tracing: Fix memory leak on instance deletion
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
146c3442
J
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
d1b182a8
SR
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
562 }
563
564
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
592
593 finish_wait(&work->waiters, &wait);
594}
595
596/**
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
602 *
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
606 *
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
609 */
610int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
612{
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
615
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
619
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
6721cb60
SRRH
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
625
15693458
SRRH
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
628 }
629
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
632
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
637}
638
f536aafc 639/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
640#define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
651 } \
652 _____ret; \
3e89c7bb 653 })
f536aafc 654
37886f6a
SR
655/* Up this if you want to test the TIME_EXTENTS and normalization */
656#define DEBUG_SHIFT 0
657
6d3f1e12 658static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
659{
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
662}
663
37886f6a
SR
664u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665{
666 u64 time;
667
668 preempt_disable_notrace();
6d3f1e12 669 time = rb_time_stamp(buffer);
37886f6a
SR
670 preempt_enable_no_resched_notrace();
671
672 return time;
673}
674EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
678{
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
681}
682EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
77ae365e
SR
684/*
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
689 *
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
695 *
696 * Here lies the problem.
697 *
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
704 *
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
707 *
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
711 *
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
715 *
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
721 *
722 * Note we can not trust the prev pointer of the head page, because:
723 *
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
733 *
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
738 *
739 * (see __rb_reserve_next() to see where this happens)
740 *
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
747 *
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
751 */
752
753#define RB_PAGE_NORMAL 0UL
754#define RB_PAGE_HEAD 1UL
755#define RB_PAGE_UPDATE 2UL
756
757
758#define RB_FLAG_MASK 3UL
759
760/* PAGE_MOVED is not part of the mask */
761#define RB_PAGE_MOVED 4UL
762
763/*
764 * rb_list_head - remove any bit
765 */
766static struct list_head *rb_list_head(struct list_head *list)
767{
768 unsigned long val = (unsigned long)list;
769
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
771}
772
773/*
6d3f1e12 774 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
775 *
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
780 */
42b16b3f 781static inline int
77ae365e
SR
782rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
784{
785 unsigned long val;
786
787 val = (unsigned long)list->next;
788
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
791
792 return val & RB_FLAG_MASK;
793}
794
795/*
796 * rb_is_reader_page
797 *
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
801 */
802static int rb_is_reader_page(struct buffer_page *page)
803{
804 struct list_head *list = page->list.prev;
805
806 return rb_list_head(list->next) != &page->list;
807}
808
809/*
810 * rb_set_list_to_head - set a list_head to be pointing to head.
811 */
812static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
814{
815 unsigned long *ptr;
816
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
820}
821
822/*
823 * rb_head_page_activate - sets up head page
824 */
825static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826{
827 struct buffer_page *head;
828
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
832
833 /*
834 * Set the previous list pointer to have the HEAD flag.
835 */
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
837}
838
839static void rb_list_head_clear(struct list_head *list)
840{
841 unsigned long *ptr = (unsigned long *)&list->next;
842
843 *ptr &= ~RB_FLAG_MASK;
844}
845
846/*
847 * rb_head_page_dactivate - clears head page ptr (for free list)
848 */
849static void
850rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851{
852 struct list_head *hd;
853
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
856
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
859}
860
861static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
865{
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
869
870 list = &prev->list;
871
872 val &= ~RB_FLAG_MASK;
873
08a40816
SR
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
77ae365e
SR
876
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
880
881 return ret & RB_FLAG_MASK;
882}
883
884static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
888{
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
891}
892
893static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
897{
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
900}
901
902static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
906{
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
909}
910
911static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
913{
914 struct list_head *p = rb_list_head((*bpage)->list.next);
915
916 *bpage = list_entry(p, struct buffer_page, list);
917}
918
919static struct buffer_page *
920rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921{
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
926
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
929
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
934
935 page = head = cpu_buffer->head_page;
936 /*
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
941 */
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
947 }
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
950 }
951
952 RB_WARN_ON(cpu_buffer, 1);
953
954 return NULL;
955}
956
957static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
959{
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
963
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
966
08a40816 967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
968
969 return ret == val;
970}
971
972/*
973 * rb_tail_page_update - move the tail page forward
974 *
975 * Returns 1 if moved tail page, 0 if someone else did.
976 */
977static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
980{
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
985
986 /*
987 * The tail page now needs to be moved forward.
988 *
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
992 *
993 * We add a counter to the write field to denote this.
994 */
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998 /*
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1001 */
1002 barrier();
1003
1004 /*
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1008 */
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014 /*
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
da706d8b
LJ
1018 *
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1023 */
da706d8b
LJ
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1026
1027 /*
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1031 */
1032 local_set(&next_page->page->commit, 0);
1033
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1036
1037 if (old_tail == tail_page)
1038 ret = 1;
1039 }
1040
1041 return ret;
1042}
1043
1044static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1046{
1047 unsigned long val = (unsigned long)bpage;
1048
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1051
1052 return 0;
1053}
1054
1055/**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1060{
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1066}
1067
7a8e76a3 1068/**
d611851b 1069 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
c3706f00 1072 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1073 * been corrupted.
1074 */
1075static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076{
3adc54fa 1077 struct list_head *head = cpu_buffer->pages;
044fa782 1078 struct buffer_page *bpage, *tmp;
7a8e76a3 1079
308f7eeb
SR
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1083
77ae365e
SR
1084 rb_head_page_deactivate(cpu_buffer);
1085
3e89c7bb
SR
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
7a8e76a3 1090
77ae365e
SR
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1093
044fa782 1094 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1095 if (RB_WARN_ON(cpu_buffer,
044fa782 1096 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
044fa782 1099 bpage->list.prev->next != &bpage->list))
3e89c7bb 1100 return -1;
77ae365e
SR
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
7a8e76a3
SR
1103 }
1104
77ae365e
SR
1105 rb_head_page_activate(cpu_buffer);
1106
7a8e76a3
SR
1107 return 0;
1108}
1109
438ced17 1110static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1111{
438ced17 1112 int i;
044fa782 1113 struct buffer_page *bpage, *tmp;
3adc54fa 1114
7a8e76a3 1115 for (i = 0; i < nr_pages; i++) {
7ea59064 1116 struct page *page;
d7ec4bfe
VN
1117 /*
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1121 */
044fa782 1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1123 GFP_KERNEL | __GFP_NORETRY,
438ced17 1124 cpu_to_node(cpu));
044fa782 1125 if (!bpage)
e4c2ce82 1126 goto free_pages;
77ae365e 1127
438ced17 1128 list_add(&bpage->list, pages);
77ae365e 1129
438ced17 1130 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1131 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1132 if (!page)
7a8e76a3 1133 goto free_pages;
7ea59064 1134 bpage->page = page_address(page);
044fa782 1135 rb_init_page(bpage->page);
7a8e76a3
SR
1136 }
1137
438ced17
VN
1138 return 0;
1139
1140free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1144 }
1145
1146 return -ENOMEM;
1147}
1148
1149static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1151{
1152 LIST_HEAD(pages);
1153
1154 WARN_ON(!nr_pages);
1155
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1158
3adc54fa
SR
1159 /*
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1163 */
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
7a8e76a3 1166
438ced17
VN
1167 cpu_buffer->nr_pages = nr_pages;
1168
7a8e76a3
SR
1169 rb_check_pages(cpu_buffer);
1170
1171 return 0;
7a8e76a3
SR
1172}
1173
1174static struct ring_buffer_per_cpu *
438ced17 1175rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1176{
1177 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1178 struct buffer_page *bpage;
7ea59064 1179 struct page *page;
7a8e76a3
SR
1180 int ret;
1181
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1186
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
5389f6fa 1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1193 init_completion(&cpu_buffer->update_done);
15693458 1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1196
044fa782 1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1198 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1199 if (!bpage)
e4c2ce82
SR
1200 goto fail_free_buffer;
1201
77ae365e
SR
1202 rb_check_bpage(cpu_buffer, bpage);
1203
044fa782 1204 cpu_buffer->reader_page = bpage;
7ea59064
VN
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
e4c2ce82 1207 goto fail_free_reader;
7ea59064 1208 bpage->page = page_address(page);
044fa782 1209 rb_init_page(bpage->page);
e4c2ce82 1210
d769041f 1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1213
438ced17 1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1215 if (ret < 0)
d769041f 1216 goto fail_free_reader;
7a8e76a3
SR
1217
1218 cpu_buffer->head_page
3adc54fa 1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1221
77ae365e
SR
1222 rb_head_page_activate(cpu_buffer);
1223
7a8e76a3
SR
1224 return cpu_buffer;
1225
d769041f
SR
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1228
7a8e76a3
SR
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1232}
1233
1234static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235{
3adc54fa 1236 struct list_head *head = cpu_buffer->pages;
044fa782 1237 struct buffer_page *bpage, *tmp;
7a8e76a3 1238
d769041f
SR
1239 free_buffer_page(cpu_buffer->reader_page);
1240
77ae365e
SR
1241 rb_head_page_deactivate(cpu_buffer);
1242
3adc54fa
SR
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1247 }
1248 bpage = list_entry(head, struct buffer_page, list);
044fa782 1249 free_buffer_page(bpage);
7a8e76a3 1250 }
3adc54fa 1251
7a8e76a3
SR
1252 kfree(cpu_buffer);
1253}
1254
59222efe 1255#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1256static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
554f786e
SR
1258#endif
1259
7a8e76a3 1260/**
d611851b 1261 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1262 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1f8a6a10
PZ
1270struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
7a8e76a3
SR
1272{
1273 struct ring_buffer *buffer;
1274 int bsize;
438ced17 1275 int cpu, nr_pages;
7a8e76a3
SR
1276
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1282
9e01c1b7
RR
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1285
438ced17 1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1287 buffer->flags = flags;
37886f6a 1288 buffer->clock = trace_clock_local;
1f8a6a10 1289 buffer->reader_lock_key = key;
7a8e76a3 1290
15693458 1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1292 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1293
7a8e76a3 1294 /* need at least two pages */
438ced17
VN
1295 if (nr_pages < 2)
1296 nr_pages = 2;
7a8e76a3 1297
3bf832ce
FW
1298 /*
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1302 */
1303#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1304 cpu_notifier_register_begin();
554f786e 1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1306#else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308#endif
7a8e76a3
SR
1309 buffer->cpus = nr_cpu_ids;
1310
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
9e01c1b7 1315 goto fail_free_cpumask;
7a8e76a3
SR
1316
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
438ced17 1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1322 }
1323
59222efe 1324#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
d39ad278
SB
1327 __register_cpu_notifier(&buffer->cpu_notify);
1328 cpu_notifier_register_done();
554f786e
SR
1329#endif
1330
7a8e76a3
SR
1331 mutex_init(&buffer->mutex);
1332
1333 return buffer;
1334
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 }
1340 kfree(buffer->buffers);
1341
9e01c1b7
RR
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1344#ifdef CONFIG_HOTPLUG_CPU
1345 cpu_notifier_register_done();
1346#endif
9e01c1b7 1347
7a8e76a3
SR
1348 fail_free_buffer:
1349 kfree(buffer);
1350 return NULL;
1351}
1f8a6a10 1352EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1353
1354/**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358void
1359ring_buffer_free(struct ring_buffer *buffer)
1360{
1361 int cpu;
1362
59222efe 1363#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1364 cpu_notifier_register_begin();
1365 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1366#endif
1367
7a8e76a3
SR
1368 for_each_buffer_cpu(buffer, cpu)
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370
d39ad278
SB
1371#ifdef CONFIG_HOTPLUG_CPU
1372 cpu_notifier_register_done();
1373#endif
554f786e 1374
bd3f0221 1375 kfree(buffer->buffers);
9e01c1b7
RR
1376 free_cpumask_var(buffer->cpumask);
1377
7a8e76a3
SR
1378 kfree(buffer);
1379}
c4f50183 1380EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1381
37886f6a
SR
1382void ring_buffer_set_clock(struct ring_buffer *buffer,
1383 u64 (*clock)(void))
1384{
1385 buffer->clock = clock;
1386}
1387
7a8e76a3
SR
1388static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
83f40318
VN
1390static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391{
1392 return local_read(&bpage->entries) & RB_WRITE_MASK;
1393}
1394
1395static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396{
1397 return local_read(&bpage->write) & RB_WRITE_MASK;
1398}
1399
5040b4b7 1400static int
83f40318 1401rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1402{
83f40318
VN
1403 struct list_head *tail_page, *to_remove, *next_page;
1404 struct buffer_page *to_remove_page, *tmp_iter_page;
1405 struct buffer_page *last_page, *first_page;
1406 unsigned int nr_removed;
1407 unsigned long head_bit;
1408 int page_entries;
1409
1410 head_bit = 0;
7a8e76a3 1411
5389f6fa 1412 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1413 atomic_inc(&cpu_buffer->record_disabled);
1414 /*
1415 * We don't race with the readers since we have acquired the reader
1416 * lock. We also don't race with writers after disabling recording.
1417 * This makes it easy to figure out the first and the last page to be
1418 * removed from the list. We unlink all the pages in between including
1419 * the first and last pages. This is done in a busy loop so that we
1420 * lose the least number of traces.
1421 * The pages are freed after we restart recording and unlock readers.
1422 */
1423 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1424
83f40318
VN
1425 /*
1426 * tail page might be on reader page, we remove the next page
1427 * from the ring buffer
1428 */
1429 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430 tail_page = rb_list_head(tail_page->next);
1431 to_remove = tail_page;
1432
1433 /* start of pages to remove */
1434 first_page = list_entry(rb_list_head(to_remove->next),
1435 struct buffer_page, list);
1436
1437 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438 to_remove = rb_list_head(to_remove)->next;
1439 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1440 }
7a8e76a3 1441
83f40318 1442 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1443
83f40318
VN
1444 /*
1445 * Now we remove all pages between tail_page and next_page.
1446 * Make sure that we have head_bit value preserved for the
1447 * next page
1448 */
1449 tail_page->next = (struct list_head *)((unsigned long)next_page |
1450 head_bit);
1451 next_page = rb_list_head(next_page);
1452 next_page->prev = tail_page;
1453
1454 /* make sure pages points to a valid page in the ring buffer */
1455 cpu_buffer->pages = next_page;
1456
1457 /* update head page */
1458 if (head_bit)
1459 cpu_buffer->head_page = list_entry(next_page,
1460 struct buffer_page, list);
1461
1462 /*
1463 * change read pointer to make sure any read iterators reset
1464 * themselves
1465 */
1466 cpu_buffer->read = 0;
1467
1468 /* pages are removed, resume tracing and then free the pages */
1469 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1470 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1471
1472 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474 /* last buffer page to remove */
1475 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476 list);
1477 tmp_iter_page = first_page;
1478
1479 do {
1480 to_remove_page = tmp_iter_page;
1481 rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483 /* update the counters */
1484 page_entries = rb_page_entries(to_remove_page);
1485 if (page_entries) {
1486 /*
1487 * If something was added to this page, it was full
1488 * since it is not the tail page. So we deduct the
1489 * bytes consumed in ring buffer from here.
48fdc72f 1490 * Increment overrun to account for the lost events.
83f40318 1491 */
48fdc72f 1492 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1493 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494 }
1495
1496 /*
1497 * We have already removed references to this list item, just
1498 * free up the buffer_page and its page
1499 */
1500 free_buffer_page(to_remove_page);
1501 nr_removed--;
1502
1503 } while (to_remove_page != last_page);
1504
1505 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1506
1507 return nr_removed == 0;
7a8e76a3
SR
1508}
1509
5040b4b7
VN
1510static int
1511rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1512{
5040b4b7
VN
1513 struct list_head *pages = &cpu_buffer->new_pages;
1514 int retries, success;
7a8e76a3 1515
5389f6fa 1516 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1517 /*
1518 * We are holding the reader lock, so the reader page won't be swapped
1519 * in the ring buffer. Now we are racing with the writer trying to
1520 * move head page and the tail page.
1521 * We are going to adapt the reader page update process where:
1522 * 1. We first splice the start and end of list of new pages between
1523 * the head page and its previous page.
1524 * 2. We cmpxchg the prev_page->next to point from head page to the
1525 * start of new pages list.
1526 * 3. Finally, we update the head->prev to the end of new list.
1527 *
1528 * We will try this process 10 times, to make sure that we don't keep
1529 * spinning.
1530 */
1531 retries = 10;
1532 success = 0;
1533 while (retries--) {
1534 struct list_head *head_page, *prev_page, *r;
1535 struct list_head *last_page, *first_page;
1536 struct list_head *head_page_with_bit;
77ae365e 1537
5040b4b7 1538 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1539 if (!head_page)
1540 break;
5040b4b7
VN
1541 prev_page = head_page->prev;
1542
1543 first_page = pages->next;
1544 last_page = pages->prev;
1545
1546 head_page_with_bit = (struct list_head *)
1547 ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549 last_page->next = head_page_with_bit;
1550 first_page->prev = prev_page;
1551
1552 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554 if (r == head_page_with_bit) {
1555 /*
1556 * yay, we replaced the page pointer to our new list,
1557 * now, we just have to update to head page's prev
1558 * pointer to point to end of list
1559 */
1560 head_page->prev = last_page;
1561 success = 1;
1562 break;
1563 }
7a8e76a3 1564 }
7a8e76a3 1565
5040b4b7
VN
1566 if (success)
1567 INIT_LIST_HEAD(pages);
1568 /*
1569 * If we weren't successful in adding in new pages, warn and stop
1570 * tracing
1571 */
1572 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1573 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1574
1575 /* free pages if they weren't inserted */
1576 if (!success) {
1577 struct buffer_page *bpage, *tmp;
1578 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579 list) {
1580 list_del_init(&bpage->list);
1581 free_buffer_page(bpage);
1582 }
1583 }
1584 return success;
7a8e76a3
SR
1585}
1586
83f40318 1587static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1588{
5040b4b7
VN
1589 int success;
1590
438ced17 1591 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1592 success = rb_insert_pages(cpu_buffer);
438ced17 1593 else
5040b4b7
VN
1594 success = rb_remove_pages(cpu_buffer,
1595 -cpu_buffer->nr_pages_to_update);
83f40318 1596
5040b4b7
VN
1597 if (success)
1598 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1599}
1600
1601static void update_pages_handler(struct work_struct *work)
1602{
1603 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604 struct ring_buffer_per_cpu, update_pages_work);
1605 rb_update_pages(cpu_buffer);
05fdd70d 1606 complete(&cpu_buffer->update_done);
438ced17
VN
1607}
1608
7a8e76a3
SR
1609/**
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
d611851b 1613 * @cpu_id: the cpu buffer to resize
7a8e76a3 1614 *
7a8e76a3
SR
1615 * Minimum size is 2 * BUF_PAGE_SIZE.
1616 *
83f40318 1617 * Returns 0 on success and < 0 on failure.
7a8e76a3 1618 */
438ced17
VN
1619int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1620 int cpu_id)
7a8e76a3
SR
1621{
1622 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1623 unsigned nr_pages;
83f40318 1624 int cpu, err = 0;
7a8e76a3 1625
ee51a1de
IM
1626 /*
1627 * Always succeed at resizing a non-existent buffer:
1628 */
1629 if (!buffer)
1630 return size;
1631
6a31e1f1
SR
1632 /* Make sure the requested buffer exists */
1633 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1634 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1635 return size;
1636
7a8e76a3
SR
1637 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1638 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1639
1640 /* we need a minimum of two pages */
1641 if (size < BUF_PAGE_SIZE * 2)
1642 size = BUF_PAGE_SIZE * 2;
1643
83f40318 1644 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1645
83f40318
VN
1646 /*
1647 * Don't succeed if resizing is disabled, as a reader might be
1648 * manipulating the ring buffer and is expecting a sane state while
1649 * this is true.
1650 */
1651 if (atomic_read(&buffer->resize_disabled))
1652 return -EBUSY;
18421015 1653
83f40318 1654 /* prevent another thread from changing buffer sizes */
7a8e76a3 1655 mutex_lock(&buffer->mutex);
7a8e76a3 1656
438ced17
VN
1657 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1658 /* calculate the pages to update */
7a8e76a3
SR
1659 for_each_buffer_cpu(buffer, cpu) {
1660 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1661
438ced17
VN
1662 cpu_buffer->nr_pages_to_update = nr_pages -
1663 cpu_buffer->nr_pages;
438ced17
VN
1664 /*
1665 * nothing more to do for removing pages or no update
1666 */
1667 if (cpu_buffer->nr_pages_to_update <= 0)
1668 continue;
d7ec4bfe 1669 /*
438ced17
VN
1670 * to add pages, make sure all new pages can be
1671 * allocated without receiving ENOMEM
d7ec4bfe 1672 */
438ced17
VN
1673 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1674 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1675 &cpu_buffer->new_pages, cpu)) {
438ced17 1676 /* not enough memory for new pages */
83f40318
VN
1677 err = -ENOMEM;
1678 goto out_err;
1679 }
1680 }
1681
1682 get_online_cpus();
1683 /*
1684 * Fire off all the required work handlers
05fdd70d 1685 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1686 * since we can change their buffer sizes without any race.
1687 */
1688 for_each_buffer_cpu(buffer, cpu) {
1689 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1690 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1691 continue;
1692
f5eb5588
SRRH
1693 /* The update must run on the CPU that is being updated. */
1694 preempt_disable();
1695 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1696 rb_update_pages(cpu_buffer);
1697 cpu_buffer->nr_pages_to_update = 0;
1698 } else {
1699 /*
1700 * Can not disable preemption for schedule_work_on()
1701 * on PREEMPT_RT.
1702 */
1703 preempt_enable();
05fdd70d
VN
1704 schedule_work_on(cpu,
1705 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1706 preempt_disable();
1707 }
1708 preempt_enable();
7a8e76a3 1709 }
7a8e76a3 1710
438ced17
VN
1711 /* wait for all the updates to complete */
1712 for_each_buffer_cpu(buffer, cpu) {
1713 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1714 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1715 continue;
1716
05fdd70d
VN
1717 if (cpu_online(cpu))
1718 wait_for_completion(&cpu_buffer->update_done);
83f40318 1719 cpu_buffer->nr_pages_to_update = 0;
438ced17 1720 }
83f40318
VN
1721
1722 put_online_cpus();
438ced17 1723 } else {
8e49f418
VN
1724 /* Make sure this CPU has been intitialized */
1725 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1726 goto out;
1727
438ced17 1728 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1729
438ced17
VN
1730 if (nr_pages == cpu_buffer->nr_pages)
1731 goto out;
7a8e76a3 1732
438ced17
VN
1733 cpu_buffer->nr_pages_to_update = nr_pages -
1734 cpu_buffer->nr_pages;
1735
1736 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1737 if (cpu_buffer->nr_pages_to_update > 0 &&
1738 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1739 &cpu_buffer->new_pages, cpu_id)) {
1740 err = -ENOMEM;
1741 goto out_err;
1742 }
438ced17 1743
83f40318
VN
1744 get_online_cpus();
1745
f5eb5588
SRRH
1746 preempt_disable();
1747 /* The update must run on the CPU that is being updated. */
1748 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1749 rb_update_pages(cpu_buffer);
1750 else {
1751 /*
1752 * Can not disable preemption for schedule_work_on()
1753 * on PREEMPT_RT.
1754 */
1755 preempt_enable();
83f40318
VN
1756 schedule_work_on(cpu_id,
1757 &cpu_buffer->update_pages_work);
05fdd70d 1758 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1759 preempt_disable();
1760 }
1761 preempt_enable();
83f40318 1762
83f40318 1763 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1764 put_online_cpus();
438ced17 1765 }
7a8e76a3
SR
1766
1767 out:
659f451f
SR
1768 /*
1769 * The ring buffer resize can happen with the ring buffer
1770 * enabled, so that the update disturbs the tracing as little
1771 * as possible. But if the buffer is disabled, we do not need
1772 * to worry about that, and we can take the time to verify
1773 * that the buffer is not corrupt.
1774 */
1775 if (atomic_read(&buffer->record_disabled)) {
1776 atomic_inc(&buffer->record_disabled);
1777 /*
1778 * Even though the buffer was disabled, we must make sure
1779 * that it is truly disabled before calling rb_check_pages.
1780 * There could have been a race between checking
1781 * record_disable and incrementing it.
1782 */
1783 synchronize_sched();
1784 for_each_buffer_cpu(buffer, cpu) {
1785 cpu_buffer = buffer->buffers[cpu];
1786 rb_check_pages(cpu_buffer);
1787 }
1788 atomic_dec(&buffer->record_disabled);
1789 }
1790
7a8e76a3 1791 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1792 return size;
1793
83f40318 1794 out_err:
438ced17
VN
1795 for_each_buffer_cpu(buffer, cpu) {
1796 struct buffer_page *bpage, *tmp;
83f40318 1797
438ced17 1798 cpu_buffer = buffer->buffers[cpu];
438ced17 1799 cpu_buffer->nr_pages_to_update = 0;
83f40318 1800
438ced17
VN
1801 if (list_empty(&cpu_buffer->new_pages))
1802 continue;
83f40318 1803
438ced17
VN
1804 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1805 list) {
1806 list_del_init(&bpage->list);
1807 free_buffer_page(bpage);
1808 }
7a8e76a3 1809 }
641d2f63 1810 mutex_unlock(&buffer->mutex);
83f40318 1811 return err;
7a8e76a3 1812}
c4f50183 1813EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1814
750912fa
DS
1815void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1816{
1817 mutex_lock(&buffer->mutex);
1818 if (val)
1819 buffer->flags |= RB_FL_OVERWRITE;
1820 else
1821 buffer->flags &= ~RB_FL_OVERWRITE;
1822 mutex_unlock(&buffer->mutex);
1823}
1824EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1825
8789a9e7 1826static inline void *
044fa782 1827__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1828{
044fa782 1829 return bpage->data + index;
8789a9e7
SR
1830}
1831
044fa782 1832static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1833{
044fa782 1834 return bpage->page->data + index;
7a8e76a3
SR
1835}
1836
1837static inline struct ring_buffer_event *
d769041f 1838rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1839{
6f807acd
SR
1840 return __rb_page_index(cpu_buffer->reader_page,
1841 cpu_buffer->reader_page->read);
1842}
1843
7a8e76a3
SR
1844static inline struct ring_buffer_event *
1845rb_iter_head_event(struct ring_buffer_iter *iter)
1846{
6f807acd 1847 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1848}
1849
bf41a158
SR
1850static inline unsigned rb_page_commit(struct buffer_page *bpage)
1851{
abc9b56d 1852 return local_read(&bpage->page->commit);
bf41a158
SR
1853}
1854
25985edc 1855/* Size is determined by what has been committed */
bf41a158
SR
1856static inline unsigned rb_page_size(struct buffer_page *bpage)
1857{
1858 return rb_page_commit(bpage);
1859}
1860
1861static inline unsigned
1862rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1863{
1864 return rb_page_commit(cpu_buffer->commit_page);
1865}
1866
bf41a158
SR
1867static inline unsigned
1868rb_event_index(struct ring_buffer_event *event)
1869{
1870 unsigned long addr = (unsigned long)event;
1871
22f470f8 1872 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1873}
1874
0f0c85fc 1875static inline int
fa743953
SR
1876rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct ring_buffer_event *event)
bf41a158
SR
1878{
1879 unsigned long addr = (unsigned long)event;
1880 unsigned long index;
1881
1882 index = rb_event_index(event);
1883 addr &= PAGE_MASK;
1884
1885 return cpu_buffer->commit_page->page == (void *)addr &&
1886 rb_commit_index(cpu_buffer) == index;
1887}
1888
34a148bf 1889static void
bf41a158 1890rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1891{
77ae365e
SR
1892 unsigned long max_count;
1893
bf41a158
SR
1894 /*
1895 * We only race with interrupts and NMIs on this CPU.
1896 * If we own the commit event, then we can commit
1897 * all others that interrupted us, since the interruptions
1898 * are in stack format (they finish before they come
1899 * back to us). This allows us to do a simple loop to
1900 * assign the commit to the tail.
1901 */
a8ccf1d6 1902 again:
438ced17 1903 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1904
bf41a158 1905 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1906 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1907 return;
1908 if (RB_WARN_ON(cpu_buffer,
1909 rb_is_reader_page(cpu_buffer->tail_page)))
1910 return;
1911 local_set(&cpu_buffer->commit_page->page->commit,
1912 rb_page_write(cpu_buffer->commit_page));
bf41a158 1913 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1914 cpu_buffer->write_stamp =
1915 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1916 /* add barrier to keep gcc from optimizing too much */
1917 barrier();
1918 }
1919 while (rb_commit_index(cpu_buffer) !=
1920 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1921
1922 local_set(&cpu_buffer->commit_page->page->commit,
1923 rb_page_write(cpu_buffer->commit_page));
1924 RB_WARN_ON(cpu_buffer,
1925 local_read(&cpu_buffer->commit_page->page->commit) &
1926 ~RB_WRITE_MASK);
bf41a158
SR
1927 barrier();
1928 }
a8ccf1d6
SR
1929
1930 /* again, keep gcc from optimizing */
1931 barrier();
1932
1933 /*
1934 * If an interrupt came in just after the first while loop
1935 * and pushed the tail page forward, we will be left with
1936 * a dangling commit that will never go forward.
1937 */
1938 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1939 goto again;
7a8e76a3
SR
1940}
1941
d769041f 1942static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1943{
abc9b56d 1944 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1945 cpu_buffer->reader_page->read = 0;
d769041f
SR
1946}
1947
34a148bf 1948static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1949{
1950 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1951
1952 /*
1953 * The iterator could be on the reader page (it starts there).
1954 * But the head could have moved, since the reader was
1955 * found. Check for this case and assign the iterator
1956 * to the head page instead of next.
1957 */
1958 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1959 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1960 else
1961 rb_inc_page(cpu_buffer, &iter->head_page);
1962
abc9b56d 1963 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1964 iter->head = 0;
1965}
1966
69d1b839
SR
1967/* Slow path, do not inline */
1968static noinline struct ring_buffer_event *
1969rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1970{
1971 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1972
1973 /* Not the first event on the page? */
1974 if (rb_event_index(event)) {
1975 event->time_delta = delta & TS_MASK;
1976 event->array[0] = delta >> TS_SHIFT;
1977 } else {
1978 /* nope, just zero it */
1979 event->time_delta = 0;
1980 event->array[0] = 0;
1981 }
1982
1983 return skip_time_extend(event);
1984}
1985
7a8e76a3 1986/**
01e3e710 1987 * rb_update_event - update event type and data
7a8e76a3
SR
1988 * @event: the even to update
1989 * @type: the type of event
1990 * @length: the size of the event field in the ring buffer
1991 *
1992 * Update the type and data fields of the event. The length
1993 * is the actual size that is written to the ring buffer,
1994 * and with this, we can determine what to place into the
1995 * data field.
1996 */
34a148bf 1997static void
69d1b839
SR
1998rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1999 struct ring_buffer_event *event, unsigned length,
2000 int add_timestamp, u64 delta)
7a8e76a3 2001{
69d1b839
SR
2002 /* Only a commit updates the timestamp */
2003 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2004 delta = 0;
7a8e76a3 2005
69d1b839
SR
2006 /*
2007 * If we need to add a timestamp, then we
2008 * add it to the start of the resevered space.
2009 */
2010 if (unlikely(add_timestamp)) {
2011 event = rb_add_time_stamp(event, delta);
2012 length -= RB_LEN_TIME_EXTEND;
2013 delta = 0;
7a8e76a3 2014 }
69d1b839
SR
2015
2016 event->time_delta = delta;
2017 length -= RB_EVNT_HDR_SIZE;
2018 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2019 event->type_len = 0;
2020 event->array[0] = length;
2021 } else
2022 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2023}
2024
77ae365e
SR
2025/*
2026 * rb_handle_head_page - writer hit the head page
2027 *
2028 * Returns: +1 to retry page
2029 * 0 to continue
2030 * -1 on error
2031 */
2032static int
2033rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2034 struct buffer_page *tail_page,
2035 struct buffer_page *next_page)
2036{
2037 struct buffer_page *new_head;
2038 int entries;
2039 int type;
2040 int ret;
2041
2042 entries = rb_page_entries(next_page);
2043
2044 /*
2045 * The hard part is here. We need to move the head
2046 * forward, and protect against both readers on
2047 * other CPUs and writers coming in via interrupts.
2048 */
2049 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2050 RB_PAGE_HEAD);
2051
2052 /*
2053 * type can be one of four:
2054 * NORMAL - an interrupt already moved it for us
2055 * HEAD - we are the first to get here.
2056 * UPDATE - we are the interrupt interrupting
2057 * a current move.
2058 * MOVED - a reader on another CPU moved the next
2059 * pointer to its reader page. Give up
2060 * and try again.
2061 */
2062
2063 switch (type) {
2064 case RB_PAGE_HEAD:
2065 /*
2066 * We changed the head to UPDATE, thus
2067 * it is our responsibility to update
2068 * the counters.
2069 */
2070 local_add(entries, &cpu_buffer->overrun);
c64e148a 2071 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2072
2073 /*
2074 * The entries will be zeroed out when we move the
2075 * tail page.
2076 */
2077
2078 /* still more to do */
2079 break;
2080
2081 case RB_PAGE_UPDATE:
2082 /*
2083 * This is an interrupt that interrupt the
2084 * previous update. Still more to do.
2085 */
2086 break;
2087 case RB_PAGE_NORMAL:
2088 /*
2089 * An interrupt came in before the update
2090 * and processed this for us.
2091 * Nothing left to do.
2092 */
2093 return 1;
2094 case RB_PAGE_MOVED:
2095 /*
2096 * The reader is on another CPU and just did
2097 * a swap with our next_page.
2098 * Try again.
2099 */
2100 return 1;
2101 default:
2102 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2103 return -1;
2104 }
2105
2106 /*
2107 * Now that we are here, the old head pointer is
2108 * set to UPDATE. This will keep the reader from
2109 * swapping the head page with the reader page.
2110 * The reader (on another CPU) will spin till
2111 * we are finished.
2112 *
2113 * We just need to protect against interrupts
2114 * doing the job. We will set the next pointer
2115 * to HEAD. After that, we set the old pointer
2116 * to NORMAL, but only if it was HEAD before.
2117 * otherwise we are an interrupt, and only
2118 * want the outer most commit to reset it.
2119 */
2120 new_head = next_page;
2121 rb_inc_page(cpu_buffer, &new_head);
2122
2123 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2124 RB_PAGE_NORMAL);
2125
2126 /*
2127 * Valid returns are:
2128 * HEAD - an interrupt came in and already set it.
2129 * NORMAL - One of two things:
2130 * 1) We really set it.
2131 * 2) A bunch of interrupts came in and moved
2132 * the page forward again.
2133 */
2134 switch (ret) {
2135 case RB_PAGE_HEAD:
2136 case RB_PAGE_NORMAL:
2137 /* OK */
2138 break;
2139 default:
2140 RB_WARN_ON(cpu_buffer, 1);
2141 return -1;
2142 }
2143
2144 /*
2145 * It is possible that an interrupt came in,
2146 * set the head up, then more interrupts came in
2147 * and moved it again. When we get back here,
2148 * the page would have been set to NORMAL but we
2149 * just set it back to HEAD.
2150 *
2151 * How do you detect this? Well, if that happened
2152 * the tail page would have moved.
2153 */
2154 if (ret == RB_PAGE_NORMAL) {
2155 /*
2156 * If the tail had moved passed next, then we need
2157 * to reset the pointer.
2158 */
2159 if (cpu_buffer->tail_page != tail_page &&
2160 cpu_buffer->tail_page != next_page)
2161 rb_head_page_set_normal(cpu_buffer, new_head,
2162 next_page,
2163 RB_PAGE_HEAD);
2164 }
2165
2166 /*
2167 * If this was the outer most commit (the one that
2168 * changed the original pointer from HEAD to UPDATE),
2169 * then it is up to us to reset it to NORMAL.
2170 */
2171 if (type == RB_PAGE_HEAD) {
2172 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2173 tail_page,
2174 RB_PAGE_UPDATE);
2175 if (RB_WARN_ON(cpu_buffer,
2176 ret != RB_PAGE_UPDATE))
2177 return -1;
2178 }
2179
2180 return 0;
2181}
2182
34a148bf 2183static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2184{
2185 struct ring_buffer_event event; /* Used only for sizeof array */
2186
2187 /* zero length can cause confusions */
2188 if (!length)
2189 length = 1;
2190
2271048d 2191 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2192 length += sizeof(event.array[0]);
2193
2194 length += RB_EVNT_HDR_SIZE;
2271048d 2195 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2196
2197 return length;
2198}
2199
c7b09308
SR
2200static inline void
2201rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2202 struct buffer_page *tail_page,
2203 unsigned long tail, unsigned long length)
2204{
2205 struct ring_buffer_event *event;
2206
2207 /*
2208 * Only the event that crossed the page boundary
2209 * must fill the old tail_page with padding.
2210 */
2211 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2212 /*
2213 * If the page was filled, then we still need
2214 * to update the real_end. Reset it to zero
2215 * and the reader will ignore it.
2216 */
2217 if (tail == BUF_PAGE_SIZE)
2218 tail_page->real_end = 0;
2219
c7b09308
SR
2220 local_sub(length, &tail_page->write);
2221 return;
2222 }
2223
2224 event = __rb_page_index(tail_page, tail);
b0b7065b 2225 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2226
c64e148a
VN
2227 /* account for padding bytes */
2228 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2229
ff0ff84a
SR
2230 /*
2231 * Save the original length to the meta data.
2232 * This will be used by the reader to add lost event
2233 * counter.
2234 */
2235 tail_page->real_end = tail;
2236
c7b09308
SR
2237 /*
2238 * If this event is bigger than the minimum size, then
2239 * we need to be careful that we don't subtract the
2240 * write counter enough to allow another writer to slip
2241 * in on this page.
2242 * We put in a discarded commit instead, to make sure
2243 * that this space is not used again.
2244 *
2245 * If we are less than the minimum size, we don't need to
2246 * worry about it.
2247 */
2248 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2249 /* No room for any events */
2250
2251 /* Mark the rest of the page with padding */
2252 rb_event_set_padding(event);
2253
2254 /* Set the write back to the previous setting */
2255 local_sub(length, &tail_page->write);
2256 return;
2257 }
2258
2259 /* Put in a discarded event */
2260 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2261 event->type_len = RINGBUF_TYPE_PADDING;
2262 /* time delta must be non zero */
2263 event->time_delta = 1;
c7b09308
SR
2264
2265 /* Set write to end of buffer */
2266 length = (tail + length) - BUF_PAGE_SIZE;
2267 local_sub(length, &tail_page->write);
2268}
6634ff26 2269
747e94ae
SR
2270/*
2271 * This is the slow path, force gcc not to inline it.
2272 */
2273static noinline struct ring_buffer_event *
6634ff26
SR
2274rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2275 unsigned long length, unsigned long tail,
e8bc43e8 2276 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2277{
5a50e33c 2278 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2279 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2280 struct buffer_page *next_page;
2281 int ret;
aa20ae84
SR
2282
2283 next_page = tail_page;
2284
aa20ae84
SR
2285 rb_inc_page(cpu_buffer, &next_page);
2286
aa20ae84
SR
2287 /*
2288 * If for some reason, we had an interrupt storm that made
2289 * it all the way around the buffer, bail, and warn
2290 * about it.
2291 */
2292 if (unlikely(next_page == commit_page)) {
77ae365e 2293 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2294 goto out_reset;
2295 }
2296
77ae365e
SR
2297 /*
2298 * This is where the fun begins!
2299 *
2300 * We are fighting against races between a reader that
2301 * could be on another CPU trying to swap its reader
2302 * page with the buffer head.
2303 *
2304 * We are also fighting against interrupts coming in and
2305 * moving the head or tail on us as well.
2306 *
2307 * If the next page is the head page then we have filled
2308 * the buffer, unless the commit page is still on the
2309 * reader page.
2310 */
2311 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2312
77ae365e
SR
2313 /*
2314 * If the commit is not on the reader page, then
2315 * move the header page.
2316 */
2317 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2318 /*
2319 * If we are not in overwrite mode,
2320 * this is easy, just stop here.
2321 */
884bfe89
SP
2322 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2323 local_inc(&cpu_buffer->dropped_events);
77ae365e 2324 goto out_reset;
884bfe89 2325 }
77ae365e
SR
2326
2327 ret = rb_handle_head_page(cpu_buffer,
2328 tail_page,
2329 next_page);
2330 if (ret < 0)
2331 goto out_reset;
2332 if (ret)
2333 goto out_again;
2334 } else {
2335 /*
2336 * We need to be careful here too. The
2337 * commit page could still be on the reader
2338 * page. We could have a small buffer, and
2339 * have filled up the buffer with events
2340 * from interrupts and such, and wrapped.
2341 *
2342 * Note, if the tail page is also the on the
2343 * reader_page, we let it move out.
2344 */
2345 if (unlikely((cpu_buffer->commit_page !=
2346 cpu_buffer->tail_page) &&
2347 (cpu_buffer->commit_page ==
2348 cpu_buffer->reader_page))) {
2349 local_inc(&cpu_buffer->commit_overrun);
2350 goto out_reset;
2351 }
aa20ae84
SR
2352 }
2353 }
2354
77ae365e
SR
2355 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2356 if (ret) {
2357 /*
2358 * Nested commits always have zero deltas, so
2359 * just reread the time stamp
2360 */
e8bc43e8
SR
2361 ts = rb_time_stamp(buffer);
2362 next_page->page->time_stamp = ts;
aa20ae84
SR
2363 }
2364
77ae365e 2365 out_again:
aa20ae84 2366
77ae365e 2367 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2368
2369 /* fail and let the caller try again */
2370 return ERR_PTR(-EAGAIN);
2371
45141d46 2372 out_reset:
6f3b3440 2373 /* reset write */
c7b09308 2374 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2375
bf41a158 2376 return NULL;
7a8e76a3
SR
2377}
2378
6634ff26
SR
2379static struct ring_buffer_event *
2380__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2381 unsigned long length, u64 ts,
2382 u64 delta, int add_timestamp)
6634ff26 2383{
5a50e33c 2384 struct buffer_page *tail_page;
6634ff26
SR
2385 struct ring_buffer_event *event;
2386 unsigned long tail, write;
2387
69d1b839
SR
2388 /*
2389 * If the time delta since the last event is too big to
2390 * hold in the time field of the event, then we append a
2391 * TIME EXTEND event ahead of the data event.
2392 */
2393 if (unlikely(add_timestamp))
2394 length += RB_LEN_TIME_EXTEND;
2395
6634ff26
SR
2396 tail_page = cpu_buffer->tail_page;
2397 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2398
2399 /* set write to only the index of the write */
2400 write &= RB_WRITE_MASK;
6634ff26
SR
2401 tail = write - length;
2402
d651aa1d
SRRH
2403 /*
2404 * If this is the first commit on the page, then it has the same
2405 * timestamp as the page itself.
2406 */
2407 if (!tail)
2408 delta = 0;
2409
6634ff26 2410 /* See if we shot pass the end of this buffer page */
747e94ae 2411 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2412 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2413 tail_page, ts);
6634ff26
SR
2414
2415 /* We reserved something on the buffer */
2416
6634ff26 2417 event = __rb_page_index(tail_page, tail);
1744a21d 2418 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2419 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2420
69d1b839 2421 local_inc(&tail_page->entries);
6634ff26
SR
2422
2423 /*
fa743953
SR
2424 * If this is the first commit on the page, then update
2425 * its timestamp.
6634ff26 2426 */
fa743953 2427 if (!tail)
e8bc43e8 2428 tail_page->page->time_stamp = ts;
6634ff26 2429
c64e148a
VN
2430 /* account for these added bytes */
2431 local_add(length, &cpu_buffer->entries_bytes);
2432
6634ff26
SR
2433 return event;
2434}
2435
edd813bf
SR
2436static inline int
2437rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438 struct ring_buffer_event *event)
2439{
2440 unsigned long new_index, old_index;
2441 struct buffer_page *bpage;
2442 unsigned long index;
2443 unsigned long addr;
2444
2445 new_index = rb_event_index(event);
69d1b839 2446 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2447 addr = (unsigned long)event;
2448 addr &= PAGE_MASK;
2449
2450 bpage = cpu_buffer->tail_page;
2451
2452 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2453 unsigned long write_mask =
2454 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2455 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2456 /*
2457 * This is on the tail page. It is possible that
2458 * a write could come in and move the tail page
2459 * and write to the next page. That is fine
2460 * because we just shorten what is on this page.
2461 */
77ae365e
SR
2462 old_index += write_mask;
2463 new_index += write_mask;
edd813bf 2464 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2465 if (index == old_index) {
2466 /* update counters */
2467 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2468 return 1;
c64e148a 2469 }
edd813bf
SR
2470 }
2471
2472 /* could not discard */
2473 return 0;
2474}
2475
fa743953
SR
2476static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477{
2478 local_inc(&cpu_buffer->committing);
2479 local_inc(&cpu_buffer->commits);
2480}
2481
d9abde21 2482static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2483{
2484 unsigned long commits;
2485
2486 if (RB_WARN_ON(cpu_buffer,
2487 !local_read(&cpu_buffer->committing)))
2488 return;
2489
2490 again:
2491 commits = local_read(&cpu_buffer->commits);
2492 /* synchronize with interrupts */
2493 barrier();
2494 if (local_read(&cpu_buffer->committing) == 1)
2495 rb_set_commit_to_write(cpu_buffer);
2496
2497 local_dec(&cpu_buffer->committing);
2498
2499 /* synchronize with interrupts */
2500 barrier();
2501
2502 /*
2503 * Need to account for interrupts coming in between the
2504 * updating of the commit page and the clearing of the
2505 * committing counter.
2506 */
2507 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2508 !local_read(&cpu_buffer->committing)) {
2509 local_inc(&cpu_buffer->committing);
2510 goto again;
2511 }
2512}
2513
7a8e76a3 2514static struct ring_buffer_event *
62f0b3eb
SR
2515rb_reserve_next_event(struct ring_buffer *buffer,
2516 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2517 unsigned long length)
7a8e76a3
SR
2518{
2519 struct ring_buffer_event *event;
69d1b839 2520 u64 ts, delta;
818e3dd3 2521 int nr_loops = 0;
69d1b839 2522 int add_timestamp;
140ff891 2523 u64 diff;
7a8e76a3 2524
fa743953
SR
2525 rb_start_commit(cpu_buffer);
2526
85bac32c 2527#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2528 /*
2529 * Due to the ability to swap a cpu buffer from a buffer
2530 * it is possible it was swapped before we committed.
2531 * (committing stops a swap). We check for it here and
2532 * if it happened, we have to fail the write.
2533 */
2534 barrier();
2535 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2536 local_dec(&cpu_buffer->committing);
2537 local_dec(&cpu_buffer->commits);
2538 return NULL;
2539 }
85bac32c 2540#endif
62f0b3eb 2541
be957c44 2542 length = rb_calculate_event_length(length);
bf41a158 2543 again:
69d1b839
SR
2544 add_timestamp = 0;
2545 delta = 0;
2546
818e3dd3
SR
2547 /*
2548 * We allow for interrupts to reenter here and do a trace.
2549 * If one does, it will cause this original code to loop
2550 * back here. Even with heavy interrupts happening, this
2551 * should only happen a few times in a row. If this happens
2552 * 1000 times in a row, there must be either an interrupt
2553 * storm or we have something buggy.
2554 * Bail!
2555 */
3e89c7bb 2556 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2557 goto out_fail;
818e3dd3 2558
6d3f1e12 2559 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2560 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2561
140ff891
SR
2562 /* make sure this diff is calculated here */
2563 barrier();
bf41a158 2564
140ff891
SR
2565 /* Did the write stamp get updated already? */
2566 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2567 delta = diff;
2568 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2569 int local_clock_stable = 1;
2570#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2571 local_clock_stable = sched_clock_stable();
31274d72 2572#endif
69d1b839 2573 WARN_ONCE(delta > (1ULL << 59),
31274d72 2574 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2575 (unsigned long long)delta,
2576 (unsigned long long)ts,
31274d72
JO
2577 (unsigned long long)cpu_buffer->write_stamp,
2578 local_clock_stable ? "" :
2579 "If you just came from a suspend/resume,\n"
2580 "please switch to the trace global clock:\n"
2581 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2582 add_timestamp = 1;
7a8e76a3 2583 }
168b6b1d 2584 }
7a8e76a3 2585
69d1b839
SR
2586 event = __rb_reserve_next(cpu_buffer, length, ts,
2587 delta, add_timestamp);
168b6b1d 2588 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2589 goto again;
2590
fa743953
SR
2591 if (!event)
2592 goto out_fail;
7a8e76a3 2593
7a8e76a3 2594 return event;
fa743953
SR
2595
2596 out_fail:
2597 rb_end_commit(cpu_buffer);
2598 return NULL;
7a8e76a3
SR
2599}
2600
1155de47
PM
2601#ifdef CONFIG_TRACING
2602
567cd4da
SR
2603/*
2604 * The lock and unlock are done within a preempt disable section.
2605 * The current_context per_cpu variable can only be modified
2606 * by the current task between lock and unlock. But it can
2607 * be modified more than once via an interrupt. To pass this
2608 * information from the lock to the unlock without having to
2609 * access the 'in_interrupt()' functions again (which do show
2610 * a bit of overhead in something as critical as function tracing,
2611 * we use a bitmask trick.
2612 *
2613 * bit 0 = NMI context
2614 * bit 1 = IRQ context
2615 * bit 2 = SoftIRQ context
2616 * bit 3 = normal context.
2617 *
2618 * This works because this is the order of contexts that can
2619 * preempt other contexts. A SoftIRQ never preempts an IRQ
2620 * context.
2621 *
2622 * When the context is determined, the corresponding bit is
2623 * checked and set (if it was set, then a recursion of that context
2624 * happened).
2625 *
2626 * On unlock, we need to clear this bit. To do so, just subtract
2627 * 1 from the current_context and AND it to itself.
2628 *
2629 * (binary)
2630 * 101 - 1 = 100
2631 * 101 & 100 = 100 (clearing bit zero)
2632 *
2633 * 1010 - 1 = 1001
2634 * 1010 & 1001 = 1000 (clearing bit 1)
2635 *
2636 * The least significant bit can be cleared this way, and it
2637 * just so happens that it is the same bit corresponding to
2638 * the current context.
2639 */
2640static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2641
567cd4da 2642static __always_inline int trace_recursive_lock(void)
261842b7 2643{
567cd4da
SR
2644 unsigned int val = this_cpu_read(current_context);
2645 int bit;
d9abde21 2646
567cd4da
SR
2647 if (in_interrupt()) {
2648 if (in_nmi())
2649 bit = 0;
2650 else if (in_irq())
2651 bit = 1;
2652 else
2653 bit = 2;
2654 } else
2655 bit = 3;
d9abde21 2656
567cd4da
SR
2657 if (unlikely(val & (1 << bit)))
2658 return 1;
d9abde21 2659
567cd4da
SR
2660 val |= (1 << bit);
2661 this_cpu_write(current_context, val);
d9abde21 2662
567cd4da 2663 return 0;
261842b7
SR
2664}
2665
567cd4da 2666static __always_inline void trace_recursive_unlock(void)
261842b7 2667{
567cd4da 2668 unsigned int val = this_cpu_read(current_context);
261842b7 2669
567cd4da
SR
2670 val--;
2671 val &= this_cpu_read(current_context);
2672 this_cpu_write(current_context, val);
261842b7
SR
2673}
2674
1155de47
PM
2675#else
2676
2677#define trace_recursive_lock() (0)
2678#define trace_recursive_unlock() do { } while (0)
2679
2680#endif
2681
7a8e76a3
SR
2682/**
2683 * ring_buffer_lock_reserve - reserve a part of the buffer
2684 * @buffer: the ring buffer to reserve from
2685 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2686 *
2687 * Returns a reseverd event on the ring buffer to copy directly to.
2688 * The user of this interface will need to get the body to write into
2689 * and can use the ring_buffer_event_data() interface.
2690 *
2691 * The length is the length of the data needed, not the event length
2692 * which also includes the event header.
2693 *
2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695 * If NULL is returned, then nothing has been allocated or locked.
2696 */
2697struct ring_buffer_event *
0a987751 2698ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2699{
2700 struct ring_buffer_per_cpu *cpu_buffer;
2701 struct ring_buffer_event *event;
5168ae50 2702 int cpu;
7a8e76a3 2703
033601a3 2704 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2705 return NULL;
2706
bf41a158 2707 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2708 preempt_disable_notrace();
bf41a158 2709
52fbe9cd
LJ
2710 if (atomic_read(&buffer->record_disabled))
2711 goto out_nocheck;
2712
261842b7
SR
2713 if (trace_recursive_lock())
2714 goto out_nocheck;
2715
7a8e76a3
SR
2716 cpu = raw_smp_processor_id();
2717
9e01c1b7 2718 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2719 goto out;
7a8e76a3
SR
2720
2721 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2722
2723 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2724 goto out;
7a8e76a3 2725
be957c44 2726 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2727 goto out;
7a8e76a3 2728
62f0b3eb 2729 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2730 if (!event)
d769041f 2731 goto out;
7a8e76a3
SR
2732
2733 return event;
2734
d769041f 2735 out:
261842b7
SR
2736 trace_recursive_unlock();
2737
2738 out_nocheck:
5168ae50 2739 preempt_enable_notrace();
7a8e76a3
SR
2740 return NULL;
2741}
c4f50183 2742EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2743
a1863c21
SR
2744static void
2745rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2746 struct ring_buffer_event *event)
2747{
69d1b839
SR
2748 u64 delta;
2749
fa743953
SR
2750 /*
2751 * The event first in the commit queue updates the
2752 * time stamp.
2753 */
69d1b839
SR
2754 if (rb_event_is_commit(cpu_buffer, event)) {
2755 /*
2756 * A commit event that is first on a page
2757 * updates the write timestamp with the page stamp
2758 */
2759 if (!rb_event_index(event))
2760 cpu_buffer->write_stamp =
2761 cpu_buffer->commit_page->page->time_stamp;
2762 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2763 delta = event->array[0];
2764 delta <<= TS_SHIFT;
2765 delta += event->time_delta;
2766 cpu_buffer->write_stamp += delta;
2767 } else
2768 cpu_buffer->write_stamp += event->time_delta;
2769 }
a1863c21 2770}
bf41a158 2771
a1863c21
SR
2772static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2773 struct ring_buffer_event *event)
2774{
2775 local_inc(&cpu_buffer->entries);
2776 rb_update_write_stamp(cpu_buffer, event);
fa743953 2777 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2778}
2779
15693458
SRRH
2780static __always_inline void
2781rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2782{
2783 if (buffer->irq_work.waiters_pending) {
2784 buffer->irq_work.waiters_pending = false;
2785 /* irq_work_queue() supplies it's own memory barriers */
2786 irq_work_queue(&buffer->irq_work.work);
2787 }
2788
2789 if (cpu_buffer->irq_work.waiters_pending) {
2790 cpu_buffer->irq_work.waiters_pending = false;
2791 /* irq_work_queue() supplies it's own memory barriers */
2792 irq_work_queue(&cpu_buffer->irq_work.work);
2793 }
2794}
2795
7a8e76a3
SR
2796/**
2797 * ring_buffer_unlock_commit - commit a reserved
2798 * @buffer: The buffer to commit to
2799 * @event: The event pointer to commit.
7a8e76a3
SR
2800 *
2801 * This commits the data to the ring buffer, and releases any locks held.
2802 *
2803 * Must be paired with ring_buffer_lock_reserve.
2804 */
2805int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2806 struct ring_buffer_event *event)
7a8e76a3
SR
2807{
2808 struct ring_buffer_per_cpu *cpu_buffer;
2809 int cpu = raw_smp_processor_id();
2810
2811 cpu_buffer = buffer->buffers[cpu];
2812
7a8e76a3
SR
2813 rb_commit(cpu_buffer, event);
2814
15693458
SRRH
2815 rb_wakeups(buffer, cpu_buffer);
2816
261842b7
SR
2817 trace_recursive_unlock();
2818
5168ae50 2819 preempt_enable_notrace();
7a8e76a3
SR
2820
2821 return 0;
2822}
c4f50183 2823EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2824
f3b9aae1
FW
2825static inline void rb_event_discard(struct ring_buffer_event *event)
2826{
69d1b839
SR
2827 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2828 event = skip_time_extend(event);
2829
334d4169
LJ
2830 /* array[0] holds the actual length for the discarded event */
2831 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2832 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2833 /* time delta must be non zero */
2834 if (!event->time_delta)
2835 event->time_delta = 1;
2836}
2837
a1863c21
SR
2838/*
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2843 */
2844static inline void
2845rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 struct ring_buffer_event *event)
2847{
2848 unsigned long addr = (unsigned long)event;
2849 struct buffer_page *bpage = cpu_buffer->commit_page;
2850 struct buffer_page *start;
2851
2852 addr &= PAGE_MASK;
2853
2854 /* Do the likely case first */
2855 if (likely(bpage->page == (void *)addr)) {
2856 local_dec(&bpage->entries);
2857 return;
2858 }
2859
2860 /*
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2863 */
2864 rb_inc_page(cpu_buffer, &bpage);
2865 start = bpage;
2866 do {
2867 if (bpage->page == (void *)addr) {
2868 local_dec(&bpage->entries);
2869 return;
2870 }
2871 rb_inc_page(cpu_buffer, &bpage);
2872 } while (bpage != start);
2873
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer, 1);
2876}
2877
fa1b47dd
SR
2878/**
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2882 *
dc892f73
SR
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2886 *
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2889 * if another event has not been added behind it.
2890 *
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2893 *
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2896 */
2897void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 struct ring_buffer_event *event)
2899{
2900 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2901 int cpu;
2902
2903 /* The event is discarded regardless */
f3b9aae1 2904 rb_event_discard(event);
fa1b47dd 2905
fa743953
SR
2906 cpu = smp_processor_id();
2907 cpu_buffer = buffer->buffers[cpu];
2908
fa1b47dd
SR
2909 /*
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2913 */
fa743953 2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2915
a1863c21 2916 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2917 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2918 goto out;
fa1b47dd
SR
2919
2920 /*
2921 * The commit is still visible by the reader, so we
a1863c21 2922 * must still update the timestamp.
fa1b47dd 2923 */
a1863c21 2924 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2925 out:
fa743953 2926 rb_end_commit(cpu_buffer);
fa1b47dd 2927
f3b9aae1
FW
2928 trace_recursive_unlock();
2929
5168ae50 2930 preempt_enable_notrace();
fa1b47dd
SR
2931
2932}
2933EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
7a8e76a3
SR
2935/**
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2940 *
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2944 *
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2947 */
2948int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2949 unsigned long length,
2950 void *data)
7a8e76a3
SR
2951{
2952 struct ring_buffer_per_cpu *cpu_buffer;
2953 struct ring_buffer_event *event;
7a8e76a3
SR
2954 void *body;
2955 int ret = -EBUSY;
5168ae50 2956 int cpu;
7a8e76a3 2957
033601a3 2958 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2959 return -EBUSY;
2960
5168ae50 2961 preempt_disable_notrace();
bf41a158 2962
52fbe9cd
LJ
2963 if (atomic_read(&buffer->record_disabled))
2964 goto out;
2965
7a8e76a3
SR
2966 cpu = raw_smp_processor_id();
2967
9e01c1b7 2968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2969 goto out;
7a8e76a3
SR
2970
2971 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2972
2973 if (atomic_read(&cpu_buffer->record_disabled))
2974 goto out;
2975
be957c44
SR
2976 if (length > BUF_MAX_DATA_SIZE)
2977 goto out;
2978
62f0b3eb 2979 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2980 if (!event)
2981 goto out;
2982
2983 body = rb_event_data(event);
2984
2985 memcpy(body, data, length);
2986
2987 rb_commit(cpu_buffer, event);
2988
15693458
SRRH
2989 rb_wakeups(buffer, cpu_buffer);
2990
7a8e76a3
SR
2991 ret = 0;
2992 out:
5168ae50 2993 preempt_enable_notrace();
7a8e76a3
SR
2994
2995 return ret;
2996}
c4f50183 2997EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2998
34a148bf 2999static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3000{
3001 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3002 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3003 struct buffer_page *commit = cpu_buffer->commit_page;
3004
77ae365e
SR
3005 /* In case of error, head will be NULL */
3006 if (unlikely(!head))
3007 return 1;
3008
bf41a158
SR
3009 return reader->read == rb_page_commit(reader) &&
3010 (commit == reader ||
3011 (commit == head &&
3012 head->read == rb_page_commit(commit)));
3013}
3014
7a8e76a3
SR
3015/**
3016 * ring_buffer_record_disable - stop all writes into the buffer
3017 * @buffer: The ring buffer to stop writes to.
3018 *
3019 * This prevents all writes to the buffer. Any attempt to write
3020 * to the buffer after this will fail and return NULL.
3021 *
3022 * The caller should call synchronize_sched() after this.
3023 */
3024void ring_buffer_record_disable(struct ring_buffer *buffer)
3025{
3026 atomic_inc(&buffer->record_disabled);
3027}
c4f50183 3028EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3029
3030/**
3031 * ring_buffer_record_enable - enable writes to the buffer
3032 * @buffer: The ring buffer to enable writes
3033 *
3034 * Note, multiple disables will need the same number of enables
c41b20e7 3035 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3036 */
3037void ring_buffer_record_enable(struct ring_buffer *buffer)
3038{
3039 atomic_dec(&buffer->record_disabled);
3040}
c4f50183 3041EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3042
499e5470
SR
3043/**
3044 * ring_buffer_record_off - stop all writes into the buffer
3045 * @buffer: The ring buffer to stop writes to.
3046 *
3047 * This prevents all writes to the buffer. Any attempt to write
3048 * to the buffer after this will fail and return NULL.
3049 *
3050 * This is different than ring_buffer_record_disable() as
87abb3b1 3051 * it works like an on/off switch, where as the disable() version
499e5470
SR
3052 * must be paired with a enable().
3053 */
3054void ring_buffer_record_off(struct ring_buffer *buffer)
3055{
3056 unsigned int rd;
3057 unsigned int new_rd;
3058
3059 do {
3060 rd = atomic_read(&buffer->record_disabled);
3061 new_rd = rd | RB_BUFFER_OFF;
3062 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3063}
3064EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3065
3066/**
3067 * ring_buffer_record_on - restart writes into the buffer
3068 * @buffer: The ring buffer to start writes to.
3069 *
3070 * This enables all writes to the buffer that was disabled by
3071 * ring_buffer_record_off().
3072 *
3073 * This is different than ring_buffer_record_enable() as
87abb3b1 3074 * it works like an on/off switch, where as the enable() version
499e5470
SR
3075 * must be paired with a disable().
3076 */
3077void ring_buffer_record_on(struct ring_buffer *buffer)
3078{
3079 unsigned int rd;
3080 unsigned int new_rd;
3081
3082 do {
3083 rd = atomic_read(&buffer->record_disabled);
3084 new_rd = rd & ~RB_BUFFER_OFF;
3085 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3086}
3087EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3088
3089/**
3090 * ring_buffer_record_is_on - return true if the ring buffer can write
3091 * @buffer: The ring buffer to see if write is enabled
3092 *
3093 * Returns true if the ring buffer is in a state that it accepts writes.
3094 */
3095int ring_buffer_record_is_on(struct ring_buffer *buffer)
3096{
3097 return !atomic_read(&buffer->record_disabled);
3098}
3099
7a8e76a3
SR
3100/**
3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102 * @buffer: The ring buffer to stop writes to.
3103 * @cpu: The CPU buffer to stop
3104 *
3105 * This prevents all writes to the buffer. Any attempt to write
3106 * to the buffer after this will fail and return NULL.
3107 *
3108 * The caller should call synchronize_sched() after this.
3109 */
3110void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3111{
3112 struct ring_buffer_per_cpu *cpu_buffer;
3113
9e01c1b7 3114 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3115 return;
7a8e76a3
SR
3116
3117 cpu_buffer = buffer->buffers[cpu];
3118 atomic_inc(&cpu_buffer->record_disabled);
3119}
c4f50183 3120EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3121
3122/**
3123 * ring_buffer_record_enable_cpu - enable writes to the buffer
3124 * @buffer: The ring buffer to enable writes
3125 * @cpu: The CPU to enable.
3126 *
3127 * Note, multiple disables will need the same number of enables
c41b20e7 3128 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3129 */
3130void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3131{
3132 struct ring_buffer_per_cpu *cpu_buffer;
3133
9e01c1b7 3134 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3135 return;
7a8e76a3
SR
3136
3137 cpu_buffer = buffer->buffers[cpu];
3138 atomic_dec(&cpu_buffer->record_disabled);
3139}
c4f50183 3140EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3141
f6195aa0
SR
3142/*
3143 * The total entries in the ring buffer is the running counter
3144 * of entries entered into the ring buffer, minus the sum of
3145 * the entries read from the ring buffer and the number of
3146 * entries that were overwritten.
3147 */
3148static inline unsigned long
3149rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3150{
3151 return local_read(&cpu_buffer->entries) -
3152 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3153}
3154
c64e148a
VN
3155/**
3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157 * @buffer: The ring buffer
3158 * @cpu: The per CPU buffer to read from.
3159 */
50ecf2c3 3160u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3161{
3162 unsigned long flags;
3163 struct ring_buffer_per_cpu *cpu_buffer;
3164 struct buffer_page *bpage;
da830e58 3165 u64 ret = 0;
c64e148a
VN
3166
3167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3168 return 0;
3169
3170 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3172 /*
3173 * if the tail is on reader_page, oldest time stamp is on the reader
3174 * page
3175 */
3176 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3177 bpage = cpu_buffer->reader_page;
3178 else
3179 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3180 if (bpage)
3181 ret = bpage->page->time_stamp;
7115e3fc 3182 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3183
3184 return ret;
3185}
3186EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3187
3188/**
3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to read from.
3192 */
3193unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3194{
3195 struct ring_buffer_per_cpu *cpu_buffer;
3196 unsigned long ret;
3197
3198 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199 return 0;
3200
3201 cpu_buffer = buffer->buffers[cpu];
3202 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3203
3204 return ret;
3205}
3206EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3207
7a8e76a3
SR
3208/**
3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the entries from.
3212 */
3213unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3214{
3215 struct ring_buffer_per_cpu *cpu_buffer;
3216
9e01c1b7 3217 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3218 return 0;
7a8e76a3
SR
3219
3220 cpu_buffer = buffer->buffers[cpu];
554f786e 3221
f6195aa0 3222 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3223}
c4f50183 3224EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3225
3226/**
884bfe89
SP
3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the number of overruns from
3231 */
3232unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3233{
3234 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3235 unsigned long ret;
7a8e76a3 3236
9e01c1b7 3237 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3238 return 0;
7a8e76a3
SR
3239
3240 cpu_buffer = buffer->buffers[cpu];
77ae365e 3241 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3242
3243 return ret;
7a8e76a3 3244}
c4f50183 3245EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3246
f0d2c681 3247/**
884bfe89
SP
3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249 * commits failing due to the buffer wrapping around while there are uncommitted
3250 * events, such as during an interrupt storm.
f0d2c681
SR
3251 * @buffer: The ring buffer
3252 * @cpu: The per CPU buffer to get the number of overruns from
3253 */
3254unsigned long
3255ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3256{
3257 struct ring_buffer_per_cpu *cpu_buffer;
3258 unsigned long ret;
3259
3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 return 0;
3262
3263 cpu_buffer = buffer->buffers[cpu];
77ae365e 3264 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3265
3266 return ret;
3267}
3268EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3269
884bfe89
SP
3270/**
3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3275 */
3276unsigned long
3277ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3278{
3279 struct ring_buffer_per_cpu *cpu_buffer;
3280 unsigned long ret;
3281
3282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 return 0;
3284
3285 cpu_buffer = buffer->buffers[cpu];
3286 ret = local_read(&cpu_buffer->dropped_events);
3287
3288 return ret;
3289}
3290EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3291
ad964704
SRRH
3292/**
3293 * ring_buffer_read_events_cpu - get the number of events successfully read
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of events read
3296 */
3297unsigned long
3298ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3299{
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301
3302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303 return 0;
3304
3305 cpu_buffer = buffer->buffers[cpu];
3306 return cpu_buffer->read;
3307}
3308EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3309
7a8e76a3
SR
3310/**
3311 * ring_buffer_entries - get the number of entries in a buffer
3312 * @buffer: The ring buffer
3313 *
3314 * Returns the total number of entries in the ring buffer
3315 * (all CPU entries)
3316 */
3317unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320 unsigned long entries = 0;
3321 int cpu;
3322
3323 /* if you care about this being correct, lock the buffer */
3324 for_each_buffer_cpu(buffer, cpu) {
3325 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3326 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3327 }
3328
3329 return entries;
3330}
c4f50183 3331EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3332
3333/**
67b394f7 3334 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3335 * @buffer: The ring buffer
3336 *
3337 * Returns the total number of overruns in the ring buffer
3338 * (all CPU entries)
3339 */
3340unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3341{
3342 struct ring_buffer_per_cpu *cpu_buffer;
3343 unsigned long overruns = 0;
3344 int cpu;
3345
3346 /* if you care about this being correct, lock the buffer */
3347 for_each_buffer_cpu(buffer, cpu) {
3348 cpu_buffer = buffer->buffers[cpu];
77ae365e 3349 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3350 }
3351
3352 return overruns;
3353}
c4f50183 3354EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3355
642edba5 3356static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3357{
3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359
d769041f
SR
3360 /* Iterator usage is expected to have record disabled */
3361 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3362 iter->head_page = rb_set_head_page(cpu_buffer);
3363 if (unlikely(!iter->head_page))
3364 return;
3365 iter->head = iter->head_page->read;
d769041f
SR
3366 } else {
3367 iter->head_page = cpu_buffer->reader_page;
6f807acd 3368 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3369 }
3370 if (iter->head)
3371 iter->read_stamp = cpu_buffer->read_stamp;
3372 else
abc9b56d 3373 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3374 iter->cache_reader_page = cpu_buffer->reader_page;
3375 iter->cache_read = cpu_buffer->read;
642edba5 3376}
f83c9d0f 3377
642edba5
SR
3378/**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386{
554f786e 3387 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3388 unsigned long flags;
3389
554f786e
SR
3390 if (!iter)
3391 return;
3392
3393 cpu_buffer = iter->cpu_buffer;
3394
5389f6fa 3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3396 rb_iter_reset(iter);
5389f6fa 3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3398}
c4f50183 3399EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3400
3401/**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406{
3407 struct ring_buffer_per_cpu *cpu_buffer;
3408
3409 cpu_buffer = iter->cpu_buffer;
3410
bf41a158
SR
3411 return iter->head_page == cpu_buffer->commit_page &&
3412 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3413}
c4f50183 3414EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3415
3416static void
3417rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418 struct ring_buffer_event *event)
3419{
3420 u64 delta;
3421
334d4169 3422 switch (event->type_len) {
7a8e76a3
SR
3423 case RINGBUF_TYPE_PADDING:
3424 return;
3425
3426 case RINGBUF_TYPE_TIME_EXTEND:
3427 delta = event->array[0];
3428 delta <<= TS_SHIFT;
3429 delta += event->time_delta;
3430 cpu_buffer->read_stamp += delta;
3431 return;
3432
3433 case RINGBUF_TYPE_TIME_STAMP:
3434 /* FIXME: not implemented */
3435 return;
3436
3437 case RINGBUF_TYPE_DATA:
3438 cpu_buffer->read_stamp += event->time_delta;
3439 return;
3440
3441 default:
3442 BUG();
3443 }
3444 return;
3445}
3446
3447static void
3448rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449 struct ring_buffer_event *event)
3450{
3451 u64 delta;
3452
334d4169 3453 switch (event->type_len) {
7a8e76a3
SR
3454 case RINGBUF_TYPE_PADDING:
3455 return;
3456
3457 case RINGBUF_TYPE_TIME_EXTEND:
3458 delta = event->array[0];
3459 delta <<= TS_SHIFT;
3460 delta += event->time_delta;
3461 iter->read_stamp += delta;
3462 return;
3463
3464 case RINGBUF_TYPE_TIME_STAMP:
3465 /* FIXME: not implemented */
3466 return;
3467
3468 case RINGBUF_TYPE_DATA:
3469 iter->read_stamp += event->time_delta;
3470 return;
3471
3472 default:
3473 BUG();
3474 }
3475 return;
3476}
3477
d769041f
SR
3478static struct buffer_page *
3479rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3480{
d769041f 3481 struct buffer_page *reader = NULL;
66a8cb95 3482 unsigned long overwrite;
d769041f 3483 unsigned long flags;
818e3dd3 3484 int nr_loops = 0;
77ae365e 3485 int ret;
d769041f 3486
3e03fb7f 3487 local_irq_save(flags);
0199c4e6 3488 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3489
3490 again:
818e3dd3
SR
3491 /*
3492 * This should normally only loop twice. But because the
3493 * start of the reader inserts an empty page, it causes
3494 * a case where we will loop three times. There should be no
3495 * reason to loop four times (that I know of).
3496 */
3e89c7bb 3497 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3498 reader = NULL;
3499 goto out;
3500 }
3501
d769041f
SR
3502 reader = cpu_buffer->reader_page;
3503
3504 /* If there's more to read, return this page */
bf41a158 3505 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3506 goto out;
3507
3508 /* Never should we have an index greater than the size */
3e89c7bb
SR
3509 if (RB_WARN_ON(cpu_buffer,
3510 cpu_buffer->reader_page->read > rb_page_size(reader)))
3511 goto out;
d769041f
SR
3512
3513 /* check if we caught up to the tail */
3514 reader = NULL;
bf41a158 3515 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3516 goto out;
7a8e76a3 3517
a5fb8331
SR
3518 /* Don't bother swapping if the ring buffer is empty */
3519 if (rb_num_of_entries(cpu_buffer) == 0)
3520 goto out;
3521
7a8e76a3 3522 /*
d769041f 3523 * Reset the reader page to size zero.
7a8e76a3 3524 */
77ae365e
SR
3525 local_set(&cpu_buffer->reader_page->write, 0);
3526 local_set(&cpu_buffer->reader_page->entries, 0);
3527 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3528 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3529
77ae365e
SR
3530 spin:
3531 /*
3532 * Splice the empty reader page into the list around the head.
3533 */
3534 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3535 if (!reader)
3536 goto out;
0e1ff5d7 3537 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3538 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3539
3adc54fa
SR
3540 /*
3541 * cpu_buffer->pages just needs to point to the buffer, it
3542 * has no specific buffer page to point to. Lets move it out
25985edc 3543 * of our way so we don't accidentally swap it.
3adc54fa
SR
3544 */
3545 cpu_buffer->pages = reader->list.prev;
3546
77ae365e
SR
3547 /* The reader page will be pointing to the new head */
3548 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3549
66a8cb95
SR
3550 /*
3551 * We want to make sure we read the overruns after we set up our
3552 * pointers to the next object. The writer side does a
3553 * cmpxchg to cross pages which acts as the mb on the writer
3554 * side. Note, the reader will constantly fail the swap
3555 * while the writer is updating the pointers, so this
3556 * guarantees that the overwrite recorded here is the one we
3557 * want to compare with the last_overrun.
3558 */
3559 smp_mb();
3560 overwrite = local_read(&(cpu_buffer->overrun));
3561
77ae365e
SR
3562 /*
3563 * Here's the tricky part.
3564 *
3565 * We need to move the pointer past the header page.
3566 * But we can only do that if a writer is not currently
3567 * moving it. The page before the header page has the
3568 * flag bit '1' set if it is pointing to the page we want.
3569 * but if the writer is in the process of moving it
3570 * than it will be '2' or already moved '0'.
3571 */
3572
3573 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3574
3575 /*
77ae365e 3576 * If we did not convert it, then we must try again.
7a8e76a3 3577 */
77ae365e
SR
3578 if (!ret)
3579 goto spin;
7a8e76a3 3580
77ae365e
SR
3581 /*
3582 * Yeah! We succeeded in replacing the page.
3583 *
3584 * Now make the new head point back to the reader page.
3585 */
5ded3dc6 3586 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3587 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3588
3589 /* Finally update the reader page to the new head */
3590 cpu_buffer->reader_page = reader;
3591 rb_reset_reader_page(cpu_buffer);
3592
66a8cb95
SR
3593 if (overwrite != cpu_buffer->last_overrun) {
3594 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595 cpu_buffer->last_overrun = overwrite;
3596 }
3597
d769041f
SR
3598 goto again;
3599
3600 out:
0199c4e6 3601 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3602 local_irq_restore(flags);
d769041f
SR
3603
3604 return reader;
3605}
3606
3607static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3608{
3609 struct ring_buffer_event *event;
3610 struct buffer_page *reader;
3611 unsigned length;
3612
3613 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3614
d769041f 3615 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3616 if (RB_WARN_ON(cpu_buffer, !reader))
3617 return;
7a8e76a3 3618
d769041f
SR
3619 event = rb_reader_event(cpu_buffer);
3620
a1863c21 3621 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3622 cpu_buffer->read++;
d769041f
SR
3623
3624 rb_update_read_stamp(cpu_buffer, event);
3625
3626 length = rb_event_length(event);
6f807acd 3627 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3628}
3629
3630static void rb_advance_iter(struct ring_buffer_iter *iter)
3631{
7a8e76a3
SR
3632 struct ring_buffer_per_cpu *cpu_buffer;
3633 struct ring_buffer_event *event;
3634 unsigned length;
3635
3636 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3637
3638 /*
3639 * Check if we are at the end of the buffer.
3640 */
bf41a158 3641 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3642 /* discarded commits can make the page empty */
3643 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3644 return;
d769041f 3645 rb_inc_iter(iter);
7a8e76a3
SR
3646 return;
3647 }
3648
3649 event = rb_iter_head_event(iter);
3650
3651 length = rb_event_length(event);
3652
3653 /*
3654 * This should not be called to advance the header if we are
3655 * at the tail of the buffer.
3656 */
3e89c7bb 3657 if (RB_WARN_ON(cpu_buffer,
f536aafc 3658 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3659 (iter->head + length > rb_commit_index(cpu_buffer))))
3660 return;
7a8e76a3
SR
3661
3662 rb_update_iter_read_stamp(iter, event);
3663
3664 iter->head += length;
3665
3666 /* check for end of page padding */
bf41a158
SR
3667 if ((iter->head >= rb_page_size(iter->head_page)) &&
3668 (iter->head_page != cpu_buffer->commit_page))
771e0384 3669 rb_inc_iter(iter);
7a8e76a3
SR
3670}
3671
66a8cb95
SR
3672static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3673{
3674 return cpu_buffer->lost_events;
3675}
3676
f83c9d0f 3677static struct ring_buffer_event *
66a8cb95
SR
3678rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3679 unsigned long *lost_events)
7a8e76a3 3680{
7a8e76a3 3681 struct ring_buffer_event *event;
d769041f 3682 struct buffer_page *reader;
818e3dd3 3683 int nr_loops = 0;
7a8e76a3 3684
7a8e76a3 3685 again:
818e3dd3 3686 /*
69d1b839
SR
3687 * We repeat when a time extend is encountered.
3688 * Since the time extend is always attached to a data event,
3689 * we should never loop more than once.
3690 * (We never hit the following condition more than twice).
818e3dd3 3691 */
69d1b839 3692 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3693 return NULL;
818e3dd3 3694
d769041f
SR
3695 reader = rb_get_reader_page(cpu_buffer);
3696 if (!reader)
7a8e76a3
SR
3697 return NULL;
3698
d769041f 3699 event = rb_reader_event(cpu_buffer);
7a8e76a3 3700
334d4169 3701 switch (event->type_len) {
7a8e76a3 3702 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3703 if (rb_null_event(event))
3704 RB_WARN_ON(cpu_buffer, 1);
3705 /*
3706 * Because the writer could be discarding every
3707 * event it creates (which would probably be bad)
3708 * if we were to go back to "again" then we may never
3709 * catch up, and will trigger the warn on, or lock
3710 * the box. Return the padding, and we will release
3711 * the current locks, and try again.
3712 */
2d622719 3713 return event;
7a8e76a3
SR
3714
3715 case RINGBUF_TYPE_TIME_EXTEND:
3716 /* Internal data, OK to advance */
d769041f 3717 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3718 goto again;
3719
3720 case RINGBUF_TYPE_TIME_STAMP:
3721 /* FIXME: not implemented */
d769041f 3722 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3723 goto again;
3724
3725 case RINGBUF_TYPE_DATA:
3726 if (ts) {
3727 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3729 cpu_buffer->cpu, ts);
7a8e76a3 3730 }
66a8cb95
SR
3731 if (lost_events)
3732 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3733 return event;
3734
3735 default:
3736 BUG();
3737 }
3738
3739 return NULL;
3740}
c4f50183 3741EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3742
f83c9d0f
SR
3743static struct ring_buffer_event *
3744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3745{
3746 struct ring_buffer *buffer;
3747 struct ring_buffer_per_cpu *cpu_buffer;
3748 struct ring_buffer_event *event;
818e3dd3 3749 int nr_loops = 0;
7a8e76a3 3750
7a8e76a3
SR
3751 cpu_buffer = iter->cpu_buffer;
3752 buffer = cpu_buffer->buffer;
3753
492a74f4
SR
3754 /*
3755 * Check if someone performed a consuming read to
3756 * the buffer. A consuming read invalidates the iterator
3757 * and we need to reset the iterator in this case.
3758 */
3759 if (unlikely(iter->cache_read != cpu_buffer->read ||
3760 iter->cache_reader_page != cpu_buffer->reader_page))
3761 rb_iter_reset(iter);
3762
7a8e76a3 3763 again:
3c05d748
SR
3764 if (ring_buffer_iter_empty(iter))
3765 return NULL;
3766
818e3dd3 3767 /*
69d1b839
SR
3768 * We repeat when a time extend is encountered.
3769 * Since the time extend is always attached to a data event,
3770 * we should never loop more than once.
3771 * (We never hit the following condition more than twice).
818e3dd3 3772 */
69d1b839 3773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3774 return NULL;
818e3dd3 3775
7a8e76a3
SR
3776 if (rb_per_cpu_empty(cpu_buffer))
3777 return NULL;
3778
3c05d748
SR
3779 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3780 rb_inc_iter(iter);
3781 goto again;
3782 }
3783
7a8e76a3
SR
3784 event = rb_iter_head_event(iter);
3785
334d4169 3786 switch (event->type_len) {
7a8e76a3 3787 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3788 if (rb_null_event(event)) {
3789 rb_inc_iter(iter);
3790 goto again;
3791 }
3792 rb_advance_iter(iter);
3793 return event;
7a8e76a3
SR
3794
3795 case RINGBUF_TYPE_TIME_EXTEND:
3796 /* Internal data, OK to advance */
3797 rb_advance_iter(iter);
3798 goto again;
3799
3800 case RINGBUF_TYPE_TIME_STAMP:
3801 /* FIXME: not implemented */
3802 rb_advance_iter(iter);
3803 goto again;
3804
3805 case RINGBUF_TYPE_DATA:
3806 if (ts) {
3807 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3808 ring_buffer_normalize_time_stamp(buffer,
3809 cpu_buffer->cpu, ts);
7a8e76a3
SR
3810 }
3811 return event;
3812
3813 default:
3814 BUG();
3815 }
3816
3817 return NULL;
3818}
c4f50183 3819EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3820
8d707e8e
SR
3821static inline int rb_ok_to_lock(void)
3822{
3823 /*
3824 * If an NMI die dumps out the content of the ring buffer
3825 * do not grab locks. We also permanently disable the ring
3826 * buffer too. A one time deal is all you get from reading
3827 * the ring buffer from an NMI.
3828 */
464e85eb 3829 if (likely(!in_nmi()))
8d707e8e
SR
3830 return 1;
3831
3832 tracing_off_permanent();
3833 return 0;
3834}
3835
f83c9d0f
SR
3836/**
3837 * ring_buffer_peek - peek at the next event to be read
3838 * @buffer: The ring buffer to read
3839 * @cpu: The cpu to peak at
3840 * @ts: The timestamp counter of this event.
66a8cb95 3841 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3842 *
3843 * This will return the event that will be read next, but does
3844 * not consume the data.
3845 */
3846struct ring_buffer_event *
66a8cb95
SR
3847ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3848 unsigned long *lost_events)
f83c9d0f
SR
3849{
3850 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3851 struct ring_buffer_event *event;
f83c9d0f 3852 unsigned long flags;
8d707e8e 3853 int dolock;
f83c9d0f 3854
554f786e 3855 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3856 return NULL;
554f786e 3857
8d707e8e 3858 dolock = rb_ok_to_lock();
2d622719 3859 again:
8d707e8e
SR
3860 local_irq_save(flags);
3861 if (dolock)
5389f6fa 3862 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3863 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3864 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 rb_advance_reader(cpu_buffer);
8d707e8e 3866 if (dolock)
5389f6fa 3867 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3868 local_irq_restore(flags);
f83c9d0f 3869
1b959e18 3870 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3871 goto again;
2d622719 3872
f83c9d0f
SR
3873 return event;
3874}
3875
3876/**
3877 * ring_buffer_iter_peek - peek at the next event to be read
3878 * @iter: The ring buffer iterator
3879 * @ts: The timestamp counter of this event.
3880 *
3881 * This will return the event that will be read next, but does
3882 * not increment the iterator.
3883 */
3884struct ring_buffer_event *
3885ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3886{
3887 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888 struct ring_buffer_event *event;
3889 unsigned long flags;
3890
2d622719 3891 again:
5389f6fa 3892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3893 event = rb_iter_peek(iter, ts);
5389f6fa 3894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3895
1b959e18 3896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3897 goto again;
2d622719 3898
f83c9d0f
SR
3899 return event;
3900}
3901
7a8e76a3
SR
3902/**
3903 * ring_buffer_consume - return an event and consume it
3904 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3905 * @cpu: the cpu to read the buffer from
3906 * @ts: a variable to store the timestamp (may be NULL)
3907 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3908 *
3909 * Returns the next event in the ring buffer, and that event is consumed.
3910 * Meaning, that sequential reads will keep returning a different event,
3911 * and eventually empty the ring buffer if the producer is slower.
3912 */
3913struct ring_buffer_event *
66a8cb95
SR
3914ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915 unsigned long *lost_events)
7a8e76a3 3916{
554f786e
SR
3917 struct ring_buffer_per_cpu *cpu_buffer;
3918 struct ring_buffer_event *event = NULL;
f83c9d0f 3919 unsigned long flags;
8d707e8e
SR
3920 int dolock;
3921
3922 dolock = rb_ok_to_lock();
7a8e76a3 3923
2d622719 3924 again:
554f786e
SR
3925 /* might be called in atomic */
3926 preempt_disable();
3927
9e01c1b7 3928 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3929 goto out;
7a8e76a3 3930
554f786e 3931 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3932 local_irq_save(flags);
3933 if (dolock)
5389f6fa 3934 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3935
66a8cb95
SR
3936 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3937 if (event) {
3938 cpu_buffer->lost_events = 0;
469535a5 3939 rb_advance_reader(cpu_buffer);
66a8cb95 3940 }
7a8e76a3 3941
8d707e8e 3942 if (dolock)
5389f6fa 3943 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3944 local_irq_restore(flags);
f83c9d0f 3945
554f786e
SR
3946 out:
3947 preempt_enable();
3948
1b959e18 3949 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3950 goto again;
2d622719 3951
7a8e76a3
SR
3952 return event;
3953}
c4f50183 3954EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3955
3956/**
72c9ddfd 3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3958 * @buffer: The ring buffer to read from
3959 * @cpu: The cpu buffer to iterate over
3960 *
72c9ddfd
DM
3961 * This performs the initial preparations necessary to iterate
3962 * through the buffer. Memory is allocated, buffer recording
3963 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3964 *
72c9ddfd
DM
3965 * Disabling buffer recordng prevents the reading from being
3966 * corrupted. This is not a consuming read, so a producer is not
3967 * expected.
3968 *
3969 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3970 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3971 * Afterwards, ring_buffer_read_start is invoked to get things going
3972 * for real.
3973 *
d611851b 3974 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3975 */
3976struct ring_buffer_iter *
72c9ddfd 3977ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3978{
3979 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3980 struct ring_buffer_iter *iter;
7a8e76a3 3981
9e01c1b7 3982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3983 return NULL;
7a8e76a3
SR
3984
3985 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3986 if (!iter)
8aabee57 3987 return NULL;
7a8e76a3
SR
3988
3989 cpu_buffer = buffer->buffers[cpu];
3990
3991 iter->cpu_buffer = cpu_buffer;
3992
83f40318 3993 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3994 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3995
3996 return iter;
3997}
3998EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3999
4000/**
4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4002 *
4003 * All previously invoked ring_buffer_read_prepare calls to prepare
4004 * iterators will be synchronized. Afterwards, read_buffer_read_start
4005 * calls on those iterators are allowed.
4006 */
4007void
4008ring_buffer_read_prepare_sync(void)
4009{
7a8e76a3 4010 synchronize_sched();
72c9ddfd
DM
4011}
4012EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4013
4014/**
4015 * ring_buffer_read_start - start a non consuming read of the buffer
4016 * @iter: The iterator returned by ring_buffer_read_prepare
4017 *
4018 * This finalizes the startup of an iteration through the buffer.
4019 * The iterator comes from a call to ring_buffer_read_prepare and
4020 * an intervening ring_buffer_read_prepare_sync must have been
4021 * performed.
4022 *
d611851b 4023 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4024 */
4025void
4026ring_buffer_read_start(struct ring_buffer_iter *iter)
4027{
4028 struct ring_buffer_per_cpu *cpu_buffer;
4029 unsigned long flags;
4030
4031 if (!iter)
4032 return;
4033
4034 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4035
5389f6fa 4036 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4037 arch_spin_lock(&cpu_buffer->lock);
642edba5 4038 rb_iter_reset(iter);
0199c4e6 4039 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4040 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4041}
c4f50183 4042EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4043
4044/**
d611851b 4045 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4046 * @iter: The iterator retrieved by ring_buffer_start
4047 *
4048 * This re-enables the recording to the buffer, and frees the
4049 * iterator.
4050 */
4051void
4052ring_buffer_read_finish(struct ring_buffer_iter *iter)
4053{
4054 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4055 unsigned long flags;
7a8e76a3 4056
659f451f
SR
4057 /*
4058 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4059 * to check the integrity of the ring buffer.
4060 * Must prevent readers from trying to read, as the check
4061 * clears the HEAD page and readers require it.
659f451f 4062 */
9366c1ba 4063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4064 rb_check_pages(cpu_buffer);
9366c1ba 4065 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4066
7a8e76a3 4067 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4068 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4069 kfree(iter);
4070}
c4f50183 4071EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4072
4073/**
4074 * ring_buffer_read - read the next item in the ring buffer by the iterator
4075 * @iter: The ring buffer iterator
4076 * @ts: The time stamp of the event read.
4077 *
4078 * This reads the next event in the ring buffer and increments the iterator.
4079 */
4080struct ring_buffer_event *
4081ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4082{
4083 struct ring_buffer_event *event;
f83c9d0f
SR
4084 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4085 unsigned long flags;
7a8e76a3 4086
5389f6fa 4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4088 again:
f83c9d0f 4089 event = rb_iter_peek(iter, ts);
7a8e76a3 4090 if (!event)
f83c9d0f 4091 goto out;
7a8e76a3 4092
7e9391cf
SR
4093 if (event->type_len == RINGBUF_TYPE_PADDING)
4094 goto again;
4095
7a8e76a3 4096 rb_advance_iter(iter);
f83c9d0f 4097 out:
5389f6fa 4098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4099
4100 return event;
4101}
c4f50183 4102EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4103
4104/**
4105 * ring_buffer_size - return the size of the ring buffer (in bytes)
4106 * @buffer: The ring buffer.
4107 */
438ced17 4108unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4109{
438ced17
VN
4110 /*
4111 * Earlier, this method returned
4112 * BUF_PAGE_SIZE * buffer->nr_pages
4113 * Since the nr_pages field is now removed, we have converted this to
4114 * return the per cpu buffer value.
4115 */
4116 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4117 return 0;
4118
4119 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4120}
c4f50183 4121EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4122
4123static void
4124rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4125{
77ae365e
SR
4126 rb_head_page_deactivate(cpu_buffer);
4127
7a8e76a3 4128 cpu_buffer->head_page
3adc54fa 4129 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4130 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4131 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4132 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4133
6f807acd 4134 cpu_buffer->head_page->read = 0;
bf41a158
SR
4135
4136 cpu_buffer->tail_page = cpu_buffer->head_page;
4137 cpu_buffer->commit_page = cpu_buffer->head_page;
4138
4139 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4140 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4141 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4142 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4143 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4144 cpu_buffer->reader_page->read = 0;
7a8e76a3 4145
c64e148a 4146 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4147 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4148 local_set(&cpu_buffer->commit_overrun, 0);
4149 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4150 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4151 local_set(&cpu_buffer->committing, 0);
4152 local_set(&cpu_buffer->commits, 0);
77ae365e 4153 cpu_buffer->read = 0;
c64e148a 4154 cpu_buffer->read_bytes = 0;
69507c06
SR
4155
4156 cpu_buffer->write_stamp = 0;
4157 cpu_buffer->read_stamp = 0;
77ae365e 4158
66a8cb95
SR
4159 cpu_buffer->lost_events = 0;
4160 cpu_buffer->last_overrun = 0;
4161
77ae365e 4162 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4163}
4164
4165/**
4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167 * @buffer: The ring buffer to reset a per cpu buffer of
4168 * @cpu: The CPU buffer to be reset
4169 */
4170void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4171{
4172 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4173 unsigned long flags;
4174
9e01c1b7 4175 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4176 return;
7a8e76a3 4177
83f40318 4178 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4179 atomic_inc(&cpu_buffer->record_disabled);
4180
83f40318
VN
4181 /* Make sure all commits have finished */
4182 synchronize_sched();
4183
5389f6fa 4184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4185
41b6a95d
SR
4186 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4187 goto out;
4188
0199c4e6 4189 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4190
4191 rb_reset_cpu(cpu_buffer);
4192
0199c4e6 4193 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4194
41b6a95d 4195 out:
5389f6fa 4196 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4197
4198 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4199 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4200}
c4f50183 4201EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4202
4203/**
4204 * ring_buffer_reset - reset a ring buffer
4205 * @buffer: The ring buffer to reset all cpu buffers
4206 */
4207void ring_buffer_reset(struct ring_buffer *buffer)
4208{
7a8e76a3
SR
4209 int cpu;
4210
7a8e76a3 4211 for_each_buffer_cpu(buffer, cpu)
d769041f 4212 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4213}
c4f50183 4214EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4215
4216/**
4217 * rind_buffer_empty - is the ring buffer empty?
4218 * @buffer: The ring buffer to test
4219 */
4220int ring_buffer_empty(struct ring_buffer *buffer)
4221{
4222 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4223 unsigned long flags;
8d707e8e 4224 int dolock;
7a8e76a3 4225 int cpu;
d4788207 4226 int ret;
7a8e76a3 4227
8d707e8e 4228 dolock = rb_ok_to_lock();
7a8e76a3
SR
4229
4230 /* yes this is racy, but if you don't like the race, lock the buffer */
4231 for_each_buffer_cpu(buffer, cpu) {
4232 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4233 local_irq_save(flags);
4234 if (dolock)
5389f6fa 4235 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4236 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4237 if (dolock)
5389f6fa 4238 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4239 local_irq_restore(flags);
4240
d4788207 4241 if (!ret)
7a8e76a3
SR
4242 return 0;
4243 }
554f786e 4244
7a8e76a3
SR
4245 return 1;
4246}
c4f50183 4247EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4248
4249/**
4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251 * @buffer: The ring buffer
4252 * @cpu: The CPU buffer to test
4253 */
4254int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4255{
4256 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4257 unsigned long flags;
8d707e8e 4258 int dolock;
8aabee57 4259 int ret;
7a8e76a3 4260
9e01c1b7 4261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4262 return 1;
7a8e76a3 4263
8d707e8e
SR
4264 dolock = rb_ok_to_lock();
4265
7a8e76a3 4266 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4267 local_irq_save(flags);
4268 if (dolock)
5389f6fa 4269 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4270 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4271 if (dolock)
5389f6fa 4272 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4273 local_irq_restore(flags);
554f786e
SR
4274
4275 return ret;
7a8e76a3 4276}
c4f50183 4277EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4278
85bac32c 4279#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4280/**
4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282 * @buffer_a: One buffer to swap with
4283 * @buffer_b: The other buffer to swap with
4284 *
4285 * This function is useful for tracers that want to take a "snapshot"
4286 * of a CPU buffer and has another back up buffer lying around.
4287 * it is expected that the tracer handles the cpu buffer not being
4288 * used at the moment.
4289 */
4290int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4291 struct ring_buffer *buffer_b, int cpu)
4292{
4293 struct ring_buffer_per_cpu *cpu_buffer_a;
4294 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4295 int ret = -EINVAL;
4296
9e01c1b7
RR
4297 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4298 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4299 goto out;
7a8e76a3 4300
438ced17
VN
4301 cpu_buffer_a = buffer_a->buffers[cpu];
4302 cpu_buffer_b = buffer_b->buffers[cpu];
4303
7a8e76a3 4304 /* At least make sure the two buffers are somewhat the same */
438ced17 4305 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4306 goto out;
4307
4308 ret = -EAGAIN;
7a8e76a3 4309
97b17efe 4310 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4311 goto out;
97b17efe
SR
4312
4313 if (atomic_read(&buffer_a->record_disabled))
554f786e 4314 goto out;
97b17efe
SR
4315
4316 if (atomic_read(&buffer_b->record_disabled))
554f786e 4317 goto out;
97b17efe 4318
97b17efe 4319 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4320 goto out;
97b17efe
SR
4321
4322 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4323 goto out;
97b17efe 4324
7a8e76a3
SR
4325 /*
4326 * We can't do a synchronize_sched here because this
4327 * function can be called in atomic context.
4328 * Normally this will be called from the same CPU as cpu.
4329 * If not it's up to the caller to protect this.
4330 */
4331 atomic_inc(&cpu_buffer_a->record_disabled);
4332 atomic_inc(&cpu_buffer_b->record_disabled);
4333
98277991
SR
4334 ret = -EBUSY;
4335 if (local_read(&cpu_buffer_a->committing))
4336 goto out_dec;
4337 if (local_read(&cpu_buffer_b->committing))
4338 goto out_dec;
4339
7a8e76a3
SR
4340 buffer_a->buffers[cpu] = cpu_buffer_b;
4341 buffer_b->buffers[cpu] = cpu_buffer_a;
4342
4343 cpu_buffer_b->buffer = buffer_a;
4344 cpu_buffer_a->buffer = buffer_b;
4345
98277991
SR
4346 ret = 0;
4347
4348out_dec:
7a8e76a3
SR
4349 atomic_dec(&cpu_buffer_a->record_disabled);
4350 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4351out:
554f786e 4352 return ret;
7a8e76a3 4353}
c4f50183 4354EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4355#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4356
8789a9e7
SR
4357/**
4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359 * @buffer: the buffer to allocate for.
d611851b 4360 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4361 *
4362 * This function is used in conjunction with ring_buffer_read_page.
4363 * When reading a full page from the ring buffer, these functions
4364 * can be used to speed up the process. The calling function should
4365 * allocate a few pages first with this function. Then when it
4366 * needs to get pages from the ring buffer, it passes the result
4367 * of this function into ring_buffer_read_page, which will swap
4368 * the page that was allocated, with the read page of the buffer.
4369 *
4370 * Returns:
4371 * The page allocated, or NULL on error.
4372 */
7ea59064 4373void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4374{
044fa782 4375 struct buffer_data_page *bpage;
7ea59064 4376 struct page *page;
8789a9e7 4377
d7ec4bfe
VN
4378 page = alloc_pages_node(cpu_to_node(cpu),
4379 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4380 if (!page)
8789a9e7
SR
4381 return NULL;
4382
7ea59064 4383 bpage = page_address(page);
8789a9e7 4384
ef7a4a16
SR
4385 rb_init_page(bpage);
4386
044fa782 4387 return bpage;
8789a9e7 4388}
d6ce96da 4389EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4390
4391/**
4392 * ring_buffer_free_read_page - free an allocated read page
4393 * @buffer: the buffer the page was allocate for
4394 * @data: the page to free
4395 *
4396 * Free a page allocated from ring_buffer_alloc_read_page.
4397 */
4398void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4399{
4400 free_page((unsigned long)data);
4401}
d6ce96da 4402EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4403
4404/**
4405 * ring_buffer_read_page - extract a page from the ring buffer
4406 * @buffer: buffer to extract from
4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4408 * @len: amount to extract
8789a9e7
SR
4409 * @cpu: the cpu of the buffer to extract
4410 * @full: should the extraction only happen when the page is full.
4411 *
4412 * This function will pull out a page from the ring buffer and consume it.
4413 * @data_page must be the address of the variable that was returned
4414 * from ring_buffer_alloc_read_page. This is because the page might be used
4415 * to swap with a page in the ring buffer.
4416 *
4417 * for example:
d611851b 4418 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4419 * if (!rpage)
4420 * return error;
ef7a4a16 4421 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4422 * if (ret >= 0)
4423 * process_page(rpage, ret);
8789a9e7
SR
4424 *
4425 * When @full is set, the function will not return true unless
4426 * the writer is off the reader page.
4427 *
4428 * Note: it is up to the calling functions to handle sleeps and wakeups.
4429 * The ring buffer can be used anywhere in the kernel and can not
4430 * blindly call wake_up. The layer that uses the ring buffer must be
4431 * responsible for that.
4432 *
4433 * Returns:
667d2412
LJ
4434 * >=0 if data has been transferred, returns the offset of consumed data.
4435 * <0 if no data has been transferred.
8789a9e7
SR
4436 */
4437int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4438 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4439{
4440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441 struct ring_buffer_event *event;
044fa782 4442 struct buffer_data_page *bpage;
ef7a4a16 4443 struct buffer_page *reader;
ff0ff84a 4444 unsigned long missed_events;
8789a9e7 4445 unsigned long flags;
ef7a4a16 4446 unsigned int commit;
667d2412 4447 unsigned int read;
4f3640f8 4448 u64 save_timestamp;
667d2412 4449 int ret = -1;
8789a9e7 4450
554f786e
SR
4451 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4452 goto out;
4453
474d32b6
SR
4454 /*
4455 * If len is not big enough to hold the page header, then
4456 * we can not copy anything.
4457 */
4458 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4459 goto out;
474d32b6
SR
4460
4461 len -= BUF_PAGE_HDR_SIZE;
4462
8789a9e7 4463 if (!data_page)
554f786e 4464 goto out;
8789a9e7 4465
044fa782
SR
4466 bpage = *data_page;
4467 if (!bpage)
554f786e 4468 goto out;
8789a9e7 4469
5389f6fa 4470 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4471
ef7a4a16
SR
4472 reader = rb_get_reader_page(cpu_buffer);
4473 if (!reader)
554f786e 4474 goto out_unlock;
8789a9e7 4475
ef7a4a16
SR
4476 event = rb_reader_event(cpu_buffer);
4477
4478 read = reader->read;
4479 commit = rb_page_commit(reader);
667d2412 4480
66a8cb95 4481 /* Check if any events were dropped */
ff0ff84a 4482 missed_events = cpu_buffer->lost_events;
66a8cb95 4483
8789a9e7 4484 /*
474d32b6
SR
4485 * If this page has been partially read or
4486 * if len is not big enough to read the rest of the page or
4487 * a writer is still on the page, then
4488 * we must copy the data from the page to the buffer.
4489 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4490 */
474d32b6 4491 if (read || (len < (commit - read)) ||
ef7a4a16 4492 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4493 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4494 unsigned int rpos = read;
4495 unsigned int pos = 0;
ef7a4a16 4496 unsigned int size;
8789a9e7
SR
4497
4498 if (full)
554f786e 4499 goto out_unlock;
8789a9e7 4500
ef7a4a16
SR
4501 if (len > (commit - read))
4502 len = (commit - read);
4503
69d1b839
SR
4504 /* Always keep the time extend and data together */
4505 size = rb_event_ts_length(event);
ef7a4a16
SR
4506
4507 if (len < size)
554f786e 4508 goto out_unlock;
ef7a4a16 4509
4f3640f8
SR
4510 /* save the current timestamp, since the user will need it */
4511 save_timestamp = cpu_buffer->read_stamp;
4512
ef7a4a16
SR
4513 /* Need to copy one event at a time */
4514 do {
e1e35927
DS
4515 /* We need the size of one event, because
4516 * rb_advance_reader only advances by one event,
4517 * whereas rb_event_ts_length may include the size of
4518 * one or two events.
4519 * We have already ensured there's enough space if this
4520 * is a time extend. */
4521 size = rb_event_length(event);
474d32b6 4522 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4523
4524 len -= size;
4525
4526 rb_advance_reader(cpu_buffer);
474d32b6
SR
4527 rpos = reader->read;
4528 pos += size;
ef7a4a16 4529
18fab912
HY
4530 if (rpos >= commit)
4531 break;
4532
ef7a4a16 4533 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4534 /* Always keep the time extend and data together */
4535 size = rb_event_ts_length(event);
e1e35927 4536 } while (len >= size);
667d2412
LJ
4537
4538 /* update bpage */
ef7a4a16 4539 local_set(&bpage->commit, pos);
4f3640f8 4540 bpage->time_stamp = save_timestamp;
ef7a4a16 4541
474d32b6
SR
4542 /* we copied everything to the beginning */
4543 read = 0;
8789a9e7 4544 } else {
afbab76a 4545 /* update the entry counter */
77ae365e 4546 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4547 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4548
8789a9e7 4549 /* swap the pages */
044fa782 4550 rb_init_page(bpage);
ef7a4a16
SR
4551 bpage = reader->page;
4552 reader->page = *data_page;
4553 local_set(&reader->write, 0);
778c55d4 4554 local_set(&reader->entries, 0);
ef7a4a16 4555 reader->read = 0;
044fa782 4556 *data_page = bpage;
ff0ff84a
SR
4557
4558 /*
4559 * Use the real_end for the data size,
4560 * This gives us a chance to store the lost events
4561 * on the page.
4562 */
4563 if (reader->real_end)
4564 local_set(&bpage->commit, reader->real_end);
8789a9e7 4565 }
667d2412 4566 ret = read;
8789a9e7 4567
66a8cb95 4568 cpu_buffer->lost_events = 0;
2711ca23
SR
4569
4570 commit = local_read(&bpage->commit);
66a8cb95
SR
4571 /*
4572 * Set a flag in the commit field if we lost events
4573 */
ff0ff84a 4574 if (missed_events) {
ff0ff84a
SR
4575 /* If there is room at the end of the page to save the
4576 * missed events, then record it there.
4577 */
4578 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4579 memcpy(&bpage->data[commit], &missed_events,
4580 sizeof(missed_events));
4581 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4582 commit += sizeof(missed_events);
ff0ff84a 4583 }
66a8cb95 4584 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4585 }
66a8cb95 4586
2711ca23
SR
4587 /*
4588 * This page may be off to user land. Zero it out here.
4589 */
4590 if (commit < BUF_PAGE_SIZE)
4591 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4592
554f786e 4593 out_unlock:
5389f6fa 4594 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4595
554f786e 4596 out:
8789a9e7
SR
4597 return ret;
4598}
d6ce96da 4599EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4600
59222efe 4601#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4602static int rb_cpu_notify(struct notifier_block *self,
4603 unsigned long action, void *hcpu)
554f786e
SR
4604{
4605 struct ring_buffer *buffer =
4606 container_of(self, struct ring_buffer, cpu_notify);
4607 long cpu = (long)hcpu;
438ced17
VN
4608 int cpu_i, nr_pages_same;
4609 unsigned int nr_pages;
554f786e
SR
4610
4611 switch (action) {
4612 case CPU_UP_PREPARE:
4613 case CPU_UP_PREPARE_FROZEN:
3f237a79 4614 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4615 return NOTIFY_OK;
4616
438ced17
VN
4617 nr_pages = 0;
4618 nr_pages_same = 1;
4619 /* check if all cpu sizes are same */
4620 for_each_buffer_cpu(buffer, cpu_i) {
4621 /* fill in the size from first enabled cpu */
4622 if (nr_pages == 0)
4623 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4624 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4625 nr_pages_same = 0;
4626 break;
4627 }
4628 }
4629 /* allocate minimum pages, user can later expand it */
4630 if (!nr_pages_same)
4631 nr_pages = 2;
554f786e 4632 buffer->buffers[cpu] =
438ced17 4633 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4634 if (!buffer->buffers[cpu]) {
4635 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636 cpu);
4637 return NOTIFY_OK;
4638 }
4639 smp_wmb();
3f237a79 4640 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4641 break;
4642 case CPU_DOWN_PREPARE:
4643 case CPU_DOWN_PREPARE_FROZEN:
4644 /*
4645 * Do nothing.
4646 * If we were to free the buffer, then the user would
4647 * lose any trace that was in the buffer.
4648 */
4649 break;
4650 default:
4651 break;
4652 }
4653 return NOTIFY_OK;
4654}
4655#endif
6c43e554
SRRH
4656
4657#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4658/*
4659 * This is a basic integrity check of the ring buffer.
4660 * Late in the boot cycle this test will run when configured in.
4661 * It will kick off a thread per CPU that will go into a loop
4662 * writing to the per cpu ring buffer various sizes of data.
4663 * Some of the data will be large items, some small.
4664 *
4665 * Another thread is created that goes into a spin, sending out
4666 * IPIs to the other CPUs to also write into the ring buffer.
4667 * this is to test the nesting ability of the buffer.
4668 *
4669 * Basic stats are recorded and reported. If something in the
4670 * ring buffer should happen that's not expected, a big warning
4671 * is displayed and all ring buffers are disabled.
4672 */
4673static struct task_struct *rb_threads[NR_CPUS] __initdata;
4674
4675struct rb_test_data {
4676 struct ring_buffer *buffer;
4677 unsigned long events;
4678 unsigned long bytes_written;
4679 unsigned long bytes_alloc;
4680 unsigned long bytes_dropped;
4681 unsigned long events_nested;
4682 unsigned long bytes_written_nested;
4683 unsigned long bytes_alloc_nested;
4684 unsigned long bytes_dropped_nested;
4685 int min_size_nested;
4686 int max_size_nested;
4687 int max_size;
4688 int min_size;
4689 int cpu;
4690 int cnt;
4691};
4692
4693static struct rb_test_data rb_data[NR_CPUS] __initdata;
4694
4695/* 1 meg per cpu */
4696#define RB_TEST_BUFFER_SIZE 1048576
4697
4698static char rb_string[] __initdata =
4699 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4702
4703static bool rb_test_started __initdata;
4704
4705struct rb_item {
4706 int size;
4707 char str[];
4708};
4709
4710static __init int rb_write_something(struct rb_test_data *data, bool nested)
4711{
4712 struct ring_buffer_event *event;
4713 struct rb_item *item;
4714 bool started;
4715 int event_len;
4716 int size;
4717 int len;
4718 int cnt;
4719
4720 /* Have nested writes different that what is written */
4721 cnt = data->cnt + (nested ? 27 : 0);
4722
4723 /* Multiply cnt by ~e, to make some unique increment */
4724 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4725
4726 len = size + sizeof(struct rb_item);
4727
4728 started = rb_test_started;
4729 /* read rb_test_started before checking buffer enabled */
4730 smp_rmb();
4731
4732 event = ring_buffer_lock_reserve(data->buffer, len);
4733 if (!event) {
4734 /* Ignore dropped events before test starts. */
4735 if (started) {
4736 if (nested)
4737 data->bytes_dropped += len;
4738 else
4739 data->bytes_dropped_nested += len;
4740 }
4741 return len;
4742 }
4743
4744 event_len = ring_buffer_event_length(event);
4745
4746 if (RB_WARN_ON(data->buffer, event_len < len))
4747 goto out;
4748
4749 item = ring_buffer_event_data(event);
4750 item->size = size;
4751 memcpy(item->str, rb_string, size);
4752
4753 if (nested) {
4754 data->bytes_alloc_nested += event_len;
4755 data->bytes_written_nested += len;
4756 data->events_nested++;
4757 if (!data->min_size_nested || len < data->min_size_nested)
4758 data->min_size_nested = len;
4759 if (len > data->max_size_nested)
4760 data->max_size_nested = len;
4761 } else {
4762 data->bytes_alloc += event_len;
4763 data->bytes_written += len;
4764 data->events++;
4765 if (!data->min_size || len < data->min_size)
4766 data->max_size = len;
4767 if (len > data->max_size)
4768 data->max_size = len;
4769 }
4770
4771 out:
4772 ring_buffer_unlock_commit(data->buffer, event);
4773
4774 return 0;
4775}
4776
4777static __init int rb_test(void *arg)
4778{
4779 struct rb_test_data *data = arg;
4780
4781 while (!kthread_should_stop()) {
4782 rb_write_something(data, false);
4783 data->cnt++;
4784
4785 set_current_state(TASK_INTERRUPTIBLE);
4786 /* Now sleep between a min of 100-300us and a max of 1ms */
4787 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4788 }
4789
4790 return 0;
4791}
4792
4793static __init void rb_ipi(void *ignore)
4794{
4795 struct rb_test_data *data;
4796 int cpu = smp_processor_id();
4797
4798 data = &rb_data[cpu];
4799 rb_write_something(data, true);
4800}
4801
4802static __init int rb_hammer_test(void *arg)
4803{
4804 while (!kthread_should_stop()) {
4805
4806 /* Send an IPI to all cpus to write data! */
4807 smp_call_function(rb_ipi, NULL, 1);
4808 /* No sleep, but for non preempt, let others run */
4809 schedule();
4810 }
4811
4812 return 0;
4813}
4814
4815static __init int test_ringbuffer(void)
4816{
4817 struct task_struct *rb_hammer;
4818 struct ring_buffer *buffer;
4819 int cpu;
4820 int ret = 0;
4821
4822 pr_info("Running ring buffer tests...\n");
4823
4824 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4825 if (WARN_ON(!buffer))
4826 return 0;
4827
4828 /* Disable buffer so that threads can't write to it yet */
4829 ring_buffer_record_off(buffer);
4830
4831 for_each_online_cpu(cpu) {
4832 rb_data[cpu].buffer = buffer;
4833 rb_data[cpu].cpu = cpu;
4834 rb_data[cpu].cnt = cpu;
4835 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4836 "rbtester/%d", cpu);
4837 if (WARN_ON(!rb_threads[cpu])) {
4838 pr_cont("FAILED\n");
4839 ret = -1;
4840 goto out_free;
4841 }
4842
4843 kthread_bind(rb_threads[cpu], cpu);
4844 wake_up_process(rb_threads[cpu]);
4845 }
4846
4847 /* Now create the rb hammer! */
4848 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4849 if (WARN_ON(!rb_hammer)) {
4850 pr_cont("FAILED\n");
4851 ret = -1;
4852 goto out_free;
4853 }
4854
4855 ring_buffer_record_on(buffer);
4856 /*
4857 * Show buffer is enabled before setting rb_test_started.
4858 * Yes there's a small race window where events could be
4859 * dropped and the thread wont catch it. But when a ring
4860 * buffer gets enabled, there will always be some kind of
4861 * delay before other CPUs see it. Thus, we don't care about
4862 * those dropped events. We care about events dropped after
4863 * the threads see that the buffer is active.
4864 */
4865 smp_wmb();
4866 rb_test_started = true;
4867
4868 set_current_state(TASK_INTERRUPTIBLE);
4869 /* Just run for 10 seconds */;
4870 schedule_timeout(10 * HZ);
4871
4872 kthread_stop(rb_hammer);
4873
4874 out_free:
4875 for_each_online_cpu(cpu) {
4876 if (!rb_threads[cpu])
4877 break;
4878 kthread_stop(rb_threads[cpu]);
4879 }
4880 if (ret) {
4881 ring_buffer_free(buffer);
4882 return ret;
4883 }
4884
4885 /* Report! */
4886 pr_info("finished\n");
4887 for_each_online_cpu(cpu) {
4888 struct ring_buffer_event *event;
4889 struct rb_test_data *data = &rb_data[cpu];
4890 struct rb_item *item;
4891 unsigned long total_events;
4892 unsigned long total_dropped;
4893 unsigned long total_written;
4894 unsigned long total_alloc;
4895 unsigned long total_read = 0;
4896 unsigned long total_size = 0;
4897 unsigned long total_len = 0;
4898 unsigned long total_lost = 0;
4899 unsigned long lost;
4900 int big_event_size;
4901 int small_event_size;
4902
4903 ret = -1;
4904
4905 total_events = data->events + data->events_nested;
4906 total_written = data->bytes_written + data->bytes_written_nested;
4907 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4908 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4909
4910 big_event_size = data->max_size + data->max_size_nested;
4911 small_event_size = data->min_size + data->min_size_nested;
4912
4913 pr_info("CPU %d:\n", cpu);
4914 pr_info(" events: %ld\n", total_events);
4915 pr_info(" dropped bytes: %ld\n", total_dropped);
4916 pr_info(" alloced bytes: %ld\n", total_alloc);
4917 pr_info(" written bytes: %ld\n", total_written);
4918 pr_info(" biggest event: %d\n", big_event_size);
4919 pr_info(" smallest event: %d\n", small_event_size);
4920
4921 if (RB_WARN_ON(buffer, total_dropped))
4922 break;
4923
4924 ret = 0;
4925
4926 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4927 total_lost += lost;
4928 item = ring_buffer_event_data(event);
4929 total_len += ring_buffer_event_length(event);
4930 total_size += item->size + sizeof(struct rb_item);
4931 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4932 pr_info("FAILED!\n");
4933 pr_info("buffer had: %.*s\n", item->size, item->str);
4934 pr_info("expected: %.*s\n", item->size, rb_string);
4935 RB_WARN_ON(buffer, 1);
4936 ret = -1;
4937 break;
4938 }
4939 total_read++;
4940 }
4941 if (ret)
4942 break;
4943
4944 ret = -1;
4945
4946 pr_info(" read events: %ld\n", total_read);
4947 pr_info(" lost events: %ld\n", total_lost);
4948 pr_info(" total events: %ld\n", total_lost + total_read);
4949 pr_info(" recorded len bytes: %ld\n", total_len);
4950 pr_info(" recorded size bytes: %ld\n", total_size);
4951 if (total_lost)
4952 pr_info(" With dropped events, record len and size may not match\n"
4953 " alloced and written from above\n");
4954 if (!total_lost) {
4955 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4956 total_size != total_written))
4957 break;
4958 }
4959 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4960 break;
4961
4962 ret = 0;
4963 }
4964 if (!ret)
4965 pr_info("Ring buffer PASSED!\n");
4966
4967 ring_buffer_free(buffer);
4968 return 0;
4969}
4970
4971late_initcall(test_ringbuffer);
4972#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */