Merge tag 'soundwire-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-block.git] / kernel / trace / trace_events_user.c
CommitLineData
7f5a08c7
BB
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 * Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/cdev.h>
11#include <linux/hashtable.h>
12#include <linux/list.h>
13#include <linux/io.h>
14#include <linux/uio.h>
15#include <linux/ioctl.h>
16#include <linux/jhash.h>
d401b724 17#include <linux/refcount.h>
7f5a08c7
BB
18#include <linux/trace_events.h>
19#include <linux/tracefs.h>
20#include <linux/types.h>
21#include <linux/uaccess.h>
72357590 22#include <linux/highmem.h>
ce58e96e 23#include <linux/init.h>
5cfff569 24#include <linux/user_events.h>
7f5a08c7 25#include "trace_dynevent.h"
4bec284c
SRG
26#include "trace_output.h"
27#include "trace.h"
7f5a08c7
BB
28
29#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31#define FIELD_DEPTH_TYPE 0
32#define FIELD_DEPTH_NAME 1
33#define FIELD_DEPTH_SIZE 2
34
7f5a08c7
BB
35/* Limit how long of an event name plus args within the subsystem. */
36#define MAX_EVENT_DESC 512
37#define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
38#define MAX_FIELD_ARRAY_SIZE 1024
39
39d6d08b
BB
40/*
41 * Internal bits (kernel side only) to keep track of connected probes:
42 * These are used when status is requested in text form about an event. These
43 * bits are compared against an internal byte on the event to determine which
44 * probes to print out to the user.
45 *
46 * These do not reflect the mapped bytes between the user and kernel space.
47 */
48#define EVENT_STATUS_FTRACE BIT(0)
49#define EVENT_STATUS_PERF BIT(1)
50#define EVENT_STATUS_OTHER BIT(7)
51
e5d27181 52/*
72357590
BB
53 * Stores the system name, tables, and locks for a group of events. This
54 * allows isolation for events by various means.
e5d27181
BB
55 */
56struct user_event_group {
a4c40c13
BB
57 char *system_name;
58 struct hlist_node node;
59 struct mutex reg_mutex;
e5d27181 60 DECLARE_HASHTABLE(register_table, 8);
e5d27181 61};
7f5a08c7 62
e5d27181
BB
63/* Group for init_user_ns mapping, top-most group */
64static struct user_event_group *init_group;
7f5a08c7 65
ce58e96e
BB
66/* Max allowed events for the whole system */
67static unsigned int max_user_events = 32768;
68
69/* Current number of events on the whole system */
70static unsigned int current_user_events;
71
7f5a08c7
BB
72/*
73 * Stores per-event properties, as users register events
74 * within a file a user_event might be created if it does not
75 * already exist. These are globally used and their lifetime
76 * is tied to the refcnt member. These cannot go away until the
d401b724 77 * refcnt reaches one.
7f5a08c7
BB
78 */
79struct user_event {
a4c40c13
BB
80 struct user_event_group *group;
81 struct tracepoint tracepoint;
82 struct trace_event_call call;
83 struct trace_event_class class;
84 struct dyn_event devent;
85 struct hlist_node node;
86 struct list_head fields;
87 struct list_head validators;
88 refcount_t refcnt;
89 int min_size;
90 char status;
7f5a08c7
BB
91};
92
72357590
BB
93/*
94 * Stores per-mm/event properties that enable an address to be
95 * updated properly for each task. As tasks are forked, we use
96 * these to track enablement sites that are tied to an event.
97 */
98struct user_event_enabler {
a4c40c13
BB
99 struct list_head link;
100 struct user_event *event;
101 unsigned long addr;
72357590
BB
102
103 /* Track enable bit, flags, etc. Aligned for bitops. */
a4c40c13 104 unsigned int values;
72357590
BB
105};
106
107/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
108#define ENABLE_VAL_BIT_MASK 0x3F
109
81f8fb65
BB
110/* Bit 6 is for faulting status of enablement */
111#define ENABLE_VAL_FAULTING_BIT 6
112
dcb8177c
BB
113/* Bit 7 is for freeing status of enablement */
114#define ENABLE_VAL_FREEING_BIT 7
115
72357590
BB
116/* Only duplicate the bit value */
117#define ENABLE_VAL_DUP_MASK ENABLE_VAL_BIT_MASK
118
81f8fb65
BB
119#define ENABLE_BITOPS(e) ((unsigned long *)&(e)->values)
120
121/* Used for asynchronous faulting in of pages */
122struct user_event_enabler_fault {
a4c40c13
BB
123 struct work_struct work;
124 struct user_event_mm *mm;
125 struct user_event_enabler *enabler;
41d8fba1 126 int attempt;
81f8fb65
BB
127};
128
129static struct kmem_cache *fault_cache;
130
72357590
BB
131/* Global list of memory descriptors using user_events */
132static LIST_HEAD(user_event_mms);
133static DEFINE_SPINLOCK(user_event_mms_lock);
134
7f5a08c7
BB
135/*
136 * Stores per-file events references, as users register events
137 * within a file this structure is modified and freed via RCU.
138 * The lifetime of this struct is tied to the lifetime of the file.
139 * These are not shared and only accessible by the file that created it.
140 */
141struct user_event_refs {
a4c40c13
BB
142 struct rcu_head rcu;
143 int count;
144 struct user_event *events[];
7f5a08c7
BB
145};
146
e5d27181 147struct user_event_file_info {
a4c40c13
BB
148 struct user_event_group *group;
149 struct user_event_refs *refs;
e5d27181
BB
150};
151
2467cda1
BB
152#define VALIDATOR_ENSURE_NULL (1 << 0)
153#define VALIDATOR_REL (1 << 1)
154
155struct user_event_validator {
a4c40c13
BB
156 struct list_head link;
157 int offset;
158 int flags;
2467cda1
BB
159};
160
0279400a 161typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
2467cda1 162 void *tpdata, bool *faulted);
7f5a08c7 163
e5d27181
BB
164static int user_event_parse(struct user_event_group *group, char *name,
165 char *args, char *flags,
7f5a08c7
BB
166 struct user_event **newuser);
167
72357590
BB
168static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
169static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
170static void user_event_mm_put(struct user_event_mm *mm);
171
7f5a08c7
BB
172static u32 user_event_key(char *name)
173{
174 return jhash(name, strlen(name), 0);
175}
176
e5d27181
BB
177static void user_event_group_destroy(struct user_event_group *group)
178{
e5d27181
BB
179 kfree(group->system_name);
180 kfree(group);
181}
182
183static char *user_event_group_system_name(struct user_namespace *user_ns)
184{
185 char *system_name;
186 int len = sizeof(USER_EVENTS_SYSTEM) + 1;
187
188 if (user_ns != &init_user_ns) {
189 /*
190 * Unexpected at this point:
191 * We only currently support init_user_ns.
192 * When we enable more, this will trigger a failure so log.
193 */
194 pr_warn("user_events: Namespace other than init_user_ns!\n");
195 return NULL;
196 }
197
198 system_name = kmalloc(len, GFP_KERNEL);
199
200 if (!system_name)
201 return NULL;
202
203 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
204
205 return system_name;
206}
207
208static inline struct user_event_group
209*user_event_group_from_user_ns(struct user_namespace *user_ns)
210{
211 if (user_ns == &init_user_ns)
212 return init_group;
213
214 return NULL;
215}
216
217static struct user_event_group *current_user_event_group(void)
218{
219 struct user_namespace *user_ns = current_user_ns();
220 struct user_event_group *group = NULL;
221
222 while (user_ns) {
223 group = user_event_group_from_user_ns(user_ns);
224
225 if (group)
226 break;
227
228 user_ns = user_ns->parent;
229 }
230
231 return group;
232}
233
234static struct user_event_group
235*user_event_group_create(struct user_namespace *user_ns)
236{
237 struct user_event_group *group;
238
239 group = kzalloc(sizeof(*group), GFP_KERNEL);
240
241 if (!group)
242 return NULL;
243
244 group->system_name = user_event_group_system_name(user_ns);
245
246 if (!group->system_name)
247 goto error;
248
e5d27181
BB
249 mutex_init(&group->reg_mutex);
250 hash_init(group->register_table);
251
252 return group;
253error:
254 if (group)
255 user_event_group_destroy(group);
256
257 return NULL;
258};
259
72357590
BB
260static void user_event_enabler_destroy(struct user_event_enabler *enabler)
261{
262 list_del_rcu(&enabler->link);
263
264 /* No longer tracking the event via the enabler */
265 refcount_dec(&enabler->event->refcnt);
266
267 kfree(enabler);
268}
269
41d8fba1
BB
270static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
271 int attempt)
72357590
BB
272{
273 bool unlocked;
274 int ret;
275
41d8fba1
BB
276 /*
277 * Normally this is low, ensure that it cannot be taken advantage of by
278 * bad user processes to cause excessive looping.
279 */
280 if (attempt > 10)
281 return -EFAULT;
282
72357590
BB
283 mmap_read_lock(mm->mm);
284
285 /* Ensure MM has tasks, cannot use after exit_mm() */
286 if (refcount_read(&mm->tasks) == 0) {
287 ret = -ENOENT;
288 goto out;
289 }
290
291 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
292 &unlocked);
293out:
294 mmap_read_unlock(mm->mm);
295
296 return ret;
297}
298
299static int user_event_enabler_write(struct user_event_mm *mm,
81f8fb65 300 struct user_event_enabler *enabler,
41d8fba1 301 bool fixup_fault, int *attempt);
81f8fb65
BB
302
303static void user_event_enabler_fault_fixup(struct work_struct *work)
304{
305 struct user_event_enabler_fault *fault = container_of(
306 work, struct user_event_enabler_fault, work);
307 struct user_event_enabler *enabler = fault->enabler;
308 struct user_event_mm *mm = fault->mm;
309 unsigned long uaddr = enabler->addr;
41d8fba1 310 int attempt = fault->attempt;
81f8fb65
BB
311 int ret;
312
41d8fba1 313 ret = user_event_mm_fault_in(mm, uaddr, attempt);
81f8fb65
BB
314
315 if (ret && ret != -ENOENT) {
316 struct user_event *user = enabler->event;
317
318 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
319 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
320 }
321
322 /* Prevent state changes from racing */
323 mutex_lock(&event_mutex);
324
dcb8177c
BB
325 /* User asked for enabler to be removed during fault */
326 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
327 user_event_enabler_destroy(enabler);
328 goto out;
329 }
330
81f8fb65
BB
331 /*
332 * If we managed to get the page, re-issue the write. We do not
333 * want to get into a possible infinite loop, which is why we only
334 * attempt again directly if the page came in. If we couldn't get
335 * the page here, then we will try again the next time the event is
336 * enabled/disabled.
337 */
338 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
339
340 if (!ret) {
341 mmap_read_lock(mm->mm);
41d8fba1 342 user_event_enabler_write(mm, enabler, true, &attempt);
81f8fb65
BB
343 mmap_read_unlock(mm->mm);
344 }
dcb8177c 345out:
81f8fb65
BB
346 mutex_unlock(&event_mutex);
347
348 /* In all cases we no longer need the mm or fault */
349 user_event_mm_put(mm);
350 kmem_cache_free(fault_cache, fault);
351}
352
353static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
41d8fba1
BB
354 struct user_event_enabler *enabler,
355 int attempt)
81f8fb65
BB
356{
357 struct user_event_enabler_fault *fault;
358
359 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
360
361 if (!fault)
362 return false;
363
364 INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
365 fault->mm = user_event_mm_get(mm);
366 fault->enabler = enabler;
41d8fba1 367 fault->attempt = attempt;
81f8fb65
BB
368
369 /* Don't try to queue in again while we have a pending fault */
370 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
371
372 if (!schedule_work(&fault->work)) {
373 /* Allow another attempt later */
374 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
375
376 user_event_mm_put(mm);
377 kmem_cache_free(fault_cache, fault);
378
379 return false;
380 }
381
382 return true;
383}
384
385static int user_event_enabler_write(struct user_event_mm *mm,
386 struct user_event_enabler *enabler,
41d8fba1 387 bool fixup_fault, int *attempt)
72357590
BB
388{
389 unsigned long uaddr = enabler->addr;
390 unsigned long *ptr;
391 struct page *page;
392 void *kaddr;
393 int ret;
394
395 lockdep_assert_held(&event_mutex);
396 mmap_assert_locked(mm->mm);
397
41d8fba1
BB
398 *attempt += 1;
399
72357590
BB
400 /* Ensure MM has tasks, cannot use after exit_mm() */
401 if (refcount_read(&mm->tasks) == 0)
402 return -ENOENT;
403
dcb8177c
BB
404 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
405 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
81f8fb65
BB
406 return -EBUSY;
407
72357590
BB
408 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
409 &page, NULL, NULL);
410
81f8fb65
BB
411 if (unlikely(ret <= 0)) {
412 if (!fixup_fault)
413 return -EFAULT;
414
41d8fba1 415 if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
81f8fb65
BB
416 pr_warn("user_events: Unable to queue fault handler\n");
417
72357590
BB
418 return -EFAULT;
419 }
420
421 kaddr = kmap_local_page(page);
422 ptr = kaddr + (uaddr & ~PAGE_MASK);
423
424 /* Update bit atomically, user tracers must be atomic as well */
425 if (enabler->event && enabler->event->status)
426 set_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
427 else
428 clear_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
429
430 kunmap_local(kaddr);
431 unpin_user_pages_dirty_lock(&page, 1, true);
432
433 return 0;
434}
435
97bbce89
BB
436static bool user_event_enabler_exists(struct user_event_mm *mm,
437 unsigned long uaddr, unsigned char bit)
438{
439 struct user_event_enabler *enabler;
440 struct user_event_enabler *next;
441
442 list_for_each_entry_safe(enabler, next, &mm->enablers, link) {
443 if (enabler->addr == uaddr &&
444 (enabler->values & ENABLE_VAL_BIT_MASK) == bit)
445 return true;
446 }
447
448 return false;
449}
450
72357590
BB
451static void user_event_enabler_update(struct user_event *user)
452{
453 struct user_event_enabler *enabler;
454 struct user_event_mm *mm = user_event_mm_get_all(user);
455 struct user_event_mm *next;
41d8fba1 456 int attempt;
72357590
BB
457
458 while (mm) {
459 next = mm->next;
460 mmap_read_lock(mm->mm);
461 rcu_read_lock();
462
41d8fba1
BB
463 list_for_each_entry_rcu(enabler, &mm->enablers, link) {
464 if (enabler->event == user) {
465 attempt = 0;
466 user_event_enabler_write(mm, enabler, true, &attempt);
467 }
468 }
72357590
BB
469
470 rcu_read_unlock();
471 mmap_read_unlock(mm->mm);
472 user_event_mm_put(mm);
473 mm = next;
474 }
475}
476
477static bool user_event_enabler_dup(struct user_event_enabler *orig,
478 struct user_event_mm *mm)
479{
480 struct user_event_enabler *enabler;
481
dcb8177c
BB
482 /* Skip pending frees */
483 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
484 return true;
485
f9cce238 486 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
72357590
BB
487
488 if (!enabler)
489 return false;
490
491 enabler->event = orig->event;
492 enabler->addr = orig->addr;
493
494 /* Only dup part of value (ignore future flags, etc) */
495 enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
496
497 refcount_inc(&enabler->event->refcnt);
498 list_add_rcu(&enabler->link, &mm->enablers);
499
500 return true;
501}
502
503static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
504{
505 refcount_inc(&mm->refcnt);
506
507 return mm;
508}
509
510static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
511{
512 struct user_event_mm *found = NULL;
513 struct user_event_enabler *enabler;
514 struct user_event_mm *mm;
515
516 /*
517 * We do not want to block fork/exec while enablements are being
518 * updated, so we use RCU to walk the current tasks that have used
519 * user_events ABI for 1 or more events. Each enabler found in each
520 * task that matches the event being updated has a write to reflect
521 * the kernel state back into the process. Waits/faults must not occur
522 * during this. So we scan the list under RCU for all the mm that have
523 * the event within it. This is needed because mm_read_lock() can wait.
524 * Each user mm returned has a ref inc to handle remove RCU races.
525 */
526 rcu_read_lock();
527
528 list_for_each_entry_rcu(mm, &user_event_mms, link)
529 list_for_each_entry_rcu(enabler, &mm->enablers, link)
530 if (enabler->event == user) {
531 mm->next = found;
532 found = user_event_mm_get(mm);
533 break;
534 }
535
536 rcu_read_unlock();
537
538 return found;
539}
540
541static struct user_event_mm *user_event_mm_create(struct task_struct *t)
542{
543 struct user_event_mm *user_mm;
544 unsigned long flags;
545
f9cce238 546 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
72357590
BB
547
548 if (!user_mm)
549 return NULL;
550
551 user_mm->mm = t->mm;
552 INIT_LIST_HEAD(&user_mm->enablers);
553 refcount_set(&user_mm->refcnt, 1);
554 refcount_set(&user_mm->tasks, 1);
555
556 spin_lock_irqsave(&user_event_mms_lock, flags);
557 list_add_rcu(&user_mm->link, &user_event_mms);
558 spin_unlock_irqrestore(&user_event_mms_lock, flags);
559
560 t->user_event_mm = user_mm;
561
562 /*
563 * The lifetime of the memory descriptor can slightly outlast
564 * the task lifetime if a ref to the user_event_mm is taken
565 * between list_del_rcu() and call_rcu(). Therefore we need
566 * to take a reference to it to ensure it can live this long
567 * under this corner case. This can also occur in clones that
568 * outlast the parent.
569 */
570 mmgrab(user_mm->mm);
571
572 return user_mm;
573}
574
575static struct user_event_mm *current_user_event_mm(void)
576{
577 struct user_event_mm *user_mm = current->user_event_mm;
578
579 if (user_mm)
580 goto inc;
581
582 user_mm = user_event_mm_create(current);
583
584 if (!user_mm)
585 goto error;
586inc:
587 refcount_inc(&user_mm->refcnt);
588error:
589 return user_mm;
590}
591
592static void user_event_mm_destroy(struct user_event_mm *mm)
593{
594 struct user_event_enabler *enabler, *next;
595
596 list_for_each_entry_safe(enabler, next, &mm->enablers, link)
597 user_event_enabler_destroy(enabler);
598
599 mmdrop(mm->mm);
600 kfree(mm);
601}
602
603static void user_event_mm_put(struct user_event_mm *mm)
604{
605 if (mm && refcount_dec_and_test(&mm->refcnt))
606 user_event_mm_destroy(mm);
607}
608
609static void delayed_user_event_mm_put(struct work_struct *work)
610{
611 struct user_event_mm *mm;
612
613 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
614 user_event_mm_put(mm);
615}
616
617void user_event_mm_remove(struct task_struct *t)
39d6d08b 618{
72357590
BB
619 struct user_event_mm *mm;
620 unsigned long flags;
621
622 might_sleep();
623
624 mm = t->user_event_mm;
625 t->user_event_mm = NULL;
626
627 /* Clone will increment the tasks, only remove if last clone */
628 if (!refcount_dec_and_test(&mm->tasks))
629 return;
630
631 /* Remove the mm from the list, so it can no longer be enabled */
632 spin_lock_irqsave(&user_event_mms_lock, flags);
633 list_del_rcu(&mm->link);
634 spin_unlock_irqrestore(&user_event_mms_lock, flags);
635
636 /*
637 * We need to wait for currently occurring writes to stop within
638 * the mm. This is required since exit_mm() snaps the current rss
639 * stats and clears them. On the final mmdrop(), check_mm() will
640 * report a bug if these increment.
641 *
642 * All writes/pins are done under mmap_read lock, take the write
643 * lock to ensure in-progress faults have completed. Faults that
644 * are pending but yet to run will check the task count and skip
645 * the fault since the mm is going away.
646 */
647 mmap_write_lock(mm->mm);
648 mmap_write_unlock(mm->mm);
39d6d08b 649
72357590
BB
650 /*
651 * Put for mm must be done after RCU delay to handle new refs in
652 * between the list_del_rcu() and now. This ensures any get refs
653 * during rcu_read_lock() are accounted for during list removal.
654 *
655 * CPU A | CPU B
656 * ---------------------------------------------------------------
657 * user_event_mm_remove() | rcu_read_lock();
658 * list_del_rcu() | list_for_each_entry_rcu();
659 * call_rcu() | refcount_inc();
660 * . | rcu_read_unlock();
661 * schedule_work() | .
662 * user_event_mm_put() | .
663 *
664 * mmdrop() cannot be called in the softirq context of call_rcu()
665 * so we use a work queue after call_rcu() to run within.
666 */
667 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
668 queue_rcu_work(system_wq, &mm->put_rwork);
39d6d08b
BB
669}
670
72357590 671void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
39d6d08b 672{
72357590
BB
673 struct user_event_mm *mm = user_event_mm_create(t);
674 struct user_event_enabler *enabler;
39d6d08b 675
72357590
BB
676 if (!mm)
677 return;
678
679 rcu_read_lock();
680
681 list_for_each_entry_rcu(enabler, &old_mm->enablers, link)
682 if (!user_event_enabler_dup(enabler, mm))
683 goto error;
684
685 rcu_read_unlock();
686
687 return;
688error:
689 rcu_read_unlock();
690 user_event_mm_remove(t);
691}
692
97bbce89
BB
693static bool current_user_event_enabler_exists(unsigned long uaddr,
694 unsigned char bit)
695{
696 struct user_event_mm *user_mm = current_user_event_mm();
697 bool exists;
698
699 if (!user_mm)
700 return false;
701
702 exists = user_event_enabler_exists(user_mm, uaddr, bit);
703
704 user_event_mm_put(user_mm);
705
706 return exists;
707}
708
72357590
BB
709static struct user_event_enabler
710*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
711 int *write_result)
712{
713 struct user_event_enabler *enabler;
714 struct user_event_mm *user_mm;
715 unsigned long uaddr = (unsigned long)reg->enable_addr;
41d8fba1 716 int attempt = 0;
72357590
BB
717
718 user_mm = current_user_event_mm();
719
720 if (!user_mm)
721 return NULL;
722
f9cce238 723 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
72357590
BB
724
725 if (!enabler)
726 goto out;
727
728 enabler->event = user;
729 enabler->addr = uaddr;
730 enabler->values = reg->enable_bit;
731retry:
732 /* Prevents state changes from racing with new enablers */
733 mutex_lock(&event_mutex);
734
735 /* Attempt to reflect the current state within the process */
736 mmap_read_lock(user_mm->mm);
41d8fba1
BB
737 *write_result = user_event_enabler_write(user_mm, enabler, false,
738 &attempt);
72357590
BB
739 mmap_read_unlock(user_mm->mm);
740
741 /*
742 * If the write works, then we will track the enabler. A ref to the
743 * underlying user_event is held by the enabler to prevent it going
744 * away while the enabler is still in use by a process. The ref is
745 * removed when the enabler is destroyed. This means a event cannot
746 * be forcefully deleted from the system until all tasks using it
747 * exit or run exec(), which includes forks and clones.
748 */
749 if (!*write_result) {
750 refcount_inc(&enabler->event->refcnt);
751 list_add_rcu(&enabler->link, &user_mm->enablers);
752 }
753
754 mutex_unlock(&event_mutex);
755
756 if (*write_result) {
757 /* Attempt to fault-in and retry if it worked */
41d8fba1 758 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
72357590
BB
759 goto retry;
760
761 kfree(enabler);
762 enabler = NULL;
763 }
764out:
765 user_event_mm_put(user_mm);
766
767 return enabler;
39d6d08b
BB
768}
769
d401b724
BB
770static __always_inline __must_check
771bool user_event_last_ref(struct user_event *user)
772{
773 return refcount_read(&user->refcnt) == 1;
774}
775
0279400a
BB
776static __always_inline __must_check
777size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
778{
779 size_t ret;
780
781 pagefault_disable();
782
783 ret = copy_from_iter_nocache(addr, bytes, i);
784
785 pagefault_enable();
786
787 return ret;
788}
789
7f5a08c7
BB
790static struct list_head *user_event_get_fields(struct trace_event_call *call)
791{
792 struct user_event *user = (struct user_event *)call->data;
793
794 return &user->fields;
795}
796
797/*
798 * Parses a register command for user_events
799 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
800 *
801 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
802 * 'id' field after:
803 * test char[20] msg;unsigned int id
804 *
805 * NOTE: Offsets are from the user data perspective, they are not from the
806 * trace_entry/buffer perspective. We automatically add the common properties
807 * sizes to the offset for the user.
7e348b32
BB
808 *
809 * Upon success user_event has its ref count increased by 1.
7f5a08c7 810 */
e5d27181
BB
811static int user_event_parse_cmd(struct user_event_group *group,
812 char *raw_command, struct user_event **newuser)
7f5a08c7
BB
813{
814 char *name = raw_command;
815 char *args = strpbrk(name, " ");
816 char *flags;
817
818 if (args)
819 *args++ = '\0';
820
821 flags = strpbrk(name, ":");
822
823 if (flags)
824 *flags++ = '\0';
825
e5d27181 826 return user_event_parse(group, name, args, flags, newuser);
7f5a08c7
BB
827}
828
829static int user_field_array_size(const char *type)
830{
831 const char *start = strchr(type, '[');
832 char val[8];
833 char *bracket;
834 int size = 0;
835
836 if (start == NULL)
837 return -EINVAL;
838
839 if (strscpy(val, start + 1, sizeof(val)) <= 0)
840 return -EINVAL;
841
842 bracket = strchr(val, ']');
843
844 if (!bracket)
845 return -EINVAL;
846
847 *bracket = '\0';
848
849 if (kstrtouint(val, 0, &size))
850 return -EINVAL;
851
852 if (size > MAX_FIELD_ARRAY_SIZE)
853 return -EINVAL;
854
855 return size;
856}
857
858static int user_field_size(const char *type)
859{
860 /* long is not allowed from a user, since it's ambigious in size */
861 if (strcmp(type, "s64") == 0)
862 return sizeof(s64);
863 if (strcmp(type, "u64") == 0)
864 return sizeof(u64);
865 if (strcmp(type, "s32") == 0)
866 return sizeof(s32);
867 if (strcmp(type, "u32") == 0)
868 return sizeof(u32);
869 if (strcmp(type, "int") == 0)
870 return sizeof(int);
871 if (strcmp(type, "unsigned int") == 0)
872 return sizeof(unsigned int);
873 if (strcmp(type, "s16") == 0)
874 return sizeof(s16);
875 if (strcmp(type, "u16") == 0)
876 return sizeof(u16);
877 if (strcmp(type, "short") == 0)
878 return sizeof(short);
879 if (strcmp(type, "unsigned short") == 0)
880 return sizeof(unsigned short);
881 if (strcmp(type, "s8") == 0)
882 return sizeof(s8);
883 if (strcmp(type, "u8") == 0)
884 return sizeof(u8);
885 if (strcmp(type, "char") == 0)
886 return sizeof(char);
887 if (strcmp(type, "unsigned char") == 0)
888 return sizeof(unsigned char);
889 if (str_has_prefix(type, "char["))
890 return user_field_array_size(type);
891 if (str_has_prefix(type, "unsigned char["))
892 return user_field_array_size(type);
893 if (str_has_prefix(type, "__data_loc "))
894 return sizeof(u32);
895 if (str_has_prefix(type, "__rel_loc "))
896 return sizeof(u32);
897
898 /* Uknown basic type, error */
899 return -EINVAL;
900}
901
2467cda1
BB
902static void user_event_destroy_validators(struct user_event *user)
903{
904 struct user_event_validator *validator, *next;
905 struct list_head *head = &user->validators;
906
907 list_for_each_entry_safe(validator, next, head, link) {
908 list_del(&validator->link);
909 kfree(validator);
910 }
911}
912
7f5a08c7
BB
913static void user_event_destroy_fields(struct user_event *user)
914{
915 struct ftrace_event_field *field, *next;
916 struct list_head *head = &user->fields;
917
918 list_for_each_entry_safe(field, next, head, link) {
919 list_del(&field->link);
920 kfree(field);
921 }
922}
923
924static int user_event_add_field(struct user_event *user, const char *type,
925 const char *name, int offset, int size,
926 int is_signed, int filter_type)
927{
2467cda1 928 struct user_event_validator *validator;
7f5a08c7 929 struct ftrace_event_field *field;
2467cda1 930 int validator_flags = 0;
7f5a08c7 931
f9cce238 932 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
933
934 if (!field)
935 return -ENOMEM;
936
2467cda1
BB
937 if (str_has_prefix(type, "__data_loc "))
938 goto add_validator;
939
940 if (str_has_prefix(type, "__rel_loc ")) {
941 validator_flags |= VALIDATOR_REL;
942 goto add_validator;
943 }
944
945 goto add_field;
946
947add_validator:
9cbf1234 948 if (strstr(type, "char") != NULL)
2467cda1
BB
949 validator_flags |= VALIDATOR_ENSURE_NULL;
950
f9cce238 951 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
2467cda1
BB
952
953 if (!validator) {
954 kfree(field);
955 return -ENOMEM;
956 }
957
958 validator->flags = validator_flags;
959 validator->offset = offset;
960
961 /* Want sequential access when validating */
962 list_add_tail(&validator->link, &user->validators);
963
964add_field:
7f5a08c7
BB
965 field->type = type;
966 field->name = name;
967 field->offset = offset;
968 field->size = size;
969 field->is_signed = is_signed;
970 field->filter_type = filter_type;
971
9872c07b
BB
972 if (filter_type == FILTER_OTHER)
973 field->filter_type = filter_assign_type(type);
974
7f5a08c7
BB
975 list_add(&field->link, &user->fields);
976
2467cda1
BB
977 /*
978 * Min size from user writes that are required, this does not include
979 * the size of trace_entry (common fields).
980 */
981 user->min_size = (offset + size) - sizeof(struct trace_entry);
982
7f5a08c7
BB
983 return 0;
984}
985
986/*
987 * Parses the values of a field within the description
988 * Format: type name [size]
989 */
990static int user_event_parse_field(char *field, struct user_event *user,
991 u32 *offset)
992{
993 char *part, *type, *name;
994 u32 depth = 0, saved_offset = *offset;
995 int len, size = -EINVAL;
996 bool is_struct = false;
997
998 field = skip_spaces(field);
999
1000 if (*field == '\0')
1001 return 0;
1002
1003 /* Handle types that have a space within */
1004 len = str_has_prefix(field, "unsigned ");
1005 if (len)
1006 goto skip_next;
1007
1008 len = str_has_prefix(field, "struct ");
1009 if (len) {
1010 is_struct = true;
1011 goto skip_next;
1012 }
1013
1014 len = str_has_prefix(field, "__data_loc unsigned ");
1015 if (len)
1016 goto skip_next;
1017
1018 len = str_has_prefix(field, "__data_loc ");
1019 if (len)
1020 goto skip_next;
1021
1022 len = str_has_prefix(field, "__rel_loc unsigned ");
1023 if (len)
1024 goto skip_next;
1025
1026 len = str_has_prefix(field, "__rel_loc ");
1027 if (len)
1028 goto skip_next;
1029
1030 goto parse;
1031skip_next:
1032 type = field;
1033 field = strpbrk(field + len, " ");
1034
1035 if (field == NULL)
1036 return -EINVAL;
1037
1038 *field++ = '\0';
1039 depth++;
1040parse:
173c2049
BB
1041 name = NULL;
1042
7f5a08c7
BB
1043 while ((part = strsep(&field, " ")) != NULL) {
1044 switch (depth++) {
1045 case FIELD_DEPTH_TYPE:
1046 type = part;
1047 break;
1048 case FIELD_DEPTH_NAME:
1049 name = part;
1050 break;
1051 case FIELD_DEPTH_SIZE:
1052 if (!is_struct)
1053 return -EINVAL;
1054
1055 if (kstrtou32(part, 10, &size))
1056 return -EINVAL;
1057 break;
1058 default:
1059 return -EINVAL;
1060 }
1061 }
1062
173c2049 1063 if (depth < FIELD_DEPTH_SIZE || !name)
7f5a08c7
BB
1064 return -EINVAL;
1065
1066 if (depth == FIELD_DEPTH_SIZE)
1067 size = user_field_size(type);
1068
1069 if (size == 0)
1070 return -EINVAL;
1071
1072 if (size < 0)
1073 return size;
1074
1075 *offset = saved_offset + size;
1076
1077 return user_event_add_field(user, type, name, saved_offset, size,
1078 type[0] != 'u', FILTER_OTHER);
1079}
1080
7f5a08c7
BB
1081static int user_event_parse_fields(struct user_event *user, char *args)
1082{
1083 char *field;
1084 u32 offset = sizeof(struct trace_entry);
1085 int ret = -EINVAL;
1086
1087 if (args == NULL)
1088 return 0;
1089
1090 while ((field = strsep(&args, ";")) != NULL) {
1091 ret = user_event_parse_field(field, user, &offset);
1092
1093 if (ret)
1094 break;
1095 }
1096
1097 return ret;
1098}
1099
1100static struct trace_event_fields user_event_fields_array[1];
1101
aa3b2b4c
BB
1102static const char *user_field_format(const char *type)
1103{
1104 if (strcmp(type, "s64") == 0)
1105 return "%lld";
1106 if (strcmp(type, "u64") == 0)
1107 return "%llu";
1108 if (strcmp(type, "s32") == 0)
1109 return "%d";
1110 if (strcmp(type, "u32") == 0)
1111 return "%u";
1112 if (strcmp(type, "int") == 0)
1113 return "%d";
1114 if (strcmp(type, "unsigned int") == 0)
1115 return "%u";
1116 if (strcmp(type, "s16") == 0)
1117 return "%d";
1118 if (strcmp(type, "u16") == 0)
1119 return "%u";
1120 if (strcmp(type, "short") == 0)
1121 return "%d";
1122 if (strcmp(type, "unsigned short") == 0)
1123 return "%u";
1124 if (strcmp(type, "s8") == 0)
1125 return "%d";
1126 if (strcmp(type, "u8") == 0)
1127 return "%u";
1128 if (strcmp(type, "char") == 0)
1129 return "%d";
1130 if (strcmp(type, "unsigned char") == 0)
1131 return "%u";
9cbf1234 1132 if (strstr(type, "char[") != NULL)
aa3b2b4c
BB
1133 return "%s";
1134
1135 /* Unknown, likely struct, allowed treat as 64-bit */
1136 return "%llu";
1137}
1138
1139static bool user_field_is_dyn_string(const char *type, const char **str_func)
1140{
1141 if (str_has_prefix(type, "__data_loc ")) {
1142 *str_func = "__get_str";
1143 goto check;
1144 }
1145
1146 if (str_has_prefix(type, "__rel_loc ")) {
1147 *str_func = "__get_rel_str";
1148 goto check;
1149 }
1150
1151 return false;
1152check:
9cbf1234 1153 return strstr(type, "char") != NULL;
aa3b2b4c
BB
1154}
1155
1156#define LEN_OR_ZERO (len ? len - pos : 0)
e6f89a14
BB
1157static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1158 char *buf, int len, bool *colon)
1159{
1160 int pos = 0, i = *iout;
1161
1162 *colon = false;
1163
1164 for (; i < argc; ++i) {
1165 if (i != *iout)
1166 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1167
1168 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1169
1170 if (strchr(argv[i], ';')) {
1171 ++i;
1172 *colon = true;
1173 break;
1174 }
1175 }
1176
1177 /* Actual set, advance i */
1178 if (len != 0)
1179 *iout = i;
1180
1181 return pos + 1;
1182}
1183
1184static int user_field_set_string(struct ftrace_event_field *field,
1185 char *buf, int len, bool colon)
1186{
1187 int pos = 0;
1188
1189 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1190 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1191 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1192
1193 if (colon)
1194 pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1195
1196 return pos + 1;
1197}
1198
aa3b2b4c
BB
1199static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1200{
1201 struct ftrace_event_field *field, *next;
1202 struct list_head *head = &user->fields;
1203 int pos = 0, depth = 0;
1204 const char *str_func;
1205
1206 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1207
1208 list_for_each_entry_safe_reverse(field, next, head, link) {
1209 if (depth != 0)
1210 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1211
1212 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1213 field->name, user_field_format(field->type));
1214
1215 depth++;
1216 }
1217
1218 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1219
1220 list_for_each_entry_safe_reverse(field, next, head, link) {
1221 if (user_field_is_dyn_string(field->type, &str_func))
1222 pos += snprintf(buf + pos, LEN_OR_ZERO,
1223 ", %s(%s)", str_func, field->name);
1224 else
1225 pos += snprintf(buf + pos, LEN_OR_ZERO,
1226 ", REC->%s", field->name);
1227 }
1228
1229 return pos + 1;
1230}
1231#undef LEN_OR_ZERO
1232
1233static int user_event_create_print_fmt(struct user_event *user)
1234{
1235 char *print_fmt;
1236 int len;
1237
1238 len = user_event_set_print_fmt(user, NULL, 0);
1239
f9cce238 1240 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
aa3b2b4c
BB
1241
1242 if (!print_fmt)
1243 return -ENOMEM;
1244
1245 user_event_set_print_fmt(user, print_fmt, len);
1246
1247 user->call.print_fmt = print_fmt;
1248
1249 return 0;
1250}
1251
7f5a08c7
BB
1252static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1253 int flags,
1254 struct trace_event *event)
1255{
4bec284c 1256 return print_event_fields(iter, event);
7f5a08c7
BB
1257}
1258
1259static struct trace_event_functions user_event_funcs = {
1260 .trace = user_event_print_trace,
1261};
1262
089331d4
BB
1263static int user_event_set_call_visible(struct user_event *user, bool visible)
1264{
1265 int ret;
1266 const struct cred *old_cred;
1267 struct cred *cred;
1268
1269 cred = prepare_creds();
1270
1271 if (!cred)
1272 return -ENOMEM;
1273
1274 /*
1275 * While by default tracefs is locked down, systems can be configured
1276 * to allow user_event files to be less locked down. The extreme case
1277 * being "other" has read/write access to user_events_data/status.
1278 *
94c255ac 1279 * When not locked down, processes may not have permissions to
089331d4
BB
1280 * add/remove calls themselves to tracefs. We need to temporarily
1281 * switch to root file permission to allow for this scenario.
1282 */
1283 cred->fsuid = GLOBAL_ROOT_UID;
1284
1285 old_cred = override_creds(cred);
1286
1287 if (visible)
1288 ret = trace_add_event_call(&user->call);
1289 else
1290 ret = trace_remove_event_call(&user->call);
1291
1292 revert_creds(old_cred);
1293 put_cred(cred);
1294
1295 return ret;
1296}
1297
7f5a08c7
BB
1298static int destroy_user_event(struct user_event *user)
1299{
1300 int ret = 0;
1301
ce58e96e
BB
1302 lockdep_assert_held(&event_mutex);
1303
7f5a08c7
BB
1304 /* Must destroy fields before call removal */
1305 user_event_destroy_fields(user);
1306
089331d4 1307 ret = user_event_set_call_visible(user, false);
7f5a08c7
BB
1308
1309 if (ret)
1310 return ret;
1311
1312 dyn_event_remove(&user->devent);
7f5a08c7
BB
1313 hash_del(&user->node);
1314
2467cda1 1315 user_event_destroy_validators(user);
aa3b2b4c 1316 kfree(user->call.print_fmt);
7f5a08c7
BB
1317 kfree(EVENT_NAME(user));
1318 kfree(user);
1319
ce58e96e
BB
1320 if (current_user_events > 0)
1321 current_user_events--;
1322 else
1323 pr_alert("BUG: Bad current_user_events\n");
1324
7f5a08c7
BB
1325 return ret;
1326}
1327
e5d27181
BB
1328static struct user_event *find_user_event(struct user_event_group *group,
1329 char *name, u32 *outkey)
7f5a08c7
BB
1330{
1331 struct user_event *user;
1332 u32 key = user_event_key(name);
1333
1334 *outkey = key;
1335
e5d27181 1336 hash_for_each_possible(group->register_table, user, node, key)
7e348b32 1337 if (!strcmp(EVENT_NAME(user), name)) {
d401b724 1338 refcount_inc(&user->refcnt);
7f5a08c7 1339 return user;
7e348b32 1340 }
7f5a08c7
BB
1341
1342 return NULL;
1343}
1344
2467cda1
BB
1345static int user_event_validate(struct user_event *user, void *data, int len)
1346{
1347 struct list_head *head = &user->validators;
1348 struct user_event_validator *validator;
1349 void *pos, *end = data + len;
1350 u32 loc, offset, size;
1351
1352 list_for_each_entry(validator, head, link) {
1353 pos = data + validator->offset;
1354
1355 /* Already done min_size check, no bounds check here */
1356 loc = *(u32 *)pos;
1357 offset = loc & 0xffff;
1358 size = loc >> 16;
1359
1360 if (likely(validator->flags & VALIDATOR_REL))
1361 pos += offset + sizeof(loc);
1362 else
1363 pos = data + offset;
1364
1365 pos += size;
1366
1367 if (unlikely(pos > end))
1368 return -EFAULT;
1369
1370 if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1371 if (unlikely(*(char *)(pos - 1) != '\0'))
1372 return -EFAULT;
1373 }
1374
1375 return 0;
1376}
1377
7f5a08c7
BB
1378/*
1379 * Writes the user supplied payload out to a trace file.
1380 */
0279400a 1381static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
2467cda1 1382 void *tpdata, bool *faulted)
7f5a08c7
BB
1383{
1384 struct trace_event_file *file;
1385 struct trace_entry *entry;
1386 struct trace_event_buffer event_buffer;
2467cda1 1387 size_t size = sizeof(*entry) + i->count;
7f5a08c7
BB
1388
1389 file = (struct trace_event_file *)tpdata;
1390
1391 if (!file ||
1392 !(file->flags & EVENT_FILE_FL_ENABLED) ||
1393 trace_trigger_soft_disabled(file))
1394 return;
1395
1396 /* Allocates and fills trace_entry, + 1 of this is data payload */
2467cda1 1397 entry = trace_event_buffer_reserve(&event_buffer, file, size);
7f5a08c7
BB
1398
1399 if (unlikely(!entry))
1400 return;
1401
0279400a 1402 if (unlikely(!copy_nofault(entry + 1, i->count, i)))
2467cda1
BB
1403 goto discard;
1404
1405 if (!list_empty(&user->validators) &&
1406 unlikely(user_event_validate(user, entry, size)))
1407 goto discard;
1408
1409 trace_event_buffer_commit(&event_buffer);
1410
1411 return;
1412discard:
1413 *faulted = true;
1414 __trace_event_discard_commit(event_buffer.buffer,
1415 event_buffer.event);
7f5a08c7
BB
1416}
1417
3207d045
BB
1418#ifdef CONFIG_PERF_EVENTS
1419/*
768c1e7f 1420 * Writes the user supplied payload out to perf ring buffer.
3207d045 1421 */
0279400a 1422static void user_event_perf(struct user_event *user, struct iov_iter *i,
2467cda1 1423 void *tpdata, bool *faulted)
3207d045
BB
1424{
1425 struct hlist_head *perf_head;
1426
3207d045
BB
1427 perf_head = this_cpu_ptr(user->call.perf_events);
1428
1429 if (perf_head && !hlist_empty(perf_head)) {
1430 struct trace_entry *perf_entry;
1431 struct pt_regs *regs;
0279400a 1432 size_t size = sizeof(*perf_entry) + i->count;
3207d045
BB
1433 int context;
1434
1435 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1436 &regs, &context);
1437
1438 if (unlikely(!perf_entry))
1439 return;
1440
1441 perf_fetch_caller_regs(regs);
1442
2467cda1
BB
1443 if (unlikely(!copy_nofault(perf_entry + 1, i->count, i)))
1444 goto discard;
1445
1446 if (!list_empty(&user->validators) &&
1447 unlikely(user_event_validate(user, perf_entry, size)))
1448 goto discard;
3207d045
BB
1449
1450 perf_trace_buf_submit(perf_entry, size, context,
1451 user->call.event.type, 1, regs,
1452 perf_head, NULL);
2467cda1
BB
1453
1454 return;
1455discard:
1456 *faulted = true;
1457 perf_swevent_put_recursion_context(context);
3207d045
BB
1458 }
1459}
1460#endif
1461
7f5a08c7 1462/*
72357590 1463 * Update the enabled bit among all user processes.
7f5a08c7 1464 */
72357590 1465static void update_enable_bit_for(struct user_event *user)
7f5a08c7
BB
1466{
1467 struct tracepoint *tp = &user->tracepoint;
1468 char status = 0;
1469
1470 if (atomic_read(&tp->key.enabled) > 0) {
1471 struct tracepoint_func *probe_func_ptr;
1472 user_event_func_t probe_func;
1473
1474 rcu_read_lock_sched();
1475
1476 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1477
1478 if (probe_func_ptr) {
1479 do {
1480 probe_func = probe_func_ptr->func;
1481
1482 if (probe_func == user_event_ftrace)
1483 status |= EVENT_STATUS_FTRACE;
3207d045
BB
1484#ifdef CONFIG_PERF_EVENTS
1485 else if (probe_func == user_event_perf)
1486 status |= EVENT_STATUS_PERF;
1487#endif
7f5a08c7
BB
1488 else
1489 status |= EVENT_STATUS_OTHER;
1490 } while ((++probe_func_ptr)->func);
1491 }
1492
1493 rcu_read_unlock_sched();
1494 }
1495
39d6d08b 1496 user->status = status;
72357590
BB
1497
1498 user_event_enabler_update(user);
7f5a08c7
BB
1499}
1500
1501/*
1502 * Register callback for our events from tracing sub-systems.
1503 */
1504static int user_event_reg(struct trace_event_call *call,
1505 enum trace_reg type,
1506 void *data)
1507{
1508 struct user_event *user = (struct user_event *)call->data;
1509 int ret = 0;
1510
1511 if (!user)
1512 return -ENOENT;
1513
1514 switch (type) {
1515 case TRACE_REG_REGISTER:
1516 ret = tracepoint_probe_register(call->tp,
1517 call->class->probe,
1518 data);
1519 if (!ret)
1520 goto inc;
1521 break;
1522
1523 case TRACE_REG_UNREGISTER:
1524 tracepoint_probe_unregister(call->tp,
1525 call->class->probe,
1526 data);
1527 goto dec;
1528
3207d045
BB
1529#ifdef CONFIG_PERF_EVENTS
1530 case TRACE_REG_PERF_REGISTER:
1531 ret = tracepoint_probe_register(call->tp,
1532 call->class->perf_probe,
1533 data);
1534 if (!ret)
1535 goto inc;
1536 break;
1537
1538 case TRACE_REG_PERF_UNREGISTER:
1539 tracepoint_probe_unregister(call->tp,
1540 call->class->perf_probe,
1541 data);
1542 goto dec;
1543
1544 case TRACE_REG_PERF_OPEN:
1545 case TRACE_REG_PERF_CLOSE:
1546 case TRACE_REG_PERF_ADD:
1547 case TRACE_REG_PERF_DEL:
7f5a08c7 1548 break;
3207d045 1549#endif
7f5a08c7
BB
1550 }
1551
1552 return ret;
1553inc:
d401b724 1554 refcount_inc(&user->refcnt);
72357590 1555 update_enable_bit_for(user);
7f5a08c7
BB
1556 return 0;
1557dec:
72357590 1558 update_enable_bit_for(user);
d401b724 1559 refcount_dec(&user->refcnt);
7f5a08c7
BB
1560 return 0;
1561}
1562
1563static int user_event_create(const char *raw_command)
1564{
e5d27181 1565 struct user_event_group *group;
7f5a08c7
BB
1566 struct user_event *user;
1567 char *name;
1568 int ret;
1569
1570 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1571 return -ECANCELED;
1572
1573 raw_command += USER_EVENTS_PREFIX_LEN;
1574 raw_command = skip_spaces(raw_command);
1575
f9cce238 1576 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1577
1578 if (!name)
1579 return -ENOMEM;
1580
e5d27181
BB
1581 group = current_user_event_group();
1582
ccc6e590
XJ
1583 if (!group) {
1584 kfree(name);
e5d27181 1585 return -ENOENT;
ccc6e590 1586 }
e5d27181
BB
1587
1588 mutex_lock(&group->reg_mutex);
7e348b32 1589
e5d27181 1590 ret = user_event_parse_cmd(group, name, &user);
7e348b32
BB
1591
1592 if (!ret)
d401b724 1593 refcount_dec(&user->refcnt);
7e348b32 1594
e5d27181 1595 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
1596
1597 if (ret)
1598 kfree(name);
1599
1600 return ret;
1601}
1602
1603static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1604{
1605 struct user_event *user = container_of(ev, struct user_event, devent);
1606 struct ftrace_event_field *field, *next;
1607 struct list_head *head;
1608 int depth = 0;
1609
1610 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1611
1612 head = trace_get_fields(&user->call);
1613
1614 list_for_each_entry_safe_reverse(field, next, head, link) {
1615 if (depth == 0)
1616 seq_puts(m, " ");
1617 else
1618 seq_puts(m, "; ");
1619
1620 seq_printf(m, "%s %s", field->type, field->name);
1621
1622 if (str_has_prefix(field->type, "struct "))
1623 seq_printf(m, " %d", field->size);
1624
1625 depth++;
1626 }
1627
1628 seq_puts(m, "\n");
1629
1630 return 0;
1631}
1632
1633static bool user_event_is_busy(struct dyn_event *ev)
1634{
1635 struct user_event *user = container_of(ev, struct user_event, devent);
1636
d401b724 1637 return !user_event_last_ref(user);
7f5a08c7
BB
1638}
1639
1640static int user_event_free(struct dyn_event *ev)
1641{
1642 struct user_event *user = container_of(ev, struct user_event, devent);
1643
d401b724 1644 if (!user_event_last_ref(user))
7f5a08c7
BB
1645 return -EBUSY;
1646
1647 return destroy_user_event(user);
1648}
1649
9aed4e15
BB
1650static bool user_field_match(struct ftrace_event_field *field, int argc,
1651 const char **argv, int *iout)
1652{
e6f89a14 1653 char *field_name = NULL, *dyn_field_name = NULL;
9aed4e15 1654 bool colon = false, match = false;
e6f89a14 1655 int dyn_len, len;
9aed4e15 1656
e6f89a14 1657 if (*iout >= argc)
9aed4e15
BB
1658 return false;
1659
e6f89a14
BB
1660 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1661 0, &colon);
9aed4e15 1662
e6f89a14 1663 len = user_field_set_string(field, field_name, 0, colon);
9aed4e15 1664
e6f89a14
BB
1665 if (dyn_len != len)
1666 return false;
9aed4e15 1667
e6f89a14
BB
1668 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1669 field_name = kmalloc(len, GFP_KERNEL);
9aed4e15 1670
e6f89a14
BB
1671 if (!dyn_field_name || !field_name)
1672 goto out;
9aed4e15 1673
e6f89a14
BB
1674 user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1675 dyn_len, &colon);
9aed4e15 1676
e6f89a14 1677 user_field_set_string(field, field_name, len, colon);
9aed4e15 1678
e6f89a14 1679 match = strcmp(dyn_field_name, field_name) == 0;
9aed4e15 1680out:
e6f89a14 1681 kfree(dyn_field_name);
9aed4e15
BB
1682 kfree(field_name);
1683
1684 return match;
1685}
1686
1687static bool user_fields_match(struct user_event *user, int argc,
1688 const char **argv)
1689{
1690 struct ftrace_event_field *field, *next;
1691 struct list_head *head = &user->fields;
1692 int i = 0;
1693
1694 list_for_each_entry_safe_reverse(field, next, head, link)
1695 if (!user_field_match(field, argc, argv, &i))
1696 return false;
1697
1698 if (i != argc)
1699 return false;
1700
1701 return true;
1702}
1703
7f5a08c7
BB
1704static bool user_event_match(const char *system, const char *event,
1705 int argc, const char **argv, struct dyn_event *ev)
1706{
1707 struct user_event *user = container_of(ev, struct user_event, devent);
9aed4e15 1708 bool match;
7f5a08c7 1709
9aed4e15 1710 match = strcmp(EVENT_NAME(user), event) == 0 &&
7f5a08c7 1711 (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
9aed4e15
BB
1712
1713 if (match && argc > 0)
1714 match = user_fields_match(user, argc, argv);
1715
1716 return match;
7f5a08c7
BB
1717}
1718
1719static struct dyn_event_operations user_event_dops = {
1720 .create = user_event_create,
1721 .show = user_event_show,
1722 .is_busy = user_event_is_busy,
1723 .free = user_event_free,
1724 .match = user_event_match,
1725};
1726
1727static int user_event_trace_register(struct user_event *user)
1728{
1729 int ret;
1730
1731 ret = register_trace_event(&user->call.event);
1732
1733 if (!ret)
1734 return -ENODEV;
1735
089331d4 1736 ret = user_event_set_call_visible(user, true);
7f5a08c7
BB
1737
1738 if (ret)
1739 unregister_trace_event(&user->call.event);
1740
1741 return ret;
1742}
1743
1744/*
1745 * Parses the event name, arguments and flags then registers if successful.
1746 * The name buffer lifetime is owned by this method for success cases only.
7e348b32 1747 * Upon success the returned user_event has its ref count increased by 1.
7f5a08c7 1748 */
e5d27181
BB
1749static int user_event_parse(struct user_event_group *group, char *name,
1750 char *args, char *flags,
7f5a08c7
BB
1751 struct user_event **newuser)
1752{
1753 int ret;
7f5a08c7 1754 u32 key;
7e348b32
BB
1755 struct user_event *user;
1756
1757 /* Prevent dyn_event from racing */
1758 mutex_lock(&event_mutex);
e5d27181 1759 user = find_user_event(group, name, &key);
7e348b32 1760 mutex_unlock(&event_mutex);
7f5a08c7
BB
1761
1762 if (user) {
1763 *newuser = user;
1764 /*
1765 * Name is allocated by caller, free it since it already exists.
1766 * Caller only worries about failure cases for freeing.
1767 */
1768 kfree(name);
1769 return 0;
1770 }
1771
f9cce238 1772 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1773
1774 if (!user)
1775 return -ENOMEM;
1776
1777 INIT_LIST_HEAD(&user->class.fields);
1778 INIT_LIST_HEAD(&user->fields);
2467cda1 1779 INIT_LIST_HEAD(&user->validators);
7f5a08c7 1780
e5d27181 1781 user->group = group;
7f5a08c7
BB
1782 user->tracepoint.name = name;
1783
7f5a08c7
BB
1784 ret = user_event_parse_fields(user, args);
1785
1786 if (ret)
1787 goto put_user;
1788
aa3b2b4c
BB
1789 ret = user_event_create_print_fmt(user);
1790
1791 if (ret)
1792 goto put_user;
7f5a08c7
BB
1793
1794 user->call.data = user;
1795 user->call.class = &user->class;
1796 user->call.name = name;
1797 user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
1798 user->call.tp = &user->tracepoint;
1799 user->call.event.funcs = &user_event_funcs;
e5d27181 1800 user->class.system = group->system_name;
7f5a08c7 1801
7f5a08c7
BB
1802 user->class.fields_array = user_event_fields_array;
1803 user->class.get_fields = user_event_get_fields;
1804 user->class.reg = user_event_reg;
1805 user->class.probe = user_event_ftrace;
3207d045
BB
1806#ifdef CONFIG_PERF_EVENTS
1807 user->class.perf_probe = user_event_perf;
1808#endif
7f5a08c7
BB
1809
1810 mutex_lock(&event_mutex);
efe34e99 1811
ce58e96e
BB
1812 if (current_user_events >= max_user_events) {
1813 ret = -EMFILE;
1814 goto put_user_lock;
1815 }
1816
7f5a08c7 1817 ret = user_event_trace_register(user);
7f5a08c7
BB
1818
1819 if (ret)
efe34e99 1820 goto put_user_lock;
7f5a08c7 1821
d401b724
BB
1822 /* Ensure we track self ref and caller ref (2) */
1823 refcount_set(&user->refcnt, 2);
7e348b32 1824
7f5a08c7
BB
1825 dyn_event_init(&user->devent, &user_event_dops);
1826 dyn_event_add(&user->devent, &user->call);
e5d27181 1827 hash_add(group->register_table, &user->node, key);
ce58e96e 1828 current_user_events++;
7f5a08c7 1829
efe34e99
BB
1830 mutex_unlock(&event_mutex);
1831
7f5a08c7
BB
1832 *newuser = user;
1833 return 0;
efe34e99
BB
1834put_user_lock:
1835 mutex_unlock(&event_mutex);
7f5a08c7
BB
1836put_user:
1837 user_event_destroy_fields(user);
2467cda1 1838 user_event_destroy_validators(user);
4bded7af 1839 kfree(user->call.print_fmt);
7f5a08c7
BB
1840 kfree(user);
1841 return ret;
1842}
1843
1844/*
1845 * Deletes a previously created event if it is no longer being used.
1846 */
e5d27181 1847static int delete_user_event(struct user_event_group *group, char *name)
7f5a08c7
BB
1848{
1849 u32 key;
e5d27181 1850 struct user_event *user = find_user_event(group, name, &key);
7f5a08c7
BB
1851
1852 if (!user)
1853 return -ENOENT;
1854
d401b724 1855 refcount_dec(&user->refcnt);
7e348b32 1856
d401b724
BB
1857 if (!user_event_last_ref(user))
1858 return -EBUSY;
7f5a08c7 1859
d401b724 1860 return destroy_user_event(user);
7f5a08c7
BB
1861}
1862
1863/*
1864 * Validates the user payload and writes via iterator.
1865 */
1866static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
1867{
e5d27181 1868 struct user_event_file_info *info = file->private_data;
7f5a08c7
BB
1869 struct user_event_refs *refs;
1870 struct user_event *user = NULL;
1871 struct tracepoint *tp;
1872 ssize_t ret = i->count;
1873 int idx;
1874
1875 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
1876 return -EFAULT;
1877
cd98c932
BB
1878 if (idx < 0)
1879 return -EINVAL;
1880
7f5a08c7
BB
1881 rcu_read_lock_sched();
1882
e5d27181 1883 refs = rcu_dereference_sched(info->refs);
7f5a08c7
BB
1884
1885 /*
1886 * The refs->events array is protected by RCU, and new items may be
1887 * added. But the user retrieved from indexing into the events array
1888 * shall be immutable while the file is opened.
1889 */
1890 if (likely(refs && idx < refs->count))
1891 user = refs->events[idx];
1892
1893 rcu_read_unlock_sched();
1894
1895 if (unlikely(user == NULL))
1896 return -ENOENT;
1897
2467cda1
BB
1898 if (unlikely(i->count < user->min_size))
1899 return -EINVAL;
1900
7f5a08c7
BB
1901 tp = &user->tracepoint;
1902
1903 /*
1904 * It's possible key.enabled disables after this check, however
1905 * we don't mind if a few events are included in this condition.
1906 */
1907 if (likely(atomic_read(&tp->key.enabled) > 0)) {
1908 struct tracepoint_func *probe_func_ptr;
1909 user_event_func_t probe_func;
0279400a 1910 struct iov_iter copy;
7f5a08c7 1911 void *tpdata;
2467cda1 1912 bool faulted;
7f5a08c7 1913
0279400a
BB
1914 if (unlikely(fault_in_iov_iter_readable(i, i->count)))
1915 return -EFAULT;
7f5a08c7 1916
2467cda1
BB
1917 faulted = false;
1918
7f5a08c7
BB
1919 rcu_read_lock_sched();
1920
1921 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1922
1923 if (probe_func_ptr) {
1924 do {
0279400a 1925 copy = *i;
7f5a08c7
BB
1926 probe_func = probe_func_ptr->func;
1927 tpdata = probe_func_ptr->data;
2467cda1 1928 probe_func(user, &copy, tpdata, &faulted);
7f5a08c7
BB
1929 } while ((++probe_func_ptr)->func);
1930 }
1931
1932 rcu_read_unlock_sched();
2467cda1
BB
1933
1934 if (unlikely(faulted))
1935 return -EFAULT;
7f5a08c7
BB
1936 }
1937
1938 return ret;
1939}
1940
e5d27181
BB
1941static int user_events_open(struct inode *node, struct file *file)
1942{
1943 struct user_event_group *group;
1944 struct user_event_file_info *info;
1945
1946 group = current_user_event_group();
1947
1948 if (!group)
1949 return -ENOENT;
1950
f9cce238 1951 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
e5d27181
BB
1952
1953 if (!info)
1954 return -ENOMEM;
1955
1956 info->group = group;
1957
1958 file->private_data = info;
1959
1960 return 0;
1961}
1962
7f5a08c7
BB
1963static ssize_t user_events_write(struct file *file, const char __user *ubuf,
1964 size_t count, loff_t *ppos)
1965{
1966 struct iovec iov;
1967 struct iov_iter i;
1968
1969 if (unlikely(*ppos != 0))
1970 return -EFAULT;
1971
de4eda9d 1972 if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
95f18760 1973 count, &iov, &i)))
7f5a08c7
BB
1974 return -EFAULT;
1975
1976 return user_events_write_core(file, &i);
1977}
1978
1979static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
1980{
1981 return user_events_write_core(kp->ki_filp, i);
1982}
1983
e5d27181
BB
1984static int user_events_ref_add(struct user_event_file_info *info,
1985 struct user_event *user)
7f5a08c7 1986{
e5d27181 1987 struct user_event_group *group = info->group;
7f5a08c7
BB
1988 struct user_event_refs *refs, *new_refs;
1989 int i, size, count = 0;
1990
e5d27181
BB
1991 refs = rcu_dereference_protected(info->refs,
1992 lockdep_is_held(&group->reg_mutex));
7f5a08c7
BB
1993
1994 if (refs) {
1995 count = refs->count;
1996
1997 for (i = 0; i < count; ++i)
1998 if (refs->events[i] == user)
1999 return i;
2000 }
2001
2002 size = struct_size(refs, events, count + 1);
2003
f9cce238 2004 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
2005
2006 if (!new_refs)
2007 return -ENOMEM;
2008
2009 new_refs->count = count + 1;
2010
2011 for (i = 0; i < count; ++i)
2012 new_refs->events[i] = refs->events[i];
2013
2014 new_refs->events[i] = user;
2015
d401b724 2016 refcount_inc(&user->refcnt);
7f5a08c7 2017
e5d27181 2018 rcu_assign_pointer(info->refs, new_refs);
7f5a08c7
BB
2019
2020 if (refs)
2021 kfree_rcu(refs, rcu);
2022
2023 return i;
2024}
2025
2026static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2027{
2028 u32 size;
2029 long ret;
2030
2031 ret = get_user(size, &ureg->size);
2032
2033 if (ret)
2034 return ret;
2035
2036 if (size > PAGE_SIZE)
2037 return -E2BIG;
2038
39d6d08b
BB
2039 if (size < offsetofend(struct user_reg, write_index))
2040 return -EINVAL;
2041
2042 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2043
2044 if (ret)
2045 return ret;
2046
72357590
BB
2047 /* Ensure no flags, since we don't support any yet */
2048 if (kreg->flags != 0)
2049 return -EINVAL;
2050
2051 /* Ensure supported size */
2052 switch (kreg->enable_size) {
2053 case 4:
2054 /* 32-bit */
2055 break;
2056#if BITS_PER_LONG >= 64
2057 case 8:
2058 /* 64-bit */
2059 break;
2060#endif
2061 default:
2062 return -EINVAL;
2063 }
2064
2065 /* Ensure natural alignment */
2066 if (kreg->enable_addr % kreg->enable_size)
2067 return -EINVAL;
2068
2069 /* Ensure bit range for size */
2070 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2071 return -EINVAL;
2072
2073 /* Ensure accessible */
2074 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2075 kreg->enable_size))
2076 return -EFAULT;
2077
39d6d08b
BB
2078 kreg->size = size;
2079
2080 return 0;
7f5a08c7
BB
2081}
2082
2083/*
2084 * Registers a user_event on behalf of a user process.
2085 */
e5d27181
BB
2086static long user_events_ioctl_reg(struct user_event_file_info *info,
2087 unsigned long uarg)
7f5a08c7
BB
2088{
2089 struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2090 struct user_reg reg;
2091 struct user_event *user;
72357590 2092 struct user_event_enabler *enabler;
7f5a08c7
BB
2093 char *name;
2094 long ret;
72357590 2095 int write_result;
7f5a08c7
BB
2096
2097 ret = user_reg_get(ureg, &reg);
2098
2099 if (ret)
2100 return ret;
2101
97bbce89
BB
2102 /*
2103 * Prevent users from using the same address and bit multiple times
2104 * within the same mm address space. This can cause unexpected behavior
2105 * for user processes that is far easier to debug if this is explictly
2106 * an error upon registering.
2107 */
2108 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2109 reg.enable_bit))
2110 return -EADDRINUSE;
2111
7f5a08c7
BB
2112 name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2113 MAX_EVENT_DESC);
2114
2115 if (IS_ERR(name)) {
2116 ret = PTR_ERR(name);
2117 return ret;
2118 }
2119
e5d27181 2120 ret = user_event_parse_cmd(info->group, name, &user);
7f5a08c7
BB
2121
2122 if (ret) {
2123 kfree(name);
2124 return ret;
2125 }
2126
e5d27181 2127 ret = user_events_ref_add(info, user);
7f5a08c7 2128
7e348b32 2129 /* No longer need parse ref, ref_add either worked or not */
d401b724 2130 refcount_dec(&user->refcnt);
7e348b32 2131
7f5a08c7
BB
2132 /* Positive number is index and valid */
2133 if (ret < 0)
2134 return ret;
2135
72357590
BB
2136 /*
2137 * user_events_ref_add succeeded:
2138 * At this point we have a user_event, it's lifetime is bound by the
2139 * reference count, not this file. If anything fails, the user_event
2140 * still has a reference until the file is released. During release
2141 * any remaining references (from user_events_ref_add) are decremented.
2142 *
2143 * Attempt to create an enabler, which too has a lifetime tied in the
2144 * same way for the event. Once the task that caused the enabler to be
2145 * created exits or issues exec() then the enablers it has created
2146 * will be destroyed and the ref to the event will be decremented.
2147 */
2148 enabler = user_event_enabler_create(&reg, user, &write_result);
2149
2150 if (!enabler)
2151 return -ENOMEM;
2152
2153 /* Write failed/faulted, give error back to caller */
2154 if (write_result)
2155 return write_result;
2156
7f5a08c7 2157 put_user((u32)ret, &ureg->write_index);
7f5a08c7
BB
2158
2159 return 0;
2160}
2161
2162/*
2163 * Deletes a user_event on behalf of a user process.
2164 */
e5d27181
BB
2165static long user_events_ioctl_del(struct user_event_file_info *info,
2166 unsigned long uarg)
7f5a08c7
BB
2167{
2168 void __user *ubuf = (void __user *)uarg;
2169 char *name;
2170 long ret;
2171
2172 name = strndup_user(ubuf, MAX_EVENT_DESC);
2173
2174 if (IS_ERR(name))
2175 return PTR_ERR(name);
2176
7e348b32
BB
2177 /* event_mutex prevents dyn_event from racing */
2178 mutex_lock(&event_mutex);
e5d27181 2179 ret = delete_user_event(info->group, name);
7e348b32 2180 mutex_unlock(&event_mutex);
7f5a08c7
BB
2181
2182 kfree(name);
2183
2184 return ret;
2185}
2186
dcb8177c
BB
2187static long user_unreg_get(struct user_unreg __user *ureg,
2188 struct user_unreg *kreg)
2189{
2190 u32 size;
2191 long ret;
2192
2193 ret = get_user(size, &ureg->size);
2194
2195 if (ret)
2196 return ret;
2197
2198 if (size > PAGE_SIZE)
2199 return -E2BIG;
2200
2201 if (size < offsetofend(struct user_unreg, disable_addr))
2202 return -EINVAL;
2203
2204 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2205
2206 /* Ensure no reserved values, since we don't support any yet */
2207 if (kreg->__reserved || kreg->__reserved2)
2208 return -EINVAL;
2209
2210 return ret;
2211}
2212
17b439db
BB
2213static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2214 unsigned long uaddr, unsigned char bit)
2215{
2216 struct user_event_enabler enabler;
2217 int result;
41d8fba1 2218 int attempt = 0;
17b439db
BB
2219
2220 memset(&enabler, 0, sizeof(enabler));
2221 enabler.addr = uaddr;
2222 enabler.values = bit;
2223retry:
2224 /* Prevents state changes from racing with new enablers */
2225 mutex_lock(&event_mutex);
2226
2227 /* Force the bit to be cleared, since no event is attached */
2228 mmap_read_lock(user_mm->mm);
41d8fba1 2229 result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
17b439db
BB
2230 mmap_read_unlock(user_mm->mm);
2231
2232 mutex_unlock(&event_mutex);
2233
2234 if (result) {
2235 /* Attempt to fault-in and retry if it worked */
41d8fba1 2236 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
17b439db
BB
2237 goto retry;
2238 }
2239
2240 return result;
2241}
2242
dcb8177c
BB
2243/*
2244 * Unregisters an enablement address/bit within a task/user mm.
2245 */
2246static long user_events_ioctl_unreg(unsigned long uarg)
2247{
2248 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2249 struct user_event_mm *mm = current->user_event_mm;
2250 struct user_event_enabler *enabler, *next;
2251 struct user_unreg reg;
2252 long ret;
2253
2254 ret = user_unreg_get(ureg, &reg);
2255
2256 if (ret)
2257 return ret;
2258
2259 if (!mm)
2260 return -ENOENT;
2261
2262 ret = -ENOENT;
2263
2264 /*
2265 * Flags freeing and faulting are used to indicate if the enabler is in
2266 * use at all. When faulting is set a page-fault is occurring asyncly.
2267 * During async fault if freeing is set, the enabler will be destroyed.
2268 * If no async fault is happening, we can destroy it now since we hold
2269 * the event_mutex during these checks.
2270 */
2271 mutex_lock(&event_mutex);
2272
2273 list_for_each_entry_safe(enabler, next, &mm->enablers, link)
2274 if (enabler->addr == reg.disable_addr &&
2275 (enabler->values & ENABLE_VAL_BIT_MASK) == reg.disable_bit) {
2276 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2277
2278 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2279 user_event_enabler_destroy(enabler);
2280
2281 /* Removed at least one */
2282 ret = 0;
2283 }
2284
2285 mutex_unlock(&event_mutex);
2286
17b439db
BB
2287 /* Ensure bit is now cleared for user, regardless of event status */
2288 if (!ret)
2289 ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2290 reg.disable_bit);
2291
dcb8177c
BB
2292 return ret;
2293}
2294
7f5a08c7
BB
2295/*
2296 * Handles the ioctl from user mode to register or alter operations.
2297 */
2298static long user_events_ioctl(struct file *file, unsigned int cmd,
2299 unsigned long uarg)
2300{
e5d27181
BB
2301 struct user_event_file_info *info = file->private_data;
2302 struct user_event_group *group = info->group;
7f5a08c7
BB
2303 long ret = -ENOTTY;
2304
2305 switch (cmd) {
2306 case DIAG_IOCSREG:
e5d27181
BB
2307 mutex_lock(&group->reg_mutex);
2308 ret = user_events_ioctl_reg(info, uarg);
2309 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2310 break;
2311
2312 case DIAG_IOCSDEL:
e5d27181
BB
2313 mutex_lock(&group->reg_mutex);
2314 ret = user_events_ioctl_del(info, uarg);
2315 mutex_unlock(&group->reg_mutex);
7f5a08c7 2316 break;
dcb8177c
BB
2317
2318 case DIAG_IOCSUNREG:
2319 mutex_lock(&group->reg_mutex);
2320 ret = user_events_ioctl_unreg(uarg);
2321 mutex_unlock(&group->reg_mutex);
2322 break;
7f5a08c7
BB
2323 }
2324
2325 return ret;
2326}
2327
2328/*
2329 * Handles the final close of the file from user mode.
2330 */
2331static int user_events_release(struct inode *node, struct file *file)
2332{
e5d27181
BB
2333 struct user_event_file_info *info = file->private_data;
2334 struct user_event_group *group;
7f5a08c7
BB
2335 struct user_event_refs *refs;
2336 struct user_event *user;
2337 int i;
2338
e5d27181
BB
2339 if (!info)
2340 return -EINVAL;
2341
2342 group = info->group;
2343
7f5a08c7
BB
2344 /*
2345 * Ensure refs cannot change under any situation by taking the
2346 * register mutex during the final freeing of the references.
2347 */
e5d27181 2348 mutex_lock(&group->reg_mutex);
7f5a08c7 2349
e5d27181 2350 refs = info->refs;
7f5a08c7
BB
2351
2352 if (!refs)
2353 goto out;
2354
2355 /*
2356 * The lifetime of refs has reached an end, it's tied to this file.
2357 * The underlying user_events are ref counted, and cannot be freed.
2358 * After this decrement, the user_events may be freed elsewhere.
2359 */
2360 for (i = 0; i < refs->count; ++i) {
2361 user = refs->events[i];
2362
2363 if (user)
d401b724 2364 refcount_dec(&user->refcnt);
7f5a08c7
BB
2365 }
2366out:
2367 file->private_data = NULL;
2368
e5d27181 2369 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2370
2371 kfree(refs);
e5d27181 2372 kfree(info);
7f5a08c7
BB
2373
2374 return 0;
2375}
2376
2377static const struct file_operations user_data_fops = {
a4c40c13
BB
2378 .open = user_events_open,
2379 .write = user_events_write,
2380 .write_iter = user_events_write_iter,
7f5a08c7 2381 .unlocked_ioctl = user_events_ioctl,
a4c40c13 2382 .release = user_events_release,
7f5a08c7
BB
2383};
2384
7f5a08c7
BB
2385static void *user_seq_start(struct seq_file *m, loff_t *pos)
2386{
2387 if (*pos)
2388 return NULL;
2389
2390 return (void *)1;
2391}
2392
2393static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2394{
2395 ++*pos;
2396 return NULL;
2397}
2398
2399static void user_seq_stop(struct seq_file *m, void *p)
2400{
2401}
2402
2403static int user_seq_show(struct seq_file *m, void *p)
2404{
e5d27181 2405 struct user_event_group *group = m->private;
7f5a08c7
BB
2406 struct user_event *user;
2407 char status;
72357590 2408 int i, active = 0, busy = 0;
7f5a08c7 2409
e5d27181
BB
2410 if (!group)
2411 return -EINVAL;
2412
2413 mutex_lock(&group->reg_mutex);
7f5a08c7 2414
e5d27181 2415 hash_for_each(group->register_table, i, user, node) {
39d6d08b 2416 status = user->status;
7f5a08c7 2417
72357590 2418 seq_printf(m, "%s", EVENT_NAME(user));
7f5a08c7 2419
72357590 2420 if (status != 0)
7f5a08c7
BB
2421 seq_puts(m, " #");
2422
2423 if (status != 0) {
2424 seq_puts(m, " Used by");
2425 if (status & EVENT_STATUS_FTRACE)
2426 seq_puts(m, " ftrace");
2427 if (status & EVENT_STATUS_PERF)
2428 seq_puts(m, " perf");
2429 if (status & EVENT_STATUS_OTHER)
2430 seq_puts(m, " other");
2431 busy++;
2432 }
2433
7f5a08c7
BB
2434 seq_puts(m, "\n");
2435 active++;
2436 }
2437
e5d27181 2438 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2439
2440 seq_puts(m, "\n");
2441 seq_printf(m, "Active: %d\n", active);
2442 seq_printf(m, "Busy: %d\n", busy);
7f5a08c7
BB
2443
2444 return 0;
2445}
2446
2447static const struct seq_operations user_seq_ops = {
a4c40c13
BB
2448 .start = user_seq_start,
2449 .next = user_seq_next,
2450 .stop = user_seq_stop,
2451 .show = user_seq_show,
7f5a08c7
BB
2452};
2453
2454static int user_status_open(struct inode *node, struct file *file)
2455{
e5d27181
BB
2456 struct user_event_group *group;
2457 int ret;
2458
2459 group = current_user_event_group();
2460
2461 if (!group)
2462 return -ENOENT;
2463
2464 ret = seq_open(file, &user_seq_ops);
2465
2466 if (!ret) {
2467 /* Chain group to seq_file */
2468 struct seq_file *m = file->private_data;
2469
2470 m->private = group;
2471 }
2472
2473 return ret;
7f5a08c7
BB
2474}
2475
2476static const struct file_operations user_status_fops = {
a4c40c13
BB
2477 .open = user_status_open,
2478 .read = seq_read,
2479 .llseek = seq_lseek,
2480 .release = seq_release,
7f5a08c7
BB
2481};
2482
2483/*
2484 * Creates a set of tracefs files to allow user mode interactions.
2485 */
2486static int create_user_tracefs(void)
2487{
2488 struct dentry *edata, *emmap;
2489
2490 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2491 NULL, NULL, &user_data_fops);
2492
2493 if (!edata) {
2494 pr_warn("Could not create tracefs 'user_events_data' entry\n");
2495 goto err;
2496 }
2497
72357590 2498 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
7f5a08c7
BB
2499 NULL, NULL, &user_status_fops);
2500
2501 if (!emmap) {
2502 tracefs_remove(edata);
2503 pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2504 goto err;
2505 }
2506
2507 return 0;
2508err:
2509 return -ENODEV;
2510}
2511
ce58e96e
BB
2512static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2513 void *buffer, size_t *lenp, loff_t *ppos)
2514{
2515 int ret;
2516
2517 mutex_lock(&event_mutex);
2518
2519 ret = proc_douintvec(table, write, buffer, lenp, ppos);
2520
2521 mutex_unlock(&event_mutex);
2522
2523 return ret;
2524}
2525
2526static struct ctl_table user_event_sysctls[] = {
2527 {
2528 .procname = "user_events_max",
2529 .data = &max_user_events,
2530 .maxlen = sizeof(unsigned int),
2531 .mode = 0644,
2532 .proc_handler = set_max_user_events_sysctl,
2533 },
2534 {}
2535};
2536
7f5a08c7
BB
2537static int __init trace_events_user_init(void)
2538{
2539 int ret;
2540
81f8fb65
BB
2541 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2542
2543 if (!fault_cache)
2544 return -ENOMEM;
2545
e5d27181 2546 init_group = user_event_group_create(&init_user_ns);
7f5a08c7 2547
81f8fb65
BB
2548 if (!init_group) {
2549 kmem_cache_destroy(fault_cache);
7f5a08c7 2550 return -ENOMEM;
81f8fb65 2551 }
7f5a08c7
BB
2552
2553 ret = create_user_tracefs();
2554
2555 if (ret) {
2556 pr_warn("user_events could not register with tracefs\n");
e5d27181 2557 user_event_group_destroy(init_group);
81f8fb65 2558 kmem_cache_destroy(fault_cache);
e5d27181 2559 init_group = NULL;
7f5a08c7
BB
2560 return ret;
2561 }
2562
2563 if (dyn_event_register(&user_event_dops))
2564 pr_warn("user_events could not register with dyn_events\n");
2565
ce58e96e
BB
2566 register_sysctl_init("kernel", user_event_sysctls);
2567
7f5a08c7
BB
2568 return 0;
2569}
2570
2571fs_initcall(trace_events_user_init);