tracing: Remove NR_CPUS array from trace_iterator
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318 475 struct work_struct update_pages_work;
05fdd70d 476 struct completion update_done;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
308f7eeb
SR
948 /* Reset the head page if it exists */
949 if (cpu_buffer->head_page)
950 rb_set_head_page(cpu_buffer);
951
77ae365e
SR
952 rb_head_page_deactivate(cpu_buffer);
953
3e89c7bb
SR
954 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 return -1;
956 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 return -1;
7a8e76a3 958
77ae365e
SR
959 if (rb_check_list(cpu_buffer, head))
960 return -1;
961
044fa782 962 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 963 if (RB_WARN_ON(cpu_buffer,
044fa782 964 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
965 return -1;
966 if (RB_WARN_ON(cpu_buffer,
044fa782 967 bpage->list.prev->next != &bpage->list))
3e89c7bb 968 return -1;
77ae365e
SR
969 if (rb_check_list(cpu_buffer, &bpage->list))
970 return -1;
7a8e76a3
SR
971 }
972
77ae365e
SR
973 rb_head_page_activate(cpu_buffer);
974
7a8e76a3
SR
975 return 0;
976}
977
438ced17 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 979{
438ced17 980 int i;
044fa782 981 struct buffer_page *bpage, *tmp;
3adc54fa 982
7a8e76a3 983 for (i = 0; i < nr_pages; i++) {
7ea59064 984 struct page *page;
d7ec4bfe
VN
985 /*
986 * __GFP_NORETRY flag makes sure that the allocation fails
987 * gracefully without invoking oom-killer and the system is
988 * not destabilized.
989 */
044fa782 990 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 991 GFP_KERNEL | __GFP_NORETRY,
438ced17 992 cpu_to_node(cpu));
044fa782 993 if (!bpage)
e4c2ce82 994 goto free_pages;
77ae365e 995
438ced17 996 list_add(&bpage->list, pages);
77ae365e 997
438ced17 998 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 999 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1000 if (!page)
7a8e76a3 1001 goto free_pages;
7ea59064 1002 bpage->page = page_address(page);
044fa782 1003 rb_init_page(bpage->page);
7a8e76a3
SR
1004 }
1005
438ced17
VN
1006 return 0;
1007
1008free_pages:
1009 list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 list_del_init(&bpage->list);
1011 free_buffer_page(bpage);
1012 }
1013
1014 return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 unsigned nr_pages)
1019{
1020 LIST_HEAD(pages);
1021
1022 WARN_ON(!nr_pages);
1023
1024 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 return -ENOMEM;
1026
3adc54fa
SR
1027 /*
1028 * The ring buffer page list is a circular list that does not
1029 * start and end with a list head. All page list items point to
1030 * other pages.
1031 */
1032 cpu_buffer->pages = pages.next;
1033 list_del(&pages);
7a8e76a3 1034
438ced17
VN
1035 cpu_buffer->nr_pages = nr_pages;
1036
7a8e76a3
SR
1037 rb_check_pages(cpu_buffer);
1038
1039 return 0;
7a8e76a3
SR
1040}
1041
1042static struct ring_buffer_per_cpu *
438ced17 1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1044{
1045 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1046 struct buffer_page *bpage;
7ea59064 1047 struct page *page;
7a8e76a3
SR
1048 int ret;
1049
1050 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 GFP_KERNEL, cpu_to_node(cpu));
1052 if (!cpu_buffer)
1053 return NULL;
1054
1055 cpu_buffer->cpu = cpu;
1056 cpu_buffer->buffer = buffer;
5389f6fa 1057 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1058 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1059 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1060 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1061 init_completion(&cpu_buffer->update_done);
7a8e76a3 1062
044fa782 1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1064 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1065 if (!bpage)
e4c2ce82
SR
1066 goto fail_free_buffer;
1067
77ae365e
SR
1068 rb_check_bpage(cpu_buffer, bpage);
1069
044fa782 1070 cpu_buffer->reader_page = bpage;
7ea59064
VN
1071 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 if (!page)
e4c2ce82 1073 goto fail_free_reader;
7ea59064 1074 bpage->page = page_address(page);
044fa782 1075 rb_init_page(bpage->page);
e4c2ce82 1076
d769041f 1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1078
438ced17 1079 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1080 if (ret < 0)
d769041f 1081 goto fail_free_reader;
7a8e76a3
SR
1082
1083 cpu_buffer->head_page
3adc54fa 1084 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1085 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1086
77ae365e
SR
1087 rb_head_page_activate(cpu_buffer);
1088
7a8e76a3
SR
1089 return cpu_buffer;
1090
d769041f
SR
1091 fail_free_reader:
1092 free_buffer_page(cpu_buffer->reader_page);
1093
7a8e76a3
SR
1094 fail_free_buffer:
1095 kfree(cpu_buffer);
1096 return NULL;
1097}
1098
1099static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100{
3adc54fa 1101 struct list_head *head = cpu_buffer->pages;
044fa782 1102 struct buffer_page *bpage, *tmp;
7a8e76a3 1103
d769041f
SR
1104 free_buffer_page(cpu_buffer->reader_page);
1105
77ae365e
SR
1106 rb_head_page_deactivate(cpu_buffer);
1107
3adc54fa
SR
1108 if (head) {
1109 list_for_each_entry_safe(bpage, tmp, head, list) {
1110 list_del_init(&bpage->list);
1111 free_buffer_page(bpage);
1112 }
1113 bpage = list_entry(head, struct buffer_page, list);
044fa782 1114 free_buffer_page(bpage);
7a8e76a3 1115 }
3adc54fa 1116
7a8e76a3
SR
1117 kfree(cpu_buffer);
1118}
1119
59222efe 1120#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1121static int rb_cpu_notify(struct notifier_block *self,
1122 unsigned long action, void *hcpu);
554f786e
SR
1123#endif
1124
7a8e76a3
SR
1125/**
1126 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1127 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1128 * @flags: attributes to set for the ring buffer.
1129 *
1130 * Currently the only flag that is available is the RB_FL_OVERWRITE
1131 * flag. This flag means that the buffer will overwrite old data
1132 * when the buffer wraps. If this flag is not set, the buffer will
1133 * drop data when the tail hits the head.
1134 */
1f8a6a10
PZ
1135struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136 struct lock_class_key *key)
7a8e76a3
SR
1137{
1138 struct ring_buffer *buffer;
1139 int bsize;
438ced17 1140 int cpu, nr_pages;
7a8e76a3
SR
1141
1142 /* keep it in its own cache line */
1143 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144 GFP_KERNEL);
1145 if (!buffer)
1146 return NULL;
1147
9e01c1b7
RR
1148 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149 goto fail_free_buffer;
1150
438ced17 1151 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1152 buffer->flags = flags;
37886f6a 1153 buffer->clock = trace_clock_local;
1f8a6a10 1154 buffer->reader_lock_key = key;
7a8e76a3
SR
1155
1156 /* need at least two pages */
438ced17
VN
1157 if (nr_pages < 2)
1158 nr_pages = 2;
7a8e76a3 1159
3bf832ce
FW
1160 /*
1161 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 * in early initcall, it will not be notified of secondary cpus.
1163 * In that off case, we need to allocate for all possible cpus.
1164 */
1165#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1166 get_online_cpus();
1167 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1168#else
1169 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170#endif
7a8e76a3
SR
1171 buffer->cpus = nr_cpu_ids;
1172
1173 bsize = sizeof(void *) * nr_cpu_ids;
1174 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175 GFP_KERNEL);
1176 if (!buffer->buffers)
9e01c1b7 1177 goto fail_free_cpumask;
7a8e76a3
SR
1178
1179 for_each_buffer_cpu(buffer, cpu) {
1180 buffer->buffers[cpu] =
438ced17 1181 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1182 if (!buffer->buffers[cpu])
1183 goto fail_free_buffers;
1184 }
1185
59222efe 1186#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1187 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188 buffer->cpu_notify.priority = 0;
1189 register_cpu_notifier(&buffer->cpu_notify);
1190#endif
1191
1192 put_online_cpus();
7a8e76a3
SR
1193 mutex_init(&buffer->mutex);
1194
1195 return buffer;
1196
1197 fail_free_buffers:
1198 for_each_buffer_cpu(buffer, cpu) {
1199 if (buffer->buffers[cpu])
1200 rb_free_cpu_buffer(buffer->buffers[cpu]);
1201 }
1202 kfree(buffer->buffers);
1203
9e01c1b7
RR
1204 fail_free_cpumask:
1205 free_cpumask_var(buffer->cpumask);
554f786e 1206 put_online_cpus();
9e01c1b7 1207
7a8e76a3
SR
1208 fail_free_buffer:
1209 kfree(buffer);
1210 return NULL;
1211}
1f8a6a10 1212EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1213
1214/**
1215 * ring_buffer_free - free a ring buffer.
1216 * @buffer: the buffer to free.
1217 */
1218void
1219ring_buffer_free(struct ring_buffer *buffer)
1220{
1221 int cpu;
1222
554f786e
SR
1223 get_online_cpus();
1224
59222efe 1225#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1226 unregister_cpu_notifier(&buffer->cpu_notify);
1227#endif
1228
7a8e76a3
SR
1229 for_each_buffer_cpu(buffer, cpu)
1230 rb_free_cpu_buffer(buffer->buffers[cpu]);
1231
554f786e
SR
1232 put_online_cpus();
1233
bd3f0221 1234 kfree(buffer->buffers);
9e01c1b7
RR
1235 free_cpumask_var(buffer->cpumask);
1236
7a8e76a3
SR
1237 kfree(buffer);
1238}
c4f50183 1239EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1240
37886f6a
SR
1241void ring_buffer_set_clock(struct ring_buffer *buffer,
1242 u64 (*clock)(void))
1243{
1244 buffer->clock = clock;
1245}
1246
7a8e76a3
SR
1247static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248
83f40318
VN
1249static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1250{
1251 return local_read(&bpage->entries) & RB_WRITE_MASK;
1252}
1253
1254static inline unsigned long rb_page_write(struct buffer_page *bpage)
1255{
1256 return local_read(&bpage->write) & RB_WRITE_MASK;
1257}
1258
5040b4b7 1259static int
83f40318 1260rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1261{
83f40318
VN
1262 struct list_head *tail_page, *to_remove, *next_page;
1263 struct buffer_page *to_remove_page, *tmp_iter_page;
1264 struct buffer_page *last_page, *first_page;
1265 unsigned int nr_removed;
1266 unsigned long head_bit;
1267 int page_entries;
1268
1269 head_bit = 0;
7a8e76a3 1270
5389f6fa 1271 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1272 atomic_inc(&cpu_buffer->record_disabled);
1273 /*
1274 * We don't race with the readers since we have acquired the reader
1275 * lock. We also don't race with writers after disabling recording.
1276 * This makes it easy to figure out the first and the last page to be
1277 * removed from the list. We unlink all the pages in between including
1278 * the first and last pages. This is done in a busy loop so that we
1279 * lose the least number of traces.
1280 * The pages are freed after we restart recording and unlock readers.
1281 */
1282 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1283
83f40318
VN
1284 /*
1285 * tail page might be on reader page, we remove the next page
1286 * from the ring buffer
1287 */
1288 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1289 tail_page = rb_list_head(tail_page->next);
1290 to_remove = tail_page;
1291
1292 /* start of pages to remove */
1293 first_page = list_entry(rb_list_head(to_remove->next),
1294 struct buffer_page, list);
1295
1296 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1297 to_remove = rb_list_head(to_remove)->next;
1298 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1299 }
7a8e76a3 1300
83f40318 1301 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1302
83f40318
VN
1303 /*
1304 * Now we remove all pages between tail_page and next_page.
1305 * Make sure that we have head_bit value preserved for the
1306 * next page
1307 */
1308 tail_page->next = (struct list_head *)((unsigned long)next_page |
1309 head_bit);
1310 next_page = rb_list_head(next_page);
1311 next_page->prev = tail_page;
1312
1313 /* make sure pages points to a valid page in the ring buffer */
1314 cpu_buffer->pages = next_page;
1315
1316 /* update head page */
1317 if (head_bit)
1318 cpu_buffer->head_page = list_entry(next_page,
1319 struct buffer_page, list);
1320
1321 /*
1322 * change read pointer to make sure any read iterators reset
1323 * themselves
1324 */
1325 cpu_buffer->read = 0;
1326
1327 /* pages are removed, resume tracing and then free the pages */
1328 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1329 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1330
1331 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1332
1333 /* last buffer page to remove */
1334 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1335 list);
1336 tmp_iter_page = first_page;
1337
1338 do {
1339 to_remove_page = tmp_iter_page;
1340 rb_inc_page(cpu_buffer, &tmp_iter_page);
1341
1342 /* update the counters */
1343 page_entries = rb_page_entries(to_remove_page);
1344 if (page_entries) {
1345 /*
1346 * If something was added to this page, it was full
1347 * since it is not the tail page. So we deduct the
1348 * bytes consumed in ring buffer from here.
1349 * No need to update overruns, since this page is
1350 * deleted from ring buffer and its entries are
1351 * already accounted for.
1352 */
1353 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354 }
1355
1356 /*
1357 * We have already removed references to this list item, just
1358 * free up the buffer_page and its page
1359 */
1360 free_buffer_page(to_remove_page);
1361 nr_removed--;
1362
1363 } while (to_remove_page != last_page);
1364
1365 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1366
1367 return nr_removed == 0;
7a8e76a3
SR
1368}
1369
5040b4b7
VN
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1372{
5040b4b7
VN
1373 struct list_head *pages = &cpu_buffer->new_pages;
1374 int retries, success;
7a8e76a3 1375
5389f6fa 1376 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1377 /*
1378 * We are holding the reader lock, so the reader page won't be swapped
1379 * in the ring buffer. Now we are racing with the writer trying to
1380 * move head page and the tail page.
1381 * We are going to adapt the reader page update process where:
1382 * 1. We first splice the start and end of list of new pages between
1383 * the head page and its previous page.
1384 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 * start of new pages list.
1386 * 3. Finally, we update the head->prev to the end of new list.
1387 *
1388 * We will try this process 10 times, to make sure that we don't keep
1389 * spinning.
1390 */
1391 retries = 10;
1392 success = 0;
1393 while (retries--) {
1394 struct list_head *head_page, *prev_page, *r;
1395 struct list_head *last_page, *first_page;
1396 struct list_head *head_page_with_bit;
77ae365e 1397
5040b4b7
VN
1398 head_page = &rb_set_head_page(cpu_buffer)->list;
1399 prev_page = head_page->prev;
1400
1401 first_page = pages->next;
1402 last_page = pages->prev;
1403
1404 head_page_with_bit = (struct list_head *)
1405 ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407 last_page->next = head_page_with_bit;
1408 first_page->prev = prev_page;
1409
1410 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412 if (r == head_page_with_bit) {
1413 /*
1414 * yay, we replaced the page pointer to our new list,
1415 * now, we just have to update to head page's prev
1416 * pointer to point to end of list
1417 */
1418 head_page->prev = last_page;
1419 success = 1;
1420 break;
1421 }
7a8e76a3 1422 }
7a8e76a3 1423
5040b4b7
VN
1424 if (success)
1425 INIT_LIST_HEAD(pages);
1426 /*
1427 * If we weren't successful in adding in new pages, warn and stop
1428 * tracing
1429 */
1430 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1431 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1432
1433 /* free pages if they weren't inserted */
1434 if (!success) {
1435 struct buffer_page *bpage, *tmp;
1436 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437 list) {
1438 list_del_init(&bpage->list);
1439 free_buffer_page(bpage);
1440 }
1441 }
1442 return success;
7a8e76a3
SR
1443}
1444
83f40318 1445static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1446{
5040b4b7
VN
1447 int success;
1448
438ced17 1449 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1450 success = rb_insert_pages(cpu_buffer);
438ced17 1451 else
5040b4b7
VN
1452 success = rb_remove_pages(cpu_buffer,
1453 -cpu_buffer->nr_pages_to_update);
83f40318 1454
5040b4b7
VN
1455 if (success)
1456 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1457}
1458
1459static void update_pages_handler(struct work_struct *work)
1460{
1461 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462 struct ring_buffer_per_cpu, update_pages_work);
1463 rb_update_pages(cpu_buffer);
05fdd70d 1464 complete(&cpu_buffer->update_done);
438ced17
VN
1465}
1466
7a8e76a3
SR
1467/**
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
1471 *
7a8e76a3
SR
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1473 *
83f40318 1474 * Returns 0 on success and < 0 on failure.
7a8e76a3 1475 */
438ced17
VN
1476int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477 int cpu_id)
7a8e76a3
SR
1478{
1479 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1480 unsigned nr_pages;
83f40318 1481 int cpu, err = 0;
7a8e76a3 1482
ee51a1de
IM
1483 /*
1484 * Always succeed at resizing a non-existent buffer:
1485 */
1486 if (!buffer)
1487 return size;
1488
6a31e1f1
SR
1489 /* Make sure the requested buffer exists */
1490 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492 return size;
1493
7a8e76a3
SR
1494 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1496
1497 /* we need a minimum of two pages */
1498 if (size < BUF_PAGE_SIZE * 2)
1499 size = BUF_PAGE_SIZE * 2;
1500
83f40318 1501 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1502
83f40318
VN
1503 /*
1504 * Don't succeed if resizing is disabled, as a reader might be
1505 * manipulating the ring buffer and is expecting a sane state while
1506 * this is true.
1507 */
1508 if (atomic_read(&buffer->resize_disabled))
1509 return -EBUSY;
18421015 1510
83f40318 1511 /* prevent another thread from changing buffer sizes */
7a8e76a3 1512 mutex_lock(&buffer->mutex);
7a8e76a3 1513
438ced17
VN
1514 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515 /* calculate the pages to update */
7a8e76a3
SR
1516 for_each_buffer_cpu(buffer, cpu) {
1517 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1518
438ced17
VN
1519 cpu_buffer->nr_pages_to_update = nr_pages -
1520 cpu_buffer->nr_pages;
438ced17
VN
1521 /*
1522 * nothing more to do for removing pages or no update
1523 */
1524 if (cpu_buffer->nr_pages_to_update <= 0)
1525 continue;
d7ec4bfe 1526 /*
438ced17
VN
1527 * to add pages, make sure all new pages can be
1528 * allocated without receiving ENOMEM
d7ec4bfe 1529 */
438ced17
VN
1530 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1532 &cpu_buffer->new_pages, cpu)) {
438ced17 1533 /* not enough memory for new pages */
83f40318
VN
1534 err = -ENOMEM;
1535 goto out_err;
1536 }
1537 }
1538
1539 get_online_cpus();
1540 /*
1541 * Fire off all the required work handlers
05fdd70d 1542 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1543 * since we can change their buffer sizes without any race.
1544 */
1545 for_each_buffer_cpu(buffer, cpu) {
1546 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1547 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1548 continue;
1549
05fdd70d
VN
1550 if (cpu_online(cpu))
1551 schedule_work_on(cpu,
1552 &cpu_buffer->update_pages_work);
1553 else
1554 rb_update_pages(cpu_buffer);
7a8e76a3 1555 }
7a8e76a3 1556
438ced17
VN
1557 /* wait for all the updates to complete */
1558 for_each_buffer_cpu(buffer, cpu) {
1559 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1560 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1561 continue;
1562
05fdd70d
VN
1563 if (cpu_online(cpu))
1564 wait_for_completion(&cpu_buffer->update_done);
83f40318 1565 cpu_buffer->nr_pages_to_update = 0;
438ced17 1566 }
83f40318
VN
1567
1568 put_online_cpus();
438ced17
VN
1569 } else {
1570 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1571
438ced17
VN
1572 if (nr_pages == cpu_buffer->nr_pages)
1573 goto out;
7a8e76a3 1574
438ced17
VN
1575 cpu_buffer->nr_pages_to_update = nr_pages -
1576 cpu_buffer->nr_pages;
1577
1578 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579 if (cpu_buffer->nr_pages_to_update > 0 &&
1580 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1581 &cpu_buffer->new_pages, cpu_id)) {
1582 err = -ENOMEM;
1583 goto out_err;
1584 }
438ced17 1585
83f40318
VN
1586 get_online_cpus();
1587
1588 if (cpu_online(cpu_id)) {
1589 schedule_work_on(cpu_id,
1590 &cpu_buffer->update_pages_work);
05fdd70d 1591 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1592 } else
1593 rb_update_pages(cpu_buffer);
1594
83f40318 1595 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1596 put_online_cpus();
438ced17 1597 }
7a8e76a3
SR
1598
1599 out:
659f451f
SR
1600 /*
1601 * The ring buffer resize can happen with the ring buffer
1602 * enabled, so that the update disturbs the tracing as little
1603 * as possible. But if the buffer is disabled, we do not need
1604 * to worry about that, and we can take the time to verify
1605 * that the buffer is not corrupt.
1606 */
1607 if (atomic_read(&buffer->record_disabled)) {
1608 atomic_inc(&buffer->record_disabled);
1609 /*
1610 * Even though the buffer was disabled, we must make sure
1611 * that it is truly disabled before calling rb_check_pages.
1612 * There could have been a race between checking
1613 * record_disable and incrementing it.
1614 */
1615 synchronize_sched();
1616 for_each_buffer_cpu(buffer, cpu) {
1617 cpu_buffer = buffer->buffers[cpu];
1618 rb_check_pages(cpu_buffer);
1619 }
1620 atomic_dec(&buffer->record_disabled);
1621 }
1622
7a8e76a3 1623 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1624 return size;
1625
83f40318 1626 out_err:
438ced17
VN
1627 for_each_buffer_cpu(buffer, cpu) {
1628 struct buffer_page *bpage, *tmp;
83f40318 1629
438ced17 1630 cpu_buffer = buffer->buffers[cpu];
438ced17 1631 cpu_buffer->nr_pages_to_update = 0;
83f40318 1632
438ced17
VN
1633 if (list_empty(&cpu_buffer->new_pages))
1634 continue;
83f40318 1635
438ced17
VN
1636 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637 list) {
1638 list_del_init(&bpage->list);
1639 free_buffer_page(bpage);
1640 }
7a8e76a3 1641 }
641d2f63 1642 mutex_unlock(&buffer->mutex);
83f40318 1643 return err;
7a8e76a3 1644}
c4f50183 1645EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1646
750912fa
DS
1647void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648{
1649 mutex_lock(&buffer->mutex);
1650 if (val)
1651 buffer->flags |= RB_FL_OVERWRITE;
1652 else
1653 buffer->flags &= ~RB_FL_OVERWRITE;
1654 mutex_unlock(&buffer->mutex);
1655}
1656EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
8789a9e7 1658static inline void *
044fa782 1659__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1660{
044fa782 1661 return bpage->data + index;
8789a9e7
SR
1662}
1663
044fa782 1664static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1665{
044fa782 1666 return bpage->page->data + index;
7a8e76a3
SR
1667}
1668
1669static inline struct ring_buffer_event *
d769041f 1670rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1671{
6f807acd
SR
1672 return __rb_page_index(cpu_buffer->reader_page,
1673 cpu_buffer->reader_page->read);
1674}
1675
7a8e76a3
SR
1676static inline struct ring_buffer_event *
1677rb_iter_head_event(struct ring_buffer_iter *iter)
1678{
6f807acd 1679 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1680}
1681
bf41a158
SR
1682static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683{
abc9b56d 1684 return local_read(&bpage->page->commit);
bf41a158
SR
1685}
1686
25985edc 1687/* Size is determined by what has been committed */
bf41a158
SR
1688static inline unsigned rb_page_size(struct buffer_page *bpage)
1689{
1690 return rb_page_commit(bpage);
1691}
1692
1693static inline unsigned
1694rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695{
1696 return rb_page_commit(cpu_buffer->commit_page);
1697}
1698
bf41a158
SR
1699static inline unsigned
1700rb_event_index(struct ring_buffer_event *event)
1701{
1702 unsigned long addr = (unsigned long)event;
1703
22f470f8 1704 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1705}
1706
0f0c85fc 1707static inline int
fa743953
SR
1708rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709 struct ring_buffer_event *event)
bf41a158
SR
1710{
1711 unsigned long addr = (unsigned long)event;
1712 unsigned long index;
1713
1714 index = rb_event_index(event);
1715 addr &= PAGE_MASK;
1716
1717 return cpu_buffer->commit_page->page == (void *)addr &&
1718 rb_commit_index(cpu_buffer) == index;
1719}
1720
34a148bf 1721static void
bf41a158 1722rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1723{
77ae365e
SR
1724 unsigned long max_count;
1725
bf41a158
SR
1726 /*
1727 * We only race with interrupts and NMIs on this CPU.
1728 * If we own the commit event, then we can commit
1729 * all others that interrupted us, since the interruptions
1730 * are in stack format (they finish before they come
1731 * back to us). This allows us to do a simple loop to
1732 * assign the commit to the tail.
1733 */
a8ccf1d6 1734 again:
438ced17 1735 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1736
bf41a158 1737 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1738 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739 return;
1740 if (RB_WARN_ON(cpu_buffer,
1741 rb_is_reader_page(cpu_buffer->tail_page)))
1742 return;
1743 local_set(&cpu_buffer->commit_page->page->commit,
1744 rb_page_write(cpu_buffer->commit_page));
bf41a158 1745 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1746 cpu_buffer->write_stamp =
1747 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1748 /* add barrier to keep gcc from optimizing too much */
1749 barrier();
1750 }
1751 while (rb_commit_index(cpu_buffer) !=
1752 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1753
1754 local_set(&cpu_buffer->commit_page->page->commit,
1755 rb_page_write(cpu_buffer->commit_page));
1756 RB_WARN_ON(cpu_buffer,
1757 local_read(&cpu_buffer->commit_page->page->commit) &
1758 ~RB_WRITE_MASK);
bf41a158
SR
1759 barrier();
1760 }
a8ccf1d6
SR
1761
1762 /* again, keep gcc from optimizing */
1763 barrier();
1764
1765 /*
1766 * If an interrupt came in just after the first while loop
1767 * and pushed the tail page forward, we will be left with
1768 * a dangling commit that will never go forward.
1769 */
1770 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771 goto again;
7a8e76a3
SR
1772}
1773
d769041f 1774static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1775{
abc9b56d 1776 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1777 cpu_buffer->reader_page->read = 0;
d769041f
SR
1778}
1779
34a148bf 1780static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1781{
1782 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784 /*
1785 * The iterator could be on the reader page (it starts there).
1786 * But the head could have moved, since the reader was
1787 * found. Check for this case and assign the iterator
1788 * to the head page instead of next.
1789 */
1790 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1791 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1792 else
1793 rb_inc_page(cpu_buffer, &iter->head_page);
1794
abc9b56d 1795 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1796 iter->head = 0;
1797}
1798
69d1b839
SR
1799/* Slow path, do not inline */
1800static noinline struct ring_buffer_event *
1801rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802{
1803 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805 /* Not the first event on the page? */
1806 if (rb_event_index(event)) {
1807 event->time_delta = delta & TS_MASK;
1808 event->array[0] = delta >> TS_SHIFT;
1809 } else {
1810 /* nope, just zero it */
1811 event->time_delta = 0;
1812 event->array[0] = 0;
1813 }
1814
1815 return skip_time_extend(event);
1816}
1817
7a8e76a3
SR
1818/**
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1823 *
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1828 */
34a148bf 1829static void
69d1b839
SR
1830rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831 struct ring_buffer_event *event, unsigned length,
1832 int add_timestamp, u64 delta)
7a8e76a3 1833{
69d1b839
SR
1834 /* Only a commit updates the timestamp */
1835 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836 delta = 0;
7a8e76a3 1837
69d1b839
SR
1838 /*
1839 * If we need to add a timestamp, then we
1840 * add it to the start of the resevered space.
1841 */
1842 if (unlikely(add_timestamp)) {
1843 event = rb_add_time_stamp(event, delta);
1844 length -= RB_LEN_TIME_EXTEND;
1845 delta = 0;
7a8e76a3 1846 }
69d1b839
SR
1847
1848 event->time_delta = delta;
1849 length -= RB_EVNT_HDR_SIZE;
1850 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851 event->type_len = 0;
1852 event->array[0] = length;
1853 } else
1854 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1855}
1856
77ae365e
SR
1857/*
1858 * rb_handle_head_page - writer hit the head page
1859 *
1860 * Returns: +1 to retry page
1861 * 0 to continue
1862 * -1 on error
1863 */
1864static int
1865rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866 struct buffer_page *tail_page,
1867 struct buffer_page *next_page)
1868{
1869 struct buffer_page *new_head;
1870 int entries;
1871 int type;
1872 int ret;
1873
1874 entries = rb_page_entries(next_page);
1875
1876 /*
1877 * The hard part is here. We need to move the head
1878 * forward, and protect against both readers on
1879 * other CPUs and writers coming in via interrupts.
1880 */
1881 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882 RB_PAGE_HEAD);
1883
1884 /*
1885 * type can be one of four:
1886 * NORMAL - an interrupt already moved it for us
1887 * HEAD - we are the first to get here.
1888 * UPDATE - we are the interrupt interrupting
1889 * a current move.
1890 * MOVED - a reader on another CPU moved the next
1891 * pointer to its reader page. Give up
1892 * and try again.
1893 */
1894
1895 switch (type) {
1896 case RB_PAGE_HEAD:
1897 /*
1898 * We changed the head to UPDATE, thus
1899 * it is our responsibility to update
1900 * the counters.
1901 */
1902 local_add(entries, &cpu_buffer->overrun);
c64e148a 1903 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1904
1905 /*
1906 * The entries will be zeroed out when we move the
1907 * tail page.
1908 */
1909
1910 /* still more to do */
1911 break;
1912
1913 case RB_PAGE_UPDATE:
1914 /*
1915 * This is an interrupt that interrupt the
1916 * previous update. Still more to do.
1917 */
1918 break;
1919 case RB_PAGE_NORMAL:
1920 /*
1921 * An interrupt came in before the update
1922 * and processed this for us.
1923 * Nothing left to do.
1924 */
1925 return 1;
1926 case RB_PAGE_MOVED:
1927 /*
1928 * The reader is on another CPU and just did
1929 * a swap with our next_page.
1930 * Try again.
1931 */
1932 return 1;
1933 default:
1934 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935 return -1;
1936 }
1937
1938 /*
1939 * Now that we are here, the old head pointer is
1940 * set to UPDATE. This will keep the reader from
1941 * swapping the head page with the reader page.
1942 * The reader (on another CPU) will spin till
1943 * we are finished.
1944 *
1945 * We just need to protect against interrupts
1946 * doing the job. We will set the next pointer
1947 * to HEAD. After that, we set the old pointer
1948 * to NORMAL, but only if it was HEAD before.
1949 * otherwise we are an interrupt, and only
1950 * want the outer most commit to reset it.
1951 */
1952 new_head = next_page;
1953 rb_inc_page(cpu_buffer, &new_head);
1954
1955 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956 RB_PAGE_NORMAL);
1957
1958 /*
1959 * Valid returns are:
1960 * HEAD - an interrupt came in and already set it.
1961 * NORMAL - One of two things:
1962 * 1) We really set it.
1963 * 2) A bunch of interrupts came in and moved
1964 * the page forward again.
1965 */
1966 switch (ret) {
1967 case RB_PAGE_HEAD:
1968 case RB_PAGE_NORMAL:
1969 /* OK */
1970 break;
1971 default:
1972 RB_WARN_ON(cpu_buffer, 1);
1973 return -1;
1974 }
1975
1976 /*
1977 * It is possible that an interrupt came in,
1978 * set the head up, then more interrupts came in
1979 * and moved it again. When we get back here,
1980 * the page would have been set to NORMAL but we
1981 * just set it back to HEAD.
1982 *
1983 * How do you detect this? Well, if that happened
1984 * the tail page would have moved.
1985 */
1986 if (ret == RB_PAGE_NORMAL) {
1987 /*
1988 * If the tail had moved passed next, then we need
1989 * to reset the pointer.
1990 */
1991 if (cpu_buffer->tail_page != tail_page &&
1992 cpu_buffer->tail_page != next_page)
1993 rb_head_page_set_normal(cpu_buffer, new_head,
1994 next_page,
1995 RB_PAGE_HEAD);
1996 }
1997
1998 /*
1999 * If this was the outer most commit (the one that
2000 * changed the original pointer from HEAD to UPDATE),
2001 * then it is up to us to reset it to NORMAL.
2002 */
2003 if (type == RB_PAGE_HEAD) {
2004 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005 tail_page,
2006 RB_PAGE_UPDATE);
2007 if (RB_WARN_ON(cpu_buffer,
2008 ret != RB_PAGE_UPDATE))
2009 return -1;
2010 }
2011
2012 return 0;
2013}
2014
34a148bf 2015static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2016{
2017 struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019 /* zero length can cause confusions */
2020 if (!length)
2021 length = 1;
2022
2271048d 2023 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2024 length += sizeof(event.array[0]);
2025
2026 length += RB_EVNT_HDR_SIZE;
2271048d 2027 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2028
2029 return length;
2030}
2031
c7b09308
SR
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034 struct buffer_page *tail_page,
2035 unsigned long tail, unsigned long length)
2036{
2037 struct ring_buffer_event *event;
2038
2039 /*
2040 * Only the event that crossed the page boundary
2041 * must fill the old tail_page with padding.
2042 */
2043 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2044 /*
2045 * If the page was filled, then we still need
2046 * to update the real_end. Reset it to zero
2047 * and the reader will ignore it.
2048 */
2049 if (tail == BUF_PAGE_SIZE)
2050 tail_page->real_end = 0;
2051
c7b09308
SR
2052 local_sub(length, &tail_page->write);
2053 return;
2054 }
2055
2056 event = __rb_page_index(tail_page, tail);
b0b7065b 2057 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2058
c64e148a
VN
2059 /* account for padding bytes */
2060 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
ff0ff84a
SR
2062 /*
2063 * Save the original length to the meta data.
2064 * This will be used by the reader to add lost event
2065 * counter.
2066 */
2067 tail_page->real_end = tail;
2068
c7b09308
SR
2069 /*
2070 * If this event is bigger than the minimum size, then
2071 * we need to be careful that we don't subtract the
2072 * write counter enough to allow another writer to slip
2073 * in on this page.
2074 * We put in a discarded commit instead, to make sure
2075 * that this space is not used again.
2076 *
2077 * If we are less than the minimum size, we don't need to
2078 * worry about it.
2079 */
2080 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081 /* No room for any events */
2082
2083 /* Mark the rest of the page with padding */
2084 rb_event_set_padding(event);
2085
2086 /* Set the write back to the previous setting */
2087 local_sub(length, &tail_page->write);
2088 return;
2089 }
2090
2091 /* Put in a discarded event */
2092 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093 event->type_len = RINGBUF_TYPE_PADDING;
2094 /* time delta must be non zero */
2095 event->time_delta = 1;
c7b09308
SR
2096
2097 /* Set write to end of buffer */
2098 length = (tail + length) - BUF_PAGE_SIZE;
2099 local_sub(length, &tail_page->write);
2100}
6634ff26 2101
747e94ae
SR
2102/*
2103 * This is the slow path, force gcc not to inline it.
2104 */
2105static noinline struct ring_buffer_event *
6634ff26
SR
2106rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107 unsigned long length, unsigned long tail,
e8bc43e8 2108 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2109{
5a50e33c 2110 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2111 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2112 struct buffer_page *next_page;
2113 int ret;
aa20ae84
SR
2114
2115 next_page = tail_page;
2116
aa20ae84
SR
2117 rb_inc_page(cpu_buffer, &next_page);
2118
aa20ae84
SR
2119 /*
2120 * If for some reason, we had an interrupt storm that made
2121 * it all the way around the buffer, bail, and warn
2122 * about it.
2123 */
2124 if (unlikely(next_page == commit_page)) {
77ae365e 2125 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2126 goto out_reset;
2127 }
2128
77ae365e
SR
2129 /*
2130 * This is where the fun begins!
2131 *
2132 * We are fighting against races between a reader that
2133 * could be on another CPU trying to swap its reader
2134 * page with the buffer head.
2135 *
2136 * We are also fighting against interrupts coming in and
2137 * moving the head or tail on us as well.
2138 *
2139 * If the next page is the head page then we have filled
2140 * the buffer, unless the commit page is still on the
2141 * reader page.
2142 */
2143 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2144
77ae365e
SR
2145 /*
2146 * If the commit is not on the reader page, then
2147 * move the header page.
2148 */
2149 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150 /*
2151 * If we are not in overwrite mode,
2152 * this is easy, just stop here.
2153 */
2154 if (!(buffer->flags & RB_FL_OVERWRITE))
2155 goto out_reset;
2156
2157 ret = rb_handle_head_page(cpu_buffer,
2158 tail_page,
2159 next_page);
2160 if (ret < 0)
2161 goto out_reset;
2162 if (ret)
2163 goto out_again;
2164 } else {
2165 /*
2166 * We need to be careful here too. The
2167 * commit page could still be on the reader
2168 * page. We could have a small buffer, and
2169 * have filled up the buffer with events
2170 * from interrupts and such, and wrapped.
2171 *
2172 * Note, if the tail page is also the on the
2173 * reader_page, we let it move out.
2174 */
2175 if (unlikely((cpu_buffer->commit_page !=
2176 cpu_buffer->tail_page) &&
2177 (cpu_buffer->commit_page ==
2178 cpu_buffer->reader_page))) {
2179 local_inc(&cpu_buffer->commit_overrun);
2180 goto out_reset;
2181 }
aa20ae84
SR
2182 }
2183 }
2184
77ae365e
SR
2185 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186 if (ret) {
2187 /*
2188 * Nested commits always have zero deltas, so
2189 * just reread the time stamp
2190 */
e8bc43e8
SR
2191 ts = rb_time_stamp(buffer);
2192 next_page->page->time_stamp = ts;
aa20ae84
SR
2193 }
2194
77ae365e 2195 out_again:
aa20ae84 2196
77ae365e 2197 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2198
2199 /* fail and let the caller try again */
2200 return ERR_PTR(-EAGAIN);
2201
45141d46 2202 out_reset:
6f3b3440 2203 /* reset write */
c7b09308 2204 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2205
bf41a158 2206 return NULL;
7a8e76a3
SR
2207}
2208
6634ff26
SR
2209static struct ring_buffer_event *
2210__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2211 unsigned long length, u64 ts,
2212 u64 delta, int add_timestamp)
6634ff26 2213{
5a50e33c 2214 struct buffer_page *tail_page;
6634ff26
SR
2215 struct ring_buffer_event *event;
2216 unsigned long tail, write;
2217
69d1b839
SR
2218 /*
2219 * If the time delta since the last event is too big to
2220 * hold in the time field of the event, then we append a
2221 * TIME EXTEND event ahead of the data event.
2222 */
2223 if (unlikely(add_timestamp))
2224 length += RB_LEN_TIME_EXTEND;
2225
6634ff26
SR
2226 tail_page = cpu_buffer->tail_page;
2227 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2228
2229 /* set write to only the index of the write */
2230 write &= RB_WRITE_MASK;
6634ff26
SR
2231 tail = write - length;
2232
2233 /* See if we shot pass the end of this buffer page */
747e94ae 2234 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2235 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2236 tail_page, ts);
6634ff26
SR
2237
2238 /* We reserved something on the buffer */
2239
6634ff26 2240 event = __rb_page_index(tail_page, tail);
1744a21d 2241 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2242 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2243
69d1b839 2244 local_inc(&tail_page->entries);
6634ff26
SR
2245
2246 /*
fa743953
SR
2247 * If this is the first commit on the page, then update
2248 * its timestamp.
6634ff26 2249 */
fa743953 2250 if (!tail)
e8bc43e8 2251 tail_page->page->time_stamp = ts;
6634ff26 2252
c64e148a
VN
2253 /* account for these added bytes */
2254 local_add(length, &cpu_buffer->entries_bytes);
2255
6634ff26
SR
2256 return event;
2257}
2258
edd813bf
SR
2259static inline int
2260rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261 struct ring_buffer_event *event)
2262{
2263 unsigned long new_index, old_index;
2264 struct buffer_page *bpage;
2265 unsigned long index;
2266 unsigned long addr;
2267
2268 new_index = rb_event_index(event);
69d1b839 2269 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2270 addr = (unsigned long)event;
2271 addr &= PAGE_MASK;
2272
2273 bpage = cpu_buffer->tail_page;
2274
2275 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2276 unsigned long write_mask =
2277 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2278 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2279 /*
2280 * This is on the tail page. It is possible that
2281 * a write could come in and move the tail page
2282 * and write to the next page. That is fine
2283 * because we just shorten what is on this page.
2284 */
77ae365e
SR
2285 old_index += write_mask;
2286 new_index += write_mask;
edd813bf 2287 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2288 if (index == old_index) {
2289 /* update counters */
2290 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2291 return 1;
c64e148a 2292 }
edd813bf
SR
2293 }
2294
2295 /* could not discard */
2296 return 0;
2297}
2298
fa743953
SR
2299static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300{
2301 local_inc(&cpu_buffer->committing);
2302 local_inc(&cpu_buffer->commits);
2303}
2304
d9abde21 2305static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2306{
2307 unsigned long commits;
2308
2309 if (RB_WARN_ON(cpu_buffer,
2310 !local_read(&cpu_buffer->committing)))
2311 return;
2312
2313 again:
2314 commits = local_read(&cpu_buffer->commits);
2315 /* synchronize with interrupts */
2316 barrier();
2317 if (local_read(&cpu_buffer->committing) == 1)
2318 rb_set_commit_to_write(cpu_buffer);
2319
2320 local_dec(&cpu_buffer->committing);
2321
2322 /* synchronize with interrupts */
2323 barrier();
2324
2325 /*
2326 * Need to account for interrupts coming in between the
2327 * updating of the commit page and the clearing of the
2328 * committing counter.
2329 */
2330 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331 !local_read(&cpu_buffer->committing)) {
2332 local_inc(&cpu_buffer->committing);
2333 goto again;
2334 }
2335}
2336
7a8e76a3 2337static struct ring_buffer_event *
62f0b3eb
SR
2338rb_reserve_next_event(struct ring_buffer *buffer,
2339 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2340 unsigned long length)
7a8e76a3
SR
2341{
2342 struct ring_buffer_event *event;
69d1b839 2343 u64 ts, delta;
818e3dd3 2344 int nr_loops = 0;
69d1b839 2345 int add_timestamp;
140ff891 2346 u64 diff;
7a8e76a3 2347
fa743953
SR
2348 rb_start_commit(cpu_buffer);
2349
85bac32c 2350#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2351 /*
2352 * Due to the ability to swap a cpu buffer from a buffer
2353 * it is possible it was swapped before we committed.
2354 * (committing stops a swap). We check for it here and
2355 * if it happened, we have to fail the write.
2356 */
2357 barrier();
2358 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359 local_dec(&cpu_buffer->committing);
2360 local_dec(&cpu_buffer->commits);
2361 return NULL;
2362 }
85bac32c 2363#endif
62f0b3eb 2364
be957c44 2365 length = rb_calculate_event_length(length);
bf41a158 2366 again:
69d1b839
SR
2367 add_timestamp = 0;
2368 delta = 0;
2369
818e3dd3
SR
2370 /*
2371 * We allow for interrupts to reenter here and do a trace.
2372 * If one does, it will cause this original code to loop
2373 * back here. Even with heavy interrupts happening, this
2374 * should only happen a few times in a row. If this happens
2375 * 1000 times in a row, there must be either an interrupt
2376 * storm or we have something buggy.
2377 * Bail!
2378 */
3e89c7bb 2379 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2380 goto out_fail;
818e3dd3 2381
6d3f1e12 2382 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2383 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2384
140ff891
SR
2385 /* make sure this diff is calculated here */
2386 barrier();
bf41a158 2387
140ff891
SR
2388 /* Did the write stamp get updated already? */
2389 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2390 delta = diff;
2391 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2392 int local_clock_stable = 1;
2393#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394 local_clock_stable = sched_clock_stable;
2395#endif
69d1b839 2396 WARN_ONCE(delta > (1ULL << 59),
31274d72 2397 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2398 (unsigned long long)delta,
2399 (unsigned long long)ts,
31274d72
JO
2400 (unsigned long long)cpu_buffer->write_stamp,
2401 local_clock_stable ? "" :
2402 "If you just came from a suspend/resume,\n"
2403 "please switch to the trace global clock:\n"
2404 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2405 add_timestamp = 1;
7a8e76a3 2406 }
168b6b1d 2407 }
7a8e76a3 2408
69d1b839
SR
2409 event = __rb_reserve_next(cpu_buffer, length, ts,
2410 delta, add_timestamp);
168b6b1d 2411 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2412 goto again;
2413
fa743953
SR
2414 if (!event)
2415 goto out_fail;
7a8e76a3 2416
7a8e76a3 2417 return event;
fa743953
SR
2418
2419 out_fail:
2420 rb_end_commit(cpu_buffer);
2421 return NULL;
7a8e76a3
SR
2422}
2423
1155de47
PM
2424#ifdef CONFIG_TRACING
2425
aa18efb2 2426#define TRACE_RECURSIVE_DEPTH 16
261842b7 2427
d9abde21
SR
2428/* Keep this code out of the fast path cache */
2429static noinline void trace_recursive_fail(void)
261842b7 2430{
aa18efb2
SR
2431 /* Disable all tracing before we do anything else */
2432 tracing_off_permanent();
261842b7 2433
7d7d2b80 2434 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2435 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2436 trace_recursion_buffer(),
aa18efb2
SR
2437 hardirq_count() >> HARDIRQ_SHIFT,
2438 softirq_count() >> SOFTIRQ_SHIFT,
2439 in_nmi());
261842b7 2440
aa18efb2 2441 WARN_ON_ONCE(1);
d9abde21
SR
2442}
2443
2444static inline int trace_recursive_lock(void)
2445{
b1cff0ad 2446 trace_recursion_inc();
d9abde21 2447
b1cff0ad 2448 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2449 return 0;
2450
2451 trace_recursive_fail();
2452
aa18efb2 2453 return -1;
261842b7
SR
2454}
2455
d9abde21 2456static inline void trace_recursive_unlock(void)
261842b7 2457{
b1cff0ad 2458 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2459
b1cff0ad 2460 trace_recursion_dec();
261842b7
SR
2461}
2462
1155de47
PM
2463#else
2464
2465#define trace_recursive_lock() (0)
2466#define trace_recursive_unlock() do { } while (0)
2467
2468#endif
2469
7a8e76a3
SR
2470/**
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2474 *
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2478 *
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2481 *
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2484 */
2485struct ring_buffer_event *
0a987751 2486ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2487{
2488 struct ring_buffer_per_cpu *cpu_buffer;
2489 struct ring_buffer_event *event;
5168ae50 2490 int cpu;
7a8e76a3 2491
033601a3 2492 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2493 return NULL;
2494
bf41a158 2495 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2496 preempt_disable_notrace();
bf41a158 2497
52fbe9cd
LJ
2498 if (atomic_read(&buffer->record_disabled))
2499 goto out_nocheck;
2500
261842b7
SR
2501 if (trace_recursive_lock())
2502 goto out_nocheck;
2503
7a8e76a3
SR
2504 cpu = raw_smp_processor_id();
2505
9e01c1b7 2506 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2507 goto out;
7a8e76a3
SR
2508
2509 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2510
2511 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2512 goto out;
7a8e76a3 2513
be957c44 2514 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2515 goto out;
7a8e76a3 2516
62f0b3eb 2517 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2518 if (!event)
d769041f 2519 goto out;
7a8e76a3
SR
2520
2521 return event;
2522
d769041f 2523 out:
261842b7
SR
2524 trace_recursive_unlock();
2525
2526 out_nocheck:
5168ae50 2527 preempt_enable_notrace();
7a8e76a3
SR
2528 return NULL;
2529}
c4f50183 2530EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2531
a1863c21
SR
2532static void
2533rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2534 struct ring_buffer_event *event)
2535{
69d1b839
SR
2536 u64 delta;
2537
fa743953
SR
2538 /*
2539 * The event first in the commit queue updates the
2540 * time stamp.
2541 */
69d1b839
SR
2542 if (rb_event_is_commit(cpu_buffer, event)) {
2543 /*
2544 * A commit event that is first on a page
2545 * updates the write timestamp with the page stamp
2546 */
2547 if (!rb_event_index(event))
2548 cpu_buffer->write_stamp =
2549 cpu_buffer->commit_page->page->time_stamp;
2550 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551 delta = event->array[0];
2552 delta <<= TS_SHIFT;
2553 delta += event->time_delta;
2554 cpu_buffer->write_stamp += delta;
2555 } else
2556 cpu_buffer->write_stamp += event->time_delta;
2557 }
a1863c21 2558}
bf41a158 2559
a1863c21
SR
2560static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 struct ring_buffer_event *event)
2562{
2563 local_inc(&cpu_buffer->entries);
2564 rb_update_write_stamp(cpu_buffer, event);
fa743953 2565 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2566}
2567
2568/**
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
7a8e76a3
SR
2572 *
2573 * This commits the data to the ring buffer, and releases any locks held.
2574 *
2575 * Must be paired with ring_buffer_lock_reserve.
2576 */
2577int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2578 struct ring_buffer_event *event)
7a8e76a3
SR
2579{
2580 struct ring_buffer_per_cpu *cpu_buffer;
2581 int cpu = raw_smp_processor_id();
2582
2583 cpu_buffer = buffer->buffers[cpu];
2584
7a8e76a3
SR
2585 rb_commit(cpu_buffer, event);
2586
261842b7
SR
2587 trace_recursive_unlock();
2588
5168ae50 2589 preempt_enable_notrace();
7a8e76a3
SR
2590
2591 return 0;
2592}
c4f50183 2593EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2594
f3b9aae1
FW
2595static inline void rb_event_discard(struct ring_buffer_event *event)
2596{
69d1b839
SR
2597 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598 event = skip_time_extend(event);
2599
334d4169
LJ
2600 /* array[0] holds the actual length for the discarded event */
2601 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2603 /* time delta must be non zero */
2604 if (!event->time_delta)
2605 event->time_delta = 1;
2606}
2607
a1863c21
SR
2608/*
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2613 */
2614static inline void
2615rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616 struct ring_buffer_event *event)
2617{
2618 unsigned long addr = (unsigned long)event;
2619 struct buffer_page *bpage = cpu_buffer->commit_page;
2620 struct buffer_page *start;
2621
2622 addr &= PAGE_MASK;
2623
2624 /* Do the likely case first */
2625 if (likely(bpage->page == (void *)addr)) {
2626 local_dec(&bpage->entries);
2627 return;
2628 }
2629
2630 /*
2631 * Because the commit page may be on the reader page we
2632 * start with the next page and check the end loop there.
2633 */
2634 rb_inc_page(cpu_buffer, &bpage);
2635 start = bpage;
2636 do {
2637 if (bpage->page == (void *)addr) {
2638 local_dec(&bpage->entries);
2639 return;
2640 }
2641 rb_inc_page(cpu_buffer, &bpage);
2642 } while (bpage != start);
2643
2644 /* commit not part of this buffer?? */
2645 RB_WARN_ON(cpu_buffer, 1);
2646}
2647
fa1b47dd
SR
2648/**
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2652 *
dc892f73
SR
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2656 *
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2659 * if another event has not been added behind it.
2660 *
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2663 *
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2666 */
2667void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668 struct ring_buffer_event *event)
2669{
2670 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2671 int cpu;
2672
2673 /* The event is discarded regardless */
f3b9aae1 2674 rb_event_discard(event);
fa1b47dd 2675
fa743953
SR
2676 cpu = smp_processor_id();
2677 cpu_buffer = buffer->buffers[cpu];
2678
fa1b47dd
SR
2679 /*
2680 * This must only be called if the event has not been
2681 * committed yet. Thus we can assume that preemption
2682 * is still disabled.
2683 */
fa743953 2684 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2685
a1863c21 2686 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2687 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2688 goto out;
fa1b47dd
SR
2689
2690 /*
2691 * The commit is still visible by the reader, so we
a1863c21 2692 * must still update the timestamp.
fa1b47dd 2693 */
a1863c21 2694 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2695 out:
fa743953 2696 rb_end_commit(cpu_buffer);
fa1b47dd 2697
f3b9aae1
FW
2698 trace_recursive_unlock();
2699
5168ae50 2700 preempt_enable_notrace();
fa1b47dd
SR
2701
2702}
2703EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
7a8e76a3
SR
2705/**
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2710 *
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2714 *
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2717 */
2718int ring_buffer_write(struct ring_buffer *buffer,
2719 unsigned long length,
2720 void *data)
2721{
2722 struct ring_buffer_per_cpu *cpu_buffer;
2723 struct ring_buffer_event *event;
7a8e76a3
SR
2724 void *body;
2725 int ret = -EBUSY;
5168ae50 2726 int cpu;
7a8e76a3 2727
033601a3 2728 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2729 return -EBUSY;
2730
5168ae50 2731 preempt_disable_notrace();
bf41a158 2732
52fbe9cd
LJ
2733 if (atomic_read(&buffer->record_disabled))
2734 goto out;
2735
7a8e76a3
SR
2736 cpu = raw_smp_processor_id();
2737
9e01c1b7 2738 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2739 goto out;
7a8e76a3
SR
2740
2741 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2742
2743 if (atomic_read(&cpu_buffer->record_disabled))
2744 goto out;
2745
be957c44
SR
2746 if (length > BUF_MAX_DATA_SIZE)
2747 goto out;
2748
62f0b3eb 2749 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2750 if (!event)
2751 goto out;
2752
2753 body = rb_event_data(event);
2754
2755 memcpy(body, data, length);
2756
2757 rb_commit(cpu_buffer, event);
2758
2759 ret = 0;
2760 out:
5168ae50 2761 preempt_enable_notrace();
7a8e76a3
SR
2762
2763 return ret;
2764}
c4f50183 2765EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2766
34a148bf 2767static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2768{
2769 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2770 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2771 struct buffer_page *commit = cpu_buffer->commit_page;
2772
77ae365e
SR
2773 /* In case of error, head will be NULL */
2774 if (unlikely(!head))
2775 return 1;
2776
bf41a158
SR
2777 return reader->read == rb_page_commit(reader) &&
2778 (commit == reader ||
2779 (commit == head &&
2780 head->read == rb_page_commit(commit)));
2781}
2782
7a8e76a3
SR
2783/**
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2786 *
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2789 *
2790 * The caller should call synchronize_sched() after this.
2791 */
2792void ring_buffer_record_disable(struct ring_buffer *buffer)
2793{
2794 atomic_inc(&buffer->record_disabled);
2795}
c4f50183 2796EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2797
2798/**
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2801 *
2802 * Note, multiple disables will need the same number of enables
c41b20e7 2803 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2804 */
2805void ring_buffer_record_enable(struct ring_buffer *buffer)
2806{
2807 atomic_dec(&buffer->record_disabled);
2808}
c4f50183 2809EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2810
499e5470
SR
2811/**
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2814 *
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2817 *
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2821 */
2822void ring_buffer_record_off(struct ring_buffer *buffer)
2823{
2824 unsigned int rd;
2825 unsigned int new_rd;
2826
2827 do {
2828 rd = atomic_read(&buffer->record_disabled);
2829 new_rd = rd | RB_BUFFER_OFF;
2830 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831}
2832EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834/**
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2837 *
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2840 *
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2844 */
2845void ring_buffer_record_on(struct ring_buffer *buffer)
2846{
2847 unsigned int rd;
2848 unsigned int new_rd;
2849
2850 do {
2851 rd = atomic_read(&buffer->record_disabled);
2852 new_rd = rd & ~RB_BUFFER_OFF;
2853 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854}
2855EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857/**
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2860 *
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2862 */
2863int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864{
2865 return !atomic_read(&buffer->record_disabled);
2866}
2867
7a8e76a3
SR
2868/**
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2872 *
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2875 *
2876 * The caller should call synchronize_sched() after this.
2877 */
2878void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879{
2880 struct ring_buffer_per_cpu *cpu_buffer;
2881
9e01c1b7 2882 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2883 return;
7a8e76a3
SR
2884
2885 cpu_buffer = buffer->buffers[cpu];
2886 atomic_inc(&cpu_buffer->record_disabled);
2887}
c4f50183 2888EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2889
2890/**
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2894 *
2895 * Note, multiple disables will need the same number of enables
c41b20e7 2896 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2897 */
2898void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899{
2900 struct ring_buffer_per_cpu *cpu_buffer;
2901
9e01c1b7 2902 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2903 return;
7a8e76a3
SR
2904
2905 cpu_buffer = buffer->buffers[cpu];
2906 atomic_dec(&cpu_buffer->record_disabled);
2907}
c4f50183 2908EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2909
f6195aa0
SR
2910/*
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2915 */
2916static inline unsigned long
2917rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918{
2919 return local_read(&cpu_buffer->entries) -
2920 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921}
2922
c64e148a
VN
2923/**
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2927 */
2928unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929{
2930 unsigned long flags;
2931 struct ring_buffer_per_cpu *cpu_buffer;
2932 struct buffer_page *bpage;
2933 unsigned long ret;
2934
2935 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936 return 0;
2937
2938 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2939 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2940 /*
2941 * if the tail is on reader_page, oldest time stamp is on the reader
2942 * page
2943 */
2944 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945 bpage = cpu_buffer->reader_page;
2946 else
2947 bpage = rb_set_head_page(cpu_buffer);
2948 ret = bpage->page->time_stamp;
7115e3fc 2949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2950
2951 return ret;
2952}
2953EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955/**
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2959 */
2960unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961{
2962 struct ring_buffer_per_cpu *cpu_buffer;
2963 unsigned long ret;
2964
2965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 return 0;
2967
2968 cpu_buffer = buffer->buffers[cpu];
2969 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971 return ret;
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
7a8e76a3
SR
2975/**
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2979 */
2980unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981{
2982 struct ring_buffer_per_cpu *cpu_buffer;
2983
9e01c1b7 2984 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2985 return 0;
7a8e76a3
SR
2986
2987 cpu_buffer = buffer->buffers[cpu];
554f786e 2988
f6195aa0 2989 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2990}
c4f50183 2991EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2992
2993/**
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2997 */
2998unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3001 unsigned long ret;
7a8e76a3 3002
9e01c1b7 3003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3004 return 0;
7a8e76a3
SR
3005
3006 cpu_buffer = buffer->buffers[cpu];
77ae365e 3007 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3008
3009 return ret;
7a8e76a3 3010}
c4f50183 3011EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3012
f0d2c681
SR
3013/**
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3017 */
3018unsigned long
3019ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020{
3021 struct ring_buffer_per_cpu *cpu_buffer;
3022 unsigned long ret;
3023
3024 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025 return 0;
3026
3027 cpu_buffer = buffer->buffers[cpu];
77ae365e 3028 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3029
3030 return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
7a8e76a3
SR
3034/**
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3037 *
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3040 */
3041unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042{
3043 struct ring_buffer_per_cpu *cpu_buffer;
3044 unsigned long entries = 0;
3045 int cpu;
3046
3047 /* if you care about this being correct, lock the buffer */
3048 for_each_buffer_cpu(buffer, cpu) {
3049 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3050 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3051 }
3052
3053 return entries;
3054}
c4f50183 3055EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3056
3057/**
67b394f7 3058 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3059 * @buffer: The ring buffer
3060 *
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3063 */
3064unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065{
3066 struct ring_buffer_per_cpu *cpu_buffer;
3067 unsigned long overruns = 0;
3068 int cpu;
3069
3070 /* if you care about this being correct, lock the buffer */
3071 for_each_buffer_cpu(buffer, cpu) {
3072 cpu_buffer = buffer->buffers[cpu];
77ae365e 3073 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3074 }
3075
3076 return overruns;
3077}
c4f50183 3078EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3079
642edba5 3080static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3081{
3082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
d769041f
SR
3084 /* Iterator usage is expected to have record disabled */
3085 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3086 iter->head_page = rb_set_head_page(cpu_buffer);
3087 if (unlikely(!iter->head_page))
3088 return;
3089 iter->head = iter->head_page->read;
d769041f
SR
3090 } else {
3091 iter->head_page = cpu_buffer->reader_page;
6f807acd 3092 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3093 }
3094 if (iter->head)
3095 iter->read_stamp = cpu_buffer->read_stamp;
3096 else
abc9b56d 3097 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3098 iter->cache_reader_page = cpu_buffer->reader_page;
3099 iter->cache_read = cpu_buffer->read;
642edba5 3100}
f83c9d0f 3101
642edba5
SR
3102/**
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3105 *
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3108 */
3109void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110{
554f786e 3111 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3112 unsigned long flags;
3113
554f786e
SR
3114 if (!iter)
3115 return;
3116
3117 cpu_buffer = iter->cpu_buffer;
3118
5389f6fa 3119 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3120 rb_iter_reset(iter);
5389f6fa 3121 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3122}
c4f50183 3123EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3124
3125/**
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3128 */
3129int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130{
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132
3133 cpu_buffer = iter->cpu_buffer;
3134
bf41a158
SR
3135 return iter->head_page == cpu_buffer->commit_page &&
3136 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3137}
c4f50183 3138EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3139
3140static void
3141rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142 struct ring_buffer_event *event)
3143{
3144 u64 delta;
3145
334d4169 3146 switch (event->type_len) {
7a8e76a3
SR
3147 case RINGBUF_TYPE_PADDING:
3148 return;
3149
3150 case RINGBUF_TYPE_TIME_EXTEND:
3151 delta = event->array[0];
3152 delta <<= TS_SHIFT;
3153 delta += event->time_delta;
3154 cpu_buffer->read_stamp += delta;
3155 return;
3156
3157 case RINGBUF_TYPE_TIME_STAMP:
3158 /* FIXME: not implemented */
3159 return;
3160
3161 case RINGBUF_TYPE_DATA:
3162 cpu_buffer->read_stamp += event->time_delta;
3163 return;
3164
3165 default:
3166 BUG();
3167 }
3168 return;
3169}
3170
3171static void
3172rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173 struct ring_buffer_event *event)
3174{
3175 u64 delta;
3176
334d4169 3177 switch (event->type_len) {
7a8e76a3
SR
3178 case RINGBUF_TYPE_PADDING:
3179 return;
3180
3181 case RINGBUF_TYPE_TIME_EXTEND:
3182 delta = event->array[0];
3183 delta <<= TS_SHIFT;
3184 delta += event->time_delta;
3185 iter->read_stamp += delta;
3186 return;
3187
3188 case RINGBUF_TYPE_TIME_STAMP:
3189 /* FIXME: not implemented */
3190 return;
3191
3192 case RINGBUF_TYPE_DATA:
3193 iter->read_stamp += event->time_delta;
3194 return;
3195
3196 default:
3197 BUG();
3198 }
3199 return;
3200}
3201
d769041f
SR
3202static struct buffer_page *
3203rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3204{
d769041f 3205 struct buffer_page *reader = NULL;
66a8cb95 3206 unsigned long overwrite;
d769041f 3207 unsigned long flags;
818e3dd3 3208 int nr_loops = 0;
77ae365e 3209 int ret;
d769041f 3210
3e03fb7f 3211 local_irq_save(flags);
0199c4e6 3212 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3213
3214 again:
818e3dd3
SR
3215 /*
3216 * This should normally only loop twice. But because the
3217 * start of the reader inserts an empty page, it causes
3218 * a case where we will loop three times. There should be no
3219 * reason to loop four times (that I know of).
3220 */
3e89c7bb 3221 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3222 reader = NULL;
3223 goto out;
3224 }
3225
d769041f
SR
3226 reader = cpu_buffer->reader_page;
3227
3228 /* If there's more to read, return this page */
bf41a158 3229 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3230 goto out;
3231
3232 /* Never should we have an index greater than the size */
3e89c7bb
SR
3233 if (RB_WARN_ON(cpu_buffer,
3234 cpu_buffer->reader_page->read > rb_page_size(reader)))
3235 goto out;
d769041f
SR
3236
3237 /* check if we caught up to the tail */
3238 reader = NULL;
bf41a158 3239 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3240 goto out;
7a8e76a3
SR
3241
3242 /*
d769041f 3243 * Reset the reader page to size zero.
7a8e76a3 3244 */
77ae365e
SR
3245 local_set(&cpu_buffer->reader_page->write, 0);
3246 local_set(&cpu_buffer->reader_page->entries, 0);
3247 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3248 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3249
77ae365e
SR
3250 spin:
3251 /*
3252 * Splice the empty reader page into the list around the head.
3253 */
3254 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3255 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3256 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3257
3adc54fa
SR
3258 /*
3259 * cpu_buffer->pages just needs to point to the buffer, it
3260 * has no specific buffer page to point to. Lets move it out
25985edc 3261 * of our way so we don't accidentally swap it.
3adc54fa
SR
3262 */
3263 cpu_buffer->pages = reader->list.prev;
3264
77ae365e
SR
3265 /* The reader page will be pointing to the new head */
3266 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3267
66a8cb95
SR
3268 /*
3269 * We want to make sure we read the overruns after we set up our
3270 * pointers to the next object. The writer side does a
3271 * cmpxchg to cross pages which acts as the mb on the writer
3272 * side. Note, the reader will constantly fail the swap
3273 * while the writer is updating the pointers, so this
3274 * guarantees that the overwrite recorded here is the one we
3275 * want to compare with the last_overrun.
3276 */
3277 smp_mb();
3278 overwrite = local_read(&(cpu_buffer->overrun));
3279
77ae365e
SR
3280 /*
3281 * Here's the tricky part.
3282 *
3283 * We need to move the pointer past the header page.
3284 * But we can only do that if a writer is not currently
3285 * moving it. The page before the header page has the
3286 * flag bit '1' set if it is pointing to the page we want.
3287 * but if the writer is in the process of moving it
3288 * than it will be '2' or already moved '0'.
3289 */
3290
3291 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3292
3293 /*
77ae365e 3294 * If we did not convert it, then we must try again.
7a8e76a3 3295 */
77ae365e
SR
3296 if (!ret)
3297 goto spin;
7a8e76a3 3298
77ae365e
SR
3299 /*
3300 * Yeah! We succeeded in replacing the page.
3301 *
3302 * Now make the new head point back to the reader page.
3303 */
5ded3dc6 3304 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3305 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3306
3307 /* Finally update the reader page to the new head */
3308 cpu_buffer->reader_page = reader;
3309 rb_reset_reader_page(cpu_buffer);
3310
66a8cb95
SR
3311 if (overwrite != cpu_buffer->last_overrun) {
3312 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313 cpu_buffer->last_overrun = overwrite;
3314 }
3315
d769041f
SR
3316 goto again;
3317
3318 out:
0199c4e6 3319 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3320 local_irq_restore(flags);
d769041f
SR
3321
3322 return reader;
3323}
3324
3325static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326{
3327 struct ring_buffer_event *event;
3328 struct buffer_page *reader;
3329 unsigned length;
3330
3331 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3332
d769041f 3333 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3334 if (RB_WARN_ON(cpu_buffer, !reader))
3335 return;
7a8e76a3 3336
d769041f
SR
3337 event = rb_reader_event(cpu_buffer);
3338
a1863c21 3339 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3340 cpu_buffer->read++;
d769041f
SR
3341
3342 rb_update_read_stamp(cpu_buffer, event);
3343
3344 length = rb_event_length(event);
6f807acd 3345 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3346}
3347
3348static void rb_advance_iter(struct ring_buffer_iter *iter)
3349{
7a8e76a3
SR
3350 struct ring_buffer_per_cpu *cpu_buffer;
3351 struct ring_buffer_event *event;
3352 unsigned length;
3353
3354 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3355
3356 /*
3357 * Check if we are at the end of the buffer.
3358 */
bf41a158 3359 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3360 /* discarded commits can make the page empty */
3361 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3362 return;
d769041f 3363 rb_inc_iter(iter);
7a8e76a3
SR
3364 return;
3365 }
3366
3367 event = rb_iter_head_event(iter);
3368
3369 length = rb_event_length(event);
3370
3371 /*
3372 * This should not be called to advance the header if we are
3373 * at the tail of the buffer.
3374 */
3e89c7bb 3375 if (RB_WARN_ON(cpu_buffer,
f536aafc 3376 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3377 (iter->head + length > rb_commit_index(cpu_buffer))))
3378 return;
7a8e76a3
SR
3379
3380 rb_update_iter_read_stamp(iter, event);
3381
3382 iter->head += length;
3383
3384 /* check for end of page padding */
bf41a158
SR
3385 if ((iter->head >= rb_page_size(iter->head_page)) &&
3386 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3387 rb_advance_iter(iter);
3388}
3389
66a8cb95
SR
3390static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391{
3392 return cpu_buffer->lost_events;
3393}
3394
f83c9d0f 3395static struct ring_buffer_event *
66a8cb95
SR
3396rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397 unsigned long *lost_events)
7a8e76a3 3398{
7a8e76a3 3399 struct ring_buffer_event *event;
d769041f 3400 struct buffer_page *reader;
818e3dd3 3401 int nr_loops = 0;
7a8e76a3 3402
7a8e76a3 3403 again:
818e3dd3 3404 /*
69d1b839
SR
3405 * We repeat when a time extend is encountered.
3406 * Since the time extend is always attached to a data event,
3407 * we should never loop more than once.
3408 * (We never hit the following condition more than twice).
818e3dd3 3409 */
69d1b839 3410 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3411 return NULL;
818e3dd3 3412
d769041f
SR
3413 reader = rb_get_reader_page(cpu_buffer);
3414 if (!reader)
7a8e76a3
SR
3415 return NULL;
3416
d769041f 3417 event = rb_reader_event(cpu_buffer);
7a8e76a3 3418
334d4169 3419 switch (event->type_len) {
7a8e76a3 3420 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3421 if (rb_null_event(event))
3422 RB_WARN_ON(cpu_buffer, 1);
3423 /*
3424 * Because the writer could be discarding every
3425 * event it creates (which would probably be bad)
3426 * if we were to go back to "again" then we may never
3427 * catch up, and will trigger the warn on, or lock
3428 * the box. Return the padding, and we will release
3429 * the current locks, and try again.
3430 */
2d622719 3431 return event;
7a8e76a3
SR
3432
3433 case RINGBUF_TYPE_TIME_EXTEND:
3434 /* Internal data, OK to advance */
d769041f 3435 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3436 goto again;
3437
3438 case RINGBUF_TYPE_TIME_STAMP:
3439 /* FIXME: not implemented */
d769041f 3440 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3441 goto again;
3442
3443 case RINGBUF_TYPE_DATA:
3444 if (ts) {
3445 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3446 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3447 cpu_buffer->cpu, ts);
7a8e76a3 3448 }
66a8cb95
SR
3449 if (lost_events)
3450 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3451 return event;
3452
3453 default:
3454 BUG();
3455 }
3456
3457 return NULL;
3458}
c4f50183 3459EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3460
f83c9d0f
SR
3461static struct ring_buffer_event *
3462rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3463{
3464 struct ring_buffer *buffer;
3465 struct ring_buffer_per_cpu *cpu_buffer;
3466 struct ring_buffer_event *event;
818e3dd3 3467 int nr_loops = 0;
7a8e76a3 3468
7a8e76a3
SR
3469 cpu_buffer = iter->cpu_buffer;
3470 buffer = cpu_buffer->buffer;
3471
492a74f4
SR
3472 /*
3473 * Check if someone performed a consuming read to
3474 * the buffer. A consuming read invalidates the iterator
3475 * and we need to reset the iterator in this case.
3476 */
3477 if (unlikely(iter->cache_read != cpu_buffer->read ||
3478 iter->cache_reader_page != cpu_buffer->reader_page))
3479 rb_iter_reset(iter);
3480
7a8e76a3 3481 again:
3c05d748
SR
3482 if (ring_buffer_iter_empty(iter))
3483 return NULL;
3484
818e3dd3 3485 /*
69d1b839
SR
3486 * We repeat when a time extend is encountered.
3487 * Since the time extend is always attached to a data event,
3488 * we should never loop more than once.
3489 * (We never hit the following condition more than twice).
818e3dd3 3490 */
69d1b839 3491 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3492 return NULL;
818e3dd3 3493
7a8e76a3
SR
3494 if (rb_per_cpu_empty(cpu_buffer))
3495 return NULL;
3496
3c05d748
SR
3497 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498 rb_inc_iter(iter);
3499 goto again;
3500 }
3501
7a8e76a3
SR
3502 event = rb_iter_head_event(iter);
3503
334d4169 3504 switch (event->type_len) {
7a8e76a3 3505 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3506 if (rb_null_event(event)) {
3507 rb_inc_iter(iter);
3508 goto again;
3509 }
3510 rb_advance_iter(iter);
3511 return event;
7a8e76a3
SR
3512
3513 case RINGBUF_TYPE_TIME_EXTEND:
3514 /* Internal data, OK to advance */
3515 rb_advance_iter(iter);
3516 goto again;
3517
3518 case RINGBUF_TYPE_TIME_STAMP:
3519 /* FIXME: not implemented */
3520 rb_advance_iter(iter);
3521 goto again;
3522
3523 case RINGBUF_TYPE_DATA:
3524 if (ts) {
3525 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3526 ring_buffer_normalize_time_stamp(buffer,
3527 cpu_buffer->cpu, ts);
7a8e76a3
SR
3528 }
3529 return event;
3530
3531 default:
3532 BUG();
3533 }
3534
3535 return NULL;
3536}
c4f50183 3537EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3538
8d707e8e
SR
3539static inline int rb_ok_to_lock(void)
3540{
3541 /*
3542 * If an NMI die dumps out the content of the ring buffer
3543 * do not grab locks. We also permanently disable the ring
3544 * buffer too. A one time deal is all you get from reading
3545 * the ring buffer from an NMI.
3546 */
464e85eb 3547 if (likely(!in_nmi()))
8d707e8e
SR
3548 return 1;
3549
3550 tracing_off_permanent();
3551 return 0;
3552}
3553
f83c9d0f
SR
3554/**
3555 * ring_buffer_peek - peek at the next event to be read
3556 * @buffer: The ring buffer to read
3557 * @cpu: The cpu to peak at
3558 * @ts: The timestamp counter of this event.
66a8cb95 3559 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3560 *
3561 * This will return the event that will be read next, but does
3562 * not consume the data.
3563 */
3564struct ring_buffer_event *
66a8cb95
SR
3565ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566 unsigned long *lost_events)
f83c9d0f
SR
3567{
3568 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3569 struct ring_buffer_event *event;
f83c9d0f 3570 unsigned long flags;
8d707e8e 3571 int dolock;
f83c9d0f 3572
554f786e 3573 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3574 return NULL;
554f786e 3575
8d707e8e 3576 dolock = rb_ok_to_lock();
2d622719 3577 again:
8d707e8e
SR
3578 local_irq_save(flags);
3579 if (dolock)
5389f6fa 3580 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3581 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3582 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583 rb_advance_reader(cpu_buffer);
8d707e8e 3584 if (dolock)
5389f6fa 3585 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3586 local_irq_restore(flags);
f83c9d0f 3587
1b959e18 3588 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3589 goto again;
2d622719 3590
f83c9d0f
SR
3591 return event;
3592}
3593
3594/**
3595 * ring_buffer_iter_peek - peek at the next event to be read
3596 * @iter: The ring buffer iterator
3597 * @ts: The timestamp counter of this event.
3598 *
3599 * This will return the event that will be read next, but does
3600 * not increment the iterator.
3601 */
3602struct ring_buffer_event *
3603ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604{
3605 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606 struct ring_buffer_event *event;
3607 unsigned long flags;
3608
2d622719 3609 again:
5389f6fa 3610 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3611 event = rb_iter_peek(iter, ts);
5389f6fa 3612 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3613
1b959e18 3614 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3615 goto again;
2d622719 3616
f83c9d0f
SR
3617 return event;
3618}
3619
7a8e76a3
SR
3620/**
3621 * ring_buffer_consume - return an event and consume it
3622 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3623 * @cpu: the cpu to read the buffer from
3624 * @ts: a variable to store the timestamp (may be NULL)
3625 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3626 *
3627 * Returns the next event in the ring buffer, and that event is consumed.
3628 * Meaning, that sequential reads will keep returning a different event,
3629 * and eventually empty the ring buffer if the producer is slower.
3630 */
3631struct ring_buffer_event *
66a8cb95
SR
3632ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633 unsigned long *lost_events)
7a8e76a3 3634{
554f786e
SR
3635 struct ring_buffer_per_cpu *cpu_buffer;
3636 struct ring_buffer_event *event = NULL;
f83c9d0f 3637 unsigned long flags;
8d707e8e
SR
3638 int dolock;
3639
3640 dolock = rb_ok_to_lock();
7a8e76a3 3641
2d622719 3642 again:
554f786e
SR
3643 /* might be called in atomic */
3644 preempt_disable();
3645
9e01c1b7 3646 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3647 goto out;
7a8e76a3 3648
554f786e 3649 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3650 local_irq_save(flags);
3651 if (dolock)
5389f6fa 3652 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3653
66a8cb95
SR
3654 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655 if (event) {
3656 cpu_buffer->lost_events = 0;
469535a5 3657 rb_advance_reader(cpu_buffer);
66a8cb95 3658 }
7a8e76a3 3659
8d707e8e 3660 if (dolock)
5389f6fa 3661 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3662 local_irq_restore(flags);
f83c9d0f 3663
554f786e
SR
3664 out:
3665 preempt_enable();
3666
1b959e18 3667 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3668 goto again;
2d622719 3669
7a8e76a3
SR
3670 return event;
3671}
c4f50183 3672EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3673
3674/**
72c9ddfd 3675 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3676 * @buffer: The ring buffer to read from
3677 * @cpu: The cpu buffer to iterate over
3678 *
72c9ddfd
DM
3679 * This performs the initial preparations necessary to iterate
3680 * through the buffer. Memory is allocated, buffer recording
3681 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3682 *
72c9ddfd
DM
3683 * Disabling buffer recordng prevents the reading from being
3684 * corrupted. This is not a consuming read, so a producer is not
3685 * expected.
3686 *
3687 * After a sequence of ring_buffer_read_prepare calls, the user is
3688 * expected to make at least one call to ring_buffer_prepare_sync.
3689 * Afterwards, ring_buffer_read_start is invoked to get things going
3690 * for real.
3691 *
3692 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3693 */
3694struct ring_buffer_iter *
72c9ddfd 3695ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3696{
3697 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3698 struct ring_buffer_iter *iter;
7a8e76a3 3699
9e01c1b7 3700 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3701 return NULL;
7a8e76a3
SR
3702
3703 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704 if (!iter)
8aabee57 3705 return NULL;
7a8e76a3
SR
3706
3707 cpu_buffer = buffer->buffers[cpu];
3708
3709 iter->cpu_buffer = cpu_buffer;
3710
83f40318 3711 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3712 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3713
3714 return iter;
3715}
3716EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718/**
3719 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720 *
3721 * All previously invoked ring_buffer_read_prepare calls to prepare
3722 * iterators will be synchronized. Afterwards, read_buffer_read_start
3723 * calls on those iterators are allowed.
3724 */
3725void
3726ring_buffer_read_prepare_sync(void)
3727{
7a8e76a3 3728 synchronize_sched();
72c9ddfd
DM
3729}
3730EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732/**
3733 * ring_buffer_read_start - start a non consuming read of the buffer
3734 * @iter: The iterator returned by ring_buffer_read_prepare
3735 *
3736 * This finalizes the startup of an iteration through the buffer.
3737 * The iterator comes from a call to ring_buffer_read_prepare and
3738 * an intervening ring_buffer_read_prepare_sync must have been
3739 * performed.
3740 *
3741 * Must be paired with ring_buffer_finish.
3742 */
3743void
3744ring_buffer_read_start(struct ring_buffer_iter *iter)
3745{
3746 struct ring_buffer_per_cpu *cpu_buffer;
3747 unsigned long flags;
3748
3749 if (!iter)
3750 return;
3751
3752 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3753
5389f6fa 3754 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3755 arch_spin_lock(&cpu_buffer->lock);
642edba5 3756 rb_iter_reset(iter);
0199c4e6 3757 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3758 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3759}
c4f50183 3760EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3761
3762/**
3763 * ring_buffer_finish - finish reading the iterator of the buffer
3764 * @iter: The iterator retrieved by ring_buffer_start
3765 *
3766 * This re-enables the recording to the buffer, and frees the
3767 * iterator.
3768 */
3769void
3770ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771{
3772 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3773
659f451f
SR
3774 /*
3775 * Ring buffer is disabled from recording, here's a good place
3776 * to check the integrity of the ring buffer.
3777 */
3778 rb_check_pages(cpu_buffer);
3779
7a8e76a3 3780 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3781 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3782 kfree(iter);
3783}
c4f50183 3784EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3785
3786/**
3787 * ring_buffer_read - read the next item in the ring buffer by the iterator
3788 * @iter: The ring buffer iterator
3789 * @ts: The time stamp of the event read.
3790 *
3791 * This reads the next event in the ring buffer and increments the iterator.
3792 */
3793struct ring_buffer_event *
3794ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795{
3796 struct ring_buffer_event *event;
f83c9d0f
SR
3797 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798 unsigned long flags;
7a8e76a3 3799
5389f6fa 3800 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3801 again:
f83c9d0f 3802 event = rb_iter_peek(iter, ts);
7a8e76a3 3803 if (!event)
f83c9d0f 3804 goto out;
7a8e76a3 3805
7e9391cf
SR
3806 if (event->type_len == RINGBUF_TYPE_PADDING)
3807 goto again;
3808
7a8e76a3 3809 rb_advance_iter(iter);
f83c9d0f 3810 out:
5389f6fa 3811 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3812
3813 return event;
3814}
c4f50183 3815EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3816
3817/**
3818 * ring_buffer_size - return the size of the ring buffer (in bytes)
3819 * @buffer: The ring buffer.
3820 */
438ced17 3821unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3822{
438ced17
VN
3823 /*
3824 * Earlier, this method returned
3825 * BUF_PAGE_SIZE * buffer->nr_pages
3826 * Since the nr_pages field is now removed, we have converted this to
3827 * return the per cpu buffer value.
3828 */
3829 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830 return 0;
3831
3832 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3833}
c4f50183 3834EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3835
3836static void
3837rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838{
77ae365e
SR
3839 rb_head_page_deactivate(cpu_buffer);
3840
7a8e76a3 3841 cpu_buffer->head_page
3adc54fa 3842 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3843 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3844 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3845 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3846
6f807acd 3847 cpu_buffer->head_page->read = 0;
bf41a158
SR
3848
3849 cpu_buffer->tail_page = cpu_buffer->head_page;
3850 cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3853 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3854 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3855 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3856 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3857 cpu_buffer->reader_page->read = 0;
7a8e76a3 3858
77ae365e 3859 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3860 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3861 local_set(&cpu_buffer->overrun, 0);
e4906eff 3862 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3863 local_set(&cpu_buffer->committing, 0);
3864 local_set(&cpu_buffer->commits, 0);
77ae365e 3865 cpu_buffer->read = 0;
c64e148a 3866 cpu_buffer->read_bytes = 0;
69507c06
SR
3867
3868 cpu_buffer->write_stamp = 0;
3869 cpu_buffer->read_stamp = 0;
77ae365e 3870
66a8cb95
SR
3871 cpu_buffer->lost_events = 0;
3872 cpu_buffer->last_overrun = 0;
3873
77ae365e 3874 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3875}
3876
3877/**
3878 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879 * @buffer: The ring buffer to reset a per cpu buffer of
3880 * @cpu: The CPU buffer to be reset
3881 */
3882void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883{
3884 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885 unsigned long flags;
3886
9e01c1b7 3887 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3888 return;
7a8e76a3 3889
83f40318 3890 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3891 atomic_inc(&cpu_buffer->record_disabled);
3892
83f40318
VN
3893 /* Make sure all commits have finished */
3894 synchronize_sched();
3895
5389f6fa 3896 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3897
41b6a95d
SR
3898 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899 goto out;
3900
0199c4e6 3901 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3902
3903 rb_reset_cpu(cpu_buffer);
3904
0199c4e6 3905 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3906
41b6a95d 3907 out:
5389f6fa 3908 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3909
3910 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3911 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3912}
c4f50183 3913EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3914
3915/**
3916 * ring_buffer_reset - reset a ring buffer
3917 * @buffer: The ring buffer to reset all cpu buffers
3918 */
3919void ring_buffer_reset(struct ring_buffer *buffer)
3920{
7a8e76a3
SR
3921 int cpu;
3922
7a8e76a3 3923 for_each_buffer_cpu(buffer, cpu)
d769041f 3924 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3925}
c4f50183 3926EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3927
3928/**
3929 * rind_buffer_empty - is the ring buffer empty?
3930 * @buffer: The ring buffer to test
3931 */
3932int ring_buffer_empty(struct ring_buffer *buffer)
3933{
3934 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3935 unsigned long flags;
8d707e8e 3936 int dolock;
7a8e76a3 3937 int cpu;
d4788207 3938 int ret;
7a8e76a3 3939
8d707e8e 3940 dolock = rb_ok_to_lock();
7a8e76a3
SR
3941
3942 /* yes this is racy, but if you don't like the race, lock the buffer */
3943 for_each_buffer_cpu(buffer, cpu) {
3944 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3945 local_irq_save(flags);
3946 if (dolock)
5389f6fa 3947 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3948 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3949 if (dolock)
5389f6fa 3950 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3951 local_irq_restore(flags);
3952
d4788207 3953 if (!ret)
7a8e76a3
SR
3954 return 0;
3955 }
554f786e 3956
7a8e76a3
SR
3957 return 1;
3958}
c4f50183 3959EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3960
3961/**
3962 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963 * @buffer: The ring buffer
3964 * @cpu: The CPU buffer to test
3965 */
3966int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967{
3968 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3969 unsigned long flags;
8d707e8e 3970 int dolock;
8aabee57 3971 int ret;
7a8e76a3 3972
9e01c1b7 3973 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3974 return 1;
7a8e76a3 3975
8d707e8e
SR
3976 dolock = rb_ok_to_lock();
3977
7a8e76a3 3978 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3979 local_irq_save(flags);
3980 if (dolock)
5389f6fa 3981 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3982 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3983 if (dolock)
5389f6fa 3984 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3985 local_irq_restore(flags);
554f786e
SR
3986
3987 return ret;
7a8e76a3 3988}
c4f50183 3989EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3990
85bac32c 3991#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3992/**
3993 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994 * @buffer_a: One buffer to swap with
3995 * @buffer_b: The other buffer to swap with
3996 *
3997 * This function is useful for tracers that want to take a "snapshot"
3998 * of a CPU buffer and has another back up buffer lying around.
3999 * it is expected that the tracer handles the cpu buffer not being
4000 * used at the moment.
4001 */
4002int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003 struct ring_buffer *buffer_b, int cpu)
4004{
4005 struct ring_buffer_per_cpu *cpu_buffer_a;
4006 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4007 int ret = -EINVAL;
4008
9e01c1b7
RR
4009 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4011 goto out;
7a8e76a3 4012
438ced17
VN
4013 cpu_buffer_a = buffer_a->buffers[cpu];
4014 cpu_buffer_b = buffer_b->buffers[cpu];
4015
7a8e76a3 4016 /* At least make sure the two buffers are somewhat the same */
438ced17 4017 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4018 goto out;
4019
4020 ret = -EAGAIN;
7a8e76a3 4021
97b17efe 4022 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4023 goto out;
97b17efe
SR
4024
4025 if (atomic_read(&buffer_a->record_disabled))
554f786e 4026 goto out;
97b17efe
SR
4027
4028 if (atomic_read(&buffer_b->record_disabled))
554f786e 4029 goto out;
97b17efe 4030
97b17efe 4031 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4032 goto out;
97b17efe
SR
4033
4034 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4035 goto out;
97b17efe 4036
7a8e76a3
SR
4037 /*
4038 * We can't do a synchronize_sched here because this
4039 * function can be called in atomic context.
4040 * Normally this will be called from the same CPU as cpu.
4041 * If not it's up to the caller to protect this.
4042 */
4043 atomic_inc(&cpu_buffer_a->record_disabled);
4044 atomic_inc(&cpu_buffer_b->record_disabled);
4045
98277991
SR
4046 ret = -EBUSY;
4047 if (local_read(&cpu_buffer_a->committing))
4048 goto out_dec;
4049 if (local_read(&cpu_buffer_b->committing))
4050 goto out_dec;
4051
7a8e76a3
SR
4052 buffer_a->buffers[cpu] = cpu_buffer_b;
4053 buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055 cpu_buffer_b->buffer = buffer_a;
4056 cpu_buffer_a->buffer = buffer_b;
4057
98277991
SR
4058 ret = 0;
4059
4060out_dec:
7a8e76a3
SR
4061 atomic_dec(&cpu_buffer_a->record_disabled);
4062 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4063out:
554f786e 4064 return ret;
7a8e76a3 4065}
c4f50183 4066EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4067#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4068
8789a9e7
SR
4069/**
4070 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071 * @buffer: the buffer to allocate for.
4072 *
4073 * This function is used in conjunction with ring_buffer_read_page.
4074 * When reading a full page from the ring buffer, these functions
4075 * can be used to speed up the process. The calling function should
4076 * allocate a few pages first with this function. Then when it
4077 * needs to get pages from the ring buffer, it passes the result
4078 * of this function into ring_buffer_read_page, which will swap
4079 * the page that was allocated, with the read page of the buffer.
4080 *
4081 * Returns:
4082 * The page allocated, or NULL on error.
4083 */
7ea59064 4084void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4085{
044fa782 4086 struct buffer_data_page *bpage;
7ea59064 4087 struct page *page;
8789a9e7 4088
d7ec4bfe
VN
4089 page = alloc_pages_node(cpu_to_node(cpu),
4090 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4091 if (!page)
8789a9e7
SR
4092 return NULL;
4093
7ea59064 4094 bpage = page_address(page);
8789a9e7 4095
ef7a4a16
SR
4096 rb_init_page(bpage);
4097
044fa782 4098 return bpage;
8789a9e7 4099}
d6ce96da 4100EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4101
4102/**
4103 * ring_buffer_free_read_page - free an allocated read page
4104 * @buffer: the buffer the page was allocate for
4105 * @data: the page to free
4106 *
4107 * Free a page allocated from ring_buffer_alloc_read_page.
4108 */
4109void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110{
4111 free_page((unsigned long)data);
4112}
d6ce96da 4113EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4114
4115/**
4116 * ring_buffer_read_page - extract a page from the ring buffer
4117 * @buffer: buffer to extract from
4118 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4119 * @len: amount to extract
8789a9e7
SR
4120 * @cpu: the cpu of the buffer to extract
4121 * @full: should the extraction only happen when the page is full.
4122 *
4123 * This function will pull out a page from the ring buffer and consume it.
4124 * @data_page must be the address of the variable that was returned
4125 * from ring_buffer_alloc_read_page. This is because the page might be used
4126 * to swap with a page in the ring buffer.
4127 *
4128 * for example:
b85fa01e 4129 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4130 * if (!rpage)
4131 * return error;
ef7a4a16 4132 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4133 * if (ret >= 0)
4134 * process_page(rpage, ret);
8789a9e7
SR
4135 *
4136 * When @full is set, the function will not return true unless
4137 * the writer is off the reader page.
4138 *
4139 * Note: it is up to the calling functions to handle sleeps and wakeups.
4140 * The ring buffer can be used anywhere in the kernel and can not
4141 * blindly call wake_up. The layer that uses the ring buffer must be
4142 * responsible for that.
4143 *
4144 * Returns:
667d2412
LJ
4145 * >=0 if data has been transferred, returns the offset of consumed data.
4146 * <0 if no data has been transferred.
8789a9e7
SR
4147 */
4148int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4149 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4150{
4151 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152 struct ring_buffer_event *event;
044fa782 4153 struct buffer_data_page *bpage;
ef7a4a16 4154 struct buffer_page *reader;
ff0ff84a 4155 unsigned long missed_events;
8789a9e7 4156 unsigned long flags;
ef7a4a16 4157 unsigned int commit;
667d2412 4158 unsigned int read;
4f3640f8 4159 u64 save_timestamp;
667d2412 4160 int ret = -1;
8789a9e7 4161
554f786e
SR
4162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 goto out;
4164
474d32b6
SR
4165 /*
4166 * If len is not big enough to hold the page header, then
4167 * we can not copy anything.
4168 */
4169 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4170 goto out;
474d32b6
SR
4171
4172 len -= BUF_PAGE_HDR_SIZE;
4173
8789a9e7 4174 if (!data_page)
554f786e 4175 goto out;
8789a9e7 4176
044fa782
SR
4177 bpage = *data_page;
4178 if (!bpage)
554f786e 4179 goto out;
8789a9e7 4180
5389f6fa 4181 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4182
ef7a4a16
SR
4183 reader = rb_get_reader_page(cpu_buffer);
4184 if (!reader)
554f786e 4185 goto out_unlock;
8789a9e7 4186
ef7a4a16
SR
4187 event = rb_reader_event(cpu_buffer);
4188
4189 read = reader->read;
4190 commit = rb_page_commit(reader);
667d2412 4191
66a8cb95 4192 /* Check if any events were dropped */
ff0ff84a 4193 missed_events = cpu_buffer->lost_events;
66a8cb95 4194
8789a9e7 4195 /*
474d32b6
SR
4196 * If this page has been partially read or
4197 * if len is not big enough to read the rest of the page or
4198 * a writer is still on the page, then
4199 * we must copy the data from the page to the buffer.
4200 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4201 */
474d32b6 4202 if (read || (len < (commit - read)) ||
ef7a4a16 4203 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4204 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4205 unsigned int rpos = read;
4206 unsigned int pos = 0;
ef7a4a16 4207 unsigned int size;
8789a9e7
SR
4208
4209 if (full)
554f786e 4210 goto out_unlock;
8789a9e7 4211
ef7a4a16
SR
4212 if (len > (commit - read))
4213 len = (commit - read);
4214
69d1b839
SR
4215 /* Always keep the time extend and data together */
4216 size = rb_event_ts_length(event);
ef7a4a16
SR
4217
4218 if (len < size)
554f786e 4219 goto out_unlock;
ef7a4a16 4220
4f3640f8
SR
4221 /* save the current timestamp, since the user will need it */
4222 save_timestamp = cpu_buffer->read_stamp;
4223
ef7a4a16
SR
4224 /* Need to copy one event at a time */
4225 do {
e1e35927
DS
4226 /* We need the size of one event, because
4227 * rb_advance_reader only advances by one event,
4228 * whereas rb_event_ts_length may include the size of
4229 * one or two events.
4230 * We have already ensured there's enough space if this
4231 * is a time extend. */
4232 size = rb_event_length(event);
474d32b6 4233 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4234
4235 len -= size;
4236
4237 rb_advance_reader(cpu_buffer);
474d32b6
SR
4238 rpos = reader->read;
4239 pos += size;
ef7a4a16 4240
18fab912
HY
4241 if (rpos >= commit)
4242 break;
4243
ef7a4a16 4244 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4245 /* Always keep the time extend and data together */
4246 size = rb_event_ts_length(event);
e1e35927 4247 } while (len >= size);
667d2412
LJ
4248
4249 /* update bpage */
ef7a4a16 4250 local_set(&bpage->commit, pos);
4f3640f8 4251 bpage->time_stamp = save_timestamp;
ef7a4a16 4252
474d32b6
SR
4253 /* we copied everything to the beginning */
4254 read = 0;
8789a9e7 4255 } else {
afbab76a 4256 /* update the entry counter */
77ae365e 4257 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4258 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4259
8789a9e7 4260 /* swap the pages */
044fa782 4261 rb_init_page(bpage);
ef7a4a16
SR
4262 bpage = reader->page;
4263 reader->page = *data_page;
4264 local_set(&reader->write, 0);
778c55d4 4265 local_set(&reader->entries, 0);
ef7a4a16 4266 reader->read = 0;
044fa782 4267 *data_page = bpage;
ff0ff84a
SR
4268
4269 /*
4270 * Use the real_end for the data size,
4271 * This gives us a chance to store the lost events
4272 * on the page.
4273 */
4274 if (reader->real_end)
4275 local_set(&bpage->commit, reader->real_end);
8789a9e7 4276 }
667d2412 4277 ret = read;
8789a9e7 4278
66a8cb95 4279 cpu_buffer->lost_events = 0;
2711ca23
SR
4280
4281 commit = local_read(&bpage->commit);
66a8cb95
SR
4282 /*
4283 * Set a flag in the commit field if we lost events
4284 */
ff0ff84a 4285 if (missed_events) {
ff0ff84a
SR
4286 /* If there is room at the end of the page to save the
4287 * missed events, then record it there.
4288 */
4289 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290 memcpy(&bpage->data[commit], &missed_events,
4291 sizeof(missed_events));
4292 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4293 commit += sizeof(missed_events);
ff0ff84a 4294 }
66a8cb95 4295 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4296 }
66a8cb95 4297
2711ca23
SR
4298 /*
4299 * This page may be off to user land. Zero it out here.
4300 */
4301 if (commit < BUF_PAGE_SIZE)
4302 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
554f786e 4304 out_unlock:
5389f6fa 4305 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4306
554f786e 4307 out:
8789a9e7
SR
4308 return ret;
4309}
d6ce96da 4310EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4311
59222efe 4312#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4313static int rb_cpu_notify(struct notifier_block *self,
4314 unsigned long action, void *hcpu)
554f786e
SR
4315{
4316 struct ring_buffer *buffer =
4317 container_of(self, struct ring_buffer, cpu_notify);
4318 long cpu = (long)hcpu;
438ced17
VN
4319 int cpu_i, nr_pages_same;
4320 unsigned int nr_pages;
554f786e
SR
4321
4322 switch (action) {
4323 case CPU_UP_PREPARE:
4324 case CPU_UP_PREPARE_FROZEN:
3f237a79 4325 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4326 return NOTIFY_OK;
4327
438ced17
VN
4328 nr_pages = 0;
4329 nr_pages_same = 1;
4330 /* check if all cpu sizes are same */
4331 for_each_buffer_cpu(buffer, cpu_i) {
4332 /* fill in the size from first enabled cpu */
4333 if (nr_pages == 0)
4334 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336 nr_pages_same = 0;
4337 break;
4338 }
4339 }
4340 /* allocate minimum pages, user can later expand it */
4341 if (!nr_pages_same)
4342 nr_pages = 2;
554f786e 4343 buffer->buffers[cpu] =
438ced17 4344 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4345 if (!buffer->buffers[cpu]) {
4346 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347 cpu);
4348 return NOTIFY_OK;
4349 }
4350 smp_wmb();
3f237a79 4351 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4352 break;
4353 case CPU_DOWN_PREPARE:
4354 case CPU_DOWN_PREPARE_FROZEN:
4355 /*
4356 * Do nothing.
4357 * If we were to free the buffer, then the user would
4358 * lose any trace that was in the buffer.
4359 */
4360 break;
4361 default:
4362 break;
4363 }
4364 return NOTIFY_OK;
4365}
4366#endif