ring-buffer: Use READ_ONCE() for most tail_page access
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
34a148bf 248static void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
abc9b56d 283struct buffer_data_page {
e4c2ce82 284 u64 time_stamp; /* page time stamp */
c3706f00 285 local_t commit; /* write committed index */
649508f6 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
287};
288
77ae365e
SR
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
abc9b56d 297struct buffer_page {
778c55d4 298 struct list_head list; /* list of buffer pages */
abc9b56d 299 local_t write; /* index for next write */
6f807acd 300 unsigned read; /* index for next read */
778c55d4 301 local_t entries; /* entries on this page */
ff0ff84a 302 unsigned long real_end; /* real end of data */
abc9b56d 303 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
304};
305
77ae365e
SR
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
044fa782 321static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 322{
044fa782 323 local_set(&bpage->commit, 0);
abc9b56d
SR
324}
325
474d32b6
SR
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
ef7a4a16
SR
332size_t ring_buffer_page_len(void *page)
333{
474d32b6
SR
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
336}
337
ed56829c
SR
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
34a148bf 342static void free_buffer_page(struct buffer_page *bpage)
ed56829c 343{
34a148bf 344 free_page((unsigned long)bpage->page);
e4c2ce82 345 kfree(bpage);
ed56829c
SR
346}
347
7a8e76a3
SR
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
474d32b6 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 359
be957c44
SR
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
d1b182a8
SR
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
c0cd93aa
SRRH
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
d1b182a8
SR
391}
392
15693458
SRRH
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
1e0d6714 396 wait_queue_head_t full_waiters;
15693458 397 bool waiters_pending;
1e0d6714
SRRH
398 bool full_waiters_pending;
399 bool wakeup_full;
15693458
SRRH
400};
401
fcc742ea
SRRH
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
a497adb4
SRRH
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
7a8e76a3
SR
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
985023de 435 atomic_t record_disabled;
7a8e76a3 436 struct ring_buffer *buffer;
5389f6fa 437 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 438 arch_spinlock_t lock;
7a8e76a3 439 struct lock_class_key lock_key;
438ced17 440 unsigned int nr_pages;
58a09ec6 441 unsigned int current_context;
3adc54fa 442 struct list_head *pages;
6f807acd
SR
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
c3706f00 445 struct buffer_page *commit_page; /* committed pages */
d769041f 446 struct buffer_page *reader_page;
66a8cb95
SR
447 unsigned long lost_events;
448 unsigned long last_overrun;
c64e148a 449 local_t entries_bytes;
e4906eff 450 local_t entries;
884bfe89
SP
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
fa743953
SR
454 local_t committing;
455 local_t commits;
77ae365e 456 unsigned long read;
c64e148a 457 unsigned long read_bytes;
7a8e76a3
SR
458 u64 write_stamp;
459 u64 read_stamp;
438ced17
VN
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
83f40318 463 struct work_struct update_pages_work;
05fdd70d 464 struct completion update_done;
15693458
SRRH
465
466 struct rb_irq_work irq_work;
7a8e76a3
SR
467};
468
469struct ring_buffer {
7a8e76a3
SR
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
83f40318 473 atomic_t resize_disabled;
00f62f61 474 cpumask_var_t cpumask;
7a8e76a3 475
1f8a6a10
PZ
476 struct lock_class_key *reader_lock_key;
477
7a8e76a3
SR
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
554f786e 481
59222efe 482#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
483 struct notifier_block cpu_notify;
484#endif
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
06ca3209 832static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010{
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
8573636e 1039 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
da706d8b
LJ
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1053 */
da706d8b
LJ
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072}
1073
1074static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076{
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083}
1084
1085/**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090{
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096}
1097
7a8e76a3 1098/**
d611851b 1099 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
c3706f00 1102 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1103 * been corrupted.
1104 */
1105static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106{
3adc54fa 1107 struct list_head *head = cpu_buffer->pages;
044fa782 1108 struct buffer_page *bpage, *tmp;
7a8e76a3 1109
308f7eeb
SR
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
77ae365e
SR
1114 rb_head_page_deactivate(cpu_buffer);
1115
3e89c7bb
SR
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
7a8e76a3 1120
77ae365e
SR
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
044fa782 1124 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1125 if (RB_WARN_ON(cpu_buffer,
044fa782 1126 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
044fa782 1129 bpage->list.prev->next != &bpage->list))
3e89c7bb 1130 return -1;
77ae365e
SR
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
7a8e76a3
SR
1133 }
1134
77ae365e
SR
1135 rb_head_page_activate(cpu_buffer);
1136
7a8e76a3
SR
1137 return 0;
1138}
1139
438ced17 1140static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1141{
438ced17 1142 int i;
044fa782 1143 struct buffer_page *bpage, *tmp;
3adc54fa 1144
7a8e76a3 1145 for (i = 0; i < nr_pages; i++) {
7ea59064 1146 struct page *page;
d7ec4bfe
VN
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
044fa782 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1153 GFP_KERNEL | __GFP_NORETRY,
438ced17 1154 cpu_to_node(cpu));
044fa782 1155 if (!bpage)
e4c2ce82 1156 goto free_pages;
77ae365e 1157
438ced17 1158 list_add(&bpage->list, pages);
77ae365e 1159
438ced17 1160 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1161 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1162 if (!page)
7a8e76a3 1163 goto free_pages;
7ea59064 1164 bpage->page = page_address(page);
044fa782 1165 rb_init_page(bpage->page);
7a8e76a3
SR
1166 }
1167
438ced17
VN
1168 return 0;
1169
1170free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177}
1178
1179static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181{
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
3adc54fa
SR
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
7a8e76a3 1196
438ced17
VN
1197 cpu_buffer->nr_pages = nr_pages;
1198
7a8e76a3
SR
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
7a8e76a3
SR
1202}
1203
1204static struct ring_buffer_per_cpu *
438ced17 1205rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1206{
1207 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1208 struct buffer_page *bpage;
7ea59064 1209 struct page *page;
7a8e76a3
SR
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
5389f6fa 1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1223 init_completion(&cpu_buffer->update_done);
15693458 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1227
044fa782 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1229 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1230 if (!bpage)
e4c2ce82
SR
1231 goto fail_free_buffer;
1232
77ae365e
SR
1233 rb_check_bpage(cpu_buffer, bpage);
1234
044fa782 1235 cpu_buffer->reader_page = bpage;
7ea59064
VN
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
e4c2ce82 1238 goto fail_free_reader;
7ea59064 1239 bpage->page = page_address(page);
044fa782 1240 rb_init_page(bpage->page);
e4c2ce82 1241
d769041f 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1244
438ced17 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1246 if (ret < 0)
d769041f 1247 goto fail_free_reader;
7a8e76a3
SR
1248
1249 cpu_buffer->head_page
3adc54fa 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1252
77ae365e
SR
1253 rb_head_page_activate(cpu_buffer);
1254
7a8e76a3
SR
1255 return cpu_buffer;
1256
d769041f
SR
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
7a8e76a3
SR
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263}
1264
1265static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266{
3adc54fa 1267 struct list_head *head = cpu_buffer->pages;
044fa782 1268 struct buffer_page *bpage, *tmp;
7a8e76a3 1269
d769041f
SR
1270 free_buffer_page(cpu_buffer->reader_page);
1271
77ae365e
SR
1272 rb_head_page_deactivate(cpu_buffer);
1273
3adc54fa
SR
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
044fa782 1280 free_buffer_page(bpage);
7a8e76a3 1281 }
3adc54fa 1282
7a8e76a3
SR
1283 kfree(cpu_buffer);
1284}
1285
59222efe 1286#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1287static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
554f786e
SR
1289#endif
1290
7a8e76a3 1291/**
d611851b 1292 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1293 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1f8a6a10
PZ
1301struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
7a8e76a3
SR
1303{
1304 struct ring_buffer *buffer;
1305 int bsize;
438ced17 1306 int cpu, nr_pages;
7a8e76a3
SR
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
9e01c1b7
RR
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
438ced17 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1318 buffer->flags = flags;
37886f6a 1319 buffer->clock = trace_clock_local;
1f8a6a10 1320 buffer->reader_lock_key = key;
7a8e76a3 1321
15693458 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1323 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1324
7a8e76a3 1325 /* need at least two pages */
438ced17
VN
1326 if (nr_pages < 2)
1327 nr_pages = 2;
7a8e76a3 1328
3bf832ce
FW
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1335 cpu_notifier_register_begin();
554f786e 1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1337#else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339#endif
7a8e76a3
SR
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
9e01c1b7 1346 goto fail_free_cpumask;
7a8e76a3
SR
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
438ced17 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
59222efe 1355#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
d39ad278
SB
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
554f786e
SR
1360#endif
1361
7a8e76a3
SR
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
9e01c1b7
RR
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1375#ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377#endif
9e01c1b7 1378
7a8e76a3
SR
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382}
1f8a6a10 1383EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1384
1385/**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389void
1390ring_buffer_free(struct ring_buffer *buffer)
1391{
1392 int cpu;
1393
59222efe 1394#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1397#endif
1398
7a8e76a3
SR
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
d39ad278
SB
1402#ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404#endif
554f786e 1405
bd3f0221 1406 kfree(buffer->buffers);
9e01c1b7
RR
1407 free_cpumask_var(buffer->cpumask);
1408
7a8e76a3
SR
1409 kfree(buffer);
1410}
c4f50183 1411EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1412
37886f6a
SR
1413void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415{
1416 buffer->clock = clock;
1417}
1418
7a8e76a3
SR
1419static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
83f40318
VN
1421static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422{
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424}
1425
1426static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427{
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429}
1430
5040b4b7 1431static int
83f40318 1432rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1433{
83f40318
VN
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
7a8e76a3 1442
5389f6fa 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1455
83f40318
VN
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1471 }
7a8e76a3 1472
83f40318 1473 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1474
83f40318
VN
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
48fdc72f 1521 * Increment overrun to account for the lost events.
83f40318 1522 */
48fdc72f 1523 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1537
1538 return nr_removed == 0;
7a8e76a3
SR
1539}
1540
5040b4b7
VN
1541static int
1542rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1543{
5040b4b7
VN
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
7a8e76a3 1546
5389f6fa 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
77ae365e 1568
5040b4b7 1569 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1570 if (!head_page)
1571 break;
5040b4b7
VN
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
7a8e76a3 1595 }
7a8e76a3 1596
5040b4b7
VN
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
7a8e76a3
SR
1616}
1617
83f40318 1618static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1619{
5040b4b7
VN
1620 int success;
1621
438ced17 1622 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1623 success = rb_insert_pages(cpu_buffer);
438ced17 1624 else
5040b4b7
VN
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
83f40318 1627
5040b4b7
VN
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1630}
1631
1632static void update_pages_handler(struct work_struct *work)
1633{
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
05fdd70d 1637 complete(&cpu_buffer->update_done);
438ced17
VN
1638}
1639
7a8e76a3
SR
1640/**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
d611851b 1644 * @cpu_id: the cpu buffer to resize
7a8e76a3 1645 *
7a8e76a3
SR
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
83f40318 1648 * Returns 0 on success and < 0 on failure.
7a8e76a3 1649 */
438ced17
VN
1650int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
7a8e76a3
SR
1652{
1653 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1654 unsigned nr_pages;
83f40318 1655 int cpu, err = 0;
7a8e76a3 1656
ee51a1de
IM
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
6a31e1f1
SR
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
7a8e76a3
SR
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
83f40318 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1676
83f40318
VN
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
18421015 1684
83f40318 1685 /* prevent another thread from changing buffer sizes */
7a8e76a3 1686 mutex_lock(&buffer->mutex);
7a8e76a3 1687
438ced17
VN
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
7a8e76a3
SR
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1692
438ced17
VN
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
438ced17
VN
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
d7ec4bfe 1700 /*
438ced17
VN
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
d7ec4bfe 1703 */
438ced17
VN
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1706 &cpu_buffer->new_pages, cpu)) {
438ced17 1707 /* not enough memory for new pages */
83f40318
VN
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
05fdd70d 1716 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1721 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1722 continue;
1723
021c5b34
CM
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
05fdd70d
VN
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
f5eb5588 1731 }
7a8e76a3 1732 }
7a8e76a3 1733
438ced17
VN
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1737 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1738 continue;
1739
05fdd70d
VN
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
83f40318 1742 cpu_buffer->nr_pages_to_update = 0;
438ced17 1743 }
83f40318
VN
1744
1745 put_online_cpus();
438ced17 1746 } else {
8e49f418
VN
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
438ced17 1751 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1752
438ced17
VN
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
7a8e76a3 1755
438ced17
VN
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
438ced17 1766
83f40318
VN
1767 get_online_cpus();
1768
021c5b34
CM
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1771 rb_update_pages(cpu_buffer);
1772 else {
83f40318
VN
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
05fdd70d 1775 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1776 }
83f40318 1777
83f40318 1778 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1779 put_online_cpus();
438ced17 1780 }
7a8e76a3
SR
1781
1782 out:
659f451f
SR
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
7a8e76a3 1806 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1807 return size;
1808
83f40318 1809 out_err:
438ced17
VN
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
83f40318 1812
438ced17 1813 cpu_buffer = buffer->buffers[cpu];
438ced17 1814 cpu_buffer->nr_pages_to_update = 0;
83f40318 1815
438ced17
VN
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
83f40318 1818
438ced17
VN
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
7a8e76a3 1824 }
641d2f63 1825 mutex_unlock(&buffer->mutex);
83f40318 1826 return err;
7a8e76a3 1827}
c4f50183 1828EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1829
750912fa
DS
1830void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831{
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838}
1839EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
8789a9e7 1841static inline void *
044fa782 1842__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1843{
044fa782 1844 return bpage->data + index;
8789a9e7
SR
1845}
1846
044fa782 1847static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1848{
044fa782 1849 return bpage->page->data + index;
7a8e76a3
SR
1850}
1851
1852static inline struct ring_buffer_event *
d769041f 1853rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1854{
6f807acd
SR
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857}
1858
7a8e76a3
SR
1859static inline struct ring_buffer_event *
1860rb_iter_head_event(struct ring_buffer_iter *iter)
1861{
6f807acd 1862 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1863}
1864
bf41a158
SR
1865static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866{
abc9b56d 1867 return local_read(&bpage->page->commit);
bf41a158
SR
1868}
1869
25985edc 1870/* Size is determined by what has been committed */
bf41a158
SR
1871static inline unsigned rb_page_size(struct buffer_page *bpage)
1872{
1873 return rb_page_commit(bpage);
1874}
1875
1876static inline unsigned
1877rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878{
1879 return rb_page_commit(cpu_buffer->commit_page);
1880}
1881
bf41a158
SR
1882static inline unsigned
1883rb_event_index(struct ring_buffer_event *event)
1884{
1885 unsigned long addr = (unsigned long)event;
1886
22f470f8 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1888}
1889
34a148bf 1890static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1891{
1892 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1893
1894 /*
1895 * The iterator could be on the reader page (it starts there).
1896 * But the head could have moved, since the reader was
1897 * found. Check for this case and assign the iterator
1898 * to the head page instead of next.
1899 */
1900 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1901 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1902 else
1903 rb_inc_page(cpu_buffer, &iter->head_page);
1904
abc9b56d 1905 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1906 iter->head = 0;
1907}
1908
77ae365e
SR
1909/*
1910 * rb_handle_head_page - writer hit the head page
1911 *
1912 * Returns: +1 to retry page
1913 * 0 to continue
1914 * -1 on error
1915 */
1916static int
1917rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1918 struct buffer_page *tail_page,
1919 struct buffer_page *next_page)
1920{
1921 struct buffer_page *new_head;
1922 int entries;
1923 int type;
1924 int ret;
1925
1926 entries = rb_page_entries(next_page);
1927
1928 /*
1929 * The hard part is here. We need to move the head
1930 * forward, and protect against both readers on
1931 * other CPUs and writers coming in via interrupts.
1932 */
1933 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1934 RB_PAGE_HEAD);
1935
1936 /*
1937 * type can be one of four:
1938 * NORMAL - an interrupt already moved it for us
1939 * HEAD - we are the first to get here.
1940 * UPDATE - we are the interrupt interrupting
1941 * a current move.
1942 * MOVED - a reader on another CPU moved the next
1943 * pointer to its reader page. Give up
1944 * and try again.
1945 */
1946
1947 switch (type) {
1948 case RB_PAGE_HEAD:
1949 /*
1950 * We changed the head to UPDATE, thus
1951 * it is our responsibility to update
1952 * the counters.
1953 */
1954 local_add(entries, &cpu_buffer->overrun);
c64e148a 1955 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1956
1957 /*
1958 * The entries will be zeroed out when we move the
1959 * tail page.
1960 */
1961
1962 /* still more to do */
1963 break;
1964
1965 case RB_PAGE_UPDATE:
1966 /*
1967 * This is an interrupt that interrupt the
1968 * previous update. Still more to do.
1969 */
1970 break;
1971 case RB_PAGE_NORMAL:
1972 /*
1973 * An interrupt came in before the update
1974 * and processed this for us.
1975 * Nothing left to do.
1976 */
1977 return 1;
1978 case RB_PAGE_MOVED:
1979 /*
1980 * The reader is on another CPU and just did
1981 * a swap with our next_page.
1982 * Try again.
1983 */
1984 return 1;
1985 default:
1986 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1987 return -1;
1988 }
1989
1990 /*
1991 * Now that we are here, the old head pointer is
1992 * set to UPDATE. This will keep the reader from
1993 * swapping the head page with the reader page.
1994 * The reader (on another CPU) will spin till
1995 * we are finished.
1996 *
1997 * We just need to protect against interrupts
1998 * doing the job. We will set the next pointer
1999 * to HEAD. After that, we set the old pointer
2000 * to NORMAL, but only if it was HEAD before.
2001 * otherwise we are an interrupt, and only
2002 * want the outer most commit to reset it.
2003 */
2004 new_head = next_page;
2005 rb_inc_page(cpu_buffer, &new_head);
2006
2007 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2008 RB_PAGE_NORMAL);
2009
2010 /*
2011 * Valid returns are:
2012 * HEAD - an interrupt came in and already set it.
2013 * NORMAL - One of two things:
2014 * 1) We really set it.
2015 * 2) A bunch of interrupts came in and moved
2016 * the page forward again.
2017 */
2018 switch (ret) {
2019 case RB_PAGE_HEAD:
2020 case RB_PAGE_NORMAL:
2021 /* OK */
2022 break;
2023 default:
2024 RB_WARN_ON(cpu_buffer, 1);
2025 return -1;
2026 }
2027
2028 /*
2029 * It is possible that an interrupt came in,
2030 * set the head up, then more interrupts came in
2031 * and moved it again. When we get back here,
2032 * the page would have been set to NORMAL but we
2033 * just set it back to HEAD.
2034 *
2035 * How do you detect this? Well, if that happened
2036 * the tail page would have moved.
2037 */
2038 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2039 struct buffer_page *buffer_tail_page;
2040
2041 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2042 /*
2043 * If the tail had moved passed next, then we need
2044 * to reset the pointer.
2045 */
8573636e
SRRH
2046 if (buffer_tail_page != tail_page &&
2047 buffer_tail_page != next_page)
77ae365e
SR
2048 rb_head_page_set_normal(cpu_buffer, new_head,
2049 next_page,
2050 RB_PAGE_HEAD);
2051 }
2052
2053 /*
2054 * If this was the outer most commit (the one that
2055 * changed the original pointer from HEAD to UPDATE),
2056 * then it is up to us to reset it to NORMAL.
2057 */
2058 if (type == RB_PAGE_HEAD) {
2059 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2060 tail_page,
2061 RB_PAGE_UPDATE);
2062 if (RB_WARN_ON(cpu_buffer,
2063 ret != RB_PAGE_UPDATE))
2064 return -1;
2065 }
2066
2067 return 0;
2068}
2069
c7b09308
SR
2070static inline void
2071rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2072 unsigned long tail, struct rb_event_info *info)
c7b09308 2073{
fcc742ea 2074 struct buffer_page *tail_page = info->tail_page;
c7b09308 2075 struct ring_buffer_event *event;
fcc742ea 2076 unsigned long length = info->length;
c7b09308
SR
2077
2078 /*
2079 * Only the event that crossed the page boundary
2080 * must fill the old tail_page with padding.
2081 */
2082 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2083 /*
2084 * If the page was filled, then we still need
2085 * to update the real_end. Reset it to zero
2086 * and the reader will ignore it.
2087 */
2088 if (tail == BUF_PAGE_SIZE)
2089 tail_page->real_end = 0;
2090
c7b09308
SR
2091 local_sub(length, &tail_page->write);
2092 return;
2093 }
2094
2095 event = __rb_page_index(tail_page, tail);
b0b7065b 2096 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2097
c64e148a
VN
2098 /* account for padding bytes */
2099 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2100
ff0ff84a
SR
2101 /*
2102 * Save the original length to the meta data.
2103 * This will be used by the reader to add lost event
2104 * counter.
2105 */
2106 tail_page->real_end = tail;
2107
c7b09308
SR
2108 /*
2109 * If this event is bigger than the minimum size, then
2110 * we need to be careful that we don't subtract the
2111 * write counter enough to allow another writer to slip
2112 * in on this page.
2113 * We put in a discarded commit instead, to make sure
2114 * that this space is not used again.
2115 *
2116 * If we are less than the minimum size, we don't need to
2117 * worry about it.
2118 */
2119 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2120 /* No room for any events */
2121
2122 /* Mark the rest of the page with padding */
2123 rb_event_set_padding(event);
2124
2125 /* Set the write back to the previous setting */
2126 local_sub(length, &tail_page->write);
2127 return;
2128 }
2129
2130 /* Put in a discarded event */
2131 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2132 event->type_len = RINGBUF_TYPE_PADDING;
2133 /* time delta must be non zero */
2134 event->time_delta = 1;
c7b09308
SR
2135
2136 /* Set write to end of buffer */
2137 length = (tail + length) - BUF_PAGE_SIZE;
2138 local_sub(length, &tail_page->write);
2139}
6634ff26 2140
747e94ae
SR
2141/*
2142 * This is the slow path, force gcc not to inline it.
2143 */
2144static noinline struct ring_buffer_event *
6634ff26 2145rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2146 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2147{
fcc742ea 2148 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2149 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2150 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2151 struct buffer_page *next_page;
2152 int ret;
fcc742ea 2153 u64 ts;
aa20ae84
SR
2154
2155 next_page = tail_page;
2156
aa20ae84
SR
2157 rb_inc_page(cpu_buffer, &next_page);
2158
aa20ae84
SR
2159 /*
2160 * If for some reason, we had an interrupt storm that made
2161 * it all the way around the buffer, bail, and warn
2162 * about it.
2163 */
2164 if (unlikely(next_page == commit_page)) {
77ae365e 2165 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2166 goto out_reset;
2167 }
2168
77ae365e
SR
2169 /*
2170 * This is where the fun begins!
2171 *
2172 * We are fighting against races between a reader that
2173 * could be on another CPU trying to swap its reader
2174 * page with the buffer head.
2175 *
2176 * We are also fighting against interrupts coming in and
2177 * moving the head or tail on us as well.
2178 *
2179 * If the next page is the head page then we have filled
2180 * the buffer, unless the commit page is still on the
2181 * reader page.
2182 */
2183 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2184
77ae365e
SR
2185 /*
2186 * If the commit is not on the reader page, then
2187 * move the header page.
2188 */
2189 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2190 /*
2191 * If we are not in overwrite mode,
2192 * this is easy, just stop here.
2193 */
884bfe89
SP
2194 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2195 local_inc(&cpu_buffer->dropped_events);
77ae365e 2196 goto out_reset;
884bfe89 2197 }
77ae365e
SR
2198
2199 ret = rb_handle_head_page(cpu_buffer,
2200 tail_page,
2201 next_page);
2202 if (ret < 0)
2203 goto out_reset;
2204 if (ret)
2205 goto out_again;
2206 } else {
2207 /*
2208 * We need to be careful here too. The
2209 * commit page could still be on the reader
2210 * page. We could have a small buffer, and
2211 * have filled up the buffer with events
2212 * from interrupts and such, and wrapped.
2213 *
2214 * Note, if the tail page is also the on the
2215 * reader_page, we let it move out.
2216 */
2217 if (unlikely((cpu_buffer->commit_page !=
2218 cpu_buffer->tail_page) &&
2219 (cpu_buffer->commit_page ==
2220 cpu_buffer->reader_page))) {
2221 local_inc(&cpu_buffer->commit_overrun);
2222 goto out_reset;
2223 }
aa20ae84
SR
2224 }
2225 }
2226
77ae365e
SR
2227 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2228 if (ret) {
2229 /*
2230 * Nested commits always have zero deltas, so
2231 * just reread the time stamp
2232 */
e8bc43e8
SR
2233 ts = rb_time_stamp(buffer);
2234 next_page->page->time_stamp = ts;
aa20ae84
SR
2235 }
2236
77ae365e 2237 out_again:
aa20ae84 2238
fcc742ea 2239 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84
SR
2240
2241 /* fail and let the caller try again */
2242 return ERR_PTR(-EAGAIN);
2243
45141d46 2244 out_reset:
6f3b3440 2245 /* reset write */
fcc742ea 2246 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2247
bf41a158 2248 return NULL;
7a8e76a3
SR
2249}
2250
d90fd774
SRRH
2251/* Slow path, do not inline */
2252static noinline struct ring_buffer_event *
2253rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2254{
d90fd774 2255 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2256
d90fd774
SRRH
2257 /* Not the first event on the page? */
2258 if (rb_event_index(event)) {
2259 event->time_delta = delta & TS_MASK;
2260 event->array[0] = delta >> TS_SHIFT;
2261 } else {
2262 /* nope, just zero it */
2263 event->time_delta = 0;
2264 event->array[0] = 0;
2265 }
a4543a2f 2266
d90fd774
SRRH
2267 return skip_time_extend(event);
2268}
a4543a2f 2269
cdb2a0a9 2270static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2271 struct ring_buffer_event *event);
2272
d90fd774
SRRH
2273/**
2274 * rb_update_event - update event type and data
2275 * @event: the event to update
2276 * @type: the type of event
2277 * @length: the size of the event field in the ring buffer
2278 *
2279 * Update the type and data fields of the event. The length
2280 * is the actual size that is written to the ring buffer,
2281 * and with this, we can determine what to place into the
2282 * data field.
2283 */
b7dc42fd 2284static void
d90fd774
SRRH
2285rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2286 struct ring_buffer_event *event,
2287 struct rb_event_info *info)
2288{
2289 unsigned length = info->length;
2290 u64 delta = info->delta;
a4543a2f 2291
b7dc42fd
SRRH
2292 /* Only a commit updates the timestamp */
2293 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2294 delta = 0;
2295
a4543a2f 2296 /*
d90fd774
SRRH
2297 * If we need to add a timestamp, then we
2298 * add it to the start of the resevered space.
a4543a2f 2299 */
d90fd774
SRRH
2300 if (unlikely(info->add_timestamp)) {
2301 event = rb_add_time_stamp(event, delta);
2302 length -= RB_LEN_TIME_EXTEND;
2303 delta = 0;
a4543a2f
SRRH
2304 }
2305
d90fd774
SRRH
2306 event->time_delta = delta;
2307 length -= RB_EVNT_HDR_SIZE;
2308 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2309 event->type_len = 0;
2310 event->array[0] = length;
2311 } else
2312 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2313}
2314
2315static unsigned rb_calculate_event_length(unsigned length)
2316{
2317 struct ring_buffer_event event; /* Used only for sizeof array */
2318
2319 /* zero length can cause confusions */
2320 if (!length)
2321 length++;
2322
2323 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2324 length += sizeof(event.array[0]);
2325
2326 length += RB_EVNT_HDR_SIZE;
2327 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2328
2329 /*
2330 * In case the time delta is larger than the 27 bits for it
2331 * in the header, we need to add a timestamp. If another
2332 * event comes in when trying to discard this one to increase
2333 * the length, then the timestamp will be added in the allocated
2334 * space of this event. If length is bigger than the size needed
2335 * for the TIME_EXTEND, then padding has to be used. The events
2336 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2337 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2338 * As length is a multiple of 4, we only need to worry if it
2339 * is 12 (RB_LEN_TIME_EXTEND + 4).
2340 */
2341 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2342 length += RB_ALIGNMENT;
2343
2344 return length;
2345}
2346
2347#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2348static inline bool sched_clock_stable(void)
2349{
2350 return true;
2351}
2352#endif
2353
2354static inline int
2355rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2356 struct ring_buffer_event *event)
2357{
2358 unsigned long new_index, old_index;
2359 struct buffer_page *bpage;
2360 unsigned long index;
2361 unsigned long addr;
2362
2363 new_index = rb_event_index(event);
2364 old_index = new_index + rb_event_ts_length(event);
2365 addr = (unsigned long)event;
2366 addr &= PAGE_MASK;
2367
8573636e 2368 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2369
2370 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2371 unsigned long write_mask =
2372 local_read(&bpage->write) & ~RB_WRITE_MASK;
2373 unsigned long event_length = rb_event_length(event);
2374 /*
2375 * This is on the tail page. It is possible that
2376 * a write could come in and move the tail page
2377 * and write to the next page. That is fine
2378 * because we just shorten what is on this page.
2379 */
2380 old_index += write_mask;
2381 new_index += write_mask;
2382 index = local_cmpxchg(&bpage->write, old_index, new_index);
2383 if (index == old_index) {
2384 /* update counters */
2385 local_sub(event_length, &cpu_buffer->entries_bytes);
2386 return 1;
2387 }
2388 }
2389
2390 /* could not discard */
2391 return 0;
2392}
2393
2394static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2395{
2396 local_inc(&cpu_buffer->committing);
2397 local_inc(&cpu_buffer->commits);
2398}
2399
2400static void
2401rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2402{
2403 unsigned long max_count;
2404
2405 /*
2406 * We only race with interrupts and NMIs on this CPU.
2407 * If we own the commit event, then we can commit
2408 * all others that interrupted us, since the interruptions
2409 * are in stack format (they finish before they come
2410 * back to us). This allows us to do a simple loop to
2411 * assign the commit to the tail.
2412 */
2413 again:
2414 max_count = cpu_buffer->nr_pages * 100;
2415
8573636e 2416 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2417 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2418 return;
2419 if (RB_WARN_ON(cpu_buffer,
2420 rb_is_reader_page(cpu_buffer->tail_page)))
2421 return;
2422 local_set(&cpu_buffer->commit_page->page->commit,
2423 rb_page_write(cpu_buffer->commit_page));
2424 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2425 cpu_buffer->write_stamp =
2426 cpu_buffer->commit_page->page->time_stamp;
2427 /* add barrier to keep gcc from optimizing too much */
2428 barrier();
2429 }
2430 while (rb_commit_index(cpu_buffer) !=
2431 rb_page_write(cpu_buffer->commit_page)) {
2432
2433 local_set(&cpu_buffer->commit_page->page->commit,
2434 rb_page_write(cpu_buffer->commit_page));
2435 RB_WARN_ON(cpu_buffer,
2436 local_read(&cpu_buffer->commit_page->page->commit) &
2437 ~RB_WRITE_MASK);
2438 barrier();
2439 }
2440
2441 /* again, keep gcc from optimizing */
2442 barrier();
2443
2444 /*
2445 * If an interrupt came in just after the first while loop
2446 * and pushed the tail page forward, we will be left with
2447 * a dangling commit that will never go forward.
2448 */
8573636e 2449 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2450 goto again;
2451}
2452
2453static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454{
2455 unsigned long commits;
2456
2457 if (RB_WARN_ON(cpu_buffer,
2458 !local_read(&cpu_buffer->committing)))
2459 return;
2460
2461 again:
2462 commits = local_read(&cpu_buffer->commits);
2463 /* synchronize with interrupts */
2464 barrier();
2465 if (local_read(&cpu_buffer->committing) == 1)
2466 rb_set_commit_to_write(cpu_buffer);
2467
2468 local_dec(&cpu_buffer->committing);
2469
2470 /* synchronize with interrupts */
2471 barrier();
2472
2473 /*
2474 * Need to account for interrupts coming in between the
2475 * updating of the commit page and the clearing of the
2476 * committing counter.
2477 */
2478 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2479 !local_read(&cpu_buffer->committing)) {
2480 local_inc(&cpu_buffer->committing);
2481 goto again;
2482 }
2483}
2484
2485static inline void rb_event_discard(struct ring_buffer_event *event)
2486{
2487 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2488 event = skip_time_extend(event);
2489
2490 /* array[0] holds the actual length for the discarded event */
2491 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2492 event->type_len = RINGBUF_TYPE_PADDING;
2493 /* time delta must be non zero */
2494 if (!event->time_delta)
2495 event->time_delta = 1;
2496}
2497
cdb2a0a9 2498static inline bool
d90fd774
SRRH
2499rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2500 struct ring_buffer_event *event)
2501{
2502 unsigned long addr = (unsigned long)event;
2503 unsigned long index;
2504
2505 index = rb_event_index(event);
2506 addr &= PAGE_MASK;
2507
2508 return cpu_buffer->commit_page->page == (void *)addr &&
2509 rb_commit_index(cpu_buffer) == index;
2510}
2511
2512static void
2513rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2514 struct ring_buffer_event *event)
2515{
2516 u64 delta;
2517
2518 /*
2519 * The event first in the commit queue updates the
2520 * time stamp.
2521 */
2522 if (rb_event_is_commit(cpu_buffer, event)) {
2523 /*
2524 * A commit event that is first on a page
2525 * updates the write timestamp with the page stamp
2526 */
2527 if (!rb_event_index(event))
2528 cpu_buffer->write_stamp =
2529 cpu_buffer->commit_page->page->time_stamp;
2530 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2531 delta = event->array[0];
2532 delta <<= TS_SHIFT;
2533 delta += event->time_delta;
2534 cpu_buffer->write_stamp += delta;
2535 } else
2536 cpu_buffer->write_stamp += event->time_delta;
2537 }
2538}
2539
2540static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2541 struct ring_buffer_event *event)
2542{
2543 local_inc(&cpu_buffer->entries);
2544 rb_update_write_stamp(cpu_buffer, event);
2545 rb_end_commit(cpu_buffer);
2546}
2547
2548static __always_inline void
2549rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2550{
2551 bool pagebusy;
2552
2553 if (buffer->irq_work.waiters_pending) {
2554 buffer->irq_work.waiters_pending = false;
2555 /* irq_work_queue() supplies it's own memory barriers */
2556 irq_work_queue(&buffer->irq_work.work);
2557 }
2558
2559 if (cpu_buffer->irq_work.waiters_pending) {
2560 cpu_buffer->irq_work.waiters_pending = false;
2561 /* irq_work_queue() supplies it's own memory barriers */
2562 irq_work_queue(&cpu_buffer->irq_work.work);
2563 }
2564
2565 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2566
2567 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2568 cpu_buffer->irq_work.wakeup_full = true;
2569 cpu_buffer->irq_work.full_waiters_pending = false;
2570 /* irq_work_queue() supplies it's own memory barriers */
2571 irq_work_queue(&cpu_buffer->irq_work.work);
2572 }
2573}
2574
2575/*
2576 * The lock and unlock are done within a preempt disable section.
2577 * The current_context per_cpu variable can only be modified
2578 * by the current task between lock and unlock. But it can
2579 * be modified more than once via an interrupt. To pass this
2580 * information from the lock to the unlock without having to
2581 * access the 'in_interrupt()' functions again (which do show
2582 * a bit of overhead in something as critical as function tracing,
2583 * we use a bitmask trick.
2584 *
2585 * bit 0 = NMI context
2586 * bit 1 = IRQ context
2587 * bit 2 = SoftIRQ context
2588 * bit 3 = normal context.
2589 *
2590 * This works because this is the order of contexts that can
2591 * preempt other contexts. A SoftIRQ never preempts an IRQ
2592 * context.
2593 *
2594 * When the context is determined, the corresponding bit is
2595 * checked and set (if it was set, then a recursion of that context
2596 * happened).
2597 *
2598 * On unlock, we need to clear this bit. To do so, just subtract
2599 * 1 from the current_context and AND it to itself.
2600 *
2601 * (binary)
2602 * 101 - 1 = 100
2603 * 101 & 100 = 100 (clearing bit zero)
2604 *
2605 * 1010 - 1 = 1001
2606 * 1010 & 1001 = 1000 (clearing bit 1)
2607 *
2608 * The least significant bit can be cleared this way, and it
2609 * just so happens that it is the same bit corresponding to
2610 * the current context.
2611 */
2612
2613static __always_inline int
2614trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2615{
2616 unsigned int val = cpu_buffer->current_context;
2617 int bit;
2618
2619 if (in_interrupt()) {
2620 if (in_nmi())
2621 bit = RB_CTX_NMI;
2622 else if (in_irq())
2623 bit = RB_CTX_IRQ;
2624 else
2625 bit = RB_CTX_SOFTIRQ;
2626 } else
2627 bit = RB_CTX_NORMAL;
2628
2629 if (unlikely(val & (1 << bit)))
2630 return 1;
2631
2632 val |= (1 << bit);
2633 cpu_buffer->current_context = val;
2634
2635 return 0;
2636}
2637
2638static __always_inline void
2639trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2640{
2641 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2642}
2643
2644/**
2645 * ring_buffer_unlock_commit - commit a reserved
2646 * @buffer: The buffer to commit to
2647 * @event: The event pointer to commit.
2648 *
2649 * This commits the data to the ring buffer, and releases any locks held.
2650 *
2651 * Must be paired with ring_buffer_lock_reserve.
2652 */
2653int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2654 struct ring_buffer_event *event)
2655{
2656 struct ring_buffer_per_cpu *cpu_buffer;
2657 int cpu = raw_smp_processor_id();
2658
2659 cpu_buffer = buffer->buffers[cpu];
2660
2661 rb_commit(cpu_buffer, event);
2662
2663 rb_wakeups(buffer, cpu_buffer);
2664
2665 trace_recursive_unlock(cpu_buffer);
2666
2667 preempt_enable_notrace();
2668
2669 return 0;
2670}
2671EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2672
2673static noinline void
2674rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2675 struct rb_event_info *info)
2676{
d90fd774
SRRH
2677 WARN_ONCE(info->delta > (1ULL << 59),
2678 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2679 (unsigned long long)info->delta,
2680 (unsigned long long)info->ts,
2681 (unsigned long long)cpu_buffer->write_stamp,
2682 sched_clock_stable() ? "" :
2683 "If you just came from a suspend/resume,\n"
2684 "please switch to the trace global clock:\n"
2685 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2686 info->add_timestamp = 1;
9826b273
SRRH
2687}
2688
6634ff26
SR
2689static struct ring_buffer_event *
2690__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2691 struct rb_event_info *info)
6634ff26 2692{
6634ff26 2693 struct ring_buffer_event *event;
fcc742ea 2694 struct buffer_page *tail_page;
6634ff26 2695 unsigned long tail, write;
b7dc42fd
SRRH
2696
2697 /*
2698 * If the time delta since the last event is too big to
2699 * hold in the time field of the event, then we append a
2700 * TIME EXTEND event ahead of the data event.
2701 */
2702 if (unlikely(info->add_timestamp))
2703 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2704
8573636e
SRRH
2705 /* Don't let the compiler play games with cpu_buffer->tail_page */
2706 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2707 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2708
2709 /* set write to only the index of the write */
2710 write &= RB_WRITE_MASK;
fcc742ea 2711 tail = write - info->length;
6634ff26 2712
6634ff26 2713 /*
a4543a2f 2714 * If this is the first commit on the page, then it has the same
b7dc42fd 2715 * timestamp as the page itself.
6634ff26 2716 */
b7dc42fd 2717 if (!tail)
a4543a2f
SRRH
2718 info->delta = 0;
2719
b7dc42fd
SRRH
2720 /* See if we shot pass the end of this buffer page */
2721 if (unlikely(write > BUF_PAGE_SIZE))
2722 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2723
b7dc42fd
SRRH
2724 /* We reserved something on the buffer */
2725
2726 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2727 kmemcheck_annotate_bitfield(event, bitfield);
2728 rb_update_event(cpu_buffer, event, info);
2729
2730 local_inc(&tail_page->entries);
6634ff26 2731
b7dc42fd
SRRH
2732 /*
2733 * If this is the first commit on the page, then update
2734 * its timestamp.
2735 */
2736 if (!tail)
2737 tail_page->page->time_stamp = info->ts;
2738
c64e148a 2739 /* account for these added bytes */
fcc742ea 2740 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2741
6634ff26
SR
2742 return event;
2743}
2744
7a8e76a3 2745static struct ring_buffer_event *
62f0b3eb
SR
2746rb_reserve_next_event(struct ring_buffer *buffer,
2747 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2748 unsigned long length)
7a8e76a3
SR
2749{
2750 struct ring_buffer_event *event;
fcc742ea 2751 struct rb_event_info info;
818e3dd3 2752 int nr_loops = 0;
b7dc42fd 2753 u64 diff;
7a8e76a3 2754
fa743953
SR
2755 rb_start_commit(cpu_buffer);
2756
85bac32c 2757#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2758 /*
2759 * Due to the ability to swap a cpu buffer from a buffer
2760 * it is possible it was swapped before we committed.
2761 * (committing stops a swap). We check for it here and
2762 * if it happened, we have to fail the write.
2763 */
2764 barrier();
2765 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2766 local_dec(&cpu_buffer->committing);
2767 local_dec(&cpu_buffer->commits);
2768 return NULL;
2769 }
85bac32c 2770#endif
b7dc42fd 2771
fcc742ea 2772 info.length = rb_calculate_event_length(length);
a4543a2f 2773 again:
b7dc42fd
SRRH
2774 info.add_timestamp = 0;
2775 info.delta = 0;
2776
818e3dd3
SR
2777 /*
2778 * We allow for interrupts to reenter here and do a trace.
2779 * If one does, it will cause this original code to loop
2780 * back here. Even with heavy interrupts happening, this
2781 * should only happen a few times in a row. If this happens
2782 * 1000 times in a row, there must be either an interrupt
2783 * storm or we have something buggy.
2784 * Bail!
2785 */
3e89c7bb 2786 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2787 goto out_fail;
818e3dd3 2788
b7dc42fd
SRRH
2789 info.ts = rb_time_stamp(cpu_buffer->buffer);
2790 diff = info.ts - cpu_buffer->write_stamp;
2791
2792 /* make sure this diff is calculated here */
2793 barrier();
2794
2795 /* Did the write stamp get updated already? */
2796 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2797 info.delta = diff;
2798 if (unlikely(test_time_stamp(info.delta)))
2799 rb_handle_timestamp(cpu_buffer, &info);
2800 }
2801
fcc742ea
SRRH
2802 event = __rb_reserve_next(cpu_buffer, &info);
2803
bd1b7cd3
SRRH
2804 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2805 if (info.add_timestamp)
2806 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2807 goto again;
bd1b7cd3 2808 }
bf41a158 2809
fa743953
SR
2810 if (!event)
2811 goto out_fail;
7a8e76a3 2812
7a8e76a3 2813 return event;
fa743953
SR
2814
2815 out_fail:
2816 rb_end_commit(cpu_buffer);
2817 return NULL;
7a8e76a3
SR
2818}
2819
2820/**
2821 * ring_buffer_lock_reserve - reserve a part of the buffer
2822 * @buffer: the ring buffer to reserve from
2823 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2824 *
2825 * Returns a reseverd event on the ring buffer to copy directly to.
2826 * The user of this interface will need to get the body to write into
2827 * and can use the ring_buffer_event_data() interface.
2828 *
2829 * The length is the length of the data needed, not the event length
2830 * which also includes the event header.
2831 *
2832 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2833 * If NULL is returned, then nothing has been allocated or locked.
2834 */
2835struct ring_buffer_event *
0a987751 2836ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2837{
2838 struct ring_buffer_per_cpu *cpu_buffer;
2839 struct ring_buffer_event *event;
5168ae50 2840 int cpu;
7a8e76a3 2841
bf41a158 2842 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2843 preempt_disable_notrace();
bf41a158 2844
3205f806 2845 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2846 goto out;
261842b7 2847
7a8e76a3
SR
2848 cpu = raw_smp_processor_id();
2849
3205f806 2850 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2851 goto out;
7a8e76a3
SR
2852
2853 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2854
3205f806 2855 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2856 goto out;
7a8e76a3 2857
3205f806 2858 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2859 goto out;
7a8e76a3 2860
58a09ec6
SRRH
2861 if (unlikely(trace_recursive_lock(cpu_buffer)))
2862 goto out;
2863
62f0b3eb 2864 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2865 if (!event)
58a09ec6 2866 goto out_unlock;
7a8e76a3
SR
2867
2868 return event;
2869
58a09ec6
SRRH
2870 out_unlock:
2871 trace_recursive_unlock(cpu_buffer);
d769041f 2872 out:
5168ae50 2873 preempt_enable_notrace();
7a8e76a3
SR
2874 return NULL;
2875}
c4f50183 2876EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2877
a1863c21
SR
2878/*
2879 * Decrement the entries to the page that an event is on.
2880 * The event does not even need to exist, only the pointer
2881 * to the page it is on. This may only be called before the commit
2882 * takes place.
2883 */
2884static inline void
2885rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2886 struct ring_buffer_event *event)
2887{
2888 unsigned long addr = (unsigned long)event;
2889 struct buffer_page *bpage = cpu_buffer->commit_page;
2890 struct buffer_page *start;
2891
2892 addr &= PAGE_MASK;
2893
2894 /* Do the likely case first */
2895 if (likely(bpage->page == (void *)addr)) {
2896 local_dec(&bpage->entries);
2897 return;
2898 }
2899
2900 /*
2901 * Because the commit page may be on the reader page we
2902 * start with the next page and check the end loop there.
2903 */
2904 rb_inc_page(cpu_buffer, &bpage);
2905 start = bpage;
2906 do {
2907 if (bpage->page == (void *)addr) {
2908 local_dec(&bpage->entries);
2909 return;
2910 }
2911 rb_inc_page(cpu_buffer, &bpage);
2912 } while (bpage != start);
2913
2914 /* commit not part of this buffer?? */
2915 RB_WARN_ON(cpu_buffer, 1);
2916}
2917
fa1b47dd
SR
2918/**
2919 * ring_buffer_commit_discard - discard an event that has not been committed
2920 * @buffer: the ring buffer
2921 * @event: non committed event to discard
2922 *
dc892f73
SR
2923 * Sometimes an event that is in the ring buffer needs to be ignored.
2924 * This function lets the user discard an event in the ring buffer
2925 * and then that event will not be read later.
2926 *
2927 * This function only works if it is called before the the item has been
2928 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2929 * if another event has not been added behind it.
2930 *
2931 * If another event has been added behind it, it will set the event
2932 * up as discarded, and perform the commit.
2933 *
2934 * If this function is called, do not call ring_buffer_unlock_commit on
2935 * the event.
2936 */
2937void ring_buffer_discard_commit(struct ring_buffer *buffer,
2938 struct ring_buffer_event *event)
2939{
2940 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2941 int cpu;
2942
2943 /* The event is discarded regardless */
f3b9aae1 2944 rb_event_discard(event);
fa1b47dd 2945
fa743953
SR
2946 cpu = smp_processor_id();
2947 cpu_buffer = buffer->buffers[cpu];
2948
fa1b47dd
SR
2949 /*
2950 * This must only be called if the event has not been
2951 * committed yet. Thus we can assume that preemption
2952 * is still disabled.
2953 */
fa743953 2954 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2955
a1863c21 2956 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2957 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2958 goto out;
fa1b47dd
SR
2959
2960 /*
2961 * The commit is still visible by the reader, so we
a1863c21 2962 * must still update the timestamp.
fa1b47dd 2963 */
a1863c21 2964 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2965 out:
fa743953 2966 rb_end_commit(cpu_buffer);
fa1b47dd 2967
58a09ec6 2968 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2969
5168ae50 2970 preempt_enable_notrace();
fa1b47dd
SR
2971
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2974
7a8e76a3
SR
2975/**
2976 * ring_buffer_write - write data to the buffer without reserving
2977 * @buffer: The ring buffer to write to.
2978 * @length: The length of the data being written (excluding the event header)
2979 * @data: The data to write to the buffer.
2980 *
2981 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2982 * one function. If you already have the data to write to the buffer, it
2983 * may be easier to simply call this function.
2984 *
2985 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2986 * and not the length of the event which would hold the header.
2987 */
2988int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2989 unsigned long length,
2990 void *data)
7a8e76a3
SR
2991{
2992 struct ring_buffer_per_cpu *cpu_buffer;
2993 struct ring_buffer_event *event;
7a8e76a3
SR
2994 void *body;
2995 int ret = -EBUSY;
5168ae50 2996 int cpu;
7a8e76a3 2997
5168ae50 2998 preempt_disable_notrace();
bf41a158 2999
52fbe9cd
LJ
3000 if (atomic_read(&buffer->record_disabled))
3001 goto out;
3002
7a8e76a3
SR
3003 cpu = raw_smp_processor_id();
3004
9e01c1b7 3005 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3006 goto out;
7a8e76a3
SR
3007
3008 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3009
3010 if (atomic_read(&cpu_buffer->record_disabled))
3011 goto out;
3012
be957c44
SR
3013 if (length > BUF_MAX_DATA_SIZE)
3014 goto out;
3015
985e871b
SRRH
3016 if (unlikely(trace_recursive_lock(cpu_buffer)))
3017 goto out;
3018
62f0b3eb 3019 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3020 if (!event)
985e871b 3021 goto out_unlock;
7a8e76a3
SR
3022
3023 body = rb_event_data(event);
3024
3025 memcpy(body, data, length);
3026
3027 rb_commit(cpu_buffer, event);
3028
15693458
SRRH
3029 rb_wakeups(buffer, cpu_buffer);
3030
7a8e76a3 3031 ret = 0;
985e871b
SRRH
3032
3033 out_unlock:
3034 trace_recursive_unlock(cpu_buffer);
3035
7a8e76a3 3036 out:
5168ae50 3037 preempt_enable_notrace();
7a8e76a3
SR
3038
3039 return ret;
3040}
c4f50183 3041EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3042
da58834c 3043static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3044{
3045 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3046 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3047 struct buffer_page *commit = cpu_buffer->commit_page;
3048
77ae365e
SR
3049 /* In case of error, head will be NULL */
3050 if (unlikely(!head))
da58834c 3051 return true;
77ae365e 3052
bf41a158
SR
3053 return reader->read == rb_page_commit(reader) &&
3054 (commit == reader ||
3055 (commit == head &&
3056 head->read == rb_page_commit(commit)));
3057}
3058
7a8e76a3
SR
3059/**
3060 * ring_buffer_record_disable - stop all writes into the buffer
3061 * @buffer: The ring buffer to stop writes to.
3062 *
3063 * This prevents all writes to the buffer. Any attempt to write
3064 * to the buffer after this will fail and return NULL.
3065 *
3066 * The caller should call synchronize_sched() after this.
3067 */
3068void ring_buffer_record_disable(struct ring_buffer *buffer)
3069{
3070 atomic_inc(&buffer->record_disabled);
3071}
c4f50183 3072EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3073
3074/**
3075 * ring_buffer_record_enable - enable writes to the buffer
3076 * @buffer: The ring buffer to enable writes
3077 *
3078 * Note, multiple disables will need the same number of enables
c41b20e7 3079 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3080 */
3081void ring_buffer_record_enable(struct ring_buffer *buffer)
3082{
3083 atomic_dec(&buffer->record_disabled);
3084}
c4f50183 3085EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3086
499e5470
SR
3087/**
3088 * ring_buffer_record_off - stop all writes into the buffer
3089 * @buffer: The ring buffer to stop writes to.
3090 *
3091 * This prevents all writes to the buffer. Any attempt to write
3092 * to the buffer after this will fail and return NULL.
3093 *
3094 * This is different than ring_buffer_record_disable() as
87abb3b1 3095 * it works like an on/off switch, where as the disable() version
499e5470
SR
3096 * must be paired with a enable().
3097 */
3098void ring_buffer_record_off(struct ring_buffer *buffer)
3099{
3100 unsigned int rd;
3101 unsigned int new_rd;
3102
3103 do {
3104 rd = atomic_read(&buffer->record_disabled);
3105 new_rd = rd | RB_BUFFER_OFF;
3106 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107}
3108EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3109
3110/**
3111 * ring_buffer_record_on - restart writes into the buffer
3112 * @buffer: The ring buffer to start writes to.
3113 *
3114 * This enables all writes to the buffer that was disabled by
3115 * ring_buffer_record_off().
3116 *
3117 * This is different than ring_buffer_record_enable() as
87abb3b1 3118 * it works like an on/off switch, where as the enable() version
499e5470
SR
3119 * must be paired with a disable().
3120 */
3121void ring_buffer_record_on(struct ring_buffer *buffer)
3122{
3123 unsigned int rd;
3124 unsigned int new_rd;
3125
3126 do {
3127 rd = atomic_read(&buffer->record_disabled);
3128 new_rd = rd & ~RB_BUFFER_OFF;
3129 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3130}
3131EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3132
3133/**
3134 * ring_buffer_record_is_on - return true if the ring buffer can write
3135 * @buffer: The ring buffer to see if write is enabled
3136 *
3137 * Returns true if the ring buffer is in a state that it accepts writes.
3138 */
3139int ring_buffer_record_is_on(struct ring_buffer *buffer)
3140{
3141 return !atomic_read(&buffer->record_disabled);
3142}
3143
7a8e76a3
SR
3144/**
3145 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3146 * @buffer: The ring buffer to stop writes to.
3147 * @cpu: The CPU buffer to stop
3148 *
3149 * This prevents all writes to the buffer. Any attempt to write
3150 * to the buffer after this will fail and return NULL.
3151 *
3152 * The caller should call synchronize_sched() after this.
3153 */
3154void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3155{
3156 struct ring_buffer_per_cpu *cpu_buffer;
3157
9e01c1b7 3158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3159 return;
7a8e76a3
SR
3160
3161 cpu_buffer = buffer->buffers[cpu];
3162 atomic_inc(&cpu_buffer->record_disabled);
3163}
c4f50183 3164EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3165
3166/**
3167 * ring_buffer_record_enable_cpu - enable writes to the buffer
3168 * @buffer: The ring buffer to enable writes
3169 * @cpu: The CPU to enable.
3170 *
3171 * Note, multiple disables will need the same number of enables
c41b20e7 3172 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3173 */
3174void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3175{
3176 struct ring_buffer_per_cpu *cpu_buffer;
3177
9e01c1b7 3178 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3179 return;
7a8e76a3
SR
3180
3181 cpu_buffer = buffer->buffers[cpu];
3182 atomic_dec(&cpu_buffer->record_disabled);
3183}
c4f50183 3184EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3185
f6195aa0
SR
3186/*
3187 * The total entries in the ring buffer is the running counter
3188 * of entries entered into the ring buffer, minus the sum of
3189 * the entries read from the ring buffer and the number of
3190 * entries that were overwritten.
3191 */
3192static inline unsigned long
3193rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3194{
3195 return local_read(&cpu_buffer->entries) -
3196 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3197}
3198
c64e148a
VN
3199/**
3200 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3201 * @buffer: The ring buffer
3202 * @cpu: The per CPU buffer to read from.
3203 */
50ecf2c3 3204u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3205{
3206 unsigned long flags;
3207 struct ring_buffer_per_cpu *cpu_buffer;
3208 struct buffer_page *bpage;
da830e58 3209 u64 ret = 0;
c64e148a
VN
3210
3211 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3212 return 0;
3213
3214 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3215 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3216 /*
3217 * if the tail is on reader_page, oldest time stamp is on the reader
3218 * page
3219 */
3220 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3221 bpage = cpu_buffer->reader_page;
3222 else
3223 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3224 if (bpage)
3225 ret = bpage->page->time_stamp;
7115e3fc 3226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3227
3228 return ret;
3229}
3230EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3231
3232/**
3233 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to read from.
3236 */
3237unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3238{
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 unsigned long ret;
3241
3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 return 0;
3244
3245 cpu_buffer = buffer->buffers[cpu];
3246 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3247
3248 return ret;
3249}
3250EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3251
7a8e76a3
SR
3252/**
3253 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the entries from.
3256 */
3257unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3258{
3259 struct ring_buffer_per_cpu *cpu_buffer;
3260
9e01c1b7 3261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3262 return 0;
7a8e76a3
SR
3263
3264 cpu_buffer = buffer->buffers[cpu];
554f786e 3265
f6195aa0 3266 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3267}
c4f50183 3268EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3269
3270/**
884bfe89
SP
3271 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3272 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3275 */
3276unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277{
3278 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3279 unsigned long ret;
7a8e76a3 3280
9e01c1b7 3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3282 return 0;
7a8e76a3
SR
3283
3284 cpu_buffer = buffer->buffers[cpu];
77ae365e 3285 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3286
3287 return ret;
7a8e76a3 3288}
c4f50183 3289EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3290
f0d2c681 3291/**
884bfe89
SP
3292 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3293 * commits failing due to the buffer wrapping around while there are uncommitted
3294 * events, such as during an interrupt storm.
f0d2c681
SR
3295 * @buffer: The ring buffer
3296 * @cpu: The per CPU buffer to get the number of overruns from
3297 */
3298unsigned long
3299ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3300{
3301 struct ring_buffer_per_cpu *cpu_buffer;
3302 unsigned long ret;
3303
3304 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3305 return 0;
3306
3307 cpu_buffer = buffer->buffers[cpu];
77ae365e 3308 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3309
3310 return ret;
3311}
3312EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3313
884bfe89
SP
3314/**
3315 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3316 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3317 * @buffer: The ring buffer
3318 * @cpu: The per CPU buffer to get the number of overruns from
3319 */
3320unsigned long
3321ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3322{
3323 struct ring_buffer_per_cpu *cpu_buffer;
3324 unsigned long ret;
3325
3326 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 return 0;
3328
3329 cpu_buffer = buffer->buffers[cpu];
3330 ret = local_read(&cpu_buffer->dropped_events);
3331
3332 return ret;
3333}
3334EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3335
ad964704
SRRH
3336/**
3337 * ring_buffer_read_events_cpu - get the number of events successfully read
3338 * @buffer: The ring buffer
3339 * @cpu: The per CPU buffer to get the number of events read
3340 */
3341unsigned long
3342ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3343{
3344 struct ring_buffer_per_cpu *cpu_buffer;
3345
3346 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347 return 0;
3348
3349 cpu_buffer = buffer->buffers[cpu];
3350 return cpu_buffer->read;
3351}
3352EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3353
7a8e76a3
SR
3354/**
3355 * ring_buffer_entries - get the number of entries in a buffer
3356 * @buffer: The ring buffer
3357 *
3358 * Returns the total number of entries in the ring buffer
3359 * (all CPU entries)
3360 */
3361unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3362{
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 unsigned long entries = 0;
3365 int cpu;
3366
3367 /* if you care about this being correct, lock the buffer */
3368 for_each_buffer_cpu(buffer, cpu) {
3369 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3370 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3371 }
3372
3373 return entries;
3374}
c4f50183 3375EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3376
3377/**
67b394f7 3378 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3379 * @buffer: The ring buffer
3380 *
3381 * Returns the total number of overruns in the ring buffer
3382 * (all CPU entries)
3383 */
3384unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3385{
3386 struct ring_buffer_per_cpu *cpu_buffer;
3387 unsigned long overruns = 0;
3388 int cpu;
3389
3390 /* if you care about this being correct, lock the buffer */
3391 for_each_buffer_cpu(buffer, cpu) {
3392 cpu_buffer = buffer->buffers[cpu];
77ae365e 3393 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3394 }
3395
3396 return overruns;
3397}
c4f50183 3398EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3399
642edba5 3400static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3401{
3402 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3403
d769041f 3404 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3405 iter->head_page = cpu_buffer->reader_page;
3406 iter->head = cpu_buffer->reader_page->read;
3407
3408 iter->cache_reader_page = iter->head_page;
24607f11 3409 iter->cache_read = cpu_buffer->read;
651e22f2 3410
d769041f
SR
3411 if (iter->head)
3412 iter->read_stamp = cpu_buffer->read_stamp;
3413 else
abc9b56d 3414 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3415}
f83c9d0f 3416
642edba5
SR
3417/**
3418 * ring_buffer_iter_reset - reset an iterator
3419 * @iter: The iterator to reset
3420 *
3421 * Resets the iterator, so that it will start from the beginning
3422 * again.
3423 */
3424void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3425{
554f786e 3426 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3427 unsigned long flags;
3428
554f786e
SR
3429 if (!iter)
3430 return;
3431
3432 cpu_buffer = iter->cpu_buffer;
3433
5389f6fa 3434 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3435 rb_iter_reset(iter);
5389f6fa 3436 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3437}
c4f50183 3438EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3439
3440/**
3441 * ring_buffer_iter_empty - check if an iterator has no more to read
3442 * @iter: The iterator to check
3443 */
3444int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3445{
3446 struct ring_buffer_per_cpu *cpu_buffer;
3447
3448 cpu_buffer = iter->cpu_buffer;
3449
bf41a158
SR
3450 return iter->head_page == cpu_buffer->commit_page &&
3451 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3452}
c4f50183 3453EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3454
3455static void
3456rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3457 struct ring_buffer_event *event)
3458{
3459 u64 delta;
3460
334d4169 3461 switch (event->type_len) {
7a8e76a3
SR
3462 case RINGBUF_TYPE_PADDING:
3463 return;
3464
3465 case RINGBUF_TYPE_TIME_EXTEND:
3466 delta = event->array[0];
3467 delta <<= TS_SHIFT;
3468 delta += event->time_delta;
3469 cpu_buffer->read_stamp += delta;
3470 return;
3471
3472 case RINGBUF_TYPE_TIME_STAMP:
3473 /* FIXME: not implemented */
3474 return;
3475
3476 case RINGBUF_TYPE_DATA:
3477 cpu_buffer->read_stamp += event->time_delta;
3478 return;
3479
3480 default:
3481 BUG();
3482 }
3483 return;
3484}
3485
3486static void
3487rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3488 struct ring_buffer_event *event)
3489{
3490 u64 delta;
3491
334d4169 3492 switch (event->type_len) {
7a8e76a3
SR
3493 case RINGBUF_TYPE_PADDING:
3494 return;
3495
3496 case RINGBUF_TYPE_TIME_EXTEND:
3497 delta = event->array[0];
3498 delta <<= TS_SHIFT;
3499 delta += event->time_delta;
3500 iter->read_stamp += delta;
3501 return;
3502
3503 case RINGBUF_TYPE_TIME_STAMP:
3504 /* FIXME: not implemented */
3505 return;
3506
3507 case RINGBUF_TYPE_DATA:
3508 iter->read_stamp += event->time_delta;
3509 return;
3510
3511 default:
3512 BUG();
3513 }
3514 return;
3515}
3516
d769041f
SR
3517static struct buffer_page *
3518rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3519{
d769041f 3520 struct buffer_page *reader = NULL;
66a8cb95 3521 unsigned long overwrite;
d769041f 3522 unsigned long flags;
818e3dd3 3523 int nr_loops = 0;
77ae365e 3524 int ret;
d769041f 3525
3e03fb7f 3526 local_irq_save(flags);
0199c4e6 3527 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3528
3529 again:
818e3dd3
SR
3530 /*
3531 * This should normally only loop twice. But because the
3532 * start of the reader inserts an empty page, it causes
3533 * a case where we will loop three times. There should be no
3534 * reason to loop four times (that I know of).
3535 */
3e89c7bb 3536 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3537 reader = NULL;
3538 goto out;
3539 }
3540
d769041f
SR
3541 reader = cpu_buffer->reader_page;
3542
3543 /* If there's more to read, return this page */
bf41a158 3544 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3545 goto out;
3546
3547 /* Never should we have an index greater than the size */
3e89c7bb
SR
3548 if (RB_WARN_ON(cpu_buffer,
3549 cpu_buffer->reader_page->read > rb_page_size(reader)))
3550 goto out;
d769041f
SR
3551
3552 /* check if we caught up to the tail */
3553 reader = NULL;
bf41a158 3554 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3555 goto out;
7a8e76a3 3556
a5fb8331
SR
3557 /* Don't bother swapping if the ring buffer is empty */
3558 if (rb_num_of_entries(cpu_buffer) == 0)
3559 goto out;
3560
7a8e76a3 3561 /*
d769041f 3562 * Reset the reader page to size zero.
7a8e76a3 3563 */
77ae365e
SR
3564 local_set(&cpu_buffer->reader_page->write, 0);
3565 local_set(&cpu_buffer->reader_page->entries, 0);
3566 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3567 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3568
77ae365e
SR
3569 spin:
3570 /*
3571 * Splice the empty reader page into the list around the head.
3572 */
3573 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3574 if (!reader)
3575 goto out;
0e1ff5d7 3576 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3577 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3578
3adc54fa
SR
3579 /*
3580 * cpu_buffer->pages just needs to point to the buffer, it
3581 * has no specific buffer page to point to. Lets move it out
25985edc 3582 * of our way so we don't accidentally swap it.
3adc54fa
SR
3583 */
3584 cpu_buffer->pages = reader->list.prev;
3585
77ae365e
SR
3586 /* The reader page will be pointing to the new head */
3587 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3588
66a8cb95
SR
3589 /*
3590 * We want to make sure we read the overruns after we set up our
3591 * pointers to the next object. The writer side does a
3592 * cmpxchg to cross pages which acts as the mb on the writer
3593 * side. Note, the reader will constantly fail the swap
3594 * while the writer is updating the pointers, so this
3595 * guarantees that the overwrite recorded here is the one we
3596 * want to compare with the last_overrun.
3597 */
3598 smp_mb();
3599 overwrite = local_read(&(cpu_buffer->overrun));
3600
77ae365e
SR
3601 /*
3602 * Here's the tricky part.
3603 *
3604 * We need to move the pointer past the header page.
3605 * But we can only do that if a writer is not currently
3606 * moving it. The page before the header page has the
3607 * flag bit '1' set if it is pointing to the page we want.
3608 * but if the writer is in the process of moving it
3609 * than it will be '2' or already moved '0'.
3610 */
3611
3612 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3613
3614 /*
77ae365e 3615 * If we did not convert it, then we must try again.
7a8e76a3 3616 */
77ae365e
SR
3617 if (!ret)
3618 goto spin;
7a8e76a3 3619
77ae365e
SR
3620 /*
3621 * Yeah! We succeeded in replacing the page.
3622 *
3623 * Now make the new head point back to the reader page.
3624 */
5ded3dc6 3625 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3626 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3627
3628 /* Finally update the reader page to the new head */
3629 cpu_buffer->reader_page = reader;
b81f472a 3630 cpu_buffer->reader_page->read = 0;
d769041f 3631
66a8cb95
SR
3632 if (overwrite != cpu_buffer->last_overrun) {
3633 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3634 cpu_buffer->last_overrun = overwrite;
3635 }
3636
d769041f
SR
3637 goto again;
3638
3639 out:
b81f472a
SRRH
3640 /* Update the read_stamp on the first event */
3641 if (reader && reader->read == 0)
3642 cpu_buffer->read_stamp = reader->page->time_stamp;
3643
0199c4e6 3644 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3645 local_irq_restore(flags);
d769041f
SR
3646
3647 return reader;
3648}
3649
3650static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3651{
3652 struct ring_buffer_event *event;
3653 struct buffer_page *reader;
3654 unsigned length;
3655
3656 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3657
d769041f 3658 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3659 if (RB_WARN_ON(cpu_buffer, !reader))
3660 return;
7a8e76a3 3661
d769041f
SR
3662 event = rb_reader_event(cpu_buffer);
3663
a1863c21 3664 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3665 cpu_buffer->read++;
d769041f
SR
3666
3667 rb_update_read_stamp(cpu_buffer, event);
3668
3669 length = rb_event_length(event);
6f807acd 3670 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3671}
3672
3673static void rb_advance_iter(struct ring_buffer_iter *iter)
3674{
7a8e76a3
SR
3675 struct ring_buffer_per_cpu *cpu_buffer;
3676 struct ring_buffer_event *event;
3677 unsigned length;
3678
3679 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3680
3681 /*
3682 * Check if we are at the end of the buffer.
3683 */
bf41a158 3684 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3685 /* discarded commits can make the page empty */
3686 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3687 return;
d769041f 3688 rb_inc_iter(iter);
7a8e76a3
SR
3689 return;
3690 }
3691
3692 event = rb_iter_head_event(iter);
3693
3694 length = rb_event_length(event);
3695
3696 /*
3697 * This should not be called to advance the header if we are
3698 * at the tail of the buffer.
3699 */
3e89c7bb 3700 if (RB_WARN_ON(cpu_buffer,
f536aafc 3701 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3702 (iter->head + length > rb_commit_index(cpu_buffer))))
3703 return;
7a8e76a3
SR
3704
3705 rb_update_iter_read_stamp(iter, event);
3706
3707 iter->head += length;
3708
3709 /* check for end of page padding */
bf41a158
SR
3710 if ((iter->head >= rb_page_size(iter->head_page)) &&
3711 (iter->head_page != cpu_buffer->commit_page))
771e0384 3712 rb_inc_iter(iter);
7a8e76a3
SR
3713}
3714
66a8cb95
SR
3715static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3716{
3717 return cpu_buffer->lost_events;
3718}
3719
f83c9d0f 3720static struct ring_buffer_event *
66a8cb95
SR
3721rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3722 unsigned long *lost_events)
7a8e76a3 3723{
7a8e76a3 3724 struct ring_buffer_event *event;
d769041f 3725 struct buffer_page *reader;
818e3dd3 3726 int nr_loops = 0;
7a8e76a3 3727
7a8e76a3 3728 again:
818e3dd3 3729 /*
69d1b839
SR
3730 * We repeat when a time extend is encountered.
3731 * Since the time extend is always attached to a data event,
3732 * we should never loop more than once.
3733 * (We never hit the following condition more than twice).
818e3dd3 3734 */
69d1b839 3735 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3736 return NULL;
818e3dd3 3737
d769041f
SR
3738 reader = rb_get_reader_page(cpu_buffer);
3739 if (!reader)
7a8e76a3
SR
3740 return NULL;
3741
d769041f 3742 event = rb_reader_event(cpu_buffer);
7a8e76a3 3743
334d4169 3744 switch (event->type_len) {
7a8e76a3 3745 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3746 if (rb_null_event(event))
3747 RB_WARN_ON(cpu_buffer, 1);
3748 /*
3749 * Because the writer could be discarding every
3750 * event it creates (which would probably be bad)
3751 * if we were to go back to "again" then we may never
3752 * catch up, and will trigger the warn on, or lock
3753 * the box. Return the padding, and we will release
3754 * the current locks, and try again.
3755 */
2d622719 3756 return event;
7a8e76a3
SR
3757
3758 case RINGBUF_TYPE_TIME_EXTEND:
3759 /* Internal data, OK to advance */
d769041f 3760 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3761 goto again;
3762
3763 case RINGBUF_TYPE_TIME_STAMP:
3764 /* FIXME: not implemented */
d769041f 3765 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3766 goto again;
3767
3768 case RINGBUF_TYPE_DATA:
3769 if (ts) {
3770 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3771 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3772 cpu_buffer->cpu, ts);
7a8e76a3 3773 }
66a8cb95
SR
3774 if (lost_events)
3775 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3776 return event;
3777
3778 default:
3779 BUG();
3780 }
3781
3782 return NULL;
3783}
c4f50183 3784EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3785
f83c9d0f
SR
3786static struct ring_buffer_event *
3787rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3788{
3789 struct ring_buffer *buffer;
3790 struct ring_buffer_per_cpu *cpu_buffer;
3791 struct ring_buffer_event *event;
818e3dd3 3792 int nr_loops = 0;
7a8e76a3 3793
7a8e76a3
SR
3794 cpu_buffer = iter->cpu_buffer;
3795 buffer = cpu_buffer->buffer;
3796
492a74f4
SR
3797 /*
3798 * Check if someone performed a consuming read to
3799 * the buffer. A consuming read invalidates the iterator
3800 * and we need to reset the iterator in this case.
3801 */
3802 if (unlikely(iter->cache_read != cpu_buffer->read ||
3803 iter->cache_reader_page != cpu_buffer->reader_page))
3804 rb_iter_reset(iter);
3805
7a8e76a3 3806 again:
3c05d748
SR
3807 if (ring_buffer_iter_empty(iter))
3808 return NULL;
3809
818e3dd3 3810 /*
021de3d9
SRRH
3811 * We repeat when a time extend is encountered or we hit
3812 * the end of the page. Since the time extend is always attached
3813 * to a data event, we should never loop more than three times.
3814 * Once for going to next page, once on time extend, and
3815 * finally once to get the event.
3816 * (We never hit the following condition more than thrice).
818e3dd3 3817 */
021de3d9 3818 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3819 return NULL;
818e3dd3 3820
7a8e76a3
SR
3821 if (rb_per_cpu_empty(cpu_buffer))
3822 return NULL;
3823
10e83fd0 3824 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3825 rb_inc_iter(iter);
3826 goto again;
3827 }
3828
7a8e76a3
SR
3829 event = rb_iter_head_event(iter);
3830
334d4169 3831 switch (event->type_len) {
7a8e76a3 3832 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3833 if (rb_null_event(event)) {
3834 rb_inc_iter(iter);
3835 goto again;
3836 }
3837 rb_advance_iter(iter);
3838 return event;
7a8e76a3
SR
3839
3840 case RINGBUF_TYPE_TIME_EXTEND:
3841 /* Internal data, OK to advance */
3842 rb_advance_iter(iter);
3843 goto again;
3844
3845 case RINGBUF_TYPE_TIME_STAMP:
3846 /* FIXME: not implemented */
3847 rb_advance_iter(iter);
3848 goto again;
3849
3850 case RINGBUF_TYPE_DATA:
3851 if (ts) {
3852 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3853 ring_buffer_normalize_time_stamp(buffer,
3854 cpu_buffer->cpu, ts);
7a8e76a3
SR
3855 }
3856 return event;
3857
3858 default:
3859 BUG();
3860 }
3861
3862 return NULL;
3863}
c4f50183 3864EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3865
289a5a25 3866static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3867{
289a5a25
SRRH
3868 if (likely(!in_nmi())) {
3869 raw_spin_lock(&cpu_buffer->reader_lock);
3870 return true;
3871 }
3872
8d707e8e
SR
3873 /*
3874 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3875 * trylock must be used to prevent a deadlock if the NMI
3876 * preempted a task that holds the ring buffer locks. If
3877 * we get the lock then all is fine, if not, then continue
3878 * to do the read, but this can corrupt the ring buffer,
3879 * so it must be permanently disabled from future writes.
3880 * Reading from NMI is a oneshot deal.
8d707e8e 3881 */
289a5a25
SRRH
3882 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3883 return true;
8d707e8e 3884
289a5a25
SRRH
3885 /* Continue without locking, but disable the ring buffer */
3886 atomic_inc(&cpu_buffer->record_disabled);
3887 return false;
3888}
3889
3890static inline void
3891rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3892{
3893 if (likely(locked))
3894 raw_spin_unlock(&cpu_buffer->reader_lock);
3895 return;
8d707e8e
SR
3896}
3897
f83c9d0f
SR
3898/**
3899 * ring_buffer_peek - peek at the next event to be read
3900 * @buffer: The ring buffer to read
3901 * @cpu: The cpu to peak at
3902 * @ts: The timestamp counter of this event.
66a8cb95 3903 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3904 *
3905 * This will return the event that will be read next, but does
3906 * not consume the data.
3907 */
3908struct ring_buffer_event *
66a8cb95
SR
3909ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3910 unsigned long *lost_events)
f83c9d0f
SR
3911{
3912 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3913 struct ring_buffer_event *event;
f83c9d0f 3914 unsigned long flags;
289a5a25 3915 bool dolock;
f83c9d0f 3916
554f786e 3917 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3918 return NULL;
554f786e 3919
2d622719 3920 again:
8d707e8e 3921 local_irq_save(flags);
289a5a25 3922 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3923 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3924 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3925 rb_advance_reader(cpu_buffer);
289a5a25 3926 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3927 local_irq_restore(flags);
f83c9d0f 3928
1b959e18 3929 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3930 goto again;
2d622719 3931
f83c9d0f
SR
3932 return event;
3933}
3934
3935/**
3936 * ring_buffer_iter_peek - peek at the next event to be read
3937 * @iter: The ring buffer iterator
3938 * @ts: The timestamp counter of this event.
3939 *
3940 * This will return the event that will be read next, but does
3941 * not increment the iterator.
3942 */
3943struct ring_buffer_event *
3944ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3945{
3946 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3947 struct ring_buffer_event *event;
3948 unsigned long flags;
3949
2d622719 3950 again:
5389f6fa 3951 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3952 event = rb_iter_peek(iter, ts);
5389f6fa 3953 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3954
1b959e18 3955 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3956 goto again;
2d622719 3957
f83c9d0f
SR
3958 return event;
3959}
3960
7a8e76a3
SR
3961/**
3962 * ring_buffer_consume - return an event and consume it
3963 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3964 * @cpu: the cpu to read the buffer from
3965 * @ts: a variable to store the timestamp (may be NULL)
3966 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3967 *
3968 * Returns the next event in the ring buffer, and that event is consumed.
3969 * Meaning, that sequential reads will keep returning a different event,
3970 * and eventually empty the ring buffer if the producer is slower.
3971 */
3972struct ring_buffer_event *
66a8cb95
SR
3973ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3974 unsigned long *lost_events)
7a8e76a3 3975{
554f786e
SR
3976 struct ring_buffer_per_cpu *cpu_buffer;
3977 struct ring_buffer_event *event = NULL;
f83c9d0f 3978 unsigned long flags;
289a5a25 3979 bool dolock;
7a8e76a3 3980
2d622719 3981 again:
554f786e
SR
3982 /* might be called in atomic */
3983 preempt_disable();
3984
9e01c1b7 3985 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3986 goto out;
7a8e76a3 3987
554f786e 3988 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3989 local_irq_save(flags);
289a5a25 3990 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3991
66a8cb95
SR
3992 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3993 if (event) {
3994 cpu_buffer->lost_events = 0;
469535a5 3995 rb_advance_reader(cpu_buffer);
66a8cb95 3996 }
7a8e76a3 3997
289a5a25 3998 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3999 local_irq_restore(flags);
f83c9d0f 4000
554f786e
SR
4001 out:
4002 preempt_enable();
4003
1b959e18 4004 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4005 goto again;
2d622719 4006
7a8e76a3
SR
4007 return event;
4008}
c4f50183 4009EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4010
4011/**
72c9ddfd 4012 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4013 * @buffer: The ring buffer to read from
4014 * @cpu: The cpu buffer to iterate over
4015 *
72c9ddfd
DM
4016 * This performs the initial preparations necessary to iterate
4017 * through the buffer. Memory is allocated, buffer recording
4018 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4019 *
72c9ddfd
DM
4020 * Disabling buffer recordng prevents the reading from being
4021 * corrupted. This is not a consuming read, so a producer is not
4022 * expected.
4023 *
4024 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4025 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4026 * Afterwards, ring_buffer_read_start is invoked to get things going
4027 * for real.
4028 *
d611851b 4029 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4030 */
4031struct ring_buffer_iter *
72c9ddfd 4032ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4033{
4034 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4035 struct ring_buffer_iter *iter;
7a8e76a3 4036
9e01c1b7 4037 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4038 return NULL;
7a8e76a3
SR
4039
4040 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4041 if (!iter)
8aabee57 4042 return NULL;
7a8e76a3
SR
4043
4044 cpu_buffer = buffer->buffers[cpu];
4045
4046 iter->cpu_buffer = cpu_buffer;
4047
83f40318 4048 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4049 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4050
4051 return iter;
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4054
4055/**
4056 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4057 *
4058 * All previously invoked ring_buffer_read_prepare calls to prepare
4059 * iterators will be synchronized. Afterwards, read_buffer_read_start
4060 * calls on those iterators are allowed.
4061 */
4062void
4063ring_buffer_read_prepare_sync(void)
4064{
7a8e76a3 4065 synchronize_sched();
72c9ddfd
DM
4066}
4067EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4068
4069/**
4070 * ring_buffer_read_start - start a non consuming read of the buffer
4071 * @iter: The iterator returned by ring_buffer_read_prepare
4072 *
4073 * This finalizes the startup of an iteration through the buffer.
4074 * The iterator comes from a call to ring_buffer_read_prepare and
4075 * an intervening ring_buffer_read_prepare_sync must have been
4076 * performed.
4077 *
d611851b 4078 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4079 */
4080void
4081ring_buffer_read_start(struct ring_buffer_iter *iter)
4082{
4083 struct ring_buffer_per_cpu *cpu_buffer;
4084 unsigned long flags;
4085
4086 if (!iter)
4087 return;
4088
4089 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4090
5389f6fa 4091 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4092 arch_spin_lock(&cpu_buffer->lock);
642edba5 4093 rb_iter_reset(iter);
0199c4e6 4094 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4095 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4096}
c4f50183 4097EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4098
4099/**
d611851b 4100 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4101 * @iter: The iterator retrieved by ring_buffer_start
4102 *
4103 * This re-enables the recording to the buffer, and frees the
4104 * iterator.
4105 */
4106void
4107ring_buffer_read_finish(struct ring_buffer_iter *iter)
4108{
4109 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4110 unsigned long flags;
7a8e76a3 4111
659f451f
SR
4112 /*
4113 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4114 * to check the integrity of the ring buffer.
4115 * Must prevent readers from trying to read, as the check
4116 * clears the HEAD page and readers require it.
659f451f 4117 */
9366c1ba 4118 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4119 rb_check_pages(cpu_buffer);
9366c1ba 4120 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4121
7a8e76a3 4122 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4123 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4124 kfree(iter);
4125}
c4f50183 4126EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4127
4128/**
4129 * ring_buffer_read - read the next item in the ring buffer by the iterator
4130 * @iter: The ring buffer iterator
4131 * @ts: The time stamp of the event read.
4132 *
4133 * This reads the next event in the ring buffer and increments the iterator.
4134 */
4135struct ring_buffer_event *
4136ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4137{
4138 struct ring_buffer_event *event;
f83c9d0f
SR
4139 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4140 unsigned long flags;
7a8e76a3 4141
5389f6fa 4142 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4143 again:
f83c9d0f 4144 event = rb_iter_peek(iter, ts);
7a8e76a3 4145 if (!event)
f83c9d0f 4146 goto out;
7a8e76a3 4147
7e9391cf
SR
4148 if (event->type_len == RINGBUF_TYPE_PADDING)
4149 goto again;
4150
7a8e76a3 4151 rb_advance_iter(iter);
f83c9d0f 4152 out:
5389f6fa 4153 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4154
4155 return event;
4156}
c4f50183 4157EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4158
4159/**
4160 * ring_buffer_size - return the size of the ring buffer (in bytes)
4161 * @buffer: The ring buffer.
4162 */
438ced17 4163unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4164{
438ced17
VN
4165 /*
4166 * Earlier, this method returned
4167 * BUF_PAGE_SIZE * buffer->nr_pages
4168 * Since the nr_pages field is now removed, we have converted this to
4169 * return the per cpu buffer value.
4170 */
4171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 return 0;
4173
4174 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4175}
c4f50183 4176EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4177
4178static void
4179rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4180{
77ae365e
SR
4181 rb_head_page_deactivate(cpu_buffer);
4182
7a8e76a3 4183 cpu_buffer->head_page
3adc54fa 4184 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4185 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4186 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4187 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4188
6f807acd 4189 cpu_buffer->head_page->read = 0;
bf41a158
SR
4190
4191 cpu_buffer->tail_page = cpu_buffer->head_page;
4192 cpu_buffer->commit_page = cpu_buffer->head_page;
4193
4194 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4195 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4196 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4197 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4198 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4199 cpu_buffer->reader_page->read = 0;
7a8e76a3 4200
c64e148a 4201 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4202 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4203 local_set(&cpu_buffer->commit_overrun, 0);
4204 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4205 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4206 local_set(&cpu_buffer->committing, 0);
4207 local_set(&cpu_buffer->commits, 0);
77ae365e 4208 cpu_buffer->read = 0;
c64e148a 4209 cpu_buffer->read_bytes = 0;
69507c06
SR
4210
4211 cpu_buffer->write_stamp = 0;
4212 cpu_buffer->read_stamp = 0;
77ae365e 4213
66a8cb95
SR
4214 cpu_buffer->lost_events = 0;
4215 cpu_buffer->last_overrun = 0;
4216
77ae365e 4217 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4218}
4219
4220/**
4221 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4222 * @buffer: The ring buffer to reset a per cpu buffer of
4223 * @cpu: The CPU buffer to be reset
4224 */
4225void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4226{
4227 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4228 unsigned long flags;
4229
9e01c1b7 4230 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4231 return;
7a8e76a3 4232
83f40318 4233 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4234 atomic_inc(&cpu_buffer->record_disabled);
4235
83f40318
VN
4236 /* Make sure all commits have finished */
4237 synchronize_sched();
4238
5389f6fa 4239 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4240
41b6a95d
SR
4241 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4242 goto out;
4243
0199c4e6 4244 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4245
4246 rb_reset_cpu(cpu_buffer);
4247
0199c4e6 4248 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4249
41b6a95d 4250 out:
5389f6fa 4251 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4252
4253 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4254 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4255}
c4f50183 4256EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4257
4258/**
4259 * ring_buffer_reset - reset a ring buffer
4260 * @buffer: The ring buffer to reset all cpu buffers
4261 */
4262void ring_buffer_reset(struct ring_buffer *buffer)
4263{
7a8e76a3
SR
4264 int cpu;
4265
7a8e76a3 4266 for_each_buffer_cpu(buffer, cpu)
d769041f 4267 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4268}
c4f50183 4269EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4270
4271/**
4272 * rind_buffer_empty - is the ring buffer empty?
4273 * @buffer: The ring buffer to test
4274 */
3d4e204d 4275bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4276{
4277 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4278 unsigned long flags;
289a5a25 4279 bool dolock;
7a8e76a3 4280 int cpu;
d4788207 4281 int ret;
7a8e76a3
SR
4282
4283 /* yes this is racy, but if you don't like the race, lock the buffer */
4284 for_each_buffer_cpu(buffer, cpu) {
4285 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4286 local_irq_save(flags);
289a5a25 4287 dolock = rb_reader_lock(cpu_buffer);
d4788207 4288 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4289 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4290 local_irq_restore(flags);
4291
d4788207 4292 if (!ret)
3d4e204d 4293 return false;
7a8e76a3 4294 }
554f786e 4295
3d4e204d 4296 return true;
7a8e76a3 4297}
c4f50183 4298EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4299
4300/**
4301 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4302 * @buffer: The ring buffer
4303 * @cpu: The CPU buffer to test
4304 */
3d4e204d 4305bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4306{
4307 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4308 unsigned long flags;
289a5a25 4309 bool dolock;
8aabee57 4310 int ret;
7a8e76a3 4311
9e01c1b7 4312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4313 return true;
7a8e76a3
SR
4314
4315 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4316 local_irq_save(flags);
289a5a25 4317 dolock = rb_reader_lock(cpu_buffer);
554f786e 4318 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4319 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4320 local_irq_restore(flags);
554f786e
SR
4321
4322 return ret;
7a8e76a3 4323}
c4f50183 4324EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4325
85bac32c 4326#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4327/**
4328 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4329 * @buffer_a: One buffer to swap with
4330 * @buffer_b: The other buffer to swap with
4331 *
4332 * This function is useful for tracers that want to take a "snapshot"
4333 * of a CPU buffer and has another back up buffer lying around.
4334 * it is expected that the tracer handles the cpu buffer not being
4335 * used at the moment.
4336 */
4337int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4338 struct ring_buffer *buffer_b, int cpu)
4339{
4340 struct ring_buffer_per_cpu *cpu_buffer_a;
4341 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4342 int ret = -EINVAL;
4343
9e01c1b7
RR
4344 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4345 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4346 goto out;
7a8e76a3 4347
438ced17
VN
4348 cpu_buffer_a = buffer_a->buffers[cpu];
4349 cpu_buffer_b = buffer_b->buffers[cpu];
4350
7a8e76a3 4351 /* At least make sure the two buffers are somewhat the same */
438ced17 4352 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4353 goto out;
4354
4355 ret = -EAGAIN;
7a8e76a3 4356
97b17efe 4357 if (atomic_read(&buffer_a->record_disabled))
554f786e 4358 goto out;
97b17efe
SR
4359
4360 if (atomic_read(&buffer_b->record_disabled))
554f786e 4361 goto out;
97b17efe 4362
97b17efe 4363 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4364 goto out;
97b17efe
SR
4365
4366 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4367 goto out;
97b17efe 4368
7a8e76a3
SR
4369 /*
4370 * We can't do a synchronize_sched here because this
4371 * function can be called in atomic context.
4372 * Normally this will be called from the same CPU as cpu.
4373 * If not it's up to the caller to protect this.
4374 */
4375 atomic_inc(&cpu_buffer_a->record_disabled);
4376 atomic_inc(&cpu_buffer_b->record_disabled);
4377
98277991
SR
4378 ret = -EBUSY;
4379 if (local_read(&cpu_buffer_a->committing))
4380 goto out_dec;
4381 if (local_read(&cpu_buffer_b->committing))
4382 goto out_dec;
4383
7a8e76a3
SR
4384 buffer_a->buffers[cpu] = cpu_buffer_b;
4385 buffer_b->buffers[cpu] = cpu_buffer_a;
4386
4387 cpu_buffer_b->buffer = buffer_a;
4388 cpu_buffer_a->buffer = buffer_b;
4389
98277991
SR
4390 ret = 0;
4391
4392out_dec:
7a8e76a3
SR
4393 atomic_dec(&cpu_buffer_a->record_disabled);
4394 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4395out:
554f786e 4396 return ret;
7a8e76a3 4397}
c4f50183 4398EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4399#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4400
8789a9e7
SR
4401/**
4402 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4403 * @buffer: the buffer to allocate for.
d611851b 4404 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4405 *
4406 * This function is used in conjunction with ring_buffer_read_page.
4407 * When reading a full page from the ring buffer, these functions
4408 * can be used to speed up the process. The calling function should
4409 * allocate a few pages first with this function. Then when it
4410 * needs to get pages from the ring buffer, it passes the result
4411 * of this function into ring_buffer_read_page, which will swap
4412 * the page that was allocated, with the read page of the buffer.
4413 *
4414 * Returns:
4415 * The page allocated, or NULL on error.
4416 */
7ea59064 4417void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4418{
044fa782 4419 struct buffer_data_page *bpage;
7ea59064 4420 struct page *page;
8789a9e7 4421
d7ec4bfe
VN
4422 page = alloc_pages_node(cpu_to_node(cpu),
4423 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4424 if (!page)
8789a9e7
SR
4425 return NULL;
4426
7ea59064 4427 bpage = page_address(page);
8789a9e7 4428
ef7a4a16
SR
4429 rb_init_page(bpage);
4430
044fa782 4431 return bpage;
8789a9e7 4432}
d6ce96da 4433EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4434
4435/**
4436 * ring_buffer_free_read_page - free an allocated read page
4437 * @buffer: the buffer the page was allocate for
4438 * @data: the page to free
4439 *
4440 * Free a page allocated from ring_buffer_alloc_read_page.
4441 */
4442void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4443{
4444 free_page((unsigned long)data);
4445}
d6ce96da 4446EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4447
4448/**
4449 * ring_buffer_read_page - extract a page from the ring buffer
4450 * @buffer: buffer to extract from
4451 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4452 * @len: amount to extract
8789a9e7
SR
4453 * @cpu: the cpu of the buffer to extract
4454 * @full: should the extraction only happen when the page is full.
4455 *
4456 * This function will pull out a page from the ring buffer and consume it.
4457 * @data_page must be the address of the variable that was returned
4458 * from ring_buffer_alloc_read_page. This is because the page might be used
4459 * to swap with a page in the ring buffer.
4460 *
4461 * for example:
d611851b 4462 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4463 * if (!rpage)
4464 * return error;
ef7a4a16 4465 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4466 * if (ret >= 0)
4467 * process_page(rpage, ret);
8789a9e7
SR
4468 *
4469 * When @full is set, the function will not return true unless
4470 * the writer is off the reader page.
4471 *
4472 * Note: it is up to the calling functions to handle sleeps and wakeups.
4473 * The ring buffer can be used anywhere in the kernel and can not
4474 * blindly call wake_up. The layer that uses the ring buffer must be
4475 * responsible for that.
4476 *
4477 * Returns:
667d2412
LJ
4478 * >=0 if data has been transferred, returns the offset of consumed data.
4479 * <0 if no data has been transferred.
8789a9e7
SR
4480 */
4481int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4482 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4483{
4484 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4485 struct ring_buffer_event *event;
044fa782 4486 struct buffer_data_page *bpage;
ef7a4a16 4487 struct buffer_page *reader;
ff0ff84a 4488 unsigned long missed_events;
8789a9e7 4489 unsigned long flags;
ef7a4a16 4490 unsigned int commit;
667d2412 4491 unsigned int read;
4f3640f8 4492 u64 save_timestamp;
667d2412 4493 int ret = -1;
8789a9e7 4494
554f786e
SR
4495 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4496 goto out;
4497
474d32b6
SR
4498 /*
4499 * If len is not big enough to hold the page header, then
4500 * we can not copy anything.
4501 */
4502 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4503 goto out;
474d32b6
SR
4504
4505 len -= BUF_PAGE_HDR_SIZE;
4506
8789a9e7 4507 if (!data_page)
554f786e 4508 goto out;
8789a9e7 4509
044fa782
SR
4510 bpage = *data_page;
4511 if (!bpage)
554f786e 4512 goto out;
8789a9e7 4513
5389f6fa 4514 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4515
ef7a4a16
SR
4516 reader = rb_get_reader_page(cpu_buffer);
4517 if (!reader)
554f786e 4518 goto out_unlock;
8789a9e7 4519
ef7a4a16
SR
4520 event = rb_reader_event(cpu_buffer);
4521
4522 read = reader->read;
4523 commit = rb_page_commit(reader);
667d2412 4524
66a8cb95 4525 /* Check if any events were dropped */
ff0ff84a 4526 missed_events = cpu_buffer->lost_events;
66a8cb95 4527
8789a9e7 4528 /*
474d32b6
SR
4529 * If this page has been partially read or
4530 * if len is not big enough to read the rest of the page or
4531 * a writer is still on the page, then
4532 * we must copy the data from the page to the buffer.
4533 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4534 */
474d32b6 4535 if (read || (len < (commit - read)) ||
ef7a4a16 4536 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4537 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4538 unsigned int rpos = read;
4539 unsigned int pos = 0;
ef7a4a16 4540 unsigned int size;
8789a9e7
SR
4541
4542 if (full)
554f786e 4543 goto out_unlock;
8789a9e7 4544
ef7a4a16
SR
4545 if (len > (commit - read))
4546 len = (commit - read);
4547
69d1b839
SR
4548 /* Always keep the time extend and data together */
4549 size = rb_event_ts_length(event);
ef7a4a16
SR
4550
4551 if (len < size)
554f786e 4552 goto out_unlock;
ef7a4a16 4553
4f3640f8
SR
4554 /* save the current timestamp, since the user will need it */
4555 save_timestamp = cpu_buffer->read_stamp;
4556
ef7a4a16
SR
4557 /* Need to copy one event at a time */
4558 do {
e1e35927
DS
4559 /* We need the size of one event, because
4560 * rb_advance_reader only advances by one event,
4561 * whereas rb_event_ts_length may include the size of
4562 * one or two events.
4563 * We have already ensured there's enough space if this
4564 * is a time extend. */
4565 size = rb_event_length(event);
474d32b6 4566 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4567
4568 len -= size;
4569
4570 rb_advance_reader(cpu_buffer);
474d32b6
SR
4571 rpos = reader->read;
4572 pos += size;
ef7a4a16 4573
18fab912
HY
4574 if (rpos >= commit)
4575 break;
4576
ef7a4a16 4577 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4578 /* Always keep the time extend and data together */
4579 size = rb_event_ts_length(event);
e1e35927 4580 } while (len >= size);
667d2412
LJ
4581
4582 /* update bpage */
ef7a4a16 4583 local_set(&bpage->commit, pos);
4f3640f8 4584 bpage->time_stamp = save_timestamp;
ef7a4a16 4585
474d32b6
SR
4586 /* we copied everything to the beginning */
4587 read = 0;
8789a9e7 4588 } else {
afbab76a 4589 /* update the entry counter */
77ae365e 4590 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4591 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4592
8789a9e7 4593 /* swap the pages */
044fa782 4594 rb_init_page(bpage);
ef7a4a16
SR
4595 bpage = reader->page;
4596 reader->page = *data_page;
4597 local_set(&reader->write, 0);
778c55d4 4598 local_set(&reader->entries, 0);
ef7a4a16 4599 reader->read = 0;
044fa782 4600 *data_page = bpage;
ff0ff84a
SR
4601
4602 /*
4603 * Use the real_end for the data size,
4604 * This gives us a chance to store the lost events
4605 * on the page.
4606 */
4607 if (reader->real_end)
4608 local_set(&bpage->commit, reader->real_end);
8789a9e7 4609 }
667d2412 4610 ret = read;
8789a9e7 4611
66a8cb95 4612 cpu_buffer->lost_events = 0;
2711ca23
SR
4613
4614 commit = local_read(&bpage->commit);
66a8cb95
SR
4615 /*
4616 * Set a flag in the commit field if we lost events
4617 */
ff0ff84a 4618 if (missed_events) {
ff0ff84a
SR
4619 /* If there is room at the end of the page to save the
4620 * missed events, then record it there.
4621 */
4622 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4623 memcpy(&bpage->data[commit], &missed_events,
4624 sizeof(missed_events));
4625 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4626 commit += sizeof(missed_events);
ff0ff84a 4627 }
66a8cb95 4628 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4629 }
66a8cb95 4630
2711ca23
SR
4631 /*
4632 * This page may be off to user land. Zero it out here.
4633 */
4634 if (commit < BUF_PAGE_SIZE)
4635 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4636
554f786e 4637 out_unlock:
5389f6fa 4638 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4639
554f786e 4640 out:
8789a9e7
SR
4641 return ret;
4642}
d6ce96da 4643EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4644
59222efe 4645#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4646static int rb_cpu_notify(struct notifier_block *self,
4647 unsigned long action, void *hcpu)
554f786e
SR
4648{
4649 struct ring_buffer *buffer =
4650 container_of(self, struct ring_buffer, cpu_notify);
4651 long cpu = (long)hcpu;
438ced17
VN
4652 int cpu_i, nr_pages_same;
4653 unsigned int nr_pages;
554f786e
SR
4654
4655 switch (action) {
4656 case CPU_UP_PREPARE:
4657 case CPU_UP_PREPARE_FROZEN:
3f237a79 4658 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4659 return NOTIFY_OK;
4660
438ced17
VN
4661 nr_pages = 0;
4662 nr_pages_same = 1;
4663 /* check if all cpu sizes are same */
4664 for_each_buffer_cpu(buffer, cpu_i) {
4665 /* fill in the size from first enabled cpu */
4666 if (nr_pages == 0)
4667 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4668 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4669 nr_pages_same = 0;
4670 break;
4671 }
4672 }
4673 /* allocate minimum pages, user can later expand it */
4674 if (!nr_pages_same)
4675 nr_pages = 2;
554f786e 4676 buffer->buffers[cpu] =
438ced17 4677 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4678 if (!buffer->buffers[cpu]) {
4679 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4680 cpu);
4681 return NOTIFY_OK;
4682 }
4683 smp_wmb();
3f237a79 4684 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4685 break;
4686 case CPU_DOWN_PREPARE:
4687 case CPU_DOWN_PREPARE_FROZEN:
4688 /*
4689 * Do nothing.
4690 * If we were to free the buffer, then the user would
4691 * lose any trace that was in the buffer.
4692 */
4693 break;
4694 default:
4695 break;
4696 }
4697 return NOTIFY_OK;
4698}
4699#endif
6c43e554
SRRH
4700
4701#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4702/*
4703 * This is a basic integrity check of the ring buffer.
4704 * Late in the boot cycle this test will run when configured in.
4705 * It will kick off a thread per CPU that will go into a loop
4706 * writing to the per cpu ring buffer various sizes of data.
4707 * Some of the data will be large items, some small.
4708 *
4709 * Another thread is created that goes into a spin, sending out
4710 * IPIs to the other CPUs to also write into the ring buffer.
4711 * this is to test the nesting ability of the buffer.
4712 *
4713 * Basic stats are recorded and reported. If something in the
4714 * ring buffer should happen that's not expected, a big warning
4715 * is displayed and all ring buffers are disabled.
4716 */
4717static struct task_struct *rb_threads[NR_CPUS] __initdata;
4718
4719struct rb_test_data {
4720 struct ring_buffer *buffer;
4721 unsigned long events;
4722 unsigned long bytes_written;
4723 unsigned long bytes_alloc;
4724 unsigned long bytes_dropped;
4725 unsigned long events_nested;
4726 unsigned long bytes_written_nested;
4727 unsigned long bytes_alloc_nested;
4728 unsigned long bytes_dropped_nested;
4729 int min_size_nested;
4730 int max_size_nested;
4731 int max_size;
4732 int min_size;
4733 int cpu;
4734 int cnt;
4735};
4736
4737static struct rb_test_data rb_data[NR_CPUS] __initdata;
4738
4739/* 1 meg per cpu */
4740#define RB_TEST_BUFFER_SIZE 1048576
4741
4742static char rb_string[] __initdata =
4743 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4744 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4745 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4746
4747static bool rb_test_started __initdata;
4748
4749struct rb_item {
4750 int size;
4751 char str[];
4752};
4753
4754static __init int rb_write_something(struct rb_test_data *data, bool nested)
4755{
4756 struct ring_buffer_event *event;
4757 struct rb_item *item;
4758 bool started;
4759 int event_len;
4760 int size;
4761 int len;
4762 int cnt;
4763
4764 /* Have nested writes different that what is written */
4765 cnt = data->cnt + (nested ? 27 : 0);
4766
4767 /* Multiply cnt by ~e, to make some unique increment */
4768 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4769
4770 len = size + sizeof(struct rb_item);
4771
4772 started = rb_test_started;
4773 /* read rb_test_started before checking buffer enabled */
4774 smp_rmb();
4775
4776 event = ring_buffer_lock_reserve(data->buffer, len);
4777 if (!event) {
4778 /* Ignore dropped events before test starts. */
4779 if (started) {
4780 if (nested)
4781 data->bytes_dropped += len;
4782 else
4783 data->bytes_dropped_nested += len;
4784 }
4785 return len;
4786 }
4787
4788 event_len = ring_buffer_event_length(event);
4789
4790 if (RB_WARN_ON(data->buffer, event_len < len))
4791 goto out;
4792
4793 item = ring_buffer_event_data(event);
4794 item->size = size;
4795 memcpy(item->str, rb_string, size);
4796
4797 if (nested) {
4798 data->bytes_alloc_nested += event_len;
4799 data->bytes_written_nested += len;
4800 data->events_nested++;
4801 if (!data->min_size_nested || len < data->min_size_nested)
4802 data->min_size_nested = len;
4803 if (len > data->max_size_nested)
4804 data->max_size_nested = len;
4805 } else {
4806 data->bytes_alloc += event_len;
4807 data->bytes_written += len;
4808 data->events++;
4809 if (!data->min_size || len < data->min_size)
4810 data->max_size = len;
4811 if (len > data->max_size)
4812 data->max_size = len;
4813 }
4814
4815 out:
4816 ring_buffer_unlock_commit(data->buffer, event);
4817
4818 return 0;
4819}
4820
4821static __init int rb_test(void *arg)
4822{
4823 struct rb_test_data *data = arg;
4824
4825 while (!kthread_should_stop()) {
4826 rb_write_something(data, false);
4827 data->cnt++;
4828
4829 set_current_state(TASK_INTERRUPTIBLE);
4830 /* Now sleep between a min of 100-300us and a max of 1ms */
4831 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4832 }
4833
4834 return 0;
4835}
4836
4837static __init void rb_ipi(void *ignore)
4838{
4839 struct rb_test_data *data;
4840 int cpu = smp_processor_id();
4841
4842 data = &rb_data[cpu];
4843 rb_write_something(data, true);
4844}
4845
4846static __init int rb_hammer_test(void *arg)
4847{
4848 while (!kthread_should_stop()) {
4849
4850 /* Send an IPI to all cpus to write data! */
4851 smp_call_function(rb_ipi, NULL, 1);
4852 /* No sleep, but for non preempt, let others run */
4853 schedule();
4854 }
4855
4856 return 0;
4857}
4858
4859static __init int test_ringbuffer(void)
4860{
4861 struct task_struct *rb_hammer;
4862 struct ring_buffer *buffer;
4863 int cpu;
4864 int ret = 0;
4865
4866 pr_info("Running ring buffer tests...\n");
4867
4868 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4869 if (WARN_ON(!buffer))
4870 return 0;
4871
4872 /* Disable buffer so that threads can't write to it yet */
4873 ring_buffer_record_off(buffer);
4874
4875 for_each_online_cpu(cpu) {
4876 rb_data[cpu].buffer = buffer;
4877 rb_data[cpu].cpu = cpu;
4878 rb_data[cpu].cnt = cpu;
4879 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4880 "rbtester/%d", cpu);
4881 if (WARN_ON(!rb_threads[cpu])) {
4882 pr_cont("FAILED\n");
4883 ret = -1;
4884 goto out_free;
4885 }
4886
4887 kthread_bind(rb_threads[cpu], cpu);
4888 wake_up_process(rb_threads[cpu]);
4889 }
4890
4891 /* Now create the rb hammer! */
4892 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4893 if (WARN_ON(!rb_hammer)) {
4894 pr_cont("FAILED\n");
4895 ret = -1;
4896 goto out_free;
4897 }
4898
4899 ring_buffer_record_on(buffer);
4900 /*
4901 * Show buffer is enabled before setting rb_test_started.
4902 * Yes there's a small race window where events could be
4903 * dropped and the thread wont catch it. But when a ring
4904 * buffer gets enabled, there will always be some kind of
4905 * delay before other CPUs see it. Thus, we don't care about
4906 * those dropped events. We care about events dropped after
4907 * the threads see that the buffer is active.
4908 */
4909 smp_wmb();
4910 rb_test_started = true;
4911
4912 set_current_state(TASK_INTERRUPTIBLE);
4913 /* Just run for 10 seconds */;
4914 schedule_timeout(10 * HZ);
4915
4916 kthread_stop(rb_hammer);
4917
4918 out_free:
4919 for_each_online_cpu(cpu) {
4920 if (!rb_threads[cpu])
4921 break;
4922 kthread_stop(rb_threads[cpu]);
4923 }
4924 if (ret) {
4925 ring_buffer_free(buffer);
4926 return ret;
4927 }
4928
4929 /* Report! */
4930 pr_info("finished\n");
4931 for_each_online_cpu(cpu) {
4932 struct ring_buffer_event *event;
4933 struct rb_test_data *data = &rb_data[cpu];
4934 struct rb_item *item;
4935 unsigned long total_events;
4936 unsigned long total_dropped;
4937 unsigned long total_written;
4938 unsigned long total_alloc;
4939 unsigned long total_read = 0;
4940 unsigned long total_size = 0;
4941 unsigned long total_len = 0;
4942 unsigned long total_lost = 0;
4943 unsigned long lost;
4944 int big_event_size;
4945 int small_event_size;
4946
4947 ret = -1;
4948
4949 total_events = data->events + data->events_nested;
4950 total_written = data->bytes_written + data->bytes_written_nested;
4951 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4952 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4953
4954 big_event_size = data->max_size + data->max_size_nested;
4955 small_event_size = data->min_size + data->min_size_nested;
4956
4957 pr_info("CPU %d:\n", cpu);
4958 pr_info(" events: %ld\n", total_events);
4959 pr_info(" dropped bytes: %ld\n", total_dropped);
4960 pr_info(" alloced bytes: %ld\n", total_alloc);
4961 pr_info(" written bytes: %ld\n", total_written);
4962 pr_info(" biggest event: %d\n", big_event_size);
4963 pr_info(" smallest event: %d\n", small_event_size);
4964
4965 if (RB_WARN_ON(buffer, total_dropped))
4966 break;
4967
4968 ret = 0;
4969
4970 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4971 total_lost += lost;
4972 item = ring_buffer_event_data(event);
4973 total_len += ring_buffer_event_length(event);
4974 total_size += item->size + sizeof(struct rb_item);
4975 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4976 pr_info("FAILED!\n");
4977 pr_info("buffer had: %.*s\n", item->size, item->str);
4978 pr_info("expected: %.*s\n", item->size, rb_string);
4979 RB_WARN_ON(buffer, 1);
4980 ret = -1;
4981 break;
4982 }
4983 total_read++;
4984 }
4985 if (ret)
4986 break;
4987
4988 ret = -1;
4989
4990 pr_info(" read events: %ld\n", total_read);
4991 pr_info(" lost events: %ld\n", total_lost);
4992 pr_info(" total events: %ld\n", total_lost + total_read);
4993 pr_info(" recorded len bytes: %ld\n", total_len);
4994 pr_info(" recorded size bytes: %ld\n", total_size);
4995 if (total_lost)
4996 pr_info(" With dropped events, record len and size may not match\n"
4997 " alloced and written from above\n");
4998 if (!total_lost) {
4999 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5000 total_size != total_written))
5001 break;
5002 }
5003 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5004 break;
5005
5006 ret = 0;
5007 }
5008 if (!ret)
5009 pr_info("Ring buffer PASSED!\n");
5010
5011 ring_buffer_free(buffer);
5012 return 0;
5013}
5014
5015late_initcall(test_ringbuffer);
5016#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */