ring-buffer: Use long for nr_pages to avoid overflow failures
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
34a148bf 248static void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
abc9b56d 283struct buffer_data_page {
e4c2ce82 284 u64 time_stamp; /* page time stamp */
c3706f00 285 local_t commit; /* write committed index */
649508f6 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
287};
288
77ae365e
SR
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
abc9b56d 297struct buffer_page {
778c55d4 298 struct list_head list; /* list of buffer pages */
abc9b56d 299 local_t write; /* index for next write */
6f807acd 300 unsigned read; /* index for next read */
778c55d4 301 local_t entries; /* entries on this page */
ff0ff84a 302 unsigned long real_end; /* real end of data */
abc9b56d 303 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
304};
305
77ae365e
SR
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
044fa782 321static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 322{
044fa782 323 local_set(&bpage->commit, 0);
abc9b56d
SR
324}
325
474d32b6
SR
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
ef7a4a16
SR
332size_t ring_buffer_page_len(void *page)
333{
474d32b6
SR
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
336}
337
ed56829c
SR
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
34a148bf 342static void free_buffer_page(struct buffer_page *bpage)
ed56829c 343{
34a148bf 344 free_page((unsigned long)bpage->page);
e4c2ce82 345 kfree(bpage);
ed56829c
SR
346}
347
7a8e76a3
SR
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
474d32b6 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 359
be957c44
SR
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
d1b182a8
SR
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
c0cd93aa
SRRH
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
d1b182a8
SR
391}
392
15693458
SRRH
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
1e0d6714 396 wait_queue_head_t full_waiters;
15693458 397 bool waiters_pending;
1e0d6714
SRRH
398 bool full_waiters_pending;
399 bool wakeup_full;
15693458
SRRH
400};
401
fcc742ea
SRRH
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
a497adb4
SRRH
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
7a8e76a3
SR
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
985023de 435 atomic_t record_disabled;
7a8e76a3 436 struct ring_buffer *buffer;
5389f6fa 437 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 438 arch_spinlock_t lock;
7a8e76a3 439 struct lock_class_key lock_key;
9b94a8fb 440 unsigned long nr_pages;
58a09ec6 441 unsigned int current_context;
3adc54fa 442 struct list_head *pages;
6f807acd
SR
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
c3706f00 445 struct buffer_page *commit_page; /* committed pages */
d769041f 446 struct buffer_page *reader_page;
66a8cb95
SR
447 unsigned long lost_events;
448 unsigned long last_overrun;
c64e148a 449 local_t entries_bytes;
e4906eff 450 local_t entries;
884bfe89
SP
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
fa743953
SR
454 local_t committing;
455 local_t commits;
77ae365e 456 unsigned long read;
c64e148a 457 unsigned long read_bytes;
7a8e76a3
SR
458 u64 write_stamp;
459 u64 read_stamp;
438ced17 460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 461 long nr_pages_to_update;
438ced17 462 struct list_head new_pages; /* new pages to add */
83f40318 463 struct work_struct update_pages_work;
05fdd70d 464 struct completion update_done;
15693458
SRRH
465
466 struct rb_irq_work irq_work;
7a8e76a3
SR
467};
468
469struct ring_buffer {
7a8e76a3
SR
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
83f40318 473 atomic_t resize_disabled;
00f62f61 474 cpumask_var_t cpumask;
7a8e76a3 475
1f8a6a10
PZ
476 struct lock_class_key *reader_lock_key;
477
7a8e76a3
SR
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
554f786e 481
59222efe 482#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
483 struct notifier_block cpu_notify;
484#endif
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
06ca3209 832static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
77ae365e 1004 */
70004986 1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1006 struct buffer_page *tail_page,
1007 struct buffer_page *next_page)
1008{
77ae365e
SR
1009 unsigned long old_entries;
1010 unsigned long old_write;
77ae365e
SR
1011
1012 /*
1013 * The tail page now needs to be moved forward.
1014 *
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1018 *
1019 * We add a counter to the write field to denote this.
1020 */
1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024 /*
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1027 */
1028 barrier();
1029
1030 /*
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1033 * pointer.
1034 */
8573636e 1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1036 /* Zero the write counter */
1037 unsigned long val = old_write & ~RB_WRITE_MASK;
1038 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040 /*
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
da706d8b
LJ
1044 *
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1049 */
da706d8b
LJ
1050 (void)local_cmpxchg(&next_page->write, old_write, val);
1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1052
1053 /*
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1057 */
1058 local_set(&next_page->page->commit, 0);
1059
70004986
SRRH
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1062 }
77ae365e
SR
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 struct buffer_page *bpage)
1067{
1068 unsigned long val = (unsigned long)bpage;
1069
1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 return 1;
1072
1073 return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct list_head *list)
1081{
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 return 1;
1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 return 1;
1086 return 0;
1087}
1088
7a8e76a3 1089/**
d611851b 1090 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
c3706f00 1093 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
3adc54fa 1098 struct list_head *head = cpu_buffer->pages;
044fa782 1099 struct buffer_page *bpage, *tmp;
7a8e76a3 1100
308f7eeb
SR
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer->head_page)
1103 rb_set_head_page(cpu_buffer);
1104
77ae365e
SR
1105 rb_head_page_deactivate(cpu_buffer);
1106
3e89c7bb
SR
1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 return -1;
1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 return -1;
7a8e76a3 1111
77ae365e
SR
1112 if (rb_check_list(cpu_buffer, head))
1113 return -1;
1114
044fa782 1115 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1116 if (RB_WARN_ON(cpu_buffer,
044fa782 1117 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1118 return -1;
1119 if (RB_WARN_ON(cpu_buffer,
044fa782 1120 bpage->list.prev->next != &bpage->list))
3e89c7bb 1121 return -1;
77ae365e
SR
1122 if (rb_check_list(cpu_buffer, &bpage->list))
1123 return -1;
7a8e76a3
SR
1124 }
1125
77ae365e
SR
1126 rb_head_page_activate(cpu_buffer);
1127
7a8e76a3
SR
1128 return 0;
1129}
1130
9b94a8fb 1131static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1132{
044fa782 1133 struct buffer_page *bpage, *tmp;
9b94a8fb 1134 long i;
3adc54fa 1135
7a8e76a3 1136 for (i = 0; i < nr_pages; i++) {
7ea59064 1137 struct page *page;
d7ec4bfe
VN
1138 /*
1139 * __GFP_NORETRY flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is
1141 * not destabilized.
1142 */
044fa782 1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1144 GFP_KERNEL | __GFP_NORETRY,
438ced17 1145 cpu_to_node(cpu));
044fa782 1146 if (!bpage)
e4c2ce82 1147 goto free_pages;
77ae365e 1148
438ced17 1149 list_add(&bpage->list, pages);
77ae365e 1150
438ced17 1151 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1152 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1153 if (!page)
7a8e76a3 1154 goto free_pages;
7ea59064 1155 bpage->page = page_address(page);
044fa782 1156 rb_init_page(bpage->page);
7a8e76a3
SR
1157 }
1158
438ced17
VN
1159 return 0;
1160
1161free_pages:
1162 list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 list_del_init(&bpage->list);
1164 free_buffer_page(bpage);
1165 }
1166
1167 return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1171 unsigned long nr_pages)
438ced17
VN
1172{
1173 LIST_HEAD(pages);
1174
1175 WARN_ON(!nr_pages);
1176
1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 return -ENOMEM;
1179
3adc54fa
SR
1180 /*
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1183 * other pages.
1184 */
1185 cpu_buffer->pages = pages.next;
1186 list_del(&pages);
7a8e76a3 1187
438ced17
VN
1188 cpu_buffer->nr_pages = nr_pages;
1189
7a8e76a3
SR
1190 rb_check_pages(cpu_buffer);
1191
1192 return 0;
7a8e76a3
SR
1193}
1194
1195static struct ring_buffer_per_cpu *
9b94a8fb 1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1197{
1198 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1199 struct buffer_page *bpage;
7ea59064 1200 struct page *page;
7a8e76a3
SR
1201 int ret;
1202
1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 GFP_KERNEL, cpu_to_node(cpu));
1205 if (!cpu_buffer)
1206 return NULL;
1207
1208 cpu_buffer->cpu = cpu;
1209 cpu_buffer->buffer = buffer;
5389f6fa 1210 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1214 init_completion(&cpu_buffer->update_done);
15693458 1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1218
044fa782 1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1220 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1221 if (!bpage)
e4c2ce82
SR
1222 goto fail_free_buffer;
1223
77ae365e
SR
1224 rb_check_bpage(cpu_buffer, bpage);
1225
044fa782 1226 cpu_buffer->reader_page = bpage;
7ea59064
VN
1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 if (!page)
e4c2ce82 1229 goto fail_free_reader;
7ea59064 1230 bpage->page = page_address(page);
044fa782 1231 rb_init_page(bpage->page);
e4c2ce82 1232
d769041f 1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1234 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1235
438ced17 1236 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1237 if (ret < 0)
d769041f 1238 goto fail_free_reader;
7a8e76a3
SR
1239
1240 cpu_buffer->head_page
3adc54fa 1241 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1243
77ae365e
SR
1244 rb_head_page_activate(cpu_buffer);
1245
7a8e76a3
SR
1246 return cpu_buffer;
1247
d769041f
SR
1248 fail_free_reader:
1249 free_buffer_page(cpu_buffer->reader_page);
1250
7a8e76a3
SR
1251 fail_free_buffer:
1252 kfree(cpu_buffer);
1253 return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
3adc54fa 1258 struct list_head *head = cpu_buffer->pages;
044fa782 1259 struct buffer_page *bpage, *tmp;
7a8e76a3 1260
d769041f
SR
1261 free_buffer_page(cpu_buffer->reader_page);
1262
77ae365e
SR
1263 rb_head_page_deactivate(cpu_buffer);
1264
3adc54fa
SR
1265 if (head) {
1266 list_for_each_entry_safe(bpage, tmp, head, list) {
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
1269 }
1270 bpage = list_entry(head, struct buffer_page, list);
044fa782 1271 free_buffer_page(bpage);
7a8e76a3 1272 }
3adc54fa 1273
7a8e76a3
SR
1274 kfree(cpu_buffer);
1275}
1276
59222efe 1277#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1278static int rb_cpu_notify(struct notifier_block *self,
1279 unsigned long action, void *hcpu);
554f786e
SR
1280#endif
1281
7a8e76a3 1282/**
d611851b 1283 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1284 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1285 * @flags: attributes to set for the ring buffer.
1286 *
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1291 */
1f8a6a10
PZ
1292struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293 struct lock_class_key *key)
7a8e76a3
SR
1294{
1295 struct ring_buffer *buffer;
9b94a8fb 1296 long nr_pages;
7a8e76a3 1297 int bsize;
9b94a8fb 1298 int cpu;
7a8e76a3
SR
1299
1300 /* keep it in its own cache line */
1301 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1302 GFP_KERNEL);
1303 if (!buffer)
1304 return NULL;
1305
9e01c1b7
RR
1306 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1307 goto fail_free_buffer;
1308
438ced17 1309 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1310 buffer->flags = flags;
37886f6a 1311 buffer->clock = trace_clock_local;
1f8a6a10 1312 buffer->reader_lock_key = key;
7a8e76a3 1313
15693458 1314 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1315 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1316
7a8e76a3 1317 /* need at least two pages */
438ced17
VN
1318 if (nr_pages < 2)
1319 nr_pages = 2;
7a8e76a3 1320
3bf832ce
FW
1321 /*
1322 * In case of non-hotplug cpu, if the ring-buffer is allocated
1323 * in early initcall, it will not be notified of secondary cpus.
1324 * In that off case, we need to allocate for all possible cpus.
1325 */
1326#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1327 cpu_notifier_register_begin();
554f786e 1328 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1329#else
1330 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1331#endif
7a8e76a3
SR
1332 buffer->cpus = nr_cpu_ids;
1333
1334 bsize = sizeof(void *) * nr_cpu_ids;
1335 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1336 GFP_KERNEL);
1337 if (!buffer->buffers)
9e01c1b7 1338 goto fail_free_cpumask;
7a8e76a3
SR
1339
1340 for_each_buffer_cpu(buffer, cpu) {
1341 buffer->buffers[cpu] =
438ced17 1342 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1343 if (!buffer->buffers[cpu])
1344 goto fail_free_buffers;
1345 }
1346
59222efe 1347#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1348 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1349 buffer->cpu_notify.priority = 0;
d39ad278
SB
1350 __register_cpu_notifier(&buffer->cpu_notify);
1351 cpu_notifier_register_done();
554f786e
SR
1352#endif
1353
7a8e76a3
SR
1354 mutex_init(&buffer->mutex);
1355
1356 return buffer;
1357
1358 fail_free_buffers:
1359 for_each_buffer_cpu(buffer, cpu) {
1360 if (buffer->buffers[cpu])
1361 rb_free_cpu_buffer(buffer->buffers[cpu]);
1362 }
1363 kfree(buffer->buffers);
1364
9e01c1b7
RR
1365 fail_free_cpumask:
1366 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1367#ifdef CONFIG_HOTPLUG_CPU
1368 cpu_notifier_register_done();
1369#endif
9e01c1b7 1370
7a8e76a3
SR
1371 fail_free_buffer:
1372 kfree(buffer);
1373 return NULL;
1374}
1f8a6a10 1375EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1376
1377/**
1378 * ring_buffer_free - free a ring buffer.
1379 * @buffer: the buffer to free.
1380 */
1381void
1382ring_buffer_free(struct ring_buffer *buffer)
1383{
1384 int cpu;
1385
59222efe 1386#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1387 cpu_notifier_register_begin();
1388 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1389#endif
1390
7a8e76a3
SR
1391 for_each_buffer_cpu(buffer, cpu)
1392 rb_free_cpu_buffer(buffer->buffers[cpu]);
1393
d39ad278
SB
1394#ifdef CONFIG_HOTPLUG_CPU
1395 cpu_notifier_register_done();
1396#endif
554f786e 1397
bd3f0221 1398 kfree(buffer->buffers);
9e01c1b7
RR
1399 free_cpumask_var(buffer->cpumask);
1400
7a8e76a3
SR
1401 kfree(buffer);
1402}
c4f50183 1403EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1404
37886f6a
SR
1405void ring_buffer_set_clock(struct ring_buffer *buffer,
1406 u64 (*clock)(void))
1407{
1408 buffer->clock = clock;
1409}
1410
7a8e76a3
SR
1411static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1412
83f40318
VN
1413static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1414{
1415 return local_read(&bpage->entries) & RB_WRITE_MASK;
1416}
1417
1418static inline unsigned long rb_page_write(struct buffer_page *bpage)
1419{
1420 return local_read(&bpage->write) & RB_WRITE_MASK;
1421}
1422
5040b4b7 1423static int
9b94a8fb 1424rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1425{
83f40318
VN
1426 struct list_head *tail_page, *to_remove, *next_page;
1427 struct buffer_page *to_remove_page, *tmp_iter_page;
1428 struct buffer_page *last_page, *first_page;
9b94a8fb 1429 unsigned long nr_removed;
83f40318
VN
1430 unsigned long head_bit;
1431 int page_entries;
1432
1433 head_bit = 0;
7a8e76a3 1434
5389f6fa 1435 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1436 atomic_inc(&cpu_buffer->record_disabled);
1437 /*
1438 * We don't race with the readers since we have acquired the reader
1439 * lock. We also don't race with writers after disabling recording.
1440 * This makes it easy to figure out the first and the last page to be
1441 * removed from the list. We unlink all the pages in between including
1442 * the first and last pages. This is done in a busy loop so that we
1443 * lose the least number of traces.
1444 * The pages are freed after we restart recording and unlock readers.
1445 */
1446 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1447
83f40318
VN
1448 /*
1449 * tail page might be on reader page, we remove the next page
1450 * from the ring buffer
1451 */
1452 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1453 tail_page = rb_list_head(tail_page->next);
1454 to_remove = tail_page;
1455
1456 /* start of pages to remove */
1457 first_page = list_entry(rb_list_head(to_remove->next),
1458 struct buffer_page, list);
1459
1460 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1461 to_remove = rb_list_head(to_remove)->next;
1462 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1463 }
7a8e76a3 1464
83f40318 1465 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1466
83f40318
VN
1467 /*
1468 * Now we remove all pages between tail_page and next_page.
1469 * Make sure that we have head_bit value preserved for the
1470 * next page
1471 */
1472 tail_page->next = (struct list_head *)((unsigned long)next_page |
1473 head_bit);
1474 next_page = rb_list_head(next_page);
1475 next_page->prev = tail_page;
1476
1477 /* make sure pages points to a valid page in the ring buffer */
1478 cpu_buffer->pages = next_page;
1479
1480 /* update head page */
1481 if (head_bit)
1482 cpu_buffer->head_page = list_entry(next_page,
1483 struct buffer_page, list);
1484
1485 /*
1486 * change read pointer to make sure any read iterators reset
1487 * themselves
1488 */
1489 cpu_buffer->read = 0;
1490
1491 /* pages are removed, resume tracing and then free the pages */
1492 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1493 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1494
1495 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1496
1497 /* last buffer page to remove */
1498 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1499 list);
1500 tmp_iter_page = first_page;
1501
1502 do {
1503 to_remove_page = tmp_iter_page;
1504 rb_inc_page(cpu_buffer, &tmp_iter_page);
1505
1506 /* update the counters */
1507 page_entries = rb_page_entries(to_remove_page);
1508 if (page_entries) {
1509 /*
1510 * If something was added to this page, it was full
1511 * since it is not the tail page. So we deduct the
1512 * bytes consumed in ring buffer from here.
48fdc72f 1513 * Increment overrun to account for the lost events.
83f40318 1514 */
48fdc72f 1515 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1516 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1517 }
1518
1519 /*
1520 * We have already removed references to this list item, just
1521 * free up the buffer_page and its page
1522 */
1523 free_buffer_page(to_remove_page);
1524 nr_removed--;
1525
1526 } while (to_remove_page != last_page);
1527
1528 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1529
1530 return nr_removed == 0;
7a8e76a3
SR
1531}
1532
5040b4b7
VN
1533static int
1534rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1535{
5040b4b7
VN
1536 struct list_head *pages = &cpu_buffer->new_pages;
1537 int retries, success;
7a8e76a3 1538
5389f6fa 1539 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1540 /*
1541 * We are holding the reader lock, so the reader page won't be swapped
1542 * in the ring buffer. Now we are racing with the writer trying to
1543 * move head page and the tail page.
1544 * We are going to adapt the reader page update process where:
1545 * 1. We first splice the start and end of list of new pages between
1546 * the head page and its previous page.
1547 * 2. We cmpxchg the prev_page->next to point from head page to the
1548 * start of new pages list.
1549 * 3. Finally, we update the head->prev to the end of new list.
1550 *
1551 * We will try this process 10 times, to make sure that we don't keep
1552 * spinning.
1553 */
1554 retries = 10;
1555 success = 0;
1556 while (retries--) {
1557 struct list_head *head_page, *prev_page, *r;
1558 struct list_head *last_page, *first_page;
1559 struct list_head *head_page_with_bit;
77ae365e 1560
5040b4b7 1561 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1562 if (!head_page)
1563 break;
5040b4b7
VN
1564 prev_page = head_page->prev;
1565
1566 first_page = pages->next;
1567 last_page = pages->prev;
1568
1569 head_page_with_bit = (struct list_head *)
1570 ((unsigned long)head_page | RB_PAGE_HEAD);
1571
1572 last_page->next = head_page_with_bit;
1573 first_page->prev = prev_page;
1574
1575 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1576
1577 if (r == head_page_with_bit) {
1578 /*
1579 * yay, we replaced the page pointer to our new list,
1580 * now, we just have to update to head page's prev
1581 * pointer to point to end of list
1582 */
1583 head_page->prev = last_page;
1584 success = 1;
1585 break;
1586 }
7a8e76a3 1587 }
7a8e76a3 1588
5040b4b7
VN
1589 if (success)
1590 INIT_LIST_HEAD(pages);
1591 /*
1592 * If we weren't successful in adding in new pages, warn and stop
1593 * tracing
1594 */
1595 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1596 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1597
1598 /* free pages if they weren't inserted */
1599 if (!success) {
1600 struct buffer_page *bpage, *tmp;
1601 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1602 list) {
1603 list_del_init(&bpage->list);
1604 free_buffer_page(bpage);
1605 }
1606 }
1607 return success;
7a8e76a3
SR
1608}
1609
83f40318 1610static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1611{
5040b4b7
VN
1612 int success;
1613
438ced17 1614 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1615 success = rb_insert_pages(cpu_buffer);
438ced17 1616 else
5040b4b7
VN
1617 success = rb_remove_pages(cpu_buffer,
1618 -cpu_buffer->nr_pages_to_update);
83f40318 1619
5040b4b7
VN
1620 if (success)
1621 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1622}
1623
1624static void update_pages_handler(struct work_struct *work)
1625{
1626 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1627 struct ring_buffer_per_cpu, update_pages_work);
1628 rb_update_pages(cpu_buffer);
05fdd70d 1629 complete(&cpu_buffer->update_done);
438ced17
VN
1630}
1631
7a8e76a3
SR
1632/**
1633 * ring_buffer_resize - resize the ring buffer
1634 * @buffer: the buffer to resize.
1635 * @size: the new size.
d611851b 1636 * @cpu_id: the cpu buffer to resize
7a8e76a3 1637 *
7a8e76a3
SR
1638 * Minimum size is 2 * BUF_PAGE_SIZE.
1639 *
83f40318 1640 * Returns 0 on success and < 0 on failure.
7a8e76a3 1641 */
438ced17
VN
1642int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1643 int cpu_id)
7a8e76a3
SR
1644{
1645 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1646 unsigned long nr_pages;
83f40318 1647 int cpu, err = 0;
7a8e76a3 1648
ee51a1de
IM
1649 /*
1650 * Always succeed at resizing a non-existent buffer:
1651 */
1652 if (!buffer)
1653 return size;
1654
6a31e1f1
SR
1655 /* Make sure the requested buffer exists */
1656 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1657 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1658 return size;
1659
7a8e76a3
SR
1660 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1661 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1662
1663 /* we need a minimum of two pages */
1664 if (size < BUF_PAGE_SIZE * 2)
1665 size = BUF_PAGE_SIZE * 2;
1666
83f40318 1667 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1668
83f40318
VN
1669 /*
1670 * Don't succeed if resizing is disabled, as a reader might be
1671 * manipulating the ring buffer and is expecting a sane state while
1672 * this is true.
1673 */
1674 if (atomic_read(&buffer->resize_disabled))
1675 return -EBUSY;
18421015 1676
83f40318 1677 /* prevent another thread from changing buffer sizes */
7a8e76a3 1678 mutex_lock(&buffer->mutex);
7a8e76a3 1679
438ced17
VN
1680 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1681 /* calculate the pages to update */
7a8e76a3
SR
1682 for_each_buffer_cpu(buffer, cpu) {
1683 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1684
438ced17
VN
1685 cpu_buffer->nr_pages_to_update = nr_pages -
1686 cpu_buffer->nr_pages;
438ced17
VN
1687 /*
1688 * nothing more to do for removing pages or no update
1689 */
1690 if (cpu_buffer->nr_pages_to_update <= 0)
1691 continue;
d7ec4bfe 1692 /*
438ced17
VN
1693 * to add pages, make sure all new pages can be
1694 * allocated without receiving ENOMEM
d7ec4bfe 1695 */
438ced17
VN
1696 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1697 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1698 &cpu_buffer->new_pages, cpu)) {
438ced17 1699 /* not enough memory for new pages */
83f40318
VN
1700 err = -ENOMEM;
1701 goto out_err;
1702 }
1703 }
1704
1705 get_online_cpus();
1706 /*
1707 * Fire off all the required work handlers
05fdd70d 1708 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1709 * since we can change their buffer sizes without any race.
1710 */
1711 for_each_buffer_cpu(buffer, cpu) {
1712 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1713 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1714 continue;
1715
021c5b34
CM
1716 /* Can't run something on an offline CPU. */
1717 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1718 rb_update_pages(cpu_buffer);
1719 cpu_buffer->nr_pages_to_update = 0;
1720 } else {
05fdd70d
VN
1721 schedule_work_on(cpu,
1722 &cpu_buffer->update_pages_work);
f5eb5588 1723 }
7a8e76a3 1724 }
7a8e76a3 1725
438ced17
VN
1726 /* wait for all the updates to complete */
1727 for_each_buffer_cpu(buffer, cpu) {
1728 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1729 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1730 continue;
1731
05fdd70d
VN
1732 if (cpu_online(cpu))
1733 wait_for_completion(&cpu_buffer->update_done);
83f40318 1734 cpu_buffer->nr_pages_to_update = 0;
438ced17 1735 }
83f40318
VN
1736
1737 put_online_cpus();
438ced17 1738 } else {
8e49f418
VN
1739 /* Make sure this CPU has been intitialized */
1740 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1741 goto out;
1742
438ced17 1743 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1744
438ced17
VN
1745 if (nr_pages == cpu_buffer->nr_pages)
1746 goto out;
7a8e76a3 1747
438ced17
VN
1748 cpu_buffer->nr_pages_to_update = nr_pages -
1749 cpu_buffer->nr_pages;
1750
1751 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1752 if (cpu_buffer->nr_pages_to_update > 0 &&
1753 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1754 &cpu_buffer->new_pages, cpu_id)) {
1755 err = -ENOMEM;
1756 goto out_err;
1757 }
438ced17 1758
83f40318
VN
1759 get_online_cpus();
1760
021c5b34
CM
1761 /* Can't run something on an offline CPU. */
1762 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1763 rb_update_pages(cpu_buffer);
1764 else {
83f40318
VN
1765 schedule_work_on(cpu_id,
1766 &cpu_buffer->update_pages_work);
05fdd70d 1767 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1768 }
83f40318 1769
83f40318 1770 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1771 put_online_cpus();
438ced17 1772 }
7a8e76a3
SR
1773
1774 out:
659f451f
SR
1775 /*
1776 * The ring buffer resize can happen with the ring buffer
1777 * enabled, so that the update disturbs the tracing as little
1778 * as possible. But if the buffer is disabled, we do not need
1779 * to worry about that, and we can take the time to verify
1780 * that the buffer is not corrupt.
1781 */
1782 if (atomic_read(&buffer->record_disabled)) {
1783 atomic_inc(&buffer->record_disabled);
1784 /*
1785 * Even though the buffer was disabled, we must make sure
1786 * that it is truly disabled before calling rb_check_pages.
1787 * There could have been a race between checking
1788 * record_disable and incrementing it.
1789 */
1790 synchronize_sched();
1791 for_each_buffer_cpu(buffer, cpu) {
1792 cpu_buffer = buffer->buffers[cpu];
1793 rb_check_pages(cpu_buffer);
1794 }
1795 atomic_dec(&buffer->record_disabled);
1796 }
1797
7a8e76a3 1798 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1799 return size;
1800
83f40318 1801 out_err:
438ced17
VN
1802 for_each_buffer_cpu(buffer, cpu) {
1803 struct buffer_page *bpage, *tmp;
83f40318 1804
438ced17 1805 cpu_buffer = buffer->buffers[cpu];
438ced17 1806 cpu_buffer->nr_pages_to_update = 0;
83f40318 1807
438ced17
VN
1808 if (list_empty(&cpu_buffer->new_pages))
1809 continue;
83f40318 1810
438ced17
VN
1811 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1812 list) {
1813 list_del_init(&bpage->list);
1814 free_buffer_page(bpage);
1815 }
7a8e76a3 1816 }
641d2f63 1817 mutex_unlock(&buffer->mutex);
83f40318 1818 return err;
7a8e76a3 1819}
c4f50183 1820EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1821
750912fa
DS
1822void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1823{
1824 mutex_lock(&buffer->mutex);
1825 if (val)
1826 buffer->flags |= RB_FL_OVERWRITE;
1827 else
1828 buffer->flags &= ~RB_FL_OVERWRITE;
1829 mutex_unlock(&buffer->mutex);
1830}
1831EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1832
8789a9e7 1833static inline void *
044fa782 1834__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1835{
044fa782 1836 return bpage->data + index;
8789a9e7
SR
1837}
1838
044fa782 1839static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1840{
044fa782 1841 return bpage->page->data + index;
7a8e76a3
SR
1842}
1843
1844static inline struct ring_buffer_event *
d769041f 1845rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1846{
6f807acd
SR
1847 return __rb_page_index(cpu_buffer->reader_page,
1848 cpu_buffer->reader_page->read);
1849}
1850
7a8e76a3
SR
1851static inline struct ring_buffer_event *
1852rb_iter_head_event(struct ring_buffer_iter *iter)
1853{
6f807acd 1854 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1855}
1856
bf41a158
SR
1857static inline unsigned rb_page_commit(struct buffer_page *bpage)
1858{
abc9b56d 1859 return local_read(&bpage->page->commit);
bf41a158
SR
1860}
1861
25985edc 1862/* Size is determined by what has been committed */
bf41a158
SR
1863static inline unsigned rb_page_size(struct buffer_page *bpage)
1864{
1865 return rb_page_commit(bpage);
1866}
1867
1868static inline unsigned
1869rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1870{
1871 return rb_page_commit(cpu_buffer->commit_page);
1872}
1873
bf41a158
SR
1874static inline unsigned
1875rb_event_index(struct ring_buffer_event *event)
1876{
1877 unsigned long addr = (unsigned long)event;
1878
22f470f8 1879 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1880}
1881
34a148bf 1882static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1883{
1884 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1885
1886 /*
1887 * The iterator could be on the reader page (it starts there).
1888 * But the head could have moved, since the reader was
1889 * found. Check for this case and assign the iterator
1890 * to the head page instead of next.
1891 */
1892 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1893 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1894 else
1895 rb_inc_page(cpu_buffer, &iter->head_page);
1896
abc9b56d 1897 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1898 iter->head = 0;
1899}
1900
77ae365e
SR
1901/*
1902 * rb_handle_head_page - writer hit the head page
1903 *
1904 * Returns: +1 to retry page
1905 * 0 to continue
1906 * -1 on error
1907 */
1908static int
1909rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1910 struct buffer_page *tail_page,
1911 struct buffer_page *next_page)
1912{
1913 struct buffer_page *new_head;
1914 int entries;
1915 int type;
1916 int ret;
1917
1918 entries = rb_page_entries(next_page);
1919
1920 /*
1921 * The hard part is here. We need to move the head
1922 * forward, and protect against both readers on
1923 * other CPUs and writers coming in via interrupts.
1924 */
1925 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1926 RB_PAGE_HEAD);
1927
1928 /*
1929 * type can be one of four:
1930 * NORMAL - an interrupt already moved it for us
1931 * HEAD - we are the first to get here.
1932 * UPDATE - we are the interrupt interrupting
1933 * a current move.
1934 * MOVED - a reader on another CPU moved the next
1935 * pointer to its reader page. Give up
1936 * and try again.
1937 */
1938
1939 switch (type) {
1940 case RB_PAGE_HEAD:
1941 /*
1942 * We changed the head to UPDATE, thus
1943 * it is our responsibility to update
1944 * the counters.
1945 */
1946 local_add(entries, &cpu_buffer->overrun);
c64e148a 1947 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1948
1949 /*
1950 * The entries will be zeroed out when we move the
1951 * tail page.
1952 */
1953
1954 /* still more to do */
1955 break;
1956
1957 case RB_PAGE_UPDATE:
1958 /*
1959 * This is an interrupt that interrupt the
1960 * previous update. Still more to do.
1961 */
1962 break;
1963 case RB_PAGE_NORMAL:
1964 /*
1965 * An interrupt came in before the update
1966 * and processed this for us.
1967 * Nothing left to do.
1968 */
1969 return 1;
1970 case RB_PAGE_MOVED:
1971 /*
1972 * The reader is on another CPU and just did
1973 * a swap with our next_page.
1974 * Try again.
1975 */
1976 return 1;
1977 default:
1978 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1979 return -1;
1980 }
1981
1982 /*
1983 * Now that we are here, the old head pointer is
1984 * set to UPDATE. This will keep the reader from
1985 * swapping the head page with the reader page.
1986 * The reader (on another CPU) will spin till
1987 * we are finished.
1988 *
1989 * We just need to protect against interrupts
1990 * doing the job. We will set the next pointer
1991 * to HEAD. After that, we set the old pointer
1992 * to NORMAL, but only if it was HEAD before.
1993 * otherwise we are an interrupt, and only
1994 * want the outer most commit to reset it.
1995 */
1996 new_head = next_page;
1997 rb_inc_page(cpu_buffer, &new_head);
1998
1999 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2000 RB_PAGE_NORMAL);
2001
2002 /*
2003 * Valid returns are:
2004 * HEAD - an interrupt came in and already set it.
2005 * NORMAL - One of two things:
2006 * 1) We really set it.
2007 * 2) A bunch of interrupts came in and moved
2008 * the page forward again.
2009 */
2010 switch (ret) {
2011 case RB_PAGE_HEAD:
2012 case RB_PAGE_NORMAL:
2013 /* OK */
2014 break;
2015 default:
2016 RB_WARN_ON(cpu_buffer, 1);
2017 return -1;
2018 }
2019
2020 /*
2021 * It is possible that an interrupt came in,
2022 * set the head up, then more interrupts came in
2023 * and moved it again. When we get back here,
2024 * the page would have been set to NORMAL but we
2025 * just set it back to HEAD.
2026 *
2027 * How do you detect this? Well, if that happened
2028 * the tail page would have moved.
2029 */
2030 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2031 struct buffer_page *buffer_tail_page;
2032
2033 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2034 /*
2035 * If the tail had moved passed next, then we need
2036 * to reset the pointer.
2037 */
8573636e
SRRH
2038 if (buffer_tail_page != tail_page &&
2039 buffer_tail_page != next_page)
77ae365e
SR
2040 rb_head_page_set_normal(cpu_buffer, new_head,
2041 next_page,
2042 RB_PAGE_HEAD);
2043 }
2044
2045 /*
2046 * If this was the outer most commit (the one that
2047 * changed the original pointer from HEAD to UPDATE),
2048 * then it is up to us to reset it to NORMAL.
2049 */
2050 if (type == RB_PAGE_HEAD) {
2051 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2052 tail_page,
2053 RB_PAGE_UPDATE);
2054 if (RB_WARN_ON(cpu_buffer,
2055 ret != RB_PAGE_UPDATE))
2056 return -1;
2057 }
2058
2059 return 0;
2060}
2061
c7b09308
SR
2062static inline void
2063rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2064 unsigned long tail, struct rb_event_info *info)
c7b09308 2065{
fcc742ea 2066 struct buffer_page *tail_page = info->tail_page;
c7b09308 2067 struct ring_buffer_event *event;
fcc742ea 2068 unsigned long length = info->length;
c7b09308
SR
2069
2070 /*
2071 * Only the event that crossed the page boundary
2072 * must fill the old tail_page with padding.
2073 */
2074 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2075 /*
2076 * If the page was filled, then we still need
2077 * to update the real_end. Reset it to zero
2078 * and the reader will ignore it.
2079 */
2080 if (tail == BUF_PAGE_SIZE)
2081 tail_page->real_end = 0;
2082
c7b09308
SR
2083 local_sub(length, &tail_page->write);
2084 return;
2085 }
2086
2087 event = __rb_page_index(tail_page, tail);
b0b7065b 2088 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2089
c64e148a
VN
2090 /* account for padding bytes */
2091 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2092
ff0ff84a
SR
2093 /*
2094 * Save the original length to the meta data.
2095 * This will be used by the reader to add lost event
2096 * counter.
2097 */
2098 tail_page->real_end = tail;
2099
c7b09308
SR
2100 /*
2101 * If this event is bigger than the minimum size, then
2102 * we need to be careful that we don't subtract the
2103 * write counter enough to allow another writer to slip
2104 * in on this page.
2105 * We put in a discarded commit instead, to make sure
2106 * that this space is not used again.
2107 *
2108 * If we are less than the minimum size, we don't need to
2109 * worry about it.
2110 */
2111 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2112 /* No room for any events */
2113
2114 /* Mark the rest of the page with padding */
2115 rb_event_set_padding(event);
2116
2117 /* Set the write back to the previous setting */
2118 local_sub(length, &tail_page->write);
2119 return;
2120 }
2121
2122 /* Put in a discarded event */
2123 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2124 event->type_len = RINGBUF_TYPE_PADDING;
2125 /* time delta must be non zero */
2126 event->time_delta = 1;
c7b09308
SR
2127
2128 /* Set write to end of buffer */
2129 length = (tail + length) - BUF_PAGE_SIZE;
2130 local_sub(length, &tail_page->write);
2131}
6634ff26 2132
4239c38f
SRRH
2133static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2134
747e94ae
SR
2135/*
2136 * This is the slow path, force gcc not to inline it.
2137 */
2138static noinline struct ring_buffer_event *
6634ff26 2139rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2140 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2141{
fcc742ea 2142 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2143 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2144 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2145 struct buffer_page *next_page;
2146 int ret;
aa20ae84
SR
2147
2148 next_page = tail_page;
2149
aa20ae84
SR
2150 rb_inc_page(cpu_buffer, &next_page);
2151
aa20ae84
SR
2152 /*
2153 * If for some reason, we had an interrupt storm that made
2154 * it all the way around the buffer, bail, and warn
2155 * about it.
2156 */
2157 if (unlikely(next_page == commit_page)) {
77ae365e 2158 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2159 goto out_reset;
2160 }
2161
77ae365e
SR
2162 /*
2163 * This is where the fun begins!
2164 *
2165 * We are fighting against races between a reader that
2166 * could be on another CPU trying to swap its reader
2167 * page with the buffer head.
2168 *
2169 * We are also fighting against interrupts coming in and
2170 * moving the head or tail on us as well.
2171 *
2172 * If the next page is the head page then we have filled
2173 * the buffer, unless the commit page is still on the
2174 * reader page.
2175 */
2176 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2177
77ae365e
SR
2178 /*
2179 * If the commit is not on the reader page, then
2180 * move the header page.
2181 */
2182 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2183 /*
2184 * If we are not in overwrite mode,
2185 * this is easy, just stop here.
2186 */
884bfe89
SP
2187 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2188 local_inc(&cpu_buffer->dropped_events);
77ae365e 2189 goto out_reset;
884bfe89 2190 }
77ae365e
SR
2191
2192 ret = rb_handle_head_page(cpu_buffer,
2193 tail_page,
2194 next_page);
2195 if (ret < 0)
2196 goto out_reset;
2197 if (ret)
2198 goto out_again;
2199 } else {
2200 /*
2201 * We need to be careful here too. The
2202 * commit page could still be on the reader
2203 * page. We could have a small buffer, and
2204 * have filled up the buffer with events
2205 * from interrupts and such, and wrapped.
2206 *
2207 * Note, if the tail page is also the on the
2208 * reader_page, we let it move out.
2209 */
2210 if (unlikely((cpu_buffer->commit_page !=
2211 cpu_buffer->tail_page) &&
2212 (cpu_buffer->commit_page ==
2213 cpu_buffer->reader_page))) {
2214 local_inc(&cpu_buffer->commit_overrun);
2215 goto out_reset;
2216 }
aa20ae84
SR
2217 }
2218 }
2219
70004986 2220 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2221
77ae365e 2222 out_again:
aa20ae84 2223
fcc742ea 2224 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2225
4239c38f
SRRH
2226 /* Commit what we have for now. */
2227 rb_end_commit(cpu_buffer);
2228 /* rb_end_commit() decs committing */
2229 local_inc(&cpu_buffer->committing);
2230
aa20ae84
SR
2231 /* fail and let the caller try again */
2232 return ERR_PTR(-EAGAIN);
2233
45141d46 2234 out_reset:
6f3b3440 2235 /* reset write */
fcc742ea 2236 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2237
bf41a158 2238 return NULL;
7a8e76a3
SR
2239}
2240
d90fd774
SRRH
2241/* Slow path, do not inline */
2242static noinline struct ring_buffer_event *
2243rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2244{
d90fd774 2245 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2246
d90fd774
SRRH
2247 /* Not the first event on the page? */
2248 if (rb_event_index(event)) {
2249 event->time_delta = delta & TS_MASK;
2250 event->array[0] = delta >> TS_SHIFT;
2251 } else {
2252 /* nope, just zero it */
2253 event->time_delta = 0;
2254 event->array[0] = 0;
2255 }
a4543a2f 2256
d90fd774
SRRH
2257 return skip_time_extend(event);
2258}
a4543a2f 2259
cdb2a0a9 2260static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2261 struct ring_buffer_event *event);
2262
d90fd774
SRRH
2263/**
2264 * rb_update_event - update event type and data
2265 * @event: the event to update
2266 * @type: the type of event
2267 * @length: the size of the event field in the ring buffer
2268 *
2269 * Update the type and data fields of the event. The length
2270 * is the actual size that is written to the ring buffer,
2271 * and with this, we can determine what to place into the
2272 * data field.
2273 */
b7dc42fd 2274static void
d90fd774
SRRH
2275rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2276 struct ring_buffer_event *event,
2277 struct rb_event_info *info)
2278{
2279 unsigned length = info->length;
2280 u64 delta = info->delta;
a4543a2f 2281
b7dc42fd
SRRH
2282 /* Only a commit updates the timestamp */
2283 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2284 delta = 0;
2285
a4543a2f 2286 /*
d90fd774
SRRH
2287 * If we need to add a timestamp, then we
2288 * add it to the start of the resevered space.
a4543a2f 2289 */
d90fd774
SRRH
2290 if (unlikely(info->add_timestamp)) {
2291 event = rb_add_time_stamp(event, delta);
2292 length -= RB_LEN_TIME_EXTEND;
2293 delta = 0;
a4543a2f
SRRH
2294 }
2295
d90fd774
SRRH
2296 event->time_delta = delta;
2297 length -= RB_EVNT_HDR_SIZE;
2298 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2299 event->type_len = 0;
2300 event->array[0] = length;
2301 } else
2302 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2303}
2304
2305static unsigned rb_calculate_event_length(unsigned length)
2306{
2307 struct ring_buffer_event event; /* Used only for sizeof array */
2308
2309 /* zero length can cause confusions */
2310 if (!length)
2311 length++;
2312
2313 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2314 length += sizeof(event.array[0]);
2315
2316 length += RB_EVNT_HDR_SIZE;
2317 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2318
2319 /*
2320 * In case the time delta is larger than the 27 bits for it
2321 * in the header, we need to add a timestamp. If another
2322 * event comes in when trying to discard this one to increase
2323 * the length, then the timestamp will be added in the allocated
2324 * space of this event. If length is bigger than the size needed
2325 * for the TIME_EXTEND, then padding has to be used. The events
2326 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2327 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2328 * As length is a multiple of 4, we only need to worry if it
2329 * is 12 (RB_LEN_TIME_EXTEND + 4).
2330 */
2331 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2332 length += RB_ALIGNMENT;
2333
2334 return length;
2335}
2336
2337#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2338static inline bool sched_clock_stable(void)
2339{
2340 return true;
2341}
2342#endif
2343
2344static inline int
2345rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2346 struct ring_buffer_event *event)
2347{
2348 unsigned long new_index, old_index;
2349 struct buffer_page *bpage;
2350 unsigned long index;
2351 unsigned long addr;
2352
2353 new_index = rb_event_index(event);
2354 old_index = new_index + rb_event_ts_length(event);
2355 addr = (unsigned long)event;
2356 addr &= PAGE_MASK;
2357
8573636e 2358 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2359
2360 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2361 unsigned long write_mask =
2362 local_read(&bpage->write) & ~RB_WRITE_MASK;
2363 unsigned long event_length = rb_event_length(event);
2364 /*
2365 * This is on the tail page. It is possible that
2366 * a write could come in and move the tail page
2367 * and write to the next page. That is fine
2368 * because we just shorten what is on this page.
2369 */
2370 old_index += write_mask;
2371 new_index += write_mask;
2372 index = local_cmpxchg(&bpage->write, old_index, new_index);
2373 if (index == old_index) {
2374 /* update counters */
2375 local_sub(event_length, &cpu_buffer->entries_bytes);
2376 return 1;
2377 }
2378 }
2379
2380 /* could not discard */
2381 return 0;
2382}
2383
2384static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2385{
2386 local_inc(&cpu_buffer->committing);
2387 local_inc(&cpu_buffer->commits);
2388}
2389
2390static void
2391rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2392{
2393 unsigned long max_count;
2394
2395 /*
2396 * We only race with interrupts and NMIs on this CPU.
2397 * If we own the commit event, then we can commit
2398 * all others that interrupted us, since the interruptions
2399 * are in stack format (they finish before they come
2400 * back to us). This allows us to do a simple loop to
2401 * assign the commit to the tail.
2402 */
2403 again:
2404 max_count = cpu_buffer->nr_pages * 100;
2405
8573636e 2406 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2407 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2408 return;
2409 if (RB_WARN_ON(cpu_buffer,
2410 rb_is_reader_page(cpu_buffer->tail_page)))
2411 return;
2412 local_set(&cpu_buffer->commit_page->page->commit,
2413 rb_page_write(cpu_buffer->commit_page));
2414 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2415 /* Only update the write stamp if the page has an event */
2416 if (rb_page_write(cpu_buffer->commit_page))
2417 cpu_buffer->write_stamp =
2418 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2419 /* add barrier to keep gcc from optimizing too much */
2420 barrier();
2421 }
2422 while (rb_commit_index(cpu_buffer) !=
2423 rb_page_write(cpu_buffer->commit_page)) {
2424
2425 local_set(&cpu_buffer->commit_page->page->commit,
2426 rb_page_write(cpu_buffer->commit_page));
2427 RB_WARN_ON(cpu_buffer,
2428 local_read(&cpu_buffer->commit_page->page->commit) &
2429 ~RB_WRITE_MASK);
2430 barrier();
2431 }
2432
2433 /* again, keep gcc from optimizing */
2434 barrier();
2435
2436 /*
2437 * If an interrupt came in just after the first while loop
2438 * and pushed the tail page forward, we will be left with
2439 * a dangling commit that will never go forward.
2440 */
8573636e 2441 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2442 goto again;
2443}
2444
2445static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2446{
2447 unsigned long commits;
2448
2449 if (RB_WARN_ON(cpu_buffer,
2450 !local_read(&cpu_buffer->committing)))
2451 return;
2452
2453 again:
2454 commits = local_read(&cpu_buffer->commits);
2455 /* synchronize with interrupts */
2456 barrier();
2457 if (local_read(&cpu_buffer->committing) == 1)
2458 rb_set_commit_to_write(cpu_buffer);
2459
2460 local_dec(&cpu_buffer->committing);
2461
2462 /* synchronize with interrupts */
2463 barrier();
2464
2465 /*
2466 * Need to account for interrupts coming in between the
2467 * updating of the commit page and the clearing of the
2468 * committing counter.
2469 */
2470 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2471 !local_read(&cpu_buffer->committing)) {
2472 local_inc(&cpu_buffer->committing);
2473 goto again;
2474 }
2475}
2476
2477static inline void rb_event_discard(struct ring_buffer_event *event)
2478{
2479 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2480 event = skip_time_extend(event);
2481
2482 /* array[0] holds the actual length for the discarded event */
2483 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2484 event->type_len = RINGBUF_TYPE_PADDING;
2485 /* time delta must be non zero */
2486 if (!event->time_delta)
2487 event->time_delta = 1;
2488}
2489
cdb2a0a9 2490static inline bool
d90fd774
SRRH
2491rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2492 struct ring_buffer_event *event)
2493{
2494 unsigned long addr = (unsigned long)event;
2495 unsigned long index;
2496
2497 index = rb_event_index(event);
2498 addr &= PAGE_MASK;
2499
2500 return cpu_buffer->commit_page->page == (void *)addr &&
2501 rb_commit_index(cpu_buffer) == index;
2502}
2503
2504static void
2505rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2506 struct ring_buffer_event *event)
2507{
2508 u64 delta;
2509
2510 /*
2511 * The event first in the commit queue updates the
2512 * time stamp.
2513 */
2514 if (rb_event_is_commit(cpu_buffer, event)) {
2515 /*
2516 * A commit event that is first on a page
2517 * updates the write timestamp with the page stamp
2518 */
2519 if (!rb_event_index(event))
2520 cpu_buffer->write_stamp =
2521 cpu_buffer->commit_page->page->time_stamp;
2522 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2523 delta = event->array[0];
2524 delta <<= TS_SHIFT;
2525 delta += event->time_delta;
2526 cpu_buffer->write_stamp += delta;
2527 } else
2528 cpu_buffer->write_stamp += event->time_delta;
2529 }
2530}
2531
2532static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2533 struct ring_buffer_event *event)
2534{
2535 local_inc(&cpu_buffer->entries);
2536 rb_update_write_stamp(cpu_buffer, event);
2537 rb_end_commit(cpu_buffer);
2538}
2539
2540static __always_inline void
2541rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2542{
2543 bool pagebusy;
2544
2545 if (buffer->irq_work.waiters_pending) {
2546 buffer->irq_work.waiters_pending = false;
2547 /* irq_work_queue() supplies it's own memory barriers */
2548 irq_work_queue(&buffer->irq_work.work);
2549 }
2550
2551 if (cpu_buffer->irq_work.waiters_pending) {
2552 cpu_buffer->irq_work.waiters_pending = false;
2553 /* irq_work_queue() supplies it's own memory barriers */
2554 irq_work_queue(&cpu_buffer->irq_work.work);
2555 }
2556
2557 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2558
2559 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2560 cpu_buffer->irq_work.wakeup_full = true;
2561 cpu_buffer->irq_work.full_waiters_pending = false;
2562 /* irq_work_queue() supplies it's own memory barriers */
2563 irq_work_queue(&cpu_buffer->irq_work.work);
2564 }
2565}
2566
2567/*
2568 * The lock and unlock are done within a preempt disable section.
2569 * The current_context per_cpu variable can only be modified
2570 * by the current task between lock and unlock. But it can
2571 * be modified more than once via an interrupt. To pass this
2572 * information from the lock to the unlock without having to
2573 * access the 'in_interrupt()' functions again (which do show
2574 * a bit of overhead in something as critical as function tracing,
2575 * we use a bitmask trick.
2576 *
2577 * bit 0 = NMI context
2578 * bit 1 = IRQ context
2579 * bit 2 = SoftIRQ context
2580 * bit 3 = normal context.
2581 *
2582 * This works because this is the order of contexts that can
2583 * preempt other contexts. A SoftIRQ never preempts an IRQ
2584 * context.
2585 *
2586 * When the context is determined, the corresponding bit is
2587 * checked and set (if it was set, then a recursion of that context
2588 * happened).
2589 *
2590 * On unlock, we need to clear this bit. To do so, just subtract
2591 * 1 from the current_context and AND it to itself.
2592 *
2593 * (binary)
2594 * 101 - 1 = 100
2595 * 101 & 100 = 100 (clearing bit zero)
2596 *
2597 * 1010 - 1 = 1001
2598 * 1010 & 1001 = 1000 (clearing bit 1)
2599 *
2600 * The least significant bit can be cleared this way, and it
2601 * just so happens that it is the same bit corresponding to
2602 * the current context.
2603 */
2604
2605static __always_inline int
2606trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2607{
2608 unsigned int val = cpu_buffer->current_context;
2609 int bit;
2610
2611 if (in_interrupt()) {
2612 if (in_nmi())
2613 bit = RB_CTX_NMI;
2614 else if (in_irq())
2615 bit = RB_CTX_IRQ;
2616 else
2617 bit = RB_CTX_SOFTIRQ;
2618 } else
2619 bit = RB_CTX_NORMAL;
2620
2621 if (unlikely(val & (1 << bit)))
2622 return 1;
2623
2624 val |= (1 << bit);
2625 cpu_buffer->current_context = val;
2626
2627 return 0;
2628}
2629
2630static __always_inline void
2631trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2632{
2633 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2634}
2635
2636/**
2637 * ring_buffer_unlock_commit - commit a reserved
2638 * @buffer: The buffer to commit to
2639 * @event: The event pointer to commit.
2640 *
2641 * This commits the data to the ring buffer, and releases any locks held.
2642 *
2643 * Must be paired with ring_buffer_lock_reserve.
2644 */
2645int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2646 struct ring_buffer_event *event)
2647{
2648 struct ring_buffer_per_cpu *cpu_buffer;
2649 int cpu = raw_smp_processor_id();
2650
2651 cpu_buffer = buffer->buffers[cpu];
2652
2653 rb_commit(cpu_buffer, event);
2654
2655 rb_wakeups(buffer, cpu_buffer);
2656
2657 trace_recursive_unlock(cpu_buffer);
2658
2659 preempt_enable_notrace();
2660
2661 return 0;
2662}
2663EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2664
2665static noinline void
2666rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2667 struct rb_event_info *info)
2668{
d90fd774
SRRH
2669 WARN_ONCE(info->delta > (1ULL << 59),
2670 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2671 (unsigned long long)info->delta,
2672 (unsigned long long)info->ts,
2673 (unsigned long long)cpu_buffer->write_stamp,
2674 sched_clock_stable() ? "" :
2675 "If you just came from a suspend/resume,\n"
2676 "please switch to the trace global clock:\n"
2677 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2678 info->add_timestamp = 1;
9826b273
SRRH
2679}
2680
6634ff26
SR
2681static struct ring_buffer_event *
2682__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2683 struct rb_event_info *info)
6634ff26 2684{
6634ff26 2685 struct ring_buffer_event *event;
fcc742ea 2686 struct buffer_page *tail_page;
6634ff26 2687 unsigned long tail, write;
b7dc42fd
SRRH
2688
2689 /*
2690 * If the time delta since the last event is too big to
2691 * hold in the time field of the event, then we append a
2692 * TIME EXTEND event ahead of the data event.
2693 */
2694 if (unlikely(info->add_timestamp))
2695 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2696
8573636e
SRRH
2697 /* Don't let the compiler play games with cpu_buffer->tail_page */
2698 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2699 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2700
2701 /* set write to only the index of the write */
2702 write &= RB_WRITE_MASK;
fcc742ea 2703 tail = write - info->length;
6634ff26 2704
6634ff26 2705 /*
a4543a2f 2706 * If this is the first commit on the page, then it has the same
b7dc42fd 2707 * timestamp as the page itself.
6634ff26 2708 */
b7dc42fd 2709 if (!tail)
a4543a2f
SRRH
2710 info->delta = 0;
2711
b7dc42fd
SRRH
2712 /* See if we shot pass the end of this buffer page */
2713 if (unlikely(write > BUF_PAGE_SIZE))
2714 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2715
b7dc42fd
SRRH
2716 /* We reserved something on the buffer */
2717
2718 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2719 kmemcheck_annotate_bitfield(event, bitfield);
2720 rb_update_event(cpu_buffer, event, info);
2721
2722 local_inc(&tail_page->entries);
6634ff26 2723
b7dc42fd
SRRH
2724 /*
2725 * If this is the first commit on the page, then update
2726 * its timestamp.
2727 */
2728 if (!tail)
2729 tail_page->page->time_stamp = info->ts;
2730
c64e148a 2731 /* account for these added bytes */
fcc742ea 2732 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2733
6634ff26
SR
2734 return event;
2735}
2736
7a8e76a3 2737static struct ring_buffer_event *
62f0b3eb
SR
2738rb_reserve_next_event(struct ring_buffer *buffer,
2739 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2740 unsigned long length)
7a8e76a3
SR
2741{
2742 struct ring_buffer_event *event;
fcc742ea 2743 struct rb_event_info info;
818e3dd3 2744 int nr_loops = 0;
b7dc42fd 2745 u64 diff;
7a8e76a3 2746
fa743953
SR
2747 rb_start_commit(cpu_buffer);
2748
85bac32c 2749#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2750 /*
2751 * Due to the ability to swap a cpu buffer from a buffer
2752 * it is possible it was swapped before we committed.
2753 * (committing stops a swap). We check for it here and
2754 * if it happened, we have to fail the write.
2755 */
2756 barrier();
2757 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2758 local_dec(&cpu_buffer->committing);
2759 local_dec(&cpu_buffer->commits);
2760 return NULL;
2761 }
85bac32c 2762#endif
b7dc42fd 2763
fcc742ea 2764 info.length = rb_calculate_event_length(length);
a4543a2f 2765 again:
b7dc42fd
SRRH
2766 info.add_timestamp = 0;
2767 info.delta = 0;
2768
818e3dd3
SR
2769 /*
2770 * We allow for interrupts to reenter here and do a trace.
2771 * If one does, it will cause this original code to loop
2772 * back here. Even with heavy interrupts happening, this
2773 * should only happen a few times in a row. If this happens
2774 * 1000 times in a row, there must be either an interrupt
2775 * storm or we have something buggy.
2776 * Bail!
2777 */
3e89c7bb 2778 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2779 goto out_fail;
818e3dd3 2780
b7dc42fd
SRRH
2781 info.ts = rb_time_stamp(cpu_buffer->buffer);
2782 diff = info.ts - cpu_buffer->write_stamp;
2783
2784 /* make sure this diff is calculated here */
2785 barrier();
2786
2787 /* Did the write stamp get updated already? */
2788 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2789 info.delta = diff;
2790 if (unlikely(test_time_stamp(info.delta)))
2791 rb_handle_timestamp(cpu_buffer, &info);
2792 }
2793
fcc742ea
SRRH
2794 event = __rb_reserve_next(cpu_buffer, &info);
2795
bd1b7cd3
SRRH
2796 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2797 if (info.add_timestamp)
2798 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2799 goto again;
bd1b7cd3 2800 }
bf41a158 2801
fa743953
SR
2802 if (!event)
2803 goto out_fail;
7a8e76a3 2804
7a8e76a3 2805 return event;
fa743953
SR
2806
2807 out_fail:
2808 rb_end_commit(cpu_buffer);
2809 return NULL;
7a8e76a3
SR
2810}
2811
2812/**
2813 * ring_buffer_lock_reserve - reserve a part of the buffer
2814 * @buffer: the ring buffer to reserve from
2815 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2816 *
2817 * Returns a reseverd event on the ring buffer to copy directly to.
2818 * The user of this interface will need to get the body to write into
2819 * and can use the ring_buffer_event_data() interface.
2820 *
2821 * The length is the length of the data needed, not the event length
2822 * which also includes the event header.
2823 *
2824 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2825 * If NULL is returned, then nothing has been allocated or locked.
2826 */
2827struct ring_buffer_event *
0a987751 2828ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2829{
2830 struct ring_buffer_per_cpu *cpu_buffer;
2831 struct ring_buffer_event *event;
5168ae50 2832 int cpu;
7a8e76a3 2833
bf41a158 2834 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2835 preempt_disable_notrace();
bf41a158 2836
3205f806 2837 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2838 goto out;
261842b7 2839
7a8e76a3
SR
2840 cpu = raw_smp_processor_id();
2841
3205f806 2842 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2843 goto out;
7a8e76a3
SR
2844
2845 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2846
3205f806 2847 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2848 goto out;
7a8e76a3 2849
3205f806 2850 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2851 goto out;
7a8e76a3 2852
58a09ec6
SRRH
2853 if (unlikely(trace_recursive_lock(cpu_buffer)))
2854 goto out;
2855
62f0b3eb 2856 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2857 if (!event)
58a09ec6 2858 goto out_unlock;
7a8e76a3
SR
2859
2860 return event;
2861
58a09ec6
SRRH
2862 out_unlock:
2863 trace_recursive_unlock(cpu_buffer);
d769041f 2864 out:
5168ae50 2865 preempt_enable_notrace();
7a8e76a3
SR
2866 return NULL;
2867}
c4f50183 2868EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2869
a1863c21
SR
2870/*
2871 * Decrement the entries to the page that an event is on.
2872 * The event does not even need to exist, only the pointer
2873 * to the page it is on. This may only be called before the commit
2874 * takes place.
2875 */
2876static inline void
2877rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2878 struct ring_buffer_event *event)
2879{
2880 unsigned long addr = (unsigned long)event;
2881 struct buffer_page *bpage = cpu_buffer->commit_page;
2882 struct buffer_page *start;
2883
2884 addr &= PAGE_MASK;
2885
2886 /* Do the likely case first */
2887 if (likely(bpage->page == (void *)addr)) {
2888 local_dec(&bpage->entries);
2889 return;
2890 }
2891
2892 /*
2893 * Because the commit page may be on the reader page we
2894 * start with the next page and check the end loop there.
2895 */
2896 rb_inc_page(cpu_buffer, &bpage);
2897 start = bpage;
2898 do {
2899 if (bpage->page == (void *)addr) {
2900 local_dec(&bpage->entries);
2901 return;
2902 }
2903 rb_inc_page(cpu_buffer, &bpage);
2904 } while (bpage != start);
2905
2906 /* commit not part of this buffer?? */
2907 RB_WARN_ON(cpu_buffer, 1);
2908}
2909
fa1b47dd
SR
2910/**
2911 * ring_buffer_commit_discard - discard an event that has not been committed
2912 * @buffer: the ring buffer
2913 * @event: non committed event to discard
2914 *
dc892f73
SR
2915 * Sometimes an event that is in the ring buffer needs to be ignored.
2916 * This function lets the user discard an event in the ring buffer
2917 * and then that event will not be read later.
2918 *
2919 * This function only works if it is called before the the item has been
2920 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2921 * if another event has not been added behind it.
2922 *
2923 * If another event has been added behind it, it will set the event
2924 * up as discarded, and perform the commit.
2925 *
2926 * If this function is called, do not call ring_buffer_unlock_commit on
2927 * the event.
2928 */
2929void ring_buffer_discard_commit(struct ring_buffer *buffer,
2930 struct ring_buffer_event *event)
2931{
2932 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2933 int cpu;
2934
2935 /* The event is discarded regardless */
f3b9aae1 2936 rb_event_discard(event);
fa1b47dd 2937
fa743953
SR
2938 cpu = smp_processor_id();
2939 cpu_buffer = buffer->buffers[cpu];
2940
fa1b47dd
SR
2941 /*
2942 * This must only be called if the event has not been
2943 * committed yet. Thus we can assume that preemption
2944 * is still disabled.
2945 */
fa743953 2946 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2947
a1863c21 2948 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2949 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2950 goto out;
fa1b47dd
SR
2951
2952 /*
2953 * The commit is still visible by the reader, so we
a1863c21 2954 * must still update the timestamp.
fa1b47dd 2955 */
a1863c21 2956 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2957 out:
fa743953 2958 rb_end_commit(cpu_buffer);
fa1b47dd 2959
58a09ec6 2960 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2961
5168ae50 2962 preempt_enable_notrace();
fa1b47dd
SR
2963
2964}
2965EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2966
7a8e76a3
SR
2967/**
2968 * ring_buffer_write - write data to the buffer without reserving
2969 * @buffer: The ring buffer to write to.
2970 * @length: The length of the data being written (excluding the event header)
2971 * @data: The data to write to the buffer.
2972 *
2973 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2974 * one function. If you already have the data to write to the buffer, it
2975 * may be easier to simply call this function.
2976 *
2977 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2978 * and not the length of the event which would hold the header.
2979 */
2980int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2981 unsigned long length,
2982 void *data)
7a8e76a3
SR
2983{
2984 struct ring_buffer_per_cpu *cpu_buffer;
2985 struct ring_buffer_event *event;
7a8e76a3
SR
2986 void *body;
2987 int ret = -EBUSY;
5168ae50 2988 int cpu;
7a8e76a3 2989
5168ae50 2990 preempt_disable_notrace();
bf41a158 2991
52fbe9cd
LJ
2992 if (atomic_read(&buffer->record_disabled))
2993 goto out;
2994
7a8e76a3
SR
2995 cpu = raw_smp_processor_id();
2996
9e01c1b7 2997 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2998 goto out;
7a8e76a3
SR
2999
3000 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3001
3002 if (atomic_read(&cpu_buffer->record_disabled))
3003 goto out;
3004
be957c44
SR
3005 if (length > BUF_MAX_DATA_SIZE)
3006 goto out;
3007
985e871b
SRRH
3008 if (unlikely(trace_recursive_lock(cpu_buffer)))
3009 goto out;
3010
62f0b3eb 3011 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3012 if (!event)
985e871b 3013 goto out_unlock;
7a8e76a3
SR
3014
3015 body = rb_event_data(event);
3016
3017 memcpy(body, data, length);
3018
3019 rb_commit(cpu_buffer, event);
3020
15693458
SRRH
3021 rb_wakeups(buffer, cpu_buffer);
3022
7a8e76a3 3023 ret = 0;
985e871b
SRRH
3024
3025 out_unlock:
3026 trace_recursive_unlock(cpu_buffer);
3027
7a8e76a3 3028 out:
5168ae50 3029 preempt_enable_notrace();
7a8e76a3
SR
3030
3031 return ret;
3032}
c4f50183 3033EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3034
da58834c 3035static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3036{
3037 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3038 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3039 struct buffer_page *commit = cpu_buffer->commit_page;
3040
77ae365e
SR
3041 /* In case of error, head will be NULL */
3042 if (unlikely(!head))
da58834c 3043 return true;
77ae365e 3044
bf41a158
SR
3045 return reader->read == rb_page_commit(reader) &&
3046 (commit == reader ||
3047 (commit == head &&
3048 head->read == rb_page_commit(commit)));
3049}
3050
7a8e76a3
SR
3051/**
3052 * ring_buffer_record_disable - stop all writes into the buffer
3053 * @buffer: The ring buffer to stop writes to.
3054 *
3055 * This prevents all writes to the buffer. Any attempt to write
3056 * to the buffer after this will fail and return NULL.
3057 *
3058 * The caller should call synchronize_sched() after this.
3059 */
3060void ring_buffer_record_disable(struct ring_buffer *buffer)
3061{
3062 atomic_inc(&buffer->record_disabled);
3063}
c4f50183 3064EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3065
3066/**
3067 * ring_buffer_record_enable - enable writes to the buffer
3068 * @buffer: The ring buffer to enable writes
3069 *
3070 * Note, multiple disables will need the same number of enables
c41b20e7 3071 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3072 */
3073void ring_buffer_record_enable(struct ring_buffer *buffer)
3074{
3075 atomic_dec(&buffer->record_disabled);
3076}
c4f50183 3077EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3078
499e5470
SR
3079/**
3080 * ring_buffer_record_off - stop all writes into the buffer
3081 * @buffer: The ring buffer to stop writes to.
3082 *
3083 * This prevents all writes to the buffer. Any attempt to write
3084 * to the buffer after this will fail and return NULL.
3085 *
3086 * This is different than ring_buffer_record_disable() as
87abb3b1 3087 * it works like an on/off switch, where as the disable() version
499e5470
SR
3088 * must be paired with a enable().
3089 */
3090void ring_buffer_record_off(struct ring_buffer *buffer)
3091{
3092 unsigned int rd;
3093 unsigned int new_rd;
3094
3095 do {
3096 rd = atomic_read(&buffer->record_disabled);
3097 new_rd = rd | RB_BUFFER_OFF;
3098 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3101
3102/**
3103 * ring_buffer_record_on - restart writes into the buffer
3104 * @buffer: The ring buffer to start writes to.
3105 *
3106 * This enables all writes to the buffer that was disabled by
3107 * ring_buffer_record_off().
3108 *
3109 * This is different than ring_buffer_record_enable() as
87abb3b1 3110 * it works like an on/off switch, where as the enable() version
499e5470
SR
3111 * must be paired with a disable().
3112 */
3113void ring_buffer_record_on(struct ring_buffer *buffer)
3114{
3115 unsigned int rd;
3116 unsigned int new_rd;
3117
3118 do {
3119 rd = atomic_read(&buffer->record_disabled);
3120 new_rd = rd & ~RB_BUFFER_OFF;
3121 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3124
3125/**
3126 * ring_buffer_record_is_on - return true if the ring buffer can write
3127 * @buffer: The ring buffer to see if write is enabled
3128 *
3129 * Returns true if the ring buffer is in a state that it accepts writes.
3130 */
3131int ring_buffer_record_is_on(struct ring_buffer *buffer)
3132{
3133 return !atomic_read(&buffer->record_disabled);
3134}
3135
7a8e76a3
SR
3136/**
3137 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3138 * @buffer: The ring buffer to stop writes to.
3139 * @cpu: The CPU buffer to stop
3140 *
3141 * This prevents all writes to the buffer. Any attempt to write
3142 * to the buffer after this will fail and return NULL.
3143 *
3144 * The caller should call synchronize_sched() after this.
3145 */
3146void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3147{
3148 struct ring_buffer_per_cpu *cpu_buffer;
3149
9e01c1b7 3150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3151 return;
7a8e76a3
SR
3152
3153 cpu_buffer = buffer->buffers[cpu];
3154 atomic_inc(&cpu_buffer->record_disabled);
3155}
c4f50183 3156EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3157
3158/**
3159 * ring_buffer_record_enable_cpu - enable writes to the buffer
3160 * @buffer: The ring buffer to enable writes
3161 * @cpu: The CPU to enable.
3162 *
3163 * Note, multiple disables will need the same number of enables
c41b20e7 3164 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3165 */
3166void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3167{
3168 struct ring_buffer_per_cpu *cpu_buffer;
3169
9e01c1b7 3170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3171 return;
7a8e76a3
SR
3172
3173 cpu_buffer = buffer->buffers[cpu];
3174 atomic_dec(&cpu_buffer->record_disabled);
3175}
c4f50183 3176EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3177
f6195aa0
SR
3178/*
3179 * The total entries in the ring buffer is the running counter
3180 * of entries entered into the ring buffer, minus the sum of
3181 * the entries read from the ring buffer and the number of
3182 * entries that were overwritten.
3183 */
3184static inline unsigned long
3185rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3186{
3187 return local_read(&cpu_buffer->entries) -
3188 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3189}
3190
c64e148a
VN
3191/**
3192 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to read from.
3195 */
50ecf2c3 3196u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3197{
3198 unsigned long flags;
3199 struct ring_buffer_per_cpu *cpu_buffer;
3200 struct buffer_page *bpage;
da830e58 3201 u64 ret = 0;
c64e148a
VN
3202
3203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204 return 0;
3205
3206 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3207 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3208 /*
3209 * if the tail is on reader_page, oldest time stamp is on the reader
3210 * page
3211 */
3212 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3213 bpage = cpu_buffer->reader_page;
3214 else
3215 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3216 if (bpage)
3217 ret = bpage->page->time_stamp;
7115e3fc 3218 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3219
3220 return ret;
3221}
3222EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3223
3224/**
3225 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3226 * @buffer: The ring buffer
3227 * @cpu: The per CPU buffer to read from.
3228 */
3229unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3230{
3231 struct ring_buffer_per_cpu *cpu_buffer;
3232 unsigned long ret;
3233
3234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235 return 0;
3236
3237 cpu_buffer = buffer->buffers[cpu];
3238 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3239
3240 return ret;
3241}
3242EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3243
7a8e76a3
SR
3244/**
3245 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3246 * @buffer: The ring buffer
3247 * @cpu: The per CPU buffer to get the entries from.
3248 */
3249unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3250{
3251 struct ring_buffer_per_cpu *cpu_buffer;
3252
9e01c1b7 3253 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3254 return 0;
7a8e76a3
SR
3255
3256 cpu_buffer = buffer->buffers[cpu];
554f786e 3257
f6195aa0 3258 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3259}
c4f50183 3260EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3261
3262/**
884bfe89
SP
3263 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3264 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3265 * @buffer: The ring buffer
3266 * @cpu: The per CPU buffer to get the number of overruns from
3267 */
3268unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3269{
3270 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3271 unsigned long ret;
7a8e76a3 3272
9e01c1b7 3273 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3274 return 0;
7a8e76a3
SR
3275
3276 cpu_buffer = buffer->buffers[cpu];
77ae365e 3277 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3278
3279 return ret;
7a8e76a3 3280}
c4f50183 3281EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3282
f0d2c681 3283/**
884bfe89
SP
3284 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3285 * commits failing due to the buffer wrapping around while there are uncommitted
3286 * events, such as during an interrupt storm.
f0d2c681
SR
3287 * @buffer: The ring buffer
3288 * @cpu: The per CPU buffer to get the number of overruns from
3289 */
3290unsigned long
3291ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3292{
3293 struct ring_buffer_per_cpu *cpu_buffer;
3294 unsigned long ret;
3295
3296 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3297 return 0;
3298
3299 cpu_buffer = buffer->buffers[cpu];
77ae365e 3300 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3301
3302 return ret;
3303}
3304EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3305
884bfe89
SP
3306/**
3307 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3308 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3309 * @buffer: The ring buffer
3310 * @cpu: The per CPU buffer to get the number of overruns from
3311 */
3312unsigned long
3313ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3314{
3315 struct ring_buffer_per_cpu *cpu_buffer;
3316 unsigned long ret;
3317
3318 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3319 return 0;
3320
3321 cpu_buffer = buffer->buffers[cpu];
3322 ret = local_read(&cpu_buffer->dropped_events);
3323
3324 return ret;
3325}
3326EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3327
ad964704
SRRH
3328/**
3329 * ring_buffer_read_events_cpu - get the number of events successfully read
3330 * @buffer: The ring buffer
3331 * @cpu: The per CPU buffer to get the number of events read
3332 */
3333unsigned long
3334ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3335{
3336 struct ring_buffer_per_cpu *cpu_buffer;
3337
3338 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3339 return 0;
3340
3341 cpu_buffer = buffer->buffers[cpu];
3342 return cpu_buffer->read;
3343}
3344EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3345
7a8e76a3
SR
3346/**
3347 * ring_buffer_entries - get the number of entries in a buffer
3348 * @buffer: The ring buffer
3349 *
3350 * Returns the total number of entries in the ring buffer
3351 * (all CPU entries)
3352 */
3353unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3354{
3355 struct ring_buffer_per_cpu *cpu_buffer;
3356 unsigned long entries = 0;
3357 int cpu;
3358
3359 /* if you care about this being correct, lock the buffer */
3360 for_each_buffer_cpu(buffer, cpu) {
3361 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3362 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3363 }
3364
3365 return entries;
3366}
c4f50183 3367EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3368
3369/**
67b394f7 3370 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3371 * @buffer: The ring buffer
3372 *
3373 * Returns the total number of overruns in the ring buffer
3374 * (all CPU entries)
3375 */
3376unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3377{
3378 struct ring_buffer_per_cpu *cpu_buffer;
3379 unsigned long overruns = 0;
3380 int cpu;
3381
3382 /* if you care about this being correct, lock the buffer */
3383 for_each_buffer_cpu(buffer, cpu) {
3384 cpu_buffer = buffer->buffers[cpu];
77ae365e 3385 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3386 }
3387
3388 return overruns;
3389}
c4f50183 3390EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3391
642edba5 3392static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3393{
3394 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3395
d769041f 3396 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3397 iter->head_page = cpu_buffer->reader_page;
3398 iter->head = cpu_buffer->reader_page->read;
3399
3400 iter->cache_reader_page = iter->head_page;
24607f11 3401 iter->cache_read = cpu_buffer->read;
651e22f2 3402
d769041f
SR
3403 if (iter->head)
3404 iter->read_stamp = cpu_buffer->read_stamp;
3405 else
abc9b56d 3406 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3407}
f83c9d0f 3408
642edba5
SR
3409/**
3410 * ring_buffer_iter_reset - reset an iterator
3411 * @iter: The iterator to reset
3412 *
3413 * Resets the iterator, so that it will start from the beginning
3414 * again.
3415 */
3416void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3417{
554f786e 3418 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3419 unsigned long flags;
3420
554f786e
SR
3421 if (!iter)
3422 return;
3423
3424 cpu_buffer = iter->cpu_buffer;
3425
5389f6fa 3426 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3427 rb_iter_reset(iter);
5389f6fa 3428 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3429}
c4f50183 3430EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3431
3432/**
3433 * ring_buffer_iter_empty - check if an iterator has no more to read
3434 * @iter: The iterator to check
3435 */
3436int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3437{
3438 struct ring_buffer_per_cpu *cpu_buffer;
3439
3440 cpu_buffer = iter->cpu_buffer;
3441
bf41a158
SR
3442 return iter->head_page == cpu_buffer->commit_page &&
3443 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3444}
c4f50183 3445EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3446
3447static void
3448rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3449 struct ring_buffer_event *event)
3450{
3451 u64 delta;
3452
334d4169 3453 switch (event->type_len) {
7a8e76a3
SR
3454 case RINGBUF_TYPE_PADDING:
3455 return;
3456
3457 case RINGBUF_TYPE_TIME_EXTEND:
3458 delta = event->array[0];
3459 delta <<= TS_SHIFT;
3460 delta += event->time_delta;
3461 cpu_buffer->read_stamp += delta;
3462 return;
3463
3464 case RINGBUF_TYPE_TIME_STAMP:
3465 /* FIXME: not implemented */
3466 return;
3467
3468 case RINGBUF_TYPE_DATA:
3469 cpu_buffer->read_stamp += event->time_delta;
3470 return;
3471
3472 default:
3473 BUG();
3474 }
3475 return;
3476}
3477
3478static void
3479rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3480 struct ring_buffer_event *event)
3481{
3482 u64 delta;
3483
334d4169 3484 switch (event->type_len) {
7a8e76a3
SR
3485 case RINGBUF_TYPE_PADDING:
3486 return;
3487
3488 case RINGBUF_TYPE_TIME_EXTEND:
3489 delta = event->array[0];
3490 delta <<= TS_SHIFT;
3491 delta += event->time_delta;
3492 iter->read_stamp += delta;
3493 return;
3494
3495 case RINGBUF_TYPE_TIME_STAMP:
3496 /* FIXME: not implemented */
3497 return;
3498
3499 case RINGBUF_TYPE_DATA:
3500 iter->read_stamp += event->time_delta;
3501 return;
3502
3503 default:
3504 BUG();
3505 }
3506 return;
3507}
3508
d769041f
SR
3509static struct buffer_page *
3510rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3511{
d769041f 3512 struct buffer_page *reader = NULL;
66a8cb95 3513 unsigned long overwrite;
d769041f 3514 unsigned long flags;
818e3dd3 3515 int nr_loops = 0;
77ae365e 3516 int ret;
d769041f 3517
3e03fb7f 3518 local_irq_save(flags);
0199c4e6 3519 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3520
3521 again:
818e3dd3
SR
3522 /*
3523 * This should normally only loop twice. But because the
3524 * start of the reader inserts an empty page, it causes
3525 * a case where we will loop three times. There should be no
3526 * reason to loop four times (that I know of).
3527 */
3e89c7bb 3528 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3529 reader = NULL;
3530 goto out;
3531 }
3532
d769041f
SR
3533 reader = cpu_buffer->reader_page;
3534
3535 /* If there's more to read, return this page */
bf41a158 3536 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3537 goto out;
3538
3539 /* Never should we have an index greater than the size */
3e89c7bb
SR
3540 if (RB_WARN_ON(cpu_buffer,
3541 cpu_buffer->reader_page->read > rb_page_size(reader)))
3542 goto out;
d769041f
SR
3543
3544 /* check if we caught up to the tail */
3545 reader = NULL;
bf41a158 3546 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3547 goto out;
7a8e76a3 3548
a5fb8331
SR
3549 /* Don't bother swapping if the ring buffer is empty */
3550 if (rb_num_of_entries(cpu_buffer) == 0)
3551 goto out;
3552
7a8e76a3 3553 /*
d769041f 3554 * Reset the reader page to size zero.
7a8e76a3 3555 */
77ae365e
SR
3556 local_set(&cpu_buffer->reader_page->write, 0);
3557 local_set(&cpu_buffer->reader_page->entries, 0);
3558 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3559 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3560
77ae365e
SR
3561 spin:
3562 /*
3563 * Splice the empty reader page into the list around the head.
3564 */
3565 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3566 if (!reader)
3567 goto out;
0e1ff5d7 3568 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3569 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3570
3adc54fa
SR
3571 /*
3572 * cpu_buffer->pages just needs to point to the buffer, it
3573 * has no specific buffer page to point to. Lets move it out
25985edc 3574 * of our way so we don't accidentally swap it.
3adc54fa
SR
3575 */
3576 cpu_buffer->pages = reader->list.prev;
3577
77ae365e
SR
3578 /* The reader page will be pointing to the new head */
3579 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3580
66a8cb95
SR
3581 /*
3582 * We want to make sure we read the overruns after we set up our
3583 * pointers to the next object. The writer side does a
3584 * cmpxchg to cross pages which acts as the mb on the writer
3585 * side. Note, the reader will constantly fail the swap
3586 * while the writer is updating the pointers, so this
3587 * guarantees that the overwrite recorded here is the one we
3588 * want to compare with the last_overrun.
3589 */
3590 smp_mb();
3591 overwrite = local_read(&(cpu_buffer->overrun));
3592
77ae365e
SR
3593 /*
3594 * Here's the tricky part.
3595 *
3596 * We need to move the pointer past the header page.
3597 * But we can only do that if a writer is not currently
3598 * moving it. The page before the header page has the
3599 * flag bit '1' set if it is pointing to the page we want.
3600 * but if the writer is in the process of moving it
3601 * than it will be '2' or already moved '0'.
3602 */
3603
3604 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3605
3606 /*
77ae365e 3607 * If we did not convert it, then we must try again.
7a8e76a3 3608 */
77ae365e
SR
3609 if (!ret)
3610 goto spin;
7a8e76a3 3611
77ae365e
SR
3612 /*
3613 * Yeah! We succeeded in replacing the page.
3614 *
3615 * Now make the new head point back to the reader page.
3616 */
5ded3dc6 3617 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3618 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3619
3620 /* Finally update the reader page to the new head */
3621 cpu_buffer->reader_page = reader;
b81f472a 3622 cpu_buffer->reader_page->read = 0;
d769041f 3623
66a8cb95
SR
3624 if (overwrite != cpu_buffer->last_overrun) {
3625 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3626 cpu_buffer->last_overrun = overwrite;
3627 }
3628
d769041f
SR
3629 goto again;
3630
3631 out:
b81f472a
SRRH
3632 /* Update the read_stamp on the first event */
3633 if (reader && reader->read == 0)
3634 cpu_buffer->read_stamp = reader->page->time_stamp;
3635
0199c4e6 3636 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3637 local_irq_restore(flags);
d769041f
SR
3638
3639 return reader;
3640}
3641
3642static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3643{
3644 struct ring_buffer_event *event;
3645 struct buffer_page *reader;
3646 unsigned length;
3647
3648 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3649
d769041f 3650 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3651 if (RB_WARN_ON(cpu_buffer, !reader))
3652 return;
7a8e76a3 3653
d769041f
SR
3654 event = rb_reader_event(cpu_buffer);
3655
a1863c21 3656 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3657 cpu_buffer->read++;
d769041f
SR
3658
3659 rb_update_read_stamp(cpu_buffer, event);
3660
3661 length = rb_event_length(event);
6f807acd 3662 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3663}
3664
3665static void rb_advance_iter(struct ring_buffer_iter *iter)
3666{
7a8e76a3
SR
3667 struct ring_buffer_per_cpu *cpu_buffer;
3668 struct ring_buffer_event *event;
3669 unsigned length;
3670
3671 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3672
3673 /*
3674 * Check if we are at the end of the buffer.
3675 */
bf41a158 3676 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3677 /* discarded commits can make the page empty */
3678 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3679 return;
d769041f 3680 rb_inc_iter(iter);
7a8e76a3
SR
3681 return;
3682 }
3683
3684 event = rb_iter_head_event(iter);
3685
3686 length = rb_event_length(event);
3687
3688 /*
3689 * This should not be called to advance the header if we are
3690 * at the tail of the buffer.
3691 */
3e89c7bb 3692 if (RB_WARN_ON(cpu_buffer,
f536aafc 3693 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3694 (iter->head + length > rb_commit_index(cpu_buffer))))
3695 return;
7a8e76a3
SR
3696
3697 rb_update_iter_read_stamp(iter, event);
3698
3699 iter->head += length;
3700
3701 /* check for end of page padding */
bf41a158
SR
3702 if ((iter->head >= rb_page_size(iter->head_page)) &&
3703 (iter->head_page != cpu_buffer->commit_page))
771e0384 3704 rb_inc_iter(iter);
7a8e76a3
SR
3705}
3706
66a8cb95
SR
3707static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3708{
3709 return cpu_buffer->lost_events;
3710}
3711
f83c9d0f 3712static struct ring_buffer_event *
66a8cb95
SR
3713rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3714 unsigned long *lost_events)
7a8e76a3 3715{
7a8e76a3 3716 struct ring_buffer_event *event;
d769041f 3717 struct buffer_page *reader;
818e3dd3 3718 int nr_loops = 0;
7a8e76a3 3719
7a8e76a3 3720 again:
818e3dd3 3721 /*
69d1b839
SR
3722 * We repeat when a time extend is encountered.
3723 * Since the time extend is always attached to a data event,
3724 * we should never loop more than once.
3725 * (We never hit the following condition more than twice).
818e3dd3 3726 */
69d1b839 3727 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3728 return NULL;
818e3dd3 3729
d769041f
SR
3730 reader = rb_get_reader_page(cpu_buffer);
3731 if (!reader)
7a8e76a3
SR
3732 return NULL;
3733
d769041f 3734 event = rb_reader_event(cpu_buffer);
7a8e76a3 3735
334d4169 3736 switch (event->type_len) {
7a8e76a3 3737 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3738 if (rb_null_event(event))
3739 RB_WARN_ON(cpu_buffer, 1);
3740 /*
3741 * Because the writer could be discarding every
3742 * event it creates (which would probably be bad)
3743 * if we were to go back to "again" then we may never
3744 * catch up, and will trigger the warn on, or lock
3745 * the box. Return the padding, and we will release
3746 * the current locks, and try again.
3747 */
2d622719 3748 return event;
7a8e76a3
SR
3749
3750 case RINGBUF_TYPE_TIME_EXTEND:
3751 /* Internal data, OK to advance */
d769041f 3752 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3753 goto again;
3754
3755 case RINGBUF_TYPE_TIME_STAMP:
3756 /* FIXME: not implemented */
d769041f 3757 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3758 goto again;
3759
3760 case RINGBUF_TYPE_DATA:
3761 if (ts) {
3762 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3763 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3764 cpu_buffer->cpu, ts);
7a8e76a3 3765 }
66a8cb95
SR
3766 if (lost_events)
3767 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3768 return event;
3769
3770 default:
3771 BUG();
3772 }
3773
3774 return NULL;
3775}
c4f50183 3776EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3777
f83c9d0f
SR
3778static struct ring_buffer_event *
3779rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3780{
3781 struct ring_buffer *buffer;
3782 struct ring_buffer_per_cpu *cpu_buffer;
3783 struct ring_buffer_event *event;
818e3dd3 3784 int nr_loops = 0;
7a8e76a3 3785
7a8e76a3
SR
3786 cpu_buffer = iter->cpu_buffer;
3787 buffer = cpu_buffer->buffer;
3788
492a74f4
SR
3789 /*
3790 * Check if someone performed a consuming read to
3791 * the buffer. A consuming read invalidates the iterator
3792 * and we need to reset the iterator in this case.
3793 */
3794 if (unlikely(iter->cache_read != cpu_buffer->read ||
3795 iter->cache_reader_page != cpu_buffer->reader_page))
3796 rb_iter_reset(iter);
3797
7a8e76a3 3798 again:
3c05d748
SR
3799 if (ring_buffer_iter_empty(iter))
3800 return NULL;
3801
818e3dd3 3802 /*
021de3d9
SRRH
3803 * We repeat when a time extend is encountered or we hit
3804 * the end of the page. Since the time extend is always attached
3805 * to a data event, we should never loop more than three times.
3806 * Once for going to next page, once on time extend, and
3807 * finally once to get the event.
3808 * (We never hit the following condition more than thrice).
818e3dd3 3809 */
021de3d9 3810 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3811 return NULL;
818e3dd3 3812
7a8e76a3
SR
3813 if (rb_per_cpu_empty(cpu_buffer))
3814 return NULL;
3815
10e83fd0 3816 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3817 rb_inc_iter(iter);
3818 goto again;
3819 }
3820
7a8e76a3
SR
3821 event = rb_iter_head_event(iter);
3822
334d4169 3823 switch (event->type_len) {
7a8e76a3 3824 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3825 if (rb_null_event(event)) {
3826 rb_inc_iter(iter);
3827 goto again;
3828 }
3829 rb_advance_iter(iter);
3830 return event;
7a8e76a3
SR
3831
3832 case RINGBUF_TYPE_TIME_EXTEND:
3833 /* Internal data, OK to advance */
3834 rb_advance_iter(iter);
3835 goto again;
3836
3837 case RINGBUF_TYPE_TIME_STAMP:
3838 /* FIXME: not implemented */
3839 rb_advance_iter(iter);
3840 goto again;
3841
3842 case RINGBUF_TYPE_DATA:
3843 if (ts) {
3844 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3845 ring_buffer_normalize_time_stamp(buffer,
3846 cpu_buffer->cpu, ts);
7a8e76a3
SR
3847 }
3848 return event;
3849
3850 default:
3851 BUG();
3852 }
3853
3854 return NULL;
3855}
c4f50183 3856EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3857
289a5a25 3858static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3859{
289a5a25
SRRH
3860 if (likely(!in_nmi())) {
3861 raw_spin_lock(&cpu_buffer->reader_lock);
3862 return true;
3863 }
3864
8d707e8e
SR
3865 /*
3866 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3867 * trylock must be used to prevent a deadlock if the NMI
3868 * preempted a task that holds the ring buffer locks. If
3869 * we get the lock then all is fine, if not, then continue
3870 * to do the read, but this can corrupt the ring buffer,
3871 * so it must be permanently disabled from future writes.
3872 * Reading from NMI is a oneshot deal.
8d707e8e 3873 */
289a5a25
SRRH
3874 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3875 return true;
8d707e8e 3876
289a5a25
SRRH
3877 /* Continue without locking, but disable the ring buffer */
3878 atomic_inc(&cpu_buffer->record_disabled);
3879 return false;
3880}
3881
3882static inline void
3883rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3884{
3885 if (likely(locked))
3886 raw_spin_unlock(&cpu_buffer->reader_lock);
3887 return;
8d707e8e
SR
3888}
3889
f83c9d0f
SR
3890/**
3891 * ring_buffer_peek - peek at the next event to be read
3892 * @buffer: The ring buffer to read
3893 * @cpu: The cpu to peak at
3894 * @ts: The timestamp counter of this event.
66a8cb95 3895 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3896 *
3897 * This will return the event that will be read next, but does
3898 * not consume the data.
3899 */
3900struct ring_buffer_event *
66a8cb95
SR
3901ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3902 unsigned long *lost_events)
f83c9d0f
SR
3903{
3904 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3905 struct ring_buffer_event *event;
f83c9d0f 3906 unsigned long flags;
289a5a25 3907 bool dolock;
f83c9d0f 3908
554f786e 3909 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3910 return NULL;
554f786e 3911
2d622719 3912 again:
8d707e8e 3913 local_irq_save(flags);
289a5a25 3914 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3915 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3916 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3917 rb_advance_reader(cpu_buffer);
289a5a25 3918 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3919 local_irq_restore(flags);
f83c9d0f 3920
1b959e18 3921 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3922 goto again;
2d622719 3923
f83c9d0f
SR
3924 return event;
3925}
3926
3927/**
3928 * ring_buffer_iter_peek - peek at the next event to be read
3929 * @iter: The ring buffer iterator
3930 * @ts: The timestamp counter of this event.
3931 *
3932 * This will return the event that will be read next, but does
3933 * not increment the iterator.
3934 */
3935struct ring_buffer_event *
3936ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3937{
3938 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3939 struct ring_buffer_event *event;
3940 unsigned long flags;
3941
2d622719 3942 again:
5389f6fa 3943 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3944 event = rb_iter_peek(iter, ts);
5389f6fa 3945 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3946
1b959e18 3947 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3948 goto again;
2d622719 3949
f83c9d0f
SR
3950 return event;
3951}
3952
7a8e76a3
SR
3953/**
3954 * ring_buffer_consume - return an event and consume it
3955 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3956 * @cpu: the cpu to read the buffer from
3957 * @ts: a variable to store the timestamp (may be NULL)
3958 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3959 *
3960 * Returns the next event in the ring buffer, and that event is consumed.
3961 * Meaning, that sequential reads will keep returning a different event,
3962 * and eventually empty the ring buffer if the producer is slower.
3963 */
3964struct ring_buffer_event *
66a8cb95
SR
3965ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3966 unsigned long *lost_events)
7a8e76a3 3967{
554f786e
SR
3968 struct ring_buffer_per_cpu *cpu_buffer;
3969 struct ring_buffer_event *event = NULL;
f83c9d0f 3970 unsigned long flags;
289a5a25 3971 bool dolock;
7a8e76a3 3972
2d622719 3973 again:
554f786e
SR
3974 /* might be called in atomic */
3975 preempt_disable();
3976
9e01c1b7 3977 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3978 goto out;
7a8e76a3 3979
554f786e 3980 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3981 local_irq_save(flags);
289a5a25 3982 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3983
66a8cb95
SR
3984 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3985 if (event) {
3986 cpu_buffer->lost_events = 0;
469535a5 3987 rb_advance_reader(cpu_buffer);
66a8cb95 3988 }
7a8e76a3 3989
289a5a25 3990 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3991 local_irq_restore(flags);
f83c9d0f 3992
554f786e
SR
3993 out:
3994 preempt_enable();
3995
1b959e18 3996 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3997 goto again;
2d622719 3998
7a8e76a3
SR
3999 return event;
4000}
c4f50183 4001EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4002
4003/**
72c9ddfd 4004 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4005 * @buffer: The ring buffer to read from
4006 * @cpu: The cpu buffer to iterate over
4007 *
72c9ddfd
DM
4008 * This performs the initial preparations necessary to iterate
4009 * through the buffer. Memory is allocated, buffer recording
4010 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4011 *
72c9ddfd
DM
4012 * Disabling buffer recordng prevents the reading from being
4013 * corrupted. This is not a consuming read, so a producer is not
4014 * expected.
4015 *
4016 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4017 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4018 * Afterwards, ring_buffer_read_start is invoked to get things going
4019 * for real.
4020 *
d611851b 4021 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4022 */
4023struct ring_buffer_iter *
72c9ddfd 4024ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4025{
4026 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4027 struct ring_buffer_iter *iter;
7a8e76a3 4028
9e01c1b7 4029 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4030 return NULL;
7a8e76a3
SR
4031
4032 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4033 if (!iter)
8aabee57 4034 return NULL;
7a8e76a3
SR
4035
4036 cpu_buffer = buffer->buffers[cpu];
4037
4038 iter->cpu_buffer = cpu_buffer;
4039
83f40318 4040 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4041 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4042
4043 return iter;
4044}
4045EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4046
4047/**
4048 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4049 *
4050 * All previously invoked ring_buffer_read_prepare calls to prepare
4051 * iterators will be synchronized. Afterwards, read_buffer_read_start
4052 * calls on those iterators are allowed.
4053 */
4054void
4055ring_buffer_read_prepare_sync(void)
4056{
7a8e76a3 4057 synchronize_sched();
72c9ddfd
DM
4058}
4059EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4060
4061/**
4062 * ring_buffer_read_start - start a non consuming read of the buffer
4063 * @iter: The iterator returned by ring_buffer_read_prepare
4064 *
4065 * This finalizes the startup of an iteration through the buffer.
4066 * The iterator comes from a call to ring_buffer_read_prepare and
4067 * an intervening ring_buffer_read_prepare_sync must have been
4068 * performed.
4069 *
d611851b 4070 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4071 */
4072void
4073ring_buffer_read_start(struct ring_buffer_iter *iter)
4074{
4075 struct ring_buffer_per_cpu *cpu_buffer;
4076 unsigned long flags;
4077
4078 if (!iter)
4079 return;
4080
4081 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4082
5389f6fa 4083 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4084 arch_spin_lock(&cpu_buffer->lock);
642edba5 4085 rb_iter_reset(iter);
0199c4e6 4086 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4087 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4088}
c4f50183 4089EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4090
4091/**
d611851b 4092 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4093 * @iter: The iterator retrieved by ring_buffer_start
4094 *
4095 * This re-enables the recording to the buffer, and frees the
4096 * iterator.
4097 */
4098void
4099ring_buffer_read_finish(struct ring_buffer_iter *iter)
4100{
4101 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4102 unsigned long flags;
7a8e76a3 4103
659f451f
SR
4104 /*
4105 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4106 * to check the integrity of the ring buffer.
4107 * Must prevent readers from trying to read, as the check
4108 * clears the HEAD page and readers require it.
659f451f 4109 */
9366c1ba 4110 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4111 rb_check_pages(cpu_buffer);
9366c1ba 4112 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4113
7a8e76a3 4114 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4115 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4116 kfree(iter);
4117}
c4f50183 4118EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4119
4120/**
4121 * ring_buffer_read - read the next item in the ring buffer by the iterator
4122 * @iter: The ring buffer iterator
4123 * @ts: The time stamp of the event read.
4124 *
4125 * This reads the next event in the ring buffer and increments the iterator.
4126 */
4127struct ring_buffer_event *
4128ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4129{
4130 struct ring_buffer_event *event;
f83c9d0f
SR
4131 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4132 unsigned long flags;
7a8e76a3 4133
5389f6fa 4134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4135 again:
f83c9d0f 4136 event = rb_iter_peek(iter, ts);
7a8e76a3 4137 if (!event)
f83c9d0f 4138 goto out;
7a8e76a3 4139
7e9391cf
SR
4140 if (event->type_len == RINGBUF_TYPE_PADDING)
4141 goto again;
4142
7a8e76a3 4143 rb_advance_iter(iter);
f83c9d0f 4144 out:
5389f6fa 4145 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4146
4147 return event;
4148}
c4f50183 4149EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4150
4151/**
4152 * ring_buffer_size - return the size of the ring buffer (in bytes)
4153 * @buffer: The ring buffer.
4154 */
438ced17 4155unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4156{
438ced17
VN
4157 /*
4158 * Earlier, this method returned
4159 * BUF_PAGE_SIZE * buffer->nr_pages
4160 * Since the nr_pages field is now removed, we have converted this to
4161 * return the per cpu buffer value.
4162 */
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 return 0;
4165
4166 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4167}
c4f50183 4168EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4169
4170static void
4171rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4172{
77ae365e
SR
4173 rb_head_page_deactivate(cpu_buffer);
4174
7a8e76a3 4175 cpu_buffer->head_page
3adc54fa 4176 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4177 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4178 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4179 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4180
6f807acd 4181 cpu_buffer->head_page->read = 0;
bf41a158
SR
4182
4183 cpu_buffer->tail_page = cpu_buffer->head_page;
4184 cpu_buffer->commit_page = cpu_buffer->head_page;
4185
4186 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4187 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4188 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4189 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4190 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4191 cpu_buffer->reader_page->read = 0;
7a8e76a3 4192
c64e148a 4193 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4194 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4195 local_set(&cpu_buffer->commit_overrun, 0);
4196 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4197 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4198 local_set(&cpu_buffer->committing, 0);
4199 local_set(&cpu_buffer->commits, 0);
77ae365e 4200 cpu_buffer->read = 0;
c64e148a 4201 cpu_buffer->read_bytes = 0;
69507c06
SR
4202
4203 cpu_buffer->write_stamp = 0;
4204 cpu_buffer->read_stamp = 0;
77ae365e 4205
66a8cb95
SR
4206 cpu_buffer->lost_events = 0;
4207 cpu_buffer->last_overrun = 0;
4208
77ae365e 4209 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4210}
4211
4212/**
4213 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4214 * @buffer: The ring buffer to reset a per cpu buffer of
4215 * @cpu: The CPU buffer to be reset
4216 */
4217void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4218{
4219 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4220 unsigned long flags;
4221
9e01c1b7 4222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4223 return;
7a8e76a3 4224
83f40318 4225 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4226 atomic_inc(&cpu_buffer->record_disabled);
4227
83f40318
VN
4228 /* Make sure all commits have finished */
4229 synchronize_sched();
4230
5389f6fa 4231 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4232
41b6a95d
SR
4233 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4234 goto out;
4235
0199c4e6 4236 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4237
4238 rb_reset_cpu(cpu_buffer);
4239
0199c4e6 4240 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4241
41b6a95d 4242 out:
5389f6fa 4243 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4244
4245 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4246 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4247}
c4f50183 4248EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4249
4250/**
4251 * ring_buffer_reset - reset a ring buffer
4252 * @buffer: The ring buffer to reset all cpu buffers
4253 */
4254void ring_buffer_reset(struct ring_buffer *buffer)
4255{
7a8e76a3
SR
4256 int cpu;
4257
7a8e76a3 4258 for_each_buffer_cpu(buffer, cpu)
d769041f 4259 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4260}
c4f50183 4261EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4262
4263/**
4264 * rind_buffer_empty - is the ring buffer empty?
4265 * @buffer: The ring buffer to test
4266 */
3d4e204d 4267bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4268{
4269 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4270 unsigned long flags;
289a5a25 4271 bool dolock;
7a8e76a3 4272 int cpu;
d4788207 4273 int ret;
7a8e76a3
SR
4274
4275 /* yes this is racy, but if you don't like the race, lock the buffer */
4276 for_each_buffer_cpu(buffer, cpu) {
4277 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4278 local_irq_save(flags);
289a5a25 4279 dolock = rb_reader_lock(cpu_buffer);
d4788207 4280 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4281 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4282 local_irq_restore(flags);
4283
d4788207 4284 if (!ret)
3d4e204d 4285 return false;
7a8e76a3 4286 }
554f786e 4287
3d4e204d 4288 return true;
7a8e76a3 4289}
c4f50183 4290EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4291
4292/**
4293 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4294 * @buffer: The ring buffer
4295 * @cpu: The CPU buffer to test
4296 */
3d4e204d 4297bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4298{
4299 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4300 unsigned long flags;
289a5a25 4301 bool dolock;
8aabee57 4302 int ret;
7a8e76a3 4303
9e01c1b7 4304 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4305 return true;
7a8e76a3
SR
4306
4307 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4308 local_irq_save(flags);
289a5a25 4309 dolock = rb_reader_lock(cpu_buffer);
554f786e 4310 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4311 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4312 local_irq_restore(flags);
554f786e
SR
4313
4314 return ret;
7a8e76a3 4315}
c4f50183 4316EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4317
85bac32c 4318#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4319/**
4320 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4321 * @buffer_a: One buffer to swap with
4322 * @buffer_b: The other buffer to swap with
4323 *
4324 * This function is useful for tracers that want to take a "snapshot"
4325 * of a CPU buffer and has another back up buffer lying around.
4326 * it is expected that the tracer handles the cpu buffer not being
4327 * used at the moment.
4328 */
4329int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4330 struct ring_buffer *buffer_b, int cpu)
4331{
4332 struct ring_buffer_per_cpu *cpu_buffer_a;
4333 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4334 int ret = -EINVAL;
4335
9e01c1b7
RR
4336 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4337 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4338 goto out;
7a8e76a3 4339
438ced17
VN
4340 cpu_buffer_a = buffer_a->buffers[cpu];
4341 cpu_buffer_b = buffer_b->buffers[cpu];
4342
7a8e76a3 4343 /* At least make sure the two buffers are somewhat the same */
438ced17 4344 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4345 goto out;
4346
4347 ret = -EAGAIN;
7a8e76a3 4348
97b17efe 4349 if (atomic_read(&buffer_a->record_disabled))
554f786e 4350 goto out;
97b17efe
SR
4351
4352 if (atomic_read(&buffer_b->record_disabled))
554f786e 4353 goto out;
97b17efe 4354
97b17efe 4355 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4356 goto out;
97b17efe
SR
4357
4358 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4359 goto out;
97b17efe 4360
7a8e76a3
SR
4361 /*
4362 * We can't do a synchronize_sched here because this
4363 * function can be called in atomic context.
4364 * Normally this will be called from the same CPU as cpu.
4365 * If not it's up to the caller to protect this.
4366 */
4367 atomic_inc(&cpu_buffer_a->record_disabled);
4368 atomic_inc(&cpu_buffer_b->record_disabled);
4369
98277991
SR
4370 ret = -EBUSY;
4371 if (local_read(&cpu_buffer_a->committing))
4372 goto out_dec;
4373 if (local_read(&cpu_buffer_b->committing))
4374 goto out_dec;
4375
7a8e76a3
SR
4376 buffer_a->buffers[cpu] = cpu_buffer_b;
4377 buffer_b->buffers[cpu] = cpu_buffer_a;
4378
4379 cpu_buffer_b->buffer = buffer_a;
4380 cpu_buffer_a->buffer = buffer_b;
4381
98277991
SR
4382 ret = 0;
4383
4384out_dec:
7a8e76a3
SR
4385 atomic_dec(&cpu_buffer_a->record_disabled);
4386 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4387out:
554f786e 4388 return ret;
7a8e76a3 4389}
c4f50183 4390EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4391#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4392
8789a9e7
SR
4393/**
4394 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4395 * @buffer: the buffer to allocate for.
d611851b 4396 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4397 *
4398 * This function is used in conjunction with ring_buffer_read_page.
4399 * When reading a full page from the ring buffer, these functions
4400 * can be used to speed up the process. The calling function should
4401 * allocate a few pages first with this function. Then when it
4402 * needs to get pages from the ring buffer, it passes the result
4403 * of this function into ring_buffer_read_page, which will swap
4404 * the page that was allocated, with the read page of the buffer.
4405 *
4406 * Returns:
4407 * The page allocated, or NULL on error.
4408 */
7ea59064 4409void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4410{
044fa782 4411 struct buffer_data_page *bpage;
7ea59064 4412 struct page *page;
8789a9e7 4413
d7ec4bfe
VN
4414 page = alloc_pages_node(cpu_to_node(cpu),
4415 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4416 if (!page)
8789a9e7
SR
4417 return NULL;
4418
7ea59064 4419 bpage = page_address(page);
8789a9e7 4420
ef7a4a16
SR
4421 rb_init_page(bpage);
4422
044fa782 4423 return bpage;
8789a9e7 4424}
d6ce96da 4425EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4426
4427/**
4428 * ring_buffer_free_read_page - free an allocated read page
4429 * @buffer: the buffer the page was allocate for
4430 * @data: the page to free
4431 *
4432 * Free a page allocated from ring_buffer_alloc_read_page.
4433 */
4434void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4435{
4436 free_page((unsigned long)data);
4437}
d6ce96da 4438EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4439
4440/**
4441 * ring_buffer_read_page - extract a page from the ring buffer
4442 * @buffer: buffer to extract from
4443 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4444 * @len: amount to extract
8789a9e7
SR
4445 * @cpu: the cpu of the buffer to extract
4446 * @full: should the extraction only happen when the page is full.
4447 *
4448 * This function will pull out a page from the ring buffer and consume it.
4449 * @data_page must be the address of the variable that was returned
4450 * from ring_buffer_alloc_read_page. This is because the page might be used
4451 * to swap with a page in the ring buffer.
4452 *
4453 * for example:
d611851b 4454 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4455 * if (!rpage)
4456 * return error;
ef7a4a16 4457 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4458 * if (ret >= 0)
4459 * process_page(rpage, ret);
8789a9e7
SR
4460 *
4461 * When @full is set, the function will not return true unless
4462 * the writer is off the reader page.
4463 *
4464 * Note: it is up to the calling functions to handle sleeps and wakeups.
4465 * The ring buffer can be used anywhere in the kernel and can not
4466 * blindly call wake_up. The layer that uses the ring buffer must be
4467 * responsible for that.
4468 *
4469 * Returns:
667d2412
LJ
4470 * >=0 if data has been transferred, returns the offset of consumed data.
4471 * <0 if no data has been transferred.
8789a9e7
SR
4472 */
4473int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4474 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4475{
4476 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4477 struct ring_buffer_event *event;
044fa782 4478 struct buffer_data_page *bpage;
ef7a4a16 4479 struct buffer_page *reader;
ff0ff84a 4480 unsigned long missed_events;
8789a9e7 4481 unsigned long flags;
ef7a4a16 4482 unsigned int commit;
667d2412 4483 unsigned int read;
4f3640f8 4484 u64 save_timestamp;
667d2412 4485 int ret = -1;
8789a9e7 4486
554f786e
SR
4487 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4488 goto out;
4489
474d32b6
SR
4490 /*
4491 * If len is not big enough to hold the page header, then
4492 * we can not copy anything.
4493 */
4494 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4495 goto out;
474d32b6
SR
4496
4497 len -= BUF_PAGE_HDR_SIZE;
4498
8789a9e7 4499 if (!data_page)
554f786e 4500 goto out;
8789a9e7 4501
044fa782
SR
4502 bpage = *data_page;
4503 if (!bpage)
554f786e 4504 goto out;
8789a9e7 4505
5389f6fa 4506 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4507
ef7a4a16
SR
4508 reader = rb_get_reader_page(cpu_buffer);
4509 if (!reader)
554f786e 4510 goto out_unlock;
8789a9e7 4511
ef7a4a16
SR
4512 event = rb_reader_event(cpu_buffer);
4513
4514 read = reader->read;
4515 commit = rb_page_commit(reader);
667d2412 4516
66a8cb95 4517 /* Check if any events were dropped */
ff0ff84a 4518 missed_events = cpu_buffer->lost_events;
66a8cb95 4519
8789a9e7 4520 /*
474d32b6
SR
4521 * If this page has been partially read or
4522 * if len is not big enough to read the rest of the page or
4523 * a writer is still on the page, then
4524 * we must copy the data from the page to the buffer.
