ring-buffer: Make addition of pages in ring buffer atomic
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318
VN
475 struct work_struct update_pages_work;
476 struct completion update_completion;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
77ae365e
SR
948 rb_head_page_deactivate(cpu_buffer);
949
3e89c7bb
SR
950 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
951 return -1;
952 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
953 return -1;
7a8e76a3 954
77ae365e
SR
955 if (rb_check_list(cpu_buffer, head))
956 return -1;
957
044fa782 958 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 959 if (RB_WARN_ON(cpu_buffer,
044fa782 960 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
961 return -1;
962 if (RB_WARN_ON(cpu_buffer,
044fa782 963 bpage->list.prev->next != &bpage->list))
3e89c7bb 964 return -1;
77ae365e
SR
965 if (rb_check_list(cpu_buffer, &bpage->list))
966 return -1;
7a8e76a3
SR
967 }
968
77ae365e
SR
969 rb_head_page_activate(cpu_buffer);
970
7a8e76a3
SR
971 return 0;
972}
973
438ced17 974static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 975{
438ced17 976 int i;
044fa782 977 struct buffer_page *bpage, *tmp;
3adc54fa 978
7a8e76a3 979 for (i = 0; i < nr_pages; i++) {
7ea59064 980 struct page *page;
d7ec4bfe
VN
981 /*
982 * __GFP_NORETRY flag makes sure that the allocation fails
983 * gracefully without invoking oom-killer and the system is
984 * not destabilized.
985 */
044fa782 986 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 987 GFP_KERNEL | __GFP_NORETRY,
438ced17 988 cpu_to_node(cpu));
044fa782 989 if (!bpage)
e4c2ce82 990 goto free_pages;
77ae365e 991
438ced17 992 list_add(&bpage->list, pages);
77ae365e 993
438ced17 994 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 995 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 996 if (!page)
7a8e76a3 997 goto free_pages;
7ea59064 998 bpage->page = page_address(page);
044fa782 999 rb_init_page(bpage->page);
7a8e76a3
SR
1000 }
1001
438ced17
VN
1002 return 0;
1003
1004free_pages:
1005 list_for_each_entry_safe(bpage, tmp, pages, list) {
1006 list_del_init(&bpage->list);
1007 free_buffer_page(bpage);
1008 }
1009
1010 return -ENOMEM;
1011}
1012
1013static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1014 unsigned nr_pages)
1015{
1016 LIST_HEAD(pages);
1017
1018 WARN_ON(!nr_pages);
1019
1020 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1021 return -ENOMEM;
1022
3adc54fa
SR
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
7a8e76a3 1030
438ced17
VN
1031 cpu_buffer->nr_pages = nr_pages;
1032
7a8e76a3
SR
1033 rb_check_pages(cpu_buffer);
1034
1035 return 0;
7a8e76a3
SR
1036}
1037
1038static struct ring_buffer_per_cpu *
438ced17 1039rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1040{
1041 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1042 struct buffer_page *bpage;
7ea59064 1043 struct page *page;
7a8e76a3
SR
1044 int ret;
1045
1046 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1047 GFP_KERNEL, cpu_to_node(cpu));
1048 if (!cpu_buffer)
1049 return NULL;
1050
1051 cpu_buffer->cpu = cpu;
1052 cpu_buffer->buffer = buffer;
5389f6fa 1053 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1054 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1055 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318
VN
1056 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1057 init_completion(&cpu_buffer->update_completion);
7a8e76a3 1058
044fa782 1059 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1060 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1061 if (!bpage)
e4c2ce82
SR
1062 goto fail_free_buffer;
1063
77ae365e
SR
1064 rb_check_bpage(cpu_buffer, bpage);
1065
044fa782 1066 cpu_buffer->reader_page = bpage;
7ea59064
VN
1067 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1068 if (!page)
e4c2ce82 1069 goto fail_free_reader;
7ea59064 1070 bpage->page = page_address(page);
044fa782 1071 rb_init_page(bpage->page);
e4c2ce82 1072
d769041f 1073 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1074
438ced17 1075 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1076 if (ret < 0)
d769041f 1077 goto fail_free_reader;
7a8e76a3
SR
1078
1079 cpu_buffer->head_page
3adc54fa 1080 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1081 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1082
77ae365e
SR
1083 rb_head_page_activate(cpu_buffer);
1084
7a8e76a3
SR
1085 return cpu_buffer;
1086
d769041f
SR
1087 fail_free_reader:
1088 free_buffer_page(cpu_buffer->reader_page);
1089
7a8e76a3
SR
1090 fail_free_buffer:
1091 kfree(cpu_buffer);
1092 return NULL;
1093}
1094
1095static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1096{
3adc54fa 1097 struct list_head *head = cpu_buffer->pages;
044fa782 1098 struct buffer_page *bpage, *tmp;
7a8e76a3 1099
d769041f
SR
1100 free_buffer_page(cpu_buffer->reader_page);
1101
77ae365e
SR
1102 rb_head_page_deactivate(cpu_buffer);
1103
3adc54fa
SR
1104 if (head) {
1105 list_for_each_entry_safe(bpage, tmp, head, list) {
1106 list_del_init(&bpage->list);
1107 free_buffer_page(bpage);
1108 }
1109 bpage = list_entry(head, struct buffer_page, list);
044fa782 1110 free_buffer_page(bpage);
7a8e76a3 1111 }
3adc54fa 1112
7a8e76a3
SR
1113 kfree(cpu_buffer);
1114}
1115
59222efe 1116#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1117static int rb_cpu_notify(struct notifier_block *self,
1118 unsigned long action, void *hcpu);
554f786e
SR
1119#endif
1120
7a8e76a3
SR
1121/**
1122 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1123 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1124 * @flags: attributes to set for the ring buffer.
1125 *
1126 * Currently the only flag that is available is the RB_FL_OVERWRITE
1127 * flag. This flag means that the buffer will overwrite old data
1128 * when the buffer wraps. If this flag is not set, the buffer will
1129 * drop data when the tail hits the head.
1130 */
1f8a6a10
PZ
1131struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1132 struct lock_class_key *key)
7a8e76a3
SR
1133{
1134 struct ring_buffer *buffer;
1135 int bsize;
438ced17 1136 int cpu, nr_pages;
7a8e76a3
SR
1137
1138 /* keep it in its own cache line */
1139 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1140 GFP_KERNEL);
1141 if (!buffer)
1142 return NULL;
1143
9e01c1b7
RR
1144 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1145 goto fail_free_buffer;
1146
438ced17 1147 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1148 buffer->flags = flags;
37886f6a 1149 buffer->clock = trace_clock_local;
1f8a6a10 1150 buffer->reader_lock_key = key;
7a8e76a3
SR
1151
1152 /* need at least two pages */
438ced17
VN
1153 if (nr_pages < 2)
1154 nr_pages = 2;
7a8e76a3 1155
3bf832ce
FW
1156 /*
1157 * In case of non-hotplug cpu, if the ring-buffer is allocated
1158 * in early initcall, it will not be notified of secondary cpus.
1159 * In that off case, we need to allocate for all possible cpus.
1160 */
1161#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1162 get_online_cpus();
1163 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1164#else
1165 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1166#endif
7a8e76a3
SR
1167 buffer->cpus = nr_cpu_ids;
1168
1169 bsize = sizeof(void *) * nr_cpu_ids;
1170 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1171 GFP_KERNEL);
1172 if (!buffer->buffers)
9e01c1b7 1173 goto fail_free_cpumask;
7a8e76a3
SR
1174
1175 for_each_buffer_cpu(buffer, cpu) {
1176 buffer->buffers[cpu] =
438ced17 1177 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1178 if (!buffer->buffers[cpu])
1179 goto fail_free_buffers;
1180 }
1181
59222efe 1182#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1183 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1184 buffer->cpu_notify.priority = 0;
1185 register_cpu_notifier(&buffer->cpu_notify);
1186#endif
1187
1188 put_online_cpus();
7a8e76a3
SR
1189 mutex_init(&buffer->mutex);
1190
1191 return buffer;
1192
1193 fail_free_buffers:
1194 for_each_buffer_cpu(buffer, cpu) {
1195 if (buffer->buffers[cpu])
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1197 }
1198 kfree(buffer->buffers);
1199
9e01c1b7
RR
1200 fail_free_cpumask:
1201 free_cpumask_var(buffer->cpumask);
554f786e 1202 put_online_cpus();
9e01c1b7 1203
7a8e76a3
SR
1204 fail_free_buffer:
1205 kfree(buffer);
1206 return NULL;
1207}
1f8a6a10 1208EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1209
1210/**
1211 * ring_buffer_free - free a ring buffer.
1212 * @buffer: the buffer to free.
1213 */
1214void
1215ring_buffer_free(struct ring_buffer *buffer)
1216{
1217 int cpu;
1218
554f786e
SR
1219 get_online_cpus();
1220
59222efe 1221#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1222 unregister_cpu_notifier(&buffer->cpu_notify);
1223#endif
1224
7a8e76a3
SR
1225 for_each_buffer_cpu(buffer, cpu)
1226 rb_free_cpu_buffer(buffer->buffers[cpu]);
1227
554f786e
SR
1228 put_online_cpus();
1229
bd3f0221 1230 kfree(buffer->buffers);
9e01c1b7
RR
1231 free_cpumask_var(buffer->cpumask);
1232
7a8e76a3
SR
1233 kfree(buffer);
1234}
c4f50183 1235EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1236
37886f6a
SR
1237void ring_buffer_set_clock(struct ring_buffer *buffer,
1238 u64 (*clock)(void))
1239{
1240 buffer->clock = clock;
1241}
1242
7a8e76a3
SR
1243static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1244
83f40318
VN
1245static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1246{
1247 return local_read(&bpage->entries) & RB_WRITE_MASK;
1248}
1249
1250static inline unsigned long rb_page_write(struct buffer_page *bpage)
1251{
1252 return local_read(&bpage->write) & RB_WRITE_MASK;
1253}
1254
5040b4b7 1255static int
83f40318 1256rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1257{
83f40318
VN
1258 struct list_head *tail_page, *to_remove, *next_page;
1259 struct buffer_page *to_remove_page, *tmp_iter_page;
1260 struct buffer_page *last_page, *first_page;
1261 unsigned int nr_removed;
1262 unsigned long head_bit;
1263 int page_entries;
1264
1265 head_bit = 0;
7a8e76a3 1266
5389f6fa 1267 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1268 atomic_inc(&cpu_buffer->record_disabled);
1269 /*
1270 * We don't race with the readers since we have acquired the reader
1271 * lock. We also don't race with writers after disabling recording.
1272 * This makes it easy to figure out the first and the last page to be
1273 * removed from the list. We unlink all the pages in between including
1274 * the first and last pages. This is done in a busy loop so that we
1275 * lose the least number of traces.
1276 * The pages are freed after we restart recording and unlock readers.
1277 */
1278 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1279
83f40318
VN
1280 /*
1281 * tail page might be on reader page, we remove the next page
1282 * from the ring buffer
1283 */
1284 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1285 tail_page = rb_list_head(tail_page->next);
1286 to_remove = tail_page;
1287
1288 /* start of pages to remove */
1289 first_page = list_entry(rb_list_head(to_remove->next),
1290 struct buffer_page, list);
1291
1292 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1293 to_remove = rb_list_head(to_remove)->next;
1294 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1295 }
7a8e76a3 1296
83f40318 1297 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1298
83f40318
VN
1299 /*
1300 * Now we remove all pages between tail_page and next_page.
1301 * Make sure that we have head_bit value preserved for the
1302 * next page
1303 */
1304 tail_page->next = (struct list_head *)((unsigned long)next_page |
1305 head_bit);
1306 next_page = rb_list_head(next_page);
1307 next_page->prev = tail_page;
1308
1309 /* make sure pages points to a valid page in the ring buffer */
1310 cpu_buffer->pages = next_page;
1311
1312 /* update head page */
1313 if (head_bit)
1314 cpu_buffer->head_page = list_entry(next_page,
1315 struct buffer_page, list);
1316
1317 /*
1318 * change read pointer to make sure any read iterators reset
1319 * themselves
1320 */
1321 cpu_buffer->read = 0;
1322
1323 /* pages are removed, resume tracing and then free the pages */
1324 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1325 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1326
1327 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1328
1329 /* last buffer page to remove */
1330 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1331 list);
1332 tmp_iter_page = first_page;
1333
1334 do {
1335 to_remove_page = tmp_iter_page;
1336 rb_inc_page(cpu_buffer, &tmp_iter_page);
1337
1338 /* update the counters */
1339 page_entries = rb_page_entries(to_remove_page);
1340 if (page_entries) {
1341 /*
1342 * If something was added to this page, it was full
1343 * since it is not the tail page. So we deduct the
1344 * bytes consumed in ring buffer from here.
1345 * No need to update overruns, since this page is
1346 * deleted from ring buffer and its entries are
1347 * already accounted for.
1348 */
1349 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1350 }
1351
1352 /*
1353 * We have already removed references to this list item, just
1354 * free up the buffer_page and its page
1355 */
1356 free_buffer_page(to_remove_page);
1357 nr_removed--;
1358
1359 } while (to_remove_page != last_page);
1360
1361 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1362
1363 return nr_removed == 0;
7a8e76a3
SR
1364}
1365
5040b4b7
VN
1366static int
1367rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1368{
5040b4b7
VN
1369 struct list_head *pages = &cpu_buffer->new_pages;
1370 int retries, success;
7a8e76a3 1371
5389f6fa 1372 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1373 /*
1374 * We are holding the reader lock, so the reader page won't be swapped
1375 * in the ring buffer. Now we are racing with the writer trying to
1376 * move head page and the tail page.
1377 * We are going to adapt the reader page update process where:
1378 * 1. We first splice the start and end of list of new pages between
1379 * the head page and its previous page.
1380 * 2. We cmpxchg the prev_page->next to point from head page to the
1381 * start of new pages list.
1382 * 3. Finally, we update the head->prev to the end of new list.
1383 *
1384 * We will try this process 10 times, to make sure that we don't keep
1385 * spinning.
1386 */
1387 retries = 10;
1388 success = 0;
1389 while (retries--) {
1390 struct list_head *head_page, *prev_page, *r;
1391 struct list_head *last_page, *first_page;
1392 struct list_head *head_page_with_bit;
77ae365e 1393
5040b4b7
VN
1394 head_page = &rb_set_head_page(cpu_buffer)->list;
1395 prev_page = head_page->prev;
1396
1397 first_page = pages->next;
1398 last_page = pages->prev;
1399
1400 head_page_with_bit = (struct list_head *)
1401 ((unsigned long)head_page | RB_PAGE_HEAD);
1402
1403 last_page->next = head_page_with_bit;
1404 first_page->prev = prev_page;
1405
1406 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1407
1408 if (r == head_page_with_bit) {
1409 /*
1410 * yay, we replaced the page pointer to our new list,
1411 * now, we just have to update to head page's prev
1412 * pointer to point to end of list
1413 */
1414 head_page->prev = last_page;
1415 success = 1;
1416 break;
1417 }
7a8e76a3 1418 }
7a8e76a3 1419
5040b4b7
VN
1420 if (success)
1421 INIT_LIST_HEAD(pages);
1422 /*
1423 * If we weren't successful in adding in new pages, warn and stop
1424 * tracing
1425 */
1426 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1427 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1428
1429 /* free pages if they weren't inserted */
1430 if (!success) {
1431 struct buffer_page *bpage, *tmp;
1432 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1433 list) {
1434 list_del_init(&bpage->list);
1435 free_buffer_page(bpage);
1436 }
1437 }
1438 return success;
7a8e76a3
SR
1439}
1440
83f40318 1441static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1442{
5040b4b7
VN
1443 int success;
1444
438ced17 1445 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1446 success = rb_insert_pages(cpu_buffer);
438ced17 1447 else
5040b4b7
VN
1448 success = rb_remove_pages(cpu_buffer,
1449 -cpu_buffer->nr_pages_to_update);
83f40318 1450
5040b4b7
VN
1451 if (success)
1452 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1453}
1454
1455static void update_pages_handler(struct work_struct *work)
1456{
1457 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1458 struct ring_buffer_per_cpu, update_pages_work);
1459 rb_update_pages(cpu_buffer);
1460 complete(&cpu_buffer->update_completion);
438ced17
VN
1461}
1462
7a8e76a3
SR
1463/**
1464 * ring_buffer_resize - resize the ring buffer
1465 * @buffer: the buffer to resize.
1466 * @size: the new size.
1467 *
7a8e76a3
SR
1468 * Minimum size is 2 * BUF_PAGE_SIZE.
1469 *
83f40318 1470 * Returns 0 on success and < 0 on failure.
7a8e76a3 1471 */
438ced17
VN
1472int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1473 int cpu_id)
7a8e76a3
SR
1474{
1475 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1476 unsigned nr_pages;
83f40318 1477 int cpu, err = 0;
7a8e76a3 1478
ee51a1de
IM
1479 /*
1480 * Always succeed at resizing a non-existent buffer:
1481 */
1482 if (!buffer)
1483 return size;
1484
7a8e76a3
SR
1485 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1486 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1487
1488 /* we need a minimum of two pages */
1489 if (size < BUF_PAGE_SIZE * 2)
1490 size = BUF_PAGE_SIZE * 2;
1491
83f40318 1492 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1493
83f40318
VN
1494 /*
1495 * Don't succeed if resizing is disabled, as a reader might be
1496 * manipulating the ring buffer and is expecting a sane state while
1497 * this is true.
1498 */
1499 if (atomic_read(&buffer->resize_disabled))
1500 return -EBUSY;
18421015 1501
83f40318 1502 /* prevent another thread from changing buffer sizes */
7a8e76a3 1503 mutex_lock(&buffer->mutex);
7a8e76a3 1504
438ced17
VN
1505 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1506 /* calculate the pages to update */
7a8e76a3
SR
1507 for_each_buffer_cpu(buffer, cpu) {
1508 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1509
438ced17
VN
1510 cpu_buffer->nr_pages_to_update = nr_pages -
1511 cpu_buffer->nr_pages;
438ced17
VN
1512 /*
1513 * nothing more to do for removing pages or no update
1514 */
1515 if (cpu_buffer->nr_pages_to_update <= 0)
1516 continue;
d7ec4bfe 1517 /*
438ced17
VN
1518 * to add pages, make sure all new pages can be
1519 * allocated without receiving ENOMEM
d7ec4bfe 1520 */
438ced17
VN
1521 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1522 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1523 &cpu_buffer->new_pages, cpu)) {
438ced17 1524 /* not enough memory for new pages */
83f40318
VN
1525 err = -ENOMEM;
1526 goto out_err;
1527 }
1528 }
1529
1530 get_online_cpus();
1531 /*
1532 * Fire off all the required work handlers
1533 * Look out for offline CPUs
1534 */
1535 for_each_buffer_cpu(buffer, cpu) {
1536 cpu_buffer = buffer->buffers[cpu];
1537 if (!cpu_buffer->nr_pages_to_update ||
1538 !cpu_online(cpu))
1539 continue;
1540
1541 schedule_work_on(cpu, &cpu_buffer->update_pages_work);
1542 }
1543 /*
1544 * This loop is for the CPUs that are not online.
1545 * We can't schedule anything on them, but it's not necessary
1546 * since we can change their buffer sizes without any race.
1547 */
1548 for_each_buffer_cpu(buffer, cpu) {
1549 cpu_buffer = buffer->buffers[cpu];
1550 if (!cpu_buffer->nr_pages_to_update ||
1551 cpu_online(cpu))
1552 continue;
1553
1554 rb_update_pages(cpu_buffer);
7a8e76a3 1555 }
7a8e76a3 1556
438ced17
VN
1557 /* wait for all the updates to complete */
1558 for_each_buffer_cpu(buffer, cpu) {
1559 cpu_buffer = buffer->buffers[cpu];
83f40318
VN
1560 if (!cpu_buffer->nr_pages_to_update ||
1561 !cpu_online(cpu))
1562 continue;
1563
1564 wait_for_completion(&cpu_buffer->update_completion);
1565 /* reset this value */
1566 cpu_buffer->nr_pages_to_update = 0;
438ced17 1567 }
83f40318
VN
1568
1569 put_online_cpus();
438ced17
VN
1570 } else {
1571 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1572
438ced17
VN
1573 if (nr_pages == cpu_buffer->nr_pages)
1574 goto out;
7a8e76a3 1575
438ced17
VN
1576 cpu_buffer->nr_pages_to_update = nr_pages -
1577 cpu_buffer->nr_pages;
1578
1579 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1580 if (cpu_buffer->nr_pages_to_update > 0 &&
1581 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1582 &cpu_buffer->new_pages, cpu_id)) {
1583 err = -ENOMEM;
1584 goto out_err;
1585 }
438ced17 1586
83f40318
VN
1587 get_online_cpus();
1588
1589 if (cpu_online(cpu_id)) {
1590 schedule_work_on(cpu_id,
1591 &cpu_buffer->update_pages_work);
1592 wait_for_completion(&cpu_buffer->update_completion);
1593 } else
1594 rb_update_pages(cpu_buffer);
1595
1596 put_online_cpus();
1597 /* reset this value */
1598 cpu_buffer->nr_pages_to_update = 0;
438ced17 1599 }
7a8e76a3
SR
1600
1601 out:
7a8e76a3 1602 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1603 return size;
1604
83f40318 1605 out_err:
438ced17
VN
1606 for_each_buffer_cpu(buffer, cpu) {
1607 struct buffer_page *bpage, *tmp;
83f40318 1608
438ced17 1609 cpu_buffer = buffer->buffers[cpu];
438ced17 1610 cpu_buffer->nr_pages_to_update = 0;
83f40318 1611
438ced17
VN
1612 if (list_empty(&cpu_buffer->new_pages))
1613 continue;
83f40318 1614
438ced17
VN
1615 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1616 list) {
1617 list_del_init(&bpage->list);
1618 free_buffer_page(bpage);
1619 }
7a8e76a3 1620 }
641d2f63 1621 mutex_unlock(&buffer->mutex);
83f40318 1622 return err;
7a8e76a3 1623}
c4f50183 1624EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1625
750912fa
DS
1626void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1627{
1628 mutex_lock(&buffer->mutex);
1629 if (val)
1630 buffer->flags |= RB_FL_OVERWRITE;
1631 else
1632 buffer->flags &= ~RB_FL_OVERWRITE;
1633 mutex_unlock(&buffer->mutex);
1634}
1635EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1636
8789a9e7 1637static inline void *
044fa782 1638__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1639{
044fa782 1640 return bpage->data + index;
8789a9e7
SR
1641}
1642
044fa782 1643static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1644{
044fa782 1645 return bpage->page->data + index;
7a8e76a3
SR
1646}
1647
1648static inline struct ring_buffer_event *
d769041f 1649rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1650{
6f807acd
SR
1651 return __rb_page_index(cpu_buffer->reader_page,
1652 cpu_buffer->reader_page->read);
1653}
1654
7a8e76a3
SR
1655static inline struct ring_buffer_event *
1656rb_iter_head_event(struct ring_buffer_iter *iter)
1657{
6f807acd 1658 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1659}
1660
bf41a158
SR
1661static inline unsigned rb_page_commit(struct buffer_page *bpage)
1662{
abc9b56d 1663 return local_read(&bpage->page->commit);
bf41a158
SR
1664}
1665
25985edc 1666/* Size is determined by what has been committed */
bf41a158
SR
1667static inline unsigned rb_page_size(struct buffer_page *bpage)
1668{
1669 return rb_page_commit(bpage);
1670}
1671
1672static inline unsigned
1673rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1674{
1675 return rb_page_commit(cpu_buffer->commit_page);
1676}
1677
bf41a158
SR
1678static inline unsigned
1679rb_event_index(struct ring_buffer_event *event)
1680{
1681 unsigned long addr = (unsigned long)event;
1682
22f470f8 1683 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1684}
1685
0f0c85fc 1686static inline int
fa743953
SR
1687rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1688 struct ring_buffer_event *event)
bf41a158
SR
1689{
1690 unsigned long addr = (unsigned long)event;
1691 unsigned long index;
1692
1693 index = rb_event_index(event);
1694 addr &= PAGE_MASK;
1695
1696 return cpu_buffer->commit_page->page == (void *)addr &&
1697 rb_commit_index(cpu_buffer) == index;
1698}
1699
34a148bf 1700static void
bf41a158 1701rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1702{
77ae365e
SR
1703 unsigned long max_count;
1704
bf41a158
SR
1705 /*
1706 * We only race with interrupts and NMIs on this CPU.
1707 * If we own the commit event, then we can commit
1708 * all others that interrupted us, since the interruptions
1709 * are in stack format (they finish before they come
1710 * back to us). This allows us to do a simple loop to
1711 * assign the commit to the tail.
1712 */
a8ccf1d6 1713 again:
438ced17 1714 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1715
bf41a158 1716 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1717 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1718 return;
1719 if (RB_WARN_ON(cpu_buffer,
1720 rb_is_reader_page(cpu_buffer->tail_page)))
1721 return;
1722 local_set(&cpu_buffer->commit_page->page->commit,
1723 rb_page_write(cpu_buffer->commit_page));
bf41a158 1724 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1725 cpu_buffer->write_stamp =
1726 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1727 /* add barrier to keep gcc from optimizing too much */
1728 barrier();
1729 }
1730 while (rb_commit_index(cpu_buffer) !=
1731 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1732
1733 local_set(&cpu_buffer->commit_page->page->commit,
1734 rb_page_write(cpu_buffer->commit_page));
1735 RB_WARN_ON(cpu_buffer,
1736 local_read(&cpu_buffer->commit_page->page->commit) &
1737 ~RB_WRITE_MASK);
bf41a158
SR
1738 barrier();
1739 }
a8ccf1d6
SR
1740
1741 /* again, keep gcc from optimizing */
1742 barrier();
1743
1744 /*
1745 * If an interrupt came in just after the first while loop
1746 * and pushed the tail page forward, we will be left with
1747 * a dangling commit that will never go forward.
1748 */
1749 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1750 goto again;
7a8e76a3
SR
1751}
1752
d769041f 1753static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1754{
abc9b56d 1755 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1756 cpu_buffer->reader_page->read = 0;
d769041f
SR
1757}
1758
34a148bf 1759static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1760{
1761 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1762
1763 /*
1764 * The iterator could be on the reader page (it starts there).
1765 * But the head could have moved, since the reader was
1766 * found. Check for this case and assign the iterator
1767 * to the head page instead of next.
1768 */
1769 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1770 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1771 else
1772 rb_inc_page(cpu_buffer, &iter->head_page);
1773
abc9b56d 1774 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1775 iter->head = 0;
1776}
1777
69d1b839
SR
1778/* Slow path, do not inline */
1779static noinline struct ring_buffer_event *
1780rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1781{
1782 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1783
1784 /* Not the first event on the page? */
1785 if (rb_event_index(event)) {
1786 event->time_delta = delta & TS_MASK;
1787 event->array[0] = delta >> TS_SHIFT;
1788 } else {
1789 /* nope, just zero it */
1790 event->time_delta = 0;
1791 event->array[0] = 0;
1792 }
1793
1794 return skip_time_extend(event);
1795}
1796
7a8e76a3
SR
1797/**
1798 * ring_buffer_update_event - update event type and data
1799 * @event: the even to update
1800 * @type: the type of event
1801 * @length: the size of the event field in the ring buffer
1802 *
1803 * Update the type and data fields of the event. The length
1804 * is the actual size that is written to the ring buffer,
1805 * and with this, we can determine what to place into the
1806 * data field.
1807 */
34a148bf 1808static void
69d1b839
SR
1809rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1810 struct ring_buffer_event *event, unsigned length,
1811 int add_timestamp, u64 delta)
7a8e76a3 1812{
69d1b839
SR
1813 /* Only a commit updates the timestamp */
1814 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1815 delta = 0;
7a8e76a3 1816
69d1b839
SR
1817 /*
1818 * If we need to add a timestamp, then we
1819 * add it to the start of the resevered space.
1820 */
1821 if (unlikely(add_timestamp)) {
1822 event = rb_add_time_stamp(event, delta);
1823 length -= RB_LEN_TIME_EXTEND;
1824 delta = 0;
7a8e76a3 1825 }
69d1b839
SR
1826
1827 event->time_delta = delta;
1828 length -= RB_EVNT_HDR_SIZE;
1829 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1830 event->type_len = 0;
1831 event->array[0] = length;
1832 } else
1833 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1834}
1835
77ae365e
SR
1836/*
1837 * rb_handle_head_page - writer hit the head page
1838 *
1839 * Returns: +1 to retry page
1840 * 0 to continue
1841 * -1 on error
1842 */
1843static int
1844rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1845 struct buffer_page *tail_page,
1846 struct buffer_page *next_page)
1847{
1848 struct buffer_page *new_head;
1849 int entries;
1850 int type;
1851 int ret;
1852
1853 entries = rb_page_entries(next_page);
1854
1855 /*
1856 * The hard part is here. We need to move the head
1857 * forward, and protect against both readers on
1858 * other CPUs and writers coming in via interrupts.
1859 */
1860 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1861 RB_PAGE_HEAD);
1862
1863 /*
1864 * type can be one of four:
1865 * NORMAL - an interrupt already moved it for us
1866 * HEAD - we are the first to get here.
1867 * UPDATE - we are the interrupt interrupting
1868 * a current move.
1869 * MOVED - a reader on another CPU moved the next
1870 * pointer to its reader page. Give up
1871 * and try again.
1872 */
1873
1874 switch (type) {
1875 case RB_PAGE_HEAD:
1876 /*
1877 * We changed the head to UPDATE, thus
1878 * it is our responsibility to update
1879 * the counters.
1880 */
1881 local_add(entries, &cpu_buffer->overrun);
c64e148a 1882 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1883
1884 /*
1885 * The entries will be zeroed out when we move the
1886 * tail page.
1887 */
1888
1889 /* still more to do */
1890 break;
1891
1892 case RB_PAGE_UPDATE:
1893 /*
1894 * This is an interrupt that interrupt the
1895 * previous update. Still more to do.
1896 */
1897 break;
1898 case RB_PAGE_NORMAL:
1899 /*
1900 * An interrupt came in before the update
1901 * and processed this for us.
1902 * Nothing left to do.
1903 */
1904 return 1;
1905 case RB_PAGE_MOVED:
1906 /*
1907 * The reader is on another CPU and just did
1908 * a swap with our next_page.
1909 * Try again.
1910 */
1911 return 1;
1912 default:
1913 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1914 return -1;
1915 }
1916
1917 /*
1918 * Now that we are here, the old head pointer is
1919 * set to UPDATE. This will keep the reader from
1920 * swapping the head page with the reader page.
1921 * The reader (on another CPU) will spin till
1922 * we are finished.
1923 *
1924 * We just need to protect against interrupts
1925 * doing the job. We will set the next pointer
1926 * to HEAD. After that, we set the old pointer
1927 * to NORMAL, but only if it was HEAD before.
1928 * otherwise we are an interrupt, and only
1929 * want the outer most commit to reset it.
1930 */
1931 new_head = next_page;
1932 rb_inc_page(cpu_buffer, &new_head);
1933
1934 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1935 RB_PAGE_NORMAL);
1936
1937 /*
1938 * Valid returns are:
1939 * HEAD - an interrupt came in and already set it.
1940 * NORMAL - One of two things:
1941 * 1) We really set it.
1942 * 2) A bunch of interrupts came in and moved
1943 * the page forward again.
1944 */
1945 switch (ret) {
1946 case RB_PAGE_HEAD:
1947 case RB_PAGE_NORMAL:
1948 /* OK */
1949 break;
1950 default:
1951 RB_WARN_ON(cpu_buffer, 1);
1952 return -1;
1953 }
1954
1955 /*
1956 * It is possible that an interrupt came in,
1957 * set the head up, then more interrupts came in
1958 * and moved it again. When we get back here,
1959 * the page would have been set to NORMAL but we
1960 * just set it back to HEAD.
1961 *
1962 * How do you detect this? Well, if that happened
1963 * the tail page would have moved.
1964 */
1965 if (ret == RB_PAGE_NORMAL) {
1966 /*
1967 * If the tail had moved passed next, then we need
1968 * to reset the pointer.
1969 */
1970 if (cpu_buffer->tail_page != tail_page &&
1971 cpu_buffer->tail_page != next_page)
1972 rb_head_page_set_normal(cpu_buffer, new_head,
1973 next_page,
1974 RB_PAGE_HEAD);
1975 }
1976
1977 /*
1978 * If this was the outer most commit (the one that
1979 * changed the original pointer from HEAD to UPDATE),
1980 * then it is up to us to reset it to NORMAL.
1981 */
1982 if (type == RB_PAGE_HEAD) {
1983 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1984 tail_page,
1985 RB_PAGE_UPDATE);
1986 if (RB_WARN_ON(cpu_buffer,
1987 ret != RB_PAGE_UPDATE))
1988 return -1;
1989 }
1990
1991 return 0;
1992}
1993
34a148bf 1994static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1995{
1996 struct ring_buffer_event event; /* Used only for sizeof array */
1997
1998 /* zero length can cause confusions */
1999 if (!length)
2000 length = 1;
2001
2271048d 2002 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2003 length += sizeof(event.array[0]);
2004
2005 length += RB_EVNT_HDR_SIZE;
2271048d 2006 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2007
2008 return length;
2009}
2010
c7b09308
SR
2011static inline void
2012rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2013 struct buffer_page *tail_page,
2014 unsigned long tail, unsigned long length)
2015{
2016 struct ring_buffer_event *event;
2017
2018 /*
2019 * Only the event that crossed the page boundary
2020 * must fill the old tail_page with padding.
2021 */
2022 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2023 /*
2024 * If the page was filled, then we still need
2025 * to update the real_end. Reset it to zero
2026 * and the reader will ignore it.
2027 */
2028 if (tail == BUF_PAGE_SIZE)
2029 tail_page->real_end = 0;
2030
c7b09308
SR
2031 local_sub(length, &tail_page->write);
2032 return;
2033 }
2034
2035 event = __rb_page_index(tail_page, tail);
b0b7065b 2036 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2037
c64e148a
VN
2038 /* account for padding bytes */
2039 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2040
ff0ff84a
SR
2041 /*
2042 * Save the original length to the meta data.
2043 * This will be used by the reader to add lost event
2044 * counter.
2045 */
2046 tail_page->real_end = tail;
2047
c7b09308
SR
2048 /*
2049 * If this event is bigger than the minimum size, then
2050 * we need to be careful that we don't subtract the
2051 * write counter enough to allow another writer to slip
2052 * in on this page.
2053 * We put in a discarded commit instead, to make sure
2054 * that this space is not used again.
2055 *
2056 * If we are less than the minimum size, we don't need to
2057 * worry about it.
2058 */
2059 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2060 /* No room for any events */
2061
2062 /* Mark the rest of the page with padding */
2063 rb_event_set_padding(event);
2064
2065 /* Set the write back to the previous setting */
2066 local_sub(length, &tail_page->write);
2067 return;
2068 }
2069
2070 /* Put in a discarded event */
2071 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2072 event->type_len = RINGBUF_TYPE_PADDING;
2073 /* time delta must be non zero */
2074 event->time_delta = 1;
c7b09308
SR
2075
2076 /* Set write to end of buffer */
2077 length = (tail + length) - BUF_PAGE_SIZE;
2078 local_sub(length, &tail_page->write);
2079}
6634ff26 2080
747e94ae
SR
2081/*
2082 * This is the slow path, force gcc not to inline it.
2083 */
2084static noinline struct ring_buffer_event *
6634ff26
SR
2085rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2086 unsigned long length, unsigned long tail,
e8bc43e8 2087 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2088{
5a50e33c 2089 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2090 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2091 struct buffer_page *next_page;
2092 int ret;
aa20ae84
SR
2093
2094 next_page = tail_page;
2095
aa20ae84
SR
2096 rb_inc_page(cpu_buffer, &next_page);
2097
aa20ae84
SR
2098 /*
2099 * If for some reason, we had an interrupt storm that made
2100 * it all the way around the buffer, bail, and warn
2101 * about it.
2102 */
2103 if (unlikely(next_page == commit_page)) {
77ae365e 2104 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2105 goto out_reset;
2106 }
2107
77ae365e
SR
2108 /*
2109 * This is where the fun begins!
2110 *
2111 * We are fighting against races between a reader that
2112 * could be on another CPU trying to swap its reader
2113 * page with the buffer head.
2114 *
2115 * We are also fighting against interrupts coming in and
2116 * moving the head or tail on us as well.
2117 *
2118 * If the next page is the head page then we have filled
2119 * the buffer, unless the commit page is still on the
2120 * reader page.
2121 */
2122 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2123
77ae365e
SR
2124 /*
2125 * If the commit is not on the reader page, then
2126 * move the header page.
2127 */
2128 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2129 /*
2130 * If we are not in overwrite mode,
2131 * this is easy, just stop here.
2132 */
2133 if (!(buffer->flags & RB_FL_OVERWRITE))
2134 goto out_reset;
2135
2136 ret = rb_handle_head_page(cpu_buffer,
2137 tail_page,
2138 next_page);
2139 if (ret < 0)
2140 goto out_reset;
2141 if (ret)
2142 goto out_again;
2143 } else {
2144 /*
2145 * We need to be careful here too. The
2146 * commit page could still be on the reader
2147 * page. We could have a small buffer, and
2148 * have filled up the buffer with events
2149 * from interrupts and such, and wrapped.
2150 *
2151 * Note, if the tail page is also the on the
2152 * reader_page, we let it move out.
2153 */
2154 if (unlikely((cpu_buffer->commit_page !=
2155 cpu_buffer->tail_page) &&
2156 (cpu_buffer->commit_page ==
2157 cpu_buffer->reader_page))) {
2158 local_inc(&cpu_buffer->commit_overrun);
2159 goto out_reset;
2160 }
aa20ae84
SR
2161 }
2162 }
2163
77ae365e
SR
2164 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2165 if (ret) {
2166 /*
2167 * Nested commits always have zero deltas, so
2168 * just reread the time stamp
2169 */
e8bc43e8
SR
2170 ts = rb_time_stamp(buffer);
2171 next_page->page->time_stamp = ts;
aa20ae84
SR
2172 }
2173
77ae365e 2174 out_again:
aa20ae84 2175
77ae365e 2176 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2177
2178 /* fail and let the caller try again */
2179 return ERR_PTR(-EAGAIN);
2180
45141d46 2181 out_reset:
6f3b3440 2182 /* reset write */
c7b09308 2183 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2184
bf41a158 2185 return NULL;
7a8e76a3
SR
2186}
2187
6634ff26
SR
2188static struct ring_buffer_event *
2189__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2190 unsigned long length, u64 ts,
2191 u64 delta, int add_timestamp)
6634ff26 2192{
5a50e33c 2193 struct buffer_page *tail_page;
6634ff26
SR
2194 struct ring_buffer_event *event;
2195 unsigned long tail, write;
2196
69d1b839
SR
2197 /*
2198 * If the time delta since the last event is too big to
2199 * hold in the time field of the event, then we append a
2200 * TIME EXTEND event ahead of the data event.
2201 */
2202 if (unlikely(add_timestamp))
2203 length += RB_LEN_TIME_EXTEND;
2204
6634ff26
SR
2205 tail_page = cpu_buffer->tail_page;
2206 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2207
2208 /* set write to only the index of the write */
2209 write &= RB_WRITE_MASK;
6634ff26
SR
2210 tail = write - length;
2211
2212 /* See if we shot pass the end of this buffer page */
747e94ae 2213 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2214 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2215 tail_page, ts);
6634ff26
SR
2216
2217 /* We reserved something on the buffer */
2218
6634ff26 2219 event = __rb_page_index(tail_page, tail);
1744a21d 2220 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2221 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2222
69d1b839 2223 local_inc(&tail_page->entries);
6634ff26
SR
2224
2225 /*
fa743953
SR
2226 * If this is the first commit on the page, then update
2227 * its timestamp.
6634ff26 2228 */
fa743953 2229 if (!tail)
e8bc43e8 2230 tail_page->page->time_stamp = ts;
6634ff26 2231
c64e148a
VN
2232 /* account for these added bytes */
2233 local_add(length, &cpu_buffer->entries_bytes);
2234
6634ff26
SR
2235 return event;
2236}
2237
edd813bf
SR
2238static inline int
2239rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2240 struct ring_buffer_event *event)
2241{
2242 unsigned long new_index, old_index;
2243 struct buffer_page *bpage;
2244 unsigned long index;
2245 unsigned long addr;
2246
2247 new_index = rb_event_index(event);
69d1b839 2248 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2249 addr = (unsigned long)event;
2250 addr &= PAGE_MASK;
2251
2252 bpage = cpu_buffer->tail_page;
2253
2254 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2255 unsigned long write_mask =
2256 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2257 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2258 /*
2259 * This is on the tail page. It is possible that
2260 * a write could come in and move the tail page
2261 * and write to the next page. That is fine
2262 * because we just shorten what is on this page.
2263 */
77ae365e
SR
2264 old_index += write_mask;
2265 new_index += write_mask;
edd813bf 2266 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2267 if (index == old_index) {
2268 /* update counters */
2269 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2270 return 1;
c64e148a 2271 }
edd813bf
SR
2272 }
2273
2274 /* could not discard */
2275 return 0;
2276}
2277
fa743953
SR
2278static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2279{
2280 local_inc(&cpu_buffer->committing);
2281 local_inc(&cpu_buffer->commits);
2282}
2283
d9abde21 2284static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2285{
2286 unsigned long commits;
2287
2288 if (RB_WARN_ON(cpu_buffer,
2289 !local_read(&cpu_buffer->committing)))
2290 return;
2291
2292 again:
2293 commits = local_read(&cpu_buffer->commits);
2294 /* synchronize with interrupts */
2295 barrier();
2296 if (local_read(&cpu_buffer->committing) == 1)
2297 rb_set_commit_to_write(cpu_buffer);
2298
2299 local_dec(&cpu_buffer->committing);
2300
2301 /* synchronize with interrupts */
2302 barrier();
2303
2304 /*
2305 * Need to account for interrupts coming in between the
2306 * updating of the commit page and the clearing of the
2307 * committing counter.
2308 */
2309 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2310 !local_read(&cpu_buffer->committing)) {
2311 local_inc(&cpu_buffer->committing);
2312 goto again;
2313 }
2314}
2315
7a8e76a3 2316static struct ring_buffer_event *
62f0b3eb
SR
2317rb_reserve_next_event(struct ring_buffer *buffer,
2318 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2319 unsigned long length)
7a8e76a3
SR
2320{
2321 struct ring_buffer_event *event;
69d1b839 2322 u64 ts, delta;
818e3dd3 2323 int nr_loops = 0;
69d1b839 2324 int add_timestamp;
140ff891 2325 u64 diff;
7a8e76a3 2326
fa743953
SR
2327 rb_start_commit(cpu_buffer);
2328
85bac32c 2329#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2330 /*
2331 * Due to the ability to swap a cpu buffer from a buffer
2332 * it is possible it was swapped before we committed.
2333 * (committing stops a swap). We check for it here and
2334 * if it happened, we have to fail the write.
2335 */
2336 barrier();
2337 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2338 local_dec(&cpu_buffer->committing);
2339 local_dec(&cpu_buffer->commits);
2340 return NULL;
2341 }
85bac32c 2342#endif
62f0b3eb 2343
be957c44 2344 length = rb_calculate_event_length(length);
bf41a158 2345 again:
69d1b839
SR
2346 add_timestamp = 0;
2347 delta = 0;
2348
818e3dd3
SR
2349 /*
2350 * We allow for interrupts to reenter here and do a trace.
2351 * If one does, it will cause this original code to loop
2352 * back here. Even with heavy interrupts happening, this
2353 * should only happen a few times in a row. If this happens
2354 * 1000 times in a row, there must be either an interrupt
2355 * storm or we have something buggy.
2356 * Bail!
2357 */
3e89c7bb 2358 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2359 goto out_fail;
818e3dd3 2360
6d3f1e12 2361 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2362 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2363
140ff891
SR
2364 /* make sure this diff is calculated here */
2365 barrier();
bf41a158 2366
140ff891
SR
2367 /* Did the write stamp get updated already? */
2368 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2369 delta = diff;
2370 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2371 int local_clock_stable = 1;
2372#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2373 local_clock_stable = sched_clock_stable;
2374#endif
69d1b839 2375 WARN_ONCE(delta > (1ULL << 59),
31274d72 2376 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2377 (unsigned long long)delta,
2378 (unsigned long long)ts,
31274d72
JO
2379 (unsigned long long)cpu_buffer->write_stamp,
2380 local_clock_stable ? "" :
2381 "If you just came from a suspend/resume,\n"
2382 "please switch to the trace global clock:\n"
2383 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2384 add_timestamp = 1;
7a8e76a3 2385 }
168b6b1d 2386 }
7a8e76a3 2387
69d1b839
SR
2388 event = __rb_reserve_next(cpu_buffer, length, ts,
2389 delta, add_timestamp);
168b6b1d 2390 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2391 goto again;
2392
fa743953
SR
2393 if (!event)
2394 goto out_fail;
7a8e76a3 2395
7a8e76a3 2396 return event;
fa743953
SR
2397
2398 out_fail:
2399 rb_end_commit(cpu_buffer);
2400 return NULL;
7a8e76a3
SR
2401}
2402
1155de47
PM
2403#ifdef CONFIG_TRACING
2404
aa18efb2 2405#define TRACE_RECURSIVE_DEPTH 16
261842b7 2406
d9abde21
SR
2407/* Keep this code out of the fast path cache */
2408static noinline void trace_recursive_fail(void)
261842b7 2409{
aa18efb2
SR
2410 /* Disable all tracing before we do anything else */
2411 tracing_off_permanent();
261842b7 2412
7d7d2b80 2413 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2414 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2415 trace_recursion_buffer(),
aa18efb2
SR
2416 hardirq_count() >> HARDIRQ_SHIFT,
2417 softirq_count() >> SOFTIRQ_SHIFT,
2418 in_nmi());
261842b7 2419
aa18efb2 2420 WARN_ON_ONCE(1);
d9abde21
SR
2421}
2422
2423static inline int trace_recursive_lock(void)
2424{
b1cff0ad 2425 trace_recursion_inc();
d9abde21 2426
b1cff0ad 2427 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2428 return 0;
2429
2430 trace_recursive_fail();
2431
aa18efb2 2432 return -1;
261842b7
SR
2433}
2434
d9abde21 2435static inline void trace_recursive_unlock(void)
261842b7 2436{
b1cff0ad 2437 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2438
b1cff0ad 2439 trace_recursion_dec();
261842b7
SR
2440}
2441
1155de47
PM
2442#else
2443
2444#define trace_recursive_lock() (0)
2445#define trace_recursive_unlock() do { } while (0)
2446
2447#endif
2448
7a8e76a3
SR
2449/**
2450 * ring_buffer_lock_reserve - reserve a part of the buffer
2451 * @buffer: the ring buffer to reserve from
2452 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2453 *
2454 * Returns a reseverd event on the ring buffer to copy directly to.
2455 * The user of this interface will need to get the body to write into
2456 * and can use the ring_buffer_event_data() interface.
2457 *
2458 * The length is the length of the data needed, not the event length
2459 * which also includes the event header.
2460 *
2461 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2462 * If NULL is returned, then nothing has been allocated or locked.
2463 */
2464struct ring_buffer_event *
0a987751 2465ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2466{
2467 struct ring_buffer_per_cpu *cpu_buffer;
2468 struct ring_buffer_event *event;
5168ae50 2469 int cpu;
7a8e76a3 2470
033601a3 2471 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2472 return NULL;
2473
bf41a158 2474 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2475 preempt_disable_notrace();
bf41a158 2476
52fbe9cd
LJ
2477 if (atomic_read(&buffer->record_disabled))
2478 goto out_nocheck;
2479
261842b7
SR
2480 if (trace_recursive_lock())
2481 goto out_nocheck;
2482
7a8e76a3
SR
2483 cpu = raw_smp_processor_id();
2484
9e01c1b7 2485 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2486 goto out;
7a8e76a3
SR
2487
2488 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2489
2490 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2491 goto out;
7a8e76a3 2492
be957c44 2493 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2494 goto out;
7a8e76a3 2495
62f0b3eb 2496 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2497 if (!event)
d769041f 2498 goto out;
7a8e76a3
SR
2499
2500 return event;
2501
d769041f 2502 out:
261842b7
SR
2503 trace_recursive_unlock();
2504
2505 out_nocheck:
5168ae50 2506 preempt_enable_notrace();
7a8e76a3
SR
2507 return NULL;
2508}
c4f50183 2509EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2510
a1863c21
SR
2511static void
2512rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2513 struct ring_buffer_event *event)
2514{
69d1b839
SR
2515 u64 delta;
2516
fa743953
SR
2517 /*
2518 * The event first in the commit queue updates the
2519 * time stamp.
2520 */
69d1b839
SR
2521 if (rb_event_is_commit(cpu_buffer, event)) {
2522 /*
2523 * A commit event that is first on a page
2524 * updates the write timestamp with the page stamp
2525 */
2526 if (!rb_event_index(event))
2527 cpu_buffer->write_stamp =
2528 cpu_buffer->commit_page->page->time_stamp;
2529 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2530 delta = event->array[0];
2531 delta <<= TS_SHIFT;
2532 delta += event->time_delta;
2533 cpu_buffer->write_stamp += delta;
2534 } else
2535 cpu_buffer->write_stamp += event->time_delta;
2536 }
a1863c21 2537}
bf41a158 2538
a1863c21
SR
2539static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2540 struct ring_buffer_event *event)
2541{
2542 local_inc(&cpu_buffer->entries);
2543 rb_update_write_stamp(cpu_buffer, event);
fa743953 2544 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2545}
2546
2547/**
2548 * ring_buffer_unlock_commit - commit a reserved
2549 * @buffer: The buffer to commit to
2550 * @event: The event pointer to commit.
7a8e76a3
SR
2551 *
2552 * This commits the data to the ring buffer, and releases any locks held.
2553 *
2554 * Must be paired with ring_buffer_lock_reserve.
2555 */
2556int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2557 struct ring_buffer_event *event)
7a8e76a3
SR
2558{
2559 struct ring_buffer_per_cpu *cpu_buffer;
2560 int cpu = raw_smp_processor_id();
2561
2562 cpu_buffer = buffer->buffers[cpu];
2563
7a8e76a3
SR
2564 rb_commit(cpu_buffer, event);
2565
261842b7
SR
2566 trace_recursive_unlock();
2567
5168ae50 2568 preempt_enable_notrace();
7a8e76a3
SR
2569
2570 return 0;
2571}
c4f50183 2572EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2573
f3b9aae1
FW
2574static inline void rb_event_discard(struct ring_buffer_event *event)
2575{
69d1b839
SR
2576 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2577 event = skip_time_extend(event);
2578
334d4169
LJ
2579 /* array[0] holds the actual length for the discarded event */
2580 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2581 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2582 /* time delta must be non zero */
2583 if (!event->time_delta)
2584 event->time_delta = 1;
2585}
2586
a1863c21
SR
2587/*
2588 * Decrement the entries to the page that an event is on.
2589 * The event does not even need to exist, only the pointer
2590 * to the page it is on. This may only be called before the commit
2591 * takes place.
2592 */
2593static inline void
2594rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2595 struct ring_buffer_event *event)
2596{
2597 unsigned long addr = (unsigned long)event;
2598 struct buffer_page *bpage = cpu_buffer->commit_page;
2599 struct buffer_page *start;
2600
2601 addr &= PAGE_MASK;
2602
2603 /* Do the likely case first */
2604 if (likely(bpage->page == (void *)addr)) {
2605 local_dec(&bpage->entries);
2606 return;
2607 }
2608
2609 /*
2610 * Because the commit page may be on the reader page we
2611 * start with the next page and check the end loop there.
2612 */
2613 rb_inc_page(cpu_buffer, &bpage);
2614 start = bpage;
2615 do {
2616 if (bpage->page == (void *)addr) {
2617 local_dec(&bpage->entries);
2618 return;
2619 }
2620 rb_inc_page(cpu_buffer, &bpage);
2621 } while (bpage != start);
2622
2623 /* commit not part of this buffer?? */
2624 RB_WARN_ON(cpu_buffer, 1);
2625}
2626
fa1b47dd
SR
2627/**
2628 * ring_buffer_commit_discard - discard an event that has not been committed
2629 * @buffer: the ring buffer
2630 * @event: non committed event to discard
2631 *
dc892f73
SR
2632 * Sometimes an event that is in the ring buffer needs to be ignored.
2633 * This function lets the user discard an event in the ring buffer
2634 * and then that event will not be read later.
2635 *
2636 * This function only works if it is called before the the item has been
2637 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2638 * if another event has not been added behind it.
2639 *
2640 * If another event has been added behind it, it will set the event
2641 * up as discarded, and perform the commit.
2642 *
2643 * If this function is called, do not call ring_buffer_unlock_commit on
2644 * the event.
2645 */
2646void ring_buffer_discard_commit(struct ring_buffer *buffer,
2647 struct ring_buffer_event *event)
2648{
2649 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2650 int cpu;
2651
2652 /* The event is discarded regardless */
f3b9aae1 2653 rb_event_discard(event);
fa1b47dd 2654
fa743953
SR
2655 cpu = smp_processor_id();
2656 cpu_buffer = buffer->buffers[cpu];
2657
fa1b47dd
SR
2658 /*
2659 * This must only be called if the event has not been
2660 * committed yet. Thus we can assume that preemption
2661 * is still disabled.
2662 */
fa743953 2663 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2664
a1863c21 2665 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2666 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2667 goto out;
fa1b47dd
SR
2668
2669 /*
2670 * The commit is still visible by the reader, so we
a1863c21 2671 * must still update the timestamp.
fa1b47dd 2672 */
a1863c21 2673 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2674 out:
fa743953 2675 rb_end_commit(cpu_buffer);
fa1b47dd 2676
f3b9aae1
FW
2677 trace_recursive_unlock();
2678
5168ae50 2679 preempt_enable_notrace();
fa1b47dd
SR
2680
2681}
2682EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2683
7a8e76a3
SR
2684/**
2685 * ring_buffer_write - write data to the buffer without reserving
2686 * @buffer: The ring buffer to write to.
2687 * @length: The length of the data being written (excluding the event header)
2688 * @data: The data to write to the buffer.
2689 *
2690 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2691 * one function. If you already have the data to write to the buffer, it
2692 * may be easier to simply call this function.
2693 *
2694 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2695 * and not the length of the event which would hold the header.
2696 */
2697int ring_buffer_write(struct ring_buffer *buffer,
2698 unsigned long length,
2699 void *data)
2700{
2701 struct ring_buffer_per_cpu *cpu_buffer;
2702 struct ring_buffer_event *event;
7a8e76a3
SR
2703 void *body;
2704 int ret = -EBUSY;
5168ae50 2705 int cpu;
7a8e76a3 2706
033601a3 2707 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2708 return -EBUSY;
2709
5168ae50 2710 preempt_disable_notrace();
bf41a158 2711
52fbe9cd
LJ
2712 if (atomic_read(&buffer->record_disabled))
2713 goto out;
2714
7a8e76a3
SR
2715 cpu = raw_smp_processor_id();
2716
9e01c1b7 2717 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2718 goto out;
7a8e76a3
SR
2719
2720 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2721
2722 if (atomic_read(&cpu_buffer->record_disabled))
2723 goto out;
2724
be957c44
SR
2725 if (length > BUF_MAX_DATA_SIZE)
2726 goto out;
2727
62f0b3eb 2728 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2729 if (!event)
2730 goto out;
2731
2732 body = rb_event_data(event);
2733
2734 memcpy(body, data, length);
2735
2736 rb_commit(cpu_buffer, event);
2737
2738 ret = 0;
2739 out:
5168ae50 2740 preempt_enable_notrace();
7a8e76a3
SR
2741
2742 return ret;
2743}
c4f50183 2744EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2745
34a148bf 2746static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2747{
2748 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2749 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2750 struct buffer_page *commit = cpu_buffer->commit_page;
2751
77ae365e
SR
2752 /* In case of error, head will be NULL */
2753 if (unlikely(!head))
2754 return 1;
2755
bf41a158
SR
2756 return reader->read == rb_page_commit(reader) &&
2757 (commit == reader ||
2758 (commit == head &&
2759 head->read == rb_page_commit(commit)));
2760}
2761
7a8e76a3
SR
2762/**
2763 * ring_buffer_record_disable - stop all writes into the buffer
2764 * @buffer: The ring buffer to stop writes to.
2765 *
2766 * This prevents all writes to the buffer. Any attempt to write
2767 * to the buffer after this will fail and return NULL.
2768 *
2769 * The caller should call synchronize_sched() after this.
2770 */
2771void ring_buffer_record_disable(struct ring_buffer *buffer)
2772{
2773 atomic_inc(&buffer->record_disabled);
2774}
c4f50183 2775EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2776
2777/**
2778 * ring_buffer_record_enable - enable writes to the buffer
2779 * @buffer: The ring buffer to enable writes
2780 *
2781 * Note, multiple disables will need the same number of enables
c41b20e7 2782 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2783 */
2784void ring_buffer_record_enable(struct ring_buffer *buffer)
2785{
2786 atomic_dec(&buffer->record_disabled);
2787}
c4f50183 2788EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2789
499e5470
SR
2790/**
2791 * ring_buffer_record_off - stop all writes into the buffer
2792 * @buffer: The ring buffer to stop writes to.
2793 *
2794 * This prevents all writes to the buffer. Any attempt to write
2795 * to the buffer after this will fail and return NULL.
2796 *
2797 * This is different than ring_buffer_record_disable() as
2798 * it works like an on/off switch, where as the disable() verison
2799 * must be paired with a enable().
2800 */
2801void ring_buffer_record_off(struct ring_buffer *buffer)
2802{
2803 unsigned int rd;
2804 unsigned int new_rd;
2805
2806 do {
2807 rd = atomic_read(&buffer->record_disabled);
2808 new_rd = rd | RB_BUFFER_OFF;
2809 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2810}
2811EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2812
2813/**
2814 * ring_buffer_record_on - restart writes into the buffer
2815 * @buffer: The ring buffer to start writes to.
2816 *
2817 * This enables all writes to the buffer that was disabled by
2818 * ring_buffer_record_off().
2819 *
2820 * This is different than ring_buffer_record_enable() as
2821 * it works like an on/off switch, where as the enable() verison
2822 * must be paired with a disable().
2823 */
2824void ring_buffer_record_on(struct ring_buffer *buffer)
2825{
2826 unsigned int rd;
2827 unsigned int new_rd;
2828
2829 do {
2830 rd = atomic_read(&buffer->record_disabled);
2831 new_rd = rd & ~RB_BUFFER_OFF;
2832 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2833}
2834EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2835
2836/**
2837 * ring_buffer_record_is_on - return true if the ring buffer can write
2838 * @buffer: The ring buffer to see if write is enabled
2839 *
2840 * Returns true if the ring buffer is in a state that it accepts writes.
2841 */
2842int ring_buffer_record_is_on(struct ring_buffer *buffer)
2843{
2844 return !atomic_read(&buffer->record_disabled);
2845}
2846
7a8e76a3
SR
2847/**
2848 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2849 * @buffer: The ring buffer to stop writes to.
2850 * @cpu: The CPU buffer to stop
2851 *
2852 * This prevents all writes to the buffer. Any attempt to write
2853 * to the buffer after this will fail and return NULL.
2854 *
2855 * The caller should call synchronize_sched() after this.
2856 */
2857void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2858{
2859 struct ring_buffer_per_cpu *cpu_buffer;
2860
9e01c1b7 2861 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2862 return;
7a8e76a3
SR
2863
2864 cpu_buffer = buffer->buffers[cpu];
2865 atomic_inc(&cpu_buffer->record_disabled);
2866}
c4f50183 2867EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2868
2869/**
2870 * ring_buffer_record_enable_cpu - enable writes to the buffer
2871 * @buffer: The ring buffer to enable writes
2872 * @cpu: The CPU to enable.
2873 *
2874 * Note, multiple disables will need the same number of enables
c41b20e7 2875 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2876 */
2877void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2878{
2879 struct ring_buffer_per_cpu *cpu_buffer;
2880
9e01c1b7 2881 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2882 return;
7a8e76a3
SR
2883
2884 cpu_buffer = buffer->buffers[cpu];
2885 atomic_dec(&cpu_buffer->record_disabled);
2886}
c4f50183 2887EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2888
f6195aa0
SR
2889/*
2890 * The total entries in the ring buffer is the running counter
2891 * of entries entered into the ring buffer, minus the sum of
2892 * the entries read from the ring buffer and the number of
2893 * entries that were overwritten.
2894 */
2895static inline unsigned long
2896rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2897{
2898 return local_read(&cpu_buffer->entries) -
2899 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2900}
2901
c64e148a
VN
2902/**
2903 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2904 * @buffer: The ring buffer
2905 * @cpu: The per CPU buffer to read from.
2906 */
2907unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2908{
2909 unsigned long flags;
2910 struct ring_buffer_per_cpu *cpu_buffer;
2911 struct buffer_page *bpage;
2912 unsigned long ret;
2913
2914 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2915 return 0;
2916
2917 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2918 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2919 /*
2920 * if the tail is on reader_page, oldest time stamp is on the reader
2921 * page
2922 */
2923 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2924 bpage = cpu_buffer->reader_page;
2925 else
2926 bpage = rb_set_head_page(cpu_buffer);
2927 ret = bpage->page->time_stamp;
7115e3fc 2928 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2929
2930 return ret;
2931}
2932EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2933
2934/**
2935 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2936 * @buffer: The ring buffer
2937 * @cpu: The per CPU buffer to read from.
2938 */
2939unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2940{
2941 struct ring_buffer_per_cpu *cpu_buffer;
2942 unsigned long ret;
2943
2944 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2945 return 0;
2946
2947 cpu_buffer = buffer->buffers[cpu];
2948 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2949
2950 return ret;
2951}
2952EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2953
7a8e76a3
SR
2954/**
2955 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2956 * @buffer: The ring buffer
2957 * @cpu: The per CPU buffer to get the entries from.
2958 */
2959unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2960{
2961 struct ring_buffer_per_cpu *cpu_buffer;
2962
9e01c1b7 2963 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2964 return 0;
7a8e76a3
SR
2965
2966 cpu_buffer = buffer->buffers[cpu];
554f786e 2967
f6195aa0 2968 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2969}
c4f50183 2970EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2971
2972/**
2973 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2974 * @buffer: The ring buffer
2975 * @cpu: The per CPU buffer to get the number of overruns from
2976 */
2977unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2978{
2979 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2980 unsigned long ret;
7a8e76a3 2981
9e01c1b7 2982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2983 return 0;
7a8e76a3
SR
2984
2985 cpu_buffer = buffer->buffers[cpu];
77ae365e 2986 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2987
2988 return ret;
7a8e76a3 2989}
c4f50183 2990EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2991
f0d2c681
SR
2992/**
2993 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2994 * @buffer: The ring buffer
2995 * @cpu: The per CPU buffer to get the number of overruns from
2996 */
2997unsigned long
2998ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000 struct ring_buffer_per_cpu *cpu_buffer;
3001 unsigned long ret;
3002
3003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004 return 0;
3005
3006 cpu_buffer = buffer->buffers[cpu];
77ae365e 3007 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3008
3009 return ret;
3010}
3011EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3012
7a8e76a3
SR
3013/**
3014 * ring_buffer_entries - get the number of entries in a buffer
3015 * @buffer: The ring buffer
3016 *
3017 * Returns the total number of entries in the ring buffer
3018 * (all CPU entries)
3019 */
3020unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3021{
3022 struct ring_buffer_per_cpu *cpu_buffer;
3023 unsigned long entries = 0;
3024 int cpu;
3025
3026 /* if you care about this being correct, lock the buffer */
3027 for_each_buffer_cpu(buffer, cpu) {
3028 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3029 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3030 }
3031
3032 return entries;
3033}
c4f50183 3034EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3035
3036/**
67b394f7 3037 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3038 * @buffer: The ring buffer
3039 *
3040 * Returns the total number of overruns in the ring buffer
3041 * (all CPU entries)
3042 */
3043unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3044{
3045 struct ring_buffer_per_cpu *cpu_buffer;
3046 unsigned long overruns = 0;
3047 int cpu;
3048
3049 /* if you care about this being correct, lock the buffer */
3050 for_each_buffer_cpu(buffer, cpu) {
3051 cpu_buffer = buffer->buffers[cpu];
77ae365e 3052 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3053 }
3054
3055 return overruns;
3056}
c4f50183 3057EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3058
642edba5 3059static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3060{
3061 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3062
d769041f
SR
3063 /* Iterator usage is expected to have record disabled */
3064 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3065 iter->head_page = rb_set_head_page(cpu_buffer);
3066 if (unlikely(!iter->head_page))
3067 return;
3068 iter->head = iter->head_page->read;
d769041f
SR
3069 } else {
3070 iter->head_page = cpu_buffer->reader_page;
6f807acd 3071 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3072 }
3073 if (iter->head)
3074 iter->read_stamp = cpu_buffer->read_stamp;
3075 else
abc9b56d 3076 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3077 iter->cache_reader_page = cpu_buffer->reader_page;
3078 iter->cache_read = cpu_buffer->read;
642edba5 3079}
f83c9d0f 3080
642edba5
SR
3081/**
3082 * ring_buffer_iter_reset - reset an iterator
3083 * @iter: The iterator to reset
3084 *
3085 * Resets the iterator, so that it will start from the beginning
3086 * again.
3087 */
3088void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3089{
554f786e 3090 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3091 unsigned long flags;
3092
554f786e
SR
3093 if (!iter)
3094 return;
3095
3096 cpu_buffer = iter->cpu_buffer;
3097
5389f6fa 3098 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3099 rb_iter_reset(iter);
5389f6fa 3100 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3101}
c4f50183 3102EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3103
3104/**
3105 * ring_buffer_iter_empty - check if an iterator has no more to read
3106 * @iter: The iterator to check
3107 */
3108int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3109{
3110 struct ring_buffer_per_cpu *cpu_buffer;
3111
3112 cpu_buffer = iter->cpu_buffer;
3113
bf41a158
SR
3114 return iter->head_page == cpu_buffer->commit_page &&
3115 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3116}
c4f50183 3117EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3118
3119static void
3120rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3121 struct ring_buffer_event *event)
3122{
3123 u64 delta;
3124
334d4169 3125 switch (event->type_len) {
7a8e76a3
SR
3126 case RINGBUF_TYPE_PADDING:
3127 return;
3128
3129 case RINGBUF_TYPE_TIME_EXTEND:
3130 delta = event->array[0];
3131 delta <<= TS_SHIFT;
3132 delta += event->time_delta;
3133 cpu_buffer->read_stamp += delta;
3134 return;
3135
3136 case RINGBUF_TYPE_TIME_STAMP:
3137 /* FIXME: not implemented */
3138 return;
3139
3140 case RINGBUF_TYPE_DATA:
3141 cpu_buffer->read_stamp += event->time_delta;
3142 return;
3143
3144 default:
3145 BUG();
3146 }
3147 return;
3148}
3149
3150static void
3151rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3152 struct ring_buffer_event *event)
3153{
3154 u64 delta;
3155
334d4169 3156 switch (event->type_len) {
7a8e76a3
SR
3157 case RINGBUF_TYPE_PADDING:
3158 return;
3159
3160 case RINGBUF_TYPE_TIME_EXTEND:
3161 delta = event->array[0];
3162 delta <<= TS_SHIFT;
3163 delta += event->time_delta;
3164 iter->read_stamp += delta;
3165 return;
3166
3167 case RINGBUF_TYPE_TIME_STAMP:
3168 /* FIXME: not implemented */
3169 return;
3170
3171 case RINGBUF_TYPE_DATA:
3172 iter->read_stamp += event->time_delta;
3173 return;
3174
3175 default:
3176 BUG();
3177 }
3178 return;
3179}
3180
d769041f
SR
3181static struct buffer_page *
3182rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3183{
d769041f 3184 struct buffer_page *reader = NULL;
66a8cb95 3185 unsigned long overwrite;
d769041f 3186 unsigned long flags;
818e3dd3 3187 int nr_loops = 0;
77ae365e 3188 int ret;
d769041f 3189
3e03fb7f 3190 local_irq_save(flags);
0199c4e6 3191 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3192
3193 again:
818e3dd3
SR
3194 /*
3195 * This should normally only loop twice. But because the
3196 * start of the reader inserts an empty page, it causes
3197 * a case where we will loop three times. There should be no
3198 * reason to loop four times (that I know of).
3199 */
3e89c7bb 3200 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3201 reader = NULL;
3202 goto out;
3203 }
3204
d769041f
SR
3205 reader = cpu_buffer->reader_page;
3206
3207 /* If there's more to read, return this page */
bf41a158 3208 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3209 goto out;
3210
3211 /* Never should we have an index greater than the size */
3e89c7bb
SR
3212 if (RB_WARN_ON(cpu_buffer,
3213 cpu_buffer->reader_page->read > rb_page_size(reader)))
3214 goto out;
d769041f
SR
3215
3216 /* check if we caught up to the tail */
3217 reader = NULL;
bf41a158 3218 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3219 goto out;
7a8e76a3
SR
3220
3221 /*
d769041f 3222 * Reset the reader page to size zero.
7a8e76a3 3223 */
77ae365e
SR
3224 local_set(&cpu_buffer->reader_page->write, 0);
3225 local_set(&cpu_buffer->reader_page->entries, 0);
3226 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3227 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3228
77ae365e
SR
3229 spin:
3230 /*
3231 * Splice the empty reader page into the list around the head.
3232 */
3233 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3234 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3235 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3236
3adc54fa
SR
3237 /*
3238 * cpu_buffer->pages just needs to point to the buffer, it
3239 * has no specific buffer page to point to. Lets move it out
25985edc 3240 * of our way so we don't accidentally swap it.
3adc54fa
SR
3241 */
3242 cpu_buffer->pages = reader->list.prev;
3243
77ae365e
SR
3244 /* The reader page will be pointing to the new head */
3245 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3246
66a8cb95
SR
3247 /*
3248 * We want to make sure we read the overruns after we set up our
3249 * pointers to the next object. The writer side does a
3250 * cmpxchg to cross pages which acts as the mb on the writer
3251 * side. Note, the reader will constantly fail the swap
3252 * while the writer is updating the pointers, so this
3253 * guarantees that the overwrite recorded here is the one we
3254 * want to compare with the last_overrun.
3255 */
3256 smp_mb();
3257 overwrite = local_read(&(cpu_buffer->overrun));
3258
77ae365e
SR
3259 /*
3260 * Here's the tricky part.
3261 *
3262 * We need to move the pointer past the header page.
3263 * But we can only do that if a writer is not currently
3264 * moving it. The page before the header page has the
3265 * flag bit '1' set if it is pointing to the page we want.
3266 * but if the writer is in the process of moving it
3267 * than it will be '2' or already moved '0'.
3268 */
3269
3270 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3271
3272 /*
77ae365e 3273 * If we did not convert it, then we must try again.
7a8e76a3 3274 */
77ae365e
SR
3275 if (!ret)
3276 goto spin;
7a8e76a3 3277
77ae365e
SR
3278 /*
3279 * Yeah! We succeeded in replacing the page.
3280 *
3281 * Now make the new head point back to the reader page.
3282 */
5ded3dc6 3283 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3284 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3285
3286 /* Finally update the reader page to the new head */
3287 cpu_buffer->reader_page = reader;
3288 rb_reset_reader_page(cpu_buffer);
3289
66a8cb95
SR
3290 if (overwrite != cpu_buffer->last_overrun) {
3291 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3292 cpu_buffer->last_overrun = overwrite;
3293 }
3294
d769041f
SR
3295 goto again;
3296
3297 out:
0199c4e6 3298 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3299 local_irq_restore(flags);
d769041f
SR
3300
3301 return reader;
3302}
3303
3304static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3305{
3306 struct ring_buffer_event *event;
3307 struct buffer_page *reader;
3308 unsigned length;
3309
3310 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3311
d769041f 3312 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3313 if (RB_WARN_ON(cpu_buffer, !reader))
3314 return;
7a8e76a3 3315
d769041f
SR
3316 event = rb_reader_event(cpu_buffer);
3317
a1863c21 3318 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3319 cpu_buffer->read++;
d769041f
SR
3320
3321 rb_update_read_stamp(cpu_buffer, event);
3322
3323 length = rb_event_length(event);
6f807acd 3324 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3325}
3326
3327static void rb_advance_iter(struct ring_buffer_iter *iter)
3328{
7a8e76a3
SR
3329 struct ring_buffer_per_cpu *cpu_buffer;
3330 struct ring_buffer_event *event;
3331 unsigned length;
3332
3333 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3334
3335 /*
3336 * Check if we are at the end of the buffer.
3337 */
bf41a158 3338 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3339 /* discarded commits can make the page empty */
3340 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3341 return;
d769041f 3342 rb_inc_iter(iter);
7a8e76a3
SR
3343 return;
3344 }
3345
3346 event = rb_iter_head_event(iter);
3347
3348 length = rb_event_length(event);
3349
3350 /*
3351 * This should not be called to advance the header if we are
3352 * at the tail of the buffer.
3353 */
3e89c7bb 3354 if (RB_WARN_ON(cpu_buffer,
f536aafc 3355 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3356 (iter->head + length > rb_commit_index(cpu_buffer))))
3357 return;
7a8e76a3
SR
3358
3359 rb_update_iter_read_stamp(iter, event);
3360
3361 iter->head += length;
3362
3363 /* check for end of page padding */
bf41a158
SR
3364 if ((iter->head >= rb_page_size(iter->head_page)) &&
3365 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3366 rb_advance_iter(iter);
3367}
3368
66a8cb95
SR
3369static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3370{
3371 return cpu_buffer->lost_events;
3372}
3373
f83c9d0f 3374static struct ring_buffer_event *
66a8cb95
SR
3375rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3376 unsigned long *lost_events)
7a8e76a3 3377{
7a8e76a3 3378 struct ring_buffer_event *event;
d769041f 3379 struct buffer_page *reader;
818e3dd3 3380 int nr_loops = 0;
7a8e76a3 3381
7a8e76a3 3382 again:
818e3dd3 3383 /*
69d1b839
SR
3384 * We repeat when a time extend is encountered.
3385 * Since the time extend is always attached to a data event,
3386 * we should never loop more than once.
3387 * (We never hit the following condition more than twice).
818e3dd3 3388 */
69d1b839 3389 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3390 return NULL;
818e3dd3 3391
d769041f
SR
3392 reader = rb_get_reader_page(cpu_buffer);
3393 if (!reader)
7a8e76a3
SR
3394 return NULL;
3395
d769041f 3396 event = rb_reader_event(cpu_buffer);
7a8e76a3 3397
334d4169 3398 switch (event->type_len) {
7a8e76a3 3399 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3400 if (rb_null_event(event))
3401 RB_WARN_ON(cpu_buffer, 1);
3402 /*
3403 * Because the writer could be discarding every
3404 * event it creates (which would probably be bad)
3405 * if we were to go back to "again" then we may never
3406 * catch up, and will trigger the warn on, or lock
3407 * the box. Return the padding, and we will release
3408 * the current locks, and try again.
3409 */
2d622719 3410 return event;
7a8e76a3
SR
3411
3412 case RINGBUF_TYPE_TIME_EXTEND:
3413 /* Internal data, OK to advance */
d769041f 3414 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3415 goto again;
3416
3417 case RINGBUF_TYPE_TIME_STAMP:
3418 /* FIXME: not implemented */
d769041f 3419 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3420 goto again;
3421
3422 case RINGBUF_TYPE_DATA:
3423 if (ts) {
3424 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3425 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3426 cpu_buffer->cpu, ts);
7a8e76a3 3427 }
66a8cb95
SR
3428 if (lost_events)
3429 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3430 return event;
3431
3432 default:
3433 BUG();
3434 }
3435
3436 return NULL;
3437}
c4f50183 3438EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3439
f83c9d0f
SR
3440static struct ring_buffer_event *
3441rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3442{
3443 struct ring_buffer *buffer;
3444 struct ring_buffer_per_cpu *cpu_buffer;
3445 struct ring_buffer_event *event;
818e3dd3 3446 int nr_loops = 0;
7a8e76a3 3447
7a8e76a3
SR
3448 cpu_buffer = iter->cpu_buffer;
3449 buffer = cpu_buffer->buffer;
3450
492a74f4
SR
3451 /*
3452 * Check if someone performed a consuming read to
3453 * the buffer. A consuming read invalidates the iterator
3454 * and we need to reset the iterator in this case.
3455 */
3456 if (unlikely(iter->cache_read != cpu_buffer->read ||
3457 iter->cache_reader_page != cpu_buffer->reader_page))
3458 rb_iter_reset(iter);
3459
7a8e76a3 3460 again:
3c05d748
SR
3461 if (ring_buffer_iter_empty(iter))
3462 return NULL;
3463
818e3dd3 3464 /*
69d1b839
SR
3465 * We repeat when a time extend is encountered.
3466 * Since the time extend is always attached to a data event,
3467 * we should never loop more than once.
3468 * (We never hit the following condition more than twice).
818e3dd3 3469 */
69d1b839 3470 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3471 return NULL;
818e3dd3 3472
7a8e76a3
SR
3473 if (rb_per_cpu_empty(cpu_buffer))
3474 return NULL;
3475
3c05d748
SR
3476 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3477 rb_inc_iter(iter);
3478 goto again;
3479 }
3480
7a8e76a3
SR
3481 event = rb_iter_head_event(iter);
3482
334d4169 3483 switch (event->type_len) {
7a8e76a3 3484 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3485 if (rb_null_event(event)) {
3486 rb_inc_iter(iter);
3487 goto again;
3488 }
3489 rb_advance_iter(iter);
3490 return event;
7a8e76a3
SR
3491
3492 case RINGBUF_TYPE_TIME_EXTEND:
3493 /* Internal data, OK to advance */
3494 rb_advance_iter(iter);
3495 goto again;
3496
3497 case RINGBUF_TYPE_TIME_STAMP:
3498 /* FIXME: not implemented */
3499 rb_advance_iter(iter);
3500 goto again;
3501
3502 case RINGBUF_TYPE_DATA:
3503 if (ts) {
3504 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3505 ring_buffer_normalize_time_stamp(buffer,
3506 cpu_buffer->cpu, ts);
7a8e76a3
SR
3507 }
3508 return event;
3509
3510 default:
3511 BUG();
3512 }
3513
3514 return NULL;
3515}
c4f50183 3516EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3517
8d707e8e
SR
3518static inline int rb_ok_to_lock(void)
3519{
3520 /*
3521 * If an NMI die dumps out the content of the ring buffer
3522 * do not grab locks. We also permanently disable the ring
3523 * buffer too. A one time deal is all you get from reading
3524 * the ring buffer from an NMI.
3525 */
464e85eb 3526 if (likely(!in_nmi()))
8d707e8e
SR
3527 return 1;
3528
3529 tracing_off_permanent();
3530 return 0;
3531}
3532
f83c9d0f
SR
3533/**
3534 * ring_buffer_peek - peek at the next event to be read
3535 * @buffer: The ring buffer to read
3536 * @cpu: The cpu to peak at
3537 * @ts: The timestamp counter of this event.
66a8cb95 3538 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3539 *
3540 * This will return the event that will be read next, but does
3541 * not consume the data.
3542 */
3543struct ring_buffer_event *
66a8cb95
SR
3544ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3545 unsigned long *lost_events)
f83c9d0f
SR
3546{
3547 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3548 struct ring_buffer_event *event;
f83c9d0f 3549 unsigned long flags;
8d707e8e 3550 int dolock;
f83c9d0f 3551
554f786e 3552 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3553 return NULL;
554f786e 3554
8d707e8e 3555 dolock = rb_ok_to_lock();
2d622719 3556 again:
8d707e8e
SR
3557 local_irq_save(flags);
3558 if (dolock)
5389f6fa 3559 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3560 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3561 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3562 rb_advance_reader(cpu_buffer);
8d707e8e 3563 if (dolock)
5389f6fa 3564 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3565 local_irq_restore(flags);
f83c9d0f 3566
1b959e18 3567 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3568 goto again;
2d622719 3569
f83c9d0f
SR
3570 return event;
3571}
3572
3573/**
3574 * ring_buffer_iter_peek - peek at the next event to be read
3575 * @iter: The ring buffer iterator
3576 * @ts: The timestamp counter of this event.
3577 *
3578 * This will return the event that will be read next, but does
3579 * not increment the iterator.
3580 */
3581struct ring_buffer_event *
3582ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3583{
3584 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3585 struct ring_buffer_event *event;
3586 unsigned long flags;
3587
2d622719 3588 again:
5389f6fa 3589 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3590 event = rb_iter_peek(iter, ts);
5389f6fa 3591 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3592
1b959e18 3593 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3594 goto again;
2d622719 3595
f83c9d0f
SR
3596 return event;
3597}
3598
7a8e76a3
SR
3599/**
3600 * ring_buffer_consume - return an event and consume it
3601 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3602 * @cpu: the cpu to read the buffer from
3603 * @ts: a variable to store the timestamp (may be NULL)
3604 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3605 *
3606 * Returns the next event in the ring buffer, and that event is consumed.
3607 * Meaning, that sequential reads will keep returning a different event,
3608 * and eventually empty the ring buffer if the producer is slower.
3609 */
3610struct ring_buffer_event *
66a8cb95
SR
3611ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3612 unsigned long *lost_events)
7a8e76a3 3613{
554f786e
SR
3614 struct ring_buffer_per_cpu *cpu_buffer;
3615 struct ring_buffer_event *event = NULL;
f83c9d0f 3616 unsigned long flags;
8d707e8e
SR
3617 int dolock;
3618
3619 dolock = rb_ok_to_lock();
7a8e76a3 3620
2d622719 3621 again:
554f786e
SR
3622 /* might be called in atomic */
3623 preempt_disable();
3624
9e01c1b7 3625 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3626 goto out;
7a8e76a3 3627
554f786e 3628 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3629 local_irq_save(flags);
3630 if (dolock)
5389f6fa 3631 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3632
66a8cb95
SR
3633 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3634 if (event) {
3635 cpu_buffer->lost_events = 0;
469535a5 3636 rb_advance_reader(cpu_buffer);
66a8cb95 3637 }
7a8e76a3 3638
8d707e8e 3639 if (dolock)
5389f6fa 3640 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3641 local_irq_restore(flags);
f83c9d0f 3642
554f786e
SR
3643 out:
3644 preempt_enable();
3645
1b959e18 3646 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3647 goto again;
2d622719 3648
7a8e76a3
SR
3649 return event;
3650}
c4f50183 3651EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3652
3653/**
72c9ddfd 3654 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3655 * @buffer: The ring buffer to read from
3656 * @cpu: The cpu buffer to iterate over
3657 *
72c9ddfd
DM
3658 * This performs the initial preparations necessary to iterate
3659 * through the buffer. Memory is allocated, buffer recording
3660 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3661 *
72c9ddfd
DM
3662 * Disabling buffer recordng prevents the reading from being
3663 * corrupted. This is not a consuming read, so a producer is not
3664 * expected.
3665 *
3666 * After a sequence of ring_buffer_read_prepare calls, the user is
3667 * expected to make at least one call to ring_buffer_prepare_sync.
3668 * Afterwards, ring_buffer_read_start is invoked to get things going
3669 * for real.
3670 *
3671 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3672 */
3673struct ring_buffer_iter *
72c9ddfd 3674ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3675{
3676 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3677 struct ring_buffer_iter *iter;
7a8e76a3 3678
9e01c1b7 3679 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3680 return NULL;
7a8e76a3
SR
3681
3682 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3683 if (!iter)
8aabee57 3684 return NULL;
7a8e76a3
SR
3685
3686 cpu_buffer = buffer->buffers[cpu];
3687
3688 iter->cpu_buffer = cpu_buffer;
3689
83f40318 3690 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3691 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3692
3693 return iter;
3694}
3695EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3696
3697/**
3698 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3699 *
3700 * All previously invoked ring_buffer_read_prepare calls to prepare
3701 * iterators will be synchronized. Afterwards, read_buffer_read_start
3702 * calls on those iterators are allowed.
3703 */
3704void
3705ring_buffer_read_prepare_sync(void)
3706{
7a8e76a3 3707 synchronize_sched();
72c9ddfd
DM
3708}
3709EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3710
3711/**
3712 * ring_buffer_read_start - start a non consuming read of the buffer
3713 * @iter: The iterator returned by ring_buffer_read_prepare
3714 *
3715 * This finalizes the startup of an iteration through the buffer.
3716 * The iterator comes from a call to ring_buffer_read_prepare and
3717 * an intervening ring_buffer_read_prepare_sync must have been
3718 * performed.
3719 *
3720 * Must be paired with ring_buffer_finish.
3721 */
3722void
3723ring_buffer_read_start(struct ring_buffer_iter *iter)
3724{
3725 struct ring_buffer_per_cpu *cpu_buffer;
3726 unsigned long flags;
3727
3728 if (!iter)
3729 return;
3730
3731 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3732
5389f6fa 3733 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3734 arch_spin_lock(&cpu_buffer->lock);
642edba5 3735 rb_iter_reset(iter);
0199c4e6 3736 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3737 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3738}
c4f50183 3739EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3740
3741/**
3742 * ring_buffer_finish - finish reading the iterator of the buffer
3743 * @iter: The iterator retrieved by ring_buffer_start
3744 *
3745 * This re-enables the recording to the buffer, and frees the
3746 * iterator.
3747 */
3748void
3749ring_buffer_read_finish(struct ring_buffer_iter *iter)
3750{
3751 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3752
3753 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3754 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3755 kfree(iter);
3756}
c4f50183 3757EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3758
3759/**
3760 * ring_buffer_read - read the next item in the ring buffer by the iterator
3761 * @iter: The ring buffer iterator
3762 * @ts: The time stamp of the event read.
3763 *
3764 * This reads the next event in the ring buffer and increments the iterator.
3765 */
3766struct ring_buffer_event *
3767ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3768{
3769 struct ring_buffer_event *event;
f83c9d0f
SR
3770 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3771 unsigned long flags;
7a8e76a3 3772
5389f6fa 3773 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3774 again:
f83c9d0f 3775 event = rb_iter_peek(iter, ts);
7a8e76a3 3776 if (!event)
f83c9d0f 3777 goto out;
7a8e76a3 3778
7e9391cf
SR
3779 if (event->type_len == RINGBUF_TYPE_PADDING)
3780 goto again;
3781
7a8e76a3 3782 rb_advance_iter(iter);
f83c9d0f 3783 out:
5389f6fa 3784 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3785
3786 return event;
3787}
c4f50183 3788EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3789
3790/**
3791 * ring_buffer_size - return the size of the ring buffer (in bytes)
3792 * @buffer: The ring buffer.
3793 */
438ced17 3794unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3795{
438ced17
VN
3796 /*
3797 * Earlier, this method returned
3798 * BUF_PAGE_SIZE * buffer->nr_pages
3799 * Since the nr_pages field is now removed, we have converted this to
3800 * return the per cpu buffer value.
3801 */
3802 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3803 return 0;
3804
3805 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3806}
c4f50183 3807EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3808
3809static void
3810rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3811{
77ae365e
SR
3812 rb_head_page_deactivate(cpu_buffer);
3813
7a8e76a3 3814 cpu_buffer->head_page
3adc54fa 3815 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3816 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3817 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3818 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3819
6f807acd 3820 cpu_buffer->head_page->read = 0;
bf41a158
SR
3821
3822 cpu_buffer->tail_page = cpu_buffer->head_page;
3823 cpu_buffer->commit_page = cpu_buffer->head_page;
3824
3825 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3826 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3827 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3828 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3829 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3830 cpu_buffer->reader_page->read = 0;
7a8e76a3 3831
77ae365e 3832 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3833 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3834 local_set(&cpu_buffer->overrun, 0);
e4906eff 3835 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3836 local_set(&cpu_buffer->committing, 0);
3837 local_set(&cpu_buffer->commits, 0);
77ae365e 3838 cpu_buffer->read = 0;
c64e148a 3839 cpu_buffer->read_bytes = 0;
69507c06
SR
3840
3841 cpu_buffer->write_stamp = 0;
3842 cpu_buffer->read_stamp = 0;
77ae365e 3843
66a8cb95
SR
3844 cpu_buffer->lost_events = 0;
3845 cpu_buffer->last_overrun = 0;
3846
77ae365e 3847 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3848}
3849
3850/**
3851 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3852 * @buffer: The ring buffer to reset a per cpu buffer of
3853 * @cpu: The CPU buffer to be reset
3854 */
3855void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3856{
3857 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3858 unsigned long flags;
3859
9e01c1b7 3860 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3861 return;
7a8e76a3 3862
83f40318 3863 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3864 atomic_inc(&cpu_buffer->record_disabled);
3865
83f40318
VN
3866 /* Make sure all commits have finished */
3867 synchronize_sched();
3868
5389f6fa 3869 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3870
41b6a95d
SR
3871 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3872 goto out;
3873
0199c4e6 3874 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3875
3876 rb_reset_cpu(cpu_buffer);
3877
0199c4e6 3878 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3879
41b6a95d 3880 out:
5389f6fa 3881 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3882
3883 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3884 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3885}
c4f50183 3886EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3887
3888/**
3889 * ring_buffer_reset - reset a ring buffer
3890 * @buffer: The ring buffer to reset all cpu buffers
3891 */
3892void ring_buffer_reset(struct ring_buffer *buffer)
3893{
7a8e76a3
SR
3894 int cpu;
3895
7a8e76a3 3896 for_each_buffer_cpu(buffer, cpu)
d769041f 3897 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3898}
c4f50183 3899EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3900
3901/**
3902 * rind_buffer_empty - is the ring buffer empty?
3903 * @buffer: The ring buffer to test
3904 */
3905int ring_buffer_empty(struct ring_buffer *buffer)
3906{
3907 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3908 unsigned long flags;
8d707e8e 3909 int dolock;
7a8e76a3 3910 int cpu;
d4788207 3911 int ret;
7a8e76a3 3912
8d707e8e 3913 dolock = rb_ok_to_lock();
7a8e76a3
SR
3914
3915 /* yes this is racy, but if you don't like the race, lock the buffer */
3916 for_each_buffer_cpu(buffer, cpu) {
3917 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3918 local_irq_save(flags);
3919 if (dolock)
5389f6fa 3920 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3921 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3922 if (dolock)
5389f6fa 3923 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3924 local_irq_restore(flags);
3925
d4788207 3926 if (!ret)
7a8e76a3
SR
3927 return 0;
3928 }
554f786e 3929
7a8e76a3
SR
3930 return 1;
3931}
c4f50183 3932EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3933
3934/**
3935 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3936 * @buffer: The ring buffer
3937 * @cpu: The CPU buffer to test
3938 */
3939int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3940{
3941 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3942 unsigned long flags;
8d707e8e 3943 int dolock;
8aabee57 3944 int ret;
7a8e76a3 3945
9e01c1b7 3946 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3947 return 1;
7a8e76a3 3948
8d707e8e
SR
3949 dolock = rb_ok_to_lock();
3950
7a8e76a3 3951 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3952 local_irq_save(flags);
3953 if (dolock)
5389f6fa 3954 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3955 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3956 if (dolock)
5389f6fa 3957 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3958 local_irq_restore(flags);
554f786e
SR
3959
3960 return ret;
7a8e76a3 3961}
c4f50183 3962EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3963
85bac32c 3964#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3965/**
3966 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3967 * @buffer_a: One buffer to swap with
3968 * @buffer_b: The other buffer to swap with
3969 *
3970 * This function is useful for tracers that want to take a "snapshot"
3971 * of a CPU buffer and has another back up buffer lying around.
3972 * it is expected that the tracer handles the cpu buffer not being
3973 * used at the moment.
3974 */
3975int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3976 struct ring_buffer *buffer_b, int cpu)
3977{
3978 struct ring_buffer_per_cpu *cpu_buffer_a;
3979 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3980 int ret = -EINVAL;
3981
9e01c1b7
RR
3982 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3983 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3984 goto out;
7a8e76a3 3985
438ced17
VN
3986 cpu_buffer_a = buffer_a->buffers[cpu];
3987 cpu_buffer_b = buffer_b->buffers[cpu];
3988
7a8e76a3 3989 /* At least make sure the two buffers are somewhat the same */
438ced17 3990 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
3991 goto out;
3992
3993 ret = -EAGAIN;
7a8e76a3 3994
97b17efe 3995 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3996 goto out;
97b17efe
SR
3997
3998 if (atomic_read(&buffer_a->record_disabled))
554f786e 3999 goto out;
97b17efe
SR
4000
4001 if (atomic_read(&buffer_b->record_disabled))
554f786e 4002 goto out;
97b17efe 4003
97b17efe 4004 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4005 goto out;
97b17efe
SR
4006
4007 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4008 goto out;
97b17efe 4009
7a8e76a3
SR
4010 /*
4011 * We can't do a synchronize_sched here because this
4012 * function can be called in atomic context.
4013 * Normally this will be called from the same CPU as cpu.
4014 * If not it's up to the caller to protect this.
4015 */
4016 atomic_inc(&cpu_buffer_a->record_disabled);
4017 atomic_inc(&cpu_buffer_b->record_disabled);
4018
98277991
SR
4019 ret = -EBUSY;
4020 if (local_read(&cpu_buffer_a->committing))
4021 goto out_dec;
4022 if (local_read(&cpu_buffer_b->committing))
4023 goto out_dec;
4024
7a8e76a3
SR
4025 buffer_a->buffers[cpu] = cpu_buffer_b;
4026 buffer_b->buffers[cpu] = cpu_buffer_a;
4027
4028 cpu_buffer_b->buffer = buffer_a;
4029 cpu_buffer_a->buffer = buffer_b;
4030
98277991
SR
4031 ret = 0;
4032
4033out_dec:
7a8e76a3
SR
4034 atomic_dec(&cpu_buffer_a->record_disabled);
4035 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4036out:
554f786e 4037 return ret;
7a8e76a3 4038}
c4f50183 4039EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4040#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4041
8789a9e7
SR
4042/**
4043 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4044 * @buffer: the buffer to allocate for.
4045 *
4046 * This function is used in conjunction with ring_buffer_read_page.
4047 * When reading a full page from the ring buffer, these functions
4048 * can be used to speed up the process. The calling function should
4049 * allocate a few pages first with this function. Then when it
4050 * needs to get pages from the ring buffer, it passes the result
4051 * of this function into ring_buffer_read_page, which will swap
4052 * the page that was allocated, with the read page of the buffer.
4053 *
4054 * Returns:
4055 * The page allocated, or NULL on error.
4056 */
7ea59064 4057void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4058{
044fa782 4059 struct buffer_data_page *bpage;
7ea59064 4060 struct page *page;
8789a9e7 4061
d7ec4bfe
VN
4062 page = alloc_pages_node(cpu_to_node(cpu),
4063 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4064 if (!page)
8789a9e7
SR
4065 return NULL;
4066
7ea59064 4067 bpage = page_address(page);
8789a9e7 4068
ef7a4a16
SR
4069 rb_init_page(bpage);
4070
044fa782 4071 return bpage;
8789a9e7 4072}
d6ce96da 4073EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4074
4075/**
4076 * ring_buffer_free_read_page - free an allocated read page
4077 * @buffer: the buffer the page was allocate for
4078 * @data: the page to free
4079 *
4080 * Free a page allocated from ring_buffer_alloc_read_page.
4081 */
4082void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4083{
4084 free_page((unsigned long)data);
4085}
d6ce96da 4086EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4087
4088/**
4089 * ring_buffer_read_page - extract a page from the ring buffer
4090 * @buffer: buffer to extract from
4091 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4092 * @len: amount to extract
8789a9e7
SR
4093 * @cpu: the cpu of the buffer to extract
4094 * @full: should the extraction only happen when the page is full.
4095 *
4096 * This function will pull out a page from the ring buffer and consume it.
4097 * @data_page must be the address of the variable that was returned
4098 * from ring_buffer_alloc_read_page. This is because the page might be used
4099 * to swap with a page in the ring buffer.
4100 *
4101 * for example:
b85fa01e 4102 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4103 * if (!rpage)
4104 * return error;
ef7a4a16 4105 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4106 * if (ret >= 0)
4107 * process_page(rpage, ret);
8789a9e7
SR
4108 *
4109 * When @full is set, the function will not return true unless
4110 * the writer is off the reader page.
4111 *
4112 * Note: it is up to the calling functions to handle sleeps and wakeups.
4113 * The ring buffer can be used anywhere in the kernel and can not
4114 * blindly call wake_up. The layer that uses the ring buffer must be
4115 * responsible for that.
4116 *
4117 * Returns:
667d2412
LJ
4118 * >=0 if data has been transferred, returns the offset of consumed data.
4119 * <0 if no data has been transferred.
8789a9e7
SR
4120 */
4121int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4122 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4123{
4124 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4125 struct ring_buffer_event *event;
044fa782 4126 struct buffer_data_page *bpage;
ef7a4a16 4127 struct buffer_page *reader;
ff0ff84a 4128 unsigned long missed_events;
8789a9e7 4129 unsigned long flags;
ef7a4a16 4130 unsigned int commit;
667d2412 4131 unsigned int read;
4f3640f8 4132 u64 save_timestamp;
667d2412 4133 int ret = -1;
8789a9e7 4134
554f786e
SR
4135 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4136 goto out;
4137
474d32b6
SR
4138 /*
4139 * If len is not big enough to hold the page header, then
4140 * we can not copy anything.
4141 */
4142 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4143 goto out;
474d32b6
SR
4144
4145 len -= BUF_PAGE_HDR_SIZE;
4146
8789a9e7 4147 if (!data_page)
554f786e 4148 goto out;
8789a9e7 4149
044fa782
SR
4150 bpage = *data_page;
4151 if (!bpage)
554f786e 4152 goto out;
8789a9e7 4153
5389f6fa 4154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4155
ef7a4a16
SR
4156 reader = rb_get_reader_page(cpu_buffer);
4157 if (!reader)
554f786e 4158 goto out_unlock;
8789a9e7 4159
ef7a4a16
SR
4160 event = rb_reader_event(cpu_buffer);
4161
4162 read = reader->read;
4163 commit = rb_page_commit(reader);
667d2412 4164
66a8cb95 4165 /* Check if any events were dropped */
ff0ff84a 4166 missed_events = cpu_buffer->lost_events;
66a8cb95 4167
8789a9e7 4168 /*
474d32b6
SR
4169 * If this page has been partially read or
4170 * if len is not big enough to read the rest of the page or
4171 * a writer is still on the page, then
4172 * we must copy the data from the page to the buffer.
4173 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4174 */
474d32b6 4175 if (read || (len < (commit - read)) ||
ef7a4a16 4176 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4177 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4178 unsigned int rpos = read;
4179 unsigned int pos = 0;
ef7a4a16 4180 unsigned int size;
8789a9e7
SR
4181
4182 if (full)
554f786e 4183 goto out_unlock;
8789a9e7 4184
ef7a4a16
SR
4185 if (len > (commit - read))
4186 len = (commit - read);
4187
69d1b839
SR
4188 /* Always keep the time extend and data together */
4189 size = rb_event_ts_length(event);
ef7a4a16
SR
4190
4191 if (len < size)
554f786e 4192 goto out_unlock;
ef7a4a16 4193
4f3640f8
SR
4194 /* save the current timestamp, since the user will need it */
4195 save_timestamp = cpu_buffer->read_stamp;
4196
ef7a4a16
SR
4197 /* Need to copy one event at a time */
4198 do {
e1e35927
DS
4199 /* We need the size of one event, because
4200 * rb_advance_reader only advances by one event,
4201 * whereas rb_event_ts_length may include the size of
4202 * one or two events.
4203 * We have already ensured there's enough space if this
4204 * is a time extend. */
4205 size = rb_event_length(event);
474d32b6 4206 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4207
4208 len -= size;
4209
4210 rb_advance_reader(cpu_buffer);
474d32b6
SR
4211 rpos = reader->read;
4212 pos += size;
ef7a4a16 4213
18fab912
HY
4214 if (rpos >= commit)
4215 break;
4216
ef7a4a16 4217 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4218 /* Always keep the time extend and data together */
4219 size = rb_event_ts_length(event);
e1e35927 4220 } while (len >= size);
667d2412
LJ
4221
4222 /* update bpage */
ef7a4a16 4223 local_set(&bpage->commit, pos);
4f3640f8 4224 bpage->time_stamp = save_timestamp;
ef7a4a16 4225
474d32b6
SR
4226 /* we copied everything to the beginning */
4227 read = 0;
8789a9e7 4228 } else {
afbab76a 4229 /* update the entry counter */
77ae365e 4230 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4231 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4232
8789a9e7 4233 /* swap the pages */
044fa782 4234 rb_init_page(bpage);
ef7a4a16
SR
4235 bpage = reader->page;
4236 reader->page = *data_page;
4237 local_set(&reader->write, 0);
778c55d4 4238 local_set(&reader->entries, 0);
ef7a4a16 4239 reader->read = 0;
044fa782 4240 *data_page = bpage;
ff0ff84a
SR
4241
4242 /*
4243 * Use the real_end for the data size,
4244 * This gives us a chance to store the lost events
4245 * on the page.
4246 */
4247 if (reader->real_end)
4248 local_set(&bpage->commit, reader->real_end);
8789a9e7 4249 }
667d2412 4250 ret = read;
8789a9e7 4251
66a8cb95 4252 cpu_buffer->lost_events = 0;
2711ca23
SR
4253
4254 commit = local_read(&bpage->commit);
66a8cb95
SR
4255 /*
4256 * Set a flag in the commit field if we lost events
4257 */
ff0ff84a 4258 if (missed_events) {
ff0ff84a
SR
4259 /* If there is room at the end of the page to save the
4260 * missed events, then record it there.
4261 */
4262 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4263 memcpy(&bpage->data[commit], &missed_events,
4264 sizeof(missed_events));
4265 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4266 commit += sizeof(missed_events);
ff0ff84a 4267 }
66a8cb95 4268 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4269 }
66a8cb95 4270
2711ca23
SR
4271 /*
4272 * This page may be off to user land. Zero it out here.
4273 */
4274 if (commit < BUF_PAGE_SIZE)
4275 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4276
554f786e 4277 out_unlock:
5389f6fa 4278 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4279
554f786e 4280 out:
8789a9e7
SR
4281 return ret;
4282}
d6ce96da 4283EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4284
59222efe 4285#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4286static int rb_cpu_notify(struct notifier_block *self,
4287 unsigned long action, void *hcpu)
554f786e
SR
4288{
4289 struct ring_buffer *buffer =
4290 container_of(self, struct ring_buffer, cpu_notify);
4291 long cpu = (long)hcpu;
438ced17
VN
4292 int cpu_i, nr_pages_same;
4293 unsigned int nr_pages;
554f786e
SR
4294
4295 switch (action) {
4296 case CPU_UP_PREPARE:
4297 case CPU_UP_PREPARE_FROZEN:
3f237a79 4298 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4299 return NOTIFY_OK;
4300
438ced17
VN
4301 nr_pages = 0;
4302 nr_pages_same = 1;
4303 /* check if all cpu sizes are same */
4304 for_each_buffer_cpu(buffer, cpu_i) {
4305 /* fill in the size from first enabled cpu */
4306 if (nr_pages == 0)
4307 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4308 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4309 nr_pages_same = 0;
4310 break;
4311 }
4312 }
4313 /* allocate minimum pages, user can later expand it */
4314 if (!nr_pages_same)
4315 nr_pages = 2;
554f786e 4316 buffer->buffers[cpu] =
438ced17 4317 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4318 if (!buffer->buffers[cpu]) {
4319 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4320 cpu);
4321 return NOTIFY_OK;
4322 }
4323 smp_wmb();
3f237a79 4324 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4325 break;
4326 case CPU_DOWN_PREPARE:
4327 case CPU_DOWN_PREPARE_FROZEN:
4328 /*
4329 * Do nothing.
4330 * If we were to free the buffer, then the user would
4331 * lose any trace that was in the buffer.
4332 */
4333 break;
4334 default:
4335 break;
4336 }
4337 return NOTIFY_OK;
4338}
4339#endif