tracepoints: dont update zero-sized tracepoint sections
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
5cc98548
SR
24/*
25 * The ring buffer is made up of a list of pages. A separate list of pages is
26 * allocated for each CPU. A writer may only write to a buffer that is
27 * associated with the CPU it is currently executing on. A reader may read
28 * from any per cpu buffer.
29 *
30 * The reader is special. For each per cpu buffer, the reader has its own
31 * reader page. When a reader has read the entire reader page, this reader
32 * page is swapped with another page in the ring buffer.
33 *
34 * Now, as long as the writer is off the reader page, the reader can do what
35 * ever it wants with that page. The writer will never write to that page
36 * again (as long as it is out of the ring buffer).
37 *
38 * Here's some silly ASCII art.
39 *
40 * +------+
41 * |reader| RING BUFFER
42 * |page |
43 * +------+ +---+ +---+ +---+
44 * | |-->| |-->| |
45 * +---+ +---+ +---+
46 * ^ |
47 * | |
48 * +---------------+
49 *
50 *
51 * +------+
52 * |reader| RING BUFFER
53 * |page |------------------v
54 * +------+ +---+ +---+ +---+
55 * | |-->| |-->| |
56 * +---+ +---+ +---+
57 * ^ |
58 * | |
59 * +---------------+
60 *
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |------------------v
65 * +------+ +---+ +---+ +---+
66 * ^ | |-->| |-->| |
67 * | +---+ +---+ +---+
68 * | |
69 * | |
70 * +------------------------------+
71 *
72 *
73 * +------+
74 * |buffer| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * ^ | | | |-->| |
78 * | New +---+ +---+ +---+
79 * | Reader------^ |
80 * | page |
81 * +------------------------------+
82 *
83 *
84 * After we make this swap, the reader can hand this page off to the splice
85 * code and be done with it. It can even allocate a new page if it needs to
86 * and swap that into the ring buffer.
87 *
88 * We will be using cmpxchg soon to make all this lockless.
89 *
90 */
91
033601a3
SR
92/*
93 * A fast way to enable or disable all ring buffers is to
94 * call tracing_on or tracing_off. Turning off the ring buffers
95 * prevents all ring buffers from being recorded to.
96 * Turning this switch on, makes it OK to write to the
97 * ring buffer, if the ring buffer is enabled itself.
98 *
99 * There's three layers that must be on in order to write
100 * to the ring buffer.
101 *
102 * 1) This global flag must be set.
103 * 2) The ring buffer must be enabled for recording.
104 * 3) The per cpu buffer must be enabled for recording.
105 *
106 * In case of an anomaly, this global flag has a bit set that
107 * will permantly disable all ring buffers.
108 */
109
110/*
111 * Global flag to disable all recording to ring buffers
112 * This has two bits: ON, DISABLED
113 *
114 * ON DISABLED
115 * ---- ----------
116 * 0 0 : ring buffers are off
117 * 1 0 : ring buffers are on
118 * X 1 : ring buffers are permanently disabled
119 */
120
121enum {
122 RB_BUFFERS_ON_BIT = 0,
123 RB_BUFFERS_DISABLED_BIT = 1,
124};
125
126enum {
127 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
128 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
129};
130
5e39841c 131static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 132
474d32b6
SR
133#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
134
a3583244
SR
135/**
136 * tracing_on - enable all tracing buffers
137 *
138 * This function enables all tracing buffers that may have been
139 * disabled with tracing_off.
140 */
141void tracing_on(void)
142{
033601a3 143 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 144}
c4f50183 145EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
146
147/**
148 * tracing_off - turn off all tracing buffers
149 *
150 * This function stops all tracing buffers from recording data.
151 * It does not disable any overhead the tracers themselves may
152 * be causing. This function simply causes all recording to
153 * the ring buffers to fail.
154 */
155void tracing_off(void)
156{
033601a3
SR
157 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
158}
c4f50183 159EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
160
161/**
162 * tracing_off_permanent - permanently disable ring buffers
163 *
164 * This function, once called, will disable all ring buffers
c3706f00 165 * permanently.
033601a3
SR
166 */
167void tracing_off_permanent(void)
168{
169 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
170}
171
988ae9d6
SR
172/**
173 * tracing_is_on - show state of ring buffers enabled
174 */
175int tracing_is_on(void)
176{
177 return ring_buffer_flags == RB_BUFFERS_ON;
178}
179EXPORT_SYMBOL_GPL(tracing_is_on);
180
d06bbd66
IM
181#include "trace.h"
182
e3d6bf0a 183#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 184#define RB_ALIGNMENT 4U
7a8e76a3
SR
185#define RB_MAX_SMALL_DATA 28
186
187enum {
188 RB_LEN_TIME_EXTEND = 8,
189 RB_LEN_TIME_STAMP = 16,
190};
191
192/* inline for ring buffer fast paths */
34a148bf 193static unsigned
7a8e76a3
SR
194rb_event_length(struct ring_buffer_event *event)
195{
196 unsigned length;
197
198 switch (event->type) {
199 case RINGBUF_TYPE_PADDING:
200 /* undefined */
201 return -1;
202
203 case RINGBUF_TYPE_TIME_EXTEND:
204 return RB_LEN_TIME_EXTEND;
205
206 case RINGBUF_TYPE_TIME_STAMP:
207 return RB_LEN_TIME_STAMP;
208
209 case RINGBUF_TYPE_DATA:
210 if (event->len)
67d34724 211 length = event->len * RB_ALIGNMENT;
7a8e76a3
SR
212 else
213 length = event->array[0];
214 return length + RB_EVNT_HDR_SIZE;
215 default:
216 BUG();
217 }
218 /* not hit */
219 return 0;
220}
221
222/**
223 * ring_buffer_event_length - return the length of the event
224 * @event: the event to get the length of
225 */
226unsigned ring_buffer_event_length(struct ring_buffer_event *event)
227{
465634ad
RR
228 unsigned length = rb_event_length(event);
229 if (event->type != RINGBUF_TYPE_DATA)
230 return length;
231 length -= RB_EVNT_HDR_SIZE;
232 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
233 length -= sizeof(event->array[0]);
234 return length;
7a8e76a3 235}
c4f50183 236EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
237
238/* inline for ring buffer fast paths */
34a148bf 239static void *
7a8e76a3
SR
240rb_event_data(struct ring_buffer_event *event)
241{
242 BUG_ON(event->type != RINGBUF_TYPE_DATA);
243 /* If length is in len field, then array[0] has the data */
244 if (event->len)
245 return (void *)&event->array[0];
246 /* Otherwise length is in array[0] and array[1] has the data */
247 return (void *)&event->array[1];
248}
249
250/**
251 * ring_buffer_event_data - return the data of the event
252 * @event: the event to get the data from
253 */
254void *ring_buffer_event_data(struct ring_buffer_event *event)
255{
256 return rb_event_data(event);
257}
c4f50183 258EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
259
260#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 261 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
262
263#define TS_SHIFT 27
264#define TS_MASK ((1ULL << TS_SHIFT) - 1)
265#define TS_DELTA_TEST (~TS_MASK)
266
abc9b56d 267struct buffer_data_page {
e4c2ce82 268 u64 time_stamp; /* page time stamp */
c3706f00 269 local_t commit; /* write committed index */
abc9b56d
SR
270 unsigned char data[]; /* data of buffer page */
271};
272
273struct buffer_page {
274 local_t write; /* index for next write */
6f807acd 275 unsigned read; /* index for next read */
e4c2ce82 276 struct list_head list; /* list of free pages */
abc9b56d 277 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
278};
279
044fa782 280static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 281{
044fa782 282 local_set(&bpage->commit, 0);
abc9b56d
SR
283}
284
474d32b6
SR
285/**
286 * ring_buffer_page_len - the size of data on the page.
287 * @page: The page to read
288 *
289 * Returns the amount of data on the page, including buffer page header.
290 */
ef7a4a16
SR
291size_t ring_buffer_page_len(void *page)
292{
474d32b6
SR
293 return local_read(&((struct buffer_data_page *)page)->commit)
294 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
295}
296
ed56829c
SR
297/*
298 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
299 * this issue out.
300 */
34a148bf 301static void free_buffer_page(struct buffer_page *bpage)
ed56829c 302{
34a148bf 303 free_page((unsigned long)bpage->page);
e4c2ce82 304 kfree(bpage);
ed56829c
SR
305}
306
7a8e76a3
SR
307/*
308 * We need to fit the time_stamp delta into 27 bits.
309 */
310static inline int test_time_stamp(u64 delta)
311{
312 if (delta & TS_DELTA_TEST)
313 return 1;
314 return 0;
315}
316
474d32b6 317#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3
SR
318
319/*
320 * head_page == tail_page && head == tail then buffer is empty.
321 */
322struct ring_buffer_per_cpu {
323 int cpu;
324 struct ring_buffer *buffer;
f83c9d0f 325 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 326 raw_spinlock_t lock;
7a8e76a3
SR
327 struct lock_class_key lock_key;
328 struct list_head pages;
6f807acd
SR
329 struct buffer_page *head_page; /* read from head */
330 struct buffer_page *tail_page; /* write to tail */
c3706f00 331 struct buffer_page *commit_page; /* committed pages */
d769041f 332 struct buffer_page *reader_page;
7a8e76a3
SR
333 unsigned long overrun;
334 unsigned long entries;
335 u64 write_stamp;
336 u64 read_stamp;
337 atomic_t record_disabled;
338};
339
340struct ring_buffer {
7a8e76a3
SR
341 unsigned pages;
342 unsigned flags;
343 int cpus;
7a8e76a3 344 atomic_t record_disabled;
00f62f61 345 cpumask_var_t cpumask;
7a8e76a3
SR
346
347 struct mutex mutex;
348
349 struct ring_buffer_per_cpu **buffers;
554f786e 350
59222efe 351#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
352 struct notifier_block cpu_notify;
353#endif
37886f6a 354 u64 (*clock)(void);
7a8e76a3
SR
355};
356
357struct ring_buffer_iter {
358 struct ring_buffer_per_cpu *cpu_buffer;
359 unsigned long head;
360 struct buffer_page *head_page;
361 u64 read_stamp;
362};
363
f536aafc 364/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 365#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
366 ({ \
367 int _____ret = unlikely(cond); \
368 if (_____ret) { \
bf41a158
SR
369 atomic_inc(&buffer->record_disabled); \
370 WARN_ON(1); \
371 } \
3e89c7bb
SR
372 _____ret; \
373 })
f536aafc 374
37886f6a
SR
375/* Up this if you want to test the TIME_EXTENTS and normalization */
376#define DEBUG_SHIFT 0
377
378u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
379{
380 u64 time;
381
382 preempt_disable_notrace();
383 /* shift to debug/test normalization and TIME_EXTENTS */
384 time = buffer->clock() << DEBUG_SHIFT;
385 preempt_enable_no_resched_notrace();
386
387 return time;
388}
389EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
390
391void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
392 int cpu, u64 *ts)
393{
394 /* Just stupid testing the normalize function and deltas */
395 *ts >>= DEBUG_SHIFT;
396}
397EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
398
7a8e76a3
SR
399/**
400 * check_pages - integrity check of buffer pages
401 * @cpu_buffer: CPU buffer with pages to test
402 *
c3706f00 403 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
404 * been corrupted.
405 */
406static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
407{
408 struct list_head *head = &cpu_buffer->pages;
044fa782 409 struct buffer_page *bpage, *tmp;
7a8e76a3 410
3e89c7bb
SR
411 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
412 return -1;
413 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
414 return -1;
7a8e76a3 415
044fa782 416 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 417 if (RB_WARN_ON(cpu_buffer,
044fa782 418 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
419 return -1;
420 if (RB_WARN_ON(cpu_buffer,
044fa782 421 bpage->list.prev->next != &bpage->list))
3e89c7bb 422 return -1;
7a8e76a3
SR
423 }
424
425 return 0;
426}
427
7a8e76a3
SR
428static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
429 unsigned nr_pages)
430{
431 struct list_head *head = &cpu_buffer->pages;
044fa782 432 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
433 unsigned long addr;
434 LIST_HEAD(pages);
435 unsigned i;
436
437 for (i = 0; i < nr_pages; i++) {
044fa782 438 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 439 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 440 if (!bpage)
e4c2ce82 441 goto free_pages;
044fa782 442 list_add(&bpage->list, &pages);
e4c2ce82 443
7a8e76a3
SR
444 addr = __get_free_page(GFP_KERNEL);
445 if (!addr)
446 goto free_pages;
044fa782
SR
447 bpage->page = (void *)addr;
448 rb_init_page(bpage->page);
7a8e76a3
SR
449 }
450
451 list_splice(&pages, head);
452
453 rb_check_pages(cpu_buffer);
454
455 return 0;
456
457 free_pages:
044fa782
SR
458 list_for_each_entry_safe(bpage, tmp, &pages, list) {
459 list_del_init(&bpage->list);
460 free_buffer_page(bpage);
7a8e76a3
SR
461 }
462 return -ENOMEM;
463}
464
465static struct ring_buffer_per_cpu *
466rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
467{
468 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 469 struct buffer_page *bpage;
d769041f 470 unsigned long addr;
7a8e76a3
SR
471 int ret;
472
473 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
474 GFP_KERNEL, cpu_to_node(cpu));
475 if (!cpu_buffer)
476 return NULL;
477
478 cpu_buffer->cpu = cpu;
479 cpu_buffer->buffer = buffer;
f83c9d0f 480 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 481 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
482 INIT_LIST_HEAD(&cpu_buffer->pages);
483
044fa782 484 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 485 GFP_KERNEL, cpu_to_node(cpu));
044fa782 486 if (!bpage)
e4c2ce82
SR
487 goto fail_free_buffer;
488
044fa782 489 cpu_buffer->reader_page = bpage;
d769041f
SR
490 addr = __get_free_page(GFP_KERNEL);
491 if (!addr)
e4c2ce82 492 goto fail_free_reader;
044fa782
SR
493 bpage->page = (void *)addr;
494 rb_init_page(bpage->page);
e4c2ce82 495
d769041f 496 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 497
7a8e76a3
SR
498 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
499 if (ret < 0)
d769041f 500 goto fail_free_reader;
7a8e76a3
SR
501
502 cpu_buffer->head_page
503 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 504 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
505
506 return cpu_buffer;
507
d769041f
SR
508 fail_free_reader:
509 free_buffer_page(cpu_buffer->reader_page);
510
7a8e76a3
SR
511 fail_free_buffer:
512 kfree(cpu_buffer);
513 return NULL;
514}
515
516static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
517{
518 struct list_head *head = &cpu_buffer->pages;
044fa782 519 struct buffer_page *bpage, *tmp;
7a8e76a3 520
d769041f
SR
521 list_del_init(&cpu_buffer->reader_page->list);
522 free_buffer_page(cpu_buffer->reader_page);
523
044fa782
SR
524 list_for_each_entry_safe(bpage, tmp, head, list) {
525 list_del_init(&bpage->list);
526 free_buffer_page(bpage);
7a8e76a3
SR
527 }
528 kfree(cpu_buffer);
529}
530
a7b13743
SR
531/*
532 * Causes compile errors if the struct buffer_page gets bigger
533 * than the struct page.
534 */
535extern int ring_buffer_page_too_big(void);
536
59222efe 537#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
538static int __cpuinit rb_cpu_notify(struct notifier_block *self,
539 unsigned long action, void *hcpu);
540#endif
541
7a8e76a3
SR
542/**
543 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 544 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
545 * @flags: attributes to set for the ring buffer.
546 *
547 * Currently the only flag that is available is the RB_FL_OVERWRITE
548 * flag. This flag means that the buffer will overwrite old data
549 * when the buffer wraps. If this flag is not set, the buffer will
550 * drop data when the tail hits the head.
551 */
552struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
553{
554 struct ring_buffer *buffer;
555 int bsize;
556 int cpu;
557
a7b13743
SR
558 /* Paranoid! Optimizes out when all is well */
559 if (sizeof(struct buffer_page) > sizeof(struct page))
560 ring_buffer_page_too_big();
561
562
7a8e76a3
SR
563 /* keep it in its own cache line */
564 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
565 GFP_KERNEL);
566 if (!buffer)
567 return NULL;
568
9e01c1b7
RR
569 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
570 goto fail_free_buffer;
571
7a8e76a3
SR
572 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
573 buffer->flags = flags;
37886f6a 574 buffer->clock = trace_clock_local;
7a8e76a3
SR
575
576 /* need at least two pages */
577 if (buffer->pages == 1)
578 buffer->pages++;
579
554f786e
SR
580 get_online_cpus();
581 cpumask_copy(buffer->cpumask, cpu_online_mask);
7a8e76a3
SR
582 buffer->cpus = nr_cpu_ids;
583
584 bsize = sizeof(void *) * nr_cpu_ids;
585 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
586 GFP_KERNEL);
587 if (!buffer->buffers)
9e01c1b7 588 goto fail_free_cpumask;
7a8e76a3
SR
589
590 for_each_buffer_cpu(buffer, cpu) {
591 buffer->buffers[cpu] =
592 rb_allocate_cpu_buffer(buffer, cpu);
593 if (!buffer->buffers[cpu])
594 goto fail_free_buffers;
595 }
596
59222efe 597#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
598 buffer->cpu_notify.notifier_call = rb_cpu_notify;
599 buffer->cpu_notify.priority = 0;
600 register_cpu_notifier(&buffer->cpu_notify);
601#endif
602
603 put_online_cpus();
7a8e76a3
SR
604 mutex_init(&buffer->mutex);
605
606 return buffer;
607
608 fail_free_buffers:
609 for_each_buffer_cpu(buffer, cpu) {
610 if (buffer->buffers[cpu])
611 rb_free_cpu_buffer(buffer->buffers[cpu]);
612 }
613 kfree(buffer->buffers);
614
9e01c1b7
RR
615 fail_free_cpumask:
616 free_cpumask_var(buffer->cpumask);
554f786e 617 put_online_cpus();
9e01c1b7 618
7a8e76a3
SR
619 fail_free_buffer:
620 kfree(buffer);
621 return NULL;
622}
c4f50183 623EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
624
625/**
626 * ring_buffer_free - free a ring buffer.
627 * @buffer: the buffer to free.
628 */
629void
630ring_buffer_free(struct ring_buffer *buffer)
631{
632 int cpu;
633
554f786e
SR
634 get_online_cpus();
635
59222efe 636#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
637 unregister_cpu_notifier(&buffer->cpu_notify);
638#endif
639
7a8e76a3
SR
640 for_each_buffer_cpu(buffer, cpu)
641 rb_free_cpu_buffer(buffer->buffers[cpu]);
642
554f786e
SR
643 put_online_cpus();
644
9e01c1b7
RR
645 free_cpumask_var(buffer->cpumask);
646
7a8e76a3
SR
647 kfree(buffer);
648}
c4f50183 649EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 650
37886f6a
SR
651void ring_buffer_set_clock(struct ring_buffer *buffer,
652 u64 (*clock)(void))
653{
654 buffer->clock = clock;
655}
656
7a8e76a3
SR
657static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
658
659static void
660rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
661{
044fa782 662 struct buffer_page *bpage;
7a8e76a3
SR
663 struct list_head *p;
664 unsigned i;
665
666 atomic_inc(&cpu_buffer->record_disabled);
667 synchronize_sched();
668
669 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
670 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
671 return;
7a8e76a3 672 p = cpu_buffer->pages.next;
044fa782
SR
673 bpage = list_entry(p, struct buffer_page, list);
674 list_del_init(&bpage->list);
675 free_buffer_page(bpage);
7a8e76a3 676 }
3e89c7bb
SR
677 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
678 return;
7a8e76a3
SR
679
680 rb_reset_cpu(cpu_buffer);
681
682 rb_check_pages(cpu_buffer);
683
684 atomic_dec(&cpu_buffer->record_disabled);
685
686}
687
688static void
689rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
690 struct list_head *pages, unsigned nr_pages)
691{
044fa782 692 struct buffer_page *bpage;
7a8e76a3
SR
693 struct list_head *p;
694 unsigned i;
695
696 atomic_inc(&cpu_buffer->record_disabled);
697 synchronize_sched();
698
699 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
700 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
701 return;
7a8e76a3 702 p = pages->next;
044fa782
SR
703 bpage = list_entry(p, struct buffer_page, list);
704 list_del_init(&bpage->list);
705 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
706 }
707 rb_reset_cpu(cpu_buffer);
708
709 rb_check_pages(cpu_buffer);
710
711 atomic_dec(&cpu_buffer->record_disabled);
712}
713
714/**
715 * ring_buffer_resize - resize the ring buffer
716 * @buffer: the buffer to resize.
717 * @size: the new size.
718 *
719 * The tracer is responsible for making sure that the buffer is
720 * not being used while changing the size.
721 * Note: We may be able to change the above requirement by using
722 * RCU synchronizations.
723 *
724 * Minimum size is 2 * BUF_PAGE_SIZE.
725 *
726 * Returns -1 on failure.
727 */
728int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
729{
730 struct ring_buffer_per_cpu *cpu_buffer;
731 unsigned nr_pages, rm_pages, new_pages;
044fa782 732 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
733 unsigned long buffer_size;
734 unsigned long addr;
735 LIST_HEAD(pages);
736 int i, cpu;
737
ee51a1de
IM
738 /*
739 * Always succeed at resizing a non-existent buffer:
740 */
741 if (!buffer)
742 return size;
743
7a8e76a3
SR
744 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
745 size *= BUF_PAGE_SIZE;
746 buffer_size = buffer->pages * BUF_PAGE_SIZE;
747
748 /* we need a minimum of two pages */
749 if (size < BUF_PAGE_SIZE * 2)
750 size = BUF_PAGE_SIZE * 2;
751
752 if (size == buffer_size)
753 return size;
754
755 mutex_lock(&buffer->mutex);
554f786e 756 get_online_cpus();
7a8e76a3
SR
757
758 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
759
760 if (size < buffer_size) {
761
762 /* easy case, just free pages */
554f786e
SR
763 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
764 goto out_fail;
7a8e76a3
SR
765
766 rm_pages = buffer->pages - nr_pages;
767
768 for_each_buffer_cpu(buffer, cpu) {
769 cpu_buffer = buffer->buffers[cpu];
770 rb_remove_pages(cpu_buffer, rm_pages);
771 }
772 goto out;
773 }
774
775 /*
776 * This is a bit more difficult. We only want to add pages
777 * when we can allocate enough for all CPUs. We do this
778 * by allocating all the pages and storing them on a local
779 * link list. If we succeed in our allocation, then we
780 * add these pages to the cpu_buffers. Otherwise we just free
781 * them all and return -ENOMEM;
782 */
554f786e
SR
783 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
784 goto out_fail;
f536aafc 785
7a8e76a3
SR
786 new_pages = nr_pages - buffer->pages;
787
788 for_each_buffer_cpu(buffer, cpu) {
789 for (i = 0; i < new_pages; i++) {
044fa782 790 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
791 cache_line_size()),
792 GFP_KERNEL, cpu_to_node(cpu));
044fa782 793 if (!bpage)
e4c2ce82 794 goto free_pages;
044fa782 795 list_add(&bpage->list, &pages);
7a8e76a3
SR
796 addr = __get_free_page(GFP_KERNEL);
797 if (!addr)
798 goto free_pages;
044fa782
SR
799 bpage->page = (void *)addr;
800 rb_init_page(bpage->page);
7a8e76a3
SR
801 }
802 }
803
804 for_each_buffer_cpu(buffer, cpu) {
805 cpu_buffer = buffer->buffers[cpu];
806 rb_insert_pages(cpu_buffer, &pages, new_pages);
807 }
808
554f786e
SR
809 if (RB_WARN_ON(buffer, !list_empty(&pages)))
810 goto out_fail;
7a8e76a3
SR
811
812 out:
813 buffer->pages = nr_pages;
554f786e 814 put_online_cpus();
7a8e76a3
SR
815 mutex_unlock(&buffer->mutex);
816
817 return size;
818
819 free_pages:
044fa782
SR
820 list_for_each_entry_safe(bpage, tmp, &pages, list) {
821 list_del_init(&bpage->list);
822 free_buffer_page(bpage);
7a8e76a3 823 }
554f786e 824 put_online_cpus();
641d2f63 825 mutex_unlock(&buffer->mutex);
7a8e76a3 826 return -ENOMEM;
554f786e
SR
827
828 /*
829 * Something went totally wrong, and we are too paranoid
830 * to even clean up the mess.
831 */
832 out_fail:
833 put_online_cpus();
834 mutex_unlock(&buffer->mutex);
835 return -1;
7a8e76a3 836}
c4f50183 837EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 838
7a8e76a3
SR
839static inline int rb_null_event(struct ring_buffer_event *event)
840{
841 return event->type == RINGBUF_TYPE_PADDING;
842}
843
8789a9e7 844static inline void *
044fa782 845__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 846{
044fa782 847 return bpage->data + index;
8789a9e7
SR
848}
849
044fa782 850static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 851{
044fa782 852 return bpage->page->data + index;
7a8e76a3
SR
853}
854
855static inline struct ring_buffer_event *
d769041f 856rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 857{
6f807acd
SR
858 return __rb_page_index(cpu_buffer->reader_page,
859 cpu_buffer->reader_page->read);
860}
861
862static inline struct ring_buffer_event *
863rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
864{
865 return __rb_page_index(cpu_buffer->head_page,
866 cpu_buffer->head_page->read);
7a8e76a3
SR
867}
868
869static inline struct ring_buffer_event *
870rb_iter_head_event(struct ring_buffer_iter *iter)
871{
6f807acd 872 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
873}
874
bf41a158
SR
875static inline unsigned rb_page_write(struct buffer_page *bpage)
876{
877 return local_read(&bpage->write);
878}
879
880static inline unsigned rb_page_commit(struct buffer_page *bpage)
881{
abc9b56d 882 return local_read(&bpage->page->commit);
bf41a158
SR
883}
884
885/* Size is determined by what has been commited */
886static inline unsigned rb_page_size(struct buffer_page *bpage)
887{
888 return rb_page_commit(bpage);
889}
890
891static inline unsigned
892rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
893{
894 return rb_page_commit(cpu_buffer->commit_page);
895}
896
897static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
898{
899 return rb_page_commit(cpu_buffer->head_page);
900}
901
7a8e76a3
SR
902/*
903 * When the tail hits the head and the buffer is in overwrite mode,
904 * the head jumps to the next page and all content on the previous
905 * page is discarded. But before doing so, we update the overrun
906 * variable of the buffer.
907 */
908static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
909{
910 struct ring_buffer_event *event;
911 unsigned long head;
912
913 for (head = 0; head < rb_head_size(cpu_buffer);
914 head += rb_event_length(event)) {
915
6f807acd 916 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
917 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
918 return;
7a8e76a3
SR
919 /* Only count data entries */
920 if (event->type != RINGBUF_TYPE_DATA)
921 continue;
922 cpu_buffer->overrun++;
923 cpu_buffer->entries--;
924 }
925}
926
927static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 928 struct buffer_page **bpage)
7a8e76a3 929{
044fa782 930 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
931
932 if (p == &cpu_buffer->pages)
933 p = p->next;
934
044fa782 935 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
936}
937
bf41a158
SR
938static inline unsigned
939rb_event_index(struct ring_buffer_event *event)
940{
941 unsigned long addr = (unsigned long)event;
942
943 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
944}
945
34a148bf 946static int
bf41a158
SR
947rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
948 struct ring_buffer_event *event)
949{
950 unsigned long addr = (unsigned long)event;
951 unsigned long index;
952
953 index = rb_event_index(event);
954 addr &= PAGE_MASK;
955
956 return cpu_buffer->commit_page->page == (void *)addr &&
957 rb_commit_index(cpu_buffer) == index;
958}
959
34a148bf 960static void
bf41a158
SR
961rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
962 struct ring_buffer_event *event)
7a8e76a3 963{
bf41a158
SR
964 unsigned long addr = (unsigned long)event;
965 unsigned long index;
966
967 index = rb_event_index(event);
968 addr &= PAGE_MASK;
969
970 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
971 if (RB_WARN_ON(cpu_buffer,
972 cpu_buffer->commit_page == cpu_buffer->tail_page))
973 return;
abc9b56d 974 cpu_buffer->commit_page->page->commit =
bf41a158
SR
975 cpu_buffer->commit_page->write;
976 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
977 cpu_buffer->write_stamp =
978 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
979 }
980
981 /* Now set the commit to the event's index */
abc9b56d 982 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
983}
984
34a148bf 985static void
bf41a158 986rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 987{
bf41a158
SR
988 /*
989 * We only race with interrupts and NMIs on this CPU.
990 * If we own the commit event, then we can commit
991 * all others that interrupted us, since the interruptions
992 * are in stack format (they finish before they come
993 * back to us). This allows us to do a simple loop to
994 * assign the commit to the tail.
995 */
a8ccf1d6 996 again:
bf41a158 997 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 998 cpu_buffer->commit_page->page->commit =
bf41a158
SR
999 cpu_buffer->commit_page->write;
1000 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1001 cpu_buffer->write_stamp =
1002 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1003 /* add barrier to keep gcc from optimizing too much */
1004 barrier();
1005 }
1006 while (rb_commit_index(cpu_buffer) !=
1007 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1008 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1009 cpu_buffer->commit_page->write;
1010 barrier();
1011 }
a8ccf1d6
SR
1012
1013 /* again, keep gcc from optimizing */
1014 barrier();
1015
1016 /*
1017 * If an interrupt came in just after the first while loop
1018 * and pushed the tail page forward, we will be left with
1019 * a dangling commit that will never go forward.
1020 */
1021 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1022 goto again;
7a8e76a3
SR
1023}
1024
d769041f 1025static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1026{
abc9b56d 1027 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1028 cpu_buffer->reader_page->read = 0;
d769041f
SR
1029}
1030
34a148bf 1031static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1032{
1033 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1034
1035 /*
1036 * The iterator could be on the reader page (it starts there).
1037 * But the head could have moved, since the reader was
1038 * found. Check for this case and assign the iterator
1039 * to the head page instead of next.
1040 */
1041 if (iter->head_page == cpu_buffer->reader_page)
1042 iter->head_page = cpu_buffer->head_page;
1043 else
1044 rb_inc_page(cpu_buffer, &iter->head_page);
1045
abc9b56d 1046 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1047 iter->head = 0;
1048}
1049
1050/**
1051 * ring_buffer_update_event - update event type and data
1052 * @event: the even to update
1053 * @type: the type of event
1054 * @length: the size of the event field in the ring buffer
1055 *
1056 * Update the type and data fields of the event. The length
1057 * is the actual size that is written to the ring buffer,
1058 * and with this, we can determine what to place into the
1059 * data field.
1060 */
34a148bf 1061static void
7a8e76a3
SR
1062rb_update_event(struct ring_buffer_event *event,
1063 unsigned type, unsigned length)
1064{
1065 event->type = type;
1066
1067 switch (type) {
1068
1069 case RINGBUF_TYPE_PADDING:
1070 break;
1071
1072 case RINGBUF_TYPE_TIME_EXTEND:
67d34724 1073 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
7a8e76a3
SR
1074 break;
1075
1076 case RINGBUF_TYPE_TIME_STAMP:
67d34724 1077 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
7a8e76a3
SR
1078 break;
1079
1080 case RINGBUF_TYPE_DATA:
1081 length -= RB_EVNT_HDR_SIZE;
1082 if (length > RB_MAX_SMALL_DATA) {
1083 event->len = 0;
1084 event->array[0] = length;
1085 } else
67d34724 1086 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1087 break;
1088 default:
1089 BUG();
1090 }
1091}
1092
34a148bf 1093static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1094{
1095 struct ring_buffer_event event; /* Used only for sizeof array */
1096
1097 /* zero length can cause confusions */
1098 if (!length)
1099 length = 1;
1100
1101 if (length > RB_MAX_SMALL_DATA)
1102 length += sizeof(event.array[0]);
1103
1104 length += RB_EVNT_HDR_SIZE;
1105 length = ALIGN(length, RB_ALIGNMENT);
1106
1107 return length;
1108}
1109
1110static struct ring_buffer_event *
1111__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1112 unsigned type, unsigned long length, u64 *ts)
1113{
98db8df7 1114 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1115 unsigned long tail, write;
7a8e76a3
SR
1116 struct ring_buffer *buffer = cpu_buffer->buffer;
1117 struct ring_buffer_event *event;
bf41a158 1118 unsigned long flags;
78d904b4 1119 bool lock_taken = false;
7a8e76a3 1120
98db8df7
SR
1121 commit_page = cpu_buffer->commit_page;
1122 /* we just need to protect against interrupts */
1123 barrier();
7a8e76a3 1124 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1125 write = local_add_return(length, &tail_page->write);
1126 tail = write - length;
7a8e76a3 1127
bf41a158
SR
1128 /* See if we shot pass the end of this buffer page */
1129 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1130 struct buffer_page *next_page = tail_page;
1131
3e03fb7f 1132 local_irq_save(flags);
78d904b4 1133 /*
a81bd80a
SR
1134 * Since the write to the buffer is still not
1135 * fully lockless, we must be careful with NMIs.
1136 * The locks in the writers are taken when a write
1137 * crosses to a new page. The locks protect against
1138 * races with the readers (this will soon be fixed
1139 * with a lockless solution).
1140 *
1141 * Because we can not protect against NMIs, and we
1142 * want to keep traces reentrant, we need to manage
1143 * what happens when we are in an NMI.
1144 *
78d904b4
SR
1145 * NMIs can happen after we take the lock.
1146 * If we are in an NMI, only take the lock
1147 * if it is not already taken. Otherwise
1148 * simply fail.
1149 */
a81bd80a 1150 if (unlikely(in_nmi())) {
78d904b4 1151 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1152 goto out_reset;
78d904b4
SR
1153 } else
1154 __raw_spin_lock(&cpu_buffer->lock);
1155
1156 lock_taken = true;
bf41a158 1157
7a8e76a3
SR
1158 rb_inc_page(cpu_buffer, &next_page);
1159
d769041f
SR
1160 head_page = cpu_buffer->head_page;
1161 reader_page = cpu_buffer->reader_page;
1162
1163 /* we grabbed the lock before incrementing */
3e89c7bb 1164 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1165 goto out_reset;
bf41a158
SR
1166
1167 /*
1168 * If for some reason, we had an interrupt storm that made
1169 * it all the way around the buffer, bail, and warn
1170 * about it.
1171 */
98db8df7 1172 if (unlikely(next_page == commit_page)) {
bf41a158 1173 WARN_ON_ONCE(1);
45141d46 1174 goto out_reset;
bf41a158 1175 }
d769041f 1176
7a8e76a3 1177 if (next_page == head_page) {
6f3b3440 1178 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1179 goto out_reset;
7a8e76a3 1180
bf41a158
SR
1181 /* tail_page has not moved yet? */
1182 if (tail_page == cpu_buffer->tail_page) {
1183 /* count overflows */
1184 rb_update_overflow(cpu_buffer);
1185
1186 rb_inc_page(cpu_buffer, &head_page);
1187 cpu_buffer->head_page = head_page;
1188 cpu_buffer->head_page->read = 0;
1189 }
1190 }
7a8e76a3 1191
bf41a158
SR
1192 /*
1193 * If the tail page is still the same as what we think
1194 * it is, then it is up to us to update the tail
1195 * pointer.
1196 */
1197 if (tail_page == cpu_buffer->tail_page) {
1198 local_set(&next_page->write, 0);
abc9b56d 1199 local_set(&next_page->page->commit, 0);
bf41a158
SR
1200 cpu_buffer->tail_page = next_page;
1201
1202 /* reread the time stamp */
37886f6a 1203 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
abc9b56d 1204 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1205 }
1206
bf41a158
SR
1207 /*
1208 * The actual tail page has moved forward.
1209 */
1210 if (tail < BUF_PAGE_SIZE) {
1211 /* Mark the rest of the page with padding */
6f807acd 1212 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1213 event->type = RINGBUF_TYPE_PADDING;
1214 }
1215
bf41a158
SR
1216 if (tail <= BUF_PAGE_SIZE)
1217 /* Set the write back to the previous setting */
1218 local_set(&tail_page->write, tail);
1219
1220 /*
1221 * If this was a commit entry that failed,
1222 * increment that too
1223 */
1224 if (tail_page == cpu_buffer->commit_page &&
1225 tail == rb_commit_index(cpu_buffer)) {
1226 rb_set_commit_to_write(cpu_buffer);
1227 }
1228
3e03fb7f
SR
1229 __raw_spin_unlock(&cpu_buffer->lock);
1230 local_irq_restore(flags);
bf41a158
SR
1231
1232 /* fail and let the caller try again */
1233 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1234 }
1235
bf41a158
SR
1236 /* We reserved something on the buffer */
1237
3e89c7bb
SR
1238 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1239 return NULL;
7a8e76a3 1240
6f807acd 1241 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1242 rb_update_event(event, type, length);
1243
bf41a158
SR
1244 /*
1245 * If this is a commit and the tail is zero, then update
1246 * this page's time stamp.
1247 */
1248 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1249 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1250
7a8e76a3 1251 return event;
bf41a158 1252
45141d46 1253 out_reset:
6f3b3440
LJ
1254 /* reset write */
1255 if (tail <= BUF_PAGE_SIZE)
1256 local_set(&tail_page->write, tail);
1257
78d904b4
SR
1258 if (likely(lock_taken))
1259 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1260 local_irq_restore(flags);
bf41a158 1261 return NULL;
7a8e76a3
SR
1262}
1263
1264static int
1265rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1266 u64 *ts, u64 *delta)
1267{
1268 struct ring_buffer_event *event;
1269 static int once;
bf41a158 1270 int ret;
7a8e76a3
SR
1271
1272 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1273 printk(KERN_WARNING "Delta way too big! %llu"
1274 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1275 (unsigned long long)*delta,
1276 (unsigned long long)*ts,
1277 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1278 WARN_ON(1);
1279 }
1280
1281 /*
1282 * The delta is too big, we to add a
1283 * new timestamp.
1284 */
1285 event = __rb_reserve_next(cpu_buffer,
1286 RINGBUF_TYPE_TIME_EXTEND,
1287 RB_LEN_TIME_EXTEND,
1288 ts);
1289 if (!event)
bf41a158 1290 return -EBUSY;
7a8e76a3 1291
bf41a158
SR
1292 if (PTR_ERR(event) == -EAGAIN)
1293 return -EAGAIN;
1294
1295 /* Only a commited time event can update the write stamp */
1296 if (rb_is_commit(cpu_buffer, event)) {
1297 /*
1298 * If this is the first on the page, then we need to
1299 * update the page itself, and just put in a zero.
1300 */
1301 if (rb_event_index(event)) {
1302 event->time_delta = *delta & TS_MASK;
1303 event->array[0] = *delta >> TS_SHIFT;
1304 } else {
abc9b56d 1305 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1306 event->time_delta = 0;
1307 event->array[0] = 0;
1308 }
7a8e76a3 1309 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1310 /* let the caller know this was the commit */
1311 ret = 1;
1312 } else {
1313 /* Darn, this is just wasted space */
1314 event->time_delta = 0;
1315 event->array[0] = 0;
1316 ret = 0;
7a8e76a3
SR
1317 }
1318
bf41a158
SR
1319 *delta = 0;
1320
1321 return ret;
7a8e76a3
SR
1322}
1323
1324static struct ring_buffer_event *
1325rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1326 unsigned type, unsigned long length)
1327{
1328 struct ring_buffer_event *event;
1329 u64 ts, delta;
bf41a158 1330 int commit = 0;
818e3dd3 1331 int nr_loops = 0;
7a8e76a3 1332
bf41a158 1333 again:
818e3dd3
SR
1334 /*
1335 * We allow for interrupts to reenter here and do a trace.
1336 * If one does, it will cause this original code to loop
1337 * back here. Even with heavy interrupts happening, this
1338 * should only happen a few times in a row. If this happens
1339 * 1000 times in a row, there must be either an interrupt
1340 * storm or we have something buggy.
1341 * Bail!
1342 */
3e89c7bb 1343 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1344 return NULL;
818e3dd3 1345
37886f6a 1346 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1347
bf41a158
SR
1348 /*
1349 * Only the first commit can update the timestamp.
1350 * Yes there is a race here. If an interrupt comes in
1351 * just after the conditional and it traces too, then it
1352 * will also check the deltas. More than one timestamp may
1353 * also be made. But only the entry that did the actual
1354 * commit will be something other than zero.
1355 */
1356 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1357 rb_page_write(cpu_buffer->tail_page) ==
1358 rb_commit_index(cpu_buffer)) {
1359
7a8e76a3
SR
1360 delta = ts - cpu_buffer->write_stamp;
1361
bf41a158
SR
1362 /* make sure this delta is calculated here */
1363 barrier();
1364
1365 /* Did the write stamp get updated already? */
1366 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1367 delta = 0;
bf41a158 1368
7a8e76a3 1369 if (test_time_stamp(delta)) {
7a8e76a3 1370
bf41a158
SR
1371 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1372
1373 if (commit == -EBUSY)
7a8e76a3 1374 return NULL;
bf41a158
SR
1375
1376 if (commit == -EAGAIN)
1377 goto again;
1378
1379 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1380 }
bf41a158
SR
1381 } else
1382 /* Non commits have zero deltas */
7a8e76a3 1383 delta = 0;
7a8e76a3
SR
1384
1385 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1386 if (PTR_ERR(event) == -EAGAIN)
1387 goto again;
1388
1389 if (!event) {
1390 if (unlikely(commit))
1391 /*
1392 * Ouch! We needed a timestamp and it was commited. But
1393 * we didn't get our event reserved.
1394 */
1395 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1396 return NULL;
bf41a158 1397 }
7a8e76a3 1398
bf41a158
SR
1399 /*
1400 * If the timestamp was commited, make the commit our entry
1401 * now so that we will update it when needed.
1402 */
1403 if (commit)
1404 rb_set_commit_event(cpu_buffer, event);
1405 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1406 delta = 0;
1407
1408 event->time_delta = delta;
1409
1410 return event;
1411}
1412
bf41a158
SR
1413static DEFINE_PER_CPU(int, rb_need_resched);
1414
7a8e76a3
SR
1415/**
1416 * ring_buffer_lock_reserve - reserve a part of the buffer
1417 * @buffer: the ring buffer to reserve from
1418 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1419 *
1420 * Returns a reseverd event on the ring buffer to copy directly to.
1421 * The user of this interface will need to get the body to write into
1422 * and can use the ring_buffer_event_data() interface.
1423 *
1424 * The length is the length of the data needed, not the event length
1425 * which also includes the event header.
1426 *
1427 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1428 * If NULL is returned, then nothing has been allocated or locked.
1429 */
1430struct ring_buffer_event *
0a987751 1431ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1432{
1433 struct ring_buffer_per_cpu *cpu_buffer;
1434 struct ring_buffer_event *event;
bf41a158 1435 int cpu, resched;
7a8e76a3 1436
033601a3 1437 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1438 return NULL;
1439
7a8e76a3
SR
1440 if (atomic_read(&buffer->record_disabled))
1441 return NULL;
1442
bf41a158 1443 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1444 resched = ftrace_preempt_disable();
bf41a158 1445
7a8e76a3
SR
1446 cpu = raw_smp_processor_id();
1447
9e01c1b7 1448 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1449 goto out;
7a8e76a3
SR
1450
1451 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1452
1453 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1454 goto out;
7a8e76a3
SR
1455
1456 length = rb_calculate_event_length(length);
1457 if (length > BUF_PAGE_SIZE)
bf41a158 1458 goto out;
7a8e76a3
SR
1459
1460 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1461 if (!event)
d769041f 1462 goto out;
7a8e76a3 1463
bf41a158
SR
1464 /*
1465 * Need to store resched state on this cpu.
1466 * Only the first needs to.
1467 */
1468
1469 if (preempt_count() == 1)
1470 per_cpu(rb_need_resched, cpu) = resched;
1471
7a8e76a3
SR
1472 return event;
1473
d769041f 1474 out:
182e9f5f 1475 ftrace_preempt_enable(resched);
7a8e76a3
SR
1476 return NULL;
1477}
c4f50183 1478EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1479
1480static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1481 struct ring_buffer_event *event)
1482{
7a8e76a3 1483 cpu_buffer->entries++;
bf41a158
SR
1484
1485 /* Only process further if we own the commit */
1486 if (!rb_is_commit(cpu_buffer, event))
1487 return;
1488
1489 cpu_buffer->write_stamp += event->time_delta;
1490
1491 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1492}
1493
1494/**
1495 * ring_buffer_unlock_commit - commit a reserved
1496 * @buffer: The buffer to commit to
1497 * @event: The event pointer to commit.
7a8e76a3
SR
1498 *
1499 * This commits the data to the ring buffer, and releases any locks held.
1500 *
1501 * Must be paired with ring_buffer_lock_reserve.
1502 */
1503int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1504 struct ring_buffer_event *event)
7a8e76a3
SR
1505{
1506 struct ring_buffer_per_cpu *cpu_buffer;
1507 int cpu = raw_smp_processor_id();
1508
1509 cpu_buffer = buffer->buffers[cpu];
1510
7a8e76a3
SR
1511 rb_commit(cpu_buffer, event);
1512
bf41a158
SR
1513 /*
1514 * Only the last preempt count needs to restore preemption.
1515 */
182e9f5f
SR
1516 if (preempt_count() == 1)
1517 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1518 else
bf41a158 1519 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1520
1521 return 0;
1522}
c4f50183 1523EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3
SR
1524
1525/**
1526 * ring_buffer_write - write data to the buffer without reserving
1527 * @buffer: The ring buffer to write to.
1528 * @length: The length of the data being written (excluding the event header)
1529 * @data: The data to write to the buffer.
1530 *
1531 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1532 * one function. If you already have the data to write to the buffer, it
1533 * may be easier to simply call this function.
1534 *
1535 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1536 * and not the length of the event which would hold the header.
1537 */
1538int ring_buffer_write(struct ring_buffer *buffer,
1539 unsigned long length,
1540 void *data)
1541{
1542 struct ring_buffer_per_cpu *cpu_buffer;
1543 struct ring_buffer_event *event;
bf41a158 1544 unsigned long event_length;
7a8e76a3
SR
1545 void *body;
1546 int ret = -EBUSY;
bf41a158 1547 int cpu, resched;
7a8e76a3 1548
033601a3 1549 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1550 return -EBUSY;
1551
7a8e76a3
SR
1552 if (atomic_read(&buffer->record_disabled))
1553 return -EBUSY;
1554
182e9f5f 1555 resched = ftrace_preempt_disable();
bf41a158 1556
7a8e76a3
SR
1557 cpu = raw_smp_processor_id();
1558
9e01c1b7 1559 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1560 goto out;
7a8e76a3
SR
1561
1562 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1563
1564 if (atomic_read(&cpu_buffer->record_disabled))
1565 goto out;
1566
1567 event_length = rb_calculate_event_length(length);
1568 event = rb_reserve_next_event(cpu_buffer,
1569 RINGBUF_TYPE_DATA, event_length);
1570 if (!event)
1571 goto out;
1572
1573 body = rb_event_data(event);
1574
1575 memcpy(body, data, length);
1576
1577 rb_commit(cpu_buffer, event);
1578
1579 ret = 0;
1580 out:
182e9f5f 1581 ftrace_preempt_enable(resched);
7a8e76a3
SR
1582
1583 return ret;
1584}
c4f50183 1585EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1586
34a148bf 1587static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1588{
1589 struct buffer_page *reader = cpu_buffer->reader_page;
1590 struct buffer_page *head = cpu_buffer->head_page;
1591 struct buffer_page *commit = cpu_buffer->commit_page;
1592
1593 return reader->read == rb_page_commit(reader) &&
1594 (commit == reader ||
1595 (commit == head &&
1596 head->read == rb_page_commit(commit)));
1597}
1598
7a8e76a3
SR
1599/**
1600 * ring_buffer_record_disable - stop all writes into the buffer
1601 * @buffer: The ring buffer to stop writes to.
1602 *
1603 * This prevents all writes to the buffer. Any attempt to write
1604 * to the buffer after this will fail and return NULL.
1605 *
1606 * The caller should call synchronize_sched() after this.
1607 */
1608void ring_buffer_record_disable(struct ring_buffer *buffer)
1609{
1610 atomic_inc(&buffer->record_disabled);
1611}
c4f50183 1612EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1613
1614/**
1615 * ring_buffer_record_enable - enable writes to the buffer
1616 * @buffer: The ring buffer to enable writes
1617 *
1618 * Note, multiple disables will need the same number of enables
1619 * to truely enable the writing (much like preempt_disable).
1620 */
1621void ring_buffer_record_enable(struct ring_buffer *buffer)
1622{
1623 atomic_dec(&buffer->record_disabled);
1624}
c4f50183 1625EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1626
1627/**
1628 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1629 * @buffer: The ring buffer to stop writes to.
1630 * @cpu: The CPU buffer to stop
1631 *
1632 * This prevents all writes to the buffer. Any attempt to write
1633 * to the buffer after this will fail and return NULL.
1634 *
1635 * The caller should call synchronize_sched() after this.
1636 */
1637void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1638{
1639 struct ring_buffer_per_cpu *cpu_buffer;
1640
9e01c1b7 1641 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1642 return;
7a8e76a3
SR
1643
1644 cpu_buffer = buffer->buffers[cpu];
1645 atomic_inc(&cpu_buffer->record_disabled);
1646}
c4f50183 1647EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1648
1649/**
1650 * ring_buffer_record_enable_cpu - enable writes to the buffer
1651 * @buffer: The ring buffer to enable writes
1652 * @cpu: The CPU to enable.
1653 *
1654 * Note, multiple disables will need the same number of enables
1655 * to truely enable the writing (much like preempt_disable).
1656 */
1657void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1658{
1659 struct ring_buffer_per_cpu *cpu_buffer;
1660
9e01c1b7 1661 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1662 return;
7a8e76a3
SR
1663
1664 cpu_buffer = buffer->buffers[cpu];
1665 atomic_dec(&cpu_buffer->record_disabled);
1666}
c4f50183 1667EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1668
1669/**
1670 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1671 * @buffer: The ring buffer
1672 * @cpu: The per CPU buffer to get the entries from.
1673 */
1674unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1675{
1676 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1677 unsigned long ret;
7a8e76a3 1678
9e01c1b7 1679 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1680 return 0;
7a8e76a3
SR
1681
1682 cpu_buffer = buffer->buffers[cpu];
554f786e 1683 ret = cpu_buffer->entries;
554f786e
SR
1684
1685 return ret;
7a8e76a3 1686}
c4f50183 1687EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1688
1689/**
1690 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1691 * @buffer: The ring buffer
1692 * @cpu: The per CPU buffer to get the number of overruns from
1693 */
1694unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1695{
1696 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1697 unsigned long ret;
7a8e76a3 1698
9e01c1b7 1699 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1700 return 0;
7a8e76a3
SR
1701
1702 cpu_buffer = buffer->buffers[cpu];
554f786e 1703 ret = cpu_buffer->overrun;
554f786e
SR
1704
1705 return ret;
7a8e76a3 1706}
c4f50183 1707EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1708
1709/**
1710 * ring_buffer_entries - get the number of entries in a buffer
1711 * @buffer: The ring buffer
1712 *
1713 * Returns the total number of entries in the ring buffer
1714 * (all CPU entries)
1715 */
1716unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1717{
1718 struct ring_buffer_per_cpu *cpu_buffer;
1719 unsigned long entries = 0;
1720 int cpu;
1721
1722 /* if you care about this being correct, lock the buffer */
1723 for_each_buffer_cpu(buffer, cpu) {
1724 cpu_buffer = buffer->buffers[cpu];
1725 entries += cpu_buffer->entries;
1726 }
1727
1728 return entries;
1729}
c4f50183 1730EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1731
1732/**
1733 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1734 * @buffer: The ring buffer
1735 *
1736 * Returns the total number of overruns in the ring buffer
1737 * (all CPU entries)
1738 */
1739unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1740{
1741 struct ring_buffer_per_cpu *cpu_buffer;
1742 unsigned long overruns = 0;
1743 int cpu;
1744
1745 /* if you care about this being correct, lock the buffer */
1746 for_each_buffer_cpu(buffer, cpu) {
1747 cpu_buffer = buffer->buffers[cpu];
1748 overruns += cpu_buffer->overrun;
1749 }
1750
1751 return overruns;
1752}
c4f50183 1753EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1754
642edba5 1755static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1756{
1757 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1758
d769041f
SR
1759 /* Iterator usage is expected to have record disabled */
1760 if (list_empty(&cpu_buffer->reader_page->list)) {
1761 iter->head_page = cpu_buffer->head_page;
6f807acd 1762 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1763 } else {
1764 iter->head_page = cpu_buffer->reader_page;
6f807acd 1765 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1766 }
1767 if (iter->head)
1768 iter->read_stamp = cpu_buffer->read_stamp;
1769 else
abc9b56d 1770 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1771}
f83c9d0f 1772
642edba5
SR
1773/**
1774 * ring_buffer_iter_reset - reset an iterator
1775 * @iter: The iterator to reset
1776 *
1777 * Resets the iterator, so that it will start from the beginning
1778 * again.
1779 */
1780void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1781{
554f786e 1782 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
1783 unsigned long flags;
1784
554f786e
SR
1785 if (!iter)
1786 return;
1787
1788 cpu_buffer = iter->cpu_buffer;
1789
642edba5
SR
1790 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1791 rb_iter_reset(iter);
f83c9d0f 1792 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 1793}
c4f50183 1794EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
1795
1796/**
1797 * ring_buffer_iter_empty - check if an iterator has no more to read
1798 * @iter: The iterator to check
1799 */
1800int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1801{
1802 struct ring_buffer_per_cpu *cpu_buffer;
1803
1804 cpu_buffer = iter->cpu_buffer;
1805
bf41a158
SR
1806 return iter->head_page == cpu_buffer->commit_page &&
1807 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 1808}
c4f50183 1809EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
1810
1811static void
1812rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1813 struct ring_buffer_event *event)
1814{
1815 u64 delta;
1816
1817 switch (event->type) {
1818 case RINGBUF_TYPE_PADDING:
1819 return;
1820
1821 case RINGBUF_TYPE_TIME_EXTEND:
1822 delta = event->array[0];
1823 delta <<= TS_SHIFT;
1824 delta += event->time_delta;
1825 cpu_buffer->read_stamp += delta;
1826 return;
1827
1828 case RINGBUF_TYPE_TIME_STAMP:
1829 /* FIXME: not implemented */
1830 return;
1831
1832 case RINGBUF_TYPE_DATA:
1833 cpu_buffer->read_stamp += event->time_delta;
1834 return;
1835
1836 default:
1837 BUG();
1838 }
1839 return;
1840}
1841
1842static void
1843rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1844 struct ring_buffer_event *event)
1845{
1846 u64 delta;
1847
1848 switch (event->type) {
1849 case RINGBUF_TYPE_PADDING:
1850 return;
1851
1852 case RINGBUF_TYPE_TIME_EXTEND:
1853 delta = event->array[0];
1854 delta <<= TS_SHIFT;
1855 delta += event->time_delta;
1856 iter->read_stamp += delta;
1857 return;
1858
1859 case RINGBUF_TYPE_TIME_STAMP:
1860 /* FIXME: not implemented */
1861 return;
1862
1863 case RINGBUF_TYPE_DATA:
1864 iter->read_stamp += event->time_delta;
1865 return;
1866
1867 default:
1868 BUG();
1869 }
1870 return;
1871}
1872
d769041f
SR
1873static struct buffer_page *
1874rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1875{
d769041f
SR
1876 struct buffer_page *reader = NULL;
1877 unsigned long flags;
818e3dd3 1878 int nr_loops = 0;
d769041f 1879
3e03fb7f
SR
1880 local_irq_save(flags);
1881 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1882
1883 again:
818e3dd3
SR
1884 /*
1885 * This should normally only loop twice. But because the
1886 * start of the reader inserts an empty page, it causes
1887 * a case where we will loop three times. There should be no
1888 * reason to loop four times (that I know of).
1889 */
3e89c7bb 1890 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1891 reader = NULL;
1892 goto out;
1893 }
1894
d769041f
SR
1895 reader = cpu_buffer->reader_page;
1896
1897 /* If there's more to read, return this page */
bf41a158 1898 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1899 goto out;
1900
1901 /* Never should we have an index greater than the size */
3e89c7bb
SR
1902 if (RB_WARN_ON(cpu_buffer,
1903 cpu_buffer->reader_page->read > rb_page_size(reader)))
1904 goto out;
d769041f
SR
1905
1906 /* check if we caught up to the tail */
1907 reader = NULL;
bf41a158 1908 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1909 goto out;
7a8e76a3
SR
1910
1911 /*
d769041f
SR
1912 * Splice the empty reader page into the list around the head.
1913 * Reset the reader page to size zero.
7a8e76a3 1914 */
7a8e76a3 1915
d769041f
SR
1916 reader = cpu_buffer->head_page;
1917 cpu_buffer->reader_page->list.next = reader->list.next;
1918 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1919
1920 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1921 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1922
d769041f
SR
1923 /* Make the reader page now replace the head */
1924 reader->list.prev->next = &cpu_buffer->reader_page->list;
1925 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1926
1927 /*
d769041f
SR
1928 * If the tail is on the reader, then we must set the head
1929 * to the inserted page, otherwise we set it one before.
7a8e76a3 1930 */
d769041f 1931 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1932
bf41a158 1933 if (cpu_buffer->commit_page != reader)
d769041f
SR
1934 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1935
1936 /* Finally update the reader page to the new head */
1937 cpu_buffer->reader_page = reader;
1938 rb_reset_reader_page(cpu_buffer);
1939
1940 goto again;
1941
1942 out:
3e03fb7f
SR
1943 __raw_spin_unlock(&cpu_buffer->lock);
1944 local_irq_restore(flags);
d769041f
SR
1945
1946 return reader;
1947}
1948
1949static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1950{
1951 struct ring_buffer_event *event;
1952 struct buffer_page *reader;
1953 unsigned length;
1954
1955 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1956
d769041f 1957 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1958 if (RB_WARN_ON(cpu_buffer, !reader))
1959 return;
7a8e76a3 1960
d769041f
SR
1961 event = rb_reader_event(cpu_buffer);
1962
1963 if (event->type == RINGBUF_TYPE_DATA)
1964 cpu_buffer->entries--;
1965
1966 rb_update_read_stamp(cpu_buffer, event);
1967
1968 length = rb_event_length(event);
6f807acd 1969 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1970}
1971
1972static void rb_advance_iter(struct ring_buffer_iter *iter)
1973{
1974 struct ring_buffer *buffer;
1975 struct ring_buffer_per_cpu *cpu_buffer;
1976 struct ring_buffer_event *event;
1977 unsigned length;
1978
1979 cpu_buffer = iter->cpu_buffer;
1980 buffer = cpu_buffer->buffer;
1981
1982 /*
1983 * Check if we are at the end of the buffer.
1984 */
bf41a158 1985 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1986 if (RB_WARN_ON(buffer,
1987 iter->head_page == cpu_buffer->commit_page))
1988 return;
d769041f 1989 rb_inc_iter(iter);
7a8e76a3
SR
1990 return;
1991 }
1992
1993 event = rb_iter_head_event(iter);
1994
1995 length = rb_event_length(event);
1996
1997 /*
1998 * This should not be called to advance the header if we are
1999 * at the tail of the buffer.
2000 */
3e89c7bb 2001 if (RB_WARN_ON(cpu_buffer,
f536aafc 2002 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2003 (iter->head + length > rb_commit_index(cpu_buffer))))
2004 return;
7a8e76a3
SR
2005
2006 rb_update_iter_read_stamp(iter, event);
2007
2008 iter->head += length;
2009
2010 /* check for end of page padding */
bf41a158
SR
2011 if ((iter->head >= rb_page_size(iter->head_page)) &&
2012 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2013 rb_advance_iter(iter);
2014}
2015
f83c9d0f
SR
2016static struct ring_buffer_event *
2017rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2018{
2019 struct ring_buffer_per_cpu *cpu_buffer;
2020 struct ring_buffer_event *event;
d769041f 2021 struct buffer_page *reader;
818e3dd3 2022 int nr_loops = 0;
7a8e76a3 2023
7a8e76a3
SR
2024 cpu_buffer = buffer->buffers[cpu];
2025
2026 again:
818e3dd3
SR
2027 /*
2028 * We repeat when a timestamp is encountered. It is possible
2029 * to get multiple timestamps from an interrupt entering just
2030 * as one timestamp is about to be written. The max times
2031 * that this can happen is the number of nested interrupts we
2032 * can have. Nesting 10 deep of interrupts is clearly
2033 * an anomaly.
2034 */
3e89c7bb 2035 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2036 return NULL;
818e3dd3 2037
d769041f
SR
2038 reader = rb_get_reader_page(cpu_buffer);
2039 if (!reader)
7a8e76a3
SR
2040 return NULL;
2041
d769041f 2042 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
2043
2044 switch (event->type) {
2045 case RINGBUF_TYPE_PADDING:
bf41a158 2046 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
2047 rb_advance_reader(cpu_buffer);
2048 return NULL;
7a8e76a3
SR
2049
2050 case RINGBUF_TYPE_TIME_EXTEND:
2051 /* Internal data, OK to advance */
d769041f 2052 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2053 goto again;
2054
2055 case RINGBUF_TYPE_TIME_STAMP:
2056 /* FIXME: not implemented */
d769041f 2057 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2058 goto again;
2059
2060 case RINGBUF_TYPE_DATA:
2061 if (ts) {
2062 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2063 ring_buffer_normalize_time_stamp(buffer,
2064 cpu_buffer->cpu, ts);
7a8e76a3
SR
2065 }
2066 return event;
2067
2068 default:
2069 BUG();
2070 }
2071
2072 return NULL;
2073}
c4f50183 2074EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2075
f83c9d0f
SR
2076static struct ring_buffer_event *
2077rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2078{
2079 struct ring_buffer *buffer;
2080 struct ring_buffer_per_cpu *cpu_buffer;
2081 struct ring_buffer_event *event;
818e3dd3 2082 int nr_loops = 0;
7a8e76a3
SR
2083
2084 if (ring_buffer_iter_empty(iter))
2085 return NULL;
2086
2087 cpu_buffer = iter->cpu_buffer;
2088 buffer = cpu_buffer->buffer;
2089
2090 again:
818e3dd3
SR
2091 /*
2092 * We repeat when a timestamp is encountered. It is possible
2093 * to get multiple timestamps from an interrupt entering just
2094 * as one timestamp is about to be written. The max times
2095 * that this can happen is the number of nested interrupts we
2096 * can have. Nesting 10 deep of interrupts is clearly
2097 * an anomaly.
2098 */
3e89c7bb 2099 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2100 return NULL;
818e3dd3 2101
7a8e76a3
SR
2102 if (rb_per_cpu_empty(cpu_buffer))
2103 return NULL;
2104
2105 event = rb_iter_head_event(iter);
2106
2107 switch (event->type) {
2108 case RINGBUF_TYPE_PADDING:
d769041f 2109 rb_inc_iter(iter);
7a8e76a3
SR
2110 goto again;
2111
2112 case RINGBUF_TYPE_TIME_EXTEND:
2113 /* Internal data, OK to advance */
2114 rb_advance_iter(iter);
2115 goto again;
2116
2117 case RINGBUF_TYPE_TIME_STAMP:
2118 /* FIXME: not implemented */
2119 rb_advance_iter(iter);
2120 goto again;
2121
2122 case RINGBUF_TYPE_DATA:
2123 if (ts) {
2124 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2125 ring_buffer_normalize_time_stamp(buffer,
2126 cpu_buffer->cpu, ts);
7a8e76a3
SR
2127 }
2128 return event;
2129
2130 default:
2131 BUG();
2132 }
2133
2134 return NULL;
2135}
c4f50183 2136EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2137
f83c9d0f
SR
2138/**
2139 * ring_buffer_peek - peek at the next event to be read
2140 * @buffer: The ring buffer to read
2141 * @cpu: The cpu to peak at
2142 * @ts: The timestamp counter of this event.
2143 *
2144 * This will return the event that will be read next, but does
2145 * not consume the data.
2146 */
2147struct ring_buffer_event *
2148ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2149{
2150 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2151 struct ring_buffer_event *event;
f83c9d0f
SR
2152 unsigned long flags;
2153
554f786e 2154 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2155 return NULL;
554f786e 2156
f83c9d0f
SR
2157 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2158 event = rb_buffer_peek(buffer, cpu, ts);
2159 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2160
2161 return event;
2162}
2163
2164/**
2165 * ring_buffer_iter_peek - peek at the next event to be read
2166 * @iter: The ring buffer iterator
2167 * @ts: The timestamp counter of this event.
2168 *
2169 * This will return the event that will be read next, but does
2170 * not increment the iterator.
2171 */
2172struct ring_buffer_event *
2173ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2174{
2175 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2176 struct ring_buffer_event *event;
2177 unsigned long flags;
2178
2179 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2180 event = rb_iter_peek(iter, ts);
2181 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2182
2183 return event;
2184}
2185
7a8e76a3
SR
2186/**
2187 * ring_buffer_consume - return an event and consume it
2188 * @buffer: The ring buffer to get the next event from
2189 *
2190 * Returns the next event in the ring buffer, and that event is consumed.
2191 * Meaning, that sequential reads will keep returning a different event,
2192 * and eventually empty the ring buffer if the producer is slower.
2193 */
2194struct ring_buffer_event *
2195ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2196{
554f786e
SR
2197 struct ring_buffer_per_cpu *cpu_buffer;
2198 struct ring_buffer_event *event = NULL;
f83c9d0f 2199 unsigned long flags;
7a8e76a3 2200
554f786e
SR
2201 /* might be called in atomic */
2202 preempt_disable();
2203
9e01c1b7 2204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2205 goto out;
7a8e76a3 2206
554f786e 2207 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2208 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2209
2210 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2211 if (!event)
554f786e 2212 goto out_unlock;
7a8e76a3 2213
d769041f 2214 rb_advance_reader(cpu_buffer);
7a8e76a3 2215
554f786e 2216 out_unlock:
f83c9d0f
SR
2217 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2218
554f786e
SR
2219 out:
2220 preempt_enable();
2221
7a8e76a3
SR
2222 return event;
2223}
c4f50183 2224EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2225
2226/**
2227 * ring_buffer_read_start - start a non consuming read of the buffer
2228 * @buffer: The ring buffer to read from
2229 * @cpu: The cpu buffer to iterate over
2230 *
2231 * This starts up an iteration through the buffer. It also disables
2232 * the recording to the buffer until the reading is finished.
2233 * This prevents the reading from being corrupted. This is not
2234 * a consuming read, so a producer is not expected.
2235 *
2236 * Must be paired with ring_buffer_finish.
2237 */
2238struct ring_buffer_iter *
2239ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2240{
2241 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2242 struct ring_buffer_iter *iter;
d769041f 2243 unsigned long flags;
7a8e76a3 2244
9e01c1b7 2245 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2246 return NULL;
7a8e76a3
SR
2247
2248 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2249 if (!iter)
8aabee57 2250 return NULL;
7a8e76a3
SR
2251
2252 cpu_buffer = buffer->buffers[cpu];
2253
2254 iter->cpu_buffer = cpu_buffer;
2255
2256 atomic_inc(&cpu_buffer->record_disabled);
2257 synchronize_sched();
2258
f83c9d0f 2259 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2260 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2261 rb_iter_reset(iter);
3e03fb7f 2262 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2263 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2264
2265 return iter;
2266}
c4f50183 2267EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2268
2269/**
2270 * ring_buffer_finish - finish reading the iterator of the buffer
2271 * @iter: The iterator retrieved by ring_buffer_start
2272 *
2273 * This re-enables the recording to the buffer, and frees the
2274 * iterator.
2275 */
2276void
2277ring_buffer_read_finish(struct ring_buffer_iter *iter)
2278{
2279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2280
2281 atomic_dec(&cpu_buffer->record_disabled);
2282 kfree(iter);
2283}
c4f50183 2284EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2285
2286/**
2287 * ring_buffer_read - read the next item in the ring buffer by the iterator
2288 * @iter: The ring buffer iterator
2289 * @ts: The time stamp of the event read.
2290 *
2291 * This reads the next event in the ring buffer and increments the iterator.
2292 */
2293struct ring_buffer_event *
2294ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2295{
2296 struct ring_buffer_event *event;
f83c9d0f
SR
2297 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2298 unsigned long flags;
7a8e76a3 2299
f83c9d0f
SR
2300 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2301 event = rb_iter_peek(iter, ts);
7a8e76a3 2302 if (!event)
f83c9d0f 2303 goto out;
7a8e76a3
SR
2304
2305 rb_advance_iter(iter);
f83c9d0f
SR
2306 out:
2307 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2308
2309 return event;
2310}
c4f50183 2311EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2312
2313/**
2314 * ring_buffer_size - return the size of the ring buffer (in bytes)
2315 * @buffer: The ring buffer.
2316 */
2317unsigned long ring_buffer_size(struct ring_buffer *buffer)
2318{
2319 return BUF_PAGE_SIZE * buffer->pages;
2320}
c4f50183 2321EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2322
2323static void
2324rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2325{
2326 cpu_buffer->head_page
2327 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2328 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2329 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2330
6f807acd 2331 cpu_buffer->head_page->read = 0;
bf41a158
SR
2332
2333 cpu_buffer->tail_page = cpu_buffer->head_page;
2334 cpu_buffer->commit_page = cpu_buffer->head_page;
2335
2336 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2337 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2338 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2339 cpu_buffer->reader_page->read = 0;
7a8e76a3 2340
7a8e76a3
SR
2341 cpu_buffer->overrun = 0;
2342 cpu_buffer->entries = 0;
69507c06
SR
2343
2344 cpu_buffer->write_stamp = 0;
2345 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2346}
2347
2348/**
2349 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2350 * @buffer: The ring buffer to reset a per cpu buffer of
2351 * @cpu: The CPU buffer to be reset
2352 */
2353void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2354{
2355 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2356 unsigned long flags;
2357
9e01c1b7 2358 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2359 return;
7a8e76a3 2360
f83c9d0f
SR
2361 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2362
3e03fb7f 2363 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2364
2365 rb_reset_cpu(cpu_buffer);
2366
3e03fb7f 2367 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2368
2369 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2370}
c4f50183 2371EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2372
2373/**
2374 * ring_buffer_reset - reset a ring buffer
2375 * @buffer: The ring buffer to reset all cpu buffers
2376 */
2377void ring_buffer_reset(struct ring_buffer *buffer)
2378{
7a8e76a3
SR
2379 int cpu;
2380
7a8e76a3 2381 for_each_buffer_cpu(buffer, cpu)
d769041f 2382 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2383}
c4f50183 2384EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2385
2386/**
2387 * rind_buffer_empty - is the ring buffer empty?
2388 * @buffer: The ring buffer to test
2389 */
2390int ring_buffer_empty(struct ring_buffer *buffer)
2391{
2392 struct ring_buffer_per_cpu *cpu_buffer;
2393 int cpu;
2394
2395 /* yes this is racy, but if you don't like the race, lock the buffer */
2396 for_each_buffer_cpu(buffer, cpu) {
2397 cpu_buffer = buffer->buffers[cpu];
2398 if (!rb_per_cpu_empty(cpu_buffer))
2399 return 0;
2400 }
554f786e 2401
7a8e76a3
SR
2402 return 1;
2403}
c4f50183 2404EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2405
2406/**
2407 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2408 * @buffer: The ring buffer
2409 * @cpu: The CPU buffer to test
2410 */
2411int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2412{
2413 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2414 int ret;
7a8e76a3 2415
9e01c1b7 2416 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2417 return 1;
7a8e76a3
SR
2418
2419 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2420 ret = rb_per_cpu_empty(cpu_buffer);
2421
554f786e
SR
2422
2423 return ret;
7a8e76a3 2424}
c4f50183 2425EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2426
2427/**
2428 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2429 * @buffer_a: One buffer to swap with
2430 * @buffer_b: The other buffer to swap with
2431 *
2432 * This function is useful for tracers that want to take a "snapshot"
2433 * of a CPU buffer and has another back up buffer lying around.
2434 * it is expected that the tracer handles the cpu buffer not being
2435 * used at the moment.
2436 */
2437int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2438 struct ring_buffer *buffer_b, int cpu)
2439{
2440 struct ring_buffer_per_cpu *cpu_buffer_a;
2441 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2442 int ret = -EINVAL;
2443
9e01c1b7
RR
2444 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2445 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2446 goto out;
7a8e76a3
SR
2447
2448 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2449 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2450 goto out;
2451
2452 ret = -EAGAIN;
7a8e76a3 2453
97b17efe 2454 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2455 goto out;
97b17efe
SR
2456
2457 if (atomic_read(&buffer_a->record_disabled))
554f786e 2458 goto out;
97b17efe
SR
2459
2460 if (atomic_read(&buffer_b->record_disabled))
554f786e 2461 goto out;
97b17efe 2462
7a8e76a3
SR
2463 cpu_buffer_a = buffer_a->buffers[cpu];
2464 cpu_buffer_b = buffer_b->buffers[cpu];
2465
97b17efe 2466 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2467 goto out;
97b17efe
SR
2468
2469 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2470 goto out;
97b17efe 2471
7a8e76a3
SR
2472 /*
2473 * We can't do a synchronize_sched here because this
2474 * function can be called in atomic context.
2475 * Normally this will be called from the same CPU as cpu.
2476 * If not it's up to the caller to protect this.
2477 */
2478 atomic_inc(&cpu_buffer_a->record_disabled);
2479 atomic_inc(&cpu_buffer_b->record_disabled);
2480
2481 buffer_a->buffers[cpu] = cpu_buffer_b;
2482 buffer_b->buffers[cpu] = cpu_buffer_a;
2483
2484 cpu_buffer_b->buffer = buffer_a;
2485 cpu_buffer_a->buffer = buffer_b;
2486
2487 atomic_dec(&cpu_buffer_a->record_disabled);
2488 atomic_dec(&cpu_buffer_b->record_disabled);
2489
554f786e
SR
2490 ret = 0;
2491out:
554f786e 2492 return ret;
7a8e76a3 2493}
c4f50183 2494EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2495
8789a9e7 2496static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2497 struct buffer_data_page *bpage,
2498 unsigned int offset)
8789a9e7
SR
2499{
2500 struct ring_buffer_event *event;
2501 unsigned long head;
2502
2503 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2504 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2505 head += rb_event_length(event)) {
2506
044fa782 2507 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2508 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2509 return;
2510 /* Only count data entries */
2511 if (event->type != RINGBUF_TYPE_DATA)
2512 continue;
2513 cpu_buffer->entries--;
2514 }
2515 __raw_spin_unlock(&cpu_buffer->lock);
2516}
2517
2518/**
2519 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2520 * @buffer: the buffer to allocate for.
2521 *
2522 * This function is used in conjunction with ring_buffer_read_page.
2523 * When reading a full page from the ring buffer, these functions
2524 * can be used to speed up the process. The calling function should
2525 * allocate a few pages first with this function. Then when it
2526 * needs to get pages from the ring buffer, it passes the result
2527 * of this function into ring_buffer_read_page, which will swap
2528 * the page that was allocated, with the read page of the buffer.
2529 *
2530 * Returns:
2531 * The page allocated, or NULL on error.
2532 */
2533void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2534{
044fa782 2535 struct buffer_data_page *bpage;
ef7a4a16 2536 unsigned long addr;
8789a9e7
SR
2537
2538 addr = __get_free_page(GFP_KERNEL);
2539 if (!addr)
2540 return NULL;
2541
044fa782 2542 bpage = (void *)addr;
8789a9e7 2543
ef7a4a16
SR
2544 rb_init_page(bpage);
2545
044fa782 2546 return bpage;
8789a9e7
SR
2547}
2548
2549/**
2550 * ring_buffer_free_read_page - free an allocated read page
2551 * @buffer: the buffer the page was allocate for
2552 * @data: the page to free
2553 *
2554 * Free a page allocated from ring_buffer_alloc_read_page.
2555 */
2556void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2557{
2558 free_page((unsigned long)data);
2559}
2560
2561/**
2562 * ring_buffer_read_page - extract a page from the ring buffer
2563 * @buffer: buffer to extract from
2564 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2565 * @len: amount to extract
8789a9e7
SR
2566 * @cpu: the cpu of the buffer to extract
2567 * @full: should the extraction only happen when the page is full.
2568 *
2569 * This function will pull out a page from the ring buffer and consume it.
2570 * @data_page must be the address of the variable that was returned
2571 * from ring_buffer_alloc_read_page. This is because the page might be used
2572 * to swap with a page in the ring buffer.
2573 *
2574 * for example:
b85fa01e 2575 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2576 * if (!rpage)
2577 * return error;
ef7a4a16 2578 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2579 * if (ret >= 0)
2580 * process_page(rpage, ret);
8789a9e7
SR
2581 *
2582 * When @full is set, the function will not return true unless
2583 * the writer is off the reader page.
2584 *
2585 * Note: it is up to the calling functions to handle sleeps and wakeups.
2586 * The ring buffer can be used anywhere in the kernel and can not
2587 * blindly call wake_up. The layer that uses the ring buffer must be
2588 * responsible for that.
2589 *
2590 * Returns:
667d2412
LJ
2591 * >=0 if data has been transferred, returns the offset of consumed data.
2592 * <0 if no data has been transferred.
8789a9e7
SR
2593 */
2594int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2595 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2596{
2597 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2598 struct ring_buffer_event *event;
044fa782 2599 struct buffer_data_page *bpage;
ef7a4a16 2600 struct buffer_page *reader;
8789a9e7 2601 unsigned long flags;
ef7a4a16 2602 unsigned int commit;
667d2412 2603 unsigned int read;
4f3640f8 2604 u64 save_timestamp;
667d2412 2605 int ret = -1;
8789a9e7 2606
554f786e
SR
2607 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2608 goto out;
2609
474d32b6
SR
2610 /*
2611 * If len is not big enough to hold the page header, then
2612 * we can not copy anything.
2613 */
2614 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2615 goto out;
474d32b6
SR
2616
2617 len -= BUF_PAGE_HDR_SIZE;
2618
8789a9e7 2619 if (!data_page)
554f786e 2620 goto out;
8789a9e7 2621
044fa782
SR
2622 bpage = *data_page;
2623 if (!bpage)
554f786e 2624 goto out;
8789a9e7
SR
2625
2626 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2627
ef7a4a16
SR
2628 reader = rb_get_reader_page(cpu_buffer);
2629 if (!reader)
554f786e 2630 goto out_unlock;
8789a9e7 2631
ef7a4a16
SR
2632 event = rb_reader_event(cpu_buffer);
2633
2634 read = reader->read;
2635 commit = rb_page_commit(reader);
667d2412 2636
8789a9e7 2637 /*
474d32b6
SR
2638 * If this page has been partially read or
2639 * if len is not big enough to read the rest of the page or
2640 * a writer is still on the page, then
2641 * we must copy the data from the page to the buffer.
2642 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2643 */
474d32b6 2644 if (read || (len < (commit - read)) ||
ef7a4a16 2645 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2646 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2647 unsigned int rpos = read;
2648 unsigned int pos = 0;
ef7a4a16 2649 unsigned int size;
8789a9e7
SR
2650
2651 if (full)
554f786e 2652 goto out_unlock;
8789a9e7 2653
ef7a4a16
SR
2654 if (len > (commit - read))
2655 len = (commit - read);
2656
2657 size = rb_event_length(event);
2658
2659 if (len < size)
554f786e 2660 goto out_unlock;
ef7a4a16 2661
4f3640f8
SR
2662 /* save the current timestamp, since the user will need it */
2663 save_timestamp = cpu_buffer->read_stamp;
2664
ef7a4a16
SR
2665 /* Need to copy one event at a time */
2666 do {
474d32b6 2667 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2668
2669 len -= size;
2670
2671 rb_advance_reader(cpu_buffer);
474d32b6
SR
2672 rpos = reader->read;
2673 pos += size;
ef7a4a16
SR
2674
2675 event = rb_reader_event(cpu_buffer);
2676 size = rb_event_length(event);
2677 } while (len > size);
667d2412
LJ
2678
2679 /* update bpage */
ef7a4a16 2680 local_set(&bpage->commit, pos);
4f3640f8 2681 bpage->time_stamp = save_timestamp;
ef7a4a16 2682
474d32b6
SR
2683 /* we copied everything to the beginning */
2684 read = 0;
8789a9e7
SR
2685 } else {
2686 /* swap the pages */
044fa782 2687 rb_init_page(bpage);
ef7a4a16
SR
2688 bpage = reader->page;
2689 reader->page = *data_page;
2690 local_set(&reader->write, 0);
2691 reader->read = 0;
044fa782 2692 *data_page = bpage;
ef7a4a16
SR
2693
2694 /* update the entry counter */
2695 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2696 }
667d2412 2697 ret = read;
8789a9e7 2698
554f786e 2699 out_unlock:
8789a9e7
SR
2700 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2701
554f786e 2702 out:
8789a9e7
SR
2703 return ret;
2704}
2705
a3583244
SR
2706static ssize_t
2707rb_simple_read(struct file *filp, char __user *ubuf,
2708 size_t cnt, loff_t *ppos)
2709{
5e39841c 2710 unsigned long *p = filp->private_data;
a3583244
SR
2711 char buf[64];
2712 int r;
2713
033601a3
SR
2714 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2715 r = sprintf(buf, "permanently disabled\n");
2716 else
2717 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2718
2719 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2720}
2721
2722static ssize_t
2723rb_simple_write(struct file *filp, const char __user *ubuf,
2724 size_t cnt, loff_t *ppos)
2725{
5e39841c 2726 unsigned long *p = filp->private_data;
a3583244 2727 char buf[64];
5e39841c 2728 unsigned long val;
a3583244
SR
2729 int ret;
2730
2731 if (cnt >= sizeof(buf))
2732 return -EINVAL;
2733
2734 if (copy_from_user(&buf, ubuf, cnt))
2735 return -EFAULT;
2736
2737 buf[cnt] = 0;
2738
2739 ret = strict_strtoul(buf, 10, &val);
2740 if (ret < 0)
2741 return ret;
2742
033601a3
SR
2743 if (val)
2744 set_bit(RB_BUFFERS_ON_BIT, p);
2745 else
2746 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2747
2748 (*ppos)++;
2749
2750 return cnt;
2751}
2752
5e2336a0 2753static const struct file_operations rb_simple_fops = {
a3583244
SR
2754 .open = tracing_open_generic,
2755 .read = rb_simple_read,
2756 .write = rb_simple_write,
2757};
2758
2759
2760static __init int rb_init_debugfs(void)
2761{
2762 struct dentry *d_tracer;
2763 struct dentry *entry;
2764
2765 d_tracer = tracing_init_dentry();
2766
2767 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2768 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2769 if (!entry)
2770 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2771
2772 return 0;
2773}
2774
2775fs_initcall(rb_init_debugfs);
554f786e 2776
59222efe 2777#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
2778static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2779 unsigned long action, void *hcpu)
2780{
2781 struct ring_buffer *buffer =
2782 container_of(self, struct ring_buffer, cpu_notify);
2783 long cpu = (long)hcpu;
2784
2785 switch (action) {
2786 case CPU_UP_PREPARE:
2787 case CPU_UP_PREPARE_FROZEN:
2788 if (cpu_isset(cpu, *buffer->cpumask))
2789 return NOTIFY_OK;
2790
2791 buffer->buffers[cpu] =
2792 rb_allocate_cpu_buffer(buffer, cpu);
2793 if (!buffer->buffers[cpu]) {
2794 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2795 cpu);
2796 return NOTIFY_OK;
2797 }
2798 smp_wmb();
2799 cpu_set(cpu, *buffer->cpumask);
2800 break;
2801 case CPU_DOWN_PREPARE:
2802 case CPU_DOWN_PREPARE_FROZEN:
2803 /*
2804 * Do nothing.
2805 * If we were to free the buffer, then the user would
2806 * lose any trace that was in the buffer.
2807 */
2808 break;
2809 default:
2810 break;
2811 }
2812 return NOTIFY_OK;
2813}
2814#endif