ring-buffer: Add event descriptor to simplify passing data
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
34a148bf 248static void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
abc9b56d 283struct buffer_data_page {
e4c2ce82 284 u64 time_stamp; /* page time stamp */
c3706f00 285 local_t commit; /* write committed index */
649508f6 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
287};
288
77ae365e
SR
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
abc9b56d 297struct buffer_page {
778c55d4 298 struct list_head list; /* list of buffer pages */
abc9b56d 299 local_t write; /* index for next write */
6f807acd 300 unsigned read; /* index for next read */
778c55d4 301 local_t entries; /* entries on this page */
ff0ff84a 302 unsigned long real_end; /* real end of data */
abc9b56d 303 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
304};
305
77ae365e
SR
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
044fa782 321static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 322{
044fa782 323 local_set(&bpage->commit, 0);
abc9b56d
SR
324}
325
474d32b6
SR
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
ef7a4a16
SR
332size_t ring_buffer_page_len(void *page)
333{
474d32b6
SR
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
336}
337
ed56829c
SR
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
34a148bf 342static void free_buffer_page(struct buffer_page *bpage)
ed56829c 343{
34a148bf 344 free_page((unsigned long)bpage->page);
e4c2ce82 345 kfree(bpage);
ed56829c
SR
346}
347
7a8e76a3
SR
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
474d32b6 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 359
be957c44
SR
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
d1b182a8
SR
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
c0cd93aa
SRRH
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
d1b182a8
SR
391}
392
15693458
SRRH
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
1e0d6714 396 wait_queue_head_t full_waiters;
15693458 397 bool waiters_pending;
1e0d6714
SRRH
398 bool full_waiters_pending;
399 bool wakeup_full;
15693458
SRRH
400};
401
fcc742ea
SRRH
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
a497adb4
SRRH
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
7a8e76a3
SR
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
985023de 435 atomic_t record_disabled;
7a8e76a3 436 struct ring_buffer *buffer;
5389f6fa 437 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 438 arch_spinlock_t lock;
7a8e76a3 439 struct lock_class_key lock_key;
438ced17 440 unsigned int nr_pages;
58a09ec6 441 unsigned int current_context;
3adc54fa 442 struct list_head *pages;
6f807acd
SR
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
c3706f00 445 struct buffer_page *commit_page; /* committed pages */
d769041f 446 struct buffer_page *reader_page;
66a8cb95
SR
447 unsigned long lost_events;
448 unsigned long last_overrun;
c64e148a 449 local_t entries_bytes;
e4906eff 450 local_t entries;
884bfe89
SP
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
fa743953
SR
454 local_t committing;
455 local_t commits;
77ae365e 456 unsigned long read;
c64e148a 457 unsigned long read_bytes;
7a8e76a3
SR
458 u64 write_stamp;
459 u64 read_stamp;
438ced17
VN
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
83f40318 463 struct work_struct update_pages_work;
05fdd70d 464 struct completion update_done;
15693458
SRRH
465
466 struct rb_irq_work irq_work;
7a8e76a3
SR
467};
468
469struct ring_buffer {
7a8e76a3
SR
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
83f40318 473 atomic_t resize_disabled;
00f62f61 474 cpumask_var_t cpumask;
7a8e76a3 475
1f8a6a10
PZ
476 struct lock_class_key *reader_lock_key;
477
7a8e76a3
SR
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
554f786e 481
59222efe 482#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
483 struct notifier_block cpu_notify;
484#endif
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832static int rb_is_reader_page(struct buffer_page *page)
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010{
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
1039 if (tail_page == cpu_buffer->tail_page) {
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
da706d8b
LJ
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1053 */
da706d8b
LJ
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072}
1073
1074static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076{
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083}
1084
1085/**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090{
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096}
1097
7a8e76a3 1098/**
d611851b 1099 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
c3706f00 1102 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1103 * been corrupted.
1104 */
1105static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106{
3adc54fa 1107 struct list_head *head = cpu_buffer->pages;
044fa782 1108 struct buffer_page *bpage, *tmp;
7a8e76a3 1109
308f7eeb
SR
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
77ae365e
SR
1114 rb_head_page_deactivate(cpu_buffer);
1115
3e89c7bb
SR
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
7a8e76a3 1120
77ae365e
SR
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
044fa782 1124 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1125 if (RB_WARN_ON(cpu_buffer,
044fa782 1126 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
044fa782 1129 bpage->list.prev->next != &bpage->list))
3e89c7bb 1130 return -1;
77ae365e
SR
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
7a8e76a3
SR
1133 }
1134
77ae365e
SR
1135 rb_head_page_activate(cpu_buffer);
1136
7a8e76a3
SR
1137 return 0;
1138}
1139
438ced17 1140static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1141{
438ced17 1142 int i;
044fa782 1143 struct buffer_page *bpage, *tmp;
3adc54fa 1144
7a8e76a3 1145 for (i = 0; i < nr_pages; i++) {
7ea59064 1146 struct page *page;
d7ec4bfe
VN
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
044fa782 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1153 GFP_KERNEL | __GFP_NORETRY,
438ced17 1154 cpu_to_node(cpu));
044fa782 1155 if (!bpage)
e4c2ce82 1156 goto free_pages;
77ae365e 1157
438ced17 1158 list_add(&bpage->list, pages);
77ae365e 1159
438ced17 1160 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1161 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1162 if (!page)
7a8e76a3 1163 goto free_pages;
7ea59064 1164 bpage->page = page_address(page);
044fa782 1165 rb_init_page(bpage->page);
7a8e76a3
SR
1166 }
1167
438ced17
VN
1168 return 0;
1169
1170free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177}
1178
1179static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181{
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
3adc54fa
SR
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
7a8e76a3 1196
438ced17
VN
1197 cpu_buffer->nr_pages = nr_pages;
1198
7a8e76a3
SR
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
7a8e76a3
SR
1202}
1203
1204static struct ring_buffer_per_cpu *
438ced17 1205rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1206{
1207 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1208 struct buffer_page *bpage;
7ea59064 1209 struct page *page;
7a8e76a3
SR
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
5389f6fa 1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1223 init_completion(&cpu_buffer->update_done);
15693458 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1227
044fa782 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1229 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1230 if (!bpage)
e4c2ce82
SR
1231 goto fail_free_buffer;
1232
77ae365e
SR
1233 rb_check_bpage(cpu_buffer, bpage);
1234
044fa782 1235 cpu_buffer->reader_page = bpage;
7ea59064
VN
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
e4c2ce82 1238 goto fail_free_reader;
7ea59064 1239 bpage->page = page_address(page);
044fa782 1240 rb_init_page(bpage->page);
e4c2ce82 1241
d769041f 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1244
438ced17 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1246 if (ret < 0)
d769041f 1247 goto fail_free_reader;
7a8e76a3
SR
1248
1249 cpu_buffer->head_page
3adc54fa 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1252
77ae365e
SR
1253 rb_head_page_activate(cpu_buffer);
1254
7a8e76a3
SR
1255 return cpu_buffer;
1256
d769041f
SR
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
7a8e76a3
SR
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263}
1264
1265static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266{
3adc54fa 1267 struct list_head *head = cpu_buffer->pages;
044fa782 1268 struct buffer_page *bpage, *tmp;
7a8e76a3 1269
d769041f
SR
1270 free_buffer_page(cpu_buffer->reader_page);
1271
77ae365e
SR
1272 rb_head_page_deactivate(cpu_buffer);
1273
3adc54fa
SR
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
044fa782 1280 free_buffer_page(bpage);
7a8e76a3 1281 }
3adc54fa 1282
7a8e76a3
SR
1283 kfree(cpu_buffer);
1284}
1285
59222efe 1286#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1287static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
554f786e
SR
1289#endif
1290
7a8e76a3 1291/**
d611851b 1292 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1293 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1f8a6a10
PZ
1301struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
7a8e76a3
SR
1303{
1304 struct ring_buffer *buffer;
1305 int bsize;
438ced17 1306 int cpu, nr_pages;
7a8e76a3
SR
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
9e01c1b7
RR
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
438ced17 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1318 buffer->flags = flags;
37886f6a 1319 buffer->clock = trace_clock_local;
1f8a6a10 1320 buffer->reader_lock_key = key;
7a8e76a3 1321
15693458 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1323 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1324
7a8e76a3 1325 /* need at least two pages */
438ced17
VN
1326 if (nr_pages < 2)
1327 nr_pages = 2;
7a8e76a3 1328
3bf832ce
FW
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1335 cpu_notifier_register_begin();
554f786e 1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1337#else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339#endif
7a8e76a3
SR
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
9e01c1b7 1346 goto fail_free_cpumask;
7a8e76a3
SR
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
438ced17 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
59222efe 1355#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
d39ad278
SB
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
554f786e
SR
1360#endif
1361
7a8e76a3
SR
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
9e01c1b7
RR
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1375#ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377#endif
9e01c1b7 1378
7a8e76a3
SR
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382}
1f8a6a10 1383EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1384
1385/**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389void
1390ring_buffer_free(struct ring_buffer *buffer)
1391{
1392 int cpu;
1393
59222efe 1394#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1397#endif
1398
7a8e76a3
SR
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
d39ad278
SB
1402#ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404#endif
554f786e 1405
bd3f0221 1406 kfree(buffer->buffers);
9e01c1b7
RR
1407 free_cpumask_var(buffer->cpumask);
1408
7a8e76a3
SR
1409 kfree(buffer);
1410}
c4f50183 1411EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1412
37886f6a
SR
1413void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415{
1416 buffer->clock = clock;
1417}
1418
7a8e76a3
SR
1419static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
83f40318
VN
1421static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422{
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424}
1425
1426static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427{
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429}
1430
5040b4b7 1431static int
83f40318 1432rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1433{
83f40318
VN
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
7a8e76a3 1442
5389f6fa 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1455
83f40318
VN
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1471 }
7a8e76a3 1472
83f40318 1473 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1474
83f40318
VN
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
48fdc72f 1521 * Increment overrun to account for the lost events.
83f40318 1522 */
48fdc72f 1523 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1537
1538 return nr_removed == 0;
7a8e76a3
SR
1539}
1540
5040b4b7
VN
1541static int
1542rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1543{
5040b4b7
VN
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
7a8e76a3 1546
5389f6fa 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
77ae365e 1568
5040b4b7 1569 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1570 if (!head_page)
1571 break;
5040b4b7
VN
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
7a8e76a3 1595 }
7a8e76a3 1596
5040b4b7
VN
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
7a8e76a3
SR
1616}
1617
83f40318 1618static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1619{
5040b4b7
VN
1620 int success;
1621
438ced17 1622 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1623 success = rb_insert_pages(cpu_buffer);
438ced17 1624 else
5040b4b7
VN
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
83f40318 1627
5040b4b7
VN
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1630}
1631
1632static void update_pages_handler(struct work_struct *work)
1633{
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
05fdd70d 1637 complete(&cpu_buffer->update_done);
438ced17
VN
1638}
1639
7a8e76a3
SR
1640/**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
d611851b 1644 * @cpu_id: the cpu buffer to resize
7a8e76a3 1645 *
7a8e76a3
SR
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
83f40318 1648 * Returns 0 on success and < 0 on failure.
7a8e76a3 1649 */
438ced17
VN
1650int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
7a8e76a3
SR
1652{
1653 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1654 unsigned nr_pages;
83f40318 1655 int cpu, err = 0;
7a8e76a3 1656
ee51a1de
IM
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
6a31e1f1
SR
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
7a8e76a3
SR
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
83f40318 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1676
83f40318
VN
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
18421015 1684
83f40318 1685 /* prevent another thread from changing buffer sizes */
7a8e76a3 1686 mutex_lock(&buffer->mutex);
7a8e76a3 1687
438ced17
VN
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
7a8e76a3
SR
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1692
438ced17
VN
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
438ced17
VN
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
d7ec4bfe 1700 /*
438ced17
VN
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
d7ec4bfe 1703 */
438ced17
VN
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1706 &cpu_buffer->new_pages, cpu)) {
438ced17 1707 /* not enough memory for new pages */
83f40318
VN
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
05fdd70d 1716 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1721 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1722 continue;
1723
021c5b34
CM
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
05fdd70d
VN
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
f5eb5588 1731 }
7a8e76a3 1732 }
7a8e76a3 1733
438ced17
VN
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1737 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1738 continue;
1739
05fdd70d
VN
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
83f40318 1742 cpu_buffer->nr_pages_to_update = 0;
438ced17 1743 }
83f40318
VN
1744
1745 put_online_cpus();
438ced17 1746 } else {
8e49f418
VN
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
438ced17 1751 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1752
438ced17
VN
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
7a8e76a3 1755
438ced17
VN
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
438ced17 1766
83f40318
VN
1767 get_online_cpus();
1768
021c5b34
CM
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1771 rb_update_pages(cpu_buffer);
1772 else {
83f40318
VN
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
05fdd70d 1775 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1776 }
83f40318 1777
83f40318 1778 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1779 put_online_cpus();
438ced17 1780 }
7a8e76a3
SR
1781
1782 out:
659f451f
SR
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
7a8e76a3 1806 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1807 return size;
1808
83f40318 1809 out_err:
438ced17
VN
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
83f40318 1812
438ced17 1813 cpu_buffer = buffer->buffers[cpu];
438ced17 1814 cpu_buffer->nr_pages_to_update = 0;
83f40318 1815
438ced17
VN
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
83f40318 1818
438ced17
VN
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
7a8e76a3 1824 }
641d2f63 1825 mutex_unlock(&buffer->mutex);
83f40318 1826 return err;
7a8e76a3 1827}
c4f50183 1828EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1829
750912fa
DS
1830void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831{
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838}
1839EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
8789a9e7 1841static inline void *
044fa782 1842__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1843{
044fa782 1844 return bpage->data + index;
8789a9e7
SR
1845}
1846
044fa782 1847static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1848{
044fa782 1849 return bpage->page->data + index;
7a8e76a3
SR
1850}
1851
1852static inline struct ring_buffer_event *
d769041f 1853rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1854{
6f807acd
SR
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857}
1858
7a8e76a3
SR
1859static inline struct ring_buffer_event *
1860rb_iter_head_event(struct ring_buffer_iter *iter)
1861{
6f807acd 1862 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1863}
1864
bf41a158
SR
1865static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866{
abc9b56d 1867 return local_read(&bpage->page->commit);
bf41a158
SR
1868}
1869
25985edc 1870/* Size is determined by what has been committed */
bf41a158
SR
1871static inline unsigned rb_page_size(struct buffer_page *bpage)
1872{
1873 return rb_page_commit(bpage);
1874}
1875
1876static inline unsigned
1877rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878{
1879 return rb_page_commit(cpu_buffer->commit_page);
1880}
1881
bf41a158
SR
1882static inline unsigned
1883rb_event_index(struct ring_buffer_event *event)
1884{
1885 unsigned long addr = (unsigned long)event;
1886
22f470f8 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1888}
1889
0f0c85fc 1890static inline int
fa743953
SR
1891rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1892 struct ring_buffer_event *event)
bf41a158
SR
1893{
1894 unsigned long addr = (unsigned long)event;
1895 unsigned long index;
1896
1897 index = rb_event_index(event);
1898 addr &= PAGE_MASK;
1899
1900 return cpu_buffer->commit_page->page == (void *)addr &&
1901 rb_commit_index(cpu_buffer) == index;
1902}
1903
34a148bf 1904static void
bf41a158 1905rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1906{
77ae365e
SR
1907 unsigned long max_count;
1908
bf41a158
SR
1909 /*
1910 * We only race with interrupts and NMIs on this CPU.
1911 * If we own the commit event, then we can commit
1912 * all others that interrupted us, since the interruptions
1913 * are in stack format (they finish before they come
1914 * back to us). This allows us to do a simple loop to
1915 * assign the commit to the tail.
1916 */
a8ccf1d6 1917 again:
438ced17 1918 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1919
bf41a158 1920 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1921 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1922 return;
1923 if (RB_WARN_ON(cpu_buffer,
1924 rb_is_reader_page(cpu_buffer->tail_page)))
1925 return;
1926 local_set(&cpu_buffer->commit_page->page->commit,
1927 rb_page_write(cpu_buffer->commit_page));
bf41a158 1928 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1929 cpu_buffer->write_stamp =
1930 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1931 /* add barrier to keep gcc from optimizing too much */
1932 barrier();
1933 }
1934 while (rb_commit_index(cpu_buffer) !=
1935 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1936
1937 local_set(&cpu_buffer->commit_page->page->commit,
1938 rb_page_write(cpu_buffer->commit_page));
1939 RB_WARN_ON(cpu_buffer,
1940 local_read(&cpu_buffer->commit_page->page->commit) &
1941 ~RB_WRITE_MASK);
bf41a158
SR
1942 barrier();
1943 }
a8ccf1d6
SR
1944
1945 /* again, keep gcc from optimizing */
1946 barrier();
1947
1948 /*
1949 * If an interrupt came in just after the first while loop
1950 * and pushed the tail page forward, we will be left with
1951 * a dangling commit that will never go forward.
1952 */
1953 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1954 goto again;
7a8e76a3
SR
1955}
1956
d769041f 1957static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1958{
abc9b56d 1959 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1960 cpu_buffer->reader_page->read = 0;
d769041f
SR
1961}
1962
34a148bf 1963static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1964{
1965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1966
1967 /*
1968 * The iterator could be on the reader page (it starts there).
1969 * But the head could have moved, since the reader was
1970 * found. Check for this case and assign the iterator
1971 * to the head page instead of next.
1972 */
1973 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1974 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1975 else
1976 rb_inc_page(cpu_buffer, &iter->head_page);
1977
abc9b56d 1978 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1979 iter->head = 0;
1980}
1981
69d1b839
SR
1982/* Slow path, do not inline */
1983static noinline struct ring_buffer_event *
1984rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1985{
1986 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1987
1988 /* Not the first event on the page? */
1989 if (rb_event_index(event)) {
1990 event->time_delta = delta & TS_MASK;
1991 event->array[0] = delta >> TS_SHIFT;
1992 } else {
1993 /* nope, just zero it */
1994 event->time_delta = 0;
1995 event->array[0] = 0;
1996 }
1997
1998 return skip_time_extend(event);
1999}
2000
7a8e76a3 2001/**
01e3e710 2002 * rb_update_event - update event type and data
021de3d9 2003 * @event: the event to update
7a8e76a3
SR
2004 * @type: the type of event
2005 * @length: the size of the event field in the ring buffer
2006 *
2007 * Update the type and data fields of the event. The length
2008 * is the actual size that is written to the ring buffer,
2009 * and with this, we can determine what to place into the
2010 * data field.
2011 */
34a148bf 2012static void
69d1b839 2013rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea
SRRH
2014 struct ring_buffer_event *event,
2015 struct rb_event_info *info)
7a8e76a3 2016{
fcc742ea
SRRH
2017 unsigned length = info->length;
2018 u64 delta = info->delta;
2019
69d1b839
SR
2020 /* Only a commit updates the timestamp */
2021 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2022 delta = 0;
7a8e76a3 2023
69d1b839
SR
2024 /*
2025 * If we need to add a timestamp, then we
2026 * add it to the start of the resevered space.
2027 */
fcc742ea 2028 if (unlikely(info->add_timestamp)) {
69d1b839
SR
2029 event = rb_add_time_stamp(event, delta);
2030 length -= RB_LEN_TIME_EXTEND;
2031 delta = 0;
7a8e76a3 2032 }
69d1b839
SR
2033
2034 event->time_delta = delta;
2035 length -= RB_EVNT_HDR_SIZE;
2036 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2037 event->type_len = 0;
2038 event->array[0] = length;
2039 } else
2040 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2041}
2042
77ae365e
SR
2043/*
2044 * rb_handle_head_page - writer hit the head page
2045 *
2046 * Returns: +1 to retry page
2047 * 0 to continue
2048 * -1 on error
2049 */
2050static int
2051rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2052 struct buffer_page *tail_page,
2053 struct buffer_page *next_page)
2054{
2055 struct buffer_page *new_head;
2056 int entries;
2057 int type;
2058 int ret;
2059
2060 entries = rb_page_entries(next_page);
2061
2062 /*
2063 * The hard part is here. We need to move the head
2064 * forward, and protect against both readers on
2065 * other CPUs and writers coming in via interrupts.
2066 */
2067 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2068 RB_PAGE_HEAD);
2069
2070 /*
2071 * type can be one of four:
2072 * NORMAL - an interrupt already moved it for us
2073 * HEAD - we are the first to get here.
2074 * UPDATE - we are the interrupt interrupting
2075 * a current move.
2076 * MOVED - a reader on another CPU moved the next
2077 * pointer to its reader page. Give up
2078 * and try again.
2079 */
2080
2081 switch (type) {
2082 case RB_PAGE_HEAD:
2083 /*
2084 * We changed the head to UPDATE, thus
2085 * it is our responsibility to update
2086 * the counters.
2087 */
2088 local_add(entries, &cpu_buffer->overrun);
c64e148a 2089 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2090
2091 /*
2092 * The entries will be zeroed out when we move the
2093 * tail page.
2094 */
2095
2096 /* still more to do */
2097 break;
2098
2099 case RB_PAGE_UPDATE:
2100 /*
2101 * This is an interrupt that interrupt the
2102 * previous update. Still more to do.
2103 */
2104 break;
2105 case RB_PAGE_NORMAL:
2106 /*
2107 * An interrupt came in before the update
2108 * and processed this for us.
2109 * Nothing left to do.
2110 */
2111 return 1;
2112 case RB_PAGE_MOVED:
2113 /*
2114 * The reader is on another CPU and just did
2115 * a swap with our next_page.
2116 * Try again.
2117 */
2118 return 1;
2119 default:
2120 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2121 return -1;
2122 }
2123
2124 /*
2125 * Now that we are here, the old head pointer is
2126 * set to UPDATE. This will keep the reader from
2127 * swapping the head page with the reader page.
2128 * The reader (on another CPU) will spin till
2129 * we are finished.
2130 *
2131 * We just need to protect against interrupts
2132 * doing the job. We will set the next pointer
2133 * to HEAD. After that, we set the old pointer
2134 * to NORMAL, but only if it was HEAD before.
2135 * otherwise we are an interrupt, and only
2136 * want the outer most commit to reset it.
2137 */
2138 new_head = next_page;
2139 rb_inc_page(cpu_buffer, &new_head);
2140
2141 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2142 RB_PAGE_NORMAL);
2143
2144 /*
2145 * Valid returns are:
2146 * HEAD - an interrupt came in and already set it.
2147 * NORMAL - One of two things:
2148 * 1) We really set it.
2149 * 2) A bunch of interrupts came in and moved
2150 * the page forward again.
2151 */
2152 switch (ret) {
2153 case RB_PAGE_HEAD:
2154 case RB_PAGE_NORMAL:
2155 /* OK */
2156 break;
2157 default:
2158 RB_WARN_ON(cpu_buffer, 1);
2159 return -1;
2160 }
2161
2162 /*
2163 * It is possible that an interrupt came in,
2164 * set the head up, then more interrupts came in
2165 * and moved it again. When we get back here,
2166 * the page would have been set to NORMAL but we
2167 * just set it back to HEAD.
2168 *
2169 * How do you detect this? Well, if that happened
2170 * the tail page would have moved.
2171 */
2172 if (ret == RB_PAGE_NORMAL) {
2173 /*
2174 * If the tail had moved passed next, then we need
2175 * to reset the pointer.
2176 */
2177 if (cpu_buffer->tail_page != tail_page &&
2178 cpu_buffer->tail_page != next_page)
2179 rb_head_page_set_normal(cpu_buffer, new_head,
2180 next_page,
2181 RB_PAGE_HEAD);
2182 }
2183
2184 /*
2185 * If this was the outer most commit (the one that
2186 * changed the original pointer from HEAD to UPDATE),
2187 * then it is up to us to reset it to NORMAL.
2188 */
2189 if (type == RB_PAGE_HEAD) {
2190 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2191 tail_page,
2192 RB_PAGE_UPDATE);
2193 if (RB_WARN_ON(cpu_buffer,
2194 ret != RB_PAGE_UPDATE))
2195 return -1;
2196 }
2197
2198 return 0;
2199}
2200
34a148bf 2201static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2202{
2203 struct ring_buffer_event event; /* Used only for sizeof array */
2204
2205 /* zero length can cause confusions */
2206 if (!length)
a497adb4 2207 length++;
7a8e76a3 2208
2271048d 2209 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2210 length += sizeof(event.array[0]);
2211
2212 length += RB_EVNT_HDR_SIZE;
2271048d 2213 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2214
2215 return length;
2216}
2217
c7b09308
SR
2218static inline void
2219rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2220 unsigned long tail, struct rb_event_info *info)
c7b09308 2221{
fcc742ea 2222 struct buffer_page *tail_page = info->tail_page;
c7b09308 2223 struct ring_buffer_event *event;
fcc742ea 2224 unsigned long length = info->length;
c7b09308
SR
2225
2226 /*
2227 * Only the event that crossed the page boundary
2228 * must fill the old tail_page with padding.
2229 */
2230 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2231 /*
2232 * If the page was filled, then we still need
2233 * to update the real_end. Reset it to zero
2234 * and the reader will ignore it.
2235 */
2236 if (tail == BUF_PAGE_SIZE)
2237 tail_page->real_end = 0;
2238
c7b09308
SR
2239 local_sub(length, &tail_page->write);
2240 return;
2241 }
2242
2243 event = __rb_page_index(tail_page, tail);
b0b7065b 2244 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2245
c64e148a
VN
2246 /* account for padding bytes */
2247 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2248
ff0ff84a
SR
2249 /*
2250 * Save the original length to the meta data.
2251 * This will be used by the reader to add lost event
2252 * counter.
2253 */
2254 tail_page->real_end = tail;
2255
c7b09308
SR
2256 /*
2257 * If this event is bigger than the minimum size, then
2258 * we need to be careful that we don't subtract the
2259 * write counter enough to allow another writer to slip
2260 * in on this page.
2261 * We put in a discarded commit instead, to make sure
2262 * that this space is not used again.
2263 *
2264 * If we are less than the minimum size, we don't need to
2265 * worry about it.
2266 */
2267 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2268 /* No room for any events */
2269
2270 /* Mark the rest of the page with padding */
2271 rb_event_set_padding(event);
2272
2273 /* Set the write back to the previous setting */
2274 local_sub(length, &tail_page->write);
2275 return;
2276 }
2277
2278 /* Put in a discarded event */
2279 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2280 event->type_len = RINGBUF_TYPE_PADDING;
2281 /* time delta must be non zero */
2282 event->time_delta = 1;
c7b09308
SR
2283
2284 /* Set write to end of buffer */
2285 length = (tail + length) - BUF_PAGE_SIZE;
2286 local_sub(length, &tail_page->write);
2287}
6634ff26 2288
747e94ae
SR
2289/*
2290 * This is the slow path, force gcc not to inline it.
2291 */
2292static noinline struct ring_buffer_event *
6634ff26 2293rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2294 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2295{
fcc742ea 2296 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2297 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2298 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2299 struct buffer_page *next_page;
2300 int ret;
fcc742ea 2301 u64 ts;
aa20ae84
SR
2302
2303 next_page = tail_page;
2304
aa20ae84
SR
2305 rb_inc_page(cpu_buffer, &next_page);
2306
aa20ae84
SR
2307 /*
2308 * If for some reason, we had an interrupt storm that made
2309 * it all the way around the buffer, bail, and warn
2310 * about it.
2311 */
2312 if (unlikely(next_page == commit_page)) {
77ae365e 2313 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2314 goto out_reset;
2315 }
2316
77ae365e
SR
2317 /*
2318 * This is where the fun begins!
2319 *
2320 * We are fighting against races between a reader that
2321 * could be on another CPU trying to swap its reader
2322 * page with the buffer head.
