include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
5a0e3ad6 17#include <linux/slab.h>
7a8e76a3
SR
18#include <linux/init.h>
19#include <linux/hash.h>
20#include <linux/list.h>
554f786e 21#include <linux/cpu.h>
7a8e76a3
SR
22#include <linux/fs.h>
23
79615760 24#include <asm/local.h>
182e9f5f
SR
25#include "trace.h"
26
d1b182a8
SR
27/*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30int ring_buffer_print_entry_header(struct trace_seq *s)
31{
32 int ret;
33
334d4169
LJ
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
45
46 return ret;
47}
48
5cc98548
SR
49/*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
74 *
75 *
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
85 *
86 *
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
96 *
97 *
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
033601a3
SR
117/*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135/*
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
138 *
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
144 */
145
146enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
149};
150
151enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154};
155
5e39841c 156static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 157
474d32b6
SR
158#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
a3583244
SR
160/**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166void tracing_on(void)
167{
033601a3 168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 169}
c4f50183 170EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
171
172/**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180void tracing_off(void)
181{
033601a3
SR
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183}
c4f50183 184EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
185
186/**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
c3706f00 190 * permanently.
033601a3
SR
191 */
192void tracing_off_permanent(void)
193{
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
195}
196
988ae9d6
SR
197/**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200int tracing_is_on(void)
201{
202 return ring_buffer_flags == RB_BUFFERS_ON;
203}
204EXPORT_SYMBOL_GPL(tracing_is_on);
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169 208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 209#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 210
2271048d
SR
211#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212# define RB_FORCE_8BYTE_ALIGNMENT 0
213# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214#else
215# define RB_FORCE_8BYTE_ALIGNMENT 1
216# define RB_ARCH_ALIGNMENT 8U
217#endif
218
334d4169
LJ
219/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
221
222enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
225};
226
2d622719
TZ
227static inline int rb_null_event(struct ring_buffer_event *event)
228{
a1863c21 229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
230}
231
232static void rb_event_set_padding(struct ring_buffer_event *event)
233{
a1863c21 234 /* padding has a NULL time_delta */
334d4169 235 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
236 event->time_delta = 0;
237}
238
34a148bf 239static unsigned
2d622719 240rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
241{
242 unsigned length;
243
334d4169
LJ
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
249}
250
251/* inline for ring buffer fast paths */
252static unsigned
253rb_event_length(struct ring_buffer_event *event)
254{
334d4169 255 switch (event->type_len) {
7a8e76a3 256 case RINGBUF_TYPE_PADDING:
2d622719
TZ
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
334d4169 260 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
261
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
264
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
267
268 case RINGBUF_TYPE_DATA:
2d622719 269 return rb_event_data_length(event);
7a8e76a3
SR
270 default:
271 BUG();
272 }
273 /* not hit */
274 return 0;
275}
276
277/**
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
280 */
281unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282{
465634ad 283 unsigned length = rb_event_length(event);
334d4169 284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
7a8e76a3 290}
c4f50183 291EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
292
293/* inline for ring buffer fast paths */
34a148bf 294static void *
7a8e76a3
SR
295rb_event_data(struct ring_buffer_event *event)
296{
334d4169 297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 298 /* If length is in len field, then array[0] has the data */
334d4169 299 if (event->type_len)
7a8e76a3
SR
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
303}
304
305/**
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
308 */
309void *ring_buffer_event_data(struct ring_buffer_event *event)
310{
311 return rb_event_data(event);
312}
c4f50183 313EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
314
315#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 316 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
317
318#define TS_SHIFT 27
319#define TS_MASK ((1ULL << TS_SHIFT) - 1)
320#define TS_DELTA_TEST (~TS_MASK)
321
abc9b56d 322struct buffer_data_page {
e4c2ce82 323 u64 time_stamp; /* page time stamp */
c3706f00 324 local_t commit; /* write committed index */
abc9b56d
SR
325 unsigned char data[]; /* data of buffer page */
326};
327
77ae365e
SR
328/*
329 * Note, the buffer_page list must be first. The buffer pages
330 * are allocated in cache lines, which means that each buffer
331 * page will be at the beginning of a cache line, and thus
332 * the least significant bits will be zero. We use this to
333 * add flags in the list struct pointers, to make the ring buffer
334 * lockless.
335 */
abc9b56d 336struct buffer_page {
778c55d4 337 struct list_head list; /* list of buffer pages */
abc9b56d 338 local_t write; /* index for next write */
6f807acd 339 unsigned read; /* index for next read */
778c55d4 340 local_t entries; /* entries on this page */
abc9b56d 341 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
342};
343
77ae365e
SR
344/*
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
349 *
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
353 *
354 * The counter is 20 bits, and the state data is 12.
355 */
356#define RB_WRITE_MASK 0xfffff
357#define RB_WRITE_INTCNT (1 << 20)
358
044fa782 359static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 360{
044fa782 361 local_set(&bpage->commit, 0);
abc9b56d
SR
362}
363
474d32b6
SR
364/**
365 * ring_buffer_page_len - the size of data on the page.
366 * @page: The page to read
367 *
368 * Returns the amount of data on the page, including buffer page header.
369 */
ef7a4a16
SR
370size_t ring_buffer_page_len(void *page)
371{
474d32b6
SR
372 return local_read(&((struct buffer_data_page *)page)->commit)
373 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
374}
375
ed56829c
SR
376/*
377 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378 * this issue out.
379 */
34a148bf 380static void free_buffer_page(struct buffer_page *bpage)
ed56829c 381{
34a148bf 382 free_page((unsigned long)bpage->page);
e4c2ce82 383 kfree(bpage);
ed56829c
SR
384}
385
7a8e76a3
SR
386/*
387 * We need to fit the time_stamp delta into 27 bits.
388 */
389static inline int test_time_stamp(u64 delta)
390{
391 if (delta & TS_DELTA_TEST)
392 return 1;
393 return 0;
394}
395
474d32b6 396#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 397
be957c44
SR
398/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400
ea05b57c
SR
401/* Max number of timestamps that can fit on a page */
402#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403
d1b182a8
SR
404int ring_buffer_print_page_header(struct trace_seq *s)
405{
406 struct buffer_data_page field;
407 int ret;
408
409 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
410 "offset:0;\tsize:%u;\tsigned:%u;\n",
411 (unsigned int)sizeof(field.time_stamp),
412 (unsigned int)is_signed_type(u64));
d1b182a8
SR
413
414 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 415 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 416 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
417 (unsigned int)sizeof(field.commit),
418 (unsigned int)is_signed_type(long));
d1b182a8
SR
419
420 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 422 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
423 (unsigned int)BUF_PAGE_SIZE,
424 (unsigned int)is_signed_type(char));
d1b182a8
SR
425
426 return ret;
427}
428
7a8e76a3
SR
429/*
430 * head_page == tail_page && head == tail then buffer is empty.
431 */
432struct ring_buffer_per_cpu {
433 int cpu;
434 struct ring_buffer *buffer;
77ae365e 435 spinlock_t reader_lock; /* serialize readers */
445c8951 436 arch_spinlock_t lock;
7a8e76a3 437 struct lock_class_key lock_key;
3adc54fa 438 struct list_head *pages;
6f807acd
SR
439 struct buffer_page *head_page; /* read from head */
440 struct buffer_page *tail_page; /* write to tail */
c3706f00 441 struct buffer_page *commit_page; /* committed pages */
d769041f 442 struct buffer_page *reader_page;
77ae365e
SR
443 local_t commit_overrun;
444 local_t overrun;
e4906eff 445 local_t entries;
fa743953
SR
446 local_t committing;
447 local_t commits;
77ae365e 448 unsigned long read;
7a8e76a3
SR
449 u64 write_stamp;
450 u64 read_stamp;
451 atomic_t record_disabled;
452};
453
454struct ring_buffer {
7a8e76a3
SR
455 unsigned pages;
456 unsigned flags;
457 int cpus;
7a8e76a3 458 atomic_t record_disabled;
00f62f61 459 cpumask_var_t cpumask;
7a8e76a3 460
1f8a6a10
PZ
461 struct lock_class_key *reader_lock_key;
462
7a8e76a3
SR
463 struct mutex mutex;
464
465 struct ring_buffer_per_cpu **buffers;
554f786e 466
59222efe 467#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
468 struct notifier_block cpu_notify;
469#endif
37886f6a 470 u64 (*clock)(void);
7a8e76a3
SR
471};
472
473struct ring_buffer_iter {
474 struct ring_buffer_per_cpu *cpu_buffer;
475 unsigned long head;
476 struct buffer_page *head_page;
492a74f4
SR
477 struct buffer_page *cache_reader_page;
478 unsigned long cache_read;
7a8e76a3
SR
479 u64 read_stamp;
480};
481
f536aafc 482/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
483#define RB_WARN_ON(b, cond) \
484 ({ \
485 int _____ret = unlikely(cond); \
486 if (_____ret) { \
487 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488 struct ring_buffer_per_cpu *__b = \
489 (void *)b; \
490 atomic_inc(&__b->buffer->record_disabled); \
491 } else \
492 atomic_inc(&b->record_disabled); \
493 WARN_ON(1); \
494 } \
495 _____ret; \
3e89c7bb 496 })
f536aafc 497
37886f6a
SR
498/* Up this if you want to test the TIME_EXTENTS and normalization */
499#define DEBUG_SHIFT 0
500
6d3f1e12 501static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
502{
503 /* shift to debug/test normalization and TIME_EXTENTS */
504 return buffer->clock() << DEBUG_SHIFT;
505}
506
37886f6a
SR
507u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508{
509 u64 time;
510
511 preempt_disable_notrace();
6d3f1e12 512 time = rb_time_stamp(buffer);
37886f6a
SR
513 preempt_enable_no_resched_notrace();
514
515 return time;
516}
517EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518
519void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520 int cpu, u64 *ts)
521{
522 /* Just stupid testing the normalize function and deltas */
523 *ts >>= DEBUG_SHIFT;
524}
525EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526
77ae365e
SR
527/*
528 * Making the ring buffer lockless makes things tricky.
529 * Although writes only happen on the CPU that they are on,
530 * and they only need to worry about interrupts. Reads can
531 * happen on any CPU.
532 *
533 * The reader page is always off the ring buffer, but when the
534 * reader finishes with a page, it needs to swap its page with
535 * a new one from the buffer. The reader needs to take from
536 * the head (writes go to the tail). But if a writer is in overwrite
537 * mode and wraps, it must push the head page forward.
538 *
539 * Here lies the problem.
540 *
541 * The reader must be careful to replace only the head page, and
542 * not another one. As described at the top of the file in the
543 * ASCII art, the reader sets its old page to point to the next
544 * page after head. It then sets the page after head to point to
545 * the old reader page. But if the writer moves the head page
546 * during this operation, the reader could end up with the tail.
547 *
548 * We use cmpxchg to help prevent this race. We also do something
549 * special with the page before head. We set the LSB to 1.
550 *
551 * When the writer must push the page forward, it will clear the
552 * bit that points to the head page, move the head, and then set
553 * the bit that points to the new head page.
554 *
555 * We also don't want an interrupt coming in and moving the head
556 * page on another writer. Thus we use the second LSB to catch
557 * that too. Thus:
558 *
559 * head->list->prev->next bit 1 bit 0
560 * ------- -------
561 * Normal page 0 0
562 * Points to head page 0 1
563 * New head page 1 0
564 *
565 * Note we can not trust the prev pointer of the head page, because:
566 *
567 * +----+ +-----+ +-----+
568 * | |------>| T |---X--->| N |
569 * | |<------| | | |
570 * +----+ +-----+ +-----+
571 * ^ ^ |
572 * | +-----+ | |
573 * +----------| R |----------+ |
574 * | |<-----------+
575 * +-----+
576 *
577 * Key: ---X--> HEAD flag set in pointer
578 * T Tail page
579 * R Reader page
580 * N Next page
581 *
582 * (see __rb_reserve_next() to see where this happens)
583 *
584 * What the above shows is that the reader just swapped out
585 * the reader page with a page in the buffer, but before it
586 * could make the new header point back to the new page added
587 * it was preempted by a writer. The writer moved forward onto
588 * the new page added by the reader and is about to move forward
589 * again.
590 *
591 * You can see, it is legitimate for the previous pointer of
592 * the head (or any page) not to point back to itself. But only
593 * temporarially.
594 */
595
596#define RB_PAGE_NORMAL 0UL
597#define RB_PAGE_HEAD 1UL
598#define RB_PAGE_UPDATE 2UL
599
600
601#define RB_FLAG_MASK 3UL
602
603/* PAGE_MOVED is not part of the mask */
604#define RB_PAGE_MOVED 4UL
605
606/*
607 * rb_list_head - remove any bit
608 */
609static struct list_head *rb_list_head(struct list_head *list)
610{
611 unsigned long val = (unsigned long)list;
612
613 return (struct list_head *)(val & ~RB_FLAG_MASK);
614}
615
616/*
6d3f1e12 617 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
618 *
619 * Because the reader may move the head_page pointer, we can
620 * not trust what the head page is (it may be pointing to
621 * the reader page). But if the next page is a header page,
622 * its flags will be non zero.
623 */
624static int inline
625rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626 struct buffer_page *page, struct list_head *list)
627{
628 unsigned long val;
629
630 val = (unsigned long)list->next;
631
632 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633 return RB_PAGE_MOVED;
634
635 return val & RB_FLAG_MASK;
636}
637
638/*
639 * rb_is_reader_page
640 *
641 * The unique thing about the reader page, is that, if the
642 * writer is ever on it, the previous pointer never points
643 * back to the reader page.
644 */
645static int rb_is_reader_page(struct buffer_page *page)
646{
647 struct list_head *list = page->list.prev;
648
649 return rb_list_head(list->next) != &page->list;
650}
651
652/*
653 * rb_set_list_to_head - set a list_head to be pointing to head.
654 */
655static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656 struct list_head *list)
657{
658 unsigned long *ptr;
659
660 ptr = (unsigned long *)&list->next;
661 *ptr |= RB_PAGE_HEAD;
662 *ptr &= ~RB_PAGE_UPDATE;
663}
664
665/*
666 * rb_head_page_activate - sets up head page
667 */
668static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669{
670 struct buffer_page *head;
671
672 head = cpu_buffer->head_page;
673 if (!head)
674 return;
675
676 /*
677 * Set the previous list pointer to have the HEAD flag.
678 */
679 rb_set_list_to_head(cpu_buffer, head->list.prev);
680}
681
682static void rb_list_head_clear(struct list_head *list)
683{
684 unsigned long *ptr = (unsigned long *)&list->next;
685
686 *ptr &= ~RB_FLAG_MASK;
687}
688
689/*
690 * rb_head_page_dactivate - clears head page ptr (for free list)
691 */
692static void
693rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct list_head *hd;
696
697 /* Go through the whole list and clear any pointers found. */
698 rb_list_head_clear(cpu_buffer->pages);
699
700 list_for_each(hd, cpu_buffer->pages)
701 rb_list_head_clear(hd);
702}
703
704static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705 struct buffer_page *head,
706 struct buffer_page *prev,
707 int old_flag, int new_flag)
708{
709 struct list_head *list;
710 unsigned long val = (unsigned long)&head->list;
711 unsigned long ret;
712
713 list = &prev->list;
714
715 val &= ~RB_FLAG_MASK;
716
08a40816
SR
717 ret = cmpxchg((unsigned long *)&list->next,
718 val | old_flag, val | new_flag);
77ae365e
SR
719
720 /* check if the reader took the page */
721 if ((ret & ~RB_FLAG_MASK) != val)
722 return RB_PAGE_MOVED;
723
724 return ret & RB_FLAG_MASK;
725}
726
727static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728 struct buffer_page *head,
729 struct buffer_page *prev,
730 int old_flag)
731{
732 return rb_head_page_set(cpu_buffer, head, prev,
733 old_flag, RB_PAGE_UPDATE);
734}
735
736static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737 struct buffer_page *head,
738 struct buffer_page *prev,
739 int old_flag)
740{
741 return rb_head_page_set(cpu_buffer, head, prev,
742 old_flag, RB_PAGE_HEAD);
743}
744
745static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746 struct buffer_page *head,
747 struct buffer_page *prev,
748 int old_flag)
749{
750 return rb_head_page_set(cpu_buffer, head, prev,
751 old_flag, RB_PAGE_NORMAL);
752}
753
754static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755 struct buffer_page **bpage)
756{
757 struct list_head *p = rb_list_head((*bpage)->list.next);
758
759 *bpage = list_entry(p, struct buffer_page, list);
760}
761
762static struct buffer_page *
763rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764{
765 struct buffer_page *head;
766 struct buffer_page *page;
767 struct list_head *list;
768 int i;
769
770 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771 return NULL;
772
773 /* sanity check */
774 list = cpu_buffer->pages;
775 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776 return NULL;
777
778 page = head = cpu_buffer->head_page;
779 /*
780 * It is possible that the writer moves the header behind
781 * where we started, and we miss in one loop.
782 * A second loop should grab the header, but we'll do
783 * three loops just because I'm paranoid.
784 */
785 for (i = 0; i < 3; i++) {
786 do {
787 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788 cpu_buffer->head_page = page;
789 return page;
790 }
791 rb_inc_page(cpu_buffer, &page);
792 } while (page != head);
793 }
794
795 RB_WARN_ON(cpu_buffer, 1);
796
797 return NULL;
798}
799
800static int rb_head_page_replace(struct buffer_page *old,
801 struct buffer_page *new)
802{
803 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804 unsigned long val;
805 unsigned long ret;
806
807 val = *ptr & ~RB_FLAG_MASK;
808 val |= RB_PAGE_HEAD;
809
08a40816 810 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
811
812 return ret == val;
813}
814
815/*
816 * rb_tail_page_update - move the tail page forward
817 *
818 * Returns 1 if moved tail page, 0 if someone else did.
819 */
820static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821 struct buffer_page *tail_page,
822 struct buffer_page *next_page)
823{
824 struct buffer_page *old_tail;
825 unsigned long old_entries;
826 unsigned long old_write;
827 int ret = 0;
828
829 /*
830 * The tail page now needs to be moved forward.
831 *
832 * We need to reset the tail page, but without messing
833 * with possible erasing of data brought in by interrupts
834 * that have moved the tail page and are currently on it.
835 *
836 * We add a counter to the write field to denote this.
837 */
838 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840
841 /*
842 * Just make sure we have seen our old_write and synchronize
843 * with any interrupts that come in.
844 */
845 barrier();
846
847 /*
848 * If the tail page is still the same as what we think
849 * it is, then it is up to us to update the tail
850 * pointer.
851 */
852 if (tail_page == cpu_buffer->tail_page) {
853 /* Zero the write counter */
854 unsigned long val = old_write & ~RB_WRITE_MASK;
855 unsigned long eval = old_entries & ~RB_WRITE_MASK;
856
857 /*
858 * This will only succeed if an interrupt did
859 * not come in and change it. In which case, we
860 * do not want to modify it.
da706d8b
LJ
861 *
862 * We add (void) to let the compiler know that we do not care
863 * about the return value of these functions. We use the
864 * cmpxchg to only update if an interrupt did not already
865 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 866 */
da706d8b
LJ
867 (void)local_cmpxchg(&next_page->write, old_write, val);
868 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
869
870 /*
871 * No need to worry about races with clearing out the commit.
872 * it only can increment when a commit takes place. But that
873 * only happens in the outer most nested commit.
874 */
875 local_set(&next_page->page->commit, 0);
876
877 old_tail = cmpxchg(&cpu_buffer->tail_page,
878 tail_page, next_page);
879
880 if (old_tail == tail_page)
881 ret = 1;
882 }
883
884 return ret;
885}
886
887static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888 struct buffer_page *bpage)
889{
890 unsigned long val = (unsigned long)bpage;
891
892 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893 return 1;
894
895 return 0;
896}
897
898/**
899 * rb_check_list - make sure a pointer to a list has the last bits zero
900 */
901static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902 struct list_head *list)
903{
904 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905 return 1;
906 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907 return 1;
908 return 0;
909}
910
7a8e76a3
SR
911/**
912 * check_pages - integrity check of buffer pages
913 * @cpu_buffer: CPU buffer with pages to test
914 *
c3706f00 915 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
916 * been corrupted.
917 */
918static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919{
3adc54fa 920 struct list_head *head = cpu_buffer->pages;
044fa782 921 struct buffer_page *bpage, *tmp;
7a8e76a3 922
77ae365e
SR
923 rb_head_page_deactivate(cpu_buffer);
924
3e89c7bb
SR
925 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926 return -1;
927 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928 return -1;
7a8e76a3 929
77ae365e
SR
930 if (rb_check_list(cpu_buffer, head))
931 return -1;
932
044fa782 933 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 934 if (RB_WARN_ON(cpu_buffer,
044fa782 935 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
936 return -1;
937 if (RB_WARN_ON(cpu_buffer,
044fa782 938 bpage->list.prev->next != &bpage->list))
3e89c7bb 939 return -1;
77ae365e
SR
940 if (rb_check_list(cpu_buffer, &bpage->list))
941 return -1;
7a8e76a3
SR
942 }
943
77ae365e
SR
944 rb_head_page_activate(cpu_buffer);
945
7a8e76a3
SR
946 return 0;
947}
948
7a8e76a3
SR
949static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950 unsigned nr_pages)
951{
044fa782 952 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
953 unsigned long addr;
954 LIST_HEAD(pages);
955 unsigned i;
956
3adc54fa
SR
957 WARN_ON(!nr_pages);
958
7a8e76a3 959 for (i = 0; i < nr_pages; i++) {
044fa782 960 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 961 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 962 if (!bpage)
e4c2ce82 963 goto free_pages;
77ae365e
SR
964
965 rb_check_bpage(cpu_buffer, bpage);
966
044fa782 967 list_add(&bpage->list, &pages);
e4c2ce82 968
7a8e76a3
SR
969 addr = __get_free_page(GFP_KERNEL);
970 if (!addr)
971 goto free_pages;
044fa782
SR
972 bpage->page = (void *)addr;
973 rb_init_page(bpage->page);
7a8e76a3
SR
974 }
975
3adc54fa
SR
976 /*
977 * The ring buffer page list is a circular list that does not
978 * start and end with a list head. All page list items point to
979 * other pages.
980 */
981 cpu_buffer->pages = pages.next;
982 list_del(&pages);
7a8e76a3
SR
983
984 rb_check_pages(cpu_buffer);
985
986 return 0;
987
988 free_pages:
044fa782
SR
989 list_for_each_entry_safe(bpage, tmp, &pages, list) {
990 list_del_init(&bpage->list);
991 free_buffer_page(bpage);
7a8e76a3
SR
992 }
993 return -ENOMEM;
994}
995
996static struct ring_buffer_per_cpu *
997rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998{
999 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1000 struct buffer_page *bpage;
d769041f 1001 unsigned long addr;
7a8e76a3
SR
1002 int ret;
1003
1004 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005 GFP_KERNEL, cpu_to_node(cpu));
1006 if (!cpu_buffer)
1007 return NULL;
1008
1009 cpu_buffer->cpu = cpu;
1010 cpu_buffer->buffer = buffer;
f83c9d0f 1011 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1012 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1013 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1014
044fa782 1015 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1016 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1017 if (!bpage)
e4c2ce82
SR
1018 goto fail_free_buffer;
1019
77ae365e
SR
1020 rb_check_bpage(cpu_buffer, bpage);
1021
044fa782 1022 cpu_buffer->reader_page = bpage;
d769041f
SR
1023 addr = __get_free_page(GFP_KERNEL);
1024 if (!addr)
e4c2ce82 1025 goto fail_free_reader;
044fa782
SR
1026 bpage->page = (void *)addr;
1027 rb_init_page(bpage->page);
e4c2ce82 1028
d769041f 1029 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1030
7a8e76a3
SR
1031 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032 if (ret < 0)
d769041f 1033 goto fail_free_reader;
7a8e76a3
SR
1034
1035 cpu_buffer->head_page
3adc54fa 1036 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1037 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1038
77ae365e
SR
1039 rb_head_page_activate(cpu_buffer);
1040
7a8e76a3
SR
1041 return cpu_buffer;
1042
d769041f
SR
1043 fail_free_reader:
1044 free_buffer_page(cpu_buffer->reader_page);
1045
7a8e76a3
SR
1046 fail_free_buffer:
1047 kfree(cpu_buffer);
1048 return NULL;
1049}
1050
1051static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052{
3adc54fa 1053 struct list_head *head = cpu_buffer->pages;
044fa782 1054 struct buffer_page *bpage, *tmp;
7a8e76a3 1055
d769041f
SR
1056 free_buffer_page(cpu_buffer->reader_page);
1057
77ae365e
SR
1058 rb_head_page_deactivate(cpu_buffer);
1059
3adc54fa
SR
1060 if (head) {
1061 list_for_each_entry_safe(bpage, tmp, head, list) {
1062 list_del_init(&bpage->list);
1063 free_buffer_page(bpage);
1064 }
1065 bpage = list_entry(head, struct buffer_page, list);
044fa782 1066 free_buffer_page(bpage);
7a8e76a3 1067 }
3adc54fa 1068
7a8e76a3
SR
1069 kfree(cpu_buffer);
1070}
1071
59222efe 1072#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1073static int rb_cpu_notify(struct notifier_block *self,
1074 unsigned long action, void *hcpu);
554f786e
SR
1075#endif
1076
7a8e76a3
SR
1077/**
1078 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1079 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1080 * @flags: attributes to set for the ring buffer.
1081 *
1082 * Currently the only flag that is available is the RB_FL_OVERWRITE
1083 * flag. This flag means that the buffer will overwrite old data
1084 * when the buffer wraps. If this flag is not set, the buffer will
1085 * drop data when the tail hits the head.
1086 */
1f8a6a10
PZ
1087struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088 struct lock_class_key *key)
7a8e76a3
SR
1089{
1090 struct ring_buffer *buffer;
1091 int bsize;
1092 int cpu;
1093
1094 /* keep it in its own cache line */
1095 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096 GFP_KERNEL);
1097 if (!buffer)
1098 return NULL;
1099
9e01c1b7
RR
1100 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101 goto fail_free_buffer;
1102
7a8e76a3
SR
1103 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104 buffer->flags = flags;
37886f6a 1105 buffer->clock = trace_clock_local;
1f8a6a10 1106 buffer->reader_lock_key = key;
7a8e76a3
SR
1107
1108 /* need at least two pages */
5f78abee
SR
1109 if (buffer->pages < 2)
1110 buffer->pages = 2;
7a8e76a3 1111
3bf832ce
FW
1112 /*
1113 * In case of non-hotplug cpu, if the ring-buffer is allocated
1114 * in early initcall, it will not be notified of secondary cpus.
1115 * In that off case, we need to allocate for all possible cpus.
1116 */
1117#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1118 get_online_cpus();
1119 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1120#else
1121 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122#endif
7a8e76a3
SR
1123 buffer->cpus = nr_cpu_ids;
1124
1125 bsize = sizeof(void *) * nr_cpu_ids;
1126 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127 GFP_KERNEL);
1128 if (!buffer->buffers)
9e01c1b7 1129 goto fail_free_cpumask;
7a8e76a3
SR
1130
1131 for_each_buffer_cpu(buffer, cpu) {
1132 buffer->buffers[cpu] =
1133 rb_allocate_cpu_buffer(buffer, cpu);
1134 if (!buffer->buffers[cpu])
1135 goto fail_free_buffers;
1136 }
1137
59222efe 1138#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1139 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140 buffer->cpu_notify.priority = 0;
1141 register_cpu_notifier(&buffer->cpu_notify);
1142#endif
1143
1144 put_online_cpus();
7a8e76a3
SR
1145 mutex_init(&buffer->mutex);
1146
1147 return buffer;
1148
1149 fail_free_buffers:
1150 for_each_buffer_cpu(buffer, cpu) {
1151 if (buffer->buffers[cpu])
1152 rb_free_cpu_buffer(buffer->buffers[cpu]);
1153 }
1154 kfree(buffer->buffers);
1155
9e01c1b7
RR
1156 fail_free_cpumask:
1157 free_cpumask_var(buffer->cpumask);
554f786e 1158 put_online_cpus();
9e01c1b7 1159
7a8e76a3
SR
1160 fail_free_buffer:
1161 kfree(buffer);
1162 return NULL;
1163}
1f8a6a10 1164EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1165
1166/**
1167 * ring_buffer_free - free a ring buffer.
1168 * @buffer: the buffer to free.
1169 */
1170void
1171ring_buffer_free(struct ring_buffer *buffer)
1172{
1173 int cpu;
1174
554f786e
SR
1175 get_online_cpus();
1176
59222efe 1177#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1178 unregister_cpu_notifier(&buffer->cpu_notify);
1179#endif
1180
7a8e76a3
SR
1181 for_each_buffer_cpu(buffer, cpu)
1182 rb_free_cpu_buffer(buffer->buffers[cpu]);
1183
554f786e
SR
1184 put_online_cpus();
1185
bd3f0221 1186 kfree(buffer->buffers);
9e01c1b7
RR
1187 free_cpumask_var(buffer->cpumask);
1188
7a8e76a3
SR
1189 kfree(buffer);
1190}
c4f50183 1191EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1192
37886f6a
SR
1193void ring_buffer_set_clock(struct ring_buffer *buffer,
1194 u64 (*clock)(void))
1195{
1196 buffer->clock = clock;
1197}
1198
7a8e76a3
SR
1199static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200
1201static void
1202rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203{
044fa782 1204 struct buffer_page *bpage;
7a8e76a3
SR
1205 struct list_head *p;
1206 unsigned i;
1207
f7112949 1208 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1209 rb_head_page_deactivate(cpu_buffer);
1210
7a8e76a3 1211 for (i = 0; i < nr_pages; i++) {
3adc54fa 1212 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1213 return;
3adc54fa 1214 p = cpu_buffer->pages->next;
044fa782
SR
1215 bpage = list_entry(p, struct buffer_page, list);
1216 list_del_init(&bpage->list);
1217 free_buffer_page(bpage);
7a8e76a3 1218 }
3adc54fa 1219 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1220 return;
7a8e76a3
SR
1221
1222 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1223 rb_check_pages(cpu_buffer);
1224
dd7f5943 1225 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1226}
1227
1228static void
1229rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1230 struct list_head *pages, unsigned nr_pages)
1231{
044fa782 1232 struct buffer_page *bpage;
7a8e76a3
SR
1233 struct list_head *p;
1234 unsigned i;
1235
77ae365e
SR
1236 spin_lock_irq(&cpu_buffer->reader_lock);
1237 rb_head_page_deactivate(cpu_buffer);
1238
7a8e76a3 1239 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
1240 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1241 return;
7a8e76a3 1242 p = pages->next;
044fa782
SR
1243 bpage = list_entry(p, struct buffer_page, list);
1244 list_del_init(&bpage->list);
3adc54fa 1245 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1246 }
1247 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1248 rb_check_pages(cpu_buffer);
1249
dd7f5943 1250 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1251}
1252
1253/**
1254 * ring_buffer_resize - resize the ring buffer
1255 * @buffer: the buffer to resize.
1256 * @size: the new size.
1257 *
7a8e76a3
SR
1258 * Minimum size is 2 * BUF_PAGE_SIZE.
1259 *
1260 * Returns -1 on failure.
1261 */
1262int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263{
1264 struct ring_buffer_per_cpu *cpu_buffer;
1265 unsigned nr_pages, rm_pages, new_pages;
044fa782 1266 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1267 unsigned long buffer_size;
1268 unsigned long addr;
1269 LIST_HEAD(pages);
1270 int i, cpu;
1271
ee51a1de
IM
1272 /*
1273 * Always succeed at resizing a non-existent buffer:
1274 */
1275 if (!buffer)
1276 return size;
1277
7a8e76a3
SR
1278 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1279 size *= BUF_PAGE_SIZE;
1280 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281
1282 /* we need a minimum of two pages */
1283 if (size < BUF_PAGE_SIZE * 2)
1284 size = BUF_PAGE_SIZE * 2;
1285
1286 if (size == buffer_size)
1287 return size;
1288
18421015
SR
1289 atomic_inc(&buffer->record_disabled);
1290
1291 /* Make sure all writers are done with this buffer. */
1292 synchronize_sched();
1293
7a8e76a3 1294 mutex_lock(&buffer->mutex);
554f786e 1295 get_online_cpus();
7a8e76a3
SR
1296
1297 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1298
1299 if (size < buffer_size) {
1300
1301 /* easy case, just free pages */
554f786e
SR
1302 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1303 goto out_fail;
7a8e76a3
SR
1304
1305 rm_pages = buffer->pages - nr_pages;
1306
1307 for_each_buffer_cpu(buffer, cpu) {
1308 cpu_buffer = buffer->buffers[cpu];
1309 rb_remove_pages(cpu_buffer, rm_pages);
1310 }
1311 goto out;
1312 }
1313
1314 /*
1315 * This is a bit more difficult. We only want to add pages
1316 * when we can allocate enough for all CPUs. We do this
1317 * by allocating all the pages and storing them on a local
1318 * link list. If we succeed in our allocation, then we
1319 * add these pages to the cpu_buffers. Otherwise we just free
1320 * them all and return -ENOMEM;
1321 */
554f786e
SR
1322 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1323 goto out_fail;
f536aafc 1324
7a8e76a3
SR
1325 new_pages = nr_pages - buffer->pages;
1326
1327 for_each_buffer_cpu(buffer, cpu) {
1328 for (i = 0; i < new_pages; i++) {
044fa782 1329 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1330 cache_line_size()),
1331 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1332 if (!bpage)
e4c2ce82 1333 goto free_pages;
044fa782 1334 list_add(&bpage->list, &pages);
7a8e76a3
SR
1335 addr = __get_free_page(GFP_KERNEL);
1336 if (!addr)
1337 goto free_pages;
044fa782
SR
1338 bpage->page = (void *)addr;
1339 rb_init_page(bpage->page);
7a8e76a3
SR
1340 }
1341 }
1342
1343 for_each_buffer_cpu(buffer, cpu) {
1344 cpu_buffer = buffer->buffers[cpu];
1345 rb_insert_pages(cpu_buffer, &pages, new_pages);
1346 }
1347
554f786e
SR
1348 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1349 goto out_fail;
7a8e76a3
SR
1350
1351 out:
1352 buffer->pages = nr_pages;
554f786e 1353 put_online_cpus();
7a8e76a3
SR
1354 mutex_unlock(&buffer->mutex);
1355
18421015
SR
1356 atomic_dec(&buffer->record_disabled);
1357
7a8e76a3
SR
1358 return size;
1359
1360 free_pages:
044fa782
SR
1361 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1362 list_del_init(&bpage->list);
1363 free_buffer_page(bpage);
7a8e76a3 1364 }
554f786e 1365 put_online_cpus();
641d2f63 1366 mutex_unlock(&buffer->mutex);
18421015 1367 atomic_dec(&buffer->record_disabled);
7a8e76a3 1368 return -ENOMEM;
554f786e
SR
1369
1370 /*
1371 * Something went totally wrong, and we are too paranoid
1372 * to even clean up the mess.
1373 */
1374 out_fail:
1375 put_online_cpus();
1376 mutex_unlock(&buffer->mutex);
18421015 1377 atomic_dec(&buffer->record_disabled);
554f786e 1378 return -1;
7a8e76a3 1379}
c4f50183 1380EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1381
8789a9e7 1382static inline void *
044fa782 1383__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1384{
044fa782 1385 return bpage->data + index;
8789a9e7
SR
1386}
1387
044fa782 1388static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1389{
044fa782 1390 return bpage->page->data + index;
7a8e76a3
SR
1391}
1392
1393static inline struct ring_buffer_event *
d769041f 1394rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1395{
6f807acd
SR
1396 return __rb_page_index(cpu_buffer->reader_page,
1397 cpu_buffer->reader_page->read);
1398}
1399
7a8e76a3
SR
1400static inline struct ring_buffer_event *
1401rb_iter_head_event(struct ring_buffer_iter *iter)
1402{
6f807acd 1403 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1404}
1405
77ae365e 1406static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1407{
77ae365e 1408 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1409}
1410
1411static inline unsigned rb_page_commit(struct buffer_page *bpage)
1412{
abc9b56d 1413 return local_read(&bpage->page->commit);
bf41a158
SR
1414}
1415
77ae365e
SR
1416static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1417{
1418 return local_read(&bpage->entries) & RB_WRITE_MASK;
1419}
1420
bf41a158
SR
1421/* Size is determined by what has been commited */
1422static inline unsigned rb_page_size(struct buffer_page *bpage)
1423{
1424 return rb_page_commit(bpage);
1425}
1426
1427static inline unsigned
1428rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1429{
1430 return rb_page_commit(cpu_buffer->commit_page);
1431}
1432
bf41a158
SR
1433static inline unsigned
1434rb_event_index(struct ring_buffer_event *event)
1435{
1436 unsigned long addr = (unsigned long)event;
1437
22f470f8 1438 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1439}
1440
0f0c85fc 1441static inline int
fa743953
SR
1442rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1443 struct ring_buffer_event *event)
bf41a158
SR
1444{
1445 unsigned long addr = (unsigned long)event;
1446 unsigned long index;
1447
1448 index = rb_event_index(event);
1449 addr &= PAGE_MASK;
1450
1451 return cpu_buffer->commit_page->page == (void *)addr &&
1452 rb_commit_index(cpu_buffer) == index;
1453}
1454
34a148bf 1455static void
bf41a158 1456rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1457{
77ae365e
SR
1458 unsigned long max_count;
1459
bf41a158
SR
1460 /*
1461 * We only race with interrupts and NMIs on this CPU.
1462 * If we own the commit event, then we can commit
1463 * all others that interrupted us, since the interruptions
1464 * are in stack format (they finish before they come
1465 * back to us). This allows us to do a simple loop to
1466 * assign the commit to the tail.
1467 */
a8ccf1d6 1468 again:
77ae365e
SR
1469 max_count = cpu_buffer->buffer->pages * 100;
1470
bf41a158 1471 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1472 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1473 return;
1474 if (RB_WARN_ON(cpu_buffer,
1475 rb_is_reader_page(cpu_buffer->tail_page)))
1476 return;
1477 local_set(&cpu_buffer->commit_page->page->commit,
1478 rb_page_write(cpu_buffer->commit_page));
bf41a158 1479 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1480 cpu_buffer->write_stamp =
1481 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1482 /* add barrier to keep gcc from optimizing too much */
1483 barrier();
1484 }
1485 while (rb_commit_index(cpu_buffer) !=
1486 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1487
1488 local_set(&cpu_buffer->commit_page->page->commit,
1489 rb_page_write(cpu_buffer->commit_page));
1490 RB_WARN_ON(cpu_buffer,
1491 local_read(&cpu_buffer->commit_page->page->commit) &
1492 ~RB_WRITE_MASK);
bf41a158
SR
1493 barrier();
1494 }
a8ccf1d6
SR
1495
1496 /* again, keep gcc from optimizing */
1497 barrier();
1498
1499 /*
1500 * If an interrupt came in just after the first while loop
1501 * and pushed the tail page forward, we will be left with
1502 * a dangling commit that will never go forward.
1503 */
1504 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1505 goto again;
7a8e76a3
SR
1506}
1507
d769041f 1508static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1509{
abc9b56d 1510 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1511 cpu_buffer->reader_page->read = 0;
d769041f
SR
1512}
1513
34a148bf 1514static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1515{
1516 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1517
1518 /*
1519 * The iterator could be on the reader page (it starts there).
1520 * But the head could have moved, since the reader was
1521 * found. Check for this case and assign the iterator
1522 * to the head page instead of next.
1523 */
1524 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1525 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1526 else
1527 rb_inc_page(cpu_buffer, &iter->head_page);
1528
abc9b56d 1529 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1530 iter->head = 0;
1531}
1532
1533/**
1534 * ring_buffer_update_event - update event type and data
1535 * @event: the even to update
1536 * @type: the type of event
1537 * @length: the size of the event field in the ring buffer
1538 *
1539 * Update the type and data fields of the event. The length
1540 * is the actual size that is written to the ring buffer,
1541 * and with this, we can determine what to place into the
1542 * data field.
1543 */
34a148bf 1544static void
7a8e76a3
SR
1545rb_update_event(struct ring_buffer_event *event,
1546 unsigned type, unsigned length)
1547{
334d4169 1548 event->type_len = type;
7a8e76a3
SR
1549
1550 switch (type) {
1551
1552 case RINGBUF_TYPE_PADDING:
7a8e76a3 1553 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1554 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1555 break;
1556
334d4169 1557 case 0:
7a8e76a3 1558 length -= RB_EVNT_HDR_SIZE;
2271048d 1559 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3 1560 event->array[0] = length;
334d4169
LJ
1561 else
1562 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1563 break;
1564 default:
1565 BUG();
1566 }
1567}
1568
77ae365e
SR
1569/*
1570 * rb_handle_head_page - writer hit the head page
1571 *
1572 * Returns: +1 to retry page
1573 * 0 to continue
1574 * -1 on error
1575 */
1576static int
1577rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1578 struct buffer_page *tail_page,
1579 struct buffer_page *next_page)
1580{
1581 struct buffer_page *new_head;
1582 int entries;
1583 int type;
1584 int ret;
1585
1586 entries = rb_page_entries(next_page);
1587
1588 /*
1589 * The hard part is here. We need to move the head
1590 * forward, and protect against both readers on
1591 * other CPUs and writers coming in via interrupts.
1592 */
1593 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1594 RB_PAGE_HEAD);
1595
1596 /*
1597 * type can be one of four:
1598 * NORMAL - an interrupt already moved it for us
1599 * HEAD - we are the first to get here.
1600 * UPDATE - we are the interrupt interrupting
1601 * a current move.
1602 * MOVED - a reader on another CPU moved the next
1603 * pointer to its reader page. Give up
1604 * and try again.
1605 */
1606
1607 switch (type) {
1608 case RB_PAGE_HEAD:
1609 /*
1610 * We changed the head to UPDATE, thus
1611 * it is our responsibility to update
1612 * the counters.
1613 */
1614 local_add(entries, &cpu_buffer->overrun);
1615
1616 /*
1617 * The entries will be zeroed out when we move the
1618 * tail page.
1619 */
1620
1621 /* still more to do */
1622 break;
1623
1624 case RB_PAGE_UPDATE:
1625 /*
1626 * This is an interrupt that interrupt the
1627 * previous update. Still more to do.
1628 */
1629 break;
1630 case RB_PAGE_NORMAL:
1631 /*
1632 * An interrupt came in before the update
1633 * and processed this for us.
1634 * Nothing left to do.
1635 */
1636 return 1;
1637 case RB_PAGE_MOVED:
1638 /*
1639 * The reader is on another CPU and just did
1640 * a swap with our next_page.
1641 * Try again.
1642 */
1643 return 1;
1644 default:
1645 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1646 return -1;
1647 }
1648
1649 /*
1650 * Now that we are here, the old head pointer is
1651 * set to UPDATE. This will keep the reader from
1652 * swapping the head page with the reader page.
1653 * The reader (on another CPU) will spin till
1654 * we are finished.
1655 *
1656 * We just need to protect against interrupts
1657 * doing the job. We will set the next pointer
1658 * to HEAD. After that, we set the old pointer
1659 * to NORMAL, but only if it was HEAD before.
1660 * otherwise we are an interrupt, and only
1661 * want the outer most commit to reset it.
1662 */
1663 new_head = next_page;
1664 rb_inc_page(cpu_buffer, &new_head);
1665
1666 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1667 RB_PAGE_NORMAL);
1668
1669 /*
1670 * Valid returns are:
1671 * HEAD - an interrupt came in and already set it.
1672 * NORMAL - One of two things:
1673 * 1) We really set it.
1674 * 2) A bunch of interrupts came in and moved
1675 * the page forward again.
1676 */
1677 switch (ret) {
1678 case RB_PAGE_HEAD:
1679 case RB_PAGE_NORMAL:
1680 /* OK */
1681 break;
1682 default:
1683 RB_WARN_ON(cpu_buffer, 1);
1684 return -1;
1685 }
1686
1687 /*
1688 * It is possible that an interrupt came in,
1689 * set the head up, then more interrupts came in
1690 * and moved it again. When we get back here,
1691 * the page would have been set to NORMAL but we
1692 * just set it back to HEAD.
1693 *
1694 * How do you detect this? Well, if that happened
1695 * the tail page would have moved.
1696 */
1697 if (ret == RB_PAGE_NORMAL) {
1698 /*
1699 * If the tail had moved passed next, then we need
1700 * to reset the pointer.
1701 */
1702 if (cpu_buffer->tail_page != tail_page &&
1703 cpu_buffer->tail_page != next_page)
1704 rb_head_page_set_normal(cpu_buffer, new_head,
1705 next_page,
1706 RB_PAGE_HEAD);
1707 }
1708
1709 /*
1710 * If this was the outer most commit (the one that
1711 * changed the original pointer from HEAD to UPDATE),
1712 * then it is up to us to reset it to NORMAL.
1713 */
1714 if (type == RB_PAGE_HEAD) {
1715 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1716 tail_page,
1717 RB_PAGE_UPDATE);
1718 if (RB_WARN_ON(cpu_buffer,
1719 ret != RB_PAGE_UPDATE))
1720 return -1;
1721 }
1722
1723 return 0;
1724}
1725
34a148bf 1726static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1727{
1728 struct ring_buffer_event event; /* Used only for sizeof array */
1729
1730 /* zero length can cause confusions */
1731 if (!length)
1732 length = 1;
1733
2271048d 1734 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1735 length += sizeof(event.array[0]);
1736
1737 length += RB_EVNT_HDR_SIZE;
2271048d 1738 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1739
1740 return length;
1741}
1742
c7b09308
SR
1743static inline void
1744rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1745 struct buffer_page *tail_page,
1746 unsigned long tail, unsigned long length)
1747{
1748 struct ring_buffer_event *event;
1749
1750 /*
1751 * Only the event that crossed the page boundary
1752 * must fill the old tail_page with padding.
1753 */
1754 if (tail >= BUF_PAGE_SIZE) {
1755 local_sub(length, &tail_page->write);
1756 return;
1757 }
1758
1759 event = __rb_page_index(tail_page, tail);
b0b7065b 1760 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308
SR
1761
1762 /*
1763 * If this event is bigger than the minimum size, then
1764 * we need to be careful that we don't subtract the
1765 * write counter enough to allow another writer to slip
1766 * in on this page.
1767 * We put in a discarded commit instead, to make sure
1768 * that this space is not used again.
1769 *
1770 * If we are less than the minimum size, we don't need to
1771 * worry about it.
1772 */
1773 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1774 /* No room for any events */
1775
1776 /* Mark the rest of the page with padding */
1777 rb_event_set_padding(event);
1778
1779 /* Set the write back to the previous setting */
1780 local_sub(length, &tail_page->write);
1781 return;
1782 }
1783
1784 /* Put in a discarded event */
1785 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1786 event->type_len = RINGBUF_TYPE_PADDING;
1787 /* time delta must be non zero */
1788 event->time_delta = 1;
c7b09308
SR
1789
1790 /* Set write to end of buffer */
1791 length = (tail + length) - BUF_PAGE_SIZE;
1792 local_sub(length, &tail_page->write);
1793}
6634ff26 1794
7a8e76a3 1795static struct ring_buffer_event *
6634ff26
SR
1796rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1797 unsigned long length, unsigned long tail,
6634ff26 1798 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1799{
5a50e33c 1800 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1801 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1802 struct buffer_page *next_page;
1803 int ret;
aa20ae84
SR
1804
1805 next_page = tail_page;
1806
aa20ae84
SR
1807 rb_inc_page(cpu_buffer, &next_page);
1808
aa20ae84
SR
1809 /*
1810 * If for some reason, we had an interrupt storm that made
1811 * it all the way around the buffer, bail, and warn
1812 * about it.
1813 */
1814 if (unlikely(next_page == commit_page)) {
77ae365e 1815 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1816 goto out_reset;
1817 }
1818
77ae365e
SR
1819 /*
1820 * This is where the fun begins!
1821 *
1822 * We are fighting against races between a reader that
1823 * could be on another CPU trying to swap its reader
1824 * page with the buffer head.
1825 *
1826 * We are also fighting against interrupts coming in and
1827 * moving the head or tail on us as well.
1828 *
1829 * If the next page is the head page then we have filled
1830 * the buffer, unless the commit page is still on the
1831 * reader page.
1832 */
1833 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1834
77ae365e
SR
1835 /*
1836 * If the commit is not on the reader page, then
1837 * move the header page.
1838 */
1839 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1840 /*
1841 * If we are not in overwrite mode,
1842 * this is easy, just stop here.
1843 */
1844 if (!(buffer->flags & RB_FL_OVERWRITE))
1845 goto out_reset;
1846
1847 ret = rb_handle_head_page(cpu_buffer,
1848 tail_page,
1849 next_page);
1850 if (ret < 0)
1851 goto out_reset;
1852 if (ret)
1853 goto out_again;
1854 } else {
1855 /*
1856 * We need to be careful here too. The
1857 * commit page could still be on the reader
1858 * page. We could have a small buffer, and
1859 * have filled up the buffer with events
1860 * from interrupts and such, and wrapped.
1861 *
1862 * Note, if the tail page is also the on the
1863 * reader_page, we let it move out.
1864 */
1865 if (unlikely((cpu_buffer->commit_page !=
1866 cpu_buffer->tail_page) &&
1867 (cpu_buffer->commit_page ==
1868 cpu_buffer->reader_page))) {
1869 local_inc(&cpu_buffer->commit_overrun);
1870 goto out_reset;
1871 }
aa20ae84
SR
1872 }
1873 }
1874
77ae365e
SR
1875 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1876 if (ret) {
1877 /*
1878 * Nested commits always have zero deltas, so
1879 * just reread the time stamp
1880 */
6d3f1e12 1881 *ts = rb_time_stamp(buffer);
77ae365e 1882 next_page->page->time_stamp = *ts;
aa20ae84
SR
1883 }
1884
77ae365e 1885 out_again:
aa20ae84 1886
77ae365e 1887 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1888
1889 /* fail and let the caller try again */
1890 return ERR_PTR(-EAGAIN);
1891
45141d46 1892 out_reset:
6f3b3440 1893 /* reset write */
c7b09308 1894 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1895
bf41a158 1896 return NULL;
7a8e76a3
SR
1897}
1898
6634ff26
SR
1899static struct ring_buffer_event *
1900__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1901 unsigned type, unsigned long length, u64 *ts)
1902{
5a50e33c 1903 struct buffer_page *tail_page;
6634ff26
SR
1904 struct ring_buffer_event *event;
1905 unsigned long tail, write;
1906
6634ff26
SR
1907 tail_page = cpu_buffer->tail_page;
1908 write = local_add_return(length, &tail_page->write);
77ae365e
SR
1909
1910 /* set write to only the index of the write */
1911 write &= RB_WRITE_MASK;
6634ff26
SR
1912 tail = write - length;
1913
1914 /* See if we shot pass the end of this buffer page */
1915 if (write > BUF_PAGE_SIZE)
1916 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 1917 tail_page, ts);
6634ff26
SR
1918
1919 /* We reserved something on the buffer */
1920
6634ff26 1921 event = __rb_page_index(tail_page, tail);
1744a21d 1922 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1923 rb_update_event(event, type, length);
1924
1925 /* The passed in type is zero for DATA */
1926 if (likely(!type))
1927 local_inc(&tail_page->entries);
1928
1929 /*
fa743953
SR
1930 * If this is the first commit on the page, then update
1931 * its timestamp.
6634ff26 1932 */
fa743953
SR
1933 if (!tail)
1934 tail_page->page->time_stamp = *ts;
6634ff26
SR
1935
1936 return event;
1937}
1938
edd813bf
SR
1939static inline int
1940rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1941 struct ring_buffer_event *event)
1942{
1943 unsigned long new_index, old_index;
1944 struct buffer_page *bpage;
1945 unsigned long index;
1946 unsigned long addr;
1947
1948 new_index = rb_event_index(event);
1949 old_index = new_index + rb_event_length(event);
1950 addr = (unsigned long)event;
1951 addr &= PAGE_MASK;
1952
1953 bpage = cpu_buffer->tail_page;
1954
1955 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
1956 unsigned long write_mask =
1957 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
1958 /*
1959 * This is on the tail page. It is possible that
1960 * a write could come in and move the tail page
1961 * and write to the next page. That is fine
1962 * because we just shorten what is on this page.
1963 */
77ae365e
SR
1964 old_index += write_mask;
1965 new_index += write_mask;
edd813bf
SR
1966 index = local_cmpxchg(&bpage->write, old_index, new_index);
1967 if (index == old_index)
1968 return 1;
1969 }
1970
1971 /* could not discard */
1972 return 0;
1973}
1974
7a8e76a3
SR
1975static int
1976rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1977 u64 *ts, u64 *delta)
1978{
1979 struct ring_buffer_event *event;
1980 static int once;
bf41a158 1981 int ret;
7a8e76a3
SR
1982
1983 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1984 printk(KERN_WARNING "Delta way too big! %llu"
1985 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1986 (unsigned long long)*delta,
1987 (unsigned long long)*ts,
1988 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1989 WARN_ON(1);
1990 }
1991
1992 /*
1993 * The delta is too big, we to add a
1994 * new timestamp.
1995 */
1996 event = __rb_reserve_next(cpu_buffer,
1997 RINGBUF_TYPE_TIME_EXTEND,
1998 RB_LEN_TIME_EXTEND,
1999 ts);
2000 if (!event)
bf41a158 2001 return -EBUSY;
7a8e76a3 2002
bf41a158
SR
2003 if (PTR_ERR(event) == -EAGAIN)
2004 return -EAGAIN;
2005
2006 /* Only a commited time event can update the write stamp */
fa743953 2007 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 2008 /*
fa743953
SR
2009 * If this is the first on the page, then it was
2010 * updated with the page itself. Try to discard it
2011 * and if we can't just make it zero.
bf41a158
SR
2012 */
2013 if (rb_event_index(event)) {
2014 event->time_delta = *delta & TS_MASK;
2015 event->array[0] = *delta >> TS_SHIFT;
2016 } else {
ea05b57c
SR
2017 /* try to discard, since we do not need this */
2018 if (!rb_try_to_discard(cpu_buffer, event)) {
2019 /* nope, just zero it */
2020 event->time_delta = 0;
2021 event->array[0] = 0;
2022 }
bf41a158 2023 }
7a8e76a3 2024 cpu_buffer->write_stamp = *ts;
bf41a158
SR
2025 /* let the caller know this was the commit */
2026 ret = 1;
2027 } else {
edd813bf
SR
2028 /* Try to discard the event */
2029 if (!rb_try_to_discard(cpu_buffer, event)) {
2030 /* Darn, this is just wasted space */
2031 event->time_delta = 0;
2032 event->array[0] = 0;
edd813bf 2033 }
f57a8a19 2034 ret = 0;
7a8e76a3
SR
2035 }
2036
bf41a158
SR
2037 *delta = 0;
2038
2039 return ret;
7a8e76a3
SR
2040}
2041
fa743953
SR
2042static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2043{
2044 local_inc(&cpu_buffer->committing);
2045 local_inc(&cpu_buffer->commits);
2046}
2047
2048static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2049{
2050 unsigned long commits;
2051
2052 if (RB_WARN_ON(cpu_buffer,
2053 !local_read(&cpu_buffer->committing)))
2054 return;
2055
2056 again:
2057 commits = local_read(&cpu_buffer->commits);
2058 /* synchronize with interrupts */
2059 barrier();
2060 if (local_read(&cpu_buffer->committing) == 1)
2061 rb_set_commit_to_write(cpu_buffer);
2062
2063 local_dec(&cpu_buffer->committing);
2064
2065 /* synchronize with interrupts */
2066 barrier();
2067
2068 /*
2069 * Need to account for interrupts coming in between the
2070 * updating of the commit page and the clearing of the
2071 * committing counter.
2072 */
2073 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2074 !local_read(&cpu_buffer->committing)) {
2075 local_inc(&cpu_buffer->committing);
2076 goto again;
2077 }
2078}
2079
7a8e76a3 2080static struct ring_buffer_event *
62f0b3eb
SR
2081rb_reserve_next_event(struct ring_buffer *buffer,
2082 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2083 unsigned long length)
7a8e76a3
SR
2084{
2085 struct ring_buffer_event *event;
168b6b1d 2086 u64 ts, delta = 0;
bf41a158 2087 int commit = 0;
818e3dd3 2088 int nr_loops = 0;
7a8e76a3 2089
fa743953
SR
2090 rb_start_commit(cpu_buffer);
2091
85bac32c 2092#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2093 /*
2094 * Due to the ability to swap a cpu buffer from a buffer
2095 * it is possible it was swapped before we committed.
2096 * (committing stops a swap). We check for it here and
2097 * if it happened, we have to fail the write.
2098 */
2099 barrier();
2100 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2101 local_dec(&cpu_buffer->committing);
2102 local_dec(&cpu_buffer->commits);
2103 return NULL;
2104 }
85bac32c 2105#endif
62f0b3eb 2106
be957c44 2107 length = rb_calculate_event_length(length);
bf41a158 2108 again:
818e3dd3
SR
2109 /*
2110 * We allow for interrupts to reenter here and do a trace.
2111 * If one does, it will cause this original code to loop
2112 * back here. Even with heavy interrupts happening, this
2113 * should only happen a few times in a row. If this happens
2114 * 1000 times in a row, there must be either an interrupt
2115 * storm or we have something buggy.
2116 * Bail!
2117 */
3e89c7bb 2118 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2119 goto out_fail;
818e3dd3 2120
6d3f1e12 2121 ts = rb_time_stamp(cpu_buffer->buffer);
7a8e76a3 2122
bf41a158
SR
2123 /*
2124 * Only the first commit can update the timestamp.
2125 * Yes there is a race here. If an interrupt comes in
2126 * just after the conditional and it traces too, then it
2127 * will also check the deltas. More than one timestamp may
2128 * also be made. But only the entry that did the actual
2129 * commit will be something other than zero.
2130 */
0f0c85fc
SR
2131 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2132 rb_page_write(cpu_buffer->tail_page) ==
2133 rb_commit_index(cpu_buffer))) {
168b6b1d 2134 u64 diff;
bf41a158 2135
168b6b1d 2136 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2137
168b6b1d 2138 /* make sure this diff is calculated here */
bf41a158
SR
2139 barrier();
2140
2141 /* Did the write stamp get updated already? */
2142 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 2143 goto get_event;
bf41a158 2144
168b6b1d
SR
2145 delta = diff;
2146 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 2147
bf41a158 2148 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 2149 if (commit == -EBUSY)
fa743953 2150 goto out_fail;
bf41a158
SR
2151
2152 if (commit == -EAGAIN)
2153 goto again;
2154
2155 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 2156 }
168b6b1d 2157 }
7a8e76a3 2158
168b6b1d 2159 get_event:
1cd8d735 2160 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 2161 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2162 goto again;
2163
fa743953
SR
2164 if (!event)
2165 goto out_fail;
7a8e76a3 2166
fa743953 2167 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
2168 delta = 0;
2169
2170 event->time_delta = delta;
2171
2172 return event;
fa743953
SR
2173
2174 out_fail:
2175 rb_end_commit(cpu_buffer);
2176 return NULL;
7a8e76a3
SR
2177}
2178
1155de47
PM
2179#ifdef CONFIG_TRACING
2180
aa18efb2 2181#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
2182
2183static int trace_recursive_lock(void)
2184{
aa18efb2 2185 current->trace_recursion++;
261842b7 2186
aa18efb2
SR
2187 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2188 return 0;
e057a5e5 2189
aa18efb2
SR
2190 /* Disable all tracing before we do anything else */
2191 tracing_off_permanent();
261842b7 2192
7d7d2b80 2193 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2194 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2195 current->trace_recursion,
2196 hardirq_count() >> HARDIRQ_SHIFT,
2197 softirq_count() >> SOFTIRQ_SHIFT,
2198 in_nmi());
261842b7 2199
aa18efb2
SR
2200 WARN_ON_ONCE(1);
2201 return -1;
261842b7
SR
2202}
2203
2204static void trace_recursive_unlock(void)
2205{
aa18efb2 2206 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2207
aa18efb2 2208 current->trace_recursion--;
261842b7
SR
2209}
2210
1155de47
PM
2211#else
2212
2213#define trace_recursive_lock() (0)
2214#define trace_recursive_unlock() do { } while (0)
2215
2216#endif
2217
bf41a158
SR
2218static DEFINE_PER_CPU(int, rb_need_resched);
2219
7a8e76a3
SR
2220/**
2221 * ring_buffer_lock_reserve - reserve a part of the buffer
2222 * @buffer: the ring buffer to reserve from
2223 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2224 *
2225 * Returns a reseverd event on the ring buffer to copy directly to.
2226 * The user of this interface will need to get the body to write into
2227 * and can use the ring_buffer_event_data() interface.
2228 *
2229 * The length is the length of the data needed, not the event length
2230 * which also includes the event header.
2231 *
2232 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2233 * If NULL is returned, then nothing has been allocated or locked.
2234 */
2235struct ring_buffer_event *
0a987751 2236ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2237{
2238 struct ring_buffer_per_cpu *cpu_buffer;
2239 struct ring_buffer_event *event;
bf41a158 2240 int cpu, resched;
7a8e76a3 2241
033601a3 2242 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2243 return NULL;
2244
bf41a158 2245 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 2246 resched = ftrace_preempt_disable();
bf41a158 2247
52fbe9cd
LJ
2248 if (atomic_read(&buffer->record_disabled))
2249 goto out_nocheck;
2250
261842b7
SR
2251 if (trace_recursive_lock())
2252 goto out_nocheck;
2253
7a8e76a3
SR
2254 cpu = raw_smp_processor_id();
2255
9e01c1b7 2256 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2257 goto out;
7a8e76a3
SR
2258
2259 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2260
2261 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2262 goto out;
7a8e76a3 2263
be957c44 2264 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2265 goto out;
7a8e76a3 2266
62f0b3eb 2267 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2268 if (!event)
d769041f 2269 goto out;
7a8e76a3 2270
bf41a158
SR
2271 /*
2272 * Need to store resched state on this cpu.
2273 * Only the first needs to.
2274 */
2275
2276 if (preempt_count() == 1)
2277 per_cpu(rb_need_resched, cpu) = resched;
2278
7a8e76a3
SR
2279 return event;
2280
d769041f 2281 out:
261842b7
SR
2282 trace_recursive_unlock();
2283
2284 out_nocheck:
182e9f5f 2285 ftrace_preempt_enable(resched);
7a8e76a3
SR
2286 return NULL;
2287}
c4f50183 2288EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2289
a1863c21
SR
2290static void
2291rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2292 struct ring_buffer_event *event)
2293{
fa743953
SR
2294 /*
2295 * The event first in the commit queue updates the
2296 * time stamp.
2297 */
2298 if (rb_event_is_commit(cpu_buffer, event))
2299 cpu_buffer->write_stamp += event->time_delta;
a1863c21 2300}
bf41a158 2301
a1863c21
SR
2302static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2303 struct ring_buffer_event *event)
2304{
2305 local_inc(&cpu_buffer->entries);
2306 rb_update_write_stamp(cpu_buffer, event);
fa743953 2307 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2308}
2309
2310/**
2311 * ring_buffer_unlock_commit - commit a reserved
2312 * @buffer: The buffer to commit to
2313 * @event: The event pointer to commit.
7a8e76a3
SR
2314 *
2315 * This commits the data to the ring buffer, and releases any locks held.
2316 *
2317 * Must be paired with ring_buffer_lock_reserve.
2318 */
2319int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2320 struct ring_buffer_event *event)
7a8e76a3
SR
2321{
2322 struct ring_buffer_per_cpu *cpu_buffer;
2323 int cpu = raw_smp_processor_id();
2324
2325 cpu_buffer = buffer->buffers[cpu];
2326
7a8e76a3
SR
2327 rb_commit(cpu_buffer, event);
2328
261842b7
SR
2329 trace_recursive_unlock();
2330
bf41a158
SR
2331 /*
2332 * Only the last preempt count needs to restore preemption.
2333 */
182e9f5f
SR
2334 if (preempt_count() == 1)
2335 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2336 else
bf41a158 2337 preempt_enable_no_resched_notrace();
7a8e76a3
SR
2338
2339 return 0;
2340}
c4f50183 2341EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2342
f3b9aae1
FW
2343static inline void rb_event_discard(struct ring_buffer_event *event)
2344{
334d4169
LJ
2345 /* array[0] holds the actual length for the discarded event */
2346 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2347 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2348 /* time delta must be non zero */
2349 if (!event->time_delta)
2350 event->time_delta = 1;
2351}
2352
a1863c21
SR
2353/*
2354 * Decrement the entries to the page that an event is on.
2355 * The event does not even need to exist, only the pointer
2356 * to the page it is on. This may only be called before the commit
2357 * takes place.
2358 */
2359static inline void
2360rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2361 struct ring_buffer_event *event)
2362{
2363 unsigned long addr = (unsigned long)event;
2364 struct buffer_page *bpage = cpu_buffer->commit_page;
2365 struct buffer_page *start;
2366
2367 addr &= PAGE_MASK;
2368
2369 /* Do the likely case first */
2370 if (likely(bpage->page == (void *)addr)) {
2371 local_dec(&bpage->entries);
2372 return;
2373 }
2374
2375 /*
2376 * Because the commit page may be on the reader page we
2377 * start with the next page and check the end loop there.
2378 */
2379 rb_inc_page(cpu_buffer, &bpage);
2380 start = bpage;
2381 do {
2382 if (bpage->page == (void *)addr) {
2383 local_dec(&bpage->entries);
2384 return;
2385 }
2386 rb_inc_page(cpu_buffer, &bpage);
2387 } while (bpage != start);
2388
2389 /* commit not part of this buffer?? */
2390 RB_WARN_ON(cpu_buffer, 1);
2391}
2392
fa1b47dd
SR
2393/**
2394 * ring_buffer_commit_discard - discard an event that has not been committed
2395 * @buffer: the ring buffer
2396 * @event: non committed event to discard
2397 *
dc892f73
SR
2398 * Sometimes an event that is in the ring buffer needs to be ignored.
2399 * This function lets the user discard an event in the ring buffer
2400 * and then that event will not be read later.
2401 *
2402 * This function only works if it is called before the the item has been
2403 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2404 * if another event has not been added behind it.
2405 *
2406 * If another event has been added behind it, it will set the event
2407 * up as discarded, and perform the commit.
2408 *
2409 * If this function is called, do not call ring_buffer_unlock_commit on
2410 * the event.
2411 */
2412void ring_buffer_discard_commit(struct ring_buffer *buffer,
2413 struct ring_buffer_event *event)
2414{
2415 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2416 int cpu;
2417
2418 /* The event is discarded regardless */
f3b9aae1 2419 rb_event_discard(event);
fa1b47dd 2420
fa743953
SR
2421 cpu = smp_processor_id();
2422 cpu_buffer = buffer->buffers[cpu];
2423
fa1b47dd
SR
2424 /*
2425 * This must only be called if the event has not been
2426 * committed yet. Thus we can assume that preemption
2427 * is still disabled.
2428 */
fa743953 2429 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2430
a1863c21 2431 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2432 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2433 goto out;
fa1b47dd
SR
2434
2435 /*
2436 * The commit is still visible by the reader, so we
a1863c21 2437 * must still update the timestamp.
fa1b47dd 2438 */
a1863c21 2439 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2440 out:
fa743953 2441 rb_end_commit(cpu_buffer);
fa1b47dd 2442
f3b9aae1
FW
2443 trace_recursive_unlock();
2444
fa1b47dd
SR
2445 /*
2446 * Only the last preempt count needs to restore preemption.
2447 */
2448 if (preempt_count() == 1)
2449 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2450 else
2451 preempt_enable_no_resched_notrace();
2452
2453}
2454EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2455
7a8e76a3
SR
2456/**
2457 * ring_buffer_write - write data to the buffer without reserving
2458 * @buffer: The ring buffer to write to.
2459 * @length: The length of the data being written (excluding the event header)
2460 * @data: The data to write to the buffer.
2461 *
2462 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2463 * one function. If you already have the data to write to the buffer, it
2464 * may be easier to simply call this function.
2465 *
2466 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2467 * and not the length of the event which would hold the header.
2468 */
2469int ring_buffer_write(struct ring_buffer *buffer,
2470 unsigned long length,
2471 void *data)
2472{
2473 struct ring_buffer_per_cpu *cpu_buffer;
2474 struct ring_buffer_event *event;
7a8e76a3
SR
2475 void *body;
2476 int ret = -EBUSY;
bf41a158 2477 int cpu, resched;
7a8e76a3 2478
033601a3 2479 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2480 return -EBUSY;
2481
182e9f5f 2482 resched = ftrace_preempt_disable();
bf41a158 2483
52fbe9cd
LJ
2484 if (atomic_read(&buffer->record_disabled))
2485 goto out;
2486
7a8e76a3
SR
2487 cpu = raw_smp_processor_id();
2488
9e01c1b7 2489 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2490 goto out;
7a8e76a3
SR
2491
2492 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2493
2494 if (atomic_read(&cpu_buffer->record_disabled))
2495 goto out;
2496
be957c44
SR
2497 if (length > BUF_MAX_DATA_SIZE)
2498 goto out;
2499
62f0b3eb 2500 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2501 if (!event)
2502 goto out;
2503
2504 body = rb_event_data(event);
2505
2506 memcpy(body, data, length);
2507
2508 rb_commit(cpu_buffer, event);
2509
2510 ret = 0;
2511 out:
182e9f5f 2512 ftrace_preempt_enable(resched);
7a8e76a3
SR
2513
2514 return ret;
2515}
c4f50183 2516EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2517
34a148bf 2518static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2519{
2520 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2521 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2522 struct buffer_page *commit = cpu_buffer->commit_page;
2523
77ae365e
SR
2524 /* In case of error, head will be NULL */
2525 if (unlikely(!head))
2526 return 1;
2527
bf41a158
SR
2528 return reader->read == rb_page_commit(reader) &&
2529 (commit == reader ||
2530 (commit == head &&
2531 head->read == rb_page_commit(commit)));
2532}
2533
7a8e76a3
SR
2534/**
2535 * ring_buffer_record_disable - stop all writes into the buffer
2536 * @buffer: The ring buffer to stop writes to.
2537 *
2538 * This prevents all writes to the buffer. Any attempt to write
2539 * to the buffer after this will fail and return NULL.
2540 *
2541 * The caller should call synchronize_sched() after this.
2542 */
2543void ring_buffer_record_disable(struct ring_buffer *buffer)
2544{
2545 atomic_inc(&buffer->record_disabled);
2546}
c4f50183 2547EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2548
2549/**
2550 * ring_buffer_record_enable - enable writes to the buffer
2551 * @buffer: The ring buffer to enable writes
2552 *
2553 * Note, multiple disables will need the same number of enables
c41b20e7 2554 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2555 */
2556void ring_buffer_record_enable(struct ring_buffer *buffer)
2557{
2558 atomic_dec(&buffer->record_disabled);
2559}
c4f50183 2560EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2561
2562/**
2563 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2564 * @buffer: The ring buffer to stop writes to.
2565 * @cpu: The CPU buffer to stop
2566 *
2567 * This prevents all writes to the buffer. Any attempt to write
2568 * to the buffer after this will fail and return NULL.
2569 *
2570 * The caller should call synchronize_sched() after this.
2571 */
2572void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2573{
2574 struct ring_buffer_per_cpu *cpu_buffer;
2575
9e01c1b7 2576 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2577 return;
7a8e76a3
SR
2578
2579 cpu_buffer = buffer->buffers[cpu];
2580 atomic_inc(&cpu_buffer->record_disabled);
2581}
c4f50183 2582EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2583
2584/**
2585 * ring_buffer_record_enable_cpu - enable writes to the buffer
2586 * @buffer: The ring buffer to enable writes
2587 * @cpu: The CPU to enable.
2588 *
2589 * Note, multiple disables will need the same number of enables
c41b20e7 2590 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2591 */
2592void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2593{
2594 struct ring_buffer_per_cpu *cpu_buffer;
2595
9e01c1b7 2596 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2597 return;
7a8e76a3
SR
2598
2599 cpu_buffer = buffer->buffers[cpu];
2600 atomic_dec(&cpu_buffer->record_disabled);
2601}
c4f50183 2602EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
2603
2604/**
2605 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2606 * @buffer: The ring buffer
2607 * @cpu: The per CPU buffer to get the entries from.
2608 */
2609unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2610{
2611 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2612 unsigned long ret;
7a8e76a3 2613
9e01c1b7 2614 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2615 return 0;
7a8e76a3
SR
2616
2617 cpu_buffer = buffer->buffers[cpu];
77ae365e 2618 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
e4906eff 2619 - cpu_buffer->read;
554f786e
SR
2620
2621 return ret;
7a8e76a3 2622}
c4f50183 2623EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2624
2625/**
2626 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2627 * @buffer: The ring buffer
2628 * @cpu: The per CPU buffer to get the number of overruns from
2629 */
2630unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2631{
2632 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2633 unsigned long ret;
7a8e76a3 2634
9e01c1b7 2635 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2636 return 0;
7a8e76a3
SR
2637
2638 cpu_buffer = buffer->buffers[cpu];
77ae365e 2639 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2640
2641 return ret;
7a8e76a3 2642}
c4f50183 2643EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2644
f0d2c681
SR
2645/**
2646 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2647 * @buffer: The ring buffer
2648 * @cpu: The per CPU buffer to get the number of overruns from
2649 */
2650unsigned long
2651ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2652{
2653 struct ring_buffer_per_cpu *cpu_buffer;
2654 unsigned long ret;
2655
2656 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2657 return 0;
2658
2659 cpu_buffer = buffer->buffers[cpu];
77ae365e 2660 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2661
2662 return ret;
2663}
2664EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2665
7a8e76a3
SR
2666/**
2667 * ring_buffer_entries - get the number of entries in a buffer
2668 * @buffer: The ring buffer
2669 *
2670 * Returns the total number of entries in the ring buffer
2671 * (all CPU entries)
2672 */
2673unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2674{
2675 struct ring_buffer_per_cpu *cpu_buffer;
2676 unsigned long entries = 0;
2677 int cpu;
2678
2679 /* if you care about this being correct, lock the buffer */
2680 for_each_buffer_cpu(buffer, cpu) {
2681 cpu_buffer = buffer->buffers[cpu];
e4906eff 2682 entries += (local_read(&cpu_buffer->entries) -
77ae365e 2683 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
7a8e76a3
SR
2684 }
2685
2686 return entries;
2687}
c4f50183 2688EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2689
2690/**
67b394f7 2691 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2692 * @buffer: The ring buffer
2693 *
2694 * Returns the total number of overruns in the ring buffer
2695 * (all CPU entries)
2696 */
2697unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2698{
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 unsigned long overruns = 0;
2701 int cpu;
2702
2703 /* if you care about this being correct, lock the buffer */
2704 for_each_buffer_cpu(buffer, cpu) {
2705 cpu_buffer = buffer->buffers[cpu];
77ae365e 2706 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2707 }
2708
2709 return overruns;
2710}
c4f50183 2711EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2712
642edba5 2713static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2714{
2715 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2716
d769041f
SR
2717 /* Iterator usage is expected to have record disabled */
2718 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2719 iter->head_page = rb_set_head_page(cpu_buffer);
2720 if (unlikely(!iter->head_page))
2721 return;
2722 iter->head = iter->head_page->read;
d769041f
SR
2723 } else {
2724 iter->head_page = cpu_buffer->reader_page;
6f807acd 2725 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2726 }
2727 if (iter->head)
2728 iter->read_stamp = cpu_buffer->read_stamp;
2729 else
abc9b56d 2730 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2731 iter->cache_reader_page = cpu_buffer->reader_page;
2732 iter->cache_read = cpu_buffer->read;
642edba5 2733}
f83c9d0f 2734
642edba5
SR
2735/**
2736 * ring_buffer_iter_reset - reset an iterator
2737 * @iter: The iterator to reset
2738 *
2739 * Resets the iterator, so that it will start from the beginning
2740 * again.
2741 */
2742void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2743{
554f786e 2744 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2745 unsigned long flags;
2746
554f786e
SR
2747 if (!iter)
2748 return;
2749
2750 cpu_buffer = iter->cpu_buffer;
2751
642edba5
SR
2752 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2753 rb_iter_reset(iter);
f83c9d0f 2754 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2755}
c4f50183 2756EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2757
2758/**
2759 * ring_buffer_iter_empty - check if an iterator has no more to read
2760 * @iter: The iterator to check
2761 */
2762int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2763{
2764 struct ring_buffer_per_cpu *cpu_buffer;
2765
2766 cpu_buffer = iter->cpu_buffer;
2767
bf41a158
SR
2768 return iter->head_page == cpu_buffer->commit_page &&
2769 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2770}
c4f50183 2771EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2772
2773static void
2774rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2775 struct ring_buffer_event *event)
2776{
2777 u64 delta;
2778
334d4169 2779 switch (event->type_len) {
7a8e76a3
SR
2780 case RINGBUF_TYPE_PADDING:
2781 return;
2782
2783 case RINGBUF_TYPE_TIME_EXTEND:
2784 delta = event->array[0];
2785 delta <<= TS_SHIFT;
2786 delta += event->time_delta;
2787 cpu_buffer->read_stamp += delta;
2788 return;
2789
2790 case RINGBUF_TYPE_TIME_STAMP:
2791 /* FIXME: not implemented */
2792 return;
2793
2794 case RINGBUF_TYPE_DATA:
2795 cpu_buffer->read_stamp += event->time_delta;
2796 return;
2797
2798 default:
2799 BUG();
2800 }
2801 return;
2802}
2803
2804static void
2805rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2806 struct ring_buffer_event *event)
2807{
2808 u64 delta;
2809
334d4169 2810 switch (event->type_len) {
7a8e76a3
SR
2811 case RINGBUF_TYPE_PADDING:
2812 return;
2813
2814 case RINGBUF_TYPE_TIME_EXTEND:
2815 delta = event->array[0];
2816 delta <<= TS_SHIFT;
2817 delta += event->time_delta;
2818 iter->read_stamp += delta;
2819 return;
2820
2821 case RINGBUF_TYPE_TIME_STAMP:
2822 /* FIXME: not implemented */
2823 return;
2824
2825 case RINGBUF_TYPE_DATA:
2826 iter->read_stamp += event->time_delta;
2827 return;
2828
2829 default:
2830 BUG();
2831 }
2832 return;
2833}
2834
d769041f
SR
2835static struct buffer_page *
2836rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2837{
d769041f
SR
2838 struct buffer_page *reader = NULL;
2839 unsigned long flags;
818e3dd3 2840 int nr_loops = 0;
77ae365e 2841 int ret;
d769041f 2842
3e03fb7f 2843 local_irq_save(flags);
0199c4e6 2844 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2845
2846 again:
818e3dd3
SR
2847 /*
2848 * This should normally only loop twice. But because the
2849 * start of the reader inserts an empty page, it causes
2850 * a case where we will loop three times. There should be no
2851 * reason to loop four times (that I know of).
2852 */
3e89c7bb 2853 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2854 reader = NULL;
2855 goto out;
2856 }
2857
d769041f
SR
2858 reader = cpu_buffer->reader_page;
2859
2860 /* If there's more to read, return this page */
bf41a158 2861 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2862 goto out;
2863
2864 /* Never should we have an index greater than the size */
3e89c7bb
SR
2865 if (RB_WARN_ON(cpu_buffer,
2866 cpu_buffer->reader_page->read > rb_page_size(reader)))
2867 goto out;
d769041f
SR
2868
2869 /* check if we caught up to the tail */
2870 reader = NULL;
bf41a158 2871 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2872 goto out;
7a8e76a3
SR
2873
2874 /*
d769041f 2875 * Reset the reader page to size zero.
7a8e76a3 2876 */
77ae365e
SR
2877 local_set(&cpu_buffer->reader_page->write, 0);
2878 local_set(&cpu_buffer->reader_page->entries, 0);
2879 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2880
77ae365e
SR
2881 spin:
2882 /*
2883 * Splice the empty reader page into the list around the head.
2884 */
2885 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2886 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2887 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2888
3adc54fa
SR
2889 /*
2890 * cpu_buffer->pages just needs to point to the buffer, it
2891 * has no specific buffer page to point to. Lets move it out
2892 * of our way so we don't accidently swap it.
2893 */
2894 cpu_buffer->pages = reader->list.prev;
2895
77ae365e
SR
2896 /* The reader page will be pointing to the new head */
2897 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2898
77ae365e
SR
2899 /*
2900 * Here's the tricky part.
2901 *
2902 * We need to move the pointer past the header page.
2903 * But we can only do that if a writer is not currently
2904 * moving it. The page before the header page has the
2905 * flag bit '1' set if it is pointing to the page we want.
2906 * but if the writer is in the process of moving it
2907 * than it will be '2' or already moved '0'.
2908 */
2909
2910 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2911
2912 /*
77ae365e 2913 * If we did not convert it, then we must try again.
7a8e76a3 2914 */
77ae365e
SR
2915 if (!ret)
2916 goto spin;
7a8e76a3 2917
77ae365e
SR
2918 /*
2919 * Yeah! We succeeded in replacing the page.
2920 *
2921 * Now make the new head point back to the reader page.
2922 */
5ded3dc6 2923 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2924 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2925
2926 /* Finally update the reader page to the new head */
2927 cpu_buffer->reader_page = reader;
2928 rb_reset_reader_page(cpu_buffer);
2929
2930 goto again;
2931
2932 out:
0199c4e6 2933 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2934 local_irq_restore(flags);
d769041f
SR
2935
2936 return reader;
2937}
2938
2939static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2940{
2941 struct ring_buffer_event *event;
2942 struct buffer_page *reader;
2943 unsigned length;
2944
2945 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2946
d769041f 2947 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2948 if (RB_WARN_ON(cpu_buffer, !reader))
2949 return;
7a8e76a3 2950
d769041f
SR
2951 event = rb_reader_event(cpu_buffer);
2952
a1863c21 2953 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 2954 cpu_buffer->read++;
d769041f
SR
2955
2956 rb_update_read_stamp(cpu_buffer, event);
2957
2958 length = rb_event_length(event);
6f807acd 2959 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2960}
2961
2962static void rb_advance_iter(struct ring_buffer_iter *iter)
2963{
2964 struct ring_buffer *buffer;
2965 struct ring_buffer_per_cpu *cpu_buffer;
2966 struct ring_buffer_event *event;
2967 unsigned length;
2968
2969 cpu_buffer = iter->cpu_buffer;
2970 buffer = cpu_buffer->buffer;
2971
2972 /*
2973 * Check if we are at the end of the buffer.
2974 */
bf41a158 2975 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2976 /* discarded commits can make the page empty */
2977 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2978 return;
d769041f 2979 rb_inc_iter(iter);
7a8e76a3
SR
2980 return;
2981 }
2982
2983 event = rb_iter_head_event(iter);
2984
2985 length = rb_event_length(event);
2986
2987 /*
2988 * This should not be called to advance the header if we are
2989 * at the tail of the buffer.
2990 */
3e89c7bb 2991 if (RB_WARN_ON(cpu_buffer,
f536aafc 2992 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2993 (iter->head + length > rb_commit_index(cpu_buffer))))
2994 return;
7a8e76a3
SR
2995
2996 rb_update_iter_read_stamp(iter, event);
2997
2998 iter->head += length;
2999
3000 /* check for end of page padding */
bf41a158
SR
3001 if ((iter->head >= rb_page_size(iter->head_page)) &&
3002 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3003 rb_advance_iter(iter);
3004}
3005
f83c9d0f 3006static struct ring_buffer_event *
d8eeb2d3 3007rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
7a8e76a3 3008{
7a8e76a3 3009 struct ring_buffer_event *event;
d769041f 3010 struct buffer_page *reader;
818e3dd3 3011 int nr_loops = 0;
7a8e76a3 3012
7a8e76a3 3013 again:
818e3dd3
SR
3014 /*
3015 * We repeat when a timestamp is encountered. It is possible
3016 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
3017 * as one timestamp is about to be written, or from discarded
3018 * commits. The most that we can have is the number on a single page.
818e3dd3 3019 */
ea05b57c 3020 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3021 return NULL;
818e3dd3 3022
d769041f
SR
3023 reader = rb_get_reader_page(cpu_buffer);
3024 if (!reader)
7a8e76a3
SR
3025 return NULL;
3026
d769041f 3027 event = rb_reader_event(cpu_buffer);
7a8e76a3 3028
334d4169 3029 switch (event->type_len) {
7a8e76a3 3030 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3031 if (rb_null_event(event))
3032 RB_WARN_ON(cpu_buffer, 1);
3033 /*
3034 * Because the writer could be discarding every
3035 * event it creates (which would probably be bad)
3036 * if we were to go back to "again" then we may never
3037 * catch up, and will trigger the warn on, or lock
3038 * the box. Return the padding, and we will release
3039 * the current locks, and try again.
3040 */
2d622719 3041 return event;
7a8e76a3
SR
3042
3043 case RINGBUF_TYPE_TIME_EXTEND:
3044 /* Internal data, OK to advance */
d769041f 3045 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3046 goto again;
3047
3048 case RINGBUF_TYPE_TIME_STAMP:
3049 /* FIXME: not implemented */
d769041f 3050 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3051 goto again;
3052
3053 case RINGBUF_TYPE_DATA:
3054 if (ts) {
3055 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3056 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3057 cpu_buffer->cpu, ts);
7a8e76a3
SR
3058 }
3059 return event;
3060
3061 default:
3062 BUG();
3063 }
3064
3065 return NULL;
3066}
c4f50183 3067EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3068
f83c9d0f
SR
3069static struct ring_buffer_event *
3070rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3071{
3072 struct ring_buffer *buffer;
3073 struct ring_buffer_per_cpu *cpu_buffer;
3074 struct ring_buffer_event *event;
818e3dd3 3075 int nr_loops = 0;
7a8e76a3 3076
7a8e76a3
SR
3077 cpu_buffer = iter->cpu_buffer;
3078 buffer = cpu_buffer->buffer;
3079
492a74f4
SR
3080 /*
3081 * Check if someone performed a consuming read to
3082 * the buffer. A consuming read invalidates the iterator
3083 * and we need to reset the iterator in this case.
3084 */
3085 if (unlikely(iter->cache_read != cpu_buffer->read ||
3086 iter->cache_reader_page != cpu_buffer->reader_page))
3087 rb_iter_reset(iter);
3088
7a8e76a3 3089 again:
3c05d748
SR
3090 if (ring_buffer_iter_empty(iter))
3091 return NULL;
3092
818e3dd3 3093 /*
ea05b57c
SR
3094 * We repeat when a timestamp is encountered.
3095 * We can get multiple timestamps by nested interrupts or also
3096 * if filtering is on (discarding commits). Since discarding
3097 * commits can be frequent we can get a lot of timestamps.
3098 * But we limit them by not adding timestamps if they begin
3099 * at the start of a page.
818e3dd3 3100 */
ea05b57c 3101 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3102 return NULL;
818e3dd3 3103
7a8e76a3
SR
3104 if (rb_per_cpu_empty(cpu_buffer))
3105 return NULL;
3106
3c05d748
SR
3107 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3108 rb_inc_iter(iter);
3109 goto again;
3110 }
3111
7a8e76a3
SR
3112 event = rb_iter_head_event(iter);
3113
334d4169 3114 switch (event->type_len) {
7a8e76a3 3115 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3116 if (rb_null_event(event)) {
3117 rb_inc_iter(iter);
3118 goto again;
3119 }
3120 rb_advance_iter(iter);
3121 return event;
7a8e76a3
SR
3122
3123 case RINGBUF_TYPE_TIME_EXTEND:
3124 /* Internal data, OK to advance */
3125 rb_advance_iter(iter);
3126 goto again;
3127
3128 case RINGBUF_TYPE_TIME_STAMP:
3129 /* FIXME: not implemented */
3130 rb_advance_iter(iter);
3131 goto again;
3132
3133 case RINGBUF_TYPE_DATA:
3134 if (ts) {
3135 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3136 ring_buffer_normalize_time_stamp(buffer,
3137 cpu_buffer->cpu, ts);
7a8e76a3
SR
3138 }
3139 return event;
3140
3141 default:
3142 BUG();
3143 }
3144
3145 return NULL;
3146}
c4f50183 3147EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3148
8d707e8e
SR
3149static inline int rb_ok_to_lock(void)
3150{
3151 /*
3152 * If an NMI die dumps out the content of the ring buffer
3153 * do not grab locks. We also permanently disable the ring
3154 * buffer too. A one time deal is all you get from reading
3155 * the ring buffer from an NMI.
3156 */
464e85eb 3157 if (likely(!in_nmi()))
8d707e8e
SR
3158 return 1;
3159
3160 tracing_off_permanent();
3161 return 0;
3162}
3163
f83c9d0f
SR
3164/**
3165 * ring_buffer_peek - peek at the next event to be read
3166 * @buffer: The ring buffer to read
3167 * @cpu: The cpu to peak at
3168 * @ts: The timestamp counter of this event.
3169 *
3170 * This will return the event that will be read next, but does
3171 * not consume the data.
3172 */
3173struct ring_buffer_event *
3174ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3175{
3176 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3177 struct ring_buffer_event *event;
f83c9d0f 3178 unsigned long flags;
8d707e8e 3179 int dolock;
f83c9d0f 3180
554f786e 3181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3182 return NULL;
554f786e 3183
8d707e8e 3184 dolock = rb_ok_to_lock();
2d622719 3185 again:
8d707e8e
SR
3186 local_irq_save(flags);
3187 if (dolock)
3188 spin_lock(&cpu_buffer->reader_lock);
d8eeb2d3 3189 event = rb_buffer_peek(cpu_buffer, ts);
469535a5
RR
3190 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3191 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3192 if (dolock)
3193 spin_unlock(&cpu_buffer->reader_lock);
3194 local_irq_restore(flags);
f83c9d0f 3195
1b959e18 3196 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3197 goto again;
2d622719 3198
f83c9d0f
SR
3199 return event;
3200}
3201
3202/**
3203 * ring_buffer_iter_peek - peek at the next event to be read
3204 * @iter: The ring buffer iterator
3205 * @ts: The timestamp counter of this event.
3206 *
3207 * This will return the event that will be read next, but does
3208 * not increment the iterator.
3209 */
3210struct ring_buffer_event *
3211ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3212{
3213 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3214 struct ring_buffer_event *event;
3215 unsigned long flags;
3216
2d622719 3217 again:
f83c9d0f
SR
3218 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3219 event = rb_iter_peek(iter, ts);
3220 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3221
1b959e18 3222 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3223 goto again;
2d622719 3224
f83c9d0f
SR
3225 return event;
3226}
3227
7a8e76a3
SR
3228/**
3229 * ring_buffer_consume - return an event and consume it
3230 * @buffer: The ring buffer to get the next event from
3231 *
3232 * Returns the next event in the ring buffer, and that event is consumed.
3233 * Meaning, that sequential reads will keep returning a different event,
3234 * and eventually empty the ring buffer if the producer is slower.
3235 */
3236struct ring_buffer_event *
3237ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3238{
554f786e
SR
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 struct ring_buffer_event *event = NULL;
f83c9d0f 3241 unsigned long flags;
8d707e8e
SR
3242 int dolock;
3243
3244 dolock = rb_ok_to_lock();
7a8e76a3 3245
2d622719 3246 again:
554f786e
SR
3247 /* might be called in atomic */
3248 preempt_disable();
3249
9e01c1b7 3250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3251 goto out;
7a8e76a3 3252
554f786e 3253 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3254 local_irq_save(flags);
3255 if (dolock)
3256 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3257
d8eeb2d3 3258 event = rb_buffer_peek(cpu_buffer, ts);
469535a5
RR
3259 if (event)
3260 rb_advance_reader(cpu_buffer);
7a8e76a3 3261
8d707e8e
SR
3262 if (dolock)
3263 spin_unlock(&cpu_buffer->reader_lock);
3264 local_irq_restore(flags);
f83c9d0f 3265
554f786e
SR
3266 out:
3267 preempt_enable();
3268
1b959e18 3269 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3270 goto again;
2d622719 3271
7a8e76a3
SR
3272 return event;
3273}
c4f50183 3274EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3275
3276/**
3277 * ring_buffer_read_start - start a non consuming read of the buffer
3278 * @buffer: The ring buffer to read from
3279 * @cpu: The cpu buffer to iterate over
3280 *
3281 * This starts up an iteration through the buffer. It also disables
3282 * the recording to the buffer until the reading is finished.
3283 * This prevents the reading from being corrupted. This is not
3284 * a consuming read, so a producer is not expected.
3285 *
3286 * Must be paired with ring_buffer_finish.
3287 */
3288struct ring_buffer_iter *
3289ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3290{
3291 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3292 struct ring_buffer_iter *iter;
d769041f 3293 unsigned long flags;
7a8e76a3 3294
9e01c1b7 3295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3296 return NULL;
7a8e76a3
SR
3297
3298 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3299 if (!iter)
8aabee57 3300 return NULL;
7a8e76a3
SR
3301
3302 cpu_buffer = buffer->buffers[cpu];
3303
3304 iter->cpu_buffer = cpu_buffer;
3305
3306 atomic_inc(&cpu_buffer->record_disabled);
3307 synchronize_sched();
3308
f83c9d0f 3309 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3310 arch_spin_lock(&cpu_buffer->lock);
642edba5 3311 rb_iter_reset(iter);
0199c4e6 3312 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3313 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3314
3315 return iter;
3316}
c4f50183 3317EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3318
3319/**
3320 * ring_buffer_finish - finish reading the iterator of the buffer
3321 * @iter: The iterator retrieved by ring_buffer_start
3322 *
3323 * This re-enables the recording to the buffer, and frees the
3324 * iterator.
3325 */
3326void
3327ring_buffer_read_finish(struct ring_buffer_iter *iter)
3328{
3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330
3331 atomic_dec(&cpu_buffer->record_disabled);
3332 kfree(iter);
3333}
c4f50183 3334EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3335
3336/**
3337 * ring_buffer_read - read the next item in the ring buffer by the iterator
3338 * @iter: The ring buffer iterator
3339 * @ts: The time stamp of the event read.
3340 *
3341 * This reads the next event in the ring buffer and increments the iterator.
3342 */
3343struct ring_buffer_event *
3344ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3345{
3346 struct ring_buffer_event *event;
f83c9d0f
SR
3347 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348 unsigned long flags;
7a8e76a3 3349
f83c9d0f 3350 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3351 again:
f83c9d0f 3352 event = rb_iter_peek(iter, ts);
7a8e76a3 3353 if (!event)
f83c9d0f 3354 goto out;
7a8e76a3 3355
7e9391cf
SR
3356 if (event->type_len == RINGBUF_TYPE_PADDING)
3357 goto again;
3358
7a8e76a3 3359 rb_advance_iter(iter);
f83c9d0f
SR
3360 out:
3361 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3362
3363 return event;
3364}
c4f50183 3365EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3366
3367/**
3368 * ring_buffer_size - return the size of the ring buffer (in bytes)
3369 * @buffer: The ring buffer.
3370 */
3371unsigned long ring_buffer_size(struct ring_buffer *buffer)
3372{
3373 return BUF_PAGE_SIZE * buffer->pages;
3374}
c4f50183 3375EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3376
3377static void
3378rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3379{
77ae365e
SR
3380 rb_head_page_deactivate(cpu_buffer);
3381
7a8e76a3 3382 cpu_buffer->head_page
3adc54fa 3383 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3384 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3385 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3386 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3387
6f807acd 3388 cpu_buffer->head_page->read = 0;
bf41a158
SR
3389
3390 cpu_buffer->tail_page = cpu_buffer->head_page;
3391 cpu_buffer->commit_page = cpu_buffer->head_page;
3392
3393 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3394 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3395 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3396 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3397 cpu_buffer->reader_page->read = 0;
7a8e76a3 3398
77ae365e
SR
3399 local_set(&cpu_buffer->commit_overrun, 0);
3400 local_set(&cpu_buffer->overrun, 0);
e4906eff 3401 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3402 local_set(&cpu_buffer->committing, 0);
3403 local_set(&cpu_buffer->commits, 0);
77ae365e 3404 cpu_buffer->read = 0;
69507c06
SR
3405
3406 cpu_buffer->write_stamp = 0;
3407 cpu_buffer->read_stamp = 0;
77ae365e
SR
3408
3409 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3410}
3411
3412/**
3413 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3414 * @buffer: The ring buffer to reset a per cpu buffer of
3415 * @cpu: The CPU buffer to be reset
3416 */
3417void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3418{
3419 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3420 unsigned long flags;
3421
9e01c1b7 3422 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3423 return;
7a8e76a3 3424
41ede23e
SR
3425 atomic_inc(&cpu_buffer->record_disabled);
3426
f83c9d0f
SR
3427 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428
41b6a95d
SR
3429 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3430 goto out;
3431
0199c4e6 3432 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3433
3434 rb_reset_cpu(cpu_buffer);
3435
0199c4e6 3436 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3437
41b6a95d 3438 out:
f83c9d0f 3439 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3440
3441 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3442}
c4f50183 3443EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3444
3445/**
3446 * ring_buffer_reset - reset a ring buffer
3447 * @buffer: The ring buffer to reset all cpu buffers
3448 */
3449void ring_buffer_reset(struct ring_buffer *buffer)
3450{
7a8e76a3
SR
3451 int cpu;
3452
7a8e76a3 3453 for_each_buffer_cpu(buffer, cpu)
d769041f 3454 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3455}
c4f50183 3456EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3457
3458/**
3459 * rind_buffer_empty - is the ring buffer empty?
3460 * @buffer: The ring buffer to test
3461 */
3462int ring_buffer_empty(struct ring_buffer *buffer)
3463{
3464 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3465 unsigned long flags;
8d707e8e 3466 int dolock;
7a8e76a3 3467 int cpu;
d4788207 3468 int ret;
7a8e76a3 3469
8d707e8e 3470 dolock = rb_ok_to_lock();
7a8e76a3
SR
3471
3472 /* yes this is racy, but if you don't like the race, lock the buffer */
3473 for_each_buffer_cpu(buffer, cpu) {
3474 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3475 local_irq_save(flags);
3476 if (dolock)
3477 spin_lock(&cpu_buffer->reader_lock);
d4788207 3478 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3479 if (dolock)
3480 spin_unlock(&cpu_buffer->reader_lock);
3481 local_irq_restore(flags);
3482
d4788207 3483 if (!ret)
7a8e76a3
SR
3484 return 0;
3485 }
554f786e 3486
7a8e76a3
SR
3487 return 1;
3488}
c4f50183 3489EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3490
3491/**
3492 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3493 * @buffer: The ring buffer
3494 * @cpu: The CPU buffer to test
3495 */
3496int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3497{
3498 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3499 unsigned long flags;
8d707e8e 3500 int dolock;
8aabee57 3501 int ret;
7a8e76a3 3502
9e01c1b7 3503 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3504 return 1;
7a8e76a3 3505
8d707e8e
SR
3506 dolock = rb_ok_to_lock();
3507
7a8e76a3 3508 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3509 local_irq_save(flags);
3510 if (dolock)
3511 spin_lock(&cpu_buffer->reader_lock);
554f786e 3512 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3513 if (dolock)
3514 spin_unlock(&cpu_buffer->reader_lock);
3515 local_irq_restore(flags);
554f786e
SR
3516
3517 return ret;
7a8e76a3 3518}
c4f50183 3519EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3520
85bac32c 3521#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3522/**
3523 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3524 * @buffer_a: One buffer to swap with
3525 * @buffer_b: The other buffer to swap with
3526 *
3527 * This function is useful for tracers that want to take a "snapshot"
3528 * of a CPU buffer and has another back up buffer lying around.
3529 * it is expected that the tracer handles the cpu buffer not being
3530 * used at the moment.
3531 */
3532int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3533 struct ring_buffer *buffer_b, int cpu)
3534{
3535 struct ring_buffer_per_cpu *cpu_buffer_a;
3536 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3537 int ret = -EINVAL;
3538
9e01c1b7
RR
3539 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3540 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3541 goto out;
7a8e76a3
SR
3542
3543 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3544 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3545 goto out;
3546
3547 ret = -EAGAIN;
7a8e76a3 3548
97b17efe 3549 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3550 goto out;
97b17efe
SR
3551
3552 if (atomic_read(&buffer_a->record_disabled))
554f786e 3553 goto out;
97b17efe
SR
3554
3555 if (atomic_read(&buffer_b->record_disabled))
554f786e 3556 goto out;
97b17efe 3557
7a8e76a3
SR
3558 cpu_buffer_a = buffer_a->buffers[cpu];
3559 cpu_buffer_b = buffer_b->buffers[cpu];
3560
97b17efe 3561 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3562 goto out;
97b17efe
SR
3563
3564 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3565 goto out;
97b17efe 3566
7a8e76a3
SR
3567 /*
3568 * We can't do a synchronize_sched here because this
3569 * function can be called in atomic context.
3570 * Normally this will be called from the same CPU as cpu.
3571 * If not it's up to the caller to protect this.
3572 */
3573 atomic_inc(&cpu_buffer_a->record_disabled);
3574 atomic_inc(&cpu_buffer_b->record_disabled);
3575
98277991
SR
3576 ret = -EBUSY;
3577 if (local_read(&cpu_buffer_a->committing))
3578 goto out_dec;
3579 if (local_read(&cpu_buffer_b->committing))
3580 goto out_dec;
3581
7a8e76a3
SR
3582 buffer_a->buffers[cpu] = cpu_buffer_b;
3583 buffer_b->buffers[cpu] = cpu_buffer_a;
3584
3585 cpu_buffer_b->buffer = buffer_a;
3586 cpu_buffer_a->buffer = buffer_b;
3587
98277991
SR
3588 ret = 0;
3589
3590out_dec:
7a8e76a3
SR
3591 atomic_dec(&cpu_buffer_a->record_disabled);
3592 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3593out:
554f786e 3594 return ret;
7a8e76a3 3595}
c4f50183 3596EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3597#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3598
8789a9e7
SR
3599/**
3600 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3601 * @buffer: the buffer to allocate for.
3602 *
3603 * This function is used in conjunction with ring_buffer_read_page.
3604 * When reading a full page from the ring buffer, these functions
3605 * can be used to speed up the process. The calling function should
3606 * allocate a few pages first with this function. Then when it
3607 * needs to get pages from the ring buffer, it passes the result
3608 * of this function into ring_buffer_read_page, which will swap
3609 * the page that was allocated, with the read page of the buffer.
3610 *
3611 * Returns:
3612 * The page allocated, or NULL on error.
3613 */
3614void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3615{
044fa782 3616 struct buffer_data_page *bpage;
ef7a4a16 3617 unsigned long addr;
8789a9e7
SR
3618
3619 addr = __get_free_page(GFP_KERNEL);
3620 if (!addr)
3621 return NULL;
3622
044fa782 3623 bpage = (void *)addr;
8789a9e7 3624
ef7a4a16
SR
3625 rb_init_page(bpage);
3626
044fa782 3627 return bpage;
8789a9e7 3628}
d6ce96da 3629EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3630
3631/**
3632 * ring_buffer_free_read_page - free an allocated read page
3633 * @buffer: the buffer the page was allocate for
3634 * @data: the page to free
3635 *
3636 * Free a page allocated from ring_buffer_alloc_read_page.
3637 */
3638void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3639{
3640 free_page((unsigned long)data);
3641}
d6ce96da 3642EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3643
3644/**
3645 * ring_buffer_read_page - extract a page from the ring buffer
3646 * @buffer: buffer to extract from
3647 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3648 * @len: amount to extract
8789a9e7
SR
3649 * @cpu: the cpu of the buffer to extract
3650 * @full: should the extraction only happen when the page is full.
3651 *
3652 * This function will pull out a page from the ring buffer and consume it.
3653 * @data_page must be the address of the variable that was returned
3654 * from ring_buffer_alloc_read_page. This is because the page might be used
3655 * to swap with a page in the ring buffer.
3656 *
3657 * for example:
b85fa01e 3658 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3659 * if (!rpage)
3660 * return error;
ef7a4a16 3661 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3662 * if (ret >= 0)
3663 * process_page(rpage, ret);
8789a9e7
SR
3664 *
3665 * When @full is set, the function will not return true unless
3666 * the writer is off the reader page.
3667 *
3668 * Note: it is up to the calling functions to handle sleeps and wakeups.
3669 * The ring buffer can be used anywhere in the kernel and can not
3670 * blindly call wake_up. The layer that uses the ring buffer must be
3671 * responsible for that.
3672 *
3673 * Returns:
667d2412
LJ
3674 * >=0 if data has been transferred, returns the offset of consumed data.
3675 * <0 if no data has been transferred.
8789a9e7
SR
3676 */
3677int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3678 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3679{
3680 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3681 struct ring_buffer_event *event;
044fa782 3682 struct buffer_data_page *bpage;
ef7a4a16 3683 struct buffer_page *reader;
8789a9e7 3684 unsigned long flags;
ef7a4a16 3685 unsigned int commit;
667d2412 3686 unsigned int read;
4f3640f8 3687 u64 save_timestamp;
667d2412 3688 int ret = -1;
8789a9e7 3689
554f786e
SR
3690 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3691 goto out;
3692
474d32b6
SR
3693 /*
3694 * If len is not big enough to hold the page header, then
3695 * we can not copy anything.
3696 */
3697 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3698 goto out;
474d32b6
SR
3699
3700 len -= BUF_PAGE_HDR_SIZE;
3701
8789a9e7 3702 if (!data_page)
554f786e 3703 goto out;
8789a9e7 3704
044fa782
SR
3705 bpage = *data_page;
3706 if (!bpage)
554f786e 3707 goto out;
8789a9e7
SR
3708
3709 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3710
ef7a4a16
SR
3711 reader = rb_get_reader_page(cpu_buffer);
3712 if (!reader)
554f786e 3713 goto out_unlock;
8789a9e7 3714
ef7a4a16
SR
3715 event = rb_reader_event(cpu_buffer);
3716
3717 read = reader->read;
3718 commit = rb_page_commit(reader);
667d2412 3719
8789a9e7 3720 /*
474d32b6
SR
3721 * If this page has been partially read or
3722 * if len is not big enough to read the rest of the page or
3723 * a writer is still on the page, then
3724 * we must copy the data from the page to the buffer.
3725 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3726 */
474d32b6 3727 if (read || (len < (commit - read)) ||
ef7a4a16 3728 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3729 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3730 unsigned int rpos = read;
3731 unsigned int pos = 0;
ef7a4a16 3732 unsigned int size;
8789a9e7
SR
3733
3734 if (full)
554f786e 3735 goto out_unlock;
8789a9e7 3736
ef7a4a16
SR
3737 if (len > (commit - read))
3738 len = (commit - read);
3739
3740 size = rb_event_length(event);
3741
3742 if (len < size)
554f786e 3743 goto out_unlock;
ef7a4a16 3744
4f3640f8
SR
3745 /* save the current timestamp, since the user will need it */
3746 save_timestamp = cpu_buffer->read_stamp;
3747
ef7a4a16
SR
3748 /* Need to copy one event at a time */
3749 do {
474d32b6 3750 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3751
3752 len -= size;
3753
3754 rb_advance_reader(cpu_buffer);
474d32b6
SR
3755 rpos = reader->read;
3756 pos += size;
ef7a4a16
SR
3757
3758 event = rb_reader_event(cpu_buffer);
3759 size = rb_event_length(event);
3760 } while (len > size);
667d2412
LJ
3761
3762 /* update bpage */
ef7a4a16 3763 local_set(&bpage->commit, pos);
4f3640f8 3764 bpage->time_stamp = save_timestamp;
ef7a4a16 3765
474d32b6
SR
3766 /* we copied everything to the beginning */
3767 read = 0;
8789a9e7 3768 } else {
afbab76a 3769 /* update the entry counter */
77ae365e 3770 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3771
8789a9e7 3772 /* swap the pages */
044fa782 3773 rb_init_page(bpage);
ef7a4a16
SR
3774 bpage = reader->page;
3775 reader->page = *data_page;
3776 local_set(&reader->write, 0);
778c55d4 3777 local_set(&reader->entries, 0);
ef7a4a16 3778 reader->read = 0;
044fa782 3779 *data_page = bpage;
8789a9e7 3780 }
667d2412 3781 ret = read;
8789a9e7 3782
554f786e 3783 out_unlock:
8789a9e7
SR
3784 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3785
554f786e 3786 out:
8789a9e7
SR
3787 return ret;
3788}
d6ce96da 3789EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3790
1155de47 3791#ifdef CONFIG_TRACING
a3583244
SR
3792static ssize_t
3793rb_simple_read(struct file *filp, char __user *ubuf,
3794 size_t cnt, loff_t *ppos)
3795{
5e39841c 3796 unsigned long *p = filp->private_data;
a3583244
SR
3797 char buf[64];
3798 int r;
3799
033601a3
SR
3800 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3801 r = sprintf(buf, "permanently disabled\n");
3802 else
3803 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3804
3805 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3806}
3807
3808static ssize_t
3809rb_simple_write(struct file *filp, const char __user *ubuf,
3810 size_t cnt, loff_t *ppos)
3811{
5e39841c 3812 unsigned long *p = filp->private_data;
a3583244 3813 char buf[64];
5e39841c 3814 unsigned long val;
a3583244
SR
3815 int ret;
3816
3817 if (cnt >= sizeof(buf))
3818 return -EINVAL;
3819
3820 if (copy_from_user(&buf, ubuf, cnt))
3821 return -EFAULT;
3822
3823 buf[cnt] = 0;
3824
3825 ret = strict_strtoul(buf, 10, &val);
3826 if (ret < 0)
3827 return ret;
3828
033601a3
SR
3829 if (val)
3830 set_bit(RB_BUFFERS_ON_BIT, p);
3831 else
3832 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3833
3834 (*ppos)++;
3835
3836 return cnt;
3837}
3838
5e2336a0 3839static const struct file_operations rb_simple_fops = {
a3583244
SR
3840 .open = tracing_open_generic,
3841 .read = rb_simple_read,
3842 .write = rb_simple_write,
3843};
3844
3845
3846static __init int rb_init_debugfs(void)
3847{
3848 struct dentry *d_tracer;
a3583244
SR
3849
3850 d_tracer = tracing_init_dentry();
3851
5452af66
FW
3852 trace_create_file("tracing_on", 0644, d_tracer,
3853 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3854
3855 return 0;
3856}
3857
3858fs_initcall(rb_init_debugfs);
1155de47 3859#endif
554f786e 3860
59222efe 3861#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3862static int rb_cpu_notify(struct notifier_block *self,
3863 unsigned long action, void *hcpu)
554f786e
SR
3864{
3865 struct ring_buffer *buffer =
3866 container_of(self, struct ring_buffer, cpu_notify);
3867 long cpu = (long)hcpu;
3868
3869 switch (action) {
3870 case CPU_UP_PREPARE:
3871 case CPU_UP_PREPARE_FROZEN:
3f237a79 3872 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
3873 return NOTIFY_OK;
3874
3875 buffer->buffers[cpu] =
3876 rb_allocate_cpu_buffer(buffer, cpu);
3877 if (!buffer->buffers[cpu]) {
3878 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3879 cpu);
3880 return NOTIFY_OK;
3881 }
3882 smp_wmb();
3f237a79 3883 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
3884 break;
3885 case CPU_DOWN_PREPARE:
3886 case CPU_DOWN_PREPARE_FROZEN:
3887 /*
3888 * Do nothing.
3889 * If we were to free the buffer, then the user would
3890 * lose any trace that was in the buffer.
3891 */
3892 break;
3893 default:
3894 break;
3895 }
3896 return NOTIFY_OK;
3897}
3898#endif