tracing/user_events: Fix non-spaced field matching
[linux-2.6-block.git] / kernel / trace / trace_events_user.c
CommitLineData
7f5a08c7
BB
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 * Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/cdev.h>
11#include <linux/hashtable.h>
12#include <linux/list.h>
13#include <linux/io.h>
14#include <linux/uio.h>
15#include <linux/ioctl.h>
16#include <linux/jhash.h>
d401b724 17#include <linux/refcount.h>
7f5a08c7
BB
18#include <linux/trace_events.h>
19#include <linux/tracefs.h>
20#include <linux/types.h>
21#include <linux/uaccess.h>
72357590 22#include <linux/highmem.h>
ce58e96e 23#include <linux/init.h>
5cfff569 24#include <linux/user_events.h>
7f5a08c7 25#include "trace_dynevent.h"
4bec284c
SRG
26#include "trace_output.h"
27#include "trace.h"
7f5a08c7
BB
28
29#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31#define FIELD_DEPTH_TYPE 0
32#define FIELD_DEPTH_NAME 1
33#define FIELD_DEPTH_SIZE 2
34
7f5a08c7
BB
35/* Limit how long of an event name plus args within the subsystem. */
36#define MAX_EVENT_DESC 512
64805e40
BB
37#define EVENT_NAME(user_event) ((user_event)->reg_name)
38#define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
7f5a08c7
BB
39#define MAX_FIELD_ARRAY_SIZE 1024
40
39d6d08b
BB
41/*
42 * Internal bits (kernel side only) to keep track of connected probes:
43 * These are used when status is requested in text form about an event. These
44 * bits are compared against an internal byte on the event to determine which
45 * probes to print out to the user.
46 *
47 * These do not reflect the mapped bytes between the user and kernel space.
48 */
49#define EVENT_STATUS_FTRACE BIT(0)
50#define EVENT_STATUS_PERF BIT(1)
51#define EVENT_STATUS_OTHER BIT(7)
52
e5d27181 53/*
72357590
BB
54 * Stores the system name, tables, and locks for a group of events. This
55 * allows isolation for events by various means.
e5d27181
BB
56 */
57struct user_event_group {
64805e40
BB
58 char *system_name;
59 char *system_multi_name;
60 struct hlist_node node;
61 struct mutex reg_mutex;
e5d27181 62 DECLARE_HASHTABLE(register_table, 8);
64805e40
BB
63 /* ID that moves forward within the group for multi-event names */
64 u64 multi_id;
e5d27181 65};
7f5a08c7 66
e5d27181
BB
67/* Group for init_user_ns mapping, top-most group */
68static struct user_event_group *init_group;
7f5a08c7 69
ce58e96e
BB
70/* Max allowed events for the whole system */
71static unsigned int max_user_events = 32768;
72
73/* Current number of events on the whole system */
74static unsigned int current_user_events;
75
7f5a08c7
BB
76/*
77 * Stores per-event properties, as users register events
78 * within a file a user_event might be created if it does not
79 * already exist. These are globally used and their lifetime
80 * is tied to the refcnt member. These cannot go away until the
d401b724 81 * refcnt reaches one.
7f5a08c7
BB
82 */
83struct user_event {
a4c40c13 84 struct user_event_group *group;
64805e40 85 char *reg_name;
a4c40c13
BB
86 struct tracepoint tracepoint;
87 struct trace_event_call call;
88 struct trace_event_class class;
89 struct dyn_event devent;
90 struct hlist_node node;
91 struct list_head fields;
92 struct list_head validators;
a65442ed 93 struct work_struct put_work;
a4c40c13
BB
94 refcount_t refcnt;
95 int min_size;
b08d7258 96 int reg_flags;
a4c40c13 97 char status;
7f5a08c7
BB
98};
99
72357590
BB
100/*
101 * Stores per-mm/event properties that enable an address to be
102 * updated properly for each task. As tasks are forked, we use
103 * these to track enablement sites that are tied to an event.
104 */
105struct user_event_enabler {
dcbd1ac2 106 struct list_head mm_enablers_link;
a4c40c13
BB
107 struct user_event *event;
108 unsigned long addr;
72357590
BB
109
110 /* Track enable bit, flags, etc. Aligned for bitops. */
ee7751b5 111 unsigned long values;
72357590
BB
112};
113
114/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
115#define ENABLE_VAL_BIT_MASK 0x3F
116
81f8fb65
BB
117/* Bit 6 is for faulting status of enablement */
118#define ENABLE_VAL_FAULTING_BIT 6
119
dcb8177c
BB
120/* Bit 7 is for freeing status of enablement */
121#define ENABLE_VAL_FREEING_BIT 7
122
2de9ee94
BB
123/* Bit 8 is for marking 32-bit on 64-bit */
124#define ENABLE_VAL_32_ON_64_BIT 8
125
126#define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
127
128/* Only duplicate the bit and compat values */
129#define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
72357590 130
ee7751b5
BB
131#define ENABLE_BITOPS(e) (&(e)->values)
132
133#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
81f8fb65 134
64805e40
BB
135#define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
136
81f8fb65
BB
137/* Used for asynchronous faulting in of pages */
138struct user_event_enabler_fault {
a4c40c13
BB
139 struct work_struct work;
140 struct user_event_mm *mm;
141 struct user_event_enabler *enabler;
41d8fba1 142 int attempt;
81f8fb65
BB
143};
144
145static struct kmem_cache *fault_cache;
146
72357590
BB
147/* Global list of memory descriptors using user_events */
148static LIST_HEAD(user_event_mms);
149static DEFINE_SPINLOCK(user_event_mms_lock);
150
7f5a08c7
BB
151/*
152 * Stores per-file events references, as users register events
153 * within a file this structure is modified and freed via RCU.
154 * The lifetime of this struct is tied to the lifetime of the file.
155 * These are not shared and only accessible by the file that created it.
156 */
157struct user_event_refs {
a4c40c13
BB
158 struct rcu_head rcu;
159 int count;
160 struct user_event *events[];
7f5a08c7
BB
161};
162
e5d27181 163struct user_event_file_info {
a4c40c13
BB
164 struct user_event_group *group;
165 struct user_event_refs *refs;
e5d27181
BB
166};
167
2467cda1
BB
168#define VALIDATOR_ENSURE_NULL (1 << 0)
169#define VALIDATOR_REL (1 << 1)
170
171struct user_event_validator {
dcbd1ac2 172 struct list_head user_event_link;
a4c40c13
BB
173 int offset;
174 int flags;
2467cda1
BB
175};
176
2de9ee94
BB
177static inline void align_addr_bit(unsigned long *addr, int *bit,
178 unsigned long *flags)
179{
180 if (IS_ALIGNED(*addr, sizeof(long))) {
181#ifdef __BIG_ENDIAN
182 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
183 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
184 *bit += 32;
185#endif
186 return;
187 }
188
189 *addr = ALIGN_DOWN(*addr, sizeof(long));
190
191 /*
192 * We only support 32 and 64 bit values. The only time we need
193 * to align is a 32 bit value on a 64 bit kernel, which on LE
194 * is always 32 bits, and on BE requires no change when unaligned.
195 */
196#ifdef __LITTLE_ENDIAN
197 *bit += 32;
198#endif
199}
200
0279400a 201typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
2467cda1 202 void *tpdata, bool *faulted);
7f5a08c7 203
e5d27181
BB
204static int user_event_parse(struct user_event_group *group, char *name,
205 char *args, char *flags,
b08d7258 206 struct user_event **newuser, int reg_flags);
7f5a08c7 207
72357590
BB
208static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
209static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
210static void user_event_mm_put(struct user_event_mm *mm);
a65442ed 211static int destroy_user_event(struct user_event *user);
1e953de9
BB
212static bool user_fields_match(struct user_event *user, int argc,
213 const char **argv);
72357590 214
7f5a08c7
BB
215static u32 user_event_key(char *name)
216{
217 return jhash(name, strlen(name), 0);
218}
219
5dbd04ed
BB
220static bool user_event_capable(u16 reg_flags)
221{
222 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
223 if (reg_flags & USER_EVENT_REG_PERSIST) {
224 if (!perfmon_capable())
225 return false;
226 }
227
228 return true;
229}
230
f0dbf6fd
BB
231static struct user_event *user_event_get(struct user_event *user)
232{
233 refcount_inc(&user->refcnt);
234
235 return user;
236}
237
a65442ed
BB
238static void delayed_destroy_user_event(struct work_struct *work)
239{
240 struct user_event *user = container_of(
241 work, struct user_event, put_work);
242
243 mutex_lock(&event_mutex);
244
245 if (!refcount_dec_and_test(&user->refcnt))
246 goto out;
247
248 if (destroy_user_event(user)) {
249 /*
250 * The only reason this would fail here is if we cannot
251 * update the visibility of the event. In this case the
252 * event stays in the hashtable, waiting for someone to
253 * attempt to delete it later.
254 */
255 pr_warn("user_events: Unable to delete event\n");
256 refcount_set(&user->refcnt, 1);
257 }
258out:
259 mutex_unlock(&event_mutex);
260}
261
f0dbf6fd
BB
262static void user_event_put(struct user_event *user, bool locked)
263{
a65442ed 264 bool delete;
f0dbf6fd
BB
265
266 if (unlikely(!user))
267 return;
268
a65442ed
BB
269 /*
270 * When the event is not enabled for auto-delete there will always
271 * be at least 1 reference to the event. During the event creation
272 * we initially set the refcnt to 2 to achieve this. In those cases
273 * the caller must acquire event_mutex and after decrement check if
274 * the refcnt is 1, meaning this is the last reference. When auto
275 * delete is enabled, there will only be 1 ref, IE: refcnt will be
276 * only set to 1 during creation to allow the below checks to go
277 * through upon the last put. The last put must always be done with
278 * the event mutex held.
279 */
280 if (!locked) {
281 lockdep_assert_not_held(&event_mutex);
282 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
283 } else {
284 lockdep_assert_held(&event_mutex);
285 delete = refcount_dec_and_test(&user->refcnt);
286 }
287
288 if (!delete)
289 return;
290
291 /*
292 * We now have the event_mutex in all cases, which ensures that
293 * no new references will be taken until event_mutex is released.
294 * New references come through find_user_event(), which requires
295 * the event_mutex to be held.
296 */
297
298 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
299 /* We should not get here when persist flag is set */
300 pr_alert("BUG: Auto-delete engaged on persistent event\n");
301 goto out;
302 }
303
304 /*
305 * Unfortunately we have to attempt the actual destroy in a work
306 * queue. This is because not all cases handle a trace_event_call
307 * being removed within the class->reg() operation for unregister.
308 */
309 INIT_WORK(&user->put_work, delayed_destroy_user_event);
310
311 /*
312 * Since the event is still in the hashtable, we have to re-inc
313 * the ref count to 1. This count will be decremented and checked
314 * in the work queue to ensure it's still the last ref. This is
315 * needed because a user-process could register the same event in
316 * between the time of event_mutex release and the work queue
317 * running the delayed destroy. If we removed the item now from
318 * the hashtable, this would result in a timing window where a
319 * user process would fail a register because the trace_event_call
320 * register would fail in the tracing layers.
321 */
322 refcount_set(&user->refcnt, 1);
323
324 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
325 /*
326 * If we fail we must wait for an admin to attempt delete or
327 * another register/close of the event, whichever is first.
328 */
329 pr_warn("user_events: Unable to queue delayed destroy\n");
330 }
331out:
332 /* Ensure if we didn't have event_mutex before we unlock it */
333 if (!locked)
334 mutex_unlock(&event_mutex);
f0dbf6fd
BB
335}
336
e5d27181
BB
337static void user_event_group_destroy(struct user_event_group *group)
338{
e5d27181 339 kfree(group->system_name);
64805e40 340 kfree(group->system_multi_name);
e5d27181
BB
341 kfree(group);
342}
343
ed0e0ae0 344static char *user_event_group_system_name(void)
e5d27181
BB
345{
346 char *system_name;
347 int len = sizeof(USER_EVENTS_SYSTEM) + 1;
348
e5d27181
BB
349 system_name = kmalloc(len, GFP_KERNEL);
350
351 if (!system_name)
352 return NULL;
353
354 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
355
356 return system_name;
357}
358
64805e40
BB
359static char *user_event_group_system_multi_name(void)
360{
361 return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
362}
363
e5d27181
BB
364static struct user_event_group *current_user_event_group(void)
365{
ed0e0ae0 366 return init_group;
e5d27181
BB
367}
368
ed0e0ae0 369static struct user_event_group *user_event_group_create(void)
e5d27181
BB
370{
371 struct user_event_group *group;
372
373 group = kzalloc(sizeof(*group), GFP_KERNEL);
374
375 if (!group)
376 return NULL;
377
ed0e0ae0 378 group->system_name = user_event_group_system_name();
e5d27181
BB
379
380 if (!group->system_name)
381 goto error;
382
64805e40
BB
383 group->system_multi_name = user_event_group_system_multi_name();
384
385 if (!group->system_multi_name)
386 goto error;
387
e5d27181
BB
388 mutex_init(&group->reg_mutex);
389 hash_init(group->register_table);
390
391 return group;
392error:
393 if (group)
394 user_event_group_destroy(group);
395
396 return NULL;
397};
398
f0dbf6fd
BB
399static void user_event_enabler_destroy(struct user_event_enabler *enabler,
400 bool locked)
72357590 401{
dcbd1ac2 402 list_del_rcu(&enabler->mm_enablers_link);
72357590
BB
403
404 /* No longer tracking the event via the enabler */
f0dbf6fd 405 user_event_put(enabler->event, locked);
72357590
BB
406
407 kfree(enabler);
408}
409
41d8fba1
BB
410static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
411 int attempt)
72357590
BB
412{
413 bool unlocked;
414 int ret;
415
41d8fba1
BB
416 /*
417 * Normally this is low, ensure that it cannot be taken advantage of by
418 * bad user processes to cause excessive looping.
419 */
420 if (attempt > 10)
421 return -EFAULT;
422
72357590
BB
423 mmap_read_lock(mm->mm);
424
425 /* Ensure MM has tasks, cannot use after exit_mm() */
426 if (refcount_read(&mm->tasks) == 0) {
427 ret = -ENOENT;
428 goto out;
429 }
430
431 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
432 &unlocked);
433out:
434 mmap_read_unlock(mm->mm);
435
436 return ret;
437}
438
439static int user_event_enabler_write(struct user_event_mm *mm,
81f8fb65 440 struct user_event_enabler *enabler,
41d8fba1 441 bool fixup_fault, int *attempt);
81f8fb65
BB
442
443static void user_event_enabler_fault_fixup(struct work_struct *work)
444{
445 struct user_event_enabler_fault *fault = container_of(
446 work, struct user_event_enabler_fault, work);
447 struct user_event_enabler *enabler = fault->enabler;
448 struct user_event_mm *mm = fault->mm;
449 unsigned long uaddr = enabler->addr;
41d8fba1 450 int attempt = fault->attempt;
81f8fb65
BB
451 int ret;
452
41d8fba1 453 ret = user_event_mm_fault_in(mm, uaddr, attempt);
81f8fb65
BB
454
455 if (ret && ret != -ENOENT) {
456 struct user_event *user = enabler->event;
457
458 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
459 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
460 }
461
462 /* Prevent state changes from racing */
463 mutex_lock(&event_mutex);
464
dcb8177c
BB
465 /* User asked for enabler to be removed during fault */
466 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
f0dbf6fd 467 user_event_enabler_destroy(enabler, true);
dcb8177c
BB
468 goto out;
469 }
470
81f8fb65
BB
471 /*
472 * If we managed to get the page, re-issue the write. We do not
473 * want to get into a possible infinite loop, which is why we only
474 * attempt again directly if the page came in. If we couldn't get
475 * the page here, then we will try again the next time the event is
476 * enabled/disabled.
477 */
478 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
479
480 if (!ret) {
481 mmap_read_lock(mm->mm);
41d8fba1 482 user_event_enabler_write(mm, enabler, true, &attempt);
81f8fb65
BB
483 mmap_read_unlock(mm->mm);
484 }
dcb8177c 485out:
81f8fb65
BB
486 mutex_unlock(&event_mutex);
487
488 /* In all cases we no longer need the mm or fault */
489 user_event_mm_put(mm);
490 kmem_cache_free(fault_cache, fault);
491}
492
493static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
41d8fba1
BB
494 struct user_event_enabler *enabler,
495 int attempt)
81f8fb65
BB
496{
497 struct user_event_enabler_fault *fault;
498
499 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
500
501 if (!fault)
502 return false;
503
504 INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
505 fault->mm = user_event_mm_get(mm);
506 fault->enabler = enabler;
41d8fba1 507 fault->attempt = attempt;
81f8fb65
BB
508
509 /* Don't try to queue in again while we have a pending fault */
510 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
511
512 if (!schedule_work(&fault->work)) {
513 /* Allow another attempt later */
514 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
515
516 user_event_mm_put(mm);
517 kmem_cache_free(fault_cache, fault);
518
519 return false;
520 }
521
522 return true;
523}
524
525static int user_event_enabler_write(struct user_event_mm *mm,
526 struct user_event_enabler *enabler,
41d8fba1 527 bool fixup_fault, int *attempt)
72357590
BB
528{
529 unsigned long uaddr = enabler->addr;
530 unsigned long *ptr;
531 struct page *page;
532 void *kaddr;
2de9ee94 533 int bit = ENABLE_BIT(enabler);
72357590
BB
534 int ret;
535
536 lockdep_assert_held(&event_mutex);
537 mmap_assert_locked(mm->mm);
538
41d8fba1
BB
539 *attempt += 1;
540
72357590
BB
541 /* Ensure MM has tasks, cannot use after exit_mm() */
542 if (refcount_read(&mm->tasks) == 0)
543 return -ENOENT;
544
dcb8177c
BB
545 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
546 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
81f8fb65
BB
547 return -EBUSY;
548
2de9ee94
BB
549 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
550
72357590 551 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
0b295316 552 &page, NULL);
72357590 553
81f8fb65
BB
554 if (unlikely(ret <= 0)) {
555 if (!fixup_fault)
556 return -EFAULT;
557
41d8fba1 558 if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
81f8fb65
BB
559 pr_warn("user_events: Unable to queue fault handler\n");
560
72357590
BB
561 return -EFAULT;
562 }
563
564 kaddr = kmap_local_page(page);
565 ptr = kaddr + (uaddr & ~PAGE_MASK);
566
567 /* Update bit atomically, user tracers must be atomic as well */
568 if (enabler->event && enabler->event->status)
2de9ee94 569 set_bit(bit, ptr);
72357590 570 else
2de9ee94 571 clear_bit(bit, ptr);
72357590
BB
572
573 kunmap_local(kaddr);
574 unpin_user_pages_dirty_lock(&page, 1, true);
575
576 return 0;
577}
578
97bbce89
BB
579static bool user_event_enabler_exists(struct user_event_mm *mm,
580 unsigned long uaddr, unsigned char bit)
581{
582 struct user_event_enabler *enabler;
97bbce89 583
dcbd1ac2 584 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
ee7751b5 585 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
97bbce89
BB
586 return true;
587 }
588
589 return false;
590}
591
72357590
BB
592static void user_event_enabler_update(struct user_event *user)
593{
594 struct user_event_enabler *enabler;
72357590 595 struct user_event_mm *next;
ff9e1632 596 struct user_event_mm *mm;
41d8fba1 597 int attempt;
72357590 598
aaecdaf9
LT
599 lockdep_assert_held(&event_mutex);
600
ff9e1632
BB
601 /*
602 * We need to build a one-shot list of all the mms that have an
603 * enabler for the user_event passed in. This list is only valid
604 * while holding the event_mutex. The only reason for this is due
605 * to the global mm list being RCU protected and we use methods
606 * which can wait (mmap_read_lock and pin_user_pages_remote).
607 *
608 * NOTE: user_event_mm_get_all() increments the ref count of each
609 * mm that is added to the list to prevent removal timing windows.
610 * We must always put each mm after they are used, which may wait.
611 */
612 mm = user_event_mm_get_all(user);
613
72357590
BB
614 while (mm) {
615 next = mm->next;
616 mmap_read_lock(mm->mm);
72357590 617
dcbd1ac2 618 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
41d8fba1
BB
619 if (enabler->event == user) {
620 attempt = 0;
621 user_event_enabler_write(mm, enabler, true, &attempt);
622 }
623 }
72357590 624
72357590
BB
625 mmap_read_unlock(mm->mm);
626 user_event_mm_put(mm);
627 mm = next;
628 }
629}
630
631static bool user_event_enabler_dup(struct user_event_enabler *orig,
632 struct user_event_mm *mm)
633{
634 struct user_event_enabler *enabler;
635
dcb8177c
BB
636 /* Skip pending frees */
637 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
638 return true;
639
f9cce238 640 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
72357590
BB
641
642 if (!enabler)
643 return false;
644
f0dbf6fd 645 enabler->event = user_event_get(orig->event);
72357590
BB
646 enabler->addr = orig->addr;
647
648 /* Only dup part of value (ignore future flags, etc) */
649 enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
650
aaecdaf9 651 /* Enablers not exposed yet, RCU not required */
dcbd1ac2 652 list_add(&enabler->mm_enablers_link, &mm->enablers);
72357590
BB
653
654 return true;
655}
656
657static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
658{
659 refcount_inc(&mm->refcnt);
660
661 return mm;
662}
663
664static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
665{
666 struct user_event_mm *found = NULL;
667 struct user_event_enabler *enabler;
668 struct user_event_mm *mm;
669
ff9e1632
BB
670 /*
671 * We use the mm->next field to build a one-shot list from the global
672 * RCU protected list. To build this list the event_mutex must be held.
673 * This lets us build a list without requiring allocs that could fail
674 * when user based events are most wanted for diagnostics.
675 */
676 lockdep_assert_held(&event_mutex);
677
72357590
BB
678 /*
679 * We do not want to block fork/exec while enablements are being
680 * updated, so we use RCU to walk the current tasks that have used
681 * user_events ABI for 1 or more events. Each enabler found in each
682 * task that matches the event being updated has a write to reflect
683 * the kernel state back into the process. Waits/faults must not occur
684 * during this. So we scan the list under RCU for all the mm that have
685 * the event within it. This is needed because mm_read_lock() can wait.
686 * Each user mm returned has a ref inc to handle remove RCU races.
687 */
688 rcu_read_lock();
689
dcbd1ac2
BB
690 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
691 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
72357590
BB
692 if (enabler->event == user) {
693 mm->next = found;
694 found = user_event_mm_get(mm);
695 break;
696 }
dcbd1ac2
BB
697 }
698 }
72357590
BB
699
700 rcu_read_unlock();
701
702 return found;
703}
704
3e0fea09 705static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
72357590
BB
706{
707 struct user_event_mm *user_mm;
72357590 708
f9cce238 709 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
72357590
BB
710
711 if (!user_mm)
712 return NULL;
713
714 user_mm->mm = t->mm;
715 INIT_LIST_HEAD(&user_mm->enablers);
716 refcount_set(&user_mm->refcnt, 1);
717 refcount_set(&user_mm->tasks, 1);
718
72357590
BB
719 /*
720 * The lifetime of the memory descriptor can slightly outlast
721 * the task lifetime if a ref to the user_event_mm is taken
722 * between list_del_rcu() and call_rcu(). Therefore we need
723 * to take a reference to it to ensure it can live this long
724 * under this corner case. This can also occur in clones that
725 * outlast the parent.
726 */
727 mmgrab(user_mm->mm);
728
729 return user_mm;
730}
731
3e0fea09
LT
732static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
733{
734 unsigned long flags;
735
736 spin_lock_irqsave(&user_event_mms_lock, flags);
dcbd1ac2 737 list_add_rcu(&user_mm->mms_link, &user_event_mms);
3e0fea09
LT
738 spin_unlock_irqrestore(&user_event_mms_lock, flags);
739
740 t->user_event_mm = user_mm;
741}
742
72357590
BB
743static struct user_event_mm *current_user_event_mm(void)
744{
745 struct user_event_mm *user_mm = current->user_event_mm;
746
747 if (user_mm)
748 goto inc;
749
3e0fea09 750 user_mm = user_event_mm_alloc(current);
72357590
BB
751
752 if (!user_mm)
753 goto error;
3e0fea09
LT
754
755 user_event_mm_attach(user_mm, current);
72357590
BB
756inc:
757 refcount_inc(&user_mm->refcnt);
758error:
759 return user_mm;
760}
761
762static void user_event_mm_destroy(struct user_event_mm *mm)
763{
764 struct user_event_enabler *enabler, *next;
765
dcbd1ac2 766 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
f0dbf6fd 767 user_event_enabler_destroy(enabler, false);
72357590
BB
768
769 mmdrop(mm->mm);
770 kfree(mm);
771}
772
773static void user_event_mm_put(struct user_event_mm *mm)
774{
775 if (mm && refcount_dec_and_test(&mm->refcnt))
776 user_event_mm_destroy(mm);
777}
778
779static void delayed_user_event_mm_put(struct work_struct *work)
780{
781 struct user_event_mm *mm;
782
783 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
784 user_event_mm_put(mm);
785}
786
787void user_event_mm_remove(struct task_struct *t)
39d6d08b 788{
72357590
BB
789 struct user_event_mm *mm;
790 unsigned long flags;
791
792 might_sleep();
793
794 mm = t->user_event_mm;
795 t->user_event_mm = NULL;
796
797 /* Clone will increment the tasks, only remove if last clone */
798 if (!refcount_dec_and_test(&mm->tasks))
799 return;
800
801 /* Remove the mm from the list, so it can no longer be enabled */
802 spin_lock_irqsave(&user_event_mms_lock, flags);
dcbd1ac2 803 list_del_rcu(&mm->mms_link);
72357590
BB
804 spin_unlock_irqrestore(&user_event_mms_lock, flags);
805
806 /*
807 * We need to wait for currently occurring writes to stop within
808 * the mm. This is required since exit_mm() snaps the current rss
809 * stats and clears them. On the final mmdrop(), check_mm() will
810 * report a bug if these increment.
811 *
812 * All writes/pins are done under mmap_read lock, take the write
813 * lock to ensure in-progress faults have completed. Faults that
814 * are pending but yet to run will check the task count and skip
815 * the fault since the mm is going away.
816 */
817 mmap_write_lock(mm->mm);
818 mmap_write_unlock(mm->mm);
39d6d08b 819
72357590
BB
820 /*
821 * Put for mm must be done after RCU delay to handle new refs in
822 * between the list_del_rcu() and now. This ensures any get refs
823 * during rcu_read_lock() are accounted for during list removal.
824 *
825 * CPU A | CPU B
826 * ---------------------------------------------------------------
827 * user_event_mm_remove() | rcu_read_lock();
828 * list_del_rcu() | list_for_each_entry_rcu();
829 * call_rcu() | refcount_inc();
830 * . | rcu_read_unlock();
831 * schedule_work() | .
832 * user_event_mm_put() | .
833 *
834 * mmdrop() cannot be called in the softirq context of call_rcu()
835 * so we use a work queue after call_rcu() to run within.
836 */
837 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
838 queue_rcu_work(system_wq, &mm->put_rwork);
39d6d08b
BB
839}
840
72357590 841void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
39d6d08b 842{
3e0fea09 843 struct user_event_mm *mm = user_event_mm_alloc(t);
72357590 844 struct user_event_enabler *enabler;
39d6d08b 845
72357590
BB
846 if (!mm)
847 return;
848
849 rcu_read_lock();
850
dcbd1ac2 851 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
72357590
BB
852 if (!user_event_enabler_dup(enabler, mm))
853 goto error;
dcbd1ac2 854 }
72357590
BB
855
856 rcu_read_unlock();
857
3e0fea09 858 user_event_mm_attach(mm, t);
72357590
BB
859 return;
860error:
861 rcu_read_unlock();
3e0fea09 862 user_event_mm_destroy(mm);
72357590
BB
863}
864
97bbce89
BB
865static bool current_user_event_enabler_exists(unsigned long uaddr,
866 unsigned char bit)
867{
868 struct user_event_mm *user_mm = current_user_event_mm();
869 bool exists;
870
871 if (!user_mm)
872 return false;
873
874 exists = user_event_enabler_exists(user_mm, uaddr, bit);
875
876 user_event_mm_put(user_mm);
877
878 return exists;
879}
880
72357590
BB
881static struct user_event_enabler
882*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
883 int *write_result)
884{
885 struct user_event_enabler *enabler;
886 struct user_event_mm *user_mm;
887 unsigned long uaddr = (unsigned long)reg->enable_addr;
41d8fba1 888 int attempt = 0;
72357590
BB
889
890 user_mm = current_user_event_mm();
891
892 if (!user_mm)
893 return NULL;
894
f9cce238 895 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
72357590
BB
896
897 if (!enabler)
898 goto out;
899
900 enabler->event = user;
901 enabler->addr = uaddr;
902 enabler->values = reg->enable_bit;
2de9ee94
BB
903
904#if BITS_PER_LONG >= 64
905 if (reg->enable_size == 4)
906 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
907#endif
908
72357590
BB
909retry:
910 /* Prevents state changes from racing with new enablers */
911 mutex_lock(&event_mutex);
912
913 /* Attempt to reflect the current state within the process */
914 mmap_read_lock(user_mm->mm);
41d8fba1
BB
915 *write_result = user_event_enabler_write(user_mm, enabler, false,
916 &attempt);
72357590
BB
917 mmap_read_unlock(user_mm->mm);
918
919 /*
920 * If the write works, then we will track the enabler. A ref to the
921 * underlying user_event is held by the enabler to prevent it going
922 * away while the enabler is still in use by a process. The ref is
923 * removed when the enabler is destroyed. This means a event cannot
924 * be forcefully deleted from the system until all tasks using it
925 * exit or run exec(), which includes forks and clones.
926 */
927 if (!*write_result) {
f0dbf6fd 928 user_event_get(user);
dcbd1ac2 929 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
72357590
BB
930 }
931
932 mutex_unlock(&event_mutex);
933
934 if (*write_result) {
935 /* Attempt to fault-in and retry if it worked */
41d8fba1 936 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
72357590
BB
937 goto retry;
938
939 kfree(enabler);
940 enabler = NULL;
941 }
942out:
943 user_event_mm_put(user_mm);
944
945 return enabler;
39d6d08b
BB
946}
947
d401b724
BB
948static __always_inline __must_check
949bool user_event_last_ref(struct user_event *user)
950{
a65442ed
BB
951 int last = 0;
952
953 if (user->reg_flags & USER_EVENT_REG_PERSIST)
954 last = 1;
955
956 return refcount_read(&user->refcnt) == last;
d401b724
BB
957}
958
0279400a
BB
959static __always_inline __must_check
960size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
961{
962 size_t ret;
963
964 pagefault_disable();
965
966 ret = copy_from_iter_nocache(addr, bytes, i);
967
968 pagefault_enable();
969
970 return ret;
971}
972
7f5a08c7
BB
973static struct list_head *user_event_get_fields(struct trace_event_call *call)
974{
975 struct user_event *user = (struct user_event *)call->data;
976
977 return &user->fields;
978}
979
980/*
981 * Parses a register command for user_events
982 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
983 *
984 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
985 * 'id' field after:
986 * test char[20] msg;unsigned int id
987 *
988 * NOTE: Offsets are from the user data perspective, they are not from the
989 * trace_entry/buffer perspective. We automatically add the common properties
990 * sizes to the offset for the user.
7e348b32
BB
991 *
992 * Upon success user_event has its ref count increased by 1.
7f5a08c7 993 */
e5d27181 994static int user_event_parse_cmd(struct user_event_group *group,
b08d7258
BB
995 char *raw_command, struct user_event **newuser,
996 int reg_flags)
7f5a08c7
BB
997{
998 char *name = raw_command;
999 char *args = strpbrk(name, " ");
1000 char *flags;
1001
1002 if (args)
1003 *args++ = '\0';
1004
1005 flags = strpbrk(name, ":");
1006
1007 if (flags)
1008 *flags++ = '\0';
1009
b08d7258 1010 return user_event_parse(group, name, args, flags, newuser, reg_flags);
7f5a08c7
BB
1011}
1012
1013static int user_field_array_size(const char *type)
1014{
1015 const char *start = strchr(type, '[');
1016 char val[8];
1017 char *bracket;
1018 int size = 0;
1019
1020 if (start == NULL)
1021 return -EINVAL;
1022
1023 if (strscpy(val, start + 1, sizeof(val)) <= 0)
1024 return -EINVAL;
1025
1026 bracket = strchr(val, ']');
1027
1028 if (!bracket)
1029 return -EINVAL;
1030
1031 *bracket = '\0';
1032
1033 if (kstrtouint(val, 0, &size))
1034 return -EINVAL;
1035
1036 if (size > MAX_FIELD_ARRAY_SIZE)
1037 return -EINVAL;
1038
1039 return size;
1040}
1041
1042static int user_field_size(const char *type)
1043{
1044 /* long is not allowed from a user, since it's ambigious in size */
1045 if (strcmp(type, "s64") == 0)
1046 return sizeof(s64);
1047 if (strcmp(type, "u64") == 0)
1048 return sizeof(u64);
1049 if (strcmp(type, "s32") == 0)
1050 return sizeof(s32);
1051 if (strcmp(type, "u32") == 0)
1052 return sizeof(u32);
1053 if (strcmp(type, "int") == 0)
1054 return sizeof(int);
1055 if (strcmp(type, "unsigned int") == 0)
1056 return sizeof(unsigned int);
1057 if (strcmp(type, "s16") == 0)
1058 return sizeof(s16);
1059 if (strcmp(type, "u16") == 0)
1060 return sizeof(u16);
1061 if (strcmp(type, "short") == 0)
1062 return sizeof(short);
1063 if (strcmp(type, "unsigned short") == 0)
1064 return sizeof(unsigned short);
1065 if (strcmp(type, "s8") == 0)
1066 return sizeof(s8);
1067 if (strcmp(type, "u8") == 0)
1068 return sizeof(u8);
1069 if (strcmp(type, "char") == 0)
1070 return sizeof(char);
1071 if (strcmp(type, "unsigned char") == 0)
1072 return sizeof(unsigned char);
1073 if (str_has_prefix(type, "char["))
1074 return user_field_array_size(type);
1075 if (str_has_prefix(type, "unsigned char["))
1076 return user_field_array_size(type);
1077 if (str_has_prefix(type, "__data_loc "))
1078 return sizeof(u32);
1079 if (str_has_prefix(type, "__rel_loc "))
1080 return sizeof(u32);
1081
1082 /* Uknown basic type, error */
1083 return -EINVAL;
1084}
1085
2467cda1
BB
1086static void user_event_destroy_validators(struct user_event *user)
1087{
1088 struct user_event_validator *validator, *next;
1089 struct list_head *head = &user->validators;
1090
dcbd1ac2
BB
1091 list_for_each_entry_safe(validator, next, head, user_event_link) {
1092 list_del(&validator->user_event_link);
2467cda1
BB
1093 kfree(validator);
1094 }
1095}
1096
7f5a08c7
BB
1097static void user_event_destroy_fields(struct user_event *user)
1098{
1099 struct ftrace_event_field *field, *next;
1100 struct list_head *head = &user->fields;
1101
1102 list_for_each_entry_safe(field, next, head, link) {
1103 list_del(&field->link);
1104 kfree(field);
1105 }
1106}
1107
1108static int user_event_add_field(struct user_event *user, const char *type,
1109 const char *name, int offset, int size,
1110 int is_signed, int filter_type)
1111{
2467cda1 1112 struct user_event_validator *validator;
7f5a08c7 1113 struct ftrace_event_field *field;
2467cda1 1114 int validator_flags = 0;
7f5a08c7 1115
f9cce238 1116 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1117
1118 if (!field)
1119 return -ENOMEM;
1120
2467cda1
BB
1121 if (str_has_prefix(type, "__data_loc "))
1122 goto add_validator;
1123
1124 if (str_has_prefix(type, "__rel_loc ")) {
1125 validator_flags |= VALIDATOR_REL;
1126 goto add_validator;
1127 }
1128
1129 goto add_field;
1130
1131add_validator:
9cbf1234 1132 if (strstr(type, "char") != NULL)
2467cda1
BB
1133 validator_flags |= VALIDATOR_ENSURE_NULL;
1134
f9cce238 1135 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
2467cda1
BB
1136
1137 if (!validator) {
1138 kfree(field);
1139 return -ENOMEM;
1140 }
1141
1142 validator->flags = validator_flags;
1143 validator->offset = offset;
1144
1145 /* Want sequential access when validating */
dcbd1ac2 1146 list_add_tail(&validator->user_event_link, &user->validators);
2467cda1
BB
1147
1148add_field:
7f5a08c7
BB
1149 field->type = type;
1150 field->name = name;
1151 field->offset = offset;
1152 field->size = size;
1153 field->is_signed = is_signed;
1154 field->filter_type = filter_type;
1155
9872c07b
BB
1156 if (filter_type == FILTER_OTHER)
1157 field->filter_type = filter_assign_type(type);
1158
7f5a08c7
BB
1159 list_add(&field->link, &user->fields);
1160
2467cda1
BB
1161 /*
1162 * Min size from user writes that are required, this does not include
1163 * the size of trace_entry (common fields).
1164 */
1165 user->min_size = (offset + size) - sizeof(struct trace_entry);
1166
7f5a08c7
BB
1167 return 0;
1168}
1169
1170/*
1171 * Parses the values of a field within the description
1172 * Format: type name [size]
1173 */
1174static int user_event_parse_field(char *field, struct user_event *user,
1175 u32 *offset)
1176{
1177 char *part, *type, *name;
1178 u32 depth = 0, saved_offset = *offset;
1179 int len, size = -EINVAL;
1180 bool is_struct = false;
1181
1182 field = skip_spaces(field);
1183
1184 if (*field == '\0')
1185 return 0;
1186
1187 /* Handle types that have a space within */
1188 len = str_has_prefix(field, "unsigned ");
1189 if (len)
1190 goto skip_next;
1191
1192 len = str_has_prefix(field, "struct ");
1193 if (len) {
1194 is_struct = true;
1195 goto skip_next;
1196 }
1197
1198 len = str_has_prefix(field, "__data_loc unsigned ");
1199 if (len)
1200 goto skip_next;
1201
1202 len = str_has_prefix(field, "__data_loc ");
1203 if (len)
1204 goto skip_next;
1205
1206 len = str_has_prefix(field, "__rel_loc unsigned ");
1207 if (len)
1208 goto skip_next;
1209
1210 len = str_has_prefix(field, "__rel_loc ");
1211 if (len)
1212 goto skip_next;
1213
1214 goto parse;
1215skip_next:
1216 type = field;
1217 field = strpbrk(field + len, " ");
1218
1219 if (field == NULL)
1220 return -EINVAL;
1221
1222 *field++ = '\0';
1223 depth++;
1224parse:
173c2049
BB
1225 name = NULL;
1226
7f5a08c7
BB
1227 while ((part = strsep(&field, " ")) != NULL) {
1228 switch (depth++) {
1229 case FIELD_DEPTH_TYPE:
1230 type = part;
1231 break;
1232 case FIELD_DEPTH_NAME:
1233 name = part;
1234 break;
1235 case FIELD_DEPTH_SIZE:
1236 if (!is_struct)
1237 return -EINVAL;
1238
1239 if (kstrtou32(part, 10, &size))
1240 return -EINVAL;
1241 break;
1242 default:
1243 return -EINVAL;
1244 }
1245 }
1246
173c2049 1247 if (depth < FIELD_DEPTH_SIZE || !name)
7f5a08c7
BB
1248 return -EINVAL;
1249
1250 if (depth == FIELD_DEPTH_SIZE)
1251 size = user_field_size(type);
1252
1253 if (size == 0)
1254 return -EINVAL;
1255
1256 if (size < 0)
1257 return size;
1258
1259 *offset = saved_offset + size;
1260
1261 return user_event_add_field(user, type, name, saved_offset, size,
1262 type[0] != 'u', FILTER_OTHER);
1263}
1264
7f5a08c7
BB
1265static int user_event_parse_fields(struct user_event *user, char *args)
1266{
1267 char *field;
1268 u32 offset = sizeof(struct trace_entry);
1269 int ret = -EINVAL;
1270
1271 if (args == NULL)
1272 return 0;
1273
1274 while ((field = strsep(&args, ";")) != NULL) {
1275 ret = user_event_parse_field(field, user, &offset);
1276
1277 if (ret)
1278 break;
1279 }
1280
1281 return ret;
1282}
1283
1284static struct trace_event_fields user_event_fields_array[1];
1285
aa3b2b4c
BB
1286static const char *user_field_format(const char *type)
1287{
1288 if (strcmp(type, "s64") == 0)
1289 return "%lld";
1290 if (strcmp(type, "u64") == 0)
1291 return "%llu";
1292 if (strcmp(type, "s32") == 0)
1293 return "%d";
1294 if (strcmp(type, "u32") == 0)
1295 return "%u";
1296 if (strcmp(type, "int") == 0)
1297 return "%d";
1298 if (strcmp(type, "unsigned int") == 0)
1299 return "%u";
1300 if (strcmp(type, "s16") == 0)
1301 return "%d";
1302 if (strcmp(type, "u16") == 0)
1303 return "%u";
1304 if (strcmp(type, "short") == 0)
1305 return "%d";
1306 if (strcmp(type, "unsigned short") == 0)
1307 return "%u";
1308 if (strcmp(type, "s8") == 0)
1309 return "%d";
1310 if (strcmp(type, "u8") == 0)
1311 return "%u";
1312 if (strcmp(type, "char") == 0)
1313 return "%d";
1314 if (strcmp(type, "unsigned char") == 0)
1315 return "%u";
9cbf1234 1316 if (strstr(type, "char[") != NULL)
aa3b2b4c
BB
1317 return "%s";
1318
1319 /* Unknown, likely struct, allowed treat as 64-bit */
1320 return "%llu";
1321}
1322
1323static bool user_field_is_dyn_string(const char *type, const char **str_func)
1324{
1325 if (str_has_prefix(type, "__data_loc ")) {
1326 *str_func = "__get_str";
1327 goto check;
1328 }
1329
1330 if (str_has_prefix(type, "__rel_loc ")) {
1331 *str_func = "__get_rel_str";
1332 goto check;
1333 }
1334
1335 return false;
1336check:
9cbf1234 1337 return strstr(type, "char") != NULL;
aa3b2b4c
BB
1338}
1339
1340#define LEN_OR_ZERO (len ? len - pos : 0)
e6f89a14
BB
1341static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1342 char *buf, int len, bool *colon)
1343{
1344 int pos = 0, i = *iout;
1345
1346 *colon = false;
1347
1348 for (; i < argc; ++i) {
1349 if (i != *iout)
1350 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1351
1352 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1353
1354 if (strchr(argv[i], ';')) {
1355 ++i;
1356 *colon = true;
1357 break;
1358 }
1359 }
1360
1361 /* Actual set, advance i */
1362 if (len != 0)
1363 *iout = i;
1364
1365 return pos + 1;
1366}
1367
1368static int user_field_set_string(struct ftrace_event_field *field,
1369 char *buf, int len, bool colon)
1370{
1371 int pos = 0;
1372
1373 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1374 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1375 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1376
d0a3022f
BB
1377 if (str_has_prefix(field->type, "struct "))
1378 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1379
e6f89a14
BB
1380 if (colon)
1381 pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1382
1383 return pos + 1;
1384}
1385
aa3b2b4c
BB
1386static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1387{
a943188d 1388 struct ftrace_event_field *field;
aa3b2b4c
BB
1389 struct list_head *head = &user->fields;
1390 int pos = 0, depth = 0;
1391 const char *str_func;
1392
1393 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1394
a943188d 1395 list_for_each_entry_reverse(field, head, link) {
aa3b2b4c
BB
1396 if (depth != 0)
1397 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1398
1399 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1400 field->name, user_field_format(field->type));
1401
1402 depth++;
1403 }
1404
1405 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1406
a943188d 1407 list_for_each_entry_reverse(field, head, link) {
aa3b2b4c
BB
1408 if (user_field_is_dyn_string(field->type, &str_func))
1409 pos += snprintf(buf + pos, LEN_OR_ZERO,
1410 ", %s(%s)", str_func, field->name);
1411 else
1412 pos += snprintf(buf + pos, LEN_OR_ZERO,
1413 ", REC->%s", field->name);
1414 }
1415
1416 return pos + 1;
1417}
1418#undef LEN_OR_ZERO
1419
1420static int user_event_create_print_fmt(struct user_event *user)
1421{
1422 char *print_fmt;
1423 int len;
1424
1425 len = user_event_set_print_fmt(user, NULL, 0);
1426
f9cce238 1427 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
aa3b2b4c
BB
1428
1429 if (!print_fmt)
1430 return -ENOMEM;
1431
1432 user_event_set_print_fmt(user, print_fmt, len);
1433
1434 user->call.print_fmt = print_fmt;
1435
1436 return 0;
1437}
1438
7f5a08c7
BB
1439static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1440 int flags,
1441 struct trace_event *event)
1442{
4bec284c 1443 return print_event_fields(iter, event);
7f5a08c7
BB
1444}
1445
1446static struct trace_event_functions user_event_funcs = {
1447 .trace = user_event_print_trace,
1448};
1449
089331d4
BB
1450static int user_event_set_call_visible(struct user_event *user, bool visible)
1451{
1452 int ret;
1453 const struct cred *old_cred;
1454 struct cred *cred;
1455
1456 cred = prepare_creds();
1457
1458 if (!cred)
1459 return -ENOMEM;
1460
1461 /*
1462 * While by default tracefs is locked down, systems can be configured
1463 * to allow user_event files to be less locked down. The extreme case
1464 * being "other" has read/write access to user_events_data/status.
1465 *
94c255ac 1466 * When not locked down, processes may not have permissions to
089331d4
BB
1467 * add/remove calls themselves to tracefs. We need to temporarily
1468 * switch to root file permission to allow for this scenario.
1469 */
1470 cred->fsuid = GLOBAL_ROOT_UID;
1471
1472 old_cred = override_creds(cred);
1473
1474 if (visible)
1475 ret = trace_add_event_call(&user->call);
1476 else
1477 ret = trace_remove_event_call(&user->call);
1478
1479 revert_creds(old_cred);
1480 put_cred(cred);
1481
1482 return ret;
1483}
1484
7f5a08c7
BB
1485static int destroy_user_event(struct user_event *user)
1486{
1487 int ret = 0;
1488
ce58e96e
BB
1489 lockdep_assert_held(&event_mutex);
1490
7f5a08c7
BB
1491 /* Must destroy fields before call removal */
1492 user_event_destroy_fields(user);
1493
089331d4 1494 ret = user_event_set_call_visible(user, false);
7f5a08c7
BB
1495
1496 if (ret)
1497 return ret;
1498
1499 dyn_event_remove(&user->devent);
7f5a08c7
BB
1500 hash_del(&user->node);
1501
2467cda1 1502 user_event_destroy_validators(user);
64805e40
BB
1503
1504 /* If we have different names, both must be freed */
1505 if (EVENT_NAME(user) != EVENT_TP_NAME(user))
1506 kfree(EVENT_TP_NAME(user));
1507
aa3b2b4c 1508 kfree(user->call.print_fmt);
7f5a08c7
BB
1509 kfree(EVENT_NAME(user));
1510 kfree(user);
1511
ce58e96e
BB
1512 if (current_user_events > 0)
1513 current_user_events--;
1514 else
1515 pr_alert("BUG: Bad current_user_events\n");
1516
7f5a08c7
BB
1517 return ret;
1518}
1519
e5d27181 1520static struct user_event *find_user_event(struct user_event_group *group,
1e953de9
BB
1521 char *name, int argc, const char **argv,
1522 u32 flags, u32 *outkey)
7f5a08c7
BB
1523{
1524 struct user_event *user;
1525 u32 key = user_event_key(name);
1526
1527 *outkey = key;
1528
1e953de9 1529 hash_for_each_possible(group->register_table, user, node, key) {
64805e40
BB
1530 /*
1531 * Single-format events shouldn't return multi-format
1532 * events. Callers expect the underlying tracepoint to match
1533 * the name exactly in these cases. Only check like-formats.
1534 */
1535 if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
1536 continue;
1537
1e953de9
BB
1538 if (strcmp(EVENT_NAME(user), name))
1539 continue;
1540
1541 if (user_fields_match(user, argc, argv))
f0dbf6fd 1542 return user_event_get(user);
7f5a08c7 1543
64805e40
BB
1544 /* Scan others if this is a multi-format event */
1545 if (EVENT_MULTI_FORMAT(flags))
1546 continue;
1547
1e953de9
BB
1548 return ERR_PTR(-EADDRINUSE);
1549 }
1550
7f5a08c7
BB
1551 return NULL;
1552}
1553
2467cda1
BB
1554static int user_event_validate(struct user_event *user, void *data, int len)
1555{
1556 struct list_head *head = &user->validators;
1557 struct user_event_validator *validator;
1558 void *pos, *end = data + len;
1559 u32 loc, offset, size;
1560
dcbd1ac2 1561 list_for_each_entry(validator, head, user_event_link) {
2467cda1
BB
1562 pos = data + validator->offset;
1563
1564 /* Already done min_size check, no bounds check here */
1565 loc = *(u32 *)pos;
1566 offset = loc & 0xffff;
1567 size = loc >> 16;
1568
1569 if (likely(validator->flags & VALIDATOR_REL))
1570 pos += offset + sizeof(loc);
1571 else
1572 pos = data + offset;
1573
1574 pos += size;
1575
1576 if (unlikely(pos > end))
1577 return -EFAULT;
1578
1579 if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1580 if (unlikely(*(char *)(pos - 1) != '\0'))
1581 return -EFAULT;
1582 }
1583
1584 return 0;
1585}
1586
7f5a08c7
BB
1587/*
1588 * Writes the user supplied payload out to a trace file.
1589 */
0279400a 1590static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
2467cda1 1591 void *tpdata, bool *faulted)
7f5a08c7
BB
1592{
1593 struct trace_event_file *file;
1594 struct trace_entry *entry;
1595 struct trace_event_buffer event_buffer;
2467cda1 1596 size_t size = sizeof(*entry) + i->count;
7f5a08c7
BB
1597
1598 file = (struct trace_event_file *)tpdata;
1599
1600 if (!file ||
1601 !(file->flags & EVENT_FILE_FL_ENABLED) ||
1602 trace_trigger_soft_disabled(file))
1603 return;
1604
1605 /* Allocates and fills trace_entry, + 1 of this is data payload */
2467cda1 1606 entry = trace_event_buffer_reserve(&event_buffer, file, size);
7f5a08c7
BB
1607
1608 if (unlikely(!entry))
1609 return;
1610
6f05dcab 1611 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
2467cda1
BB
1612 goto discard;
1613
1614 if (!list_empty(&user->validators) &&
1615 unlikely(user_event_validate(user, entry, size)))
1616 goto discard;
1617
1618 trace_event_buffer_commit(&event_buffer);
1619
1620 return;
1621discard:
1622 *faulted = true;
1623 __trace_event_discard_commit(event_buffer.buffer,
1624 event_buffer.event);
7f5a08c7
BB
1625}
1626
3207d045
BB
1627#ifdef CONFIG_PERF_EVENTS
1628/*
768c1e7f 1629 * Writes the user supplied payload out to perf ring buffer.
3207d045 1630 */
0279400a 1631static void user_event_perf(struct user_event *user, struct iov_iter *i,
2467cda1 1632 void *tpdata, bool *faulted)
3207d045
BB
1633{
1634 struct hlist_head *perf_head;
1635
3207d045
BB
1636 perf_head = this_cpu_ptr(user->call.perf_events);
1637
1638 if (perf_head && !hlist_empty(perf_head)) {
1639 struct trace_entry *perf_entry;
1640 struct pt_regs *regs;
0279400a 1641 size_t size = sizeof(*perf_entry) + i->count;
3207d045
BB
1642 int context;
1643
1644 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1645 &regs, &context);
1646
1647 if (unlikely(!perf_entry))
1648 return;
1649
1650 perf_fetch_caller_regs(regs);
1651
6f05dcab 1652 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
2467cda1
BB
1653 goto discard;
1654
1655 if (!list_empty(&user->validators) &&
1656 unlikely(user_event_validate(user, perf_entry, size)))
1657 goto discard;
3207d045
BB
1658
1659 perf_trace_buf_submit(perf_entry, size, context,
1660 user->call.event.type, 1, regs,
1661 perf_head, NULL);
2467cda1
BB
1662
1663 return;
1664discard:
1665 *faulted = true;
1666 perf_swevent_put_recursion_context(context);
3207d045
BB
1667 }
1668}
1669#endif
1670
7f5a08c7 1671/*
72357590 1672 * Update the enabled bit among all user processes.
7f5a08c7 1673 */
72357590 1674static void update_enable_bit_for(struct user_event *user)
7f5a08c7
BB
1675{
1676 struct tracepoint *tp = &user->tracepoint;
1677 char status = 0;
1678
1679 if (atomic_read(&tp->key.enabled) > 0) {
1680 struct tracepoint_func *probe_func_ptr;
1681 user_event_func_t probe_func;
1682
1683 rcu_read_lock_sched();
1684
1685 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1686
1687 if (probe_func_ptr) {
1688 do {
1689 probe_func = probe_func_ptr->func;
1690
1691 if (probe_func == user_event_ftrace)
1692 status |= EVENT_STATUS_FTRACE;
3207d045
BB
1693#ifdef CONFIG_PERF_EVENTS
1694 else if (probe_func == user_event_perf)
1695 status |= EVENT_STATUS_PERF;
1696#endif
7f5a08c7
BB
1697 else
1698 status |= EVENT_STATUS_OTHER;
1699 } while ((++probe_func_ptr)->func);
1700 }
1701
1702 rcu_read_unlock_sched();
1703 }
1704
39d6d08b 1705 user->status = status;
72357590
BB
1706
1707 user_event_enabler_update(user);
7f5a08c7
BB
1708}
1709
1710/*
1711 * Register callback for our events from tracing sub-systems.
1712 */
1713static int user_event_reg(struct trace_event_call *call,
1714 enum trace_reg type,
1715 void *data)
1716{
1717 struct user_event *user = (struct user_event *)call->data;
1718 int ret = 0;
1719
1720 if (!user)
1721 return -ENOENT;
1722
1723 switch (type) {
1724 case TRACE_REG_REGISTER:
1725 ret = tracepoint_probe_register(call->tp,
1726 call->class->probe,
1727 data);
1728 if (!ret)
1729 goto inc;
1730 break;
1731
1732 case TRACE_REG_UNREGISTER:
1733 tracepoint_probe_unregister(call->tp,
1734 call->class->probe,
1735 data);
1736 goto dec;
1737
3207d045
BB
1738#ifdef CONFIG_PERF_EVENTS
1739 case TRACE_REG_PERF_REGISTER:
1740 ret = tracepoint_probe_register(call->tp,
1741 call->class->perf_probe,
1742 data);
1743 if (!ret)
1744 goto inc;
1745 break;
1746
1747 case TRACE_REG_PERF_UNREGISTER:
1748 tracepoint_probe_unregister(call->tp,
1749 call->class->perf_probe,
1750 data);
1751 goto dec;
1752
1753 case TRACE_REG_PERF_OPEN:
1754 case TRACE_REG_PERF_CLOSE:
1755 case TRACE_REG_PERF_ADD:
1756 case TRACE_REG_PERF_DEL:
7f5a08c7 1757 break;
3207d045 1758#endif
7f5a08c7
BB
1759 }
1760
1761 return ret;
1762inc:
f0dbf6fd 1763 user_event_get(user);
72357590 1764 update_enable_bit_for(user);
7f5a08c7
BB
1765 return 0;
1766dec:
72357590 1767 update_enable_bit_for(user);
f0dbf6fd 1768 user_event_put(user, true);
7f5a08c7
BB
1769 return 0;
1770}
1771
1772static int user_event_create(const char *raw_command)
1773{
e5d27181 1774 struct user_event_group *group;
7f5a08c7
BB
1775 struct user_event *user;
1776 char *name;
1777 int ret;
1778
1779 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1780 return -ECANCELED;
1781
1782 raw_command += USER_EVENTS_PREFIX_LEN;
1783 raw_command = skip_spaces(raw_command);
1784
f9cce238 1785 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1786
1787 if (!name)
1788 return -ENOMEM;
1789
e5d27181
BB
1790 group = current_user_event_group();
1791
ccc6e590
XJ
1792 if (!group) {
1793 kfree(name);
e5d27181 1794 return -ENOENT;
ccc6e590 1795 }
e5d27181
BB
1796
1797 mutex_lock(&group->reg_mutex);
7e348b32 1798
a65442ed
BB
1799 /* Dyn events persist, otherwise they would cleanup immediately */
1800 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
7e348b32
BB
1801
1802 if (!ret)
f0dbf6fd 1803 user_event_put(user, false);
7e348b32 1804
e5d27181 1805 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
1806
1807 if (ret)
1808 kfree(name);
1809
1810 return ret;
1811}
1812
1813static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1814{
1815 struct user_event *user = container_of(ev, struct user_event, devent);
a943188d 1816 struct ftrace_event_field *field;
7f5a08c7
BB
1817 struct list_head *head;
1818 int depth = 0;
1819
1820 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1821
1822 head = trace_get_fields(&user->call);
1823
a943188d 1824 list_for_each_entry_reverse(field, head, link) {
7f5a08c7
BB
1825 if (depth == 0)
1826 seq_puts(m, " ");
1827 else
1828 seq_puts(m, "; ");
1829
1830 seq_printf(m, "%s %s", field->type, field->name);
1831
1832 if (str_has_prefix(field->type, "struct "))
1833 seq_printf(m, " %d", field->size);
1834
1835 depth++;
1836 }
1837
1838 seq_puts(m, "\n");
1839
1840 return 0;
1841}
1842
1843static bool user_event_is_busy(struct dyn_event *ev)
1844{
1845 struct user_event *user = container_of(ev, struct user_event, devent);
1846
d401b724 1847 return !user_event_last_ref(user);
7f5a08c7
BB
1848}
1849
1850static int user_event_free(struct dyn_event *ev)
1851{
1852 struct user_event *user = container_of(ev, struct user_event, devent);
1853
d401b724 1854 if (!user_event_last_ref(user))
7f5a08c7
BB
1855 return -EBUSY;
1856
5dbd04ed
BB
1857 if (!user_event_capable(user->reg_flags))
1858 return -EPERM;
1859
7f5a08c7
BB
1860 return destroy_user_event(user);
1861}
1862
9aed4e15
BB
1863static bool user_field_match(struct ftrace_event_field *field, int argc,
1864 const char **argv, int *iout)
1865{
e6f89a14 1866 char *field_name = NULL, *dyn_field_name = NULL;
9aed4e15 1867 bool colon = false, match = false;
e6f89a14 1868 int dyn_len, len;
9aed4e15 1869
e6f89a14 1870 if (*iout >= argc)
9aed4e15
BB
1871 return false;
1872
e6f89a14
BB
1873 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1874 0, &colon);
9aed4e15 1875
e6f89a14 1876 len = user_field_set_string(field, field_name, 0, colon);
9aed4e15 1877
e6f89a14
BB
1878 if (dyn_len != len)
1879 return false;
9aed4e15 1880
e6f89a14
BB
1881 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1882 field_name = kmalloc(len, GFP_KERNEL);
9aed4e15 1883
e6f89a14
BB
1884 if (!dyn_field_name || !field_name)
1885 goto out;
9aed4e15 1886
e6f89a14
BB
1887 user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1888 dyn_len, &colon);
9aed4e15 1889
e6f89a14 1890 user_field_set_string(field, field_name, len, colon);
9aed4e15 1891
e6f89a14 1892 match = strcmp(dyn_field_name, field_name) == 0;
9aed4e15 1893out:
e6f89a14 1894 kfree(dyn_field_name);
9aed4e15
BB
1895 kfree(field_name);
1896
1897 return match;
1898}
1899
1900static bool user_fields_match(struct user_event *user, int argc,
1901 const char **argv)
1902{
a943188d 1903 struct ftrace_event_field *field;
9aed4e15
BB
1904 struct list_head *head = &user->fields;
1905 int i = 0;
1906
1e953de9
BB
1907 if (argc == 0)
1908 return list_empty(head);
1909
a943188d 1910 list_for_each_entry_reverse(field, head, link) {
9aed4e15
BB
1911 if (!user_field_match(field, argc, argv, &i))
1912 return false;
a943188d 1913 }
9aed4e15
BB
1914
1915 if (i != argc)
1916 return false;
1917
1918 return true;
1919}
1920
7f5a08c7
BB
1921static bool user_event_match(const char *system, const char *event,
1922 int argc, const char **argv, struct dyn_event *ev)
1923{
1924 struct user_event *user = container_of(ev, struct user_event, devent);
9aed4e15 1925 bool match;
7f5a08c7 1926
64805e40
BB
1927 match = strcmp(EVENT_NAME(user), event) == 0;
1928
1929 if (match && system) {
1930 match = strcmp(system, user->group->system_name) == 0 ||
1931 strcmp(system, user->group->system_multi_name) == 0;
1932 }
9aed4e15 1933
1e953de9 1934 if (match)
9aed4e15
BB
1935 match = user_fields_match(user, argc, argv);
1936
1937 return match;
7f5a08c7
BB
1938}
1939
1940static struct dyn_event_operations user_event_dops = {
1941 .create = user_event_create,
1942 .show = user_event_show,
1943 .is_busy = user_event_is_busy,
1944 .free = user_event_free,
1945 .match = user_event_match,
1946};
1947
1948static int user_event_trace_register(struct user_event *user)
1949{
1950 int ret;
1951
1952 ret = register_trace_event(&user->call.event);
1953
1954 if (!ret)
1955 return -ENODEV;
1956
089331d4 1957 ret = user_event_set_call_visible(user, true);
7f5a08c7
BB
1958
1959 if (ret)
1960 unregister_trace_event(&user->call.event);
1961
1962 return ret;
1963}
1964
64805e40
BB
1965static int user_event_set_tp_name(struct user_event *user)
1966{
1967 lockdep_assert_held(&user->group->reg_mutex);
1968
1969 if (EVENT_MULTI_FORMAT(user->reg_flags)) {
1970 char *multi_name;
1971
1972 multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx",
1973 user->reg_name, user->group->multi_id);
1974
1975 if (!multi_name)
1976 return -ENOMEM;
1977
1978 user->call.name = multi_name;
1979 user->tracepoint.name = multi_name;
1980
1981 /* Inc to ensure unique multi-event name next time */
1982 user->group->multi_id++;
1983 } else {
1984 /* Non Multi-format uses register name */
1985 user->call.name = user->reg_name;
1986 user->tracepoint.name = user->reg_name;
1987 }
1988
1989 return 0;
1990}
1991
bd125a08
BB
1992/*
1993 * Counts how many ';' without a trailing space are in the args.
1994 */
1995static int count_semis_no_space(char *args)
1996{
1997 int count = 0;
1998
1999 while ((args = strchr(args, ';'))) {
2000 args++;
2001
2002 if (!isspace(*args))
2003 count++;
2004 }
2005
2006 return count;
2007}
2008
2009/*
2010 * Copies the arguments while ensuring all ';' have a trailing space.
2011 */
2012static char *insert_space_after_semis(char *args, int count)
2013{
2014 char *fixed, *pos;
2015 int len;
2016
2017 len = strlen(args) + count;
2018 fixed = kmalloc(len + 1, GFP_KERNEL);
2019
2020 if (!fixed)
2021 return NULL;
2022
2023 pos = fixed;
2024
2025 /* Insert a space after ';' if there is no trailing space. */
2026 while (*args) {
2027 *pos = *args++;
2028
2029 if (*pos++ == ';' && !isspace(*args))
2030 *pos++ = ' ';
2031 }
2032
2033 *pos = '\0';
2034
2035 return fixed;
2036}
2037
2038static char **user_event_argv_split(char *args, int *argc)
2039{
2040 char **split;
2041 char *fixed;
2042 int count;
2043
2044 /* Count how many ';' without a trailing space */
2045 count = count_semis_no_space(args);
2046
2047 /* No fixup is required */
2048 if (!count)
2049 return argv_split(GFP_KERNEL, args, argc);
2050
2051 /* We must fixup 'field;field' to 'field; field' */
2052 fixed = insert_space_after_semis(args, count);
2053
2054 if (!fixed)
2055 return NULL;
2056
2057 /* We do a normal split afterwards */
2058 split = argv_split(GFP_KERNEL, fixed, argc);
2059
2060 /* We can free since argv_split makes a copy */
2061 kfree(fixed);
2062
2063 return split;
2064}
2065
7f5a08c7
BB
2066/*
2067 * Parses the event name, arguments and flags then registers if successful.
2068 * The name buffer lifetime is owned by this method for success cases only.
7e348b32 2069 * Upon success the returned user_event has its ref count increased by 1.
7f5a08c7 2070 */
e5d27181
BB
2071static int user_event_parse(struct user_event_group *group, char *name,
2072 char *args, char *flags,
b08d7258 2073 struct user_event **newuser, int reg_flags)
7f5a08c7 2074{
7e348b32 2075 struct user_event *user;
1e953de9 2076 char **argv = NULL;
ba470eeb 2077 int argc = 0;
1e953de9
BB
2078 int ret;
2079 u32 key;
7e348b32 2080
5dbd04ed
BB
2081 /* Currently don't support any text based flags */
2082 if (flags != NULL)
a65442ed
BB
2083 return -EINVAL;
2084
5dbd04ed
BB
2085 if (!user_event_capable(reg_flags))
2086 return -EPERM;
2087
1e953de9 2088 if (args) {
bd125a08 2089 argv = user_event_argv_split(args, &argc);
1e953de9
BB
2090
2091 if (!argv)
2092 return -ENOMEM;
2093 }
2094
7e348b32
BB
2095 /* Prevent dyn_event from racing */
2096 mutex_lock(&event_mutex);
1e953de9
BB
2097 user = find_user_event(group, name, argc, (const char **)argv,
2098 reg_flags, &key);
7e348b32 2099 mutex_unlock(&event_mutex);
7f5a08c7 2100
1e953de9
BB
2101 if (argv)
2102 argv_free(argv);
ba470eeb 2103
1e953de9
BB
2104 if (IS_ERR(user))
2105 return PTR_ERR(user);
2106
2107 if (user) {
2108 *newuser = user;
2109 /*
2110 * Name is allocated by caller, free it since it already exists.
2111 * Caller only worries about failure cases for freeing.
2112 */
2113 kfree(name);
ba470eeb 2114
7f5a08c7
BB
2115 return 0;
2116 }
2117
f9cce238 2118 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
2119
2120 if (!user)
2121 return -ENOMEM;
2122
2123 INIT_LIST_HEAD(&user->class.fields);
2124 INIT_LIST_HEAD(&user->fields);
2467cda1 2125 INIT_LIST_HEAD(&user->validators);
7f5a08c7 2126
e5d27181 2127 user->group = group;
64805e40
BB
2128 user->reg_name = name;
2129 user->reg_flags = reg_flags;
2130
2131 ret = user_event_set_tp_name(user);
2132
2133 if (ret)
2134 goto put_user;
7f5a08c7 2135
7f5a08c7
BB
2136 ret = user_event_parse_fields(user, args);
2137
2138 if (ret)
2139 goto put_user;
2140
aa3b2b4c
BB
2141 ret = user_event_create_print_fmt(user);
2142
2143 if (ret)
2144 goto put_user;
7f5a08c7
BB
2145
2146 user->call.data = user;
2147 user->call.class = &user->class;
7f5a08c7
BB
2148 user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2149 user->call.tp = &user->tracepoint;
2150 user->call.event.funcs = &user_event_funcs;
64805e40
BB
2151
2152 if (EVENT_MULTI_FORMAT(user->reg_flags))
2153 user->class.system = group->system_multi_name;
2154 else
2155 user->class.system = group->system_name;
7f5a08c7 2156
7f5a08c7
BB
2157 user->class.fields_array = user_event_fields_array;
2158 user->class.get_fields = user_event_get_fields;
2159 user->class.reg = user_event_reg;
2160 user->class.probe = user_event_ftrace;
3207d045
BB
2161#ifdef CONFIG_PERF_EVENTS
2162 user->class.perf_probe = user_event_perf;
2163#endif
7f5a08c7
BB
2164
2165 mutex_lock(&event_mutex);
efe34e99 2166
ce58e96e
BB
2167 if (current_user_events >= max_user_events) {
2168 ret = -EMFILE;
2169 goto put_user_lock;
2170 }
2171
7f5a08c7 2172 ret = user_event_trace_register(user);
7f5a08c7
BB
2173
2174 if (ret)
efe34e99 2175 goto put_user_lock;
7f5a08c7 2176
a65442ed
BB
2177 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2178 /* Ensure we track self ref and caller ref (2) */
2179 refcount_set(&user->refcnt, 2);
2180 } else {
2181 /* Ensure we track only caller ref (1) */
2182 refcount_set(&user->refcnt, 1);
2183 }
7e348b32 2184
7f5a08c7
BB
2185 dyn_event_init(&user->devent, &user_event_dops);
2186 dyn_event_add(&user->devent, &user->call);
e5d27181 2187 hash_add(group->register_table, &user->node, key);
ce58e96e 2188 current_user_events++;
7f5a08c7 2189
efe34e99
BB
2190 mutex_unlock(&event_mutex);
2191
7f5a08c7
BB
2192 *newuser = user;
2193 return 0;
efe34e99
BB
2194put_user_lock:
2195 mutex_unlock(&event_mutex);
7f5a08c7
BB
2196put_user:
2197 user_event_destroy_fields(user);
2467cda1 2198 user_event_destroy_validators(user);
4bded7af 2199 kfree(user->call.print_fmt);
64805e40
BB
2200
2201 /* Caller frees reg_name on error, but not multi-name */
2202 if (EVENT_NAME(user) != EVENT_TP_NAME(user))
2203 kfree(EVENT_TP_NAME(user));
2204
7f5a08c7
BB
2205 kfree(user);
2206 return ret;
2207}
2208
2209/*
1e953de9 2210 * Deletes previously created events if they are no longer being used.
7f5a08c7 2211 */
e5d27181 2212static int delete_user_event(struct user_event_group *group, char *name)
7f5a08c7 2213{
1e953de9
BB
2214 struct user_event *user;
2215 struct hlist_node *tmp;
2216 u32 key = user_event_key(name);
2217 int ret = -ENOENT;
7f5a08c7 2218
1e953de9
BB
2219 /* Attempt to delete all event(s) with the name passed in */
2220 hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2221 if (strcmp(EVENT_NAME(user), name))
2222 continue;
7f5a08c7 2223
1e953de9
BB
2224 if (!user_event_last_ref(user))
2225 return -EBUSY;
7e348b32 2226
1e953de9
BB
2227 if (!user_event_capable(user->reg_flags))
2228 return -EPERM;
7f5a08c7 2229
1e953de9 2230 ret = destroy_user_event(user);
5dbd04ed 2231
1e953de9
BB
2232 if (ret)
2233 goto out;
2234 }
2235out:
2236 return ret;
7f5a08c7
BB
2237}
2238
2239/*
2240 * Validates the user payload and writes via iterator.
2241 */
2242static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2243{
e5d27181 2244 struct user_event_file_info *info = file->private_data;
7f5a08c7
BB
2245 struct user_event_refs *refs;
2246 struct user_event *user = NULL;
2247 struct tracepoint *tp;
2248 ssize_t ret = i->count;
2249 int idx;
2250
2251 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2252 return -EFAULT;
2253
cd98c932
BB
2254 if (idx < 0)
2255 return -EINVAL;
2256
7f5a08c7
BB
2257 rcu_read_lock_sched();
2258
e5d27181 2259 refs = rcu_dereference_sched(info->refs);
7f5a08c7
BB
2260
2261 /*
2262 * The refs->events array is protected by RCU, and new items may be
2263 * added. But the user retrieved from indexing into the events array
2264 * shall be immutable while the file is opened.
2265 */
2266 if (likely(refs && idx < refs->count))
2267 user = refs->events[idx];
2268
2269 rcu_read_unlock_sched();
2270
2271 if (unlikely(user == NULL))
2272 return -ENOENT;
2273
2467cda1
BB
2274 if (unlikely(i->count < user->min_size))
2275 return -EINVAL;
2276
7f5a08c7
BB
2277 tp = &user->tracepoint;
2278
2279 /*
2280 * It's possible key.enabled disables after this check, however
2281 * we don't mind if a few events are included in this condition.
2282 */
2283 if (likely(atomic_read(&tp->key.enabled) > 0)) {
2284 struct tracepoint_func *probe_func_ptr;
2285 user_event_func_t probe_func;
0279400a 2286 struct iov_iter copy;
7f5a08c7 2287 void *tpdata;
2467cda1 2288 bool faulted;
7f5a08c7 2289
0279400a
BB
2290 if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2291 return -EFAULT;
7f5a08c7 2292
2467cda1
BB
2293 faulted = false;
2294
7f5a08c7
BB
2295 rcu_read_lock_sched();
2296
2297 probe_func_ptr = rcu_dereference_sched(tp->funcs);
2298
2299 if (probe_func_ptr) {
2300 do {
0279400a 2301 copy = *i;
7f5a08c7
BB
2302 probe_func = probe_func_ptr->func;
2303 tpdata = probe_func_ptr->data;
2467cda1 2304 probe_func(user, &copy, tpdata, &faulted);
7f5a08c7
BB
2305 } while ((++probe_func_ptr)->func);
2306 }
2307
2308 rcu_read_unlock_sched();
2467cda1
BB
2309
2310 if (unlikely(faulted))
2311 return -EFAULT;
f6d026ee 2312 } else
2313 return -EBADF;
7f5a08c7
BB
2314
2315 return ret;
2316}
2317
e5d27181
BB
2318static int user_events_open(struct inode *node, struct file *file)
2319{
2320 struct user_event_group *group;
2321 struct user_event_file_info *info;
2322
2323 group = current_user_event_group();
2324
2325 if (!group)
2326 return -ENOENT;
2327
f9cce238 2328 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
e5d27181
BB
2329
2330 if (!info)
2331 return -ENOMEM;
2332
2333 info->group = group;
2334
2335 file->private_data = info;
2336
2337 return 0;
2338}
2339
7f5a08c7
BB
2340static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2341 size_t count, loff_t *ppos)
2342{
7f5a08c7
BB
2343 struct iov_iter i;
2344
2345 if (unlikely(*ppos != 0))
2346 return -EFAULT;
2347
9fd7874c 2348 if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
7f5a08c7
BB
2349 return -EFAULT;
2350
2351 return user_events_write_core(file, &i);
2352}
2353
2354static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2355{
2356 return user_events_write_core(kp->ki_filp, i);
2357}
2358
e5d27181
BB
2359static int user_events_ref_add(struct user_event_file_info *info,
2360 struct user_event *user)
7f5a08c7 2361{
e5d27181 2362 struct user_event_group *group = info->group;
7f5a08c7
BB
2363 struct user_event_refs *refs, *new_refs;
2364 int i, size, count = 0;
2365
e5d27181
BB
2366 refs = rcu_dereference_protected(info->refs,
2367 lockdep_is_held(&group->reg_mutex));
7f5a08c7
BB
2368
2369 if (refs) {
2370 count = refs->count;
2371
2372 for (i = 0; i < count; ++i)
2373 if (refs->events[i] == user)
2374 return i;
2375 }
2376
2377 size = struct_size(refs, events, count + 1);
2378
f9cce238 2379 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
2380
2381 if (!new_refs)
2382 return -ENOMEM;
2383
2384 new_refs->count = count + 1;
2385
2386 for (i = 0; i < count; ++i)
2387 new_refs->events[i] = refs->events[i];
2388
f0dbf6fd 2389 new_refs->events[i] = user_event_get(user);
7f5a08c7 2390
e5d27181 2391 rcu_assign_pointer(info->refs, new_refs);
7f5a08c7
BB
2392
2393 if (refs)
2394 kfree_rcu(refs, rcu);
2395
2396 return i;
2397}
2398
2399static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2400{
2401 u32 size;
2402 long ret;
2403
2404 ret = get_user(size, &ureg->size);
2405
2406 if (ret)
2407 return ret;
2408
2409 if (size > PAGE_SIZE)
2410 return -E2BIG;
2411
39d6d08b
BB
2412 if (size < offsetofend(struct user_reg, write_index))
2413 return -EINVAL;
2414
2415 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2416
2417 if (ret)
2418 return ret;
2419
a65442ed
BB
2420 /* Ensure only valid flags */
2421 if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
72357590
BB
2422 return -EINVAL;
2423
2424 /* Ensure supported size */
2425 switch (kreg->enable_size) {
2426 case 4:
2427 /* 32-bit */
2428 break;
2429#if BITS_PER_LONG >= 64
2430 case 8:
2431 /* 64-bit */
2432 break;
2433#endif
2434 default:
2435 return -EINVAL;
2436 }
2437
2438 /* Ensure natural alignment */
2439 if (kreg->enable_addr % kreg->enable_size)
2440 return -EINVAL;
2441
2442 /* Ensure bit range for size */
2443 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2444 return -EINVAL;
2445
2446 /* Ensure accessible */
2447 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2448 kreg->enable_size))
2449 return -EFAULT;
2450
39d6d08b
BB
2451 kreg->size = size;
2452
2453 return 0;
7f5a08c7
BB
2454}
2455
2456/*
2457 * Registers a user_event on behalf of a user process.
2458 */
e5d27181
BB
2459static long user_events_ioctl_reg(struct user_event_file_info *info,
2460 unsigned long uarg)
7f5a08c7
BB
2461{
2462 struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2463 struct user_reg reg;
2464 struct user_event *user;
72357590 2465 struct user_event_enabler *enabler;
7f5a08c7
BB
2466 char *name;
2467 long ret;
72357590 2468 int write_result;
7f5a08c7
BB
2469
2470 ret = user_reg_get(ureg, &reg);
2471
2472 if (ret)
2473 return ret;
2474
97bbce89
BB
2475 /*
2476 * Prevent users from using the same address and bit multiple times
2477 * within the same mm address space. This can cause unexpected behavior
2478 * for user processes that is far easier to debug if this is explictly
2479 * an error upon registering.
2480 */
2481 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2482 reg.enable_bit))
2483 return -EADDRINUSE;
2484
7f5a08c7
BB
2485 name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2486 MAX_EVENT_DESC);
2487
2488 if (IS_ERR(name)) {
2489 ret = PTR_ERR(name);
2490 return ret;
2491 }
2492
b08d7258 2493 ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
7f5a08c7
BB
2494
2495 if (ret) {
2496 kfree(name);
2497 return ret;
2498 }
2499
e5d27181 2500 ret = user_events_ref_add(info, user);
7f5a08c7 2501
7e348b32 2502 /* No longer need parse ref, ref_add either worked or not */
f0dbf6fd 2503 user_event_put(user, false);
7e348b32 2504
7f5a08c7
BB
2505 /* Positive number is index and valid */
2506 if (ret < 0)
2507 return ret;
2508
72357590
BB
2509 /*
2510 * user_events_ref_add succeeded:
2511 * At this point we have a user_event, it's lifetime is bound by the
2512 * reference count, not this file. If anything fails, the user_event
2513 * still has a reference until the file is released. During release
2514 * any remaining references (from user_events_ref_add) are decremented.
2515 *
2516 * Attempt to create an enabler, which too has a lifetime tied in the
2517 * same way for the event. Once the task that caused the enabler to be
2518 * created exits or issues exec() then the enablers it has created
2519 * will be destroyed and the ref to the event will be decremented.
2520 */
2521 enabler = user_event_enabler_create(&reg, user, &write_result);
2522
2523 if (!enabler)
2524 return -ENOMEM;
2525
2526 /* Write failed/faulted, give error back to caller */
2527 if (write_result)
2528 return write_result;
2529
7f5a08c7 2530 put_user((u32)ret, &ureg->write_index);
7f5a08c7
BB
2531
2532 return 0;
2533}
2534
2535/*
2536 * Deletes a user_event on behalf of a user process.
2537 */
e5d27181
BB
2538static long user_events_ioctl_del(struct user_event_file_info *info,
2539 unsigned long uarg)
7f5a08c7
BB
2540{
2541 void __user *ubuf = (void __user *)uarg;
2542 char *name;
2543 long ret;
2544
2545 name = strndup_user(ubuf, MAX_EVENT_DESC);
2546
2547 if (IS_ERR(name))
2548 return PTR_ERR(name);
2549
7e348b32
BB
2550 /* event_mutex prevents dyn_event from racing */
2551 mutex_lock(&event_mutex);
e5d27181 2552 ret = delete_user_event(info->group, name);
7e348b32 2553 mutex_unlock(&event_mutex);
7f5a08c7
BB
2554
2555 kfree(name);
2556
2557 return ret;
2558}
2559
dcb8177c
BB
2560static long user_unreg_get(struct user_unreg __user *ureg,
2561 struct user_unreg *kreg)
2562{
2563 u32 size;
2564 long ret;
2565
2566 ret = get_user(size, &ureg->size);
2567
2568 if (ret)
2569 return ret;
2570
2571 if (size > PAGE_SIZE)
2572 return -E2BIG;
2573
2574 if (size < offsetofend(struct user_unreg, disable_addr))
2575 return -EINVAL;
2576
2577 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2578
2579 /* Ensure no reserved values, since we don't support any yet */
2580 if (kreg->__reserved || kreg->__reserved2)
2581 return -EINVAL;
2582
2583 return ret;
2584}
2585
17b439db 2586static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2de9ee94
BB
2587 unsigned long uaddr, unsigned char bit,
2588 unsigned long flags)
17b439db
BB
2589{
2590 struct user_event_enabler enabler;
2591 int result;
41d8fba1 2592 int attempt = 0;
17b439db
BB
2593
2594 memset(&enabler, 0, sizeof(enabler));
2595 enabler.addr = uaddr;
2de9ee94 2596 enabler.values = bit | flags;
17b439db
BB
2597retry:
2598 /* Prevents state changes from racing with new enablers */
2599 mutex_lock(&event_mutex);
2600
2601 /* Force the bit to be cleared, since no event is attached */
2602 mmap_read_lock(user_mm->mm);
41d8fba1 2603 result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
17b439db
BB
2604 mmap_read_unlock(user_mm->mm);
2605
2606 mutex_unlock(&event_mutex);
2607
2608 if (result) {
2609 /* Attempt to fault-in and retry if it worked */
41d8fba1 2610 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
17b439db
BB
2611 goto retry;
2612 }
2613
2614 return result;
2615}
2616
dcb8177c
BB
2617/*
2618 * Unregisters an enablement address/bit within a task/user mm.
2619 */
2620static long user_events_ioctl_unreg(unsigned long uarg)
2621{
2622 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2623 struct user_event_mm *mm = current->user_event_mm;
2624 struct user_event_enabler *enabler, *next;
2625 struct user_unreg reg;
2de9ee94 2626 unsigned long flags;
dcb8177c
BB
2627 long ret;
2628
2629 ret = user_unreg_get(ureg, &reg);
2630
2631 if (ret)
2632 return ret;
2633
2634 if (!mm)
2635 return -ENOENT;
2636
2de9ee94 2637 flags = 0;
dcb8177c
BB
2638 ret = -ENOENT;
2639
2640 /*
2641 * Flags freeing and faulting are used to indicate if the enabler is in
2642 * use at all. When faulting is set a page-fault is occurring asyncly.
2643 * During async fault if freeing is set, the enabler will be destroyed.
2644 * If no async fault is happening, we can destroy it now since we hold
2645 * the event_mutex during these checks.
2646 */
2647 mutex_lock(&event_mutex);
2648
dcbd1ac2 2649 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
dcb8177c 2650 if (enabler->addr == reg.disable_addr &&
ee7751b5 2651 ENABLE_BIT(enabler) == reg.disable_bit) {
dcb8177c
BB
2652 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2653
2de9ee94
BB
2654 /* We must keep compat flags for the clear */
2655 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2656
dcb8177c 2657 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
f0dbf6fd 2658 user_event_enabler_destroy(enabler, true);
dcb8177c
BB
2659
2660 /* Removed at least one */
2661 ret = 0;
2662 }
dcbd1ac2 2663 }
dcb8177c
BB
2664
2665 mutex_unlock(&event_mutex);
2666
17b439db
BB
2667 /* Ensure bit is now cleared for user, regardless of event status */
2668 if (!ret)
2669 ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2de9ee94 2670 reg.disable_bit, flags);
17b439db 2671
dcb8177c
BB
2672 return ret;
2673}
2674
7f5a08c7
BB
2675/*
2676 * Handles the ioctl from user mode to register or alter operations.
2677 */
2678static long user_events_ioctl(struct file *file, unsigned int cmd,
2679 unsigned long uarg)
2680{
e5d27181
BB
2681 struct user_event_file_info *info = file->private_data;
2682 struct user_event_group *group = info->group;
7f5a08c7
BB
2683 long ret = -ENOTTY;
2684
2685 switch (cmd) {
2686 case DIAG_IOCSREG:
e5d27181
BB
2687 mutex_lock(&group->reg_mutex);
2688 ret = user_events_ioctl_reg(info, uarg);
2689 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2690 break;
2691
2692 case DIAG_IOCSDEL:
e5d27181
BB
2693 mutex_lock(&group->reg_mutex);
2694 ret = user_events_ioctl_del(info, uarg);
2695 mutex_unlock(&group->reg_mutex);
7f5a08c7 2696 break;
dcb8177c
BB
2697
2698 case DIAG_IOCSUNREG:
2699 mutex_lock(&group->reg_mutex);
2700 ret = user_events_ioctl_unreg(uarg);
2701 mutex_unlock(&group->reg_mutex);
2702 break;
7f5a08c7
BB
2703 }
2704
2705 return ret;
2706}
2707
2708/*
2709 * Handles the final close of the file from user mode.
2710 */
2711static int user_events_release(struct inode *node, struct file *file)
2712{
e5d27181
BB
2713 struct user_event_file_info *info = file->private_data;
2714 struct user_event_group *group;
7f5a08c7 2715 struct user_event_refs *refs;
7f5a08c7
BB
2716 int i;
2717
e5d27181
BB
2718 if (!info)
2719 return -EINVAL;
2720
2721 group = info->group;
2722
7f5a08c7
BB
2723 /*
2724 * Ensure refs cannot change under any situation by taking the
2725 * register mutex during the final freeing of the references.
2726 */
e5d27181 2727 mutex_lock(&group->reg_mutex);
7f5a08c7 2728
e5d27181 2729 refs = info->refs;
7f5a08c7
BB
2730
2731 if (!refs)
2732 goto out;
2733
2734 /*
2735 * The lifetime of refs has reached an end, it's tied to this file.
2736 * The underlying user_events are ref counted, and cannot be freed.
2737 * After this decrement, the user_events may be freed elsewhere.
2738 */
f0dbf6fd
BB
2739 for (i = 0; i < refs->count; ++i)
2740 user_event_put(refs->events[i], false);
7f5a08c7 2741
7f5a08c7
BB
2742out:
2743 file->private_data = NULL;
2744
e5d27181 2745 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2746
2747 kfree(refs);
e5d27181 2748 kfree(info);
7f5a08c7
BB
2749
2750 return 0;
2751}
2752
2753static const struct file_operations user_data_fops = {
a4c40c13
BB
2754 .open = user_events_open,
2755 .write = user_events_write,
2756 .write_iter = user_events_write_iter,
7f5a08c7 2757 .unlocked_ioctl = user_events_ioctl,
a4c40c13 2758 .release = user_events_release,
7f5a08c7
BB
2759};
2760
7f5a08c7
BB
2761static void *user_seq_start(struct seq_file *m, loff_t *pos)
2762{
2763 if (*pos)
2764 return NULL;
2765
2766 return (void *)1;
2767}
2768
2769static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2770{
2771 ++*pos;
2772 return NULL;
2773}
2774
2775static void user_seq_stop(struct seq_file *m, void *p)
2776{
2777}
2778
2779static int user_seq_show(struct seq_file *m, void *p)
2780{
e5d27181 2781 struct user_event_group *group = m->private;
7f5a08c7
BB
2782 struct user_event *user;
2783 char status;
72357590 2784 int i, active = 0, busy = 0;
7f5a08c7 2785
e5d27181
BB
2786 if (!group)
2787 return -EINVAL;
2788
2789 mutex_lock(&group->reg_mutex);
7f5a08c7 2790
e5d27181 2791 hash_for_each(group->register_table, i, user, node) {
39d6d08b 2792 status = user->status;
7f5a08c7 2793
64805e40 2794 seq_printf(m, "%s", EVENT_TP_NAME(user));
7f5a08c7 2795
72357590 2796 if (status != 0)
7f5a08c7
BB
2797 seq_puts(m, " #");
2798
2799 if (status != 0) {
2800 seq_puts(m, " Used by");
2801 if (status & EVENT_STATUS_FTRACE)
2802 seq_puts(m, " ftrace");
2803 if (status & EVENT_STATUS_PERF)
2804 seq_puts(m, " perf");
2805 if (status & EVENT_STATUS_OTHER)
2806 seq_puts(m, " other");
2807 busy++;
2808 }
2809
7f5a08c7
BB
2810 seq_puts(m, "\n");
2811 active++;
2812 }
2813
e5d27181 2814 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2815
2816 seq_puts(m, "\n");
2817 seq_printf(m, "Active: %d\n", active);
2818 seq_printf(m, "Busy: %d\n", busy);
7f5a08c7
BB
2819
2820 return 0;
2821}
2822
2823static const struct seq_operations user_seq_ops = {
a4c40c13
BB
2824 .start = user_seq_start,
2825 .next = user_seq_next,
2826 .stop = user_seq_stop,
2827 .show = user_seq_show,
7f5a08c7
BB
2828};
2829
2830static int user_status_open(struct inode *node, struct file *file)
2831{
e5d27181
BB
2832 struct user_event_group *group;
2833 int ret;
2834
2835 group = current_user_event_group();
2836
2837 if (!group)
2838 return -ENOENT;
2839
2840 ret = seq_open(file, &user_seq_ops);
2841
2842 if (!ret) {
2843 /* Chain group to seq_file */
2844 struct seq_file *m = file->private_data;
2845
2846 m->private = group;
2847 }
2848
2849 return ret;
7f5a08c7
BB
2850}
2851
2852static const struct file_operations user_status_fops = {
a4c40c13
BB
2853 .open = user_status_open,
2854 .read = seq_read,
2855 .llseek = seq_lseek,
2856 .release = seq_release,
7f5a08c7
BB
2857};
2858
2859/*
2860 * Creates a set of tracefs files to allow user mode interactions.
2861 */
2862static int create_user_tracefs(void)
2863{
2864 struct dentry *edata, *emmap;
2865
2866 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2867 NULL, NULL, &user_data_fops);
2868
2869 if (!edata) {
2870 pr_warn("Could not create tracefs 'user_events_data' entry\n");
2871 goto err;
2872 }
2873
72357590 2874 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
7f5a08c7
BB
2875 NULL, NULL, &user_status_fops);
2876
2877 if (!emmap) {
2878 tracefs_remove(edata);
2879 pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2880 goto err;
2881 }
2882
2883 return 0;
2884err:
2885 return -ENODEV;
2886}
2887
ce58e96e
BB
2888static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2889 void *buffer, size_t *lenp, loff_t *ppos)
2890{
2891 int ret;
2892
2893 mutex_lock(&event_mutex);
2894
2895 ret = proc_douintvec(table, write, buffer, lenp, ppos);
2896
2897 mutex_unlock(&event_mutex);
2898
2899 return ret;
2900}
2901
2902static struct ctl_table user_event_sysctls[] = {
2903 {
2904 .procname = "user_events_max",
2905 .data = &max_user_events,
2906 .maxlen = sizeof(unsigned int),
2907 .mode = 0644,
2908 .proc_handler = set_max_user_events_sysctl,
2909 },
2910 {}
2911};
2912
7f5a08c7
BB
2913static int __init trace_events_user_init(void)
2914{
2915 int ret;
2916
81f8fb65
BB
2917 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2918
2919 if (!fault_cache)
2920 return -ENOMEM;
2921
ed0e0ae0 2922 init_group = user_event_group_create();
7f5a08c7 2923
81f8fb65
BB
2924 if (!init_group) {
2925 kmem_cache_destroy(fault_cache);
7f5a08c7 2926 return -ENOMEM;
81f8fb65 2927 }
7f5a08c7
BB
2928
2929 ret = create_user_tracefs();
2930
2931 if (ret) {
2932 pr_warn("user_events could not register with tracefs\n");
e5d27181 2933 user_event_group_destroy(init_group);
81f8fb65 2934 kmem_cache_destroy(fault_cache);
e5d27181 2935 init_group = NULL;
7f5a08c7
BB
2936 return ret;
2937 }
2938
2939 if (dyn_event_register(&user_event_dops))
2940 pr_warn("user_events could not register with dyn_events\n");
2941
ce58e96e
BB
2942 register_sysctl_init("kernel", user_event_sysctls);
2943
7f5a08c7
BB
2944 return 0;
2945}
2946
2947fs_initcall(trace_events_user_init);