2323 *
2324 * We are also fighting against interrupts coming in and
2325 * moving the head or tail on us as well.
2326 *
2327 * If the next page is the head page then we have filled
2328 * the buffer, unless the commit page is still on the
2329 * reader page.
2330 */
2331 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2332
77ae365e
SR
2333 /*
2334 * If the commit is not on the reader page, then
2335 * move the header page.
2336 */
2337 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2338 /*
2339 * If we are not in overwrite mode,
2340 * this is easy, just stop here.
2341 */
884bfe89
SP
2342 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2343 local_inc(&cpu_buffer->dropped_events);
77ae365e 2344 goto out_reset;
884bfe89 2345 }
77ae365e
SR
2346
2347 ret = rb_handle_head_page(cpu_buffer,
2348 tail_page,
2349 next_page);
2350 if (ret < 0)
2351 goto out_reset;
2352 if (ret)
2353 goto out_again;
2354 } else {
2355 /*
2356 * We need to be careful here too. The
2357 * commit page could still be on the reader
2358 * page. We could have a small buffer, and
2359 * have filled up the buffer with events
2360 * from interrupts and such, and wrapped.
2361 *
2362 * Note, if the tail page is also the on the
2363 * reader_page, we let it move out.
2364 */
2365 if (unlikely((cpu_buffer->commit_page !=
2366 cpu_buffer->tail_page) &&
2367 (cpu_buffer->commit_page ==
2368 cpu_buffer->reader_page))) {
2369 local_inc(&cpu_buffer->commit_overrun);
2370 goto out_reset;
2371 }
aa20ae84
SR
2372 }
2373 }
2374
77ae365e
SR
2375 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2376 if (ret) {
2377 /*
2378 * Nested commits always have zero deltas, so
2379 * just reread the time stamp
2380 */
e8bc43e8
SR
2381 ts = rb_time_stamp(buffer);
2382 next_page->page->time_stamp = ts;
aa20ae84
SR
2383 }
2384
77ae365e 2385 out_again:
aa20ae84 2386
fcc742ea 2387 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84
SR
2388
2389 /* fail and let the caller try again */
2390 return ERR_PTR(-EAGAIN);
2391
45141d46 2392 out_reset:
6f3b3440 2393 /* reset write */
fcc742ea 2394 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2395
bf41a158 2396 return NULL;
7a8e76a3
SR
2397}
2398
6634ff26
SR
2399static struct ring_buffer_event *
2400__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2401 struct rb_event_info *info)
6634ff26 2402{
6634ff26 2403 struct ring_buffer_event *event;
fcc742ea 2404 struct buffer_page *tail_page;
6634ff26
SR
2405 unsigned long tail, write;
2406
69d1b839
SR
2407 /*
2408 * If the time delta since the last event is too big to
2409 * hold in the time field of the event, then we append a
2410 * TIME EXTEND event ahead of the data event.
2411 */
fcc742ea
SRRH
2412 if (unlikely(info->add_timestamp))
2413 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2414
fcc742ea
SRRH
2415 tail_page = info->tail_page = cpu_buffer->tail_page;
2416 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2417
2418 /* set write to only the index of the write */
2419 write &= RB_WRITE_MASK;
fcc742ea 2420 tail = write - info->length;
6634ff26 2421
d651aa1d
SRRH
2422 /*
2423 * If this is the first commit on the page, then it has the same
2424 * timestamp as the page itself.
2425 */
2426 if (!tail)
fcc742ea 2427 info->delta = 0;
d651aa1d 2428
6634ff26 2429 /* See if we shot pass the end of this buffer page */
747e94ae 2430 if (unlikely(write > BUF_PAGE_SIZE))
fcc742ea 2431 return rb_move_tail(cpu_buffer, tail, info);
6634ff26
SR
2432
2433 /* We reserved something on the buffer */
2434
6634ff26 2435 event = __rb_page_index(tail_page, tail);
1744a21d 2436 kmemcheck_annotate_bitfield(event, bitfield);
fcc742ea 2437 rb_update_event(cpu_buffer, event, info);
6634ff26 2438
69d1b839 2439 local_inc(&tail_page->entries);
6634ff26
SR
2440
2441 /*
fa743953
SR
2442 * If this is the first commit on the page, then update
2443 * its timestamp.
6634ff26 2444 */
fa743953 2445 if (!tail)
fcc742ea 2446 tail_page->page->time_stamp = info->ts;
6634ff26 2447
c64e148a 2448 /* account for these added bytes */
fcc742ea 2449 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2450
6634ff26
SR
2451 return event;
2452}
2453
edd813bf
SR
2454static inline int
2455rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2456 struct ring_buffer_event *event)
2457{
2458 unsigned long new_index, old_index;
2459 struct buffer_page *bpage;
2460 unsigned long index;
2461 unsigned long addr;
2462
2463 new_index = rb_event_index(event);
69d1b839 2464 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2465 addr = (unsigned long)event;
2466 addr &= PAGE_MASK;
2467
2468 bpage = cpu_buffer->tail_page;
2469
2470 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2471 unsigned long write_mask =
2472 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2473 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2474 /*
2475 * This is on the tail page. It is possible that
2476 * a write could come in and move the tail page
2477 * and write to the next page. That is fine
2478 * because we just shorten what is on this page.
2479 */
77ae365e
SR
2480 old_index += write_mask;
2481 new_index += write_mask;
edd813bf 2482 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2483 if (index == old_index) {
2484 /* update counters */
2485 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2486 return 1;
c64e148a 2487 }
edd813bf
SR
2488 }
2489
2490 /* could not discard */
2491 return 0;
2492}
2493
fa743953
SR
2494static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2495{
2496 local_inc(&cpu_buffer->committing);
2497 local_inc(&cpu_buffer->commits);
2498}
2499
d9abde21 2500static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2501{
2502 unsigned long commits;
2503
2504 if (RB_WARN_ON(cpu_buffer,
2505 !local_read(&cpu_buffer->committing)))
2506 return;
2507
2508 again:
2509 commits = local_read(&cpu_buffer->commits);
2510 /* synchronize with interrupts */
2511 barrier();
2512 if (local_read(&cpu_buffer->committing) == 1)
2513 rb_set_commit_to_write(cpu_buffer);
2514
2515 local_dec(&cpu_buffer->committing);
2516
2517 /* synchronize with interrupts */
2518 barrier();
2519
2520 /*
2521 * Need to account for interrupts coming in between the
2522 * updating of the commit page and the clearing of the
2523 * committing counter.
2524 */
2525 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2526 !local_read(&cpu_buffer->committing)) {
2527 local_inc(&cpu_buffer->committing);
2528 goto again;
2529 }
2530}
2531
7a8e76a3 2532static struct ring_buffer_event *
62f0b3eb
SR
2533rb_reserve_next_event(struct ring_buffer *buffer,
2534 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2535 unsigned long length)
7a8e76a3
SR
2536{
2537 struct ring_buffer_event *event;
fcc742ea 2538 struct rb_event_info info;
818e3dd3 2539 int nr_loops = 0;
140ff891 2540 u64 diff;
7a8e76a3 2541
fa743953
SR
2542 rb_start_commit(cpu_buffer);
2543
85bac32c 2544#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2545 /*
2546 * Due to the ability to swap a cpu buffer from a buffer
2547 * it is possible it was swapped before we committed.
2548 * (committing stops a swap). We check for it here and
2549 * if it happened, we have to fail the write.
2550 */
2551 barrier();
2552 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2553 local_dec(&cpu_buffer->committing);
2554 local_dec(&cpu_buffer->commits);
2555 return NULL;
2556 }
85bac32c 2557#endif
62f0b3eb 2558
fcc742ea 2559 info.length = rb_calculate_event_length(length);
bf41a158 2560 again:
fcc742ea
SRRH
2561 info.add_timestamp = 0;
2562 info.delta = 0;
69d1b839 2563
818e3dd3
SR
2564 /*
2565 * We allow for interrupts to reenter here and do a trace.
2566 * If one does, it will cause this original code to loop
2567 * back here. Even with heavy interrupts happening, this
2568 * should only happen a few times in a row. If this happens
2569 * 1000 times in a row, there must be either an interrupt
2570 * storm or we have something buggy.
2571 * Bail!
2572 */
3e89c7bb 2573 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2574 goto out_fail;
818e3dd3 2575
fcc742ea
SRRH
2576 info.ts = rb_time_stamp(cpu_buffer->buffer);
2577 diff = info.ts - cpu_buffer->write_stamp;
7a8e76a3 2578
140ff891
SR
2579 /* make sure this diff is calculated here */
2580 barrier();
bf41a158 2581
140ff891 2582 /* Did the write stamp get updated already? */
fcc742ea
SRRH
2583 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2584 info.delta = diff;
2585 if (unlikely(test_time_stamp(info.delta))) {
31274d72
JO
2586 int local_clock_stable = 1;
2587#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2588 local_clock_stable = sched_clock_stable();
31274d72 2589#endif
fcc742ea 2590 WARN_ONCE(info.delta > (1ULL << 59),
31274d72 2591 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
fcc742ea
SRRH
2592 (unsigned long long)info.delta,
2593 (unsigned long long)info.ts,
31274d72
JO
2594 (unsigned long long)cpu_buffer->write_stamp,
2595 local_clock_stable ? "" :
2596 "If you just came from a suspend/resume,\n"
2597 "please switch to the trace global clock:\n"
2598 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
fcc742ea 2599 info.add_timestamp = 1;
7a8e76a3 2600 }
168b6b1d 2601 }
7a8e76a3 2602
fcc742ea
SRRH
2603 event = __rb_reserve_next(cpu_buffer, &info);
2604
168b6b1d 2605 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2606 goto again;
2607
fa743953
SR
2608 if (!event)
2609 goto out_fail;
7a8e76a3 2610
7a8e76a3 2611 return event;
fa743953
SR
2612
2613 out_fail:
2614 rb_end_commit(cpu_buffer);
2615 return NULL;
7a8e76a3
SR
2616}
2617
567cd4da
SR
2618/*
2619 * The lock and unlock are done within a preempt disable section.
2620 * The current_context per_cpu variable can only be modified
2621 * by the current task between lock and unlock. But it can
2622 * be modified more than once via an interrupt. To pass this
2623 * information from the lock to the unlock without having to
2624 * access the 'in_interrupt()' functions again (which do show
2625 * a bit of overhead in something as critical as function tracing,
2626 * we use a bitmask trick.
2627 *
2628 * bit 0 = NMI context
2629 * bit 1 = IRQ context
2630 * bit 2 = SoftIRQ context
2631 * bit 3 = normal context.
2632 *
2633 * This works because this is the order of contexts that can
2634 * preempt other contexts. A SoftIRQ never preempts an IRQ
2635 * context.
2636 *
2637 * When the context is determined, the corresponding bit is
2638 * checked and set (if it was set, then a recursion of that context
2639 * happened).
2640 *
2641 * On unlock, we need to clear this bit. To do so, just subtract
2642 * 1 from the current_context and AND it to itself.
2643 *
2644 * (binary)
2645 * 101 - 1 = 100
2646 * 101 & 100 = 100 (clearing bit zero)
2647 *
2648 * 1010 - 1 = 1001
2649 * 1010 & 1001 = 1000 (clearing bit 1)
2650 *
2651 * The least significant bit can be cleared this way, and it
2652 * just so happens that it is the same bit corresponding to
2653 * the current context.
2654 */
261842b7 2655
58a09ec6
SRRH
2656static __always_inline int
2657trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
261842b7 2658{
58a09ec6 2659 unsigned int val = cpu_buffer->current_context;
567cd4da 2660 int bit;
d9abde21 2661
567cd4da
SR
2662 if (in_interrupt()) {
2663 if (in_nmi())
a497adb4 2664 bit = RB_CTX_NMI;
567cd4da 2665 else if (in_irq())
a497adb4 2666 bit = RB_CTX_IRQ;
567cd4da 2667 else
a497adb4 2668 bit = RB_CTX_SOFTIRQ;
567cd4da 2669 } else
a497adb4 2670 bit = RB_CTX_NORMAL;
d9abde21 2671
567cd4da
SR
2672 if (unlikely(val & (1 << bit)))
2673 return 1;
d9abde21 2674
567cd4da 2675 val |= (1 << bit);
58a09ec6 2676 cpu_buffer->current_context = val;
d9abde21 2677
567cd4da 2678 return 0;
261842b7
SR
2679}
2680
58a09ec6
SRRH
2681static __always_inline void
2682trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
261842b7 2683{
58a09ec6 2684 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
261842b7
SR
2685}
2686
7a8e76a3
SR
2687/**
2688 * ring_buffer_lock_reserve - reserve a part of the buffer
2689 * @buffer: the ring buffer to reserve from
2690 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2691 *
2692 * Returns a reseverd event on the ring buffer to copy directly to.
2693 * The user of this interface will need to get the body to write into
2694 * and can use the ring_buffer_event_data() interface.
2695 *
2696 * The length is the length of the data needed, not the event length
2697 * which also includes the event header.
2698 *
2699 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2700 * If NULL is returned, then nothing has been allocated or locked.
2701 */
2702struct ring_buffer_event *
0a987751 2703ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2704{
2705 struct ring_buffer_per_cpu *cpu_buffer;
2706 struct ring_buffer_event *event;
5168ae50 2707 int cpu;
7a8e76a3 2708
bf41a158 2709 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2710 preempt_disable_notrace();
bf41a158 2711
3205f806 2712 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2713 goto out;
261842b7 2714
7a8e76a3
SR
2715 cpu = raw_smp_processor_id();
2716
3205f806 2717 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2718 goto out;
7a8e76a3
SR
2719
2720 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2721
3205f806 2722 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2723 goto out;
7a8e76a3 2724
3205f806 2725 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2726 goto out;
7a8e76a3 2727
58a09ec6
SRRH
2728 if (unlikely(trace_recursive_lock(cpu_buffer)))
2729 goto out;
2730
62f0b3eb 2731 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2732 if (!event)
58a09ec6 2733 goto out_unlock;
7a8e76a3
SR
2734
2735 return event;
2736
58a09ec6
SRRH
2737 out_unlock:
2738 trace_recursive_unlock(cpu_buffer);
d769041f 2739 out:
5168ae50 2740 preempt_enable_notrace();
7a8e76a3
SR
2741 return NULL;
2742}
c4f50183 2743EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2744
a1863c21
SR
2745static void
2746rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2747 struct ring_buffer_event *event)
2748{
69d1b839
SR
2749 u64 delta;
2750
fa743953
SR
2751 /*
2752 * The event first in the commit queue updates the
2753 * time stamp.
2754 */
69d1b839
SR
2755 if (rb_event_is_commit(cpu_buffer, event)) {
2756 /*
2757 * A commit event that is first on a page
2758 * updates the write timestamp with the page stamp
2759 */
2760 if (!rb_event_index(event))
2761 cpu_buffer->write_stamp =
2762 cpu_buffer->commit_page->page->time_stamp;
2763 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2764 delta = event->array[0];
2765 delta <<= TS_SHIFT;
2766 delta += event->time_delta;
2767 cpu_buffer->write_stamp += delta;
2768 } else
2769 cpu_buffer->write_stamp += event->time_delta;
2770 }
a1863c21 2771}
bf41a158 2772
a1863c21
SR
2773static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2774 struct ring_buffer_event *event)
2775{
2776 local_inc(&cpu_buffer->entries);
2777 rb_update_write_stamp(cpu_buffer, event);
fa743953 2778 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2779}
2780
15693458
SRRH
2781static __always_inline void
2782rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2783{
1e0d6714
SRRH
2784 bool pagebusy;
2785
15693458
SRRH
2786 if (buffer->irq_work.waiters_pending) {
2787 buffer->irq_work.waiters_pending = false;
2788 /* irq_work_queue() supplies it's own memory barriers */
2789 irq_work_queue(&buffer->irq_work.work);
2790 }
2791
2792 if (cpu_buffer->irq_work.waiters_pending) {
2793 cpu_buffer->irq_work.waiters_pending = false;
2794 /* irq_work_queue() supplies it's own memory barriers */
2795 irq_work_queue(&cpu_buffer->irq_work.work);
2796 }
1e0d6714
SRRH
2797
2798 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2799
2800 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2801 cpu_buffer->irq_work.wakeup_full = true;
2802 cpu_buffer->irq_work.full_waiters_pending = false;
2803 /* irq_work_queue() supplies it's own memory barriers */
2804 irq_work_queue(&cpu_buffer->irq_work.work);
2805 }
15693458
SRRH
2806}
2807
7a8e76a3
SR
2808/**
2809 * ring_buffer_unlock_commit - commit a reserved
2810 * @buffer: The buffer to commit to
2811 * @event: The event pointer to commit.
7a8e76a3
SR
2812 *
2813 * This commits the data to the ring buffer, and releases any locks held.
2814 *
2815 * Must be paired with ring_buffer_lock_reserve.
2816 */
2817int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2818 struct ring_buffer_event *event)
7a8e76a3
SR
2819{
2820 struct ring_buffer_per_cpu *cpu_buffer;
2821 int cpu = raw_smp_processor_id();
2822
2823 cpu_buffer = buffer->buffers[cpu];
2824
7a8e76a3
SR
2825 rb_commit(cpu_buffer, event);
2826
15693458
SRRH
2827 rb_wakeups(buffer, cpu_buffer);
2828
58a09ec6 2829 trace_recursive_unlock(cpu_buffer);
261842b7 2830
5168ae50 2831 preempt_enable_notrace();
7a8e76a3
SR
2832
2833 return 0;
2834}
c4f50183 2835EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2836
f3b9aae1
FW
2837static inline void rb_event_discard(struct ring_buffer_event *event)
2838{
69d1b839
SR
2839 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2840 event = skip_time_extend(event);
2841
334d4169
LJ
2842 /* array[0] holds the actual length for the discarded event */
2843 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2844 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2845 /* time delta must be non zero */
2846 if (!event->time_delta)
2847 event->time_delta = 1;
2848}
2849
a1863c21
SR
2850/*
2851 * Decrement the entries to the page that an event is on.
2852 * The event does not even need to exist, only the pointer
2853 * to the page it is on. This may only be called before the commit
2854 * takes place.
2855 */
2856static inline void
2857rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2858 struct ring_buffer_event *event)
2859{
2860 unsigned long addr = (unsigned long)event;
2861 struct buffer_page *bpage = cpu_buffer->commit_page;
2862 struct buffer_page *start;
2863
2864 addr &= PAGE_MASK;
2865
2866 /* Do the likely case first */
2867 if (likely(bpage->page == (void *)addr)) {
2868 local_dec(&bpage->entries);
2869 return;
2870 }
2871
2872 /*
2873 * Because the commit page may be on the reader page we
2874 * start with the next page and check the end loop there.
2875 */
2876 rb_inc_page(cpu_buffer, &bpage);
2877 start = bpage;
2878 do {
2879 if (bpage->page == (void *)addr) {
2880 local_dec(&bpage->entries);
2881 return;
2882 }
2883 rb_inc_page(cpu_buffer, &bpage);
2884 } while (bpage != start);
2885
2886 /* commit not part of this buffer?? */
2887 RB_WARN_ON(cpu_buffer, 1);
2888}
2889
fa1b47dd
SR
2890/**
2891 * ring_buffer_commit_discard - discard an event that has not been committed
2892 * @buffer: the ring buffer
2893 * @event: non committed event to discard
2894 *
dc892f73
SR
2895 * Sometimes an event that is in the ring buffer needs to be ignored.
2896 * This function lets the user discard an event in the ring buffer
2897 * and then that event will not be read later.
2898 *
2899 * This function only works if it is called before the the item has been
2900 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2901 * if another event has not been added behind it.
2902 *
2903 * If another event has been added behind it, it will set the event
2904 * up as discarded, and perform the commit.
2905 *
2906 * If this function is called, do not call ring_buffer_unlock_commit on
2907 * the event.
2908 */
2909void ring_buffer_discard_commit(struct ring_buffer *buffer,
2910 struct ring_buffer_event *event)
2911{
2912 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2913 int cpu;
2914
2915 /* The event is discarded regardless */
f3b9aae1 2916 rb_event_discard(event);
fa1b47dd 2917
fa743953
SR
2918 cpu = smp_processor_id();
2919 cpu_buffer = buffer->buffers[cpu];
2920
fa1b47dd
SR
2921 /*
2922 * This must only be called if the event has not been
2923 * committed yet. Thus we can assume that preemption
2924 * is still disabled.
2925 */
fa743953 2926 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2927
a1863c21 2928 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2929 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2930 goto out;
fa1b47dd
SR
2931
2932 /*
2933 * The commit is still visible by the reader, so we
a1863c21 2934 * must still update the timestamp.
fa1b47dd 2935 */
a1863c21 2936 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2937 out:
fa743953 2938 rb_end_commit(cpu_buffer);
fa1b47dd 2939
58a09ec6 2940 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2941
5168ae50 2942 preempt_enable_notrace();
fa1b47dd
SR
2943
2944}
2945EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2946
7a8e76a3
SR
2947/**
2948 * ring_buffer_write - write data to the buffer without reserving
2949 * @buffer: The ring buffer to write to.
2950 * @length: The length of the data being written (excluding the event header)
2951 * @data: The data to write to the buffer.
2952 *
2953 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2954 * one function. If you already have the data to write to the buffer, it
2955 * may be easier to simply call this function.
2956 *
2957 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2958 * and not the length of the event which would hold the header.
2959 */
2960int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2961 unsigned long length,
2962 void *data)
7a8e76a3
SR
2963{
2964 struct ring_buffer_per_cpu *cpu_buffer;
2965 struct ring_buffer_event *event;
7a8e76a3
SR
2966 void *body;
2967 int ret = -EBUSY;
5168ae50 2968 int cpu;
7a8e76a3 2969
5168ae50 2970 preempt_disable_notrace();
bf41a158 2971
52fbe9cd
LJ
2972 if (atomic_read(&buffer->record_disabled))
2973 goto out;
2974
7a8e76a3
SR
2975 cpu = raw_smp_processor_id();
2976
9e01c1b7 2977 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2978 goto out;
7a8e76a3
SR
2979
2980 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2981
2982 if (atomic_read(&cpu_buffer->record_disabled))
2983 goto out;
2984
be957c44
SR
2985 if (length > BUF_MAX_DATA_SIZE)
2986 goto out;
2987
985e871b
SRRH
2988 if (unlikely(trace_recursive_lock(cpu_buffer)))
2989 goto out;
2990
62f0b3eb 2991 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2992 if (!event)
985e871b 2993 goto out_unlock;
7a8e76a3
SR
2994
2995 body = rb_event_data(event);
2996
2997 memcpy(body, data, length);
2998
2999 rb_commit(cpu_buffer, event);
3000
15693458
SRRH
3001 rb_wakeups(buffer, cpu_buffer);
3002
7a8e76a3 3003 ret = 0;
985e871b
SRRH
3004
3005 out_unlock:
3006 trace_recursive_unlock(cpu_buffer);
3007
7a8e76a3 3008 out:
5168ae50 3009 preempt_enable_notrace();
7a8e76a3
SR
3010
3011 return ret;
3012}
c4f50183 3013EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3014
34a148bf 3015static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3016{
3017 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3018 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3019 struct buffer_page *commit = cpu_buffer->commit_page;
3020
77ae365e
SR
3021 /* In case of error, head will be NULL */
3022 if (unlikely(!head))
3023 return 1;
3024
bf41a158
SR
3025 return reader->read == rb_page_commit(reader) &&
3026 (commit == reader ||
3027 (commit == head &&
3028 head->read == rb_page_commit(commit)));
3029}
3030
7a8e76a3
SR
3031/**
3032 * ring_buffer_record_disable - stop all writes into the buffer
3033 * @buffer: The ring buffer to stop writes to.
3034 *
3035 * This prevents all writes to the buffer. Any attempt to write
3036 * to the buffer after this will fail and return NULL.
3037 *
3038 * The caller should call synchronize_sched() after this.
3039 */
3040void ring_buffer_record_disable(struct ring_buffer *buffer)
3041{
3042 atomic_inc(&buffer->record_disabled);
3043}
c4f50183 3044EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3045
3046/**
3047 * ring_buffer_record_enable - enable writes to the buffer
3048 * @buffer: The ring buffer to enable writes
3049 *
3050 * Note, multiple disables will need the same number of enables
c41b20e7 3051 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3052 */
3053void ring_buffer_record_enable(struct ring_buffer *buffer)
3054{
3055 atomic_dec(&buffer->record_disabled);
3056}
c4f50183 3057EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3058
499e5470
SR
3059/**
3060 * ring_buffer_record_off - stop all writes into the buffer
3061 * @buffer: The ring buffer to stop writes to.
3062 *
3063 * This prevents all writes to the buffer. Any attempt to write
3064 * to the buffer after this will fail and return NULL.
3065 *
3066 * This is different than ring_buffer_record_disable() as
87abb3b1 3067 * it works like an on/off switch, where as the disable() version
499e5470
SR
3068 * must be paired with a enable().
3069 */
3070void ring_buffer_record_off(struct ring_buffer *buffer)
3071{
3072 unsigned int rd;
3073 unsigned int new_rd;
3074
3075 do {
3076 rd = atomic_read(&buffer->record_disabled);
3077 new_rd = rd | RB_BUFFER_OFF;
3078 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3079}
3080EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3081
3082/**
3083 * ring_buffer_record_on - restart writes into the buffer
3084 * @buffer: The ring buffer to start writes to.
3085 *
3086 * This enables all writes to the buffer that was disabled by
3087 * ring_buffer_record_off().
3088 *
3089 * This is different than ring_buffer_record_enable() as
87abb3b1 3090 * it works like an on/off switch, where as the enable() version
499e5470
SR
3091 * must be paired with a disable().
3092 */
3093void ring_buffer_record_on(struct ring_buffer *buffer)
3094{
3095 unsigned int rd;
3096 unsigned int new_rd;
3097
3098 do {
3099 rd = atomic_read(&buffer->record_disabled);
3100 new_rd = rd & ~RB_BUFFER_OFF;
3101 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3102}
3103EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3104
3105/**
3106 * ring_buffer_record_is_on - return true if the ring buffer can write
3107 * @buffer: The ring buffer to see if write is enabled
3108 *
3109 * Returns true if the ring buffer is in a state that it accepts writes.
3110 */
3111int ring_buffer_record_is_on(struct ring_buffer *buffer)
3112{
3113 return !atomic_read(&buffer->record_disabled);
3114}
3115
7a8e76a3
SR
3116/**
3117 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3118 * @buffer: The ring buffer to stop writes to.
3119 * @cpu: The CPU buffer to stop
3120 *
3121 * This prevents all writes to the buffer. Any attempt to write
3122 * to the buffer after this will fail and return NULL.
3123 *
3124 * The caller should call synchronize_sched() after this.
3125 */
3126void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3127{
3128 struct ring_buffer_per_cpu *cpu_buffer;
3129
9e01c1b7 3130 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3131 return;
7a8e76a3
SR
3132
3133 cpu_buffer = buffer->buffers[cpu];
3134 atomic_inc(&cpu_buffer->record_disabled);
3135}
c4f50183 3136EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3137
3138/**
3139 * ring_buffer_record_enable_cpu - enable writes to the buffer
3140 * @buffer: The ring buffer to enable writes
3141 * @cpu: The CPU to enable.
3142 *
3143 * Note, multiple disables will need the same number of enables
c41b20e7 3144 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3145 */
3146void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3147{
3148 struct ring_buffer_per_cpu *cpu_buffer;
3149
9e01c1b7 3150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3151 return;
7a8e76a3
SR
3152
3153 cpu_buffer = buffer->buffers[cpu];
3154 atomic_dec(&cpu_buffer->record_disabled);
3155}
c4f50183 3156EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3157
f6195aa0
SR
3158/*
3159 * The total entries in the ring buffer is the running counter
3160 * of entries entered into the ring buffer, minus the sum of
3161 * the entries read from the ring buffer and the number of
3162 * entries that were overwritten.
3163 */
3164static inline unsigned long
3165rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3166{
3167 return local_read(&cpu_buffer->entries) -
3168 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3169}
3170
c64e148a
VN
3171/**
3172 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3173 * @buffer: The ring buffer
3174 * @cpu: The per CPU buffer to read from.
3175 */
50ecf2c3 3176u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3177{
3178 unsigned long flags;
3179 struct ring_buffer_per_cpu *cpu_buffer;
3180 struct buffer_page *bpage;
da830e58 3181 u64 ret = 0;
c64e148a
VN
3182
3183 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184 return 0;
3185
3186 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3187 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3188 /*
3189 * if the tail is on reader_page, oldest time stamp is on the reader
3190 * page
3191 */
3192 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3193 bpage = cpu_buffer->reader_page;
3194 else
3195 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3196 if (bpage)
3197 ret = bpage->page->time_stamp;
7115e3fc 3198 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3199
3200 return ret;
3201}
3202EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3203
3204/**
3205 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3206 * @buffer: The ring buffer
3207 * @cpu: The per CPU buffer to read from.
3208 */
3209unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3210{
3211 struct ring_buffer_per_cpu *cpu_buffer;
3212 unsigned long ret;
3213
3214 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3215 return 0;
3216
3217 cpu_buffer = buffer->buffers[cpu];
3218 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3219
3220 return ret;
3221}
3222EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3223
7a8e76a3
SR
3224/**
3225 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3226 * @buffer: The ring buffer
3227 * @cpu: The per CPU buffer to get the entries from.
3228 */
3229unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3230{
3231 struct ring_buffer_per_cpu *cpu_buffer;
3232
9e01c1b7 3233 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3234 return 0;
7a8e76a3
SR
3235
3236 cpu_buffer = buffer->buffers[cpu];
554f786e 3237
f6195aa0 3238 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3239}
c4f50183 3240EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3241
3242/**
884bfe89
SP
3243 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3244 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the number of overruns from
3247 */
3248unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3249{
3250 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3251 unsigned long ret;
7a8e76a3 3252
9e01c1b7 3253 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3254 return 0;
7a8e76a3
SR
3255
3256 cpu_buffer = buffer->buffers[cpu];
77ae365e 3257 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3258
3259 return ret;
7a8e76a3 3260}
c4f50183 3261EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3262
f0d2c681 3263/**
884bfe89
SP
3264 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3265 * commits failing due to the buffer wrapping around while there are uncommitted
3266 * events, such as during an interrupt storm.
f0d2c681
SR
3267 * @buffer: The ring buffer
3268 * @cpu: The per CPU buffer to get the number of overruns from
3269 */
3270unsigned long
3271ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3272{
3273 struct ring_buffer_per_cpu *cpu_buffer;
3274 unsigned long ret;
3275
3276 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3277 return 0;
3278
3279 cpu_buffer = buffer->buffers[cpu];
77ae365e 3280 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3281
3282 return ret;
3283}
3284EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3285
884bfe89
SP
3286/**
3287 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3288 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3289 * @buffer: The ring buffer
3290 * @cpu: The per CPU buffer to get the number of overruns from
3291 */
3292unsigned long
3293ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3294{
3295 struct ring_buffer_per_cpu *cpu_buffer;
3296 unsigned long ret;
3297
3298 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3299 return 0;
3300
3301 cpu_buffer = buffer->buffers[cpu];
3302 ret = local_read(&cpu_buffer->dropped_events);
3303
3304 return ret;
3305}
3306EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3307
ad964704
SRRH
3308/**
3309 * ring_buffer_read_events_cpu - get the number of events successfully read
3310 * @buffer: The ring buffer
3311 * @cpu: The per CPU buffer to get the number of events read
3312 */
3313unsigned long
3314ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3315{
3316 struct ring_buffer_per_cpu *cpu_buffer;
3317
3318 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3319 return 0;
3320
3321 cpu_buffer = buffer->buffers[cpu];
3322 return cpu_buffer->read;
3323}
3324EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3325
7a8e76a3
SR
3326/**
3327 * ring_buffer_entries - get the number of entries in a buffer
3328 * @buffer: The ring buffer
3329 *
3330 * Returns the total number of entries in the ring buffer
3331 * (all CPU entries)
3332 */
3333unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3334{
3335 struct ring_buffer_per_cpu *cpu_buffer;
3336 unsigned long entries = 0;
3337 int cpu;
3338
3339 /* if you care about this being correct, lock the buffer */
3340 for_each_buffer_cpu(buffer, cpu) {
3341 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3342 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3343 }
3344
3345 return entries;
3346}
c4f50183 3347EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3348
3349/**
67b394f7 3350 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3351 * @buffer: The ring buffer
3352 *
3353 * Returns the total number of overruns in the ring buffer
3354 * (all CPU entries)
3355 */
3356unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3357{
3358 struct ring_buffer_per_cpu *cpu_buffer;
3359 unsigned long overruns = 0;
3360 int cpu;
3361
3362 /* if you care about this being correct, lock the buffer */
3363 for_each_buffer_cpu(buffer, cpu) {
3364 cpu_buffer = buffer->buffers[cpu];
77ae365e 3365 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3366 }
3367
3368 return overruns;
3369}
c4f50183 3370EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3371
642edba5 3372static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3373{
3374 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3375
d769041f 3376 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3377 iter->head_page = cpu_buffer->reader_page;
3378 iter->head = cpu_buffer->reader_page->read;
3379
3380 iter->cache_reader_page = iter->head_page;
24607f11 3381 iter->cache_read = cpu_buffer->read;
651e22f2 3382
d769041f
SR
3383 if (iter->head)
3384 iter->read_stamp = cpu_buffer->read_stamp;
3385 else
abc9b56d 3386 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3387}
f83c9d0f 3388
642edba5
SR
3389/**
3390 * ring_buffer_iter_reset - reset an iterator
3391 * @iter: The iterator to reset
3392 *
3393 * Resets the iterator, so that it will start from the beginning
3394 * again.
3395 */
3396void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3397{
554f786e 3398 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3399 unsigned long flags;
3400
554f786e
SR
3401 if (!iter)
3402 return;
3403
3404 cpu_buffer = iter->cpu_buffer;
3405
5389f6fa 3406 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3407 rb_iter_reset(iter);
5389f6fa 3408 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3409}
c4f50183 3410EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3411
3412/**
3413 * ring_buffer_iter_empty - check if an iterator has no more to read
3414 * @iter: The iterator to check
3415 */
3416int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3417{
3418 struct ring_buffer_per_cpu *cpu_buffer;
3419
3420 cpu_buffer = iter->cpu_buffer;
3421
bf41a158
SR
3422 return iter->head_page == cpu_buffer->commit_page &&
3423 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3424}
c4f50183 3425EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3426
3427static void
3428rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3429 struct ring_buffer_event *event)
3430{
3431 u64 delta;
3432
334d4169 3433 switch (event->type_len) {
7a8e76a3
SR
3434 case RINGBUF_TYPE_PADDING:
3435 return;
3436
3437 case RINGBUF_TYPE_TIME_EXTEND:
3438 delta = event->array[0];
3439 delta <<= TS_SHIFT;
3440 delta += event->time_delta;
3441 cpu_buffer->read_stamp += delta;
3442 return;
3443
3444 case RINGBUF_TYPE_TIME_STAMP:
3445 /* FIXME: not implemented */
3446 return;
3447
3448 case RINGBUF_TYPE_DATA:
3449 cpu_buffer->read_stamp += event->time_delta;
3450 return;
3451
3452 default:
3453 BUG();
3454 }
3455 return;
3456}
3457
3458static void
3459rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3460 struct ring_buffer_event *event)
3461{
3462 u64 delta;
3463
334d4169 3464 switch (event->type_len) {
7a8e76a3
SR
3465 case RINGBUF_TYPE_PADDING:
3466 return;
3467
3468 case RINGBUF_TYPE_TIME_EXTEND:
3469 delta = event->array[0];
3470 delta <<= TS_SHIFT;
3471 delta += event->time_delta;
3472 iter->read_stamp += delta;
3473 return;
3474
3475 case RINGBUF_TYPE_TIME_STAMP:
3476 /* FIXME: not implemented */
3477 return;
3478
3479 case RINGBUF_TYPE_DATA:
3480 iter->read_stamp += event->time_delta;
3481 return;
3482
3483 default:
3484 BUG();
3485 }
3486 return;
3487}
3488
d769041f
SR
3489static struct buffer_page *
3490rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3491{
d769041f 3492 struct buffer_page *reader = NULL;
66a8cb95 3493 unsigned long overwrite;
d769041f 3494 unsigned long flags;
818e3dd3 3495 int nr_loops = 0;
77ae365e 3496 int ret;
d769041f 3497
3e03fb7f 3498 local_irq_save(flags);
0199c4e6 3499 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3500
3501 again:
818e3dd3
SR
3502 /*
3503 * This should normally only loop twice. But because the
3504 * start of the reader inserts an empty page, it causes
3505 * a case where we will loop three times. There should be no
3506 * reason to loop four times (that I know of).
3507 */
3e89c7bb 3508 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3509 reader = NULL;
3510 goto out;
3511 }
3512
d769041f
SR
3513 reader = cpu_buffer->reader_page;
3514
3515 /* If there's more to read, return this page */
bf41a158 3516 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3517 goto out;
3518
3519 /* Never should we have an index greater than the size */
3e89c7bb
SR
3520 if (RB_WARN_ON(cpu_buffer,
3521 cpu_buffer->reader_page->read > rb_page_size(reader)))
3522 goto out;
d769041f
SR
3523
3524 /* check if we caught up to the tail */
3525 reader = NULL;
bf41a158 3526 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3527 goto out;
7a8e76a3 3528
a5fb8331
SR
3529 /* Don't bother swapping if the ring buffer is empty */
3530 if (rb_num_of_entries(cpu_buffer) == 0)
3531 goto out;
3532
7a8e76a3 3533 /*
d769041f 3534 * Reset the reader page to size zero.
7a8e76a3 3535 */
77ae365e
SR
3536 local_set(&cpu_buffer->reader_page->write, 0);
3537 local_set(&cpu_buffer->reader_page->entries, 0);
3538 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3539 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3540
77ae365e
SR
3541 spin:
3542 /*
3543 * Splice the empty reader page into the list around the head.
3544 */
3545 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3546 if (!reader)
3547 goto out;
0e1ff5d7 3548 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3549 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3550
3adc54fa
SR
3551 /*
3552 * cpu_buffer->pages just needs to point to the buffer, it
3553 * has no specific buffer page to point to. Lets move it out
25985edc 3554 * of our way so we don't accidentally swap it.
3adc54fa
SR
3555 */
3556 cpu_buffer->pages = reader->list.prev;
3557
77ae365e
SR
3558 /* The reader page will be pointing to the new head */
3559 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3560
66a8cb95
SR
3561 /*
3562 * We want to make sure we read the overruns after we set up our
3563 * pointers to the next object. The writer side does a
3564 * cmpxchg to cross pages which acts as the mb on the writer
3565 * side. Note, the reader will constantly fail the swap
3566 * while the writer is updating the pointers, so this
3567 * guarantees that the overwrite recorded here is the one we
3568 * want to compare with the last_overrun.
3569 */
3570 smp_mb();
3571 overwrite = local_read(&(cpu_buffer->overrun));
3572
77ae365e
SR
3573 /*
3574 * Here's the tricky part.
3575 *
3576 * We need to move the pointer past the header page.
3577 * But we can only do that if a writer is not currently
3578 * moving it. The page before the header page has the
3579 * flag bit '1' set if it is pointing to the page we want.
3580 * but if the writer is in the process of moving it
3581 * than it will be '2' or already moved '0'.
3582 */
3583
3584 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3585
3586 /*
77ae365e 3587 * If we did not convert it, then we must try again.
7a8e76a3 3588 */
77ae365e
SR
3589 if (!ret)
3590 goto spin;
7a8e76a3 3591
77ae365e
SR
3592 /*
3593 * Yeah! We succeeded in replacing the page.
3594 *
3595 * Now make the new head point back to the reader page.
3596 */
5ded3dc6 3597 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3598 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3599
3600 /* Finally update the reader page to the new head */
3601 cpu_buffer->reader_page = reader;
3602 rb_reset_reader_page(cpu_buffer);
3603
66a8cb95
SR
3604 if (overwrite != cpu_buffer->last_overrun) {
3605 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3606 cpu_buffer->last_overrun = overwrite;
3607 }
3608
d769041f
SR
3609 goto again;
3610
3611 out:
0199c4e6 3612 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3613 local_irq_restore(flags);
d769041f
SR
3614
3615 return reader;
3616}
3617
3618static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3619{
3620 struct ring_buffer_event *event;
3621 struct buffer_page *reader;
3622 unsigned length;
3623
3624 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3625
d769041f 3626 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3627 if (RB_WARN_ON(cpu_buffer, !reader))
3628 return;
7a8e76a3 3629
d769041f
SR
3630 event = rb_reader_event(cpu_buffer);
3631
a1863c21 3632 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3633 cpu_buffer->read++;
d769041f
SR
3634
3635 rb_update_read_stamp(cpu_buffer, event);
3636
3637 length = rb_event_length(event);
6f807acd 3638 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3639}
3640
3641static void rb_advance_iter(struct ring_buffer_iter *iter)
3642{
7a8e76a3
SR
3643 struct ring_buffer_per_cpu *cpu_buffer;
3644 struct ring_buffer_event *event;
3645 unsigned length;
3646
3647 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3648
3649 /*
3650 * Check if we are at the end of the buffer.
3651 */
bf41a158 3652 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3653 /* discarded commits can make the page empty */
3654 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3655 return;
d769041f 3656 rb_inc_iter(iter);
7a8e76a3
SR
3657 return;
3658 }
3659
3660 event = rb_iter_head_event(iter);
3661
3662 length = rb_event_length(event);
3663
3664 /*
3665 * This should not be called to advance the header if we are
3666 * at the tail of the buffer.
3667 */
3e89c7bb 3668 if (RB_WARN_ON(cpu_buffer,
f536aafc 3669 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3670 (iter->head + length > rb_commit_index(cpu_buffer))))
3671 return;
7a8e76a3
SR
3672
3673 rb_update_iter_read_stamp(iter, event);
3674
3675 iter->head += length;
3676
3677 /* check for end of page padding */
bf41a158
SR
3678 if ((iter->head >= rb_page_size(iter->head_page)) &&
3679 (iter->head_page != cpu_buffer->commit_page))
771e0384 3680 rb_inc_iter(iter);
7a8e76a3
SR
3681}
3682
66a8cb95
SR
3683static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3684{
3685 return cpu_buffer->lost_events;
3686}
3687
f83c9d0f 3688static struct ring_buffer_event *
66a8cb95
SR
3689rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3690 unsigned long *lost_events)
7a8e76a3 3691{
7a8e76a3 3692 struct ring_buffer_event *event;
d769041f 3693 struct buffer_page *reader;
818e3dd3 3694 int nr_loops = 0;
7a8e76a3 3695
7a8e76a3 3696 again:
818e3dd3 3697 /*
69d1b839
SR
3698 * We repeat when a time extend is encountered.
3699 * Since the time extend is always attached to a data event,
3700 * we should never loop more than once.
3701 * (We never hit the following condition more than twice).
818e3dd3 3702 */
69d1b839 3703 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3704 return NULL;
818e3dd3 3705
d769041f
SR
3706 reader = rb_get_reader_page(cpu_buffer);
3707 if (!reader)
7a8e76a3
SR
3708 return NULL;
3709
d769041f 3710 event = rb_reader_event(cpu_buffer);
7a8e76a3 3711
334d4169 3712 switch (event->type_len) {
7a8e76a3 3713 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3714 if (rb_null_event(event))
3715 RB_WARN_ON(cpu_buffer, 1);
3716 /*
3717 * Because the writer could be discarding every
3718 * event it creates (which would probably be bad)
3719 * if we were to go back to "again" then we may never
3720 * catch up, and will trigger the warn on, or lock
3721 * the box. Return the padding, and we will release
3722 * the current locks, and try again.
3723 */
2d622719 3724 return event;
7a8e76a3
SR
3725
3726 case RINGBUF_TYPE_TIME_EXTEND:
3727 /* Internal data, OK to advance */
d769041f 3728 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3729 goto again;
3730
3731 case RINGBUF_TYPE_TIME_STAMP:
3732 /* FIXME: not implemented */
d769041f 3733 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3734 goto again;
3735
3736 case RINGBUF_TYPE_DATA:
3737 if (ts) {
3738 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3739 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3740 cpu_buffer->cpu, ts);
7a8e76a3 3741 }
66a8cb95
SR
3742 if (lost_events)
3743 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3744 return event;
3745
3746 default:
3747 BUG();
3748 }
3749
3750 return NULL;
3751}
c4f50183 3752EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3753
f83c9d0f
SR
3754static struct ring_buffer_event *
3755rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3756{
3757 struct ring_buffer *buffer;
3758 struct ring_buffer_per_cpu *cpu_buffer;
3759 struct ring_buffer_event *event;
818e3dd3 3760 int nr_loops = 0;
7a8e76a3 3761
7a8e76a3
SR
3762 cpu_buffer = iter->cpu_buffer;
3763 buffer = cpu_buffer->buffer;
3764
492a74f4
SR
3765 /*
3766 * Check if someone performed a consuming read to
3767 * the buffer. A consuming read invalidates the iterator
3768 * and we need to reset the iterator in this case.
3769 */
3770 if (unlikely(iter->cache_read != cpu_buffer->read ||
3771 iter->cache_reader_page != cpu_buffer->reader_page))
3772 rb_iter_reset(iter);
3773
7a8e76a3 3774 again:
3c05d748
SR
3775 if (ring_buffer_iter_empty(iter))
3776 return NULL;
3777
818e3dd3 3778 /*
021de3d9
SRRH
3779 * We repeat when a time extend is encountered or we hit
3780 * the end of the page. Since the time extend is always attached
3781 * to a data event, we should never loop more than three times.
3782 * Once for going to next page, once on time extend, and
3783 * finally once to get the event.
3784 * (We never hit the following condition more than thrice).
818e3dd3 3785 */
021de3d9 3786 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3787 return NULL;
818e3dd3 3788
7a8e76a3
SR
3789 if (rb_per_cpu_empty(cpu_buffer))
3790 return NULL;
3791
10e83fd0 3792 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3793 rb_inc_iter(iter);
3794 goto again;
3795 }
3796
7a8e76a3
SR
3797 event = rb_iter_head_event(iter);
3798
334d4169 3799 switch (event->type_len) {
7a8e76a3 3800 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3801 if (rb_null_event(event)) {
3802 rb_inc_iter(iter);
3803 goto again;
3804 }
3805 rb_advance_iter(iter);
3806 return event;
7a8e76a3
SR
3807
3808 case RINGBUF_TYPE_TIME_EXTEND:
3809 /* Internal data, OK to advance */
3810 rb_advance_iter(iter);
3811 goto again;
3812
3813 case RINGBUF_TYPE_TIME_STAMP:
3814 /* FIXME: not implemented */
3815 rb_advance_iter(iter);
3816 goto again;
3817
3818 case RINGBUF_TYPE_DATA:
3819 if (ts) {
3820 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3821 ring_buffer_normalize_time_stamp(buffer,
3822 cpu_buffer->cpu, ts);
7a8e76a3
SR
3823 }
3824 return event;
3825
3826 default:
3827 BUG();
3828 }
3829
3830 return NULL;
3831}
c4f50183 3832EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3833
289a5a25 3834static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3835{
289a5a25
SRRH
3836 if (likely(!in_nmi())) {
3837 raw_spin_lock(&cpu_buffer->reader_lock);
3838 return true;
3839 }
3840
8d707e8e
SR
3841 /*
3842 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3843 * trylock must be used to prevent a deadlock if the NMI
3844 * preempted a task that holds the ring buffer locks. If
3845 * we get the lock then all is fine, if not, then continue
3846 * to do the read, but this can corrupt the ring buffer,
3847 * so it must be permanently disabled from future writes.
3848 * Reading from NMI is a oneshot deal.
8d707e8e 3849 */
289a5a25
SRRH
3850 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3851 return true;
8d707e8e 3852
289a5a25
SRRH
3853 /* Continue without locking, but disable the ring buffer */
3854 atomic_inc(&cpu_buffer->record_disabled);
3855 return false;
3856}
3857
3858static inline void
3859rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3860{
3861 if (likely(locked))
3862 raw_spin_unlock(&cpu_buffer->reader_lock);
3863 return;
8d707e8e
SR
3864}
3865
f83c9d0f
SR
3866/**
3867 * ring_buffer_peek - peek at the next event to be read
3868 * @buffer: The ring buffer to read
3869 * @cpu: The cpu to peak at
3870 * @ts: The timestamp counter of this event.
66a8cb95 3871 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3872 *
3873 * This will return the event that will be read next, but does
3874 * not consume the data.
3875 */
3876struct ring_buffer_event *
66a8cb95
SR
3877ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3878 unsigned long *lost_events)
f83c9d0f
SR
3879{
3880 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3881 struct ring_buffer_event *event;
f83c9d0f 3882 unsigned long flags;
289a5a25 3883 bool dolock;
f83c9d0f 3884
554f786e 3885 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3886 return NULL;
554f786e 3887
2d622719 3888 again:
8d707e8e 3889 local_irq_save(flags);
289a5a25 3890 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3891 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3892 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3893 rb_advance_reader(cpu_buffer);
289a5a25 3894 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3895 local_irq_restore(flags);
f83c9d0f 3896
1b959e18 3897 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3898 goto again;
2d622719 3899
f83c9d0f
SR
3900 return event;
3901}
3902
3903/**
3904 * ring_buffer_iter_peek - peek at the next event to be read
3905 * @iter: The ring buffer iterator
3906 * @ts: The timestamp counter of this event.
3907 *
3908 * This will return the event that will be read next, but does
3909 * not increment the iterator.
3910 */
3911struct ring_buffer_event *
3912ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3913{
3914 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3915 struct ring_buffer_event *event;
3916 unsigned long flags;
3917
2d622719 3918 again:
5389f6fa 3919 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3920 event = rb_iter_peek(iter, ts);
5389f6fa 3921 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3922
1b959e18 3923 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3924 goto again;
2d622719 3925
f83c9d0f
SR
3926 return event;
3927}
3928
7a8e76a3
SR
3929/**
3930 * ring_buffer_consume - return an event and consume it
3931 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3932 * @cpu: the cpu to read the buffer from
3933 * @ts: a variable to store the timestamp (may be NULL)
3934 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3935 *
3936 * Returns the next event in the ring buffer, and that event is consumed.
3937 * Meaning, that sequential reads will keep returning a different event,
3938 * and eventually empty the ring buffer if the producer is slower.
3939 */
3940struct ring_buffer_event *
66a8cb95
SR
3941ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3942 unsigned long *lost_events)
7a8e76a3 3943{
554f786e
SR
3944 struct ring_buffer_per_cpu *cpu_buffer;
3945 struct ring_buffer_event *event = NULL;
f83c9d0f 3946 unsigned long flags;
289a5a25 3947 bool dolock;
7a8e76a3 3948
2d622719 3949 again:
554f786e
SR
3950 /* might be called in atomic */
3951 preempt_disable();
3952
9e01c1b7 3953 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3954 goto out;
7a8e76a3 3955
554f786e 3956 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3957 local_irq_save(flags);
289a5a25 3958 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3959
66a8cb95
SR
3960 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3961 if (event) {
3962 cpu_buffer->lost_events = 0;
469535a5 3963 rb_advance_reader(cpu_buffer);
66a8cb95 3964 }
7a8e76a3 3965
289a5a25 3966 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3967 local_irq_restore(flags);
f83c9d0f 3968
554f786e
SR
3969 out:
3970 preempt_enable();
3971
1b959e18 3972 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3973 goto again;
2d622719 3974
7a8e76a3
SR
3975 return event;
3976}
c4f50183 3977EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3978
3979/**
72c9ddfd 3980 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3981 * @buffer: The ring buffer to read from
3982 * @cpu: The cpu buffer to iterate over
3983 *
72c9ddfd
DM
3984 * This performs the initial preparations necessary to iterate
3985 * through the buffer. Memory is allocated, buffer recording
3986 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3987 *
72c9ddfd
DM
3988 * Disabling buffer recordng prevents the reading from being
3989 * corrupted. This is not a consuming read, so a producer is not
3990 * expected.
3991 *
3992 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3993 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3994 * Afterwards, ring_buffer_read_start is invoked to get things going
3995 * for real.
3996 *
d611851b 3997 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3998 */
3999struct ring_buffer_iter *
72c9ddfd 4000ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4001{
4002 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4003 struct ring_buffer_iter *iter;
7a8e76a3 4004
9e01c1b7 4005 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4006 return NULL;
7a8e76a3
SR
4007
4008 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4009 if (!iter)
8aabee57 4010 return NULL;
7a8e76a3
SR
4011
4012 cpu_buffer = buffer->buffers[cpu];
4013
4014 iter->cpu_buffer = cpu_buffer;
4015
83f40318 4016 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4017 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4018
4019 return iter;
4020}
4021EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4022
4023/**
4024 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4025 *
4026 * All previously invoked ring_buffer_read_prepare calls to prepare
4027 * iterators will be synchronized. Afterwards, read_buffer_read_start
4028 * calls on those iterators are allowed.
4029 */
4030void
4031ring_buffer_read_prepare_sync(void)
4032{
7a8e76a3 4033 synchronize_sched();
72c9ddfd
DM
4034}
4035EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4036
4037/**
4038 * ring_buffer_read_start - start a non consuming read of the buffer
4039 * @iter: The iterator returned by ring_buffer_read_prepare
4040 *
4041 * This finalizes the startup of an iteration through the buffer.
4042 * The iterator comes from a call to ring_buffer_read_prepare and
4043 * an intervening ring_buffer_read_prepare_sync must have been
4044 * performed.
4045 *
d611851b 4046 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4047 */
4048void
4049ring_buffer_read_start(struct ring_buffer_iter *iter)
4050{
4051 struct ring_buffer_per_cpu *cpu_buffer;
4052 unsigned long flags;
4053
4054 if (!iter)
4055 return;
4056
4057 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4058
5389f6fa 4059 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4060 arch_spin_lock(&cpu_buffer->lock);
642edba5 4061 rb_iter_reset(iter);
0199c4e6 4062 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4063 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4064}
c4f50183 4065EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4066
4067/**
d611851b 4068 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4069 * @iter: The iterator retrieved by ring_buffer_start
4070 *
4071 * This re-enables the recording to the buffer, and frees the
4072 * iterator.
4073 */
4074void
4075ring_buffer_read_finish(struct ring_buffer_iter *iter)
4076{
4077 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4078 unsigned long flags;
7a8e76a3 4079
659f451f
SR
4080 /*
4081 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4082 * to check the integrity of the ring buffer.
4083 * Must prevent readers from trying to read, as the check
4084 * clears the HEAD page and readers require it.
659f451f 4085 */
9366c1ba 4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4087 rb_check_pages(cpu_buffer);
9366c1ba 4088 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4089
7a8e76a3 4090 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4091 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4092 kfree(iter);
4093}
c4f50183 4094EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4095
4096/**
4097 * ring_buffer_read - read the next item in the ring buffer by the iterator
4098 * @iter: The ring buffer iterator
4099 * @ts: The time stamp of the event read.
4100 *
4101 * This reads the next event in the ring buffer and increments the iterator.
4102 */
4103struct ring_buffer_event *
4104ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4105{
4106 struct ring_buffer_event *event;
f83c9d0f
SR
4107 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4108 unsigned long flags;
7a8e76a3 4109
5389f6fa 4110 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4111 again:
f83c9d0f 4112 event = rb_iter_peek(iter, ts);
7a8e76a3 4113 if (!event)
f83c9d0f 4114 goto out;
7a8e76a3 4115
7e9391cf
SR
4116 if (event->type_len == RINGBUF_TYPE_PADDING)
4117 goto again;
4118
7a8e76a3 4119 rb_advance_iter(iter);
f83c9d0f 4120 out:
5389f6fa 4121 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4122
4123 return event;
4124}
c4f50183 4125EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4126
4127/**
4128 * ring_buffer_size - return the size of the ring buffer (in bytes)
4129 * @buffer: The ring buffer.
4130 */
438ced17 4131unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4132{
438ced17
VN
4133 /*
4134 * Earlier, this method returned
4135 * BUF_PAGE_SIZE * buffer->nr_pages
4136 * Since the nr_pages field is now removed, we have converted this to
4137 * return the per cpu buffer value.
4138 */
4139 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4140 return 0;
4141
4142 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4143}
c4f50183 4144EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4145
4146static void
4147rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4148{
77ae365e
SR
4149 rb_head_page_deactivate(cpu_buffer);
4150
7a8e76a3 4151 cpu_buffer->head_page
3adc54fa 4152 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4153 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4154 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4155 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4156
6f807acd 4157 cpu_buffer->head_page->read = 0;
bf41a158
SR
4158
4159 cpu_buffer->tail_page = cpu_buffer->head_page;
4160 cpu_buffer->commit_page = cpu_buffer->head_page;
4161
4162 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4163 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4164 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4165 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4166 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4167 cpu_buffer->reader_page->read = 0;
7a8e76a3 4168
c64e148a 4169 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4170 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4171 local_set(&cpu_buffer->commit_overrun, 0);
4172 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4173 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4174 local_set(&cpu_buffer->committing, 0);
4175 local_set(&cpu_buffer->commits, 0);
77ae365e 4176 cpu_buffer->read = 0;
c64e148a 4177 cpu_buffer->read_bytes = 0;
69507c06
SR
4178
4179 cpu_buffer->write_stamp = 0;
4180 cpu_buffer->read_stamp = 0;
77ae365e 4181
66a8cb95
SR
4182 cpu_buffer->lost_events = 0;
4183 cpu_buffer->last_overrun = 0;
4184
77ae365e 4185 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4186}
4187
4188/**
4189 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4190 * @buffer: The ring buffer to reset a per cpu buffer of
4191 * @cpu: The CPU buffer to be reset
4192 */
4193void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4194{
4195 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4196 unsigned long flags;
4197
9e01c1b7 4198 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4199 return;
7a8e76a3 4200
83f40318 4201 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4202 atomic_inc(&cpu_buffer->record_disabled);
4203
83f40318
VN
4204 /* Make sure all commits have finished */
4205 synchronize_sched();
4206
5389f6fa 4207 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4208
41b6a95d
SR
4209 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4210 goto out;
4211
0199c4e6 4212 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4213
4214 rb_reset_cpu(cpu_buffer);
4215
0199c4e6 4216 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4217
41b6a95d 4218 out:
5389f6fa 4219 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4220
4221 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4222 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4223}
c4f50183 4224EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4225
4226/**
4227 * ring_buffer_reset - reset a ring buffer
4228 * @buffer: The ring buffer to reset all cpu buffers
4229 */
4230void ring_buffer_reset(struct ring_buffer *buffer)
4231{
7a8e76a3
SR
4232 int cpu;
4233
7a8e76a3 4234 for_each_buffer_cpu(buffer, cpu)
d769041f 4235 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4236}
c4f50183 4237EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4238
4239/**
4240 * rind_buffer_empty - is the ring buffer empty?
4241 * @buffer: The ring buffer to test
4242 */
4243int ring_buffer_empty(struct ring_buffer *buffer)
4244{
4245 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4246 unsigned long flags;
289a5a25 4247 bool dolock;
7a8e76a3 4248 int cpu;
d4788207 4249 int ret;
7a8e76a3
SR
4250
4251 /* yes this is racy, but if you don't like the race, lock the buffer */
4252 for_each_buffer_cpu(buffer, cpu) {
4253 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4254 local_irq_save(flags);
289a5a25 4255 dolock = rb_reader_lock(cpu_buffer);
d4788207 4256 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4257 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4258 local_irq_restore(flags);
4259
d4788207 4260 if (!ret)
7a8e76a3
SR
4261 return 0;
4262 }
554f786e 4263
7a8e76a3
SR
4264 return 1;
4265}
c4f50183 4266EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4267
4268/**
4269 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4270 * @buffer: The ring buffer
4271 * @cpu: The CPU buffer to test
4272 */
4273int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4274{
4275 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4276 unsigned long flags;
289a5a25 4277 bool dolock;
8aabee57 4278 int ret;
7a8e76a3 4279
9e01c1b7 4280 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4281 return 1;
7a8e76a3
SR
4282
4283 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4284 local_irq_save(flags);
289a5a25 4285 dolock = rb_reader_lock(cpu_buffer);
554f786e 4286 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4287 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4288 local_irq_restore(flags);
554f786e
SR
4289
4290 return ret;
7a8e76a3 4291}
c4f50183 4292EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4293
85bac32c 4294#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4295/**
4296 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4297 * @buffer_a: One buffer to swap with
4298 * @buffer_b: The other buffer to swap with
4299 *
4300 * This function is useful for tracers that want to take a "snapshot"
4301 * of a CPU buffer and has another back up buffer lying around.
4302 * it is expected that the tracer handles the cpu buffer not being
4303 * used at the moment.
4304 */
4305int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4306 struct ring_buffer *buffer_b, int cpu)
4307{
4308 struct ring_buffer_per_cpu *cpu_buffer_a;
4309 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4310 int ret = -EINVAL;
4311
9e01c1b7
RR
4312 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4313 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4314 goto out;
7a8e76a3 4315
438ced17
VN
4316 cpu_buffer_a = buffer_a->buffers[cpu];
4317 cpu_buffer_b = buffer_b->buffers[cpu];
4318
7a8e76a3 4319 /* At least make sure the two buffers are somewhat the same */
438ced17 4320 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4321 goto out;
4322
4323 ret = -EAGAIN;
7a8e76a3 4324
97b17efe 4325 if (atomic_read(&buffer_a->record_disabled))
554f786e 4326 goto out;
97b17efe
SR
4327
4328 if (atomic_read(&buffer_b->record_disabled))
554f786e 4329 goto out;
97b17efe 4330
97b17efe 4331 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4332 goto out;
97b17efe
SR
4333
4334 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4335 goto out;
97b17efe 4336
7a8e76a3
SR
4337 /*
4338 * We can't do a synchronize_sched here because this
4339 * function can be called in atomic context.
4340 * Normally this will be called from the same CPU as cpu.
4341 * If not it's up to the caller to protect this.
4342 */
4343 atomic_inc(&cpu_buffer_a->record_disabled);
4344 atomic_inc(&cpu_buffer_b->record_disabled);
4345
98277991
SR
4346 ret = -EBUSY;
4347 if (local_read(&cpu_buffer_a->committing))
4348 goto out_dec;
4349 if (local_read(&cpu_buffer_b->committing))
4350 goto out_dec;
4351
7a8e76a3
SR
4352 buffer_a->buffers[cpu] = cpu_buffer_b;
4353 buffer_b->buffers[cpu] = cpu_buffer_a;
4354
4355 cpu_buffer_b->buffer = buffer_a;
4356 cpu_buffer_a->buffer = buffer_b;
4357
98277991
SR
4358 ret = 0;
4359
4360out_dec:
7a8e76a3
SR
4361 atomic_dec(&cpu_buffer_a->record_disabled);
4362 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4363out:
554f786e 4364 return ret;
7a8e76a3 4365}
c4f50183 4366EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4367#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4368
8789a9e7
SR
4369/**
4370 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4371 * @buffer: the buffer to allocate for.
d611851b 4372 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4373 *
4374 * This function is used in conjunction with ring_buffer_read_page.
4375 * When reading a full page from the ring buffer, these functions
4376 * can be used to speed up the process. The calling function should
4377 * allocate a few pages first with this function. Then when it
4378 * needs to get pages from the ring buffer, it passes the result
4379 * of this function into ring_buffer_read_page, which will swap
4380 * the page that was allocated, with the read page of the buffer.
4381 *
4382 * Returns:
4383 * The page allocated, or NULL on error.
4384 */
7ea59064 4385void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4386{
044fa782 4387 struct buffer_data_page *bpage;
7ea59064 4388 struct page *page;
8789a9e7 4389
d7ec4bfe
VN
4390 page = alloc_pages_node(cpu_to_node(cpu),
4391 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4392 if (!page)
8789a9e7
SR
4393 return NULL;
4394
7ea59064 4395 bpage = page_address(page);
8789a9e7 4396
ef7a4a16
SR
4397 rb_init_page(bpage);
4398
044fa782 4399 return bpage;
8789a9e7 4400}
d6ce96da 4401EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4402
4403/**
4404 * ring_buffer_free_read_page - free an allocated read page
4405 * @buffer: the buffer the page was allocate for
4406 * @data: the page to free
4407 *
4408 * Free a page allocated from ring_buffer_alloc_read_page.
4409 */
4410void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4411{
4412 free_page((unsigned long)data);
4413}
d6ce96da 4414EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4415
4416/**
4417 * ring_buffer_read_page - extract a page from the ring buffer
4418 * @buffer: buffer to extract from
4419 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4420 * @len: amount to extract
8789a9e7
SR
4421 * @cpu: the cpu of the buffer to extract
4422 * @full: should the extraction only happen when the page is full.
4423 *
4424 * This function will pull out a page from the ring buffer and consume it.
4425 * @data_page must be the address of the variable that was returned
4426 * from ring_buffer_alloc_read_page. This is because the page might be used
4427 * to swap with a page in the ring buffer.
4428 *
4429 * for example:
d611851b 4430 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4431 * if (!rpage)
4432 * return error;
ef7a4a16 4433 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4434 * if (ret >= 0)
4435 * process_page(rpage, ret);
8789a9e7
SR
4436 *
4437 * When @full is set, the function will not return true unless
4438 * the writer is off the reader page.
4439 *
4440 * Note: it is up to the calling functions to handle sleeps and wakeups.
4441 * The ring buffer can be used anywhere in the kernel and can not
4442 * blindly call wake_up. The layer that uses the ring buffer must be
4443 * responsible for that.
4444 *
4445 * Returns:
667d2412
LJ
4446 * >=0 if data has been transferred, returns the offset of consumed data.
4447 * <0 if no data has been transferred.
8789a9e7
SR
4448 */
4449int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4450 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4451{
4452 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4453 struct ring_buffer_event *event;
044fa782 4454 struct buffer_data_page *bpage;
ef7a4a16 4455 struct buffer_page *reader;
ff0ff84a 4456 unsigned long missed_events;
8789a9e7 4457 unsigned long flags;
ef7a4a16 4458 unsigned int commit;
667d2412 4459 unsigned int read;
4f3640f8 4460 u64 save_timestamp;
667d2412 4461 int ret = -1;
8789a9e7 4462
554f786e
SR
4463 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4464 goto out;
4465
474d32b6
SR
4466 /*
4467 * If len is not big enough to hold the page header, then
4468 * we can not copy anything.
4469 */
4470 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4471 goto out;
474d32b6
SR
4472
4473 len -= BUF_PAGE_HDR_SIZE;
4474
8789a9e7 4475 if (!data_page)
554f786e 4476 goto out;
8789a9e7 4477
044fa782
SR
4478 bpage = *data_page;
4479 if (!bpage)
554f786e 4480 goto out;
8789a9e7 4481
5389f6fa 4482 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4483
ef7a4a16
SR
4484 reader = rb_get_reader_page(cpu_buffer);
4485 if (!reader)
554f786e 4486 goto out_unlock;
8789a9e7 4487
ef7a4a16
SR
4488 event = rb_reader_event(cpu_buffer);
4489
4490 read = reader->read;
4491 commit = rb_page_commit(reader);
667d2412 4492
66a8cb95 4493 /* Check if any events were dropped */
ff0ff84a 4494 missed_events = cpu_buffer->lost_events;
66a8cb95 4495
8789a9e7 4496 /*
474d32b6
SR
4497 * If this page has been partially read or
4498 * if len is not big enough to read the rest of the page or
4499 * a writer is still on the page, then
4500 * we must copy the data from the page to the buffer.
4501 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4502 */
474d32b6 4503 if (read || (len < (commit - read)) ||
ef7a4a16 4504 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4505 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4506 unsigned int rpos = read;
4507 unsigned int pos = 0;
ef7a4a16 4508 unsigned int size;
8789a9e7
SR
4509
4510 if (full)
554f786e 4511 goto out_unlock;
8789a9e7 4512
ef7a4a16
SR
4513 if (len > (commit - read))
4514 len = (commit - read);
4515
69d1b839
SR
4516 /* Always keep the time extend and data together */
4517 size = rb_event_ts_length(event);
ef7a4a16
SR
4518
4519 if (len < size)
554f786e 4520 goto out_unlock;
ef7a4a16 4521
4f3640f8
SR
4522 /* save the current timestamp, since the user will need it */
4523 save_timestamp = cpu_buffer->read_stamp;
4524
ef7a4a16
SR
4525 /* Need to copy one event at a time */
4526 do {
e1e35927
DS
4527 /* We need the size of one event, because
4528 * rb_advance_reader only advances by one event,
4529 * whereas rb_event_ts_length may include the size of
4530 * one or two events.
4531 * We have already ensured there's enough space if this
4532 * is a time extend. */
4533 size = rb_event_length(event);
474d32b6 4534 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4535
4536 len -= size;
4537
4538 rb_advance_reader(cpu_buffer);
474d32b6
SR
4539 rpos = reader->read;
4540 pos += size;
ef7a4a16 4541
18fab912
HY
4542 if (rpos >= commit)
4543 break;
4544
ef7a4a16 4545 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4546 /* Always keep the time extend and data together */
4547 size = rb_event_ts_length(event);
e1e35927 4548 } while (len >= size);
667d2412
LJ
4549
4550 /* update bpage */
ef7a4a16 4551 local_set(&bpage->commit, pos);
4f3640f8 4552 bpage->time_stamp = save_timestamp;
ef7a4a16 4553
474d32b6
SR
4554 /* we copied everything to the beginning */
4555 read = 0;
8789a9e7 4556 } else {
afbab76a 4557 /* update the entry counter */
77ae365e 4558 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4559 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4560
8789a9e7 4561 /* swap the pages */
044fa782 4562 rb_init_page(bpage);
ef7a4a16
SR
4563 bpage = reader->page;
4564 reader->page = *data_page;
4565 local_set(&reader->write, 0);
778c55d4 4566 local_set(&reader->entries, 0);
ef7a4a16 4567 reader->read = 0;
044fa782 4568 *data_page = bpage;
ff0ff84a
SR
4569
4570 /*
4571 * Use the real_end for the data size,
4572 * This gives us a chance to store the lost events
4573 * on the page.
4574 */
4575 if (reader->real_end)
4576 local_set(&bpage->commit, reader->real_end);
8789a9e7 4577 }
667d2412 4578 ret = read;
8789a9e7 4579
66a8cb95 4580 cpu_buffer->lost_events = 0;
2711ca23
SR
4581
4582 commit = local_read(&bpage->commit);
66a8cb95
SR
4583 /*
4584 * Set a flag in the commit field if we lost events
4585 */
ff0ff84a 4586 if (missed_events) {
ff0ff84a
SR
4587 /* If there is room at the end of the page to save the
4588 * missed events, then record it there.
4589 */
4590 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4591 memcpy(&bpage->data[commit], &missed_events,
4592 sizeof(missed_events));
4593 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4594 commit += sizeof(missed_events);
ff0ff84a 4595 }
66a8cb95 4596 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4597 }
66a8cb95 4598
2711ca23
SR
4599 /*
4600 * This page may be off to user land. Zero it out here.
4601 */
4602 if (commit < BUF_PAGE_SIZE)
4603 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4604
554f786e 4605 out_unlock:
5389f6fa 4606 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4607
554f786e 4608 out:
8789a9e7
SR
4609 return ret;
4610}
d6ce96da 4611EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4612
59222efe 4613#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4614static int rb_cpu_notify(struct notifier_block *self,
4615 unsigned long action, void *hcpu)
554f786e
SR
4616{
4617 struct ring_buffer *buffer =
4618 container_of(self, struct ring_buffer, cpu_notify);
4619 long cpu = (long)hcpu;
438ced17
VN
4620 int cpu_i, nr_pages_same;
4621 unsigned int nr_pages;
554f786e
SR
4622
4623 switch (action) {
4624 case CPU_UP_PREPARE:
4625 case CPU_UP_PREPARE_FROZEN:
3f237a79 4626 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4627 return NOTIFY_OK;
4628
438ced17
VN
4629 nr_pages = 0;
4630 nr_pages_same = 1;
4631 /* check if all cpu sizes are same */
4632 for_each_buffer_cpu(buffer, cpu_i) {
4633 /* fill in the size from first enabled cpu */
4634 if (nr_pages == 0)
4635 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4636 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4637 nr_pages_same = 0;
4638 break;
4639 }
4640 }
4641 /* allocate minimum pages, user can later expand it */
4642 if (!nr_pages_same)
4643 nr_pages = 2;
554f786e 4644 buffer->buffers[cpu] =
438ced17 4645 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4646 if (!buffer->buffers[cpu]) {
4647 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4648 cpu);
4649 return NOTIFY_OK;
4650 }
4651 smp_wmb();
3f237a79 4652 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4653 break;
4654 case CPU_DOWN_PREPARE:
4655 case CPU_DOWN_PREPARE_FROZEN:
4656 /*
4657 * Do nothing.
4658 * If we were to free the buffer, then the user would
4659 * lose any trace that was in the buffer.
4660 */
4661 break;
4662 default:
4663 break;
4664 }
4665 return NOTIFY_OK;
4666}
4667#endif
6c43e554
SRRH
4668
4669#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4670/*
4671 * This is a basic integrity check of the ring buffer.
4672 * Late in the boot cycle this test will run when configured in.
4673 * It will kick off a thread per CPU that will go into a loop
4674 * writing to the per cpu ring buffer various sizes of data.
4675 * Some of the data will be large items, some small.
4676 *
4677 * Another thread is created that goes into a spin, sending out
4678 * IPIs to the other CPUs to also write into the ring buffer.
4679 * this is to test the nesting ability of the buffer.
4680 *
4681 * Basic stats are recorded and reported. If something in the
4682 * ring buffer should happen that's not expected, a big warning
4683 * is displayed and all ring buffers are disabled.
4684 */
4685static struct task_struct *rb_threads[NR_CPUS] __initdata;
4686
4687struct rb_test_data {
4688 struct ring_buffer *buffer;
4689 unsigned long events;
4690 unsigned long bytes_written;
4691 unsigned long bytes_alloc;
4692 unsigned long bytes_dropped;
4693 unsigned long events_nested;
4694 unsigned long bytes_written_nested;
4695 unsigned long bytes_alloc_nested;
4696 unsigned long bytes_dropped_nested;
4697 int min_size_nested;
4698 int max_size_nested;
4699 int max_size;
4700 int min_size;
4701 int cpu;
4702 int cnt;
4703};
4704
4705static struct rb_test_data rb_data[NR_CPUS] __initdata;
4706
4707/* 1 meg per cpu */
4708#define RB_TEST_BUFFER_SIZE 1048576
4709
4710static char rb_string[] __initdata =
4711 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4712 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4713 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4714
4715static bool rb_test_started __initdata;
4716
4717struct rb_item {
4718 int size;
4719 char str[];
4720};
4721
4722static __init int rb_write_something(struct rb_test_data *data, bool nested)
4723{
4724 struct ring_buffer_event *event;
4725 struct rb_item *item;
4726 bool started;
4727 int event_len;
4728 int size;
4729 int len;
4730 int cnt;
4731
4732 /* Have nested writes different that what is written */
4733 cnt = data->cnt + (nested ? 27 : 0);
4734
4735 /* Multiply cnt by ~e, to make some unique increment */
4736 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4737
4738 len = size + sizeof(struct rb_item);
4739
4740 started = rb_test_started;
4741 /* read rb_test_started before checking buffer enabled */
4742 smp_rmb();
4743
4744 event = ring_buffer_lock_reserve(data->buffer, len);
4745 if (!event) {
4746 /* Ignore dropped events before test starts. */
4747 if (started) {
4748 if (nested)
4749 data->bytes_dropped += len;
4750 else
4751 data->bytes_dropped_nested += len;
4752 }
4753 return len;
4754 }
4755
4756 event_len = ring_buffer_event_length(event);
4757
4758 if (RB_WARN_ON(data->buffer, event_len < len))
4759 goto out;
4760
4761 item = ring_buffer_event_data(event);
4762 item->size = size;
4763 memcpy(item->str, rb_string, size);
4764
4765 if (nested) {
4766 data->bytes_alloc_nested += event_len;
4767 data->bytes_written_nested += len;
4768 data->events_nested++;
4769 if (!data->min_size_nested || len < data->min_size_nested)
4770 data->min_size_nested = len;
4771 if (len > data->max_size_nested)
4772 data->max_size_nested = len;
4773 } else {
4774 data->bytes_alloc += event_len;
4775 data->bytes_written += len;
4776 data->events++;
4777 if (!data->min_size || len < data->min_size)
4778 data->max_size = len;
4779 if (len > data->max_size)
4780 data->max_size = len;
4781 }
4782
4783 out:
4784 ring_buffer_unlock_commit(data->buffer, event);
4785
4786 return 0;
4787}
4788
4789static __init int rb_test(void *arg)
4790{
4791 struct rb_test_data *data = arg;
4792
4793 while (!kthread_should_stop()) {
4794 rb_write_something(data, false);
4795 data->cnt++;
4796
4797 set_current_state(TASK_INTERRUPTIBLE);
4798 /* Now sleep between a min of 100-300us and a max of 1ms */
4799 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4800 }
4801
4802 return 0;
4803}
4804
4805static __init void rb_ipi(void *ignore)
4806{
4807 struct rb_test_data *data;
4808 int cpu = smp_processor_id();
4809
4810 data = &rb_data[cpu];
4811 rb_write_something(data, true);
4812}
4813
4814static __init int rb_hammer_test(void *arg)
4815{
4816 while (!kthread_should_stop()) {
4817
4818 /* Send an IPI to all cpus to write data! */
4819 smp_call_function(rb_ipi, NULL, 1);
4820 /* No sleep, but for non preempt, let others run */
4821 schedule();
4822 }
4823
4824 return 0;
4825}
4826
4827static __init int test_ringbuffer(void)
4828{
4829 struct task_struct *rb_hammer;
4830 struct ring_buffer *buffer;
4831 int cpu;
4832 int ret = 0;
4833
4834 pr_info("Running ring buffer tests...\n");
4835
4836 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4837 if (WARN_ON(!buffer))
4838 return 0;
4839
4840 /* Disable buffer so that threads can't write to it yet */
4841 ring_buffer_record_off(buffer);
4842
4843 for_each_online_cpu(cpu) {
4844 rb_data[cpu].buffer = buffer;
4845 rb_data[cpu].cpu = cpu;
4846 rb_data[cpu].cnt = cpu;
4847 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4848 "rbtester/%d", cpu);
4849 if (WARN_ON(!rb_threads[cpu])) {
4850 pr_cont("FAILED\n");
4851 ret = -1;
4852 goto out_free;
4853 }
4854
4855 kthread_bind(rb_threads[cpu], cpu);
4856 wake_up_process(rb_threads[cpu]);
4857 }
4858
4859 /* Now create the rb hammer! */
4860 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4861 if (WARN_ON(!rb_hammer)) {
4862 pr_cont("FAILED\n");
4863 ret = -1;
4864 goto out_free;
4865 }
4866
4867 ring_buffer_record_on(buffer);
4868 /*
4869 * Show buffer is enabled before setting rb_test_started.
4870 * Yes there's a small race window where events could be
4871 * dropped and the thread wont catch it. But when a ring
4872 * buffer gets enabled, there will always be some kind of
4873 * delay before other CPUs see it. Thus, we don't care about
4874 * those dropped events. We care about events dropped after
4875 * the threads see that the buffer is active.
4876 */
4877 smp_wmb();
4878 rb_test_started = true;
4879
4880 set_current_state(TASK_INTERRUPTIBLE);
4881 /* Just run for 10 seconds */;
4882 schedule_timeout(10 * HZ);
4883
4884 kthread_stop(rb_hammer);
4885
4886 out_free:
4887 for_each_online_cpu(cpu) {
4888 if (!rb_threads[cpu])
4889 break;
4890 kthread_stop(rb_threads[cpu]);
4891 }
4892 if (ret) {
4893 ring_buffer_free(buffer);
4894 return ret;
4895 }
4896
4897 /* Report! */
4898 pr_info("finished\n");
4899 for_each_online_cpu(cpu) {
4900 struct ring_buffer_event *event;
4901 struct rb_test_data *data = &rb_data[cpu];
4902 struct rb_item *item;
4903 unsigned long total_events;
4904 unsigned long total_dropped;
4905 unsigned long total_written;
4906 unsigned long total_alloc;
4907 unsigned long total_read = 0;
4908 unsigned long total_size = 0;
4909 unsigned long total_len = 0;
4910 unsigned long total_lost = 0;
4911 unsigned long lost;
4912 int big_event_size;
4913 int small_event_size;
4914
4915 ret = -1;
4916
4917 total_events = data->events + data->events_nested;
4918 total_written = data->bytes_written + data->bytes_written_nested;
4919 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4920 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4921
4922 big_event_size = data->max_size + data->max_size_nested;
4923 small_event_size = data->min_size + data->min_size_nested;
4924
4925 pr_info("CPU %d:\n", cpu);
4926 pr_info(" events: %ld\n", total_events);
4927 pr_info(" dropped bytes: %ld\n", total_dropped);
4928 pr_info(" alloced bytes: %ld\n", total_alloc);
4929 pr_info(" written bytes: %ld\n", total_written);
4930 pr_info(" biggest event: %d\n", big_event_size);
4931 pr_info(" smallest event: %d\n", small_event_size);
4932
4933 if (RB_WARN_ON(buffer, total_dropped))
4934 break;
4935
4936 ret = 0;
4937
4938 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4939 total_lost += lost;
4940 item = ring_buffer_event_data(event);
4941 total_len += ring_buffer_event_length(event);
4942 total_size += item->size + sizeof(struct rb_item);
4943 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4944 pr_info("FAILED!\n");
4945 pr_info("buffer had: %.*s\n", item->size, item->str);
4946 pr_info("expected: %.*s\n", item->size, rb_string);
4947 RB_WARN_ON(buffer, 1);
4948 ret = -1;
4949 break;
4950 }
4951 total_read++;
4952 }
4953 if (ret)
4954 break;
4955
4956 ret = -1;
4957
4958 pr_info(" read events: %ld\n", total_read);
4959 pr_info(" lost events: %ld\n", total_lost);
4960 pr_info(" total events: %ld\n", total_lost + total_read);
4961 pr_info(" recorded len bytes: %ld\n", total_len);
4962 pr_info(" recorded size bytes: %ld\n", total_size);
4963 if (total_lost)
4964 pr_info(" With dropped events, record len and size may not match\n"
4965 " alloced and written from above\n");
4966 if (!total_lost) {
4967 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4968 total_size != total_written))
4969 break;
4970 }
4971 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4972 break;
4973
4974 ret = 0;
4975 }
4976 if (!ret)
4977 pr_info("Ring buffer PASSED!\n");
4978
4979 ring_buffer_free(buffer);
4980 return 0;
4981}
4982
4983late_initcall(test_ringbuffer);
4984#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */