ring-buffer: Add integrity check at end of iter read
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318
VN
475 struct work_struct update_pages_work;
476 struct completion update_completion;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
77ae365e
SR
948 rb_head_page_deactivate(cpu_buffer);
949
3e89c7bb
SR
950 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
951 return -1;
952 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
953 return -1;
7a8e76a3 954
77ae365e
SR
955 if (rb_check_list(cpu_buffer, head))
956 return -1;
957
044fa782 958 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 959 if (RB_WARN_ON(cpu_buffer,
044fa782 960 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
961 return -1;
962 if (RB_WARN_ON(cpu_buffer,
044fa782 963 bpage->list.prev->next != &bpage->list))
3e89c7bb 964 return -1;
77ae365e
SR
965 if (rb_check_list(cpu_buffer, &bpage->list))
966 return -1;
7a8e76a3
SR
967 }
968
77ae365e
SR
969 rb_head_page_activate(cpu_buffer);
970
7a8e76a3
SR
971 return 0;
972}
973
438ced17 974static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 975{
438ced17 976 int i;
044fa782 977 struct buffer_page *bpage, *tmp;
3adc54fa 978
7a8e76a3 979 for (i = 0; i < nr_pages; i++) {
7ea59064 980 struct page *page;
d7ec4bfe
VN
981 /*
982 * __GFP_NORETRY flag makes sure that the allocation fails
983 * gracefully without invoking oom-killer and the system is
984 * not destabilized.
985 */
044fa782 986 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 987 GFP_KERNEL | __GFP_NORETRY,
438ced17 988 cpu_to_node(cpu));
044fa782 989 if (!bpage)
e4c2ce82 990 goto free_pages;
77ae365e 991
438ced17 992 list_add(&bpage->list, pages);
77ae365e 993
438ced17 994 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 995 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 996 if (!page)
7a8e76a3 997 goto free_pages;
7ea59064 998 bpage->page = page_address(page);
044fa782 999 rb_init_page(bpage->page);
7a8e76a3
SR
1000 }
1001
438ced17
VN
1002 return 0;
1003
1004free_pages:
1005 list_for_each_entry_safe(bpage, tmp, pages, list) {
1006 list_del_init(&bpage->list);
1007 free_buffer_page(bpage);
1008 }
1009
1010 return -ENOMEM;
1011}
1012
1013static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1014 unsigned nr_pages)
1015{
1016 LIST_HEAD(pages);
1017
1018 WARN_ON(!nr_pages);
1019
1020 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1021 return -ENOMEM;
1022
3adc54fa
SR
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
7a8e76a3 1030
438ced17
VN
1031 cpu_buffer->nr_pages = nr_pages;
1032
7a8e76a3
SR
1033 rb_check_pages(cpu_buffer);
1034
1035 return 0;
7a8e76a3
SR
1036}
1037
1038static struct ring_buffer_per_cpu *
438ced17 1039rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1040{
1041 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1042 struct buffer_page *bpage;
7ea59064 1043 struct page *page;
7a8e76a3
SR
1044 int ret;
1045
1046 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1047 GFP_KERNEL, cpu_to_node(cpu));
1048 if (!cpu_buffer)
1049 return NULL;
1050
1051 cpu_buffer->cpu = cpu;
1052 cpu_buffer->buffer = buffer;
5389f6fa 1053 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1054 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1055 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318
VN
1056 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1057 init_completion(&cpu_buffer->update_completion);
7a8e76a3 1058
044fa782 1059 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1060 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1061 if (!bpage)
e4c2ce82
SR
1062 goto fail_free_buffer;
1063
77ae365e
SR
1064 rb_check_bpage(cpu_buffer, bpage);
1065
044fa782 1066 cpu_buffer->reader_page = bpage;
7ea59064
VN
1067 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1068 if (!page)
e4c2ce82 1069 goto fail_free_reader;
7ea59064 1070 bpage->page = page_address(page);
044fa782 1071 rb_init_page(bpage->page);
e4c2ce82 1072
d769041f 1073 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1074
438ced17 1075 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1076 if (ret < 0)
d769041f 1077 goto fail_free_reader;
7a8e76a3
SR
1078
1079 cpu_buffer->head_page
3adc54fa 1080 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1081 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1082
77ae365e
SR
1083 rb_head_page_activate(cpu_buffer);
1084
7a8e76a3
SR
1085 return cpu_buffer;
1086
d769041f
SR
1087 fail_free_reader:
1088 free_buffer_page(cpu_buffer->reader_page);
1089
7a8e76a3
SR
1090 fail_free_buffer:
1091 kfree(cpu_buffer);
1092 return NULL;
1093}
1094
1095static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1096{
3adc54fa 1097 struct list_head *head = cpu_buffer->pages;
044fa782 1098 struct buffer_page *bpage, *tmp;
7a8e76a3 1099
d769041f
SR
1100 free_buffer_page(cpu_buffer->reader_page);
1101
77ae365e
SR
1102 rb_head_page_deactivate(cpu_buffer);
1103
3adc54fa
SR
1104 if (head) {
1105 list_for_each_entry_safe(bpage, tmp, head, list) {
1106 list_del_init(&bpage->list);
1107 free_buffer_page(bpage);
1108 }
1109 bpage = list_entry(head, struct buffer_page, list);
044fa782 1110 free_buffer_page(bpage);
7a8e76a3 1111 }
3adc54fa 1112
7a8e76a3
SR
1113 kfree(cpu_buffer);
1114}
1115
59222efe 1116#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1117static int rb_cpu_notify(struct notifier_block *self,
1118 unsigned long action, void *hcpu);
554f786e
SR
1119#endif
1120
7a8e76a3
SR
1121/**
1122 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1123 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1124 * @flags: attributes to set for the ring buffer.
1125 *
1126 * Currently the only flag that is available is the RB_FL_OVERWRITE
1127 * flag. This flag means that the buffer will overwrite old data
1128 * when the buffer wraps. If this flag is not set, the buffer will
1129 * drop data when the tail hits the head.
1130 */
1f8a6a10
PZ
1131struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1132 struct lock_class_key *key)
7a8e76a3
SR
1133{
1134 struct ring_buffer *buffer;
1135 int bsize;
438ced17 1136 int cpu, nr_pages;
7a8e76a3
SR
1137
1138 /* keep it in its own cache line */
1139 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1140 GFP_KERNEL);
1141 if (!buffer)
1142 return NULL;
1143
9e01c1b7
RR
1144 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1145 goto fail_free_buffer;
1146
438ced17 1147 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1148 buffer->flags = flags;
37886f6a 1149 buffer->clock = trace_clock_local;
1f8a6a10 1150 buffer->reader_lock_key = key;
7a8e76a3
SR
1151
1152 /* need at least two pages */
438ced17
VN
1153 if (nr_pages < 2)
1154 nr_pages = 2;
7a8e76a3 1155
3bf832ce
FW
1156 /*
1157 * In case of non-hotplug cpu, if the ring-buffer is allocated
1158 * in early initcall, it will not be notified of secondary cpus.
1159 * In that off case, we need to allocate for all possible cpus.
1160 */
1161#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1162 get_online_cpus();
1163 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1164#else
1165 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1166#endif
7a8e76a3
SR
1167 buffer->cpus = nr_cpu_ids;
1168
1169 bsize = sizeof(void *) * nr_cpu_ids;
1170 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1171 GFP_KERNEL);
1172 if (!buffer->buffers)
9e01c1b7 1173 goto fail_free_cpumask;
7a8e76a3
SR
1174
1175 for_each_buffer_cpu(buffer, cpu) {
1176 buffer->buffers[cpu] =
438ced17 1177 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1178 if (!buffer->buffers[cpu])
1179 goto fail_free_buffers;
1180 }
1181
59222efe 1182#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1183 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1184 buffer->cpu_notify.priority = 0;
1185 register_cpu_notifier(&buffer->cpu_notify);
1186#endif
1187
1188 put_online_cpus();
7a8e76a3
SR
1189 mutex_init(&buffer->mutex);
1190
1191 return buffer;
1192
1193 fail_free_buffers:
1194 for_each_buffer_cpu(buffer, cpu) {
1195 if (buffer->buffers[cpu])
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1197 }
1198 kfree(buffer->buffers);
1199
9e01c1b7
RR
1200 fail_free_cpumask:
1201 free_cpumask_var(buffer->cpumask);
554f786e 1202 put_online_cpus();
9e01c1b7 1203
7a8e76a3
SR
1204 fail_free_buffer:
1205 kfree(buffer);
1206 return NULL;
1207}
1f8a6a10 1208EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1209
1210/**
1211 * ring_buffer_free - free a ring buffer.
1212 * @buffer: the buffer to free.
1213 */
1214void
1215ring_buffer_free(struct ring_buffer *buffer)
1216{
1217 int cpu;
1218
554f786e
SR
1219 get_online_cpus();
1220
59222efe 1221#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1222 unregister_cpu_notifier(&buffer->cpu_notify);
1223#endif
1224
7a8e76a3
SR
1225 for_each_buffer_cpu(buffer, cpu)
1226 rb_free_cpu_buffer(buffer->buffers[cpu]);
1227
554f786e
SR
1228 put_online_cpus();
1229
bd3f0221 1230 kfree(buffer->buffers);
9e01c1b7
RR
1231 free_cpumask_var(buffer->cpumask);
1232
7a8e76a3
SR
1233 kfree(buffer);
1234}
c4f50183 1235EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1236
37886f6a
SR
1237void ring_buffer_set_clock(struct ring_buffer *buffer,
1238 u64 (*clock)(void))
1239{
1240 buffer->clock = clock;
1241}
1242
7a8e76a3
SR
1243static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1244
83f40318
VN
1245static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1246{
1247 return local_read(&bpage->entries) & RB_WRITE_MASK;
1248}
1249
1250static inline unsigned long rb_page_write(struct buffer_page *bpage)
1251{
1252 return local_read(&bpage->write) & RB_WRITE_MASK;
1253}
1254
5040b4b7 1255static int
83f40318 1256rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1257{
83f40318
VN
1258 struct list_head *tail_page, *to_remove, *next_page;
1259 struct buffer_page *to_remove_page, *tmp_iter_page;
1260 struct buffer_page *last_page, *first_page;
1261 unsigned int nr_removed;
1262 unsigned long head_bit;
1263 int page_entries;
1264
1265 head_bit = 0;
7a8e76a3 1266
5389f6fa 1267 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1268 atomic_inc(&cpu_buffer->record_disabled);
1269 /*
1270 * We don't race with the readers since we have acquired the reader
1271 * lock. We also don't race with writers after disabling recording.
1272 * This makes it easy to figure out the first and the last page to be
1273 * removed from the list. We unlink all the pages in between including
1274 * the first and last pages. This is done in a busy loop so that we
1275 * lose the least number of traces.
1276 * The pages are freed after we restart recording and unlock readers.
1277 */
1278 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1279
83f40318
VN
1280 /*
1281 * tail page might be on reader page, we remove the next page
1282 * from the ring buffer
1283 */
1284 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1285 tail_page = rb_list_head(tail_page->next);
1286 to_remove = tail_page;
1287
1288 /* start of pages to remove */
1289 first_page = list_entry(rb_list_head(to_remove->next),
1290 struct buffer_page, list);
1291
1292 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1293 to_remove = rb_list_head(to_remove)->next;
1294 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1295 }
7a8e76a3 1296
83f40318 1297 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1298
83f40318
VN
1299 /*
1300 * Now we remove all pages between tail_page and next_page.
1301 * Make sure that we have head_bit value preserved for the
1302 * next page
1303 */
1304 tail_page->next = (struct list_head *)((unsigned long)next_page |
1305 head_bit);
1306 next_page = rb_list_head(next_page);
1307 next_page->prev = tail_page;
1308
1309 /* make sure pages points to a valid page in the ring buffer */
1310 cpu_buffer->pages = next_page;
1311
1312 /* update head page */
1313 if (head_bit)
1314 cpu_buffer->head_page = list_entry(next_page,
1315 struct buffer_page, list);
1316
1317 /*
1318 * change read pointer to make sure any read iterators reset
1319 * themselves
1320 */
1321 cpu_buffer->read = 0;
1322
1323 /* pages are removed, resume tracing and then free the pages */
1324 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1325 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1326
1327 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1328
1329 /* last buffer page to remove */
1330 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1331 list);
1332 tmp_iter_page = first_page;
1333
1334 do {
1335 to_remove_page = tmp_iter_page;
1336 rb_inc_page(cpu_buffer, &tmp_iter_page);
1337
1338 /* update the counters */
1339 page_entries = rb_page_entries(to_remove_page);
1340 if (page_entries) {
1341 /*
1342 * If something was added to this page, it was full
1343 * since it is not the tail page. So we deduct the
1344 * bytes consumed in ring buffer from here.
1345 * No need to update overruns, since this page is
1346 * deleted from ring buffer and its entries are
1347 * already accounted for.
1348 */
1349 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1350 }
1351
1352 /*
1353 * We have already removed references to this list item, just
1354 * free up the buffer_page and its page
1355 */
1356 free_buffer_page(to_remove_page);
1357 nr_removed--;
1358
1359 } while (to_remove_page != last_page);
1360
1361 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1362
1363 return nr_removed == 0;
7a8e76a3
SR
1364}
1365
5040b4b7
VN
1366static int
1367rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1368{
5040b4b7
VN
1369 struct list_head *pages = &cpu_buffer->new_pages;
1370 int retries, success;
7a8e76a3 1371
5389f6fa 1372 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1373 /*
1374 * We are holding the reader lock, so the reader page won't be swapped
1375 * in the ring buffer. Now we are racing with the writer trying to
1376 * move head page and the tail page.
1377 * We are going to adapt the reader page update process where:
1378 * 1. We first splice the start and end of list of new pages between
1379 * the head page and its previous page.
1380 * 2. We cmpxchg the prev_page->next to point from head page to the
1381 * start of new pages list.
1382 * 3. Finally, we update the head->prev to the end of new list.
1383 *
1384 * We will try this process 10 times, to make sure that we don't keep
1385 * spinning.
1386 */
1387 retries = 10;
1388 success = 0;
1389 while (retries--) {
1390 struct list_head *head_page, *prev_page, *r;
1391 struct list_head *last_page, *first_page;
1392 struct list_head *head_page_with_bit;
77ae365e 1393
5040b4b7
VN
1394 head_page = &rb_set_head_page(cpu_buffer)->list;
1395 prev_page = head_page->prev;
1396
1397 first_page = pages->next;
1398 last_page = pages->prev;
1399
1400 head_page_with_bit = (struct list_head *)
1401 ((unsigned long)head_page | RB_PAGE_HEAD);
1402
1403 last_page->next = head_page_with_bit;
1404 first_page->prev = prev_page;
1405
1406 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1407
1408 if (r == head_page_with_bit) {
1409 /*
1410 * yay, we replaced the page pointer to our new list,
1411 * now, we just have to update to head page's prev
1412 * pointer to point to end of list
1413 */
1414 head_page->prev = last_page;
1415 success = 1;
1416 break;
1417 }
7a8e76a3 1418 }
7a8e76a3 1419
5040b4b7
VN
1420 if (success)
1421 INIT_LIST_HEAD(pages);
1422 /*
1423 * If we weren't successful in adding in new pages, warn and stop
1424 * tracing
1425 */
1426 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1427 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1428
1429 /* free pages if they weren't inserted */
1430 if (!success) {
1431 struct buffer_page *bpage, *tmp;
1432 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1433 list) {
1434 list_del_init(&bpage->list);
1435 free_buffer_page(bpage);
1436 }
1437 }
1438 return success;
7a8e76a3
SR
1439}
1440
83f40318 1441static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1442{
5040b4b7
VN
1443 int success;
1444
438ced17 1445 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1446 success = rb_insert_pages(cpu_buffer);
438ced17 1447 else
5040b4b7
VN
1448 success = rb_remove_pages(cpu_buffer,
1449 -cpu_buffer->nr_pages_to_update);
83f40318 1450
5040b4b7
VN
1451 if (success)
1452 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1453}
1454
1455static void update_pages_handler(struct work_struct *work)
1456{
1457 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1458 struct ring_buffer_per_cpu, update_pages_work);
1459 rb_update_pages(cpu_buffer);
1460 complete(&cpu_buffer->update_completion);
438ced17
VN
1461}
1462
7a8e76a3
SR
1463/**
1464 * ring_buffer_resize - resize the ring buffer
1465 * @buffer: the buffer to resize.
1466 * @size: the new size.
1467 *
7a8e76a3
SR
1468 * Minimum size is 2 * BUF_PAGE_SIZE.
1469 *
83f40318 1470 * Returns 0 on success and < 0 on failure.
7a8e76a3 1471 */
438ced17
VN
1472int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1473 int cpu_id)
7a8e76a3
SR
1474{
1475 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1476 unsigned nr_pages;
83f40318 1477 int cpu, err = 0;
7a8e76a3 1478
ee51a1de
IM
1479 /*
1480 * Always succeed at resizing a non-existent buffer:
1481 */
1482 if (!buffer)
1483 return size;
1484
7a8e76a3
SR
1485 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1486 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1487
1488 /* we need a minimum of two pages */
1489 if (size < BUF_PAGE_SIZE * 2)
1490 size = BUF_PAGE_SIZE * 2;
1491
83f40318 1492 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1493
83f40318
VN
1494 /*
1495 * Don't succeed if resizing is disabled, as a reader might be
1496 * manipulating the ring buffer and is expecting a sane state while
1497 * this is true.
1498 */
1499 if (atomic_read(&buffer->resize_disabled))
1500 return -EBUSY;
18421015 1501
83f40318 1502 /* prevent another thread from changing buffer sizes */
7a8e76a3 1503 mutex_lock(&buffer->mutex);
7a8e76a3 1504
438ced17
VN
1505 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1506 /* calculate the pages to update */
7a8e76a3
SR
1507 for_each_buffer_cpu(buffer, cpu) {
1508 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1509
438ced17
VN
1510 cpu_buffer->nr_pages_to_update = nr_pages -
1511 cpu_buffer->nr_pages;
438ced17
VN
1512 /*
1513 * nothing more to do for removing pages or no update
1514 */
1515 if (cpu_buffer->nr_pages_to_update <= 0)
1516 continue;
d7ec4bfe 1517 /*
438ced17
VN
1518 * to add pages, make sure all new pages can be
1519 * allocated without receiving ENOMEM
d7ec4bfe 1520 */
438ced17
VN
1521 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1522 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1523 &cpu_buffer->new_pages, cpu)) {
438ced17 1524 /* not enough memory for new pages */
83f40318
VN
1525 err = -ENOMEM;
1526 goto out_err;
1527 }
1528 }
1529
1530 get_online_cpus();
1531 /*
1532 * Fire off all the required work handlers
1533 * Look out for offline CPUs
1534 */
1535 for_each_buffer_cpu(buffer, cpu) {
1536 cpu_buffer = buffer->buffers[cpu];
1537 if (!cpu_buffer->nr_pages_to_update ||
1538 !cpu_online(cpu))
1539 continue;
1540
1541 schedule_work_on(cpu, &cpu_buffer->update_pages_work);
1542 }
1543 /*
1544 * This loop is for the CPUs that are not online.
1545 * We can't schedule anything on them, but it's not necessary
1546 * since we can change their buffer sizes without any race.
1547 */
1548 for_each_buffer_cpu(buffer, cpu) {
1549 cpu_buffer = buffer->buffers[cpu];
1550 if (!cpu_buffer->nr_pages_to_update ||
1551 cpu_online(cpu))
1552 continue;
1553
1554 rb_update_pages(cpu_buffer);
7a8e76a3 1555 }
7a8e76a3 1556
438ced17
VN
1557 /* wait for all the updates to complete */
1558 for_each_buffer_cpu(buffer, cpu) {
1559 cpu_buffer = buffer->buffers[cpu];
83f40318
VN
1560 if (!cpu_buffer->nr_pages_to_update ||
1561 !cpu_online(cpu))
1562 continue;
1563
1564 wait_for_completion(&cpu_buffer->update_completion);
1565 /* reset this value */
1566 cpu_buffer->nr_pages_to_update = 0;
438ced17 1567 }
83f40318
VN
1568
1569 put_online_cpus();
438ced17
VN
1570 } else {
1571 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1572
438ced17
VN
1573 if (nr_pages == cpu_buffer->nr_pages)
1574 goto out;
7a8e76a3 1575
438ced17
VN
1576 cpu_buffer->nr_pages_to_update = nr_pages -
1577 cpu_buffer->nr_pages;
1578
1579 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1580 if (cpu_buffer->nr_pages_to_update > 0 &&
1581 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1582 &cpu_buffer->new_pages, cpu_id)) {
1583 err = -ENOMEM;
1584 goto out_err;
1585 }
438ced17 1586
83f40318
VN
1587 get_online_cpus();
1588
1589 if (cpu_online(cpu_id)) {
1590 schedule_work_on(cpu_id,
1591 &cpu_buffer->update_pages_work);
1592 wait_for_completion(&cpu_buffer->update_completion);
1593 } else
1594 rb_update_pages(cpu_buffer);
1595
1596 put_online_cpus();
1597 /* reset this value */
1598 cpu_buffer->nr_pages_to_update = 0;
438ced17 1599 }
7a8e76a3
SR
1600
1601 out:
659f451f
SR
1602 /*
1603 * The ring buffer resize can happen with the ring buffer
1604 * enabled, so that the update disturbs the tracing as little
1605 * as possible. But if the buffer is disabled, we do not need
1606 * to worry about that, and we can take the time to verify
1607 * that the buffer is not corrupt.
1608 */
1609 if (atomic_read(&buffer->record_disabled)) {
1610 atomic_inc(&buffer->record_disabled);
1611 /*
1612 * Even though the buffer was disabled, we must make sure
1613 * that it is truly disabled before calling rb_check_pages.
1614 * There could have been a race between checking
1615 * record_disable and incrementing it.
1616 */
1617 synchronize_sched();
1618 for_each_buffer_cpu(buffer, cpu) {
1619 cpu_buffer = buffer->buffers[cpu];
1620 rb_check_pages(cpu_buffer);
1621 }
1622 atomic_dec(&buffer->record_disabled);
1623 }
1624
7a8e76a3 1625 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1626 return size;
1627
83f40318 1628 out_err:
438ced17
VN
1629 for_each_buffer_cpu(buffer, cpu) {
1630 struct buffer_page *bpage, *tmp;
83f40318 1631
438ced17 1632 cpu_buffer = buffer->buffers[cpu];
438ced17 1633 cpu_buffer->nr_pages_to_update = 0;
83f40318 1634
438ced17
VN
1635 if (list_empty(&cpu_buffer->new_pages))
1636 continue;
83f40318 1637
438ced17
VN
1638 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1639 list) {
1640 list_del_init(&bpage->list);
1641 free_buffer_page(bpage);
1642 }
7a8e76a3 1643 }
641d2f63 1644 mutex_unlock(&buffer->mutex);
83f40318 1645 return err;
7a8e76a3 1646}
c4f50183 1647EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1648
750912fa
DS
1649void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1650{
1651 mutex_lock(&buffer->mutex);
1652 if (val)
1653 buffer->flags |= RB_FL_OVERWRITE;
1654 else
1655 buffer->flags &= ~RB_FL_OVERWRITE;
1656 mutex_unlock(&buffer->mutex);
1657}
1658EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1659
8789a9e7 1660static inline void *
044fa782 1661__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1662{
044fa782 1663 return bpage->data + index;
8789a9e7
SR
1664}
1665
044fa782 1666static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1667{
044fa782 1668 return bpage->page->data + index;
7a8e76a3
SR
1669}
1670
1671static inline struct ring_buffer_event *
d769041f 1672rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1673{
6f807acd
SR
1674 return __rb_page_index(cpu_buffer->reader_page,
1675 cpu_buffer->reader_page->read);
1676}
1677
7a8e76a3
SR
1678static inline struct ring_buffer_event *
1679rb_iter_head_event(struct ring_buffer_iter *iter)
1680{
6f807acd 1681 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1682}
1683
bf41a158
SR
1684static inline unsigned rb_page_commit(struct buffer_page *bpage)
1685{
abc9b56d 1686 return local_read(&bpage->page->commit);
bf41a158
SR
1687}
1688
25985edc 1689/* Size is determined by what has been committed */
bf41a158
SR
1690static inline unsigned rb_page_size(struct buffer_page *bpage)
1691{
1692 return rb_page_commit(bpage);
1693}
1694
1695static inline unsigned
1696rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1697{
1698 return rb_page_commit(cpu_buffer->commit_page);
1699}
1700
bf41a158
SR
1701static inline unsigned
1702rb_event_index(struct ring_buffer_event *event)
1703{
1704 unsigned long addr = (unsigned long)event;
1705
22f470f8 1706 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1707}
1708
0f0c85fc 1709static inline int
fa743953
SR
1710rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1711 struct ring_buffer_event *event)
bf41a158
SR
1712{
1713 unsigned long addr = (unsigned long)event;
1714 unsigned long index;
1715
1716 index = rb_event_index(event);
1717 addr &= PAGE_MASK;
1718
1719 return cpu_buffer->commit_page->page == (void *)addr &&
1720 rb_commit_index(cpu_buffer) == index;
1721}
1722
34a148bf 1723static void
bf41a158 1724rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1725{
77ae365e
SR
1726 unsigned long max_count;
1727
bf41a158
SR
1728 /*
1729 * We only race with interrupts and NMIs on this CPU.
1730 * If we own the commit event, then we can commit
1731 * all others that interrupted us, since the interruptions
1732 * are in stack format (they finish before they come
1733 * back to us). This allows us to do a simple loop to
1734 * assign the commit to the tail.
1735 */
a8ccf1d6 1736 again:
438ced17 1737 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1738
bf41a158 1739 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1740 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1741 return;
1742 if (RB_WARN_ON(cpu_buffer,
1743 rb_is_reader_page(cpu_buffer->tail_page)))
1744 return;
1745 local_set(&cpu_buffer->commit_page->page->commit,
1746 rb_page_write(cpu_buffer->commit_page));
bf41a158 1747 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1748 cpu_buffer->write_stamp =
1749 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1750 /* add barrier to keep gcc from optimizing too much */
1751 barrier();
1752 }
1753 while (rb_commit_index(cpu_buffer) !=
1754 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1755
1756 local_set(&cpu_buffer->commit_page->page->commit,
1757 rb_page_write(cpu_buffer->commit_page));
1758 RB_WARN_ON(cpu_buffer,
1759 local_read(&cpu_buffer->commit_page->page->commit) &
1760 ~RB_WRITE_MASK);
bf41a158
SR
1761 barrier();
1762 }
a8ccf1d6
SR
1763
1764 /* again, keep gcc from optimizing */
1765 barrier();
1766
1767 /*
1768 * If an interrupt came in just after the first while loop
1769 * and pushed the tail page forward, we will be left with
1770 * a dangling commit that will never go forward.
1771 */
1772 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1773 goto again;
7a8e76a3
SR
1774}
1775
d769041f 1776static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1777{
abc9b56d 1778 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1779 cpu_buffer->reader_page->read = 0;
d769041f
SR
1780}
1781
34a148bf 1782static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1783{
1784 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1785
1786 /*
1787 * The iterator could be on the reader page (it starts there).
1788 * But the head could have moved, since the reader was
1789 * found. Check for this case and assign the iterator
1790 * to the head page instead of next.
1791 */
1792 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1793 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1794 else
1795 rb_inc_page(cpu_buffer, &iter->head_page);
1796
abc9b56d 1797 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1798 iter->head = 0;
1799}
1800
69d1b839
SR
1801/* Slow path, do not inline */
1802static noinline struct ring_buffer_event *
1803rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1804{
1805 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1806
1807 /* Not the first event on the page? */
1808 if (rb_event_index(event)) {
1809 event->time_delta = delta & TS_MASK;
1810 event->array[0] = delta >> TS_SHIFT;
1811 } else {
1812 /* nope, just zero it */
1813 event->time_delta = 0;
1814 event->array[0] = 0;
1815 }
1816
1817 return skip_time_extend(event);
1818}
1819
7a8e76a3
SR
1820/**
1821 * ring_buffer_update_event - update event type and data
1822 * @event: the even to update
1823 * @type: the type of event
1824 * @length: the size of the event field in the ring buffer
1825 *
1826 * Update the type and data fields of the event. The length
1827 * is the actual size that is written to the ring buffer,
1828 * and with this, we can determine what to place into the
1829 * data field.
1830 */
34a148bf 1831static void
69d1b839
SR
1832rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1833 struct ring_buffer_event *event, unsigned length,
1834 int add_timestamp, u64 delta)
7a8e76a3 1835{
69d1b839
SR
1836 /* Only a commit updates the timestamp */
1837 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1838 delta = 0;
7a8e76a3 1839
69d1b839
SR
1840 /*
1841 * If we need to add a timestamp, then we
1842 * add it to the start of the resevered space.
1843 */
1844 if (unlikely(add_timestamp)) {
1845 event = rb_add_time_stamp(event, delta);
1846 length -= RB_LEN_TIME_EXTEND;
1847 delta = 0;
7a8e76a3 1848 }
69d1b839
SR
1849
1850 event->time_delta = delta;
1851 length -= RB_EVNT_HDR_SIZE;
1852 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1853 event->type_len = 0;
1854 event->array[0] = length;
1855 } else
1856 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1857}
1858
77ae365e
SR
1859/*
1860 * rb_handle_head_page - writer hit the head page
1861 *
1862 * Returns: +1 to retry page
1863 * 0 to continue
1864 * -1 on error
1865 */
1866static int
1867rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1868 struct buffer_page *tail_page,
1869 struct buffer_page *next_page)
1870{
1871 struct buffer_page *new_head;
1872 int entries;
1873 int type;
1874 int ret;
1875
1876 entries = rb_page_entries(next_page);
1877
1878 /*
1879 * The hard part is here. We need to move the head
1880 * forward, and protect against both readers on
1881 * other CPUs and writers coming in via interrupts.
1882 */
1883 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1884 RB_PAGE_HEAD);
1885
1886 /*
1887 * type can be one of four:
1888 * NORMAL - an interrupt already moved it for us
1889 * HEAD - we are the first to get here.
1890 * UPDATE - we are the interrupt interrupting
1891 * a current move.
1892 * MOVED - a reader on another CPU moved the next
1893 * pointer to its reader page. Give up
1894 * and try again.
1895 */
1896
1897 switch (type) {
1898 case RB_PAGE_HEAD:
1899 /*
1900 * We changed the head to UPDATE, thus
1901 * it is our responsibility to update
1902 * the counters.
1903 */
1904 local_add(entries, &cpu_buffer->overrun);
c64e148a 1905 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1906
1907 /*
1908 * The entries will be zeroed out when we move the
1909 * tail page.
1910 */
1911
1912 /* still more to do */
1913 break;
1914
1915 case RB_PAGE_UPDATE:
1916 /*
1917 * This is an interrupt that interrupt the
1918 * previous update. Still more to do.
1919 */
1920 break;
1921 case RB_PAGE_NORMAL:
1922 /*
1923 * An interrupt came in before the update
1924 * and processed this for us.
1925 * Nothing left to do.
1926 */
1927 return 1;
1928 case RB_PAGE_MOVED:
1929 /*
1930 * The reader is on another CPU and just did
1931 * a swap with our next_page.
1932 * Try again.
1933 */
1934 return 1;
1935 default:
1936 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1937 return -1;
1938 }
1939
1940 /*
1941 * Now that we are here, the old head pointer is
1942 * set to UPDATE. This will keep the reader from
1943 * swapping the head page with the reader page.
1944 * The reader (on another CPU) will spin till
1945 * we are finished.
1946 *
1947 * We just need to protect against interrupts
1948 * doing the job. We will set the next pointer
1949 * to HEAD. After that, we set the old pointer
1950 * to NORMAL, but only if it was HEAD before.
1951 * otherwise we are an interrupt, and only
1952 * want the outer most commit to reset it.
1953 */
1954 new_head = next_page;
1955 rb_inc_page(cpu_buffer, &new_head);
1956
1957 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1958 RB_PAGE_NORMAL);
1959
1960 /*
1961 * Valid returns are:
1962 * HEAD - an interrupt came in and already set it.
1963 * NORMAL - One of two things:
1964 * 1) We really set it.
1965 * 2) A bunch of interrupts came in and moved
1966 * the page forward again.
1967 */
1968 switch (ret) {
1969 case RB_PAGE_HEAD:
1970 case RB_PAGE_NORMAL:
1971 /* OK */
1972 break;
1973 default:
1974 RB_WARN_ON(cpu_buffer, 1);
1975 return -1;
1976 }
1977
1978 /*
1979 * It is possible that an interrupt came in,
1980 * set the head up, then more interrupts came in
1981 * and moved it again. When we get back here,
1982 * the page would have been set to NORMAL but we
1983 * just set it back to HEAD.
1984 *
1985 * How do you detect this? Well, if that happened
1986 * the tail page would have moved.
1987 */
1988 if (ret == RB_PAGE_NORMAL) {
1989 /*
1990 * If the tail had moved passed next, then we need
1991 * to reset the pointer.
1992 */
1993 if (cpu_buffer->tail_page != tail_page &&
1994 cpu_buffer->tail_page != next_page)
1995 rb_head_page_set_normal(cpu_buffer, new_head,
1996 next_page,
1997 RB_PAGE_HEAD);
1998 }
1999
2000 /*
2001 * If this was the outer most commit (the one that
2002 * changed the original pointer from HEAD to UPDATE),
2003 * then it is up to us to reset it to NORMAL.
2004 */
2005 if (type == RB_PAGE_HEAD) {
2006 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2007 tail_page,
2008 RB_PAGE_UPDATE);
2009 if (RB_WARN_ON(cpu_buffer,
2010 ret != RB_PAGE_UPDATE))
2011 return -1;
2012 }
2013
2014 return 0;
2015}
2016
34a148bf 2017static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2018{
2019 struct ring_buffer_event event; /* Used only for sizeof array */
2020
2021 /* zero length can cause confusions */
2022 if (!length)
2023 length = 1;
2024
2271048d 2025 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2026 length += sizeof(event.array[0]);
2027
2028 length += RB_EVNT_HDR_SIZE;
2271048d 2029 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2030
2031 return length;
2032}
2033
c7b09308
SR
2034static inline void
2035rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2036 struct buffer_page *tail_page,
2037 unsigned long tail, unsigned long length)
2038{
2039 struct ring_buffer_event *event;
2040
2041 /*
2042 * Only the event that crossed the page boundary
2043 * must fill the old tail_page with padding.
2044 */
2045 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2046 /*
2047 * If the page was filled, then we still need
2048 * to update the real_end. Reset it to zero
2049 * and the reader will ignore it.
2050 */
2051 if (tail == BUF_PAGE_SIZE)
2052 tail_page->real_end = 0;
2053
c7b09308
SR
2054 local_sub(length, &tail_page->write);
2055 return;
2056 }
2057
2058 event = __rb_page_index(tail_page, tail);
b0b7065b 2059 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2060
c64e148a
VN
2061 /* account for padding bytes */
2062 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2063
ff0ff84a
SR
2064 /*
2065 * Save the original length to the meta data.
2066 * This will be used by the reader to add lost event
2067 * counter.
2068 */
2069 tail_page->real_end = tail;
2070
c7b09308
SR
2071 /*
2072 * If this event is bigger than the minimum size, then
2073 * we need to be careful that we don't subtract the
2074 * write counter enough to allow another writer to slip
2075 * in on this page.
2076 * We put in a discarded commit instead, to make sure
2077 * that this space is not used again.
2078 *
2079 * If we are less than the minimum size, we don't need to
2080 * worry about it.
2081 */
2082 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2083 /* No room for any events */
2084
2085 /* Mark the rest of the page with padding */
2086 rb_event_set_padding(event);
2087
2088 /* Set the write back to the previous setting */
2089 local_sub(length, &tail_page->write);
2090 return;
2091 }
2092
2093 /* Put in a discarded event */
2094 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2095 event->type_len = RINGBUF_TYPE_PADDING;
2096 /* time delta must be non zero */
2097 event->time_delta = 1;
c7b09308
SR
2098
2099 /* Set write to end of buffer */
2100 length = (tail + length) - BUF_PAGE_SIZE;
2101 local_sub(length, &tail_page->write);
2102}
6634ff26 2103
747e94ae
SR
2104/*
2105 * This is the slow path, force gcc not to inline it.
2106 */
2107static noinline struct ring_buffer_event *
6634ff26
SR
2108rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2109 unsigned long length, unsigned long tail,
e8bc43e8 2110 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2111{
5a50e33c 2112 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2113 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2114 struct buffer_page *next_page;
2115 int ret;
aa20ae84
SR
2116
2117 next_page = tail_page;
2118
aa20ae84
SR
2119 rb_inc_page(cpu_buffer, &next_page);
2120
aa20ae84
SR
2121 /*
2122 * If for some reason, we had an interrupt storm that made
2123 * it all the way around the buffer, bail, and warn
2124 * about it.
2125 */
2126 if (unlikely(next_page == commit_page)) {
77ae365e 2127 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2128 goto out_reset;
2129 }
2130
77ae365e
SR
2131 /*
2132 * This is where the fun begins!
2133 *
2134 * We are fighting against races between a reader that
2135 * could be on another CPU trying to swap its reader
2136 * page with the buffer head.
2137 *
2138 * We are also fighting against interrupts coming in and
2139 * moving the head or tail on us as well.
2140 *
2141 * If the next page is the head page then we have filled
2142 * the buffer, unless the commit page is still on the
2143 * reader page.
2144 */
2145 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2146
77ae365e
SR
2147 /*
2148 * If the commit is not on the reader page, then
2149 * move the header page.
2150 */
2151 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2152 /*
2153 * If we are not in overwrite mode,
2154 * this is easy, just stop here.
2155 */
2156 if (!(buffer->flags & RB_FL_OVERWRITE))
2157 goto out_reset;
2158
2159 ret = rb_handle_head_page(cpu_buffer,
2160 tail_page,
2161 next_page);
2162 if (ret < 0)
2163 goto out_reset;
2164 if (ret)
2165 goto out_again;
2166 } else {
2167 /*
2168 * We need to be careful here too. The
2169 * commit page could still be on the reader
2170 * page. We could have a small buffer, and
2171 * have filled up the buffer with events
2172 * from interrupts and such, and wrapped.
2173 *
2174 * Note, if the tail page is also the on the
2175 * reader_page, we let it move out.
2176 */
2177 if (unlikely((cpu_buffer->commit_page !=
2178 cpu_buffer->tail_page) &&
2179 (cpu_buffer->commit_page ==
2180 cpu_buffer->reader_page))) {
2181 local_inc(&cpu_buffer->commit_overrun);
2182 goto out_reset;
2183 }
aa20ae84
SR
2184 }
2185 }
2186
77ae365e
SR
2187 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2188 if (ret) {
2189 /*
2190 * Nested commits always have zero deltas, so
2191 * just reread the time stamp
2192 */
e8bc43e8
SR
2193 ts = rb_time_stamp(buffer);
2194 next_page->page->time_stamp = ts;
aa20ae84
SR
2195 }
2196
77ae365e 2197 out_again:
aa20ae84 2198
77ae365e 2199 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2200
2201 /* fail and let the caller try again */
2202 return ERR_PTR(-EAGAIN);
2203
45141d46 2204 out_reset:
6f3b3440 2205 /* reset write */
c7b09308 2206 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2207
bf41a158 2208 return NULL;
7a8e76a3
SR
2209}
2210
6634ff26
SR
2211static struct ring_buffer_event *
2212__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2213 unsigned long length, u64 ts,
2214 u64 delta, int add_timestamp)
6634ff26 2215{
5a50e33c 2216 struct buffer_page *tail_page;
6634ff26
SR
2217 struct ring_buffer_event *event;
2218 unsigned long tail, write;
2219
69d1b839
SR
2220 /*
2221 * If the time delta since the last event is too big to
2222 * hold in the time field of the event, then we append a
2223 * TIME EXTEND event ahead of the data event.
2224 */
2225 if (unlikely(add_timestamp))
2226 length += RB_LEN_TIME_EXTEND;
2227
6634ff26
SR
2228 tail_page = cpu_buffer->tail_page;
2229 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2230
2231 /* set write to only the index of the write */
2232 write &= RB_WRITE_MASK;
6634ff26
SR
2233 tail = write - length;
2234
2235 /* See if we shot pass the end of this buffer page */
747e94ae 2236 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2237 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2238 tail_page, ts);
6634ff26
SR
2239
2240 /* We reserved something on the buffer */
2241
6634ff26 2242 event = __rb_page_index(tail_page, tail);
1744a21d 2243 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2244 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2245
69d1b839 2246 local_inc(&tail_page->entries);
6634ff26
SR
2247
2248 /*
fa743953
SR
2249 * If this is the first commit on the page, then update
2250 * its timestamp.
6634ff26 2251 */
fa743953 2252 if (!tail)
e8bc43e8 2253 tail_page->page->time_stamp = ts;
6634ff26 2254
c64e148a
VN
2255 /* account for these added bytes */
2256 local_add(length, &cpu_buffer->entries_bytes);
2257
6634ff26
SR
2258 return event;
2259}
2260
edd813bf
SR
2261static inline int
2262rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2263 struct ring_buffer_event *event)
2264{
2265 unsigned long new_index, old_index;
2266 struct buffer_page *bpage;
2267 unsigned long index;
2268 unsigned long addr;
2269
2270 new_index = rb_event_index(event);
69d1b839 2271 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2272 addr = (unsigned long)event;
2273 addr &= PAGE_MASK;
2274
2275 bpage = cpu_buffer->tail_page;
2276
2277 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2278 unsigned long write_mask =
2279 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2280 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2281 /*
2282 * This is on the tail page. It is possible that
2283 * a write could come in and move the tail page
2284 * and write to the next page. That is fine
2285 * because we just shorten what is on this page.
2286 */
77ae365e
SR
2287 old_index += write_mask;
2288 new_index += write_mask;
edd813bf 2289 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2290 if (index == old_index) {
2291 /* update counters */
2292 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2293 return 1;
c64e148a 2294 }
edd813bf
SR
2295 }
2296
2297 /* could not discard */
2298 return 0;
2299}
2300
fa743953
SR
2301static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2302{
2303 local_inc(&cpu_buffer->committing);
2304 local_inc(&cpu_buffer->commits);
2305}
2306
d9abde21 2307static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2308{
2309 unsigned long commits;
2310
2311 if (RB_WARN_ON(cpu_buffer,
2312 !local_read(&cpu_buffer->committing)))
2313 return;
2314
2315 again:
2316 commits = local_read(&cpu_buffer->commits);
2317 /* synchronize with interrupts */
2318 barrier();
2319 if (local_read(&cpu_buffer->committing) == 1)
2320 rb_set_commit_to_write(cpu_buffer);
2321
2322 local_dec(&cpu_buffer->committing);
2323
2324 /* synchronize with interrupts */
2325 barrier();
2326
2327 /*
2328 * Need to account for interrupts coming in between the
2329 * updating of the commit page and the clearing of the
2330 * committing counter.
2331 */
2332 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2333 !local_read(&cpu_buffer->committing)) {
2334 local_inc(&cpu_buffer->committing);
2335 goto again;
2336 }
2337}
2338
7a8e76a3 2339static struct ring_buffer_event *
62f0b3eb
SR
2340rb_reserve_next_event(struct ring_buffer *buffer,
2341 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2342 unsigned long length)
7a8e76a3
SR
2343{
2344 struct ring_buffer_event *event;
69d1b839 2345 u64 ts, delta;
818e3dd3 2346 int nr_loops = 0;
69d1b839 2347 int add_timestamp;
140ff891 2348 u64 diff;
7a8e76a3 2349
fa743953
SR
2350 rb_start_commit(cpu_buffer);
2351
85bac32c 2352#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2353 /*
2354 * Due to the ability to swap a cpu buffer from a buffer
2355 * it is possible it was swapped before we committed.
2356 * (committing stops a swap). We check for it here and
2357 * if it happened, we have to fail the write.
2358 */
2359 barrier();
2360 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2361 local_dec(&cpu_buffer->committing);
2362 local_dec(&cpu_buffer->commits);
2363 return NULL;
2364 }
85bac32c 2365#endif
62f0b3eb 2366
be957c44 2367 length = rb_calculate_event_length(length);
bf41a158 2368 again:
69d1b839
SR
2369 add_timestamp = 0;
2370 delta = 0;
2371
818e3dd3
SR
2372 /*
2373 * We allow for interrupts to reenter here and do a trace.
2374 * If one does, it will cause this original code to loop
2375 * back here. Even with heavy interrupts happening, this
2376 * should only happen a few times in a row. If this happens
2377 * 1000 times in a row, there must be either an interrupt
2378 * storm or we have something buggy.
2379 * Bail!
2380 */
3e89c7bb 2381 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2382 goto out_fail;
818e3dd3 2383
6d3f1e12 2384 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2385 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2386
140ff891
SR
2387 /* make sure this diff is calculated here */
2388 barrier();
bf41a158 2389
140ff891
SR
2390 /* Did the write stamp get updated already? */
2391 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2392 delta = diff;
2393 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2394 int local_clock_stable = 1;
2395#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2396 local_clock_stable = sched_clock_stable;
2397#endif
69d1b839 2398 WARN_ONCE(delta > (1ULL << 59),
31274d72 2399 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2400 (unsigned long long)delta,
2401 (unsigned long long)ts,
31274d72
JO
2402 (unsigned long long)cpu_buffer->write_stamp,
2403 local_clock_stable ? "" :
2404 "If you just came from a suspend/resume,\n"
2405 "please switch to the trace global clock:\n"
2406 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2407 add_timestamp = 1;
7a8e76a3 2408 }
168b6b1d 2409 }
7a8e76a3 2410
69d1b839
SR
2411 event = __rb_reserve_next(cpu_buffer, length, ts,
2412 delta, add_timestamp);
168b6b1d 2413 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2414 goto again;
2415
fa743953
SR
2416 if (!event)
2417 goto out_fail;
7a8e76a3 2418
7a8e76a3 2419 return event;
fa743953
SR
2420
2421 out_fail:
2422 rb_end_commit(cpu_buffer);
2423 return NULL;
7a8e76a3
SR
2424}
2425
1155de47
PM
2426#ifdef CONFIG_TRACING
2427
aa18efb2 2428#define TRACE_RECURSIVE_DEPTH 16
261842b7 2429
d9abde21
SR
2430/* Keep this code out of the fast path cache */
2431static noinline void trace_recursive_fail(void)
261842b7 2432{
aa18efb2
SR
2433 /* Disable all tracing before we do anything else */
2434 tracing_off_permanent();
261842b7 2435
7d7d2b80 2436 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2437 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2438 trace_recursion_buffer(),
aa18efb2
SR
2439 hardirq_count() >> HARDIRQ_SHIFT,
2440 softirq_count() >> SOFTIRQ_SHIFT,
2441 in_nmi());
261842b7 2442
aa18efb2 2443 WARN_ON_ONCE(1);
d9abde21
SR
2444}
2445
2446static inline int trace_recursive_lock(void)
2447{
b1cff0ad 2448 trace_recursion_inc();
d9abde21 2449
b1cff0ad 2450 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2451 return 0;
2452
2453 trace_recursive_fail();
2454
aa18efb2 2455 return -1;
261842b7
SR
2456}
2457
d9abde21 2458static inline void trace_recursive_unlock(void)
261842b7 2459{
b1cff0ad 2460 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2461
b1cff0ad 2462 trace_recursion_dec();
261842b7
SR
2463}
2464
1155de47
PM
2465#else
2466
2467#define trace_recursive_lock() (0)
2468#define trace_recursive_unlock() do { } while (0)
2469
2470#endif
2471
7a8e76a3
SR
2472/**
2473 * ring_buffer_lock_reserve - reserve a part of the buffer
2474 * @buffer: the ring buffer to reserve from
2475 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2476 *
2477 * Returns a reseverd event on the ring buffer to copy directly to.
2478 * The user of this interface will need to get the body to write into
2479 * and can use the ring_buffer_event_data() interface.
2480 *
2481 * The length is the length of the data needed, not the event length
2482 * which also includes the event header.
2483 *
2484 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2485 * If NULL is returned, then nothing has been allocated or locked.
2486 */
2487struct ring_buffer_event *
0a987751 2488ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2489{
2490 struct ring_buffer_per_cpu *cpu_buffer;
2491 struct ring_buffer_event *event;
5168ae50 2492 int cpu;
7a8e76a3 2493
033601a3 2494 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2495 return NULL;
2496
bf41a158 2497 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2498 preempt_disable_notrace();
bf41a158 2499
52fbe9cd
LJ
2500 if (atomic_read(&buffer->record_disabled))
2501 goto out_nocheck;
2502
261842b7
SR
2503 if (trace_recursive_lock())
2504 goto out_nocheck;
2505
7a8e76a3
SR
2506 cpu = raw_smp_processor_id();
2507
9e01c1b7 2508 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2509 goto out;
7a8e76a3
SR
2510
2511 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2512
2513 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2514 goto out;
7a8e76a3 2515
be957c44 2516 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2517 goto out;
7a8e76a3 2518
62f0b3eb 2519 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2520 if (!event)
d769041f 2521 goto out;
7a8e76a3
SR
2522
2523 return event;
2524
d769041f 2525 out:
261842b7
SR
2526 trace_recursive_unlock();
2527
2528 out_nocheck:
5168ae50 2529 preempt_enable_notrace();
7a8e76a3
SR
2530 return NULL;
2531}
c4f50183 2532EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2533
a1863c21
SR
2534static void
2535rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2536 struct ring_buffer_event *event)
2537{
69d1b839
SR
2538 u64 delta;
2539
fa743953
SR
2540 /*
2541 * The event first in the commit queue updates the
2542 * time stamp.
2543 */
69d1b839
SR
2544 if (rb_event_is_commit(cpu_buffer, event)) {
2545 /*
2546 * A commit event that is first on a page
2547 * updates the write timestamp with the page stamp
2548 */
2549 if (!rb_event_index(event))
2550 cpu_buffer->write_stamp =
2551 cpu_buffer->commit_page->page->time_stamp;
2552 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2553 delta = event->array[0];
2554 delta <<= TS_SHIFT;
2555 delta += event->time_delta;
2556 cpu_buffer->write_stamp += delta;
2557 } else
2558 cpu_buffer->write_stamp += event->time_delta;
2559 }
a1863c21 2560}
bf41a158 2561
a1863c21
SR
2562static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2563 struct ring_buffer_event *event)
2564{
2565 local_inc(&cpu_buffer->entries);
2566 rb_update_write_stamp(cpu_buffer, event);
fa743953 2567 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2568}
2569
2570/**
2571 * ring_buffer_unlock_commit - commit a reserved
2572 * @buffer: The buffer to commit to
2573 * @event: The event pointer to commit.
7a8e76a3
SR
2574 *
2575 * This commits the data to the ring buffer, and releases any locks held.
2576 *
2577 * Must be paired with ring_buffer_lock_reserve.
2578 */
2579int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2580 struct ring_buffer_event *event)
7a8e76a3
SR
2581{
2582 struct ring_buffer_per_cpu *cpu_buffer;
2583 int cpu = raw_smp_processor_id();
2584
2585 cpu_buffer = buffer->buffers[cpu];
2586
7a8e76a3
SR
2587 rb_commit(cpu_buffer, event);
2588
261842b7
SR
2589 trace_recursive_unlock();
2590
5168ae50 2591 preempt_enable_notrace();
7a8e76a3
SR
2592
2593 return 0;
2594}
c4f50183 2595EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2596
f3b9aae1
FW
2597static inline void rb_event_discard(struct ring_buffer_event *event)
2598{
69d1b839
SR
2599 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2600 event = skip_time_extend(event);
2601
334d4169
LJ
2602 /* array[0] holds the actual length for the discarded event */
2603 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2604 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2605 /* time delta must be non zero */
2606 if (!event->time_delta)
2607 event->time_delta = 1;
2608}
2609
a1863c21
SR
2610/*
2611 * Decrement the entries to the page that an event is on.
2612 * The event does not even need to exist, only the pointer
2613 * to the page it is on. This may only be called before the commit
2614 * takes place.
2615 */
2616static inline void
2617rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2618 struct ring_buffer_event *event)
2619{
2620 unsigned long addr = (unsigned long)event;
2621 struct buffer_page *bpage = cpu_buffer->commit_page;
2622 struct buffer_page *start;
2623
2624 addr &= PAGE_MASK;
2625
2626 /* Do the likely case first */
2627 if (likely(bpage->page == (void *)addr)) {
2628 local_dec(&bpage->entries);
2629 return;
2630 }
2631
2632 /*
2633 * Because the commit page may be on the reader page we
2634 * start with the next page and check the end loop there.
2635 */
2636 rb_inc_page(cpu_buffer, &bpage);
2637 start = bpage;
2638 do {
2639 if (bpage->page == (void *)addr) {
2640 local_dec(&bpage->entries);
2641 return;
2642 }
2643 rb_inc_page(cpu_buffer, &bpage);
2644 } while (bpage != start);
2645
2646 /* commit not part of this buffer?? */
2647 RB_WARN_ON(cpu_buffer, 1);
2648}
2649
fa1b47dd
SR
2650/**
2651 * ring_buffer_commit_discard - discard an event that has not been committed
2652 * @buffer: the ring buffer
2653 * @event: non committed event to discard
2654 *
dc892f73
SR
2655 * Sometimes an event that is in the ring buffer needs to be ignored.
2656 * This function lets the user discard an event in the ring buffer
2657 * and then that event will not be read later.
2658 *
2659 * This function only works if it is called before the the item has been
2660 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2661 * if another event has not been added behind it.
2662 *
2663 * If another event has been added behind it, it will set the event
2664 * up as discarded, and perform the commit.
2665 *
2666 * If this function is called, do not call ring_buffer_unlock_commit on
2667 * the event.
2668 */
2669void ring_buffer_discard_commit(struct ring_buffer *buffer,
2670 struct ring_buffer_event *event)
2671{
2672 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2673 int cpu;
2674
2675 /* The event is discarded regardless */
f3b9aae1 2676 rb_event_discard(event);
fa1b47dd 2677
fa743953
SR
2678 cpu = smp_processor_id();
2679 cpu_buffer = buffer->buffers[cpu];
2680
fa1b47dd
SR
2681 /*
2682 * This must only be called if the event has not been
2683 * committed yet. Thus we can assume that preemption
2684 * is still disabled.
2685 */
fa743953 2686 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2687
a1863c21 2688 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2689 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2690 goto out;
fa1b47dd
SR
2691
2692 /*
2693 * The commit is still visible by the reader, so we
a1863c21 2694 * must still update the timestamp.
fa1b47dd 2695 */
a1863c21 2696 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2697 out:
fa743953 2698 rb_end_commit(cpu_buffer);
fa1b47dd 2699
f3b9aae1
FW
2700 trace_recursive_unlock();
2701
5168ae50 2702 preempt_enable_notrace();
fa1b47dd
SR
2703
2704}
2705EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2706
7a8e76a3
SR
2707/**
2708 * ring_buffer_write - write data to the buffer without reserving
2709 * @buffer: The ring buffer to write to.
2710 * @length: The length of the data being written (excluding the event header)
2711 * @data: The data to write to the buffer.
2712 *
2713 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2714 * one function. If you already have the data to write to the buffer, it
2715 * may be easier to simply call this function.
2716 *
2717 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2718 * and not the length of the event which would hold the header.
2719 */
2720int ring_buffer_write(struct ring_buffer *buffer,
2721 unsigned long length,
2722 void *data)
2723{
2724 struct ring_buffer_per_cpu *cpu_buffer;
2725 struct ring_buffer_event *event;
7a8e76a3
SR
2726 void *body;
2727 int ret = -EBUSY;
5168ae50 2728 int cpu;
7a8e76a3 2729
033601a3 2730 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2731 return -EBUSY;
2732
5168ae50 2733 preempt_disable_notrace();
bf41a158 2734
52fbe9cd
LJ
2735 if (atomic_read(&buffer->record_disabled))
2736 goto out;
2737
7a8e76a3
SR
2738 cpu = raw_smp_processor_id();
2739
9e01c1b7 2740 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2741 goto out;
7a8e76a3
SR
2742
2743 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2744
2745 if (atomic_read(&cpu_buffer->record_disabled))
2746 goto out;
2747
be957c44
SR
2748 if (length > BUF_MAX_DATA_SIZE)
2749 goto out;
2750
62f0b3eb 2751 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2752 if (!event)
2753 goto out;
2754
2755 body = rb_event_data(event);
2756
2757 memcpy(body, data, length);
2758
2759 rb_commit(cpu_buffer, event);
2760
2761 ret = 0;
2762 out:
5168ae50 2763 preempt_enable_notrace();
7a8e76a3
SR
2764
2765 return ret;
2766}
c4f50183 2767EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2768
34a148bf 2769static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2770{
2771 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2772 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2773 struct buffer_page *commit = cpu_buffer->commit_page;
2774
77ae365e
SR
2775 /* In case of error, head will be NULL */
2776 if (unlikely(!head))
2777 return 1;
2778
bf41a158
SR
2779 return reader->read == rb_page_commit(reader) &&
2780 (commit == reader ||
2781 (commit == head &&
2782 head->read == rb_page_commit(commit)));
2783}
2784
7a8e76a3
SR
2785/**
2786 * ring_buffer_record_disable - stop all writes into the buffer
2787 * @buffer: The ring buffer to stop writes to.
2788 *
2789 * This prevents all writes to the buffer. Any attempt to write
2790 * to the buffer after this will fail and return NULL.
2791 *
2792 * The caller should call synchronize_sched() after this.
2793 */
2794void ring_buffer_record_disable(struct ring_buffer *buffer)
2795{
2796 atomic_inc(&buffer->record_disabled);
2797}
c4f50183 2798EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2799
2800/**
2801 * ring_buffer_record_enable - enable writes to the buffer
2802 * @buffer: The ring buffer to enable writes
2803 *
2804 * Note, multiple disables will need the same number of enables
c41b20e7 2805 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2806 */
2807void ring_buffer_record_enable(struct ring_buffer *buffer)
2808{
2809 atomic_dec(&buffer->record_disabled);
2810}
c4f50183 2811EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2812
499e5470
SR
2813/**
2814 * ring_buffer_record_off - stop all writes into the buffer
2815 * @buffer: The ring buffer to stop writes to.
2816 *
2817 * This prevents all writes to the buffer. Any attempt to write
2818 * to the buffer after this will fail and return NULL.
2819 *
2820 * This is different than ring_buffer_record_disable() as
2821 * it works like an on/off switch, where as the disable() verison
2822 * must be paired with a enable().
2823 */
2824void ring_buffer_record_off(struct ring_buffer *buffer)
2825{
2826 unsigned int rd;
2827 unsigned int new_rd;
2828
2829 do {
2830 rd = atomic_read(&buffer->record_disabled);
2831 new_rd = rd | RB_BUFFER_OFF;
2832 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2833}
2834EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2835
2836/**
2837 * ring_buffer_record_on - restart writes into the buffer
2838 * @buffer: The ring buffer to start writes to.
2839 *
2840 * This enables all writes to the buffer that was disabled by
2841 * ring_buffer_record_off().
2842 *
2843 * This is different than ring_buffer_record_enable() as
2844 * it works like an on/off switch, where as the enable() verison
2845 * must be paired with a disable().
2846 */
2847void ring_buffer_record_on(struct ring_buffer *buffer)
2848{
2849 unsigned int rd;
2850 unsigned int new_rd;
2851
2852 do {
2853 rd = atomic_read(&buffer->record_disabled);
2854 new_rd = rd & ~RB_BUFFER_OFF;
2855 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2856}
2857EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2858
2859/**
2860 * ring_buffer_record_is_on - return true if the ring buffer can write
2861 * @buffer: The ring buffer to see if write is enabled
2862 *
2863 * Returns true if the ring buffer is in a state that it accepts writes.
2864 */
2865int ring_buffer_record_is_on(struct ring_buffer *buffer)
2866{
2867 return !atomic_read(&buffer->record_disabled);
2868}
2869
7a8e76a3
SR
2870/**
2871 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2872 * @buffer: The ring buffer to stop writes to.
2873 * @cpu: The CPU buffer to stop
2874 *
2875 * This prevents all writes to the buffer. Any attempt to write
2876 * to the buffer after this will fail and return NULL.
2877 *
2878 * The caller should call synchronize_sched() after this.
2879 */
2880void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2881{
2882 struct ring_buffer_per_cpu *cpu_buffer;
2883
9e01c1b7 2884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2885 return;
7a8e76a3
SR
2886
2887 cpu_buffer = buffer->buffers[cpu];
2888 atomic_inc(&cpu_buffer->record_disabled);
2889}
c4f50183 2890EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2891
2892/**
2893 * ring_buffer_record_enable_cpu - enable writes to the buffer
2894 * @buffer: The ring buffer to enable writes
2895 * @cpu: The CPU to enable.
2896 *
2897 * Note, multiple disables will need the same number of enables
c41b20e7 2898 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2899 */
2900void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2901{
2902 struct ring_buffer_per_cpu *cpu_buffer;
2903
9e01c1b7 2904 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2905 return;
7a8e76a3
SR
2906
2907 cpu_buffer = buffer->buffers[cpu];
2908 atomic_dec(&cpu_buffer->record_disabled);
2909}
c4f50183 2910EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2911
f6195aa0
SR
2912/*
2913 * The total entries in the ring buffer is the running counter
2914 * of entries entered into the ring buffer, minus the sum of
2915 * the entries read from the ring buffer and the number of
2916 * entries that were overwritten.
2917 */
2918static inline unsigned long
2919rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2920{
2921 return local_read(&cpu_buffer->entries) -
2922 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2923}
2924
c64e148a
VN
2925/**
2926 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2927 * @buffer: The ring buffer
2928 * @cpu: The per CPU buffer to read from.
2929 */
2930unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2931{
2932 unsigned long flags;
2933 struct ring_buffer_per_cpu *cpu_buffer;
2934 struct buffer_page *bpage;
2935 unsigned long ret;
2936
2937 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2938 return 0;
2939
2940 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2941 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2942 /*
2943 * if the tail is on reader_page, oldest time stamp is on the reader
2944 * page
2945 */
2946 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2947 bpage = cpu_buffer->reader_page;
2948 else
2949 bpage = rb_set_head_page(cpu_buffer);
2950 ret = bpage->page->time_stamp;
7115e3fc 2951 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2952
2953 return ret;
2954}
2955EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2956
2957/**
2958 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2959 * @buffer: The ring buffer
2960 * @cpu: The per CPU buffer to read from.
2961 */
2962unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2963{
2964 struct ring_buffer_per_cpu *cpu_buffer;
2965 unsigned long ret;
2966
2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 return 0;
2969
2970 cpu_buffer = buffer->buffers[cpu];
2971 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2972
2973 return ret;
2974}
2975EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2976
7a8e76a3
SR
2977/**
2978 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2979 * @buffer: The ring buffer
2980 * @cpu: The per CPU buffer to get the entries from.
2981 */
2982unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2983{
2984 struct ring_buffer_per_cpu *cpu_buffer;
2985
9e01c1b7 2986 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2987 return 0;
7a8e76a3
SR
2988
2989 cpu_buffer = buffer->buffers[cpu];
554f786e 2990
f6195aa0 2991 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2992}
c4f50183 2993EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2994
2995/**
2996 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2997 * @buffer: The ring buffer
2998 * @cpu: The per CPU buffer to get the number of overruns from
2999 */
3000unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3001{
3002 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3003 unsigned long ret;
7a8e76a3 3004
9e01c1b7 3005 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3006 return 0;
7a8e76a3
SR
3007
3008 cpu_buffer = buffer->buffers[cpu];
77ae365e 3009 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3010
3011 return ret;
7a8e76a3 3012}
c4f50183 3013EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3014
f0d2c681
SR
3015/**
3016 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3017 * @buffer: The ring buffer
3018 * @cpu: The per CPU buffer to get the number of overruns from
3019 */
3020unsigned long
3021ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3022{
3023 struct ring_buffer_per_cpu *cpu_buffer;
3024 unsigned long ret;
3025
3026 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3027 return 0;
3028
3029 cpu_buffer = buffer->buffers[cpu];
77ae365e 3030 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3031
3032 return ret;
3033}
3034EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3035
7a8e76a3
SR
3036/**
3037 * ring_buffer_entries - get the number of entries in a buffer
3038 * @buffer: The ring buffer
3039 *
3040 * Returns the total number of entries in the ring buffer
3041 * (all CPU entries)
3042 */
3043unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3044{
3045 struct ring_buffer_per_cpu *cpu_buffer;
3046 unsigned long entries = 0;
3047 int cpu;
3048
3049 /* if you care about this being correct, lock the buffer */
3050 for_each_buffer_cpu(buffer, cpu) {
3051 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3052 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3053 }
3054
3055 return entries;
3056}
c4f50183 3057EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3058
3059/**
67b394f7 3060 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3061 * @buffer: The ring buffer
3062 *
3063 * Returns the total number of overruns in the ring buffer
3064 * (all CPU entries)
3065 */
3066unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3067{
3068 struct ring_buffer_per_cpu *cpu_buffer;
3069 unsigned long overruns = 0;
3070 int cpu;
3071
3072 /* if you care about this being correct, lock the buffer */
3073 for_each_buffer_cpu(buffer, cpu) {
3074 cpu_buffer = buffer->buffers[cpu];
77ae365e 3075 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3076 }
3077
3078 return overruns;
3079}
c4f50183 3080EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3081
642edba5 3082static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3083{
3084 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3085
d769041f
SR
3086 /* Iterator usage is expected to have record disabled */
3087 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3088 iter->head_page = rb_set_head_page(cpu_buffer);
3089 if (unlikely(!iter->head_page))
3090 return;
3091 iter->head = iter->head_page->read;
d769041f
SR
3092 } else {
3093 iter->head_page = cpu_buffer->reader_page;
6f807acd 3094 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3095 }
3096 if (iter->head)
3097 iter->read_stamp = cpu_buffer->read_stamp;
3098 else
abc9b56d 3099 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3100 iter->cache_reader_page = cpu_buffer->reader_page;
3101 iter->cache_read = cpu_buffer->read;
642edba5 3102}
f83c9d0f 3103
642edba5
SR
3104/**
3105 * ring_buffer_iter_reset - reset an iterator
3106 * @iter: The iterator to reset
3107 *
3108 * Resets the iterator, so that it will start from the beginning
3109 * again.
3110 */
3111void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3112{
554f786e 3113 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3114 unsigned long flags;
3115
554f786e
SR
3116 if (!iter)
3117 return;
3118
3119 cpu_buffer = iter->cpu_buffer;
3120
5389f6fa 3121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3122 rb_iter_reset(iter);
5389f6fa 3123 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3124}
c4f50183 3125EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3126
3127/**
3128 * ring_buffer_iter_empty - check if an iterator has no more to read
3129 * @iter: The iterator to check
3130 */
3131int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3132{
3133 struct ring_buffer_per_cpu *cpu_buffer;
3134
3135 cpu_buffer = iter->cpu_buffer;
3136
bf41a158
SR
3137 return iter->head_page == cpu_buffer->commit_page &&
3138 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3139}
c4f50183 3140EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3141
3142static void
3143rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3144 struct ring_buffer_event *event)
3145{
3146 u64 delta;
3147
334d4169 3148 switch (event->type_len) {
7a8e76a3
SR
3149 case RINGBUF_TYPE_PADDING:
3150 return;
3151
3152 case RINGBUF_TYPE_TIME_EXTEND:
3153 delta = event->array[0];
3154 delta <<= TS_SHIFT;
3155 delta += event->time_delta;
3156 cpu_buffer->read_stamp += delta;
3157 return;
3158
3159 case RINGBUF_TYPE_TIME_STAMP:
3160 /* FIXME: not implemented */
3161 return;
3162
3163 case RINGBUF_TYPE_DATA:
3164 cpu_buffer->read_stamp += event->time_delta;
3165 return;
3166
3167 default:
3168 BUG();
3169 }
3170 return;
3171}
3172
3173static void
3174rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3175 struct ring_buffer_event *event)
3176{
3177 u64 delta;
3178
334d4169 3179 switch (event->type_len) {
7a8e76a3
SR
3180 case RINGBUF_TYPE_PADDING:
3181 return;
3182
3183 case RINGBUF_TYPE_TIME_EXTEND:
3184 delta = event->array[0];
3185 delta <<= TS_SHIFT;
3186 delta += event->time_delta;
3187 iter->read_stamp += delta;
3188 return;
3189
3190 case RINGBUF_TYPE_TIME_STAMP:
3191 /* FIXME: not implemented */
3192 return;
3193
3194 case RINGBUF_TYPE_DATA:
3195 iter->read_stamp += event->time_delta;
3196 return;
3197
3198 default:
3199 BUG();
3200 }
3201 return;
3202}
3203
d769041f
SR
3204static struct buffer_page *
3205rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3206{
d769041f 3207 struct buffer_page *reader = NULL;
66a8cb95 3208 unsigned long overwrite;
d769041f 3209 unsigned long flags;
818e3dd3 3210 int nr_loops = 0;
77ae365e 3211 int ret;
d769041f 3212
3e03fb7f 3213 local_irq_save(flags);
0199c4e6 3214 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3215
3216 again:
818e3dd3
SR
3217 /*
3218 * This should normally only loop twice. But because the
3219 * start of the reader inserts an empty page, it causes
3220 * a case where we will loop three times. There should be no
3221 * reason to loop four times (that I know of).
3222 */
3e89c7bb 3223 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3224 reader = NULL;
3225 goto out;
3226 }
3227
d769041f
SR
3228 reader = cpu_buffer->reader_page;
3229
3230 /* If there's more to read, return this page */
bf41a158 3231 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3232 goto out;
3233
3234 /* Never should we have an index greater than the size */
3e89c7bb
SR
3235 if (RB_WARN_ON(cpu_buffer,
3236 cpu_buffer->reader_page->read > rb_page_size(reader)))
3237 goto out;
d769041f
SR
3238
3239 /* check if we caught up to the tail */
3240 reader = NULL;
bf41a158 3241 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3242 goto out;
7a8e76a3
SR
3243
3244 /*
d769041f 3245 * Reset the reader page to size zero.
7a8e76a3 3246 */
77ae365e
SR
3247 local_set(&cpu_buffer->reader_page->write, 0);
3248 local_set(&cpu_buffer->reader_page->entries, 0);
3249 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3250 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3251
77ae365e
SR
3252 spin:
3253 /*
3254 * Splice the empty reader page into the list around the head.
3255 */
3256 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3257 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3258 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3259
3adc54fa
SR
3260 /*
3261 * cpu_buffer->pages just needs to point to the buffer, it
3262 * has no specific buffer page to point to. Lets move it out
25985edc 3263 * of our way so we don't accidentally swap it.
3adc54fa
SR
3264 */
3265 cpu_buffer->pages = reader->list.prev;
3266
77ae365e
SR
3267 /* The reader page will be pointing to the new head */
3268 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3269
66a8cb95
SR
3270 /*
3271 * We want to make sure we read the overruns after we set up our
3272 * pointers to the next object. The writer side does a
3273 * cmpxchg to cross pages which acts as the mb on the writer
3274 * side. Note, the reader will constantly fail the swap
3275 * while the writer is updating the pointers, so this
3276 * guarantees that the overwrite recorded here is the one we
3277 * want to compare with the last_overrun.
3278 */
3279 smp_mb();
3280 overwrite = local_read(&(cpu_buffer->overrun));
3281
77ae365e
SR
3282 /*
3283 * Here's the tricky part.
3284 *
3285 * We need to move the pointer past the header page.
3286 * But we can only do that if a writer is not currently
3287 * moving it. The page before the header page has the
3288 * flag bit '1' set if it is pointing to the page we want.
3289 * but if the writer is in the process of moving it
3290 * than it will be '2' or already moved '0'.
3291 */
3292
3293 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3294
3295 /*
77ae365e 3296 * If we did not convert it, then we must try again.
7a8e76a3 3297 */
77ae365e
SR
3298 if (!ret)
3299 goto spin;
7a8e76a3 3300
77ae365e
SR
3301 /*
3302 * Yeah! We succeeded in replacing the page.
3303 *
3304 * Now make the new head point back to the reader page.
3305 */
5ded3dc6 3306 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3307 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3308
3309 /* Finally update the reader page to the new head */
3310 cpu_buffer->reader_page = reader;
3311 rb_reset_reader_page(cpu_buffer);
3312
66a8cb95
SR
3313 if (overwrite != cpu_buffer->last_overrun) {
3314 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3315 cpu_buffer->last_overrun = overwrite;
3316 }
3317
d769041f
SR
3318 goto again;
3319
3320 out:
0199c4e6 3321 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3322 local_irq_restore(flags);
d769041f
SR
3323
3324 return reader;
3325}
3326
3327static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3328{
3329 struct ring_buffer_event *event;
3330 struct buffer_page *reader;
3331 unsigned length;
3332
3333 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3334
d769041f 3335 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3336 if (RB_WARN_ON(cpu_buffer, !reader))
3337 return;
7a8e76a3 3338
d769041f
SR
3339 event = rb_reader_event(cpu_buffer);
3340
a1863c21 3341 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3342 cpu_buffer->read++;
d769041f
SR
3343
3344 rb_update_read_stamp(cpu_buffer, event);
3345
3346 length = rb_event_length(event);
6f807acd 3347 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3348}
3349
3350static void rb_advance_iter(struct ring_buffer_iter *iter)
3351{
7a8e76a3
SR
3352 struct ring_buffer_per_cpu *cpu_buffer;
3353 struct ring_buffer_event *event;
3354 unsigned length;
3355
3356 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3357
3358 /*
3359 * Check if we are at the end of the buffer.
3360 */
bf41a158 3361 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3362 /* discarded commits can make the page empty */
3363 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3364 return;
d769041f 3365 rb_inc_iter(iter);
7a8e76a3
SR
3366 return;
3367 }
3368
3369 event = rb_iter_head_event(iter);
3370
3371 length = rb_event_length(event);
3372
3373 /*
3374 * This should not be called to advance the header if we are
3375 * at the tail of the buffer.
3376 */
3e89c7bb 3377 if (RB_WARN_ON(cpu_buffer,
f536aafc 3378 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3379 (iter->head + length > rb_commit_index(cpu_buffer))))
3380 return;
7a8e76a3
SR
3381
3382 rb_update_iter_read_stamp(iter, event);
3383
3384 iter->head += length;
3385
3386 /* check for end of page padding */
bf41a158
SR
3387 if ((iter->head >= rb_page_size(iter->head_page)) &&
3388 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3389 rb_advance_iter(iter);
3390}
3391
66a8cb95
SR
3392static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3393{
3394 return cpu_buffer->lost_events;
3395}
3396
f83c9d0f 3397static struct ring_buffer_event *
66a8cb95
SR
3398rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3399 unsigned long *lost_events)
7a8e76a3 3400{
7a8e76a3 3401 struct ring_buffer_event *event;
d769041f 3402 struct buffer_page *reader;
818e3dd3 3403 int nr_loops = 0;
7a8e76a3 3404
7a8e76a3 3405 again:
818e3dd3 3406 /*
69d1b839
SR
3407 * We repeat when a time extend is encountered.
3408 * Since the time extend is always attached to a data event,
3409 * we should never loop more than once.
3410 * (We never hit the following condition more than twice).
818e3dd3 3411 */
69d1b839 3412 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3413 return NULL;
818e3dd3 3414
d769041f
SR
3415 reader = rb_get_reader_page(cpu_buffer);
3416 if (!reader)
7a8e76a3
SR
3417 return NULL;
3418
d769041f 3419 event = rb_reader_event(cpu_buffer);
7a8e76a3 3420
334d4169 3421 switch (event->type_len) {
7a8e76a3 3422 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3423 if (rb_null_event(event))
3424 RB_WARN_ON(cpu_buffer, 1);
3425 /*
3426 * Because the writer could be discarding every
3427 * event it creates (which would probably be bad)
3428 * if we were to go back to "again" then we may never
3429 * catch up, and will trigger the warn on, or lock
3430 * the box. Return the padding, and we will release
3431 * the current locks, and try again.
3432 */
2d622719 3433 return event;
7a8e76a3
SR
3434
3435 case RINGBUF_TYPE_TIME_EXTEND:
3436 /* Internal data, OK to advance */
d769041f 3437 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3438 goto again;
3439
3440 case RINGBUF_TYPE_TIME_STAMP:
3441 /* FIXME: not implemented */
d769041f 3442 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3443 goto again;
3444
3445 case RINGBUF_TYPE_DATA:
3446 if (ts) {
3447 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3448 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3449 cpu_buffer->cpu, ts);
7a8e76a3 3450 }
66a8cb95
SR
3451 if (lost_events)
3452 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3453 return event;
3454
3455 default:
3456 BUG();
3457 }
3458
3459 return NULL;
3460}
c4f50183 3461EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3462
f83c9d0f
SR
3463static struct ring_buffer_event *
3464rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3465{
3466 struct ring_buffer *buffer;
3467 struct ring_buffer_per_cpu *cpu_buffer;
3468 struct ring_buffer_event *event;
818e3dd3 3469 int nr_loops = 0;
7a8e76a3 3470
7a8e76a3
SR
3471 cpu_buffer = iter->cpu_buffer;
3472 buffer = cpu_buffer->buffer;
3473
492a74f4
SR
3474 /*
3475 * Check if someone performed a consuming read to
3476 * the buffer. A consuming read invalidates the iterator
3477 * and we need to reset the iterator in this case.
3478 */
3479 if (unlikely(iter->cache_read != cpu_buffer->read ||
3480 iter->cache_reader_page != cpu_buffer->reader_page))
3481 rb_iter_reset(iter);
3482
7a8e76a3 3483 again:
3c05d748
SR
3484 if (ring_buffer_iter_empty(iter))
3485 return NULL;
3486
818e3dd3 3487 /*
69d1b839
SR
3488 * We repeat when a time extend is encountered.
3489 * Since the time extend is always attached to a data event,
3490 * we should never loop more than once.
3491 * (We never hit the following condition more than twice).
818e3dd3 3492 */
69d1b839 3493 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3494 return NULL;
818e3dd3 3495
7a8e76a3
SR
3496 if (rb_per_cpu_empty(cpu_buffer))
3497 return NULL;
3498
3c05d748
SR
3499 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3500 rb_inc_iter(iter);
3501 goto again;
3502 }
3503
7a8e76a3
SR
3504 event = rb_iter_head_event(iter);
3505
334d4169 3506 switch (event->type_len) {
7a8e76a3 3507 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3508 if (rb_null_event(event)) {
3509 rb_inc_iter(iter);
3510 goto again;
3511 }
3512 rb_advance_iter(iter);
3513 return event;
7a8e76a3
SR
3514
3515 case RINGBUF_TYPE_TIME_EXTEND:
3516 /* Internal data, OK to advance */
3517 rb_advance_iter(iter);
3518 goto again;
3519
3520 case RINGBUF_TYPE_TIME_STAMP:
3521 /* FIXME: not implemented */
3522 rb_advance_iter(iter);
3523 goto again;
3524
3525 case RINGBUF_TYPE_DATA:
3526 if (ts) {
3527 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3528 ring_buffer_normalize_time_stamp(buffer,
3529 cpu_buffer->cpu, ts);
7a8e76a3
SR
3530 }
3531 return event;
3532
3533 default:
3534 BUG();
3535 }
3536
3537 return NULL;
3538}
c4f50183 3539EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3540
8d707e8e
SR
3541static inline int rb_ok_to_lock(void)
3542{
3543 /*
3544 * If an NMI die dumps out the content of the ring buffer
3545 * do not grab locks. We also permanently disable the ring
3546 * buffer too. A one time deal is all you get from reading
3547 * the ring buffer from an NMI.
3548 */
464e85eb 3549 if (likely(!in_nmi()))
8d707e8e
SR
3550 return 1;
3551
3552 tracing_off_permanent();
3553 return 0;
3554}
3555
f83c9d0f
SR
3556/**
3557 * ring_buffer_peek - peek at the next event to be read
3558 * @buffer: The ring buffer to read
3559 * @cpu: The cpu to peak at
3560 * @ts: The timestamp counter of this event.
66a8cb95 3561 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3562 *
3563 * This will return the event that will be read next, but does
3564 * not consume the data.
3565 */
3566struct ring_buffer_event *
66a8cb95
SR
3567ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3568 unsigned long *lost_events)
f83c9d0f
SR
3569{
3570 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3571 struct ring_buffer_event *event;
f83c9d0f 3572 unsigned long flags;
8d707e8e 3573 int dolock;
f83c9d0f 3574
554f786e 3575 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3576 return NULL;
554f786e 3577
8d707e8e 3578 dolock = rb_ok_to_lock();
2d622719 3579 again:
8d707e8e
SR
3580 local_irq_save(flags);
3581 if (dolock)
5389f6fa 3582 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3583 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3584 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3585 rb_advance_reader(cpu_buffer);
8d707e8e 3586 if (dolock)
5389f6fa 3587 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3588 local_irq_restore(flags);
f83c9d0f 3589
1b959e18 3590 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3591 goto again;
2d622719 3592
f83c9d0f
SR
3593 return event;
3594}
3595
3596/**
3597 * ring_buffer_iter_peek - peek at the next event to be read
3598 * @iter: The ring buffer iterator
3599 * @ts: The timestamp counter of this event.
3600 *
3601 * This will return the event that will be read next, but does
3602 * not increment the iterator.
3603 */
3604struct ring_buffer_event *
3605ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3606{
3607 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3608 struct ring_buffer_event *event;
3609 unsigned long flags;
3610
2d622719 3611 again:
5389f6fa 3612 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3613 event = rb_iter_peek(iter, ts);
5389f6fa 3614 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3615
1b959e18 3616 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3617 goto again;
2d622719 3618
f83c9d0f
SR
3619 return event;
3620}
3621
7a8e76a3
SR
3622/**
3623 * ring_buffer_consume - return an event and consume it
3624 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3625 * @cpu: the cpu to read the buffer from
3626 * @ts: a variable to store the timestamp (may be NULL)
3627 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3628 *
3629 * Returns the next event in the ring buffer, and that event is consumed.
3630 * Meaning, that sequential reads will keep returning a different event,
3631 * and eventually empty the ring buffer if the producer is slower.
3632 */
3633struct ring_buffer_event *
66a8cb95
SR
3634ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3635 unsigned long *lost_events)
7a8e76a3 3636{
554f786e
SR
3637 struct ring_buffer_per_cpu *cpu_buffer;
3638 struct ring_buffer_event *event = NULL;
f83c9d0f 3639 unsigned long flags;
8d707e8e
SR
3640 int dolock;
3641
3642 dolock = rb_ok_to_lock();
7a8e76a3 3643
2d622719 3644 again:
554f786e
SR
3645 /* might be called in atomic */
3646 preempt_disable();
3647
9e01c1b7 3648 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3649 goto out;
7a8e76a3 3650
554f786e 3651 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3652 local_irq_save(flags);
3653 if (dolock)
5389f6fa 3654 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3655
66a8cb95
SR
3656 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3657 if (event) {
3658 cpu_buffer->lost_events = 0;
469535a5 3659 rb_advance_reader(cpu_buffer);
66a8cb95 3660 }
7a8e76a3 3661
8d707e8e 3662 if (dolock)
5389f6fa 3663 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3664 local_irq_restore(flags);
f83c9d0f 3665
554f786e
SR
3666 out:
3667 preempt_enable();
3668
1b959e18 3669 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3670 goto again;
2d622719 3671
7a8e76a3
SR
3672 return event;
3673}
c4f50183 3674EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3675
3676/**
72c9ddfd 3677 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3678 * @buffer: The ring buffer to read from
3679 * @cpu: The cpu buffer to iterate over
3680 *
72c9ddfd
DM
3681 * This performs the initial preparations necessary to iterate
3682 * through the buffer. Memory is allocated, buffer recording
3683 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3684 *
72c9ddfd
DM
3685 * Disabling buffer recordng prevents the reading from being
3686 * corrupted. This is not a consuming read, so a producer is not
3687 * expected.
3688 *
3689 * After a sequence of ring_buffer_read_prepare calls, the user is
3690 * expected to make at least one call to ring_buffer_prepare_sync.
3691 * Afterwards, ring_buffer_read_start is invoked to get things going
3692 * for real.
3693 *
3694 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3695 */
3696struct ring_buffer_iter *
72c9ddfd 3697ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3698{
3699 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3700 struct ring_buffer_iter *iter;
7a8e76a3 3701
9e01c1b7 3702 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3703 return NULL;
7a8e76a3
SR
3704
3705 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3706 if (!iter)
8aabee57 3707 return NULL;
7a8e76a3
SR
3708
3709 cpu_buffer = buffer->buffers[cpu];
3710
3711 iter->cpu_buffer = cpu_buffer;
3712
83f40318 3713 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3714 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3715
3716 return iter;
3717}
3718EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3719
3720/**
3721 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3722 *
3723 * All previously invoked ring_buffer_read_prepare calls to prepare
3724 * iterators will be synchronized. Afterwards, read_buffer_read_start
3725 * calls on those iterators are allowed.
3726 */
3727void
3728ring_buffer_read_prepare_sync(void)
3729{
7a8e76a3 3730 synchronize_sched();
72c9ddfd
DM
3731}
3732EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3733
3734/**
3735 * ring_buffer_read_start - start a non consuming read of the buffer
3736 * @iter: The iterator returned by ring_buffer_read_prepare
3737 *
3738 * This finalizes the startup of an iteration through the buffer.
3739 * The iterator comes from a call to ring_buffer_read_prepare and
3740 * an intervening ring_buffer_read_prepare_sync must have been
3741 * performed.
3742 *
3743 * Must be paired with ring_buffer_finish.
3744 */
3745void
3746ring_buffer_read_start(struct ring_buffer_iter *iter)
3747{
3748 struct ring_buffer_per_cpu *cpu_buffer;
3749 unsigned long flags;
3750
3751 if (!iter)
3752 return;
3753
3754 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3755
5389f6fa 3756 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3757 arch_spin_lock(&cpu_buffer->lock);
642edba5 3758 rb_iter_reset(iter);
0199c4e6 3759 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3760 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3761}
c4f50183 3762EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3763
3764/**
3765 * ring_buffer_finish - finish reading the iterator of the buffer
3766 * @iter: The iterator retrieved by ring_buffer_start
3767 *
3768 * This re-enables the recording to the buffer, and frees the
3769 * iterator.
3770 */
3771void
3772ring_buffer_read_finish(struct ring_buffer_iter *iter)
3773{
3774 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3775
659f451f
SR
3776 /*
3777 * Ring buffer is disabled from recording, here's a good place
3778 * to check the integrity of the ring buffer.
3779 */
3780 rb_check_pages(cpu_buffer);
3781
7a8e76a3 3782 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3783 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3784 kfree(iter);
3785}
c4f50183 3786EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3787
3788/**
3789 * ring_buffer_read - read the next item in the ring buffer by the iterator
3790 * @iter: The ring buffer iterator
3791 * @ts: The time stamp of the event read.
3792 *
3793 * This reads the next event in the ring buffer and increments the iterator.
3794 */
3795struct ring_buffer_event *
3796ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3797{
3798 struct ring_buffer_event *event;
f83c9d0f
SR
3799 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3800 unsigned long flags;
7a8e76a3 3801
5389f6fa 3802 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3803 again:
f83c9d0f 3804 event = rb_iter_peek(iter, ts);
7a8e76a3 3805 if (!event)
f83c9d0f 3806 goto out;
7a8e76a3 3807
7e9391cf
SR
3808 if (event->type_len == RINGBUF_TYPE_PADDING)
3809 goto again;
3810
7a8e76a3 3811 rb_advance_iter(iter);
f83c9d0f 3812 out:
5389f6fa 3813 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3814
3815 return event;
3816}
c4f50183 3817EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3818
3819/**
3820 * ring_buffer_size - return the size of the ring buffer (in bytes)
3821 * @buffer: The ring buffer.
3822 */
438ced17 3823unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3824{
438ced17
VN
3825 /*
3826 * Earlier, this method returned
3827 * BUF_PAGE_SIZE * buffer->nr_pages
3828 * Since the nr_pages field is now removed, we have converted this to
3829 * return the per cpu buffer value.
3830 */
3831 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3832 return 0;
3833
3834 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3835}
c4f50183 3836EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3837
3838static void
3839rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3840{
77ae365e
SR
3841 rb_head_page_deactivate(cpu_buffer);
3842
7a8e76a3 3843 cpu_buffer->head_page
3adc54fa 3844 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3845 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3846 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3847 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3848
6f807acd 3849 cpu_buffer->head_page->read = 0;
bf41a158
SR
3850
3851 cpu_buffer->tail_page = cpu_buffer->head_page;
3852 cpu_buffer->commit_page = cpu_buffer->head_page;
3853
3854 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3855 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3856 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3857 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3858 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3859 cpu_buffer->reader_page->read = 0;
7a8e76a3 3860
77ae365e 3861 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3862 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3863 local_set(&cpu_buffer->overrun, 0);
e4906eff 3864 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3865 local_set(&cpu_buffer->committing, 0);
3866 local_set(&cpu_buffer->commits, 0);
77ae365e 3867 cpu_buffer->read = 0;
c64e148a 3868 cpu_buffer->read_bytes = 0;
69507c06
SR
3869
3870 cpu_buffer->write_stamp = 0;
3871 cpu_buffer->read_stamp = 0;
77ae365e 3872
66a8cb95
SR
3873 cpu_buffer->lost_events = 0;
3874 cpu_buffer->last_overrun = 0;
3875
77ae365e 3876 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3877}
3878
3879/**
3880 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3881 * @buffer: The ring buffer to reset a per cpu buffer of
3882 * @cpu: The CPU buffer to be reset
3883 */
3884void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3885{
3886 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3887 unsigned long flags;
3888
9e01c1b7 3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3890 return;
7a8e76a3 3891
83f40318 3892 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3893 atomic_inc(&cpu_buffer->record_disabled);
3894
83f40318
VN
3895 /* Make sure all commits have finished */
3896 synchronize_sched();
3897
5389f6fa 3898 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3899
41b6a95d
SR
3900 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3901 goto out;
3902
0199c4e6 3903 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3904
3905 rb_reset_cpu(cpu_buffer);
3906
0199c4e6 3907 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3908
41b6a95d 3909 out:
5389f6fa 3910 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3911
3912 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3913 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3914}
c4f50183 3915EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3916
3917/**
3918 * ring_buffer_reset - reset a ring buffer
3919 * @buffer: The ring buffer to reset all cpu buffers
3920 */
3921void ring_buffer_reset(struct ring_buffer *buffer)
3922{
7a8e76a3
SR
3923 int cpu;
3924
7a8e76a3 3925 for_each_buffer_cpu(buffer, cpu)
d769041f 3926 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3927}
c4f50183 3928EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3929
3930/**
3931 * rind_buffer_empty - is the ring buffer empty?
3932 * @buffer: The ring buffer to test
3933 */
3934int ring_buffer_empty(struct ring_buffer *buffer)
3935{
3936 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3937 unsigned long flags;
8d707e8e 3938 int dolock;
7a8e76a3 3939 int cpu;
d4788207 3940 int ret;
7a8e76a3 3941
8d707e8e 3942 dolock = rb_ok_to_lock();
7a8e76a3
SR
3943
3944 /* yes this is racy, but if you don't like the race, lock the buffer */
3945 for_each_buffer_cpu(buffer, cpu) {
3946 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3947 local_irq_save(flags);
3948 if (dolock)
5389f6fa 3949 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3950 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3951 if (dolock)
5389f6fa 3952 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3953 local_irq_restore(flags);
3954
d4788207 3955 if (!ret)
7a8e76a3
SR
3956 return 0;
3957 }
554f786e 3958
7a8e76a3
SR
3959 return 1;
3960}
c4f50183 3961EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3962
3963/**
3964 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3965 * @buffer: The ring buffer
3966 * @cpu: The CPU buffer to test
3967 */
3968int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3969{
3970 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3971 unsigned long flags;
8d707e8e 3972 int dolock;
8aabee57 3973 int ret;
7a8e76a3 3974
9e01c1b7 3975 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3976 return 1;
7a8e76a3 3977
8d707e8e
SR
3978 dolock = rb_ok_to_lock();
3979
7a8e76a3 3980 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3981 local_irq_save(flags);
3982 if (dolock)
5389f6fa 3983 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3984 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3985 if (dolock)
5389f6fa 3986 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3987 local_irq_restore(flags);
554f786e
SR
3988
3989 return ret;
7a8e76a3 3990}
c4f50183 3991EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3992
85bac32c 3993#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3994/**
3995 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3996 * @buffer_a: One buffer to swap with
3997 * @buffer_b: The other buffer to swap with
3998 *
3999 * This function is useful for tracers that want to take a "snapshot"
4000 * of a CPU buffer and has another back up buffer lying around.
4001 * it is expected that the tracer handles the cpu buffer not being
4002 * used at the moment.
4003 */
4004int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4005 struct ring_buffer *buffer_b, int cpu)
4006{
4007 struct ring_buffer_per_cpu *cpu_buffer_a;
4008 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4009 int ret = -EINVAL;
4010
9e01c1b7
RR
4011 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4012 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4013 goto out;
7a8e76a3 4014
438ced17
VN
4015 cpu_buffer_a = buffer_a->buffers[cpu];
4016 cpu_buffer_b = buffer_b->buffers[cpu];
4017
7a8e76a3 4018 /* At least make sure the two buffers are somewhat the same */
438ced17 4019 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4020 goto out;
4021
4022 ret = -EAGAIN;
7a8e76a3 4023
97b17efe 4024 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4025 goto out;
97b17efe
SR
4026
4027 if (atomic_read(&buffer_a->record_disabled))
554f786e 4028 goto out;
97b17efe
SR
4029
4030 if (atomic_read(&buffer_b->record_disabled))
554f786e 4031 goto out;
97b17efe 4032
97b17efe 4033 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4034 goto out;
97b17efe
SR
4035
4036 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4037 goto out;
97b17efe 4038
7a8e76a3
SR
4039 /*
4040 * We can't do a synchronize_sched here because this
4041 * function can be called in atomic context.
4042 * Normally this will be called from the same CPU as cpu.
4043 * If not it's up to the caller to protect this.
4044 */
4045 atomic_inc(&cpu_buffer_a->record_disabled);
4046 atomic_inc(&cpu_buffer_b->record_disabled);
4047
98277991
SR
4048 ret = -EBUSY;
4049 if (local_read(&cpu_buffer_a->committing))
4050 goto out_dec;
4051 if (local_read(&cpu_buffer_b->committing))
4052 goto out_dec;
4053
7a8e76a3
SR
4054 buffer_a->buffers[cpu] = cpu_buffer_b;
4055 buffer_b->buffers[cpu] = cpu_buffer_a;
4056
4057 cpu_buffer_b->buffer = buffer_a;
4058 cpu_buffer_a->buffer = buffer_b;
4059
98277991
SR
4060 ret = 0;
4061
4062out_dec:
7a8e76a3
SR
4063 atomic_dec(&cpu_buffer_a->record_disabled);
4064 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4065out:
554f786e 4066 return ret;
7a8e76a3 4067}
c4f50183 4068EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4069#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4070
8789a9e7
SR
4071/**
4072 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4073 * @buffer: the buffer to allocate for.
4074 *
4075 * This function is used in conjunction with ring_buffer_read_page.
4076 * When reading a full page from the ring buffer, these functions
4077 * can be used to speed up the process. The calling function should
4078 * allocate a few pages first with this function. Then when it
4079 * needs to get pages from the ring buffer, it passes the result
4080 * of this function into ring_buffer_read_page, which will swap
4081 * the page that was allocated, with the read page of the buffer.
4082 *
4083 * Returns:
4084 * The page allocated, or NULL on error.
4085 */
7ea59064 4086void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4087{
044fa782 4088 struct buffer_data_page *bpage;
7ea59064 4089 struct page *page;
8789a9e7 4090
d7ec4bfe
VN
4091 page = alloc_pages_node(cpu_to_node(cpu),
4092 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4093 if (!page)
8789a9e7
SR
4094 return NULL;
4095
7ea59064 4096 bpage = page_address(page);
8789a9e7 4097
ef7a4a16
SR
4098 rb_init_page(bpage);
4099
044fa782 4100 return bpage;
8789a9e7 4101}
d6ce96da 4102EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4103
4104/**
4105 * ring_buffer_free_read_page - free an allocated read page
4106 * @buffer: the buffer the page was allocate for
4107 * @data: the page to free
4108 *
4109 * Free a page allocated from ring_buffer_alloc_read_page.
4110 */
4111void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4112{
4113 free_page((unsigned long)data);
4114}
d6ce96da 4115EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4116
4117/**
4118 * ring_buffer_read_page - extract a page from the ring buffer
4119 * @buffer: buffer to extract from
4120 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4121 * @len: amount to extract
8789a9e7
SR
4122 * @cpu: the cpu of the buffer to extract
4123 * @full: should the extraction only happen when the page is full.
4124 *
4125 * This function will pull out a page from the ring buffer and consume it.
4126 * @data_page must be the address of the variable that was returned
4127 * from ring_buffer_alloc_read_page. This is because the page might be used
4128 * to swap with a page in the ring buffer.
4129 *
4130 * for example:
b85fa01e 4131 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4132 * if (!rpage)
4133 * return error;
ef7a4a16 4134 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4135 * if (ret >= 0)
4136 * process_page(rpage, ret);
8789a9e7
SR
4137 *
4138 * When @full is set, the function will not return true unless
4139 * the writer is off the reader page.
4140 *
4141 * Note: it is up to the calling functions to handle sleeps and wakeups.
4142 * The ring buffer can be used anywhere in the kernel and can not
4143 * blindly call wake_up. The layer that uses the ring buffer must be
4144 * responsible for that.
4145 *
4146 * Returns:
667d2412
LJ
4147 * >=0 if data has been transferred, returns the offset of consumed data.
4148 * <0 if no data has been transferred.
8789a9e7
SR
4149 */
4150int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4151 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4152{
4153 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4154 struct ring_buffer_event *event;
044fa782 4155 struct buffer_data_page *bpage;
ef7a4a16 4156 struct buffer_page *reader;
ff0ff84a 4157 unsigned long missed_events;
8789a9e7 4158 unsigned long flags;
ef7a4a16 4159 unsigned int commit;
667d2412 4160 unsigned int read;
4f3640f8 4161 u64 save_timestamp;
667d2412 4162 int ret = -1;
8789a9e7 4163
554f786e
SR
4164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 goto out;
4166
474d32b6
SR
4167 /*
4168 * If len is not big enough to hold the page header, then
4169 * we can not copy anything.
4170 */
4171 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4172 goto out;
474d32b6
SR
4173
4174 len -= BUF_PAGE_HDR_SIZE;
4175
8789a9e7 4176 if (!data_page)
554f786e 4177 goto out;
8789a9e7 4178
044fa782
SR
4179 bpage = *data_page;
4180 if (!bpage)
554f786e 4181 goto out;
8789a9e7 4182
5389f6fa 4183 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4184
ef7a4a16
SR
4185 reader = rb_get_reader_page(cpu_buffer);
4186 if (!reader)
554f786e 4187 goto out_unlock;
8789a9e7 4188
ef7a4a16
SR
4189 event = rb_reader_event(cpu_buffer);
4190
4191 read = reader->read;
4192 commit = rb_page_commit(reader);
667d2412 4193
66a8cb95 4194 /* Check if any events were dropped */
ff0ff84a 4195 missed_events = cpu_buffer->lost_events;
66a8cb95 4196
8789a9e7 4197 /*
474d32b6
SR
4198 * If this page has been partially read or
4199 * if len is not big enough to read the rest of the page or
4200 * a writer is still on the page, then
4201 * we must copy the data from the page to the buffer.
4202 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4203 */
474d32b6 4204 if (read || (len < (commit - read)) ||
ef7a4a16 4205 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4206 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4207 unsigned int rpos = read;
4208 unsigned int pos = 0;
ef7a4a16 4209 unsigned int size;
8789a9e7
SR
4210
4211 if (full)
554f786e 4212 goto out_unlock;
8789a9e7 4213
ef7a4a16
SR
4214 if (len > (commit - read))
4215 len = (commit - read);
4216
69d1b839
SR
4217 /* Always keep the time extend and data together */
4218 size = rb_event_ts_length(event);
ef7a4a16
SR
4219
4220 if (len < size)
554f786e 4221 goto out_unlock;
ef7a4a16 4222
4f3640f8
SR
4223 /* save the current timestamp, since the user will need it */
4224 save_timestamp = cpu_buffer->read_stamp;
4225
ef7a4a16
SR
4226 /* Need to copy one event at a time */
4227 do {
e1e35927
DS
4228 /* We need the size of one event, because
4229 * rb_advance_reader only advances by one event,
4230 * whereas rb_event_ts_length may include the size of
4231 * one or two events.
4232 * We have already ensured there's enough space if this
4233 * is a time extend. */
4234 size = rb_event_length(event);
474d32b6 4235 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4236
4237 len -= size;
4238
4239 rb_advance_reader(cpu_buffer);
474d32b6
SR
4240 rpos = reader->read;
4241 pos += size;
ef7a4a16 4242
18fab912
HY
4243 if (rpos >= commit)
4244 break;
4245
ef7a4a16 4246 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4247 /* Always keep the time extend and data together */
4248 size = rb_event_ts_length(event);
e1e35927 4249 } while (len >= size);
667d2412
LJ
4250
4251 /* update bpage */
ef7a4a16 4252 local_set(&bpage->commit, pos);
4f3640f8 4253 bpage->time_stamp = save_timestamp;
ef7a4a16 4254
474d32b6
SR
4255 /* we copied everything to the beginning */
4256 read = 0;
8789a9e7 4257 } else {
afbab76a 4258 /* update the entry counter */
77ae365e 4259 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4260 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4261
8789a9e7 4262 /* swap the pages */
044fa782 4263 rb_init_page(bpage);
ef7a4a16
SR
4264 bpage = reader->page;
4265 reader->page = *data_page;
4266 local_set(&reader->write, 0);
778c55d4 4267 local_set(&reader->entries, 0);
ef7a4a16 4268 reader->read = 0;
044fa782 4269 *data_page = bpage;
ff0ff84a
SR
4270
4271 /*
4272 * Use the real_end for the data size,
4273 * This gives us a chance to store the lost events
4274 * on the page.
4275 */
4276 if (reader->real_end)
4277 local_set(&bpage->commit, reader->real_end);
8789a9e7 4278 }
667d2412 4279 ret = read;
8789a9e7 4280
66a8cb95 4281 cpu_buffer->lost_events = 0;
2711ca23
SR
4282
4283 commit = local_read(&bpage->commit);
66a8cb95
SR
4284 /*
4285 * Set a flag in the commit field if we lost events
4286 */
ff0ff84a 4287 if (missed_events) {
ff0ff84a
SR
4288 /* If there is room at the end of the page to save the
4289 * missed events, then record it there.
4290 */
4291 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4292 memcpy(&bpage->data[commit], &missed_events,
4293 sizeof(missed_events));
4294 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4295 commit += sizeof(missed_events);
ff0ff84a 4296 }
66a8cb95 4297 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4298 }
66a8cb95 4299
2711ca23
SR
4300 /*
4301 * This page may be off to user land. Zero it out here.
4302 */
4303 if (commit < BUF_PAGE_SIZE)
4304 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4305
554f786e 4306 out_unlock:
5389f6fa 4307 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4308
554f786e 4309 out:
8789a9e7
SR
4310 return ret;
4311}
d6ce96da 4312EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4313
59222efe 4314#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4315static int rb_cpu_notify(struct notifier_block *self,
4316 unsigned long action, void *hcpu)
554f786e
SR
4317{
4318 struct ring_buffer *buffer =
4319 container_of(self, struct ring_buffer, cpu_notify);
4320 long cpu = (long)hcpu;
438ced17
VN
4321 int cpu_i, nr_pages_same;
4322 unsigned int nr_pages;
554f786e
SR
4323
4324 switch (action) {
4325 case CPU_UP_PREPARE:
4326 case CPU_UP_PREPARE_FROZEN:
3f237a79 4327 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4328 return NOTIFY_OK;
4329
438ced17
VN
4330 nr_pages = 0;
4331 nr_pages_same = 1;
4332 /* check if all cpu sizes are same */
4333 for_each_buffer_cpu(buffer, cpu_i) {
4334 /* fill in the size from first enabled cpu */
4335 if (nr_pages == 0)
4336 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4337 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4338 nr_pages_same = 0;
4339 break;
4340 }
4341 }
4342 /* allocate minimum pages, user can later expand it */
4343 if (!nr_pages_same)
4344 nr_pages = 2;
554f786e 4345 buffer->buffers[cpu] =
438ced17 4346 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4347 if (!buffer->buffers[cpu]) {
4348 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4349 cpu);
4350 return NOTIFY_OK;
4351 }
4352 smp_wmb();
3f237a79 4353 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4354 break;
4355 case CPU_DOWN_PREPARE:
4356 case CPU_DOWN_PREPARE_FROZEN:
4357 /*
4358 * Do nothing.
4359 * If we were to free the buffer, then the user would
4360 * lose any trace that was in the buffer.
4361 */
4362 break;
4363 default:
4364 break;
4365 }
4366 return NOTIFY_OK;
4367}
4368#endif