tracing: Fix recordmcount.pl to handle sections with only weak functions
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
182e9f5f
SR
23#include "trace.h"
24
d1b182a8
SR
25/*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28int ring_buffer_print_entry_header(struct trace_seq *s)
29{
30 int ret;
31
334d4169
LJ
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
43
44 return ret;
45}
46
5cc98548
SR
47/*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
033601a3
SR
115/*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133/*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147};
148
149enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152};
153
5e39841c 154static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 155
474d32b6
SR
156#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
a3583244
SR
158/**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164void tracing_on(void)
165{
033601a3 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 167}
c4f50183 168EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
169
170/**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178void tracing_off(void)
179{
033601a3
SR
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181}
c4f50183 182EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
183
184/**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
c3706f00 188 * permanently.
033601a3
SR
189 */
190void tracing_off_permanent(void)
191{
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
193}
194
988ae9d6
SR
195/**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198int tracing_is_on(void)
199{
200 return ring_buffer_flags == RB_BUFFERS_ON;
201}
202EXPORT_SYMBOL_GPL(tracing_is_on);
203
d06bbd66
IM
204#include "trace.h"
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169 208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 209#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169
LJ
210
211/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
213
214enum {
215 RB_LEN_TIME_EXTEND = 8,
216 RB_LEN_TIME_STAMP = 16,
217};
218
2d622719
TZ
219static inline int rb_null_event(struct ring_buffer_event *event)
220{
334d4169
LJ
221 return event->type_len == RINGBUF_TYPE_PADDING
222 && event->time_delta == 0;
2d622719
TZ
223}
224
225static inline int rb_discarded_event(struct ring_buffer_event *event)
226{
334d4169 227 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
228}
229
230static void rb_event_set_padding(struct ring_buffer_event *event)
231{
334d4169 232 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
233 event->time_delta = 0;
234}
235
34a148bf 236static unsigned
2d622719 237rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
238{
239 unsigned length;
240
334d4169
LJ
241 if (event->type_len)
242 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
243 else
244 length = event->array[0];
245 return length + RB_EVNT_HDR_SIZE;
246}
247
248/* inline for ring buffer fast paths */
249static unsigned
250rb_event_length(struct ring_buffer_event *event)
251{
334d4169 252 switch (event->type_len) {
7a8e76a3 253 case RINGBUF_TYPE_PADDING:
2d622719
TZ
254 if (rb_null_event(event))
255 /* undefined */
256 return -1;
334d4169 257 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
258
259 case RINGBUF_TYPE_TIME_EXTEND:
260 return RB_LEN_TIME_EXTEND;
261
262 case RINGBUF_TYPE_TIME_STAMP:
263 return RB_LEN_TIME_STAMP;
264
265 case RINGBUF_TYPE_DATA:
2d622719 266 return rb_event_data_length(event);
7a8e76a3
SR
267 default:
268 BUG();
269 }
270 /* not hit */
271 return 0;
272}
273
274/**
275 * ring_buffer_event_length - return the length of the event
276 * @event: the event to get the length of
277 */
278unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279{
465634ad 280 unsigned length = rb_event_length(event);
334d4169 281 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
282 return length;
283 length -= RB_EVNT_HDR_SIZE;
284 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285 length -= sizeof(event->array[0]);
286 return length;
7a8e76a3 287}
c4f50183 288EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
289
290/* inline for ring buffer fast paths */
34a148bf 291static void *
7a8e76a3
SR
292rb_event_data(struct ring_buffer_event *event)
293{
334d4169 294 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 295 /* If length is in len field, then array[0] has the data */
334d4169 296 if (event->type_len)
7a8e76a3
SR
297 return (void *)&event->array[0];
298 /* Otherwise length is in array[0] and array[1] has the data */
299 return (void *)&event->array[1];
300}
301
302/**
303 * ring_buffer_event_data - return the data of the event
304 * @event: the event to get the data from
305 */
306void *ring_buffer_event_data(struct ring_buffer_event *event)
307{
308 return rb_event_data(event);
309}
c4f50183 310EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
311
312#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 313 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
314
315#define TS_SHIFT 27
316#define TS_MASK ((1ULL << TS_SHIFT) - 1)
317#define TS_DELTA_TEST (~TS_MASK)
318
abc9b56d 319struct buffer_data_page {
e4c2ce82 320 u64 time_stamp; /* page time stamp */
c3706f00 321 local_t commit; /* write committed index */
abc9b56d
SR
322 unsigned char data[]; /* data of buffer page */
323};
324
325struct buffer_page {
778c55d4 326 struct list_head list; /* list of buffer pages */
abc9b56d 327 local_t write; /* index for next write */
6f807acd 328 unsigned read; /* index for next read */
778c55d4 329 local_t entries; /* entries on this page */
abc9b56d 330 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
331};
332
044fa782 333static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 334{
044fa782 335 local_set(&bpage->commit, 0);
abc9b56d
SR
336}
337
474d32b6
SR
338/**
339 * ring_buffer_page_len - the size of data on the page.
340 * @page: The page to read
341 *
342 * Returns the amount of data on the page, including buffer page header.
343 */
ef7a4a16
SR
344size_t ring_buffer_page_len(void *page)
345{
474d32b6
SR
346 return local_read(&((struct buffer_data_page *)page)->commit)
347 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
348}
349
ed56829c
SR
350/*
351 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
352 * this issue out.
353 */
34a148bf 354static void free_buffer_page(struct buffer_page *bpage)
ed56829c 355{
34a148bf 356 free_page((unsigned long)bpage->page);
e4c2ce82 357 kfree(bpage);
ed56829c
SR
358}
359
7a8e76a3
SR
360/*
361 * We need to fit the time_stamp delta into 27 bits.
362 */
363static inline int test_time_stamp(u64 delta)
364{
365 if (delta & TS_DELTA_TEST)
366 return 1;
367 return 0;
368}
369
474d32b6 370#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 371
be957c44
SR
372/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
374
ea05b57c
SR
375/* Max number of timestamps that can fit on a page */
376#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
377
d1b182a8
SR
378int ring_buffer_print_page_header(struct trace_seq *s)
379{
380 struct buffer_data_page field;
381 int ret;
382
383 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
384 "offset:0;\tsize:%u;\n",
385 (unsigned int)sizeof(field.time_stamp));
386
387 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
388 "offset:%u;\tsize:%u;\n",
389 (unsigned int)offsetof(typeof(field), commit),
390 (unsigned int)sizeof(field.commit));
391
392 ret = trace_seq_printf(s, "\tfield: char data;\t"
393 "offset:%u;\tsize:%u;\n",
394 (unsigned int)offsetof(typeof(field), data),
395 (unsigned int)BUF_PAGE_SIZE);
396
397 return ret;
398}
399
7a8e76a3
SR
400/*
401 * head_page == tail_page && head == tail then buffer is empty.
402 */
403struct ring_buffer_per_cpu {
404 int cpu;
405 struct ring_buffer *buffer;
f83c9d0f 406 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 407 raw_spinlock_t lock;
7a8e76a3
SR
408 struct lock_class_key lock_key;
409 struct list_head pages;
6f807acd
SR
410 struct buffer_page *head_page; /* read from head */
411 struct buffer_page *tail_page; /* write to tail */
c3706f00 412 struct buffer_page *commit_page; /* committed pages */
d769041f 413 struct buffer_page *reader_page;
f0d2c681
SR
414 unsigned long nmi_dropped;
415 unsigned long commit_overrun;
7a8e76a3 416 unsigned long overrun;
e4906eff
SR
417 unsigned long read;
418 local_t entries;
fa743953
SR
419 local_t committing;
420 local_t commits;
7a8e76a3
SR
421 u64 write_stamp;
422 u64 read_stamp;
423 atomic_t record_disabled;
424};
425
426struct ring_buffer {
7a8e76a3
SR
427 unsigned pages;
428 unsigned flags;
429 int cpus;
7a8e76a3 430 atomic_t record_disabled;
00f62f61 431 cpumask_var_t cpumask;
7a8e76a3 432
1f8a6a10
PZ
433 struct lock_class_key *reader_lock_key;
434
7a8e76a3
SR
435 struct mutex mutex;
436
437 struct ring_buffer_per_cpu **buffers;
554f786e 438
59222efe 439#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
440 struct notifier_block cpu_notify;
441#endif
37886f6a 442 u64 (*clock)(void);
7a8e76a3
SR
443};
444
445struct ring_buffer_iter {
446 struct ring_buffer_per_cpu *cpu_buffer;
447 unsigned long head;
448 struct buffer_page *head_page;
449 u64 read_stamp;
450};
451
f536aafc 452/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 453#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
454 ({ \
455 int _____ret = unlikely(cond); \
456 if (_____ret) { \
bf41a158
SR
457 atomic_inc(&buffer->record_disabled); \
458 WARN_ON(1); \
459 } \
3e89c7bb
SR
460 _____ret; \
461 })
f536aafc 462
37886f6a
SR
463/* Up this if you want to test the TIME_EXTENTS and normalization */
464#define DEBUG_SHIFT 0
465
88eb0125
SR
466static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
467{
468 /* shift to debug/test normalization and TIME_EXTENTS */
469 return buffer->clock() << DEBUG_SHIFT;
470}
471
37886f6a
SR
472u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
473{
474 u64 time;
475
476 preempt_disable_notrace();
88eb0125 477 time = rb_time_stamp(buffer, cpu);
37886f6a
SR
478 preempt_enable_no_resched_notrace();
479
480 return time;
481}
482EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
483
484void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
485 int cpu, u64 *ts)
486{
487 /* Just stupid testing the normalize function and deltas */
488 *ts >>= DEBUG_SHIFT;
489}
490EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491
7a8e76a3
SR
492/**
493 * check_pages - integrity check of buffer pages
494 * @cpu_buffer: CPU buffer with pages to test
495 *
c3706f00 496 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
497 * been corrupted.
498 */
499static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500{
501 struct list_head *head = &cpu_buffer->pages;
044fa782 502 struct buffer_page *bpage, *tmp;
7a8e76a3 503
3e89c7bb
SR
504 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505 return -1;
506 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507 return -1;
7a8e76a3 508
044fa782 509 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 510 if (RB_WARN_ON(cpu_buffer,
044fa782 511 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
512 return -1;
513 if (RB_WARN_ON(cpu_buffer,
044fa782 514 bpage->list.prev->next != &bpage->list))
3e89c7bb 515 return -1;
7a8e76a3
SR
516 }
517
518 return 0;
519}
520
7a8e76a3
SR
521static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522 unsigned nr_pages)
523{
524 struct list_head *head = &cpu_buffer->pages;
044fa782 525 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
526 unsigned long addr;
527 LIST_HEAD(pages);
528 unsigned i;
529
530 for (i = 0; i < nr_pages; i++) {
044fa782 531 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 532 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 533 if (!bpage)
e4c2ce82 534 goto free_pages;
044fa782 535 list_add(&bpage->list, &pages);
e4c2ce82 536
7a8e76a3
SR
537 addr = __get_free_page(GFP_KERNEL);
538 if (!addr)
539 goto free_pages;
044fa782
SR
540 bpage->page = (void *)addr;
541 rb_init_page(bpage->page);
7a8e76a3
SR
542 }
543
544 list_splice(&pages, head);
545
546 rb_check_pages(cpu_buffer);
547
548 return 0;
549
550 free_pages:
044fa782
SR
551 list_for_each_entry_safe(bpage, tmp, &pages, list) {
552 list_del_init(&bpage->list);
553 free_buffer_page(bpage);
7a8e76a3
SR
554 }
555 return -ENOMEM;
556}
557
558static struct ring_buffer_per_cpu *
559rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
560{
561 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 562 struct buffer_page *bpage;
d769041f 563 unsigned long addr;
7a8e76a3
SR
564 int ret;
565
566 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
567 GFP_KERNEL, cpu_to_node(cpu));
568 if (!cpu_buffer)
569 return NULL;
570
571 cpu_buffer->cpu = cpu;
572 cpu_buffer->buffer = buffer;
f83c9d0f 573 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 574 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
3e03fb7f 575 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
576 INIT_LIST_HEAD(&cpu_buffer->pages);
577
044fa782 578 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 579 GFP_KERNEL, cpu_to_node(cpu));
044fa782 580 if (!bpage)
e4c2ce82
SR
581 goto fail_free_buffer;
582
044fa782 583 cpu_buffer->reader_page = bpage;
d769041f
SR
584 addr = __get_free_page(GFP_KERNEL);
585 if (!addr)
e4c2ce82 586 goto fail_free_reader;
044fa782
SR
587 bpage->page = (void *)addr;
588 rb_init_page(bpage->page);
e4c2ce82 589
d769041f 590 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 591
7a8e76a3
SR
592 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
593 if (ret < 0)
d769041f 594 goto fail_free_reader;
7a8e76a3
SR
595
596 cpu_buffer->head_page
597 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 598 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
599
600 return cpu_buffer;
601
d769041f
SR
602 fail_free_reader:
603 free_buffer_page(cpu_buffer->reader_page);
604
7a8e76a3
SR
605 fail_free_buffer:
606 kfree(cpu_buffer);
607 return NULL;
608}
609
610static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611{
612 struct list_head *head = &cpu_buffer->pages;
044fa782 613 struct buffer_page *bpage, *tmp;
7a8e76a3 614
d769041f
SR
615 free_buffer_page(cpu_buffer->reader_page);
616
044fa782
SR
617 list_for_each_entry_safe(bpage, tmp, head, list) {
618 list_del_init(&bpage->list);
619 free_buffer_page(bpage);
7a8e76a3
SR
620 }
621 kfree(cpu_buffer);
622}
623
59222efe 624#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
625static int rb_cpu_notify(struct notifier_block *self,
626 unsigned long action, void *hcpu);
554f786e
SR
627#endif
628
7a8e76a3
SR
629/**
630 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 631 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
632 * @flags: attributes to set for the ring buffer.
633 *
634 * Currently the only flag that is available is the RB_FL_OVERWRITE
635 * flag. This flag means that the buffer will overwrite old data
636 * when the buffer wraps. If this flag is not set, the buffer will
637 * drop data when the tail hits the head.
638 */
1f8a6a10
PZ
639struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
640 struct lock_class_key *key)
7a8e76a3
SR
641{
642 struct ring_buffer *buffer;
643 int bsize;
644 int cpu;
645
646 /* keep it in its own cache line */
647 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648 GFP_KERNEL);
649 if (!buffer)
650 return NULL;
651
9e01c1b7
RR
652 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653 goto fail_free_buffer;
654
7a8e76a3
SR
655 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656 buffer->flags = flags;
37886f6a 657 buffer->clock = trace_clock_local;
1f8a6a10 658 buffer->reader_lock_key = key;
7a8e76a3
SR
659
660 /* need at least two pages */
5f78abee
SR
661 if (buffer->pages < 2)
662 buffer->pages = 2;
7a8e76a3 663
3bf832ce
FW
664 /*
665 * In case of non-hotplug cpu, if the ring-buffer is allocated
666 * in early initcall, it will not be notified of secondary cpus.
667 * In that off case, we need to allocate for all possible cpus.
668 */
669#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
670 get_online_cpus();
671 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
672#else
673 cpumask_copy(buffer->cpumask, cpu_possible_mask);
674#endif
7a8e76a3
SR
675 buffer->cpus = nr_cpu_ids;
676
677 bsize = sizeof(void *) * nr_cpu_ids;
678 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
679 GFP_KERNEL);
680 if (!buffer->buffers)
9e01c1b7 681 goto fail_free_cpumask;
7a8e76a3
SR
682
683 for_each_buffer_cpu(buffer, cpu) {
684 buffer->buffers[cpu] =
685 rb_allocate_cpu_buffer(buffer, cpu);
686 if (!buffer->buffers[cpu])
687 goto fail_free_buffers;
688 }
689
59222efe 690#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
691 buffer->cpu_notify.notifier_call = rb_cpu_notify;
692 buffer->cpu_notify.priority = 0;
693 register_cpu_notifier(&buffer->cpu_notify);
694#endif
695
696 put_online_cpus();
7a8e76a3
SR
697 mutex_init(&buffer->mutex);
698
699 return buffer;
700
701 fail_free_buffers:
702 for_each_buffer_cpu(buffer, cpu) {
703 if (buffer->buffers[cpu])
704 rb_free_cpu_buffer(buffer->buffers[cpu]);
705 }
706 kfree(buffer->buffers);
707
9e01c1b7
RR
708 fail_free_cpumask:
709 free_cpumask_var(buffer->cpumask);
554f786e 710 put_online_cpus();
9e01c1b7 711
7a8e76a3
SR
712 fail_free_buffer:
713 kfree(buffer);
714 return NULL;
715}
1f8a6a10 716EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
717
718/**
719 * ring_buffer_free - free a ring buffer.
720 * @buffer: the buffer to free.
721 */
722void
723ring_buffer_free(struct ring_buffer *buffer)
724{
725 int cpu;
726
554f786e
SR
727 get_online_cpus();
728
59222efe 729#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
730 unregister_cpu_notifier(&buffer->cpu_notify);
731#endif
732
7a8e76a3
SR
733 for_each_buffer_cpu(buffer, cpu)
734 rb_free_cpu_buffer(buffer->buffers[cpu]);
735
554f786e
SR
736 put_online_cpus();
737
9e01c1b7
RR
738 free_cpumask_var(buffer->cpumask);
739
7a8e76a3
SR
740 kfree(buffer);
741}
c4f50183 742EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 743
37886f6a
SR
744void ring_buffer_set_clock(struct ring_buffer *buffer,
745 u64 (*clock)(void))
746{
747 buffer->clock = clock;
748}
749
7a8e76a3
SR
750static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
751
752static void
753rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
754{
044fa782 755 struct buffer_page *bpage;
7a8e76a3
SR
756 struct list_head *p;
757 unsigned i;
758
759 atomic_inc(&cpu_buffer->record_disabled);
760 synchronize_sched();
761
762 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
763 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
764 return;
7a8e76a3 765 p = cpu_buffer->pages.next;
044fa782
SR
766 bpage = list_entry(p, struct buffer_page, list);
767 list_del_init(&bpage->list);
768 free_buffer_page(bpage);
7a8e76a3 769 }
3e89c7bb
SR
770 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
771 return;
7a8e76a3
SR
772
773 rb_reset_cpu(cpu_buffer);
774
775 rb_check_pages(cpu_buffer);
776
777 atomic_dec(&cpu_buffer->record_disabled);
778
779}
780
781static void
782rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
783 struct list_head *pages, unsigned nr_pages)
784{
044fa782 785 struct buffer_page *bpage;
7a8e76a3
SR
786 struct list_head *p;
787 unsigned i;
788
789 atomic_inc(&cpu_buffer->record_disabled);
790 synchronize_sched();
791
792 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
793 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
794 return;
7a8e76a3 795 p = pages->next;
044fa782
SR
796 bpage = list_entry(p, struct buffer_page, list);
797 list_del_init(&bpage->list);
798 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
799 }
800 rb_reset_cpu(cpu_buffer);
801
802 rb_check_pages(cpu_buffer);
803
804 atomic_dec(&cpu_buffer->record_disabled);
805}
806
807/**
808 * ring_buffer_resize - resize the ring buffer
809 * @buffer: the buffer to resize.
810 * @size: the new size.
811 *
812 * The tracer is responsible for making sure that the buffer is
813 * not being used while changing the size.
814 * Note: We may be able to change the above requirement by using
815 * RCU synchronizations.
816 *
817 * Minimum size is 2 * BUF_PAGE_SIZE.
818 *
819 * Returns -1 on failure.
820 */
821int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
822{
823 struct ring_buffer_per_cpu *cpu_buffer;
824 unsigned nr_pages, rm_pages, new_pages;
044fa782 825 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
826 unsigned long buffer_size;
827 unsigned long addr;
828 LIST_HEAD(pages);
829 int i, cpu;
830
ee51a1de
IM
831 /*
832 * Always succeed at resizing a non-existent buffer:
833 */
834 if (!buffer)
835 return size;
836
7a8e76a3
SR
837 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
838 size *= BUF_PAGE_SIZE;
839 buffer_size = buffer->pages * BUF_PAGE_SIZE;
840
841 /* we need a minimum of two pages */
842 if (size < BUF_PAGE_SIZE * 2)
843 size = BUF_PAGE_SIZE * 2;
844
845 if (size == buffer_size)
846 return size;
847
848 mutex_lock(&buffer->mutex);
554f786e 849 get_online_cpus();
7a8e76a3
SR
850
851 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
852
853 if (size < buffer_size) {
854
855 /* easy case, just free pages */
554f786e
SR
856 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
857 goto out_fail;
7a8e76a3
SR
858
859 rm_pages = buffer->pages - nr_pages;
860
861 for_each_buffer_cpu(buffer, cpu) {
862 cpu_buffer = buffer->buffers[cpu];
863 rb_remove_pages(cpu_buffer, rm_pages);
864 }
865 goto out;
866 }
867
868 /*
869 * This is a bit more difficult. We only want to add pages
870 * when we can allocate enough for all CPUs. We do this
871 * by allocating all the pages and storing them on a local
872 * link list. If we succeed in our allocation, then we
873 * add these pages to the cpu_buffers. Otherwise we just free
874 * them all and return -ENOMEM;
875 */
554f786e
SR
876 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
877 goto out_fail;
f536aafc 878
7a8e76a3
SR
879 new_pages = nr_pages - buffer->pages;
880
881 for_each_buffer_cpu(buffer, cpu) {
882 for (i = 0; i < new_pages; i++) {
044fa782 883 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
884 cache_line_size()),
885 GFP_KERNEL, cpu_to_node(cpu));
044fa782 886 if (!bpage)
e4c2ce82 887 goto free_pages;
044fa782 888 list_add(&bpage->list, &pages);
7a8e76a3
SR
889 addr = __get_free_page(GFP_KERNEL);
890 if (!addr)
891 goto free_pages;
044fa782
SR
892 bpage->page = (void *)addr;
893 rb_init_page(bpage->page);
7a8e76a3
SR
894 }
895 }
896
897 for_each_buffer_cpu(buffer, cpu) {
898 cpu_buffer = buffer->buffers[cpu];
899 rb_insert_pages(cpu_buffer, &pages, new_pages);
900 }
901
554f786e
SR
902 if (RB_WARN_ON(buffer, !list_empty(&pages)))
903 goto out_fail;
7a8e76a3
SR
904
905 out:
906 buffer->pages = nr_pages;
554f786e 907 put_online_cpus();
7a8e76a3
SR
908 mutex_unlock(&buffer->mutex);
909
910 return size;
911
912 free_pages:
044fa782
SR
913 list_for_each_entry_safe(bpage, tmp, &pages, list) {
914 list_del_init(&bpage->list);
915 free_buffer_page(bpage);
7a8e76a3 916 }
554f786e 917 put_online_cpus();
641d2f63 918 mutex_unlock(&buffer->mutex);
7a8e76a3 919 return -ENOMEM;
554f786e
SR
920
921 /*
922 * Something went totally wrong, and we are too paranoid
923 * to even clean up the mess.
924 */
925 out_fail:
926 put_online_cpus();
927 mutex_unlock(&buffer->mutex);
928 return -1;
7a8e76a3 929}
c4f50183 930EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 931
8789a9e7 932static inline void *
044fa782 933__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 934{
044fa782 935 return bpage->data + index;
8789a9e7
SR
936}
937
044fa782 938static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 939{
044fa782 940 return bpage->page->data + index;
7a8e76a3
SR
941}
942
943static inline struct ring_buffer_event *
d769041f 944rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 945{
6f807acd
SR
946 return __rb_page_index(cpu_buffer->reader_page,
947 cpu_buffer->reader_page->read);
948}
949
950static inline struct ring_buffer_event *
951rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
952{
953 return __rb_page_index(cpu_buffer->head_page,
954 cpu_buffer->head_page->read);
7a8e76a3
SR
955}
956
957static inline struct ring_buffer_event *
958rb_iter_head_event(struct ring_buffer_iter *iter)
959{
6f807acd 960 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
961}
962
bf41a158
SR
963static inline unsigned rb_page_write(struct buffer_page *bpage)
964{
965 return local_read(&bpage->write);
966}
967
968static inline unsigned rb_page_commit(struct buffer_page *bpage)
969{
abc9b56d 970 return local_read(&bpage->page->commit);
bf41a158
SR
971}
972
973/* Size is determined by what has been commited */
974static inline unsigned rb_page_size(struct buffer_page *bpage)
975{
976 return rb_page_commit(bpage);
977}
978
979static inline unsigned
980rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
981{
982 return rb_page_commit(cpu_buffer->commit_page);
983}
984
985static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
986{
987 return rb_page_commit(cpu_buffer->head_page);
988}
989
7a8e76a3 990static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 991 struct buffer_page **bpage)
7a8e76a3 992{
044fa782 993 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
994
995 if (p == &cpu_buffer->pages)
996 p = p->next;
997
044fa782 998 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
999}
1000
bf41a158
SR
1001static inline unsigned
1002rb_event_index(struct ring_buffer_event *event)
1003{
1004 unsigned long addr = (unsigned long)event;
1005
22f470f8 1006 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1007}
1008
0f0c85fc 1009static inline int
fa743953
SR
1010rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1011 struct ring_buffer_event *event)
bf41a158
SR
1012{
1013 unsigned long addr = (unsigned long)event;
1014 unsigned long index;
1015
1016 index = rb_event_index(event);
1017 addr &= PAGE_MASK;
1018
1019 return cpu_buffer->commit_page->page == (void *)addr &&
1020 rb_commit_index(cpu_buffer) == index;
1021}
1022
34a148bf 1023static void
bf41a158 1024rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1025{
bf41a158
SR
1026 /*
1027 * We only race with interrupts and NMIs on this CPU.
1028 * If we own the commit event, then we can commit
1029 * all others that interrupted us, since the interruptions
1030 * are in stack format (they finish before they come
1031 * back to us). This allows us to do a simple loop to
1032 * assign the commit to the tail.
1033 */
a8ccf1d6 1034 again:
bf41a158 1035 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1036 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1037 cpu_buffer->commit_page->write;
1038 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1039 cpu_buffer->write_stamp =
1040 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1041 /* add barrier to keep gcc from optimizing too much */
1042 barrier();
1043 }
1044 while (rb_commit_index(cpu_buffer) !=
1045 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1046 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1047 cpu_buffer->commit_page->write;
1048 barrier();
1049 }
a8ccf1d6
SR
1050
1051 /* again, keep gcc from optimizing */
1052 barrier();
1053
1054 /*
1055 * If an interrupt came in just after the first while loop
1056 * and pushed the tail page forward, we will be left with
1057 * a dangling commit that will never go forward.
1058 */
1059 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1060 goto again;
7a8e76a3
SR
1061}
1062
d769041f 1063static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1064{
abc9b56d 1065 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1066 cpu_buffer->reader_page->read = 0;
d769041f
SR
1067}
1068
34a148bf 1069static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1070{
1071 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1072
1073 /*
1074 * The iterator could be on the reader page (it starts there).
1075 * But the head could have moved, since the reader was
1076 * found. Check for this case and assign the iterator
1077 * to the head page instead of next.
1078 */
1079 if (iter->head_page == cpu_buffer->reader_page)
1080 iter->head_page = cpu_buffer->head_page;
1081 else
1082 rb_inc_page(cpu_buffer, &iter->head_page);
1083
abc9b56d 1084 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1085 iter->head = 0;
1086}
1087
1088/**
1089 * ring_buffer_update_event - update event type and data
1090 * @event: the even to update
1091 * @type: the type of event
1092 * @length: the size of the event field in the ring buffer
1093 *
1094 * Update the type and data fields of the event. The length
1095 * is the actual size that is written to the ring buffer,
1096 * and with this, we can determine what to place into the
1097 * data field.
1098 */
34a148bf 1099static void
7a8e76a3
SR
1100rb_update_event(struct ring_buffer_event *event,
1101 unsigned type, unsigned length)
1102{
334d4169 1103 event->type_len = type;
7a8e76a3
SR
1104
1105 switch (type) {
1106
1107 case RINGBUF_TYPE_PADDING:
7a8e76a3 1108 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1109 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1110 break;
1111
334d4169 1112 case 0:
7a8e76a3 1113 length -= RB_EVNT_HDR_SIZE;
334d4169 1114 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1115 event->array[0] = length;
334d4169
LJ
1116 else
1117 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1118 break;
1119 default:
1120 BUG();
1121 }
1122}
1123
34a148bf 1124static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1125{
1126 struct ring_buffer_event event; /* Used only for sizeof array */
1127
1128 /* zero length can cause confusions */
1129 if (!length)
1130 length = 1;
1131
1132 if (length > RB_MAX_SMALL_DATA)
1133 length += sizeof(event.array[0]);
1134
1135 length += RB_EVNT_HDR_SIZE;
1136 length = ALIGN(length, RB_ALIGNMENT);
1137
1138 return length;
1139}
1140
c7b09308
SR
1141static inline void
1142rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1143 struct buffer_page *tail_page,
1144 unsigned long tail, unsigned long length)
1145{
1146 struct ring_buffer_event *event;
1147
1148 /*
1149 * Only the event that crossed the page boundary
1150 * must fill the old tail_page with padding.
1151 */
1152 if (tail >= BUF_PAGE_SIZE) {
1153 local_sub(length, &tail_page->write);
1154 return;
1155 }
1156
1157 event = __rb_page_index(tail_page, tail);
b0b7065b 1158 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308
SR
1159
1160 /*
1161 * If this event is bigger than the minimum size, then
1162 * we need to be careful that we don't subtract the
1163 * write counter enough to allow another writer to slip
1164 * in on this page.
1165 * We put in a discarded commit instead, to make sure
1166 * that this space is not used again.
1167 *
1168 * If we are less than the minimum size, we don't need to
1169 * worry about it.
1170 */
1171 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1172 /* No room for any events */
1173
1174 /* Mark the rest of the page with padding */
1175 rb_event_set_padding(event);
1176
1177 /* Set the write back to the previous setting */
1178 local_sub(length, &tail_page->write);
1179 return;
1180 }
1181
1182 /* Put in a discarded event */
1183 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1184 event->type_len = RINGBUF_TYPE_PADDING;
1185 /* time delta must be non zero */
1186 event->time_delta = 1;
1187 /* Account for this as an entry */
1188 local_inc(&tail_page->entries);
1189 local_inc(&cpu_buffer->entries);
1190
1191 /* Set write to end of buffer */
1192 length = (tail + length) - BUF_PAGE_SIZE;
1193 local_sub(length, &tail_page->write);
1194}
6634ff26 1195
7a8e76a3 1196static struct ring_buffer_event *
6634ff26
SR
1197rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1198 unsigned long length, unsigned long tail,
1199 struct buffer_page *commit_page,
1200 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1201{
6634ff26 1202 struct buffer_page *next_page, *head_page, *reader_page;
7a8e76a3 1203 struct ring_buffer *buffer = cpu_buffer->buffer;
78d904b4 1204 bool lock_taken = false;
6634ff26 1205 unsigned long flags;
aa20ae84
SR
1206
1207 next_page = tail_page;
1208
1209 local_irq_save(flags);
1210 /*
1211 * Since the write to the buffer is still not
1212 * fully lockless, we must be careful with NMIs.
1213 * The locks in the writers are taken when a write
1214 * crosses to a new page. The locks protect against
1215 * races with the readers (this will soon be fixed
1216 * with a lockless solution).
1217 *
1218 * Because we can not protect against NMIs, and we
1219 * want to keep traces reentrant, we need to manage
1220 * what happens when we are in an NMI.
1221 *
1222 * NMIs can happen after we take the lock.
1223 * If we are in an NMI, only take the lock
1224 * if it is not already taken. Otherwise
1225 * simply fail.
1226 */
1227 if (unlikely(in_nmi())) {
1228 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1229 cpu_buffer->nmi_dropped++;
1230 goto out_reset;
1231 }
1232 } else
1233 __raw_spin_lock(&cpu_buffer->lock);
1234
1235 lock_taken = true;
1236
1237 rb_inc_page(cpu_buffer, &next_page);
1238
1239 head_page = cpu_buffer->head_page;
1240 reader_page = cpu_buffer->reader_page;
1241
1242 /* we grabbed the lock before incrementing */
1243 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1244 goto out_reset;
1245
1246 /*
1247 * If for some reason, we had an interrupt storm that made
1248 * it all the way around the buffer, bail, and warn
1249 * about it.
1250 */
1251 if (unlikely(next_page == commit_page)) {
1252 cpu_buffer->commit_overrun++;
1253 goto out_reset;
1254 }
1255
1256 if (next_page == head_page) {
1257 if (!(buffer->flags & RB_FL_OVERWRITE))
1258 goto out_reset;
1259
1260 /* tail_page has not moved yet? */
1261 if (tail_page == cpu_buffer->tail_page) {
1262 /* count overflows */
1263 cpu_buffer->overrun +=
1264 local_read(&head_page->entries);
1265
1266 rb_inc_page(cpu_buffer, &head_page);
1267 cpu_buffer->head_page = head_page;
1268 cpu_buffer->head_page->read = 0;
1269 }
1270 }
1271
1272 /*
1273 * If the tail page is still the same as what we think
1274 * it is, then it is up to us to update the tail
1275 * pointer.
1276 */
1277 if (tail_page == cpu_buffer->tail_page) {
1278 local_set(&next_page->write, 0);
1279 local_set(&next_page->entries, 0);
1280 local_set(&next_page->page->commit, 0);
1281 cpu_buffer->tail_page = next_page;
1282
1283 /* reread the time stamp */
88eb0125 1284 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
aa20ae84
SR
1285 cpu_buffer->tail_page->page->time_stamp = *ts;
1286 }
1287
c7b09308 1288 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1289
1290 __raw_spin_unlock(&cpu_buffer->lock);
1291 local_irq_restore(flags);
1292
1293 /* fail and let the caller try again */
1294 return ERR_PTR(-EAGAIN);
1295
45141d46 1296 out_reset:
6f3b3440 1297 /* reset write */
c7b09308 1298 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1299
78d904b4
SR
1300 if (likely(lock_taken))
1301 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1302 local_irq_restore(flags);
bf41a158 1303 return NULL;
7a8e76a3
SR
1304}
1305
6634ff26
SR
1306static struct ring_buffer_event *
1307__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1308 unsigned type, unsigned long length, u64 *ts)
1309{
1310 struct buffer_page *tail_page, *commit_page;
1311 struct ring_buffer_event *event;
1312 unsigned long tail, write;
1313
1314 commit_page = cpu_buffer->commit_page;
1315 /* we just need to protect against interrupts */
1316 barrier();
1317 tail_page = cpu_buffer->tail_page;
1318 write = local_add_return(length, &tail_page->write);
1319 tail = write - length;
1320
1321 /* See if we shot pass the end of this buffer page */
1322 if (write > BUF_PAGE_SIZE)
1323 return rb_move_tail(cpu_buffer, length, tail,
1324 commit_page, tail_page, ts);
1325
1326 /* We reserved something on the buffer */
1327
6634ff26 1328 event = __rb_page_index(tail_page, tail);
1744a21d 1329 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1330 rb_update_event(event, type, length);
1331
1332 /* The passed in type is zero for DATA */
1333 if (likely(!type))
1334 local_inc(&tail_page->entries);
1335
1336 /*
fa743953
SR
1337 * If this is the first commit on the page, then update
1338 * its timestamp.
6634ff26 1339 */
fa743953
SR
1340 if (!tail)
1341 tail_page->page->time_stamp = *ts;
6634ff26
SR
1342
1343 return event;
1344}
1345
edd813bf
SR
1346static inline int
1347rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1348 struct ring_buffer_event *event)
1349{
1350 unsigned long new_index, old_index;
1351 struct buffer_page *bpage;
1352 unsigned long index;
1353 unsigned long addr;
1354
1355 new_index = rb_event_index(event);
1356 old_index = new_index + rb_event_length(event);
1357 addr = (unsigned long)event;
1358 addr &= PAGE_MASK;
1359
1360 bpage = cpu_buffer->tail_page;
1361
1362 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1363 /*
1364 * This is on the tail page. It is possible that
1365 * a write could come in and move the tail page
1366 * and write to the next page. That is fine
1367 * because we just shorten what is on this page.
1368 */
1369 index = local_cmpxchg(&bpage->write, old_index, new_index);
1370 if (index == old_index)
1371 return 1;
1372 }
1373
1374 /* could not discard */
1375 return 0;
1376}
1377
7a8e76a3
SR
1378static int
1379rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1380 u64 *ts, u64 *delta)
1381{
1382 struct ring_buffer_event *event;
1383 static int once;
bf41a158 1384 int ret;
7a8e76a3
SR
1385
1386 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1387 printk(KERN_WARNING "Delta way too big! %llu"
1388 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1389 (unsigned long long)*delta,
1390 (unsigned long long)*ts,
1391 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1392 WARN_ON(1);
1393 }
1394
1395 /*
1396 * The delta is too big, we to add a
1397 * new timestamp.
1398 */
1399 event = __rb_reserve_next(cpu_buffer,
1400 RINGBUF_TYPE_TIME_EXTEND,
1401 RB_LEN_TIME_EXTEND,
1402 ts);
1403 if (!event)
bf41a158 1404 return -EBUSY;
7a8e76a3 1405
bf41a158
SR
1406 if (PTR_ERR(event) == -EAGAIN)
1407 return -EAGAIN;
1408
1409 /* Only a commited time event can update the write stamp */
fa743953 1410 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 1411 /*
fa743953
SR
1412 * If this is the first on the page, then it was
1413 * updated with the page itself. Try to discard it
1414 * and if we can't just make it zero.
bf41a158
SR
1415 */
1416 if (rb_event_index(event)) {
1417 event->time_delta = *delta & TS_MASK;
1418 event->array[0] = *delta >> TS_SHIFT;
1419 } else {
ea05b57c
SR
1420 /* try to discard, since we do not need this */
1421 if (!rb_try_to_discard(cpu_buffer, event)) {
1422 /* nope, just zero it */
1423 event->time_delta = 0;
1424 event->array[0] = 0;
1425 }
bf41a158 1426 }
7a8e76a3 1427 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1428 /* let the caller know this was the commit */
1429 ret = 1;
1430 } else {
edd813bf
SR
1431 /* Try to discard the event */
1432 if (!rb_try_to_discard(cpu_buffer, event)) {
1433 /* Darn, this is just wasted space */
1434 event->time_delta = 0;
1435 event->array[0] = 0;
edd813bf 1436 }
f57a8a19 1437 ret = 0;
7a8e76a3
SR
1438 }
1439
bf41a158
SR
1440 *delta = 0;
1441
1442 return ret;
7a8e76a3
SR
1443}
1444
fa743953
SR
1445static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1446{
1447 local_inc(&cpu_buffer->committing);
1448 local_inc(&cpu_buffer->commits);
1449}
1450
1451static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1452{
1453 unsigned long commits;
1454
1455 if (RB_WARN_ON(cpu_buffer,
1456 !local_read(&cpu_buffer->committing)))
1457 return;
1458
1459 again:
1460 commits = local_read(&cpu_buffer->commits);
1461 /* synchronize with interrupts */
1462 barrier();
1463 if (local_read(&cpu_buffer->committing) == 1)
1464 rb_set_commit_to_write(cpu_buffer);
1465
1466 local_dec(&cpu_buffer->committing);
1467
1468 /* synchronize with interrupts */
1469 barrier();
1470
1471 /*
1472 * Need to account for interrupts coming in between the
1473 * updating of the commit page and the clearing of the
1474 * committing counter.
1475 */
1476 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1477 !local_read(&cpu_buffer->committing)) {
1478 local_inc(&cpu_buffer->committing);
1479 goto again;
1480 }
1481}
1482
7a8e76a3
SR
1483static struct ring_buffer_event *
1484rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 1485 unsigned long length)
7a8e76a3
SR
1486{
1487 struct ring_buffer_event *event;
168b6b1d 1488 u64 ts, delta = 0;
bf41a158 1489 int commit = 0;
818e3dd3 1490 int nr_loops = 0;
7a8e76a3 1491
fa743953
SR
1492 rb_start_commit(cpu_buffer);
1493
be957c44 1494 length = rb_calculate_event_length(length);
bf41a158 1495 again:
818e3dd3
SR
1496 /*
1497 * We allow for interrupts to reenter here and do a trace.
1498 * If one does, it will cause this original code to loop
1499 * back here. Even with heavy interrupts happening, this
1500 * should only happen a few times in a row. If this happens
1501 * 1000 times in a row, there must be either an interrupt
1502 * storm or we have something buggy.
1503 * Bail!
1504 */
3e89c7bb 1505 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 1506 goto out_fail;
818e3dd3 1507
88eb0125 1508 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1509
bf41a158
SR
1510 /*
1511 * Only the first commit can update the timestamp.
1512 * Yes there is a race here. If an interrupt comes in
1513 * just after the conditional and it traces too, then it
1514 * will also check the deltas. More than one timestamp may
1515 * also be made. But only the entry that did the actual
1516 * commit will be something other than zero.
1517 */
0f0c85fc
SR
1518 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1519 rb_page_write(cpu_buffer->tail_page) ==
1520 rb_commit_index(cpu_buffer))) {
168b6b1d 1521 u64 diff;
bf41a158 1522
168b6b1d 1523 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 1524
168b6b1d 1525 /* make sure this diff is calculated here */
bf41a158
SR
1526 barrier();
1527
1528 /* Did the write stamp get updated already? */
1529 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 1530 goto get_event;
bf41a158 1531
168b6b1d
SR
1532 delta = diff;
1533 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 1534
bf41a158 1535 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 1536 if (commit == -EBUSY)
fa743953 1537 goto out_fail;
bf41a158
SR
1538
1539 if (commit == -EAGAIN)
1540 goto again;
1541
1542 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1543 }
168b6b1d 1544 }
7a8e76a3 1545
168b6b1d 1546 get_event:
1cd8d735 1547 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 1548 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
1549 goto again;
1550
fa743953
SR
1551 if (!event)
1552 goto out_fail;
7a8e76a3 1553
fa743953 1554 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
1555 delta = 0;
1556
1557 event->time_delta = delta;
1558
1559 return event;
fa743953
SR
1560
1561 out_fail:
1562 rb_end_commit(cpu_buffer);
1563 return NULL;
7a8e76a3
SR
1564}
1565
1155de47
PM
1566#ifdef CONFIG_TRACING
1567
aa18efb2 1568#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1569
1570static int trace_recursive_lock(void)
1571{
aa18efb2 1572 current->trace_recursion++;
261842b7 1573
aa18efb2
SR
1574 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1575 return 0;
e057a5e5 1576
aa18efb2
SR
1577 /* Disable all tracing before we do anything else */
1578 tracing_off_permanent();
261842b7 1579
7d7d2b80 1580 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1581 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1582 current->trace_recursion,
1583 hardirq_count() >> HARDIRQ_SHIFT,
1584 softirq_count() >> SOFTIRQ_SHIFT,
1585 in_nmi());
261842b7 1586
aa18efb2
SR
1587 WARN_ON_ONCE(1);
1588 return -1;
261842b7
SR
1589}
1590
1591static void trace_recursive_unlock(void)
1592{
aa18efb2 1593 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1594
aa18efb2 1595 current->trace_recursion--;
261842b7
SR
1596}
1597
1155de47
PM
1598#else
1599
1600#define trace_recursive_lock() (0)
1601#define trace_recursive_unlock() do { } while (0)
1602
1603#endif
1604
bf41a158
SR
1605static DEFINE_PER_CPU(int, rb_need_resched);
1606
7a8e76a3
SR
1607/**
1608 * ring_buffer_lock_reserve - reserve a part of the buffer
1609 * @buffer: the ring buffer to reserve from
1610 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1611 *
1612 * Returns a reseverd event on the ring buffer to copy directly to.
1613 * The user of this interface will need to get the body to write into
1614 * and can use the ring_buffer_event_data() interface.
1615 *
1616 * The length is the length of the data needed, not the event length
1617 * which also includes the event header.
1618 *
1619 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1620 * If NULL is returned, then nothing has been allocated or locked.
1621 */
1622struct ring_buffer_event *
0a987751 1623ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1624{
1625 struct ring_buffer_per_cpu *cpu_buffer;
1626 struct ring_buffer_event *event;
bf41a158 1627 int cpu, resched;
7a8e76a3 1628
033601a3 1629 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1630 return NULL;
1631
7a8e76a3
SR
1632 if (atomic_read(&buffer->record_disabled))
1633 return NULL;
1634
bf41a158 1635 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1636 resched = ftrace_preempt_disable();
bf41a158 1637
261842b7
SR
1638 if (trace_recursive_lock())
1639 goto out_nocheck;
1640
7a8e76a3
SR
1641 cpu = raw_smp_processor_id();
1642
9e01c1b7 1643 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1644 goto out;
7a8e76a3
SR
1645
1646 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1647
1648 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1649 goto out;
7a8e76a3 1650
be957c44 1651 if (length > BUF_MAX_DATA_SIZE)
bf41a158 1652 goto out;
7a8e76a3 1653
1cd8d735 1654 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 1655 if (!event)
d769041f 1656 goto out;
7a8e76a3 1657
bf41a158
SR
1658 /*
1659 * Need to store resched state on this cpu.
1660 * Only the first needs to.
1661 */
1662
1663 if (preempt_count() == 1)
1664 per_cpu(rb_need_resched, cpu) = resched;
1665
7a8e76a3
SR
1666 return event;
1667
d769041f 1668 out:
261842b7
SR
1669 trace_recursive_unlock();
1670
1671 out_nocheck:
182e9f5f 1672 ftrace_preempt_enable(resched);
7a8e76a3
SR
1673 return NULL;
1674}
c4f50183 1675EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1676
1677static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1678 struct ring_buffer_event *event)
1679{
e4906eff 1680 local_inc(&cpu_buffer->entries);
bf41a158 1681
fa743953
SR
1682 /*
1683 * The event first in the commit queue updates the
1684 * time stamp.
1685 */
1686 if (rb_event_is_commit(cpu_buffer, event))
1687 cpu_buffer->write_stamp += event->time_delta;
bf41a158 1688
fa743953 1689 rb_end_commit(cpu_buffer);
7a8e76a3
SR
1690}
1691
1692/**
1693 * ring_buffer_unlock_commit - commit a reserved
1694 * @buffer: The buffer to commit to
1695 * @event: The event pointer to commit.
7a8e76a3
SR
1696 *
1697 * This commits the data to the ring buffer, and releases any locks held.
1698 *
1699 * Must be paired with ring_buffer_lock_reserve.
1700 */
1701int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1702 struct ring_buffer_event *event)
7a8e76a3
SR
1703{
1704 struct ring_buffer_per_cpu *cpu_buffer;
1705 int cpu = raw_smp_processor_id();
1706
1707 cpu_buffer = buffer->buffers[cpu];
1708
7a8e76a3
SR
1709 rb_commit(cpu_buffer, event);
1710
261842b7
SR
1711 trace_recursive_unlock();
1712
bf41a158
SR
1713 /*
1714 * Only the last preempt count needs to restore preemption.
1715 */
182e9f5f
SR
1716 if (preempt_count() == 1)
1717 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1718 else
bf41a158 1719 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1720
1721 return 0;
1722}
c4f50183 1723EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1724
f3b9aae1
FW
1725static inline void rb_event_discard(struct ring_buffer_event *event)
1726{
334d4169
LJ
1727 /* array[0] holds the actual length for the discarded event */
1728 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1729 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1730 /* time delta must be non zero */
1731 if (!event->time_delta)
1732 event->time_delta = 1;
1733}
1734
fa1b47dd
SR
1735/**
1736 * ring_buffer_event_discard - discard any event in the ring buffer
1737 * @event: the event to discard
1738 *
1739 * Sometimes a event that is in the ring buffer needs to be ignored.
1740 * This function lets the user discard an event in the ring buffer
1741 * and then that event will not be read later.
1742 *
1743 * Note, it is up to the user to be careful with this, and protect
1744 * against races. If the user discards an event that has been consumed
1745 * it is possible that it could corrupt the ring buffer.
1746 */
1747void ring_buffer_event_discard(struct ring_buffer_event *event)
1748{
f3b9aae1 1749 rb_event_discard(event);
fa1b47dd
SR
1750}
1751EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1752
1753/**
1754 * ring_buffer_commit_discard - discard an event that has not been committed
1755 * @buffer: the ring buffer
1756 * @event: non committed event to discard
1757 *
1758 * This is similar to ring_buffer_event_discard but must only be
1759 * performed on an event that has not been committed yet. The difference
1760 * is that this will also try to free the event from the ring buffer
1761 * if another event has not been added behind it.
1762 *
1763 * If another event has been added behind it, it will set the event
1764 * up as discarded, and perform the commit.
1765 *
1766 * If this function is called, do not call ring_buffer_unlock_commit on
1767 * the event.
1768 */
1769void ring_buffer_discard_commit(struct ring_buffer *buffer,
1770 struct ring_buffer_event *event)
1771{
1772 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
1773 int cpu;
1774
1775 /* The event is discarded regardless */
f3b9aae1 1776 rb_event_discard(event);
fa1b47dd 1777
fa743953
SR
1778 cpu = smp_processor_id();
1779 cpu_buffer = buffer->buffers[cpu];
1780
fa1b47dd
SR
1781 /*
1782 * This must only be called if the event has not been
1783 * committed yet. Thus we can assume that preemption
1784 * is still disabled.
1785 */
fa743953 1786 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 1787
0f2541d2 1788 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 1789 goto out;
fa1b47dd
SR
1790
1791 /*
1792 * The commit is still visible by the reader, so we
1793 * must increment entries.
1794 */
e4906eff 1795 local_inc(&cpu_buffer->entries);
fa1b47dd 1796 out:
fa743953 1797 rb_end_commit(cpu_buffer);
fa1b47dd 1798
f3b9aae1
FW
1799 trace_recursive_unlock();
1800
fa1b47dd
SR
1801 /*
1802 * Only the last preempt count needs to restore preemption.
1803 */
1804 if (preempt_count() == 1)
1805 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1806 else
1807 preempt_enable_no_resched_notrace();
1808
1809}
1810EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1811
7a8e76a3
SR
1812/**
1813 * ring_buffer_write - write data to the buffer without reserving
1814 * @buffer: The ring buffer to write to.
1815 * @length: The length of the data being written (excluding the event header)
1816 * @data: The data to write to the buffer.
1817 *
1818 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1819 * one function. If you already have the data to write to the buffer, it
1820 * may be easier to simply call this function.
1821 *
1822 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1823 * and not the length of the event which would hold the header.
1824 */
1825int ring_buffer_write(struct ring_buffer *buffer,
1826 unsigned long length,
1827 void *data)
1828{
1829 struct ring_buffer_per_cpu *cpu_buffer;
1830 struct ring_buffer_event *event;
7a8e76a3
SR
1831 void *body;
1832 int ret = -EBUSY;
bf41a158 1833 int cpu, resched;
7a8e76a3 1834
033601a3 1835 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1836 return -EBUSY;
1837
7a8e76a3
SR
1838 if (atomic_read(&buffer->record_disabled))
1839 return -EBUSY;
1840
182e9f5f 1841 resched = ftrace_preempt_disable();
bf41a158 1842
7a8e76a3
SR
1843 cpu = raw_smp_processor_id();
1844
9e01c1b7 1845 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1846 goto out;
7a8e76a3
SR
1847
1848 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1849
1850 if (atomic_read(&cpu_buffer->record_disabled))
1851 goto out;
1852
be957c44
SR
1853 if (length > BUF_MAX_DATA_SIZE)
1854 goto out;
1855
1856 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
1857 if (!event)
1858 goto out;
1859
1860 body = rb_event_data(event);
1861
1862 memcpy(body, data, length);
1863
1864 rb_commit(cpu_buffer, event);
1865
1866 ret = 0;
1867 out:
182e9f5f 1868 ftrace_preempt_enable(resched);
7a8e76a3
SR
1869
1870 return ret;
1871}
c4f50183 1872EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1873
34a148bf 1874static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1875{
1876 struct buffer_page *reader = cpu_buffer->reader_page;
1877 struct buffer_page *head = cpu_buffer->head_page;
1878 struct buffer_page *commit = cpu_buffer->commit_page;
1879
1880 return reader->read == rb_page_commit(reader) &&
1881 (commit == reader ||
1882 (commit == head &&
1883 head->read == rb_page_commit(commit)));
1884}
1885
7a8e76a3
SR
1886/**
1887 * ring_buffer_record_disable - stop all writes into the buffer
1888 * @buffer: The ring buffer to stop writes to.
1889 *
1890 * This prevents all writes to the buffer. Any attempt to write
1891 * to the buffer after this will fail and return NULL.
1892 *
1893 * The caller should call synchronize_sched() after this.
1894 */
1895void ring_buffer_record_disable(struct ring_buffer *buffer)
1896{
1897 atomic_inc(&buffer->record_disabled);
1898}
c4f50183 1899EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1900
1901/**
1902 * ring_buffer_record_enable - enable writes to the buffer
1903 * @buffer: The ring buffer to enable writes
1904 *
1905 * Note, multiple disables will need the same number of enables
1906 * to truely enable the writing (much like preempt_disable).
1907 */
1908void ring_buffer_record_enable(struct ring_buffer *buffer)
1909{
1910 atomic_dec(&buffer->record_disabled);
1911}
c4f50183 1912EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1913
1914/**
1915 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1916 * @buffer: The ring buffer to stop writes to.
1917 * @cpu: The CPU buffer to stop
1918 *
1919 * This prevents all writes to the buffer. Any attempt to write
1920 * to the buffer after this will fail and return NULL.
1921 *
1922 * The caller should call synchronize_sched() after this.
1923 */
1924void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1925{
1926 struct ring_buffer_per_cpu *cpu_buffer;
1927
9e01c1b7 1928 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1929 return;
7a8e76a3
SR
1930
1931 cpu_buffer = buffer->buffers[cpu];
1932 atomic_inc(&cpu_buffer->record_disabled);
1933}
c4f50183 1934EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1935
1936/**
1937 * ring_buffer_record_enable_cpu - enable writes to the buffer
1938 * @buffer: The ring buffer to enable writes
1939 * @cpu: The CPU to enable.
1940 *
1941 * Note, multiple disables will need the same number of enables
1942 * to truely enable the writing (much like preempt_disable).
1943 */
1944void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1945{
1946 struct ring_buffer_per_cpu *cpu_buffer;
1947
9e01c1b7 1948 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1949 return;
7a8e76a3
SR
1950
1951 cpu_buffer = buffer->buffers[cpu];
1952 atomic_dec(&cpu_buffer->record_disabled);
1953}
c4f50183 1954EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1955
1956/**
1957 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1958 * @buffer: The ring buffer
1959 * @cpu: The per CPU buffer to get the entries from.
1960 */
1961unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1962{
1963 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1964 unsigned long ret;
7a8e76a3 1965
9e01c1b7 1966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1967 return 0;
7a8e76a3
SR
1968
1969 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1970 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1971 - cpu_buffer->read;
554f786e
SR
1972
1973 return ret;
7a8e76a3 1974}
c4f50183 1975EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1976
1977/**
1978 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1979 * @buffer: The ring buffer
1980 * @cpu: The per CPU buffer to get the number of overruns from
1981 */
1982unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1983{
1984 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1985 unsigned long ret;
7a8e76a3 1986
9e01c1b7 1987 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1988 return 0;
7a8e76a3
SR
1989
1990 cpu_buffer = buffer->buffers[cpu];
554f786e 1991 ret = cpu_buffer->overrun;
554f786e
SR
1992
1993 return ret;
7a8e76a3 1994}
c4f50183 1995EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1996
f0d2c681
SR
1997/**
1998 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1999 * @buffer: The ring buffer
2000 * @cpu: The per CPU buffer to get the number of overruns from
2001 */
2002unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2003{
2004 struct ring_buffer_per_cpu *cpu_buffer;
2005 unsigned long ret;
2006
2007 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2008 return 0;
2009
2010 cpu_buffer = buffer->buffers[cpu];
2011 ret = cpu_buffer->nmi_dropped;
2012
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2016
2017/**
2018 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2019 * @buffer: The ring buffer
2020 * @cpu: The per CPU buffer to get the number of overruns from
2021 */
2022unsigned long
2023ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2024{
2025 struct ring_buffer_per_cpu *cpu_buffer;
2026 unsigned long ret;
2027
2028 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2029 return 0;
2030
2031 cpu_buffer = buffer->buffers[cpu];
2032 ret = cpu_buffer->commit_overrun;
2033
2034 return ret;
2035}
2036EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2037
7a8e76a3
SR
2038/**
2039 * ring_buffer_entries - get the number of entries in a buffer
2040 * @buffer: The ring buffer
2041 *
2042 * Returns the total number of entries in the ring buffer
2043 * (all CPU entries)
2044 */
2045unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2046{
2047 struct ring_buffer_per_cpu *cpu_buffer;
2048 unsigned long entries = 0;
2049 int cpu;
2050
2051 /* if you care about this being correct, lock the buffer */
2052 for_each_buffer_cpu(buffer, cpu) {
2053 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
2054 entries += (local_read(&cpu_buffer->entries) -
2055 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
2056 }
2057
2058 return entries;
2059}
c4f50183 2060EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2061
2062/**
2063 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2064 * @buffer: The ring buffer
2065 *
2066 * Returns the total number of overruns in the ring buffer
2067 * (all CPU entries)
2068 */
2069unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2070{
2071 struct ring_buffer_per_cpu *cpu_buffer;
2072 unsigned long overruns = 0;
2073 int cpu;
2074
2075 /* if you care about this being correct, lock the buffer */
2076 for_each_buffer_cpu(buffer, cpu) {
2077 cpu_buffer = buffer->buffers[cpu];
2078 overruns += cpu_buffer->overrun;
2079 }
2080
2081 return overruns;
2082}
c4f50183 2083EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2084
642edba5 2085static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2086{
2087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2088
d769041f
SR
2089 /* Iterator usage is expected to have record disabled */
2090 if (list_empty(&cpu_buffer->reader_page->list)) {
2091 iter->head_page = cpu_buffer->head_page;
6f807acd 2092 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2093 } else {
2094 iter->head_page = cpu_buffer->reader_page;
6f807acd 2095 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2096 }
2097 if (iter->head)
2098 iter->read_stamp = cpu_buffer->read_stamp;
2099 else
abc9b56d 2100 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2101}
f83c9d0f 2102
642edba5
SR
2103/**
2104 * ring_buffer_iter_reset - reset an iterator
2105 * @iter: The iterator to reset
2106 *
2107 * Resets the iterator, so that it will start from the beginning
2108 * again.
2109 */
2110void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2111{
554f786e 2112 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2113 unsigned long flags;
2114
554f786e
SR
2115 if (!iter)
2116 return;
2117
2118 cpu_buffer = iter->cpu_buffer;
2119
642edba5
SR
2120 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2121 rb_iter_reset(iter);
f83c9d0f 2122 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2123}
c4f50183 2124EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2125
2126/**
2127 * ring_buffer_iter_empty - check if an iterator has no more to read
2128 * @iter: The iterator to check
2129 */
2130int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2131{
2132 struct ring_buffer_per_cpu *cpu_buffer;
2133
2134 cpu_buffer = iter->cpu_buffer;
2135
bf41a158
SR
2136 return iter->head_page == cpu_buffer->commit_page &&
2137 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2138}
c4f50183 2139EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2140
2141static void
2142rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2143 struct ring_buffer_event *event)
2144{
2145 u64 delta;
2146
334d4169 2147 switch (event->type_len) {
7a8e76a3
SR
2148 case RINGBUF_TYPE_PADDING:
2149 return;
2150
2151 case RINGBUF_TYPE_TIME_EXTEND:
2152 delta = event->array[0];
2153 delta <<= TS_SHIFT;
2154 delta += event->time_delta;
2155 cpu_buffer->read_stamp += delta;
2156 return;
2157
2158 case RINGBUF_TYPE_TIME_STAMP:
2159 /* FIXME: not implemented */
2160 return;
2161
2162 case RINGBUF_TYPE_DATA:
2163 cpu_buffer->read_stamp += event->time_delta;
2164 return;
2165
2166 default:
2167 BUG();
2168 }
2169 return;
2170}
2171
2172static void
2173rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2174 struct ring_buffer_event *event)
2175{
2176 u64 delta;
2177
334d4169 2178 switch (event->type_len) {
7a8e76a3
SR
2179 case RINGBUF_TYPE_PADDING:
2180 return;
2181
2182 case RINGBUF_TYPE_TIME_EXTEND:
2183 delta = event->array[0];
2184 delta <<= TS_SHIFT;
2185 delta += event->time_delta;
2186 iter->read_stamp += delta;
2187 return;
2188
2189 case RINGBUF_TYPE_TIME_STAMP:
2190 /* FIXME: not implemented */
2191 return;
2192
2193 case RINGBUF_TYPE_DATA:
2194 iter->read_stamp += event->time_delta;
2195 return;
2196
2197 default:
2198 BUG();
2199 }
2200 return;
2201}
2202
d769041f
SR
2203static struct buffer_page *
2204rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2205{
d769041f
SR
2206 struct buffer_page *reader = NULL;
2207 unsigned long flags;
818e3dd3 2208 int nr_loops = 0;
d769041f 2209
3e03fb7f
SR
2210 local_irq_save(flags);
2211 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2212
2213 again:
818e3dd3
SR
2214 /*
2215 * This should normally only loop twice. But because the
2216 * start of the reader inserts an empty page, it causes
2217 * a case where we will loop three times. There should be no
2218 * reason to loop four times (that I know of).
2219 */
3e89c7bb 2220 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2221 reader = NULL;
2222 goto out;
2223 }
2224
d769041f
SR
2225 reader = cpu_buffer->reader_page;
2226
2227 /* If there's more to read, return this page */
bf41a158 2228 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2229 goto out;
2230
2231 /* Never should we have an index greater than the size */
3e89c7bb
SR
2232 if (RB_WARN_ON(cpu_buffer,
2233 cpu_buffer->reader_page->read > rb_page_size(reader)))
2234 goto out;
d769041f
SR
2235
2236 /* check if we caught up to the tail */
2237 reader = NULL;
bf41a158 2238 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2239 goto out;
7a8e76a3
SR
2240
2241 /*
d769041f
SR
2242 * Splice the empty reader page into the list around the head.
2243 * Reset the reader page to size zero.
7a8e76a3 2244 */
7a8e76a3 2245
d769041f
SR
2246 reader = cpu_buffer->head_page;
2247 cpu_buffer->reader_page->list.next = reader->list.next;
2248 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2249
2250 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2251 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2252 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2253
d769041f
SR
2254 /* Make the reader page now replace the head */
2255 reader->list.prev->next = &cpu_buffer->reader_page->list;
2256 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2257
2258 /*
d769041f
SR
2259 * If the tail is on the reader, then we must set the head
2260 * to the inserted page, otherwise we set it one before.
7a8e76a3 2261 */
d769041f 2262 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2263
bf41a158 2264 if (cpu_buffer->commit_page != reader)
d769041f
SR
2265 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2266
2267 /* Finally update the reader page to the new head */
2268 cpu_buffer->reader_page = reader;
2269 rb_reset_reader_page(cpu_buffer);
2270
2271 goto again;
2272
2273 out:
3e03fb7f
SR
2274 __raw_spin_unlock(&cpu_buffer->lock);
2275 local_irq_restore(flags);
d769041f
SR
2276
2277 return reader;
2278}
2279
2280static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2281{
2282 struct ring_buffer_event *event;
2283 struct buffer_page *reader;
2284 unsigned length;
2285
2286 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2287
d769041f 2288 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2289 if (RB_WARN_ON(cpu_buffer, !reader))
2290 return;
7a8e76a3 2291
d769041f
SR
2292 event = rb_reader_event(cpu_buffer);
2293
334d4169
LJ
2294 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2295 || rb_discarded_event(event))
e4906eff 2296 cpu_buffer->read++;
d769041f
SR
2297
2298 rb_update_read_stamp(cpu_buffer, event);
2299
2300 length = rb_event_length(event);
6f807acd 2301 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2302}
2303
2304static void rb_advance_iter(struct ring_buffer_iter *iter)
2305{
2306 struct ring_buffer *buffer;
2307 struct ring_buffer_per_cpu *cpu_buffer;
2308 struct ring_buffer_event *event;
2309 unsigned length;
2310
2311 cpu_buffer = iter->cpu_buffer;
2312 buffer = cpu_buffer->buffer;
2313
2314 /*
2315 * Check if we are at the end of the buffer.
2316 */
bf41a158 2317 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2318 /* discarded commits can make the page empty */
2319 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2320 return;
d769041f 2321 rb_inc_iter(iter);
7a8e76a3
SR
2322 return;
2323 }
2324
2325 event = rb_iter_head_event(iter);
2326
2327 length = rb_event_length(event);
2328
2329 /*
2330 * This should not be called to advance the header if we are
2331 * at the tail of the buffer.
2332 */
3e89c7bb 2333 if (RB_WARN_ON(cpu_buffer,
f536aafc 2334 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2335 (iter->head + length > rb_commit_index(cpu_buffer))))
2336 return;
7a8e76a3
SR
2337
2338 rb_update_iter_read_stamp(iter, event);
2339
2340 iter->head += length;
2341
2342 /* check for end of page padding */
bf41a158
SR
2343 if ((iter->head >= rb_page_size(iter->head_page)) &&
2344 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2345 rb_advance_iter(iter);
2346}
2347
f83c9d0f
SR
2348static struct ring_buffer_event *
2349rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2350{
2351 struct ring_buffer_per_cpu *cpu_buffer;
2352 struct ring_buffer_event *event;
d769041f 2353 struct buffer_page *reader;
818e3dd3 2354 int nr_loops = 0;
7a8e76a3 2355
7a8e76a3
SR
2356 cpu_buffer = buffer->buffers[cpu];
2357
2358 again:
818e3dd3
SR
2359 /*
2360 * We repeat when a timestamp is encountered. It is possible
2361 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
2362 * as one timestamp is about to be written, or from discarded
2363 * commits. The most that we can have is the number on a single page.
818e3dd3 2364 */
ea05b57c 2365 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2366 return NULL;
818e3dd3 2367
d769041f
SR
2368 reader = rb_get_reader_page(cpu_buffer);
2369 if (!reader)
7a8e76a3
SR
2370 return NULL;
2371
d769041f 2372 event = rb_reader_event(cpu_buffer);
7a8e76a3 2373
334d4169 2374 switch (event->type_len) {
7a8e76a3 2375 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2376 if (rb_null_event(event))
2377 RB_WARN_ON(cpu_buffer, 1);
2378 /*
2379 * Because the writer could be discarding every
2380 * event it creates (which would probably be bad)
2381 * if we were to go back to "again" then we may never
2382 * catch up, and will trigger the warn on, or lock
2383 * the box. Return the padding, and we will release
2384 * the current locks, and try again.
2385 */
2d622719 2386 return event;
7a8e76a3
SR
2387
2388 case RINGBUF_TYPE_TIME_EXTEND:
2389 /* Internal data, OK to advance */
d769041f 2390 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2391 goto again;
2392
2393 case RINGBUF_TYPE_TIME_STAMP:
2394 /* FIXME: not implemented */
d769041f 2395 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2396 goto again;
2397
2398 case RINGBUF_TYPE_DATA:
2399 if (ts) {
2400 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2401 ring_buffer_normalize_time_stamp(buffer,
2402 cpu_buffer->cpu, ts);
7a8e76a3
SR
2403 }
2404 return event;
2405
2406 default:
2407 BUG();
2408 }
2409
2410 return NULL;
2411}
c4f50183 2412EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2413
f83c9d0f
SR
2414static struct ring_buffer_event *
2415rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2416{
2417 struct ring_buffer *buffer;
2418 struct ring_buffer_per_cpu *cpu_buffer;
2419 struct ring_buffer_event *event;
818e3dd3 2420 int nr_loops = 0;
7a8e76a3
SR
2421
2422 if (ring_buffer_iter_empty(iter))
2423 return NULL;
2424
2425 cpu_buffer = iter->cpu_buffer;
2426 buffer = cpu_buffer->buffer;
2427
2428 again:
818e3dd3 2429 /*
ea05b57c
SR
2430 * We repeat when a timestamp is encountered.
2431 * We can get multiple timestamps by nested interrupts or also
2432 * if filtering is on (discarding commits). Since discarding
2433 * commits can be frequent we can get a lot of timestamps.
2434 * But we limit them by not adding timestamps if they begin
2435 * at the start of a page.
818e3dd3 2436 */
ea05b57c 2437 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2438 return NULL;
818e3dd3 2439
7a8e76a3
SR
2440 if (rb_per_cpu_empty(cpu_buffer))
2441 return NULL;
2442
2443 event = rb_iter_head_event(iter);
2444
334d4169 2445 switch (event->type_len) {
7a8e76a3 2446 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2447 if (rb_null_event(event)) {
2448 rb_inc_iter(iter);
2449 goto again;
2450 }
2451 rb_advance_iter(iter);
2452 return event;
7a8e76a3
SR
2453
2454 case RINGBUF_TYPE_TIME_EXTEND:
2455 /* Internal data, OK to advance */
2456 rb_advance_iter(iter);
2457 goto again;
2458
2459 case RINGBUF_TYPE_TIME_STAMP:
2460 /* FIXME: not implemented */
2461 rb_advance_iter(iter);
2462 goto again;
2463
2464 case RINGBUF_TYPE_DATA:
2465 if (ts) {
2466 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2467 ring_buffer_normalize_time_stamp(buffer,
2468 cpu_buffer->cpu, ts);
7a8e76a3
SR
2469 }
2470 return event;
2471
2472 default:
2473 BUG();
2474 }
2475
2476 return NULL;
2477}
c4f50183 2478EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2479
8d707e8e
SR
2480static inline int rb_ok_to_lock(void)
2481{
2482 /*
2483 * If an NMI die dumps out the content of the ring buffer
2484 * do not grab locks. We also permanently disable the ring
2485 * buffer too. A one time deal is all you get from reading
2486 * the ring buffer from an NMI.
2487 */
464e85eb 2488 if (likely(!in_nmi()))
8d707e8e
SR
2489 return 1;
2490
2491 tracing_off_permanent();
2492 return 0;
2493}
2494
f83c9d0f
SR
2495/**
2496 * ring_buffer_peek - peek at the next event to be read
2497 * @buffer: The ring buffer to read
2498 * @cpu: The cpu to peak at
2499 * @ts: The timestamp counter of this event.
2500 *
2501 * This will return the event that will be read next, but does
2502 * not consume the data.
2503 */
2504struct ring_buffer_event *
2505ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2506{
2507 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2508 struct ring_buffer_event *event;
f83c9d0f 2509 unsigned long flags;
8d707e8e 2510 int dolock;
f83c9d0f 2511
554f786e 2512 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2513 return NULL;
554f786e 2514
8d707e8e 2515 dolock = rb_ok_to_lock();
2d622719 2516 again:
8d707e8e
SR
2517 local_irq_save(flags);
2518 if (dolock)
2519 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 2520 event = rb_buffer_peek(buffer, cpu, ts);
469535a5
RR
2521 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2522 rb_advance_reader(cpu_buffer);
8d707e8e
SR
2523 if (dolock)
2524 spin_unlock(&cpu_buffer->reader_lock);
2525 local_irq_restore(flags);
f83c9d0f 2526
334d4169 2527 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2528 cpu_relax();
2529 goto again;
2530 }
2531
f83c9d0f
SR
2532 return event;
2533}
2534
2535/**
2536 * ring_buffer_iter_peek - peek at the next event to be read
2537 * @iter: The ring buffer iterator
2538 * @ts: The timestamp counter of this event.
2539 *
2540 * This will return the event that will be read next, but does
2541 * not increment the iterator.
2542 */
2543struct ring_buffer_event *
2544ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2545{
2546 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2547 struct ring_buffer_event *event;
2548 unsigned long flags;
2549
2d622719 2550 again:
f83c9d0f
SR
2551 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2552 event = rb_iter_peek(iter, ts);
2553 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2554
334d4169 2555 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2556 cpu_relax();
2557 goto again;
2558 }
2559
f83c9d0f
SR
2560 return event;
2561}
2562
7a8e76a3
SR
2563/**
2564 * ring_buffer_consume - return an event and consume it
2565 * @buffer: The ring buffer to get the next event from
2566 *
2567 * Returns the next event in the ring buffer, and that event is consumed.
2568 * Meaning, that sequential reads will keep returning a different event,
2569 * and eventually empty the ring buffer if the producer is slower.
2570 */
2571struct ring_buffer_event *
2572ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2573{
554f786e
SR
2574 struct ring_buffer_per_cpu *cpu_buffer;
2575 struct ring_buffer_event *event = NULL;
f83c9d0f 2576 unsigned long flags;
8d707e8e
SR
2577 int dolock;
2578
2579 dolock = rb_ok_to_lock();
7a8e76a3 2580
2d622719 2581 again:
554f786e
SR
2582 /* might be called in atomic */
2583 preempt_disable();
2584
9e01c1b7 2585 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2586 goto out;
7a8e76a3 2587
554f786e 2588 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
2589 local_irq_save(flags);
2590 if (dolock)
2591 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f
SR
2592
2593 event = rb_buffer_peek(buffer, cpu, ts);
469535a5
RR
2594 if (event)
2595 rb_advance_reader(cpu_buffer);
7a8e76a3 2596
8d707e8e
SR
2597 if (dolock)
2598 spin_unlock(&cpu_buffer->reader_lock);
2599 local_irq_restore(flags);
f83c9d0f 2600
554f786e
SR
2601 out:
2602 preempt_enable();
2603
334d4169 2604 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2605 cpu_relax();
2606 goto again;
2607 }
2608
7a8e76a3
SR
2609 return event;
2610}
c4f50183 2611EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2612
2613/**
2614 * ring_buffer_read_start - start a non consuming read of the buffer
2615 * @buffer: The ring buffer to read from
2616 * @cpu: The cpu buffer to iterate over
2617 *
2618 * This starts up an iteration through the buffer. It also disables
2619 * the recording to the buffer until the reading is finished.
2620 * This prevents the reading from being corrupted. This is not
2621 * a consuming read, so a producer is not expected.
2622 *
2623 * Must be paired with ring_buffer_finish.
2624 */
2625struct ring_buffer_iter *
2626ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2627{
2628 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2629 struct ring_buffer_iter *iter;
d769041f 2630 unsigned long flags;
7a8e76a3 2631
9e01c1b7 2632 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2633 return NULL;
7a8e76a3
SR
2634
2635 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2636 if (!iter)
8aabee57 2637 return NULL;
7a8e76a3
SR
2638
2639 cpu_buffer = buffer->buffers[cpu];
2640
2641 iter->cpu_buffer = cpu_buffer;
2642
2643 atomic_inc(&cpu_buffer->record_disabled);
2644 synchronize_sched();
2645
f83c9d0f 2646 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2647 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2648 rb_iter_reset(iter);
3e03fb7f 2649 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2650 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2651
2652 return iter;
2653}
c4f50183 2654EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2655
2656/**
2657 * ring_buffer_finish - finish reading the iterator of the buffer
2658 * @iter: The iterator retrieved by ring_buffer_start
2659 *
2660 * This re-enables the recording to the buffer, and frees the
2661 * iterator.
2662 */
2663void
2664ring_buffer_read_finish(struct ring_buffer_iter *iter)
2665{
2666 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2667
2668 atomic_dec(&cpu_buffer->record_disabled);
2669 kfree(iter);
2670}
c4f50183 2671EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2672
2673/**
2674 * ring_buffer_read - read the next item in the ring buffer by the iterator
2675 * @iter: The ring buffer iterator
2676 * @ts: The time stamp of the event read.
2677 *
2678 * This reads the next event in the ring buffer and increments the iterator.
2679 */
2680struct ring_buffer_event *
2681ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2682{
2683 struct ring_buffer_event *event;
f83c9d0f
SR
2684 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2685 unsigned long flags;
7a8e76a3 2686
2d622719 2687 again:
f83c9d0f
SR
2688 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2689 event = rb_iter_peek(iter, ts);
7a8e76a3 2690 if (!event)
f83c9d0f 2691 goto out;
7a8e76a3
SR
2692
2693 rb_advance_iter(iter);
f83c9d0f
SR
2694 out:
2695 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2696
334d4169 2697 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2698 cpu_relax();
2699 goto again;
2700 }
2701
7a8e76a3
SR
2702 return event;
2703}
c4f50183 2704EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2705
2706/**
2707 * ring_buffer_size - return the size of the ring buffer (in bytes)
2708 * @buffer: The ring buffer.
2709 */
2710unsigned long ring_buffer_size(struct ring_buffer *buffer)
2711{
2712 return BUF_PAGE_SIZE * buffer->pages;
2713}
c4f50183 2714EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2715
2716static void
2717rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2718{
2719 cpu_buffer->head_page
2720 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2721 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2722 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2723 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2724
6f807acd 2725 cpu_buffer->head_page->read = 0;
bf41a158
SR
2726
2727 cpu_buffer->tail_page = cpu_buffer->head_page;
2728 cpu_buffer->commit_page = cpu_buffer->head_page;
2729
2730 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2731 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2732 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2733 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2734 cpu_buffer->reader_page->read = 0;
7a8e76a3 2735
f0d2c681
SR
2736 cpu_buffer->nmi_dropped = 0;
2737 cpu_buffer->commit_overrun = 0;
7a8e76a3 2738 cpu_buffer->overrun = 0;
e4906eff
SR
2739 cpu_buffer->read = 0;
2740 local_set(&cpu_buffer->entries, 0);
fa743953
SR
2741 local_set(&cpu_buffer->committing, 0);
2742 local_set(&cpu_buffer->commits, 0);
69507c06
SR
2743
2744 cpu_buffer->write_stamp = 0;
2745 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2746}
2747
2748/**
2749 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2750 * @buffer: The ring buffer to reset a per cpu buffer of
2751 * @cpu: The CPU buffer to be reset
2752 */
2753void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2754{
2755 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2756 unsigned long flags;
2757
9e01c1b7 2758 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2759 return;
7a8e76a3 2760
41ede23e
SR
2761 atomic_inc(&cpu_buffer->record_disabled);
2762
f83c9d0f
SR
2763 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2764
3e03fb7f 2765 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2766
2767 rb_reset_cpu(cpu_buffer);
2768
3e03fb7f 2769 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2770
2771 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2772
2773 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2774}
c4f50183 2775EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2776
2777/**
2778 * ring_buffer_reset - reset a ring buffer
2779 * @buffer: The ring buffer to reset all cpu buffers
2780 */
2781void ring_buffer_reset(struct ring_buffer *buffer)
2782{
7a8e76a3
SR
2783 int cpu;
2784
7a8e76a3 2785 for_each_buffer_cpu(buffer, cpu)
d769041f 2786 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2787}
c4f50183 2788EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2789
2790/**
2791 * rind_buffer_empty - is the ring buffer empty?
2792 * @buffer: The ring buffer to test
2793 */
2794int ring_buffer_empty(struct ring_buffer *buffer)
2795{
2796 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 2797 unsigned long flags;
8d707e8e 2798 int dolock;
7a8e76a3 2799 int cpu;
d4788207 2800 int ret;
7a8e76a3 2801
8d707e8e 2802 dolock = rb_ok_to_lock();
7a8e76a3
SR
2803
2804 /* yes this is racy, but if you don't like the race, lock the buffer */
2805 for_each_buffer_cpu(buffer, cpu) {
2806 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
2807 local_irq_save(flags);
2808 if (dolock)
2809 spin_lock(&cpu_buffer->reader_lock);
d4788207 2810 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
2811 if (dolock)
2812 spin_unlock(&cpu_buffer->reader_lock);
2813 local_irq_restore(flags);
2814
d4788207 2815 if (!ret)
7a8e76a3
SR
2816 return 0;
2817 }
554f786e 2818
7a8e76a3
SR
2819 return 1;
2820}
c4f50183 2821EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2822
2823/**
2824 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2825 * @buffer: The ring buffer
2826 * @cpu: The CPU buffer to test
2827 */
2828int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2829{
2830 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 2831 unsigned long flags;
8d707e8e 2832 int dolock;
8aabee57 2833 int ret;
7a8e76a3 2834
9e01c1b7 2835 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2836 return 1;
7a8e76a3 2837
8d707e8e
SR
2838 dolock = rb_ok_to_lock();
2839
7a8e76a3 2840 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
2841 local_irq_save(flags);
2842 if (dolock)
2843 spin_lock(&cpu_buffer->reader_lock);
554f786e 2844 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
2845 if (dolock)
2846 spin_unlock(&cpu_buffer->reader_lock);
2847 local_irq_restore(flags);
554f786e
SR
2848
2849 return ret;
7a8e76a3 2850}
c4f50183 2851EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2852
2853/**
2854 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2855 * @buffer_a: One buffer to swap with
2856 * @buffer_b: The other buffer to swap with
2857 *
2858 * This function is useful for tracers that want to take a "snapshot"
2859 * of a CPU buffer and has another back up buffer lying around.
2860 * it is expected that the tracer handles the cpu buffer not being
2861 * used at the moment.
2862 */
2863int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2864 struct ring_buffer *buffer_b, int cpu)
2865{
2866 struct ring_buffer_per_cpu *cpu_buffer_a;
2867 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2868 int ret = -EINVAL;
2869
9e01c1b7
RR
2870 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2871 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2872 goto out;
7a8e76a3
SR
2873
2874 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2875 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2876 goto out;
2877
2878 ret = -EAGAIN;
7a8e76a3 2879
97b17efe 2880 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2881 goto out;
97b17efe
SR
2882
2883 if (atomic_read(&buffer_a->record_disabled))
554f786e 2884 goto out;
97b17efe
SR
2885
2886 if (atomic_read(&buffer_b->record_disabled))
554f786e 2887 goto out;
97b17efe 2888
7a8e76a3
SR
2889 cpu_buffer_a = buffer_a->buffers[cpu];
2890 cpu_buffer_b = buffer_b->buffers[cpu];
2891
97b17efe 2892 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2893 goto out;
97b17efe
SR
2894
2895 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2896 goto out;
97b17efe 2897
7a8e76a3
SR
2898 /*
2899 * We can't do a synchronize_sched here because this
2900 * function can be called in atomic context.
2901 * Normally this will be called from the same CPU as cpu.
2902 * If not it's up to the caller to protect this.
2903 */
2904 atomic_inc(&cpu_buffer_a->record_disabled);
2905 atomic_inc(&cpu_buffer_b->record_disabled);
2906
2907 buffer_a->buffers[cpu] = cpu_buffer_b;
2908 buffer_b->buffers[cpu] = cpu_buffer_a;
2909
2910 cpu_buffer_b->buffer = buffer_a;
2911 cpu_buffer_a->buffer = buffer_b;
2912
2913 atomic_dec(&cpu_buffer_a->record_disabled);
2914 atomic_dec(&cpu_buffer_b->record_disabled);
2915
554f786e
SR
2916 ret = 0;
2917out:
554f786e 2918 return ret;
7a8e76a3 2919}
c4f50183 2920EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2921
8789a9e7
SR
2922/**
2923 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2924 * @buffer: the buffer to allocate for.
2925 *
2926 * This function is used in conjunction with ring_buffer_read_page.
2927 * When reading a full page from the ring buffer, these functions
2928 * can be used to speed up the process. The calling function should
2929 * allocate a few pages first with this function. Then when it
2930 * needs to get pages from the ring buffer, it passes the result
2931 * of this function into ring_buffer_read_page, which will swap
2932 * the page that was allocated, with the read page of the buffer.
2933 *
2934 * Returns:
2935 * The page allocated, or NULL on error.
2936 */
2937void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2938{
044fa782 2939 struct buffer_data_page *bpage;
ef7a4a16 2940 unsigned long addr;
8789a9e7
SR
2941
2942 addr = __get_free_page(GFP_KERNEL);
2943 if (!addr)
2944 return NULL;
2945
044fa782 2946 bpage = (void *)addr;
8789a9e7 2947
ef7a4a16
SR
2948 rb_init_page(bpage);
2949
044fa782 2950 return bpage;
8789a9e7 2951}
d6ce96da 2952EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2953
2954/**
2955 * ring_buffer_free_read_page - free an allocated read page
2956 * @buffer: the buffer the page was allocate for
2957 * @data: the page to free
2958 *
2959 * Free a page allocated from ring_buffer_alloc_read_page.
2960 */
2961void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2962{
2963 free_page((unsigned long)data);
2964}
d6ce96da 2965EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2966
2967/**
2968 * ring_buffer_read_page - extract a page from the ring buffer
2969 * @buffer: buffer to extract from
2970 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2971 * @len: amount to extract
8789a9e7
SR
2972 * @cpu: the cpu of the buffer to extract
2973 * @full: should the extraction only happen when the page is full.
2974 *
2975 * This function will pull out a page from the ring buffer and consume it.
2976 * @data_page must be the address of the variable that was returned
2977 * from ring_buffer_alloc_read_page. This is because the page might be used
2978 * to swap with a page in the ring buffer.
2979 *
2980 * for example:
b85fa01e 2981 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2982 * if (!rpage)
2983 * return error;
ef7a4a16 2984 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2985 * if (ret >= 0)
2986 * process_page(rpage, ret);
8789a9e7
SR
2987 *
2988 * When @full is set, the function will not return true unless
2989 * the writer is off the reader page.
2990 *
2991 * Note: it is up to the calling functions to handle sleeps and wakeups.
2992 * The ring buffer can be used anywhere in the kernel and can not
2993 * blindly call wake_up. The layer that uses the ring buffer must be
2994 * responsible for that.
2995 *
2996 * Returns:
667d2412
LJ
2997 * >=0 if data has been transferred, returns the offset of consumed data.
2998 * <0 if no data has been transferred.
8789a9e7
SR
2999 */
3000int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3001 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3002{
3003 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3004 struct ring_buffer_event *event;
044fa782 3005 struct buffer_data_page *bpage;
ef7a4a16 3006 struct buffer_page *reader;
8789a9e7 3007 unsigned long flags;
ef7a4a16 3008 unsigned int commit;
667d2412 3009 unsigned int read;
4f3640f8 3010 u64 save_timestamp;
667d2412 3011 int ret = -1;
8789a9e7 3012
554f786e
SR
3013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014 goto out;
3015
474d32b6
SR
3016 /*
3017 * If len is not big enough to hold the page header, then
3018 * we can not copy anything.
3019 */
3020 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3021 goto out;
474d32b6
SR
3022
3023 len -= BUF_PAGE_HDR_SIZE;
3024
8789a9e7 3025 if (!data_page)
554f786e 3026 goto out;
8789a9e7 3027
044fa782
SR
3028 bpage = *data_page;
3029 if (!bpage)
554f786e 3030 goto out;
8789a9e7
SR
3031
3032 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3033
ef7a4a16
SR
3034 reader = rb_get_reader_page(cpu_buffer);
3035 if (!reader)
554f786e 3036 goto out_unlock;
8789a9e7 3037
ef7a4a16
SR
3038 event = rb_reader_event(cpu_buffer);
3039
3040 read = reader->read;
3041 commit = rb_page_commit(reader);
667d2412 3042
8789a9e7 3043 /*
474d32b6
SR
3044 * If this page has been partially read or
3045 * if len is not big enough to read the rest of the page or
3046 * a writer is still on the page, then
3047 * we must copy the data from the page to the buffer.
3048 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3049 */
474d32b6 3050 if (read || (len < (commit - read)) ||
ef7a4a16 3051 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3052 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3053 unsigned int rpos = read;
3054 unsigned int pos = 0;
ef7a4a16 3055 unsigned int size;
8789a9e7
SR
3056
3057 if (full)
554f786e 3058 goto out_unlock;
8789a9e7 3059
ef7a4a16
SR
3060 if (len > (commit - read))
3061 len = (commit - read);
3062
3063 size = rb_event_length(event);
3064
3065 if (len < size)
554f786e 3066 goto out_unlock;
ef7a4a16 3067
4f3640f8
SR
3068 /* save the current timestamp, since the user will need it */
3069 save_timestamp = cpu_buffer->read_stamp;
3070
ef7a4a16
SR
3071 /* Need to copy one event at a time */
3072 do {
474d32b6 3073 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3074
3075 len -= size;
3076
3077 rb_advance_reader(cpu_buffer);
474d32b6
SR
3078 rpos = reader->read;
3079 pos += size;
ef7a4a16
SR
3080
3081 event = rb_reader_event(cpu_buffer);
3082 size = rb_event_length(event);
3083 } while (len > size);
667d2412
LJ
3084
3085 /* update bpage */
ef7a4a16 3086 local_set(&bpage->commit, pos);
4f3640f8 3087 bpage->time_stamp = save_timestamp;
ef7a4a16 3088
474d32b6
SR
3089 /* we copied everything to the beginning */
3090 read = 0;
8789a9e7 3091 } else {
afbab76a
SR
3092 /* update the entry counter */
3093 cpu_buffer->read += local_read(&reader->entries);
3094
8789a9e7 3095 /* swap the pages */
044fa782 3096 rb_init_page(bpage);
ef7a4a16
SR
3097 bpage = reader->page;
3098 reader->page = *data_page;
3099 local_set(&reader->write, 0);
778c55d4 3100 local_set(&reader->entries, 0);
ef7a4a16 3101 reader->read = 0;
044fa782 3102 *data_page = bpage;
8789a9e7 3103 }
667d2412 3104 ret = read;
8789a9e7 3105
554f786e 3106 out_unlock:
8789a9e7
SR
3107 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3108
554f786e 3109 out:
8789a9e7
SR
3110 return ret;
3111}
d6ce96da 3112EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3113
1155de47 3114#ifdef CONFIG_TRACING
a3583244
SR
3115static ssize_t
3116rb_simple_read(struct file *filp, char __user *ubuf,
3117 size_t cnt, loff_t *ppos)
3118{
5e39841c 3119 unsigned long *p = filp->private_data;
a3583244
SR
3120 char buf[64];
3121 int r;
3122
033601a3
SR
3123 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3124 r = sprintf(buf, "permanently disabled\n");
3125 else
3126 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3127
3128 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3129}
3130
3131static ssize_t
3132rb_simple_write(struct file *filp, const char __user *ubuf,
3133 size_t cnt, loff_t *ppos)
3134{
5e39841c 3135 unsigned long *p = filp->private_data;
a3583244 3136 char buf[64];
5e39841c 3137 unsigned long val;
a3583244
SR
3138 int ret;
3139
3140 if (cnt >= sizeof(buf))
3141 return -EINVAL;
3142
3143 if (copy_from_user(&buf, ubuf, cnt))
3144 return -EFAULT;
3145
3146 buf[cnt] = 0;
3147
3148 ret = strict_strtoul(buf, 10, &val);
3149 if (ret < 0)
3150 return ret;
3151
033601a3
SR
3152 if (val)
3153 set_bit(RB_BUFFERS_ON_BIT, p);
3154 else
3155 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3156
3157 (*ppos)++;
3158
3159 return cnt;
3160}
3161
5e2336a0 3162static const struct file_operations rb_simple_fops = {
a3583244
SR
3163 .open = tracing_open_generic,
3164 .read = rb_simple_read,
3165 .write = rb_simple_write,
3166};
3167
3168
3169static __init int rb_init_debugfs(void)
3170{
3171 struct dentry *d_tracer;
a3583244
SR
3172
3173 d_tracer = tracing_init_dentry();
3174
5452af66
FW
3175 trace_create_file("tracing_on", 0644, d_tracer,
3176 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3177
3178 return 0;
3179}
3180
3181fs_initcall(rb_init_debugfs);
1155de47 3182#endif
554f786e 3183
59222efe 3184#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3185static int rb_cpu_notify(struct notifier_block *self,
3186 unsigned long action, void *hcpu)
554f786e
SR
3187{
3188 struct ring_buffer *buffer =
3189 container_of(self, struct ring_buffer, cpu_notify);
3190 long cpu = (long)hcpu;
3191
3192 switch (action) {
3193 case CPU_UP_PREPARE:
3194 case CPU_UP_PREPARE_FROZEN:
3f237a79 3195 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
3196 return NOTIFY_OK;
3197
3198 buffer->buffers[cpu] =
3199 rb_allocate_cpu_buffer(buffer, cpu);
3200 if (!buffer->buffers[cpu]) {
3201 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3202 cpu);
3203 return NOTIFY_OK;
3204 }
3205 smp_wmb();
3f237a79 3206 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
3207 break;
3208 case CPU_DOWN_PREPARE:
3209 case CPU_DOWN_PREPARE_FROZEN:
3210 /*
3211 * Do nothing.
3212 * If we were to free the buffer, then the user would
3213 * lose any trace that was in the buffer.
3214 */
3215 break;
3216 default:
3217 break;
3218 }
3219 return NOTIFY_OK;
3220}
3221#endif