5fd
TH
5957 }
5958 }
5959 }
6ba94429
FW
5960
5961 dev_set_uevent_suppress(&wq_dev->dev, false);
5962 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5963 return 0;
a0a1a5fd
TH
5964}
5965
5966/**
6ba94429
FW
5967 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5968 * @wq: the workqueue to unregister
a0a1a5fd 5969 *
6ba94429 5970 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5971 */
6ba94429 5972static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5973{
6ba94429 5974 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5975
6ba94429
FW
5976 if (!wq->wq_dev)
5977 return;
a0a1a5fd 5978
6ba94429
FW
5979 wq->wq_dev = NULL;
5980 device_unregister(&wq_dev->dev);
a0a1a5fd 5981}
6ba94429
FW
5982#else /* CONFIG_SYSFS */
5983static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5984#endif /* CONFIG_SYSFS */
a0a1a5fd 5985
82607adc
TH
5986/*
5987 * Workqueue watchdog.
5988 *
5989 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5990 * flush dependency, a concurrency managed work item which stays RUNNING
5991 * indefinitely. Workqueue stalls can be very difficult to debug as the
5992 * usual warning mechanisms don't trigger and internal workqueue state is
5993 * largely opaque.
5994 *
5995 * Workqueue watchdog monitors all worker pools periodically and dumps
5996 * state if some pools failed to make forward progress for a while where
5997 * forward progress is defined as the first item on ->worklist changing.
5998 *
5999 * This mechanism is controlled through the kernel parameter
6000 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6001 * corresponding sysfs parameter file.
6002 */
6003#ifdef CONFIG_WQ_WATCHDOG
6004
82607adc 6005static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 6006static struct timer_list wq_watchdog_timer;
82607adc
TH
6007
6008static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6009static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6010
cd2440d6
PM
6011/*
6012 * Show workers that might prevent the processing of pending work items.
6013 * The only candidates are CPU-bound workers in the running state.
6014 * Pending work items should be handled by another idle worker
6015 * in all other situations.
6016 */
6017static void show_cpu_pool_hog(struct worker_pool *pool)
6018{
6019 struct worker *worker;
6020 unsigned long flags;
6021 int bkt;
6022
6023 raw_spin_lock_irqsave(&pool->lock, flags);
6024
6025 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6026 if (task_is_running(worker->task)) {
6027 /*
6028 * Defer printing to avoid deadlocks in console
6029 * drivers that queue work while holding locks
6030 * also taken in their write paths.
6031 */
6032 printk_deferred_enter();
6033
6034 pr_info("pool %d:\n", pool->id);
6035 sched_show_task(worker->task);
6036
6037 printk_deferred_exit();
6038 }
6039 }
6040
6041 raw_spin_unlock_irqrestore(&pool->lock, flags);
6042}
6043
6044static void show_cpu_pools_hogs(void)
6045{
6046 struct worker_pool *pool;
6047 int pi;
6048
6049 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6050
6051 rcu_read_lock();
6052
6053 for_each_pool(pool, pi) {
6054 if (pool->cpu_stall)
6055 show_cpu_pool_hog(pool);
6056
6057 }
6058
6059 rcu_read_unlock();
6060}
6061
82607adc
TH
6062static void wq_watchdog_reset_touched(void)
6063{
6064 int cpu;
6065
6066 wq_watchdog_touched = jiffies;
6067 for_each_possible_cpu(cpu)
6068 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6069}
6070
5cd79d6a 6071static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
6072{
6073 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6074 bool lockup_detected = false;
cd2440d6 6075 bool cpu_pool_stall = false;
940d71c6 6076 unsigned long now = jiffies;
82607adc
TH
6077 struct worker_pool *pool;
6078 int pi;
6079
6080 if (!thresh)
6081 return;
6082
6083 rcu_read_lock();
6084
6085 for_each_pool(pool, pi) {
6086 unsigned long pool_ts, touched, ts;
6087
cd2440d6 6088 pool->cpu_stall = false;
82607adc
TH
6089 if (list_empty(&pool->worklist))
6090 continue;
6091
940d71c6
SS
6092 /*
6093 * If a virtual machine is stopped by the host it can look to
6094 * the watchdog like a stall.
6095 */
6096 kvm_check_and_clear_guest_paused();
6097
82607adc 6098 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
6099 if (pool->cpu >= 0)
6100 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6101 else
6102 touched = READ_ONCE(wq_watchdog_touched);
82607adc 6103 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
6104
6105 if (time_after(pool_ts, touched))
6106 ts = pool_ts;
6107 else
6108 ts = touched;
6109
82607adc 6110 /* did we stall? */
940d71c6 6111 if (time_after(now, ts + thresh)) {
82607adc 6112 lockup_detected = true;
cd2440d6
PM
6113 if (pool->cpu >= 0) {
6114 pool->cpu_stall = true;
6115 cpu_pool_stall = true;
6116 }
82607adc
TH
6117 pr_emerg("BUG: workqueue lockup - pool");
6118 pr_cont_pool_info(pool);
6119 pr_cont(" stuck for %us!\n",
940d71c6 6120 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc 6121 }
cd2440d6
PM
6122
6123
82607adc
TH
6124 }
6125
6126 rcu_read_unlock();
6127
6128 if (lockup_detected)
55df0933 6129 show_all_workqueues();
82607adc 6130
cd2440d6
PM
6131 if (cpu_pool_stall)
6132 show_cpu_pools_hogs();
6133
82607adc
TH
6134 wq_watchdog_reset_touched();
6135 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6136}
6137
cb9d7fd5 6138notrace void wq_watchdog_touch(int cpu)
82607adc
TH
6139{
6140 if (cpu >= 0)
6141 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
6142
6143 wq_watchdog_touched = jiffies;
82607adc
TH
6144}
6145
6146static void wq_watchdog_set_thresh(unsigned long thresh)
6147{
6148 wq_watchdog_thresh = 0;
6149 del_timer_sync(&wq_watchdog_timer);
6150
6151 if (thresh) {
6152 wq_watchdog_thresh = thresh;
6153 wq_watchdog_reset_touched();
6154 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6155 }
6156}
6157
6158static int wq_watchdog_param_set_thresh(const char *val,
6159 const struct kernel_param *kp)
6160{
6161 unsigned long thresh;
6162 int ret;
6163
6164 ret = kstrtoul(val, 0, &thresh);
6165 if (ret)
6166 return ret;
6167
6168 if (system_wq)
6169 wq_watchdog_set_thresh(thresh);
6170 else
6171 wq_watchdog_thresh = thresh;
6172
6173 return 0;
6174}
6175
6176static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6177 .set = wq_watchdog_param_set_thresh,
6178 .get = param_get_ulong,
6179};
6180
6181module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6182 0644);
6183
6184static void wq_watchdog_init(void)
6185{
5cd79d6a 6186 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
6187 wq_watchdog_set_thresh(wq_watchdog_thresh);
6188}
6189
6190#else /* CONFIG_WQ_WATCHDOG */
6191
6192static inline void wq_watchdog_init(void) { }
6193
6194#endif /* CONFIG_WQ_WATCHDOG */
6195
bce90380
TH
6196static void __init wq_numa_init(void)
6197{
6198 cpumask_var_t *tbl;
6199 int node, cpu;
6200
bce90380
TH
6201 if (num_possible_nodes() <= 1)
6202 return;
6203
d55262c4
TH
6204 if (wq_disable_numa) {
6205 pr_info("workqueue: NUMA affinity support disabled\n");
6206 return;
6207 }
6208
f728c4a9
ZL
6209 for_each_possible_cpu(cpu) {
6210 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6211 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6212 return;
6213 }
6214 }
6215
be69d00d 6216 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
6217 BUG_ON(!wq_update_unbound_numa_attrs_buf);
6218
bce90380
TH
6219 /*
6220 * We want masks of possible CPUs of each node which isn't readily
6221 * available. Build one from cpu_to_node() which should have been
6222 * fully initialized by now.
6223 */
6396bb22 6224 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
6225 BUG_ON(!tbl);
6226
6227 for_each_node(node)
5a6024f1 6228 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 6229 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
6230
6231 for_each_possible_cpu(cpu) {
6232 node = cpu_to_node(cpu);
bce90380
TH
6233 cpumask_set_cpu(cpu, tbl[node]);
6234 }
6235
6236 wq_numa_possible_cpumask = tbl;
6237 wq_numa_enabled = true;
6238}
6239
3347fa09
TH
6240/**
6241 * workqueue_init_early - early init for workqueue subsystem
6242 *
6243 * This is the first half of two-staged workqueue subsystem initialization
6244 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6245 * idr are up. It sets up all the data structures and system workqueues
6246 * and allows early boot code to create workqueues and queue/cancel work
6247 * items. Actual work item execution starts only after kthreads can be
6248 * created and scheduled right before early initcalls.
6249 */
2333e829 6250void __init workqueue_init_early(void)
1da177e4 6251{
7a4e344c
TH
6252 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6253 int i, cpu;
c34056a3 6254
10cdb157 6255 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 6256
b05a7928 6257 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
04d4e665
FW
6258 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6259 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
b05a7928 6260
e904e6c2
TH
6261 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6262
706026c2 6263 /* initialize CPU pools */
29c91e99 6264 for_each_possible_cpu(cpu) {
4ce62e9e 6265 struct worker_pool *pool;
8b03ae3c 6266
7a4e344c 6267 i = 0;
f02ae73a 6268 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 6269 BUG_ON(init_worker_pool(pool));
ec22ca5e 6270 pool->cpu = cpu;
29c91e99 6271 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 6272 pool->attrs->nice = std_nice[i++];
f3f90ad4 6273 pool->node = cpu_to_node(cpu);
7a4e344c 6274
9daf9e67 6275 /* alloc pool ID */
68e13a67 6276 mutex_lock(&wq_pool_mutex);
9daf9e67 6277 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6278 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6279 }
8b03ae3c
TH
6280 }
6281
8a2b7538 6282 /* create default unbound and ordered wq attrs */
29c91e99
TH
6283 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6284 struct workqueue_attrs *attrs;
6285
be69d00d 6286 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6287 attrs->nice = std_nice[i];
29c91e99 6288 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6289
6290 /*
6291 * An ordered wq should have only one pwq as ordering is
6292 * guaranteed by max_active which is enforced by pwqs.
6293 * Turn off NUMA so that dfl_pwq is used for all nodes.
6294 */
be69d00d 6295 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
6296 attrs->nice = std_nice[i];
6297 attrs->no_numa = true;
6298 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6299 }
6300
d320c038 6301 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6302 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6303 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
6304 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6305 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
6306 system_freezable_wq = alloc_workqueue("events_freezable",
6307 WQ_FREEZABLE, 0);
0668106c
VK
6308 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6309 WQ_POWER_EFFICIENT, 0);
6310 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6311 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6312 0);
1aabe902 6313 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6314 !system_unbound_wq || !system_freezable_wq ||
6315 !system_power_efficient_wq ||
6316 !system_freezable_power_efficient_wq);
3347fa09
TH
6317}
6318
6319/**
6320 * workqueue_init - bring workqueue subsystem fully online
6321 *
6322 * This is the latter half of two-staged workqueue subsystem initialization
6323 * and invoked as soon as kthreads can be created and scheduled.
6324 * Workqueues have been created and work items queued on them, but there
6325 * are no kworkers executing the work items yet. Populate the worker pools
6326 * with the initial workers and enable future kworker creations.
6327 */
2333e829 6328void __init workqueue_init(void)
3347fa09 6329{
2186d9f9 6330 struct workqueue_struct *wq;
3347fa09
TH
6331 struct worker_pool *pool;
6332 int cpu, bkt;
6333
2186d9f9
TH
6334 /*
6335 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6336 * CPU to node mapping may not be available that early on some
6337 * archs such as power and arm64. As per-cpu pools created
6338 * previously could be missing node hint and unbound pools NUMA
6339 * affinity, fix them up.
40c17f75
TH
6340 *
6341 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6342 */
6343 wq_numa_init();
6344
6345 mutex_lock(&wq_pool_mutex);
6346
6347 for_each_possible_cpu(cpu) {
6348 for_each_cpu_worker_pool(pool, cpu) {
6349 pool->node = cpu_to_node(cpu);
6350 }
6351 }
6352
40c17f75 6353 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6354 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6355 WARN(init_rescuer(wq),
6356 "workqueue: failed to create early rescuer for %s",
6357 wq->name);
6358 }
2186d9f9
TH
6359
6360 mutex_unlock(&wq_pool_mutex);
6361
3347fa09
TH
6362 /* create the initial workers */
6363 for_each_online_cpu(cpu) {
6364 for_each_cpu_worker_pool(pool, cpu) {
6365 pool->flags &= ~POOL_DISASSOCIATED;
6366 BUG_ON(!create_worker(pool));
6367 }
6368 }
6369
6370 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6371 BUG_ON(!create_worker(pool));
6372
6373 wq_online = true;
82607adc 6374 wq_watchdog_init();
1da177e4 6375}
c4f135d6
TH
6376
6377/*
6378 * Despite the naming, this is a no-op function which is here only for avoiding
6379 * link error. Since compile-time warning may fail to catch, we will need to
6380 * emit run-time warning from __flush_workqueue().
6381 */
6382void __warn_flushing_systemwide_wq(void) { }
6383EXPORT_SYMBOL(__warn_flushing_systemwide_wq);