4525 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4526 */
474d32b6 4527 if (read || (len < (commit - read)) ||
ef7a4a16 4528 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4529 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4530 unsigned int rpos = read;
4531 unsigned int pos = 0;
ef7a4a16 4532 unsigned int size;
8789a9e7
SR
4533
4534 if (full)
554f786e 4535 goto out_unlock;
8789a9e7 4536
ef7a4a16
SR
4537 if (len > (commit - read))
4538 len = (commit - read);
4539
69d1b839
SR
4540 /* Always keep the time extend and data together */
4541 size = rb_event_ts_length(event);
ef7a4a16
SR
4542
4543 if (len < size)
554f786e 4544 goto out_unlock;
ef7a4a16 4545
4f3640f8
SR
4546 /* save the current timestamp, since the user will need it */
4547 save_timestamp = cpu_buffer->read_stamp;
4548
ef7a4a16
SR
4549 /* Need to copy one event at a time */
4550 do {
e1e35927
DS
4551 /* We need the size of one event, because
4552 * rb_advance_reader only advances by one event,
4553 * whereas rb_event_ts_length may include the size of
4554 * one or two events.
4555 * We have already ensured there's enough space if this
4556 * is a time extend. */
4557 size = rb_event_length(event);
474d32b6 4558 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4559
4560 len -= size;
4561
4562 rb_advance_reader(cpu_buffer);
474d32b6
SR
4563 rpos = reader->read;
4564 pos += size;
ef7a4a16 4565
18fab912
HY
4566 if (rpos >= commit)
4567 break;
4568
ef7a4a16 4569 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4570 /* Always keep the time extend and data together */
4571 size = rb_event_ts_length(event);
e1e35927 4572 } while (len >= size);
667d2412
LJ
4573
4574 /* update bpage */
ef7a4a16 4575 local_set(&bpage->commit, pos);
4f3640f8 4576 bpage->time_stamp = save_timestamp;
ef7a4a16 4577
474d32b6
SR
4578 /* we copied everything to the beginning */
4579 read = 0;
8789a9e7 4580 } else {
afbab76a 4581 /* update the entry counter */
77ae365e 4582 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4583 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4584
8789a9e7 4585 /* swap the pages */
044fa782 4586 rb_init_page(bpage);
ef7a4a16
SR
4587 bpage = reader->page;
4588 reader->page = *data_page;
4589 local_set(&reader->write, 0);
778c55d4 4590 local_set(&reader->entries, 0);
ef7a4a16 4591 reader->read = 0;
044fa782 4592 *data_page = bpage;
ff0ff84a
SR
4593
4594 /*
4595 * Use the real_end for the data size,
4596 * This gives us a chance to store the lost events
4597 * on the page.
4598 */
4599 if (reader->real_end)
4600 local_set(&bpage->commit, reader->real_end);
8789a9e7 4601 }
667d2412 4602 ret = read;
8789a9e7 4603
66a8cb95 4604 cpu_buffer->lost_events = 0;
2711ca23
SR
4605
4606 commit = local_read(&bpage->commit);
66a8cb95
SR
4607 /*
4608 * Set a flag in the commit field if we lost events
4609 */
ff0ff84a 4610 if (missed_events) {
ff0ff84a
SR
4611 /* If there is room at the end of the page to save the
4612 * missed events, then record it there.
4613 */
4614 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4615 memcpy(&bpage->data[commit], &missed_events,
4616 sizeof(missed_events));
4617 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4618 commit += sizeof(missed_events);
ff0ff84a 4619 }
66a8cb95 4620 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4621 }
66a8cb95 4622
2711ca23
SR
4623 /*
4624 * This page may be off to user land. Zero it out here.
4625 */
4626 if (commit < BUF_PAGE_SIZE)
4627 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4628
554f786e 4629 out_unlock:
5389f6fa 4630 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4631
554f786e 4632 out:
8789a9e7
SR
4633 return ret;
4634}
d6ce96da 4635EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4636
59222efe 4637#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4638static int rb_cpu_notify(struct notifier_block *self,
4639 unsigned long action, void *hcpu)
554f786e
SR
4640{
4641 struct ring_buffer *buffer =
4642 container_of(self, struct ring_buffer, cpu_notify);
4643 long cpu = (long)hcpu;
9b94a8fb
SRRH
4644 long nr_pages_same;
4645 int cpu_i;
4646 unsigned long nr_pages;
554f786e
SR
4647
4648 switch (action) {
4649 case CPU_UP_PREPARE:
4650 case CPU_UP_PREPARE_FROZEN:
3f237a79 4651 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4652 return NOTIFY_OK;
4653
438ced17
VN
4654 nr_pages = 0;
4655 nr_pages_same = 1;
4656 /* check if all cpu sizes are same */
4657 for_each_buffer_cpu(buffer, cpu_i) {
4658 /* fill in the size from first enabled cpu */
4659 if (nr_pages == 0)
4660 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4661 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4662 nr_pages_same = 0;
4663 break;
4664 }
4665 }
4666 /* allocate minimum pages, user can later expand it */
4667 if (!nr_pages_same)
4668 nr_pages = 2;
554f786e 4669 buffer->buffers[cpu] =
438ced17 4670 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4671 if (!buffer->buffers[cpu]) {
4672 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4673 cpu);
4674 return NOTIFY_OK;
4675 }
4676 smp_wmb();
3f237a79 4677 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4678 break;
4679 case CPU_DOWN_PREPARE:
4680 case CPU_DOWN_PREPARE_FROZEN:
4681 /*
4682 * Do nothing.
4683 * If we were to free the buffer, then the user would
4684 * lose any trace that was in the buffer.
4685 */
4686 break;
4687 default:
4688 break;
4689 }
4690 return NOTIFY_OK;
4691}
4692#endif
6c43e554
SRRH
4693
4694#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4695/*
4696 * This is a basic integrity check of the ring buffer.
4697 * Late in the boot cycle this test will run when configured in.
4698 * It will kick off a thread per CPU that will go into a loop
4699 * writing to the per cpu ring buffer various sizes of data.
4700 * Some of the data will be large items, some small.
4701 *
4702 * Another thread is created that goes into a spin, sending out
4703 * IPIs to the other CPUs to also write into the ring buffer.
4704 * this is to test the nesting ability of the buffer.
4705 *
4706 * Basic stats are recorded and reported. If something in the
4707 * ring buffer should happen that's not expected, a big warning
4708 * is displayed and all ring buffers are disabled.
4709 */
4710static struct task_struct *rb_threads[NR_CPUS] __initdata;
4711
4712struct rb_test_data {
4713 struct ring_buffer *buffer;
4714 unsigned long events;
4715 unsigned long bytes_written;
4716 unsigned long bytes_alloc;
4717 unsigned long bytes_dropped;
4718 unsigned long events_nested;
4719 unsigned long bytes_written_nested;
4720 unsigned long bytes_alloc_nested;
4721 unsigned long bytes_dropped_nested;
4722 int min_size_nested;
4723 int max_size_nested;
4724 int max_size;
4725 int min_size;
4726 int cpu;
4727 int cnt;
4728};
4729
4730static struct rb_test_data rb_data[NR_CPUS] __initdata;
4731
4732/* 1 meg per cpu */
4733#define RB_TEST_BUFFER_SIZE 1048576
4734
4735static char rb_string[] __initdata =
4736 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4737 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4738 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4739
4740static bool rb_test_started __initdata;
4741
4742struct rb_item {
4743 int size;
4744 char str[];
4745};
4746
4747static __init int rb_write_something(struct rb_test_data *data, bool nested)
4748{
4749 struct ring_buffer_event *event;
4750 struct rb_item *item;
4751 bool started;
4752 int event_len;
4753 int size;
4754 int len;
4755 int cnt;
4756
4757 /* Have nested writes different that what is written */
4758 cnt = data->cnt + (nested ? 27 : 0);
4759
4760 /* Multiply cnt by ~e, to make some unique increment */
4761 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4762
4763 len = size + sizeof(struct rb_item);
4764
4765 started = rb_test_started;
4766 /* read rb_test_started before checking buffer enabled */
4767 smp_rmb();
4768
4769 event = ring_buffer_lock_reserve(data->buffer, len);
4770 if (!event) {
4771 /* Ignore dropped events before test starts. */
4772 if (started) {
4773 if (nested)
4774 data->bytes_dropped += len;
4775 else
4776 data->bytes_dropped_nested += len;
4777 }
4778 return len;
4779 }
4780
4781 event_len = ring_buffer_event_length(event);
4782
4783 if (RB_WARN_ON(data->buffer, event_len < len))
4784 goto out;
4785
4786 item = ring_buffer_event_data(event);
4787 item->size = size;
4788 memcpy(item->str, rb_string, size);
4789
4790 if (nested) {
4791 data->bytes_alloc_nested += event_len;
4792 data->bytes_written_nested += len;
4793 data->events_nested++;
4794 if (!data->min_size_nested || len < data->min_size_nested)
4795 data->min_size_nested = len;
4796 if (len > data->max_size_nested)
4797 data->max_size_nested = len;
4798 } else {
4799 data->bytes_alloc += event_len;
4800 data->bytes_written += len;
4801 data->events++;
4802 if (!data->min_size || len < data->min_size)
4803 data->max_size = len;
4804 if (len > data->max_size)
4805 data->max_size = len;
4806 }
4807
4808 out:
4809 ring_buffer_unlock_commit(data->buffer, event);
4810
4811 return 0;
4812}
4813
4814static __init int rb_test(void *arg)
4815{
4816 struct rb_test_data *data = arg;
4817
4818 while (!kthread_should_stop()) {
4819 rb_write_something(data, false);
4820 data->cnt++;
4821
4822 set_current_state(TASK_INTERRUPTIBLE);
4823 /* Now sleep between a min of 100-300us and a max of 1ms */
4824 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4825 }
4826
4827 return 0;
4828}
4829
4830static __init void rb_ipi(void *ignore)
4831{
4832 struct rb_test_data *data;
4833 int cpu = smp_processor_id();
4834
4835 data = &rb_data[cpu];
4836 rb_write_something(data, true);
4837}
4838
4839static __init int rb_hammer_test(void *arg)
4840{
4841 while (!kthread_should_stop()) {
4842
4843 /* Send an IPI to all cpus to write data! */
4844 smp_call_function(rb_ipi, NULL, 1);
4845 /* No sleep, but for non preempt, let others run */
4846 schedule();
4847 }
4848
4849 return 0;
4850}
4851
4852static __init int test_ringbuffer(void)
4853{
4854 struct task_struct *rb_hammer;
4855 struct ring_buffer *buffer;
4856 int cpu;
4857 int ret = 0;
4858
4859 pr_info("Running ring buffer tests...\n");
4860
4861 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4862 if (WARN_ON(!buffer))
4863 return 0;
4864
4865 /* Disable buffer so that threads can't write to it yet */
4866 ring_buffer_record_off(buffer);
4867
4868 for_each_online_cpu(cpu) {
4869 rb_data[cpu].buffer = buffer;
4870 rb_data[cpu].cpu = cpu;
4871 rb_data[cpu].cnt = cpu;
4872 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4873 "rbtester/%d", cpu);
4874 if (WARN_ON(!rb_threads[cpu])) {
4875 pr_cont("FAILED\n");
4876 ret = -1;
4877 goto out_free;
4878 }
4879
4880 kthread_bind(rb_threads[cpu], cpu);
4881 wake_up_process(rb_threads[cpu]);
4882 }
4883
4884 /* Now create the rb hammer! */
4885 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4886 if (WARN_ON(!rb_hammer)) {
4887 pr_cont("FAILED\n");
4888 ret = -1;
4889 goto out_free;
4890 }
4891
4892 ring_buffer_record_on(buffer);
4893 /*
4894 * Show buffer is enabled before setting rb_test_started.
4895 * Yes there's a small race window where events could be
4896 * dropped and the thread wont catch it. But when a ring
4897 * buffer gets enabled, there will always be some kind of
4898 * delay before other CPUs see it. Thus, we don't care about
4899 * those dropped events. We care about events dropped after
4900 * the threads see that the buffer is active.
4901 */
4902 smp_wmb();
4903 rb_test_started = true;
4904
4905 set_current_state(TASK_INTERRUPTIBLE);
4906 /* Just run for 10 seconds */;
4907 schedule_timeout(10 * HZ);
4908
4909 kthread_stop(rb_hammer);
4910
4911 out_free:
4912 for_each_online_cpu(cpu) {
4913 if (!rb_threads[cpu])
4914 break;
4915 kthread_stop(rb_threads[cpu]);
4916 }
4917 if (ret) {
4918 ring_buffer_free(buffer);
4919 return ret;
4920 }
4921
4922 /* Report! */
4923 pr_info("finished\n");
4924 for_each_online_cpu(cpu) {
4925 struct ring_buffer_event *event;
4926 struct rb_test_data *data = &rb_data[cpu];
4927 struct rb_item *item;
4928 unsigned long total_events;
4929 unsigned long total_dropped;
4930 unsigned long total_written;
4931 unsigned long total_alloc;
4932 unsigned long total_read = 0;
4933 unsigned long total_size = 0;
4934 unsigned long total_len = 0;
4935 unsigned long total_lost = 0;
4936 unsigned long lost;
4937 int big_event_size;
4938 int small_event_size;
4939
4940 ret = -1;
4941
4942 total_events = data->events + data->events_nested;
4943 total_written = data->bytes_written + data->bytes_written_nested;
4944 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4945 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4946
4947 big_event_size = data->max_size + data->max_size_nested;
4948 small_event_size = data->min_size + data->min_size_nested;
4949
4950 pr_info("CPU %d:\n", cpu);
4951 pr_info(" events: %ld\n", total_events);
4952 pr_info(" dropped bytes: %ld\n", total_dropped);
4953 pr_info(" alloced bytes: %ld\n", total_alloc);
4954 pr_info(" written bytes: %ld\n", total_written);
4955 pr_info(" biggest event: %d\n", big_event_size);
4956 pr_info(" smallest event: %d\n", small_event_size);
4957
4958 if (RB_WARN_ON(buffer, total_dropped))
4959 break;
4960
4961 ret = 0;
4962
4963 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4964 total_lost += lost;
4965 item = ring_buffer_event_data(event);
4966 total_len += ring_buffer_event_length(event);
4967 total_size += item->size + sizeof(struct rb_item);
4968 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4969 pr_info("FAILED!\n");
4970 pr_info("buffer had: %.*s\n", item->size, item->str);
4971 pr_info("expected: %.*s\n", item->size, rb_string);
4972 RB_WARN_ON(buffer, 1);
4973 ret = -1;
4974 break;
4975 }
4976 total_read++;
4977 }
4978 if (ret)
4979 break;
4980
4981 ret = -1;
4982
4983 pr_info(" read events: %ld\n", total_read);
4984 pr_info(" lost events: %ld\n", total_lost);
4985 pr_info(" total events: %ld\n", total_lost + total_read);
4986 pr_info(" recorded len bytes: %ld\n", total_len);
4987 pr_info(" recorded size bytes: %ld\n", total_size);
4988 if (total_lost)
4989 pr_info(" With dropped events, record len and size may not match\n"
4990 " alloced and written from above\n");
4991 if (!total_lost) {
4992 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4993 total_size != total_written))
4994 break;
4995 }
4996 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4997 break;
4998
4999 ret = 0;
5000 }
5001 if (!ret)
5002 pr_info("Ring buffer PASSED!\n");
5003
5004 ring_buffer_free(buffer);
5005 return 0;
5006}
5007
5008late_initcall(test_ringbuffer);
5009#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */