ftrace: Fix DYNAMIC_FTRACE_WITH_DIRECT_CALLS dependency
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
bcea3f96 1// SPDX-License-Identifier: GPL-2.0
7a8e76a3
SR
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
af658dca 7#include <linux/trace_events.h>
7a8e76a3 8#include <linux/ring_buffer.h>
14131f2f 9#include <linux/trace_clock.h>
e6017571 10#include <linux/sched/clock.h>
0b07436d 11#include <linux/trace_seq.h>
7a8e76a3 12#include <linux/spinlock.h>
15693458 13#include <linux/irq_work.h>
a356646a 14#include <linux/security.h>
7a8e76a3 15#include <linux/uaccess.h>
a81bd80a 16#include <linux/hardirq.h>
6c43e554 17#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
18#include <linux/module.h>
19#include <linux/percpu.h>
20#include <linux/mutex.h>
6c43e554 21#include <linux/delay.h>
5a0e3ad6 22#include <linux/slab.h>
7a8e76a3
SR
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/list.h>
554f786e 26#include <linux/cpu.h>
927e56db 27#include <linux/oom.h>
7a8e76a3 28
79615760 29#include <asm/local.h>
182e9f5f 30
83f40318
VN
31static void update_pages_handler(struct work_struct *work);
32
d1b182a8
SR
33/*
34 * The ring buffer header is special. We must manually up keep it.
35 */
36int ring_buffer_print_entry_header(struct trace_seq *s)
37{
c0cd93aa
SRRH
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
dc4e2801
TZ
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
c0cd93aa
SRRH
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
d1b182a8
SR
53}
54
5cc98548
SR
55/*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
499e5470
SR
123/* Used for individual buffers (after the counter) */
124#define RB_BUFFER_OFF (1 << 20)
a3583244 125
499e5470 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 127
e3d6bf0a 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 129#define RB_ALIGNMENT 4U
334d4169 130#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 131#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
86b3de60 132#define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
649508f6 133
334d4169
LJ
134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
136
137enum {
138 RB_LEN_TIME_EXTEND = 8,
dc4e2801 139 RB_LEN_TIME_STAMP = 8,
7a8e76a3
SR
140};
141
69d1b839
SR
142#define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
dc4e2801
TZ
145#define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
2d622719
TZ
148static inline int rb_null_event(struct ring_buffer_event *event)
149{
a1863c21 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
151}
152
153static void rb_event_set_padding(struct ring_buffer_event *event)
154{
a1863c21 155 /* padding has a NULL time_delta */
334d4169 156 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
157 event->time_delta = 0;
158}
159
34a148bf 160static unsigned
2d622719 161rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
162{
163 unsigned length;
164
334d4169
LJ
165 if (event->type_len)
166 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
170}
171
69d1b839
SR
172/*
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
175 * time extend.
176 */
177static inline unsigned
2d622719
TZ
178rb_event_length(struct ring_buffer_event *event)
179{
334d4169 180 switch (event->type_len) {
7a8e76a3 181 case RINGBUF_TYPE_PADDING:
2d622719
TZ
182 if (rb_null_event(event))
183 /* undefined */
184 return -1;
334d4169 185 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
186
187 case RINGBUF_TYPE_TIME_EXTEND:
188 return RB_LEN_TIME_EXTEND;
189
190 case RINGBUF_TYPE_TIME_STAMP:
191 return RB_LEN_TIME_STAMP;
192
193 case RINGBUF_TYPE_DATA:
2d622719 194 return rb_event_data_length(event);
7a8e76a3 195 default:
da4d401a 196 WARN_ON_ONCE(1);
7a8e76a3
SR
197 }
198 /* not hit */
199 return 0;
200}
201
69d1b839
SR
202/*
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
205 */
206static inline unsigned
207rb_event_ts_length(struct ring_buffer_event *event)
208{
209 unsigned len = 0;
210
dc4e2801 211 if (extended_time(event)) {
69d1b839
SR
212 /* time extends include the data event after it */
213 len = RB_LEN_TIME_EXTEND;
214 event = skip_time_extend(event);
215 }
216 return len + rb_event_length(event);
217}
218
7a8e76a3
SR
219/**
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
69d1b839
SR
222 *
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
7a8e76a3
SR
228 */
229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230{
69d1b839
SR
231 unsigned length;
232
dc4e2801 233 if (extended_time(event))
69d1b839
SR
234 event = skip_time_extend(event);
235
236 length = rb_event_length(event);
334d4169 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
238 return length;
239 length -= RB_EVNT_HDR_SIZE;
240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241 length -= sizeof(event->array[0]);
242 return length;
7a8e76a3 243}
c4f50183 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
245
246/* inline for ring buffer fast paths */
929ddbf3 247static __always_inline void *
7a8e76a3
SR
248rb_event_data(struct ring_buffer_event *event)
249{
dc4e2801 250 if (extended_time(event))
69d1b839 251 event = skip_time_extend(event);
da4d401a 252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 253 /* If length is in len field, then array[0] has the data */
334d4169 254 if (event->type_len)
7a8e76a3
SR
255 return (void *)&event->array[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event->array[1];
258}
259
260/**
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
263 */
264void *ring_buffer_event_data(struct ring_buffer_event *event)
265{
266 return rb_event_data(event);
267}
c4f50183 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
269
270#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 271 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3 272
b23d7a5f
NP
273#define for_each_online_buffer_cpu(buffer, cpu) \
274 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275
7a8e76a3
SR
276#define TS_SHIFT 27
277#define TS_MASK ((1ULL << TS_SHIFT) - 1)
278#define TS_DELTA_TEST (~TS_MASK)
279
dc4e2801
TZ
280/**
281 * ring_buffer_event_time_stamp - return the event's extended timestamp
282 * @event: the event to get the timestamp of
283 *
284 * Returns the extended timestamp associated with a data event.
285 * An extended time_stamp is a 64-bit timestamp represented
286 * internally in a special way that makes the best use of space
287 * contained within a ring buffer event. This function decodes
288 * it and maps it to a straight u64 value.
289 */
290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291{
292 u64 ts;
293
294 ts = event->array[0];
295 ts <<= TS_SHIFT;
296 ts += event->time_delta;
297
298 return ts;
299}
300
66a8cb95
SR
301/* Flag when events were overwritten */
302#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
303/* Missed count stored at end */
304#define RB_MISSED_STORED (1 << 30)
66a8cb95 305
abc9b56d 306struct buffer_data_page {
e4c2ce82 307 u64 time_stamp; /* page time stamp */
c3706f00 308 local_t commit; /* write committed index */
649508f6 309 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
310};
311
77ae365e
SR
312/*
313 * Note, the buffer_page list must be first. The buffer pages
314 * are allocated in cache lines, which means that each buffer
315 * page will be at the beginning of a cache line, and thus
316 * the least significant bits will be zero. We use this to
317 * add flags in the list struct pointers, to make the ring buffer
318 * lockless.
319 */
abc9b56d 320struct buffer_page {
778c55d4 321 struct list_head list; /* list of buffer pages */
abc9b56d 322 local_t write; /* index for next write */
6f807acd 323 unsigned read; /* index for next read */
778c55d4 324 local_t entries; /* entries on this page */
ff0ff84a 325 unsigned long real_end; /* real end of data */
abc9b56d 326 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
327};
328
77ae365e
SR
329/*
330 * The buffer page counters, write and entries, must be reset
331 * atomically when crossing page boundaries. To synchronize this
332 * update, two counters are inserted into the number. One is
333 * the actual counter for the write position or count on the page.
334 *
335 * The other is a counter of updaters. Before an update happens
336 * the update partition of the counter is incremented. This will
337 * allow the updater to update the counter atomically.
338 *
339 * The counter is 20 bits, and the state data is 12.
340 */
341#define RB_WRITE_MASK 0xfffff
342#define RB_WRITE_INTCNT (1 << 20)
343
044fa782 344static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 345{
044fa782 346 local_set(&bpage->commit, 0);
abc9b56d
SR
347}
348
ed56829c
SR
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
34a148bf 353static void free_buffer_page(struct buffer_page *bpage)
ed56829c 354{
34a148bf 355 free_page((unsigned long)bpage->page);
e4c2ce82 356 kfree(bpage);
ed56829c
SR
357}
358
7a8e76a3
SR
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
474d32b6 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 370
be957c44
SR
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
d1b182a8
SR
374int ring_buffer_print_page_header(struct trace_seq *s)
375{
376 struct buffer_data_page field;
c0cd93aa
SRRH
377
378 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)sizeof(field.time_stamp),
381 (unsigned int)is_signed_type(u64));
382
383 trace_seq_printf(s, "\tfield: local_t commit;\t"
384 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)sizeof(field.commit),
387 (unsigned int)is_signed_type(long));
388
389 trace_seq_printf(s, "\tfield: int overwrite;\t"
390 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 (unsigned int)offsetof(typeof(field), commit),
392 1,
393 (unsigned int)is_signed_type(long));
394
395 trace_seq_printf(s, "\tfield: char data;\t"
396 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 (unsigned int)offsetof(typeof(field), data),
398 (unsigned int)BUF_PAGE_SIZE,
399 (unsigned int)is_signed_type(char));
400
401 return !trace_seq_has_overflowed(s);
d1b182a8
SR
402}
403
15693458
SRRH
404struct rb_irq_work {
405 struct irq_work work;
406 wait_queue_head_t waiters;
1e0d6714 407 wait_queue_head_t full_waiters;
15693458 408 bool waiters_pending;
1e0d6714
SRRH
409 bool full_waiters_pending;
410 bool wakeup_full;
15693458
SRRH
411};
412
fcc742ea
SRRH
413/*
414 * Structure to hold event state and handle nested events.
415 */
416struct rb_event_info {
417 u64 ts;
418 u64 delta;
58fbc3c6
SRV
419 u64 before;
420 u64 after;
fcc742ea
SRRH
421 unsigned long length;
422 struct buffer_page *tail_page;
423 int add_timestamp;
424};
425
a389d86f
SRV
426/*
427 * Used for the add_timestamp
428 * NONE
7c4b4a51
SRV
429 * EXTEND - wants a time extend
430 * ABSOLUTE - the buffer requests all events to have absolute time stamps
a389d86f
SRV
431 * FORCE - force a full time stamp.
432 */
433enum {
7c4b4a51
SRV
434 RB_ADD_STAMP_NONE = 0,
435 RB_ADD_STAMP_EXTEND = BIT(1),
436 RB_ADD_STAMP_ABSOLUTE = BIT(2),
437 RB_ADD_STAMP_FORCE = BIT(3)
a389d86f 438};
a497adb4
SRRH
439/*
440 * Used for which event context the event is in.
b02414c8
SRV
441 * TRANSITION = 0
442 * NMI = 1
443 * IRQ = 2
444 * SOFTIRQ = 3
445 * NORMAL = 4
a497adb4
SRRH
446 *
447 * See trace_recursive_lock() comment below for more details.
448 */
449enum {
b02414c8 450 RB_CTX_TRANSITION,
a497adb4
SRRH
451 RB_CTX_NMI,
452 RB_CTX_IRQ,
453 RB_CTX_SOFTIRQ,
454 RB_CTX_NORMAL,
455 RB_CTX_MAX
456};
457
10464b4a
SRV
458#if BITS_PER_LONG == 32
459#define RB_TIME_32
460#endif
461
462/* To test on 64 bit machines */
463//#define RB_TIME_32
464
465#ifdef RB_TIME_32
466
467struct rb_time_struct {
468 local_t cnt;
469 local_t top;
470 local_t bottom;
471};
472#else
473#include <asm/local64.h>
474struct rb_time_struct {
475 local64_t time;
476};
477#endif
478typedef struct rb_time_struct rb_time_t;
479
7a8e76a3
SR
480/*
481 * head_page == tail_page && head == tail then buffer is empty.
482 */
483struct ring_buffer_per_cpu {
484 int cpu;
985023de 485 atomic_t record_disabled;
07b8b10e 486 atomic_t resize_disabled;
13292494 487 struct trace_buffer *buffer;
5389f6fa 488 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 489 arch_spinlock_t lock;
7a8e76a3 490 struct lock_class_key lock_key;
73a757e6 491 struct buffer_data_page *free_page;
9b94a8fb 492 unsigned long nr_pages;
58a09ec6 493 unsigned int current_context;
3adc54fa 494 struct list_head *pages;
6f807acd
SR
495 struct buffer_page *head_page; /* read from head */
496 struct buffer_page *tail_page; /* write to tail */
c3706f00 497 struct buffer_page *commit_page; /* committed pages */
d769041f 498 struct buffer_page *reader_page;
66a8cb95
SR
499 unsigned long lost_events;
500 unsigned long last_overrun;
8e012066 501 unsigned long nest;
c64e148a 502 local_t entries_bytes;
e4906eff 503 local_t entries;
884bfe89
SP
504 local_t overrun;
505 local_t commit_overrun;
506 local_t dropped_events;
fa743953
SR
507 local_t committing;
508 local_t commits;
2c2b0a78
SRV
509 local_t pages_touched;
510 local_t pages_read;
03329f99 511 long last_pages_touch;
2c2b0a78 512 size_t shortest_full;
77ae365e 513 unsigned long read;
c64e148a 514 unsigned long read_bytes;
10464b4a
SRV
515 rb_time_t write_stamp;
516 rb_time_t before_stamp;
7a8e76a3 517 u64 read_stamp;
438ced17 518 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 519 long nr_pages_to_update;
438ced17 520 struct list_head new_pages; /* new pages to add */
83f40318 521 struct work_struct update_pages_work;
05fdd70d 522 struct completion update_done;
15693458
SRRH
523
524 struct rb_irq_work irq_work;
7a8e76a3
SR
525};
526
13292494 527struct trace_buffer {
7a8e76a3
SR
528 unsigned flags;
529 int cpus;
7a8e76a3 530 atomic_t record_disabled;
00f62f61 531 cpumask_var_t cpumask;
7a8e76a3 532
1f8a6a10
PZ
533 struct lock_class_key *reader_lock_key;
534
7a8e76a3
SR
535 struct mutex mutex;
536
537 struct ring_buffer_per_cpu **buffers;
554f786e 538
b32614c0 539 struct hlist_node node;
37886f6a 540 u64 (*clock)(void);
15693458
SRRH
541
542 struct rb_irq_work irq_work;
00b41452 543 bool time_stamp_abs;
7a8e76a3
SR
544};
545
546struct ring_buffer_iter {
547 struct ring_buffer_per_cpu *cpu_buffer;
548 unsigned long head;
785888c5 549 unsigned long next_event;
7a8e76a3 550 struct buffer_page *head_page;
492a74f4
SR
551 struct buffer_page *cache_reader_page;
552 unsigned long cache_read;
7a8e76a3 553 u64 read_stamp;
28e3fc56 554 u64 page_stamp;
785888c5 555 struct ring_buffer_event *event;
c9b7a4a7 556 int missed_events;
7a8e76a3
SR
557};
558
10464b4a
SRV
559#ifdef RB_TIME_32
560
561/*
562 * On 32 bit machines, local64_t is very expensive. As the ring
563 * buffer doesn't need all the features of a true 64 bit atomic,
564 * on 32 bit, it uses these functions (64 still uses local64_t).
565 *
566 * For the ring buffer, 64 bit required operations for the time is
567 * the following:
568 *
569 * - Only need 59 bits (uses 60 to make it even).
570 * - Reads may fail if it interrupted a modification of the time stamp.
571 * It will succeed if it did not interrupt another write even if
572 * the read itself is interrupted by a write.
573 * It returns whether it was successful or not.
574 *
575 * - Writes always succeed and will overwrite other writes and writes
576 * that were done by events interrupting the current write.
577 *
578 * - A write followed by a read of the same time stamp will always succeed,
579 * but may not contain the same value.
580 *
581 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
582 * Other than that, it acts like a normal cmpxchg.
583 *
584 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
585 * (bottom being the least significant 30 bits of the 60 bit time stamp).
586 *
587 * The two most significant bits of each half holds a 2 bit counter (0-3).
588 * Each update will increment this counter by one.
589 * When reading the top and bottom, if the two counter bits match then the
590 * top and bottom together make a valid 60 bit number.
591 */
592#define RB_TIME_SHIFT 30
593#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
594
595static inline int rb_time_cnt(unsigned long val)
596{
597 return (val >> RB_TIME_SHIFT) & 3;
598}
599
600static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
601{
602 u64 val;
603
604 val = top & RB_TIME_VAL_MASK;
605 val <<= RB_TIME_SHIFT;
606 val |= bottom & RB_TIME_VAL_MASK;
607
608 return val;
609}
610
611static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
612{
613 unsigned long top, bottom;
614 unsigned long c;
615
616 /*
617 * If the read is interrupted by a write, then the cnt will
618 * be different. Loop until both top and bottom have been read
619 * without interruption.
620 */
621 do {
622 c = local_read(&t->cnt);
623 top = local_read(&t->top);
624 bottom = local_read(&t->bottom);
625 } while (c != local_read(&t->cnt));
626
627 *cnt = rb_time_cnt(top);
628
629 /* If top and bottom counts don't match, this interrupted a write */
630 if (*cnt != rb_time_cnt(bottom))
631 return false;
632
633 *ret = rb_time_val(top, bottom);
634 return true;
635}
636
637static bool rb_time_read(rb_time_t *t, u64 *ret)
638{
639 unsigned long cnt;
640
641 return __rb_time_read(t, ret, &cnt);
642}
643
644static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
645{
646 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
647}
648
649static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
650{
651 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
652 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
653}
654
655static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
656{
657 val = rb_time_val_cnt(val, cnt);
658 local_set(t, val);
659}
660
661static void rb_time_set(rb_time_t *t, u64 val)
662{
663 unsigned long cnt, top, bottom;
664
665 rb_time_split(val, &top, &bottom);
666
667 /* Writes always succeed with a valid number even if it gets interrupted. */
668 do {
669 cnt = local_inc_return(&t->cnt);
670 rb_time_val_set(&t->top, top, cnt);
671 rb_time_val_set(&t->bottom, bottom, cnt);
672 } while (cnt != local_read(&t->cnt));
673}
674
675static inline bool
676rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
677{
678 unsigned long ret;
679
680 ret = local_cmpxchg(l, expect, set);
681 return ret == expect;
682}
683
684static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
685{
686 unsigned long cnt, top, bottom;
687 unsigned long cnt2, top2, bottom2;
688 u64 val;
689
690 /* The cmpxchg always fails if it interrupted an update */
691 if (!__rb_time_read(t, &val, &cnt2))
692 return false;
693
694 if (val != expect)
695 return false;
696
697 cnt = local_read(&t->cnt);
698 if ((cnt & 3) != cnt2)
699 return false;
700
701 cnt2 = cnt + 1;
702
703 rb_time_split(val, &top, &bottom);
704 top = rb_time_val_cnt(top, cnt);
705 bottom = rb_time_val_cnt(bottom, cnt);
706
707 rb_time_split(set, &top2, &bottom2);
708 top2 = rb_time_val_cnt(top2, cnt2);
709 bottom2 = rb_time_val_cnt(bottom2, cnt2);
710
711 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
712 return false;
713 if (!rb_time_read_cmpxchg(&t->top, top, top2))
714 return false;
715 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
716 return false;
717 return true;
718}
719
720#else /* 64 bits */
721
722/* local64_t always succeeds */
723
724static inline bool rb_time_read(rb_time_t *t, u64 *ret)
725{
726 *ret = local64_read(&t->time);
727 return true;
728}
729static void rb_time_set(rb_time_t *t, u64 val)
730{
731 local64_set(&t->time, val);
732}
733
734static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
735{
736 u64 val;
737 val = local64_cmpxchg(&t->time, expect, set);
738 return val == expect;
739}
740#endif
741
2c2b0a78
SRV
742/**
743 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
744 * @buffer: The ring_buffer to get the number of pages from
745 * @cpu: The cpu of the ring_buffer to get the number of pages from
746 *
747 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
748 */
13292494 749size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
750{
751 return buffer->buffers[cpu]->nr_pages;
752}
753
754/**
755 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
756 * @buffer: The ring_buffer to get the number of pages from
757 * @cpu: The cpu of the ring_buffer to get the number of pages from
758 *
759 * Returns the number of pages that have content in the ring buffer.
760 */
13292494 761size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
762{
763 size_t read;
764 size_t cnt;
765
766 read = local_read(&buffer->buffers[cpu]->pages_read);
767 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
768 /* The reader can read an empty page, but not more than that */
769 if (cnt < read) {
770 WARN_ON_ONCE(read > cnt + 1);
771 return 0;
772 }
773
774 return cnt - read;
775}
776
15693458
SRRH
777/*
778 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
779 *
780 * Schedules a delayed work to wake up any task that is blocked on the
781 * ring buffer waiters queue.
782 */
783static void rb_wake_up_waiters(struct irq_work *work)
784{
785 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
786
787 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
788 if (rbwork->wakeup_full) {
789 rbwork->wakeup_full = false;
790 wake_up_all(&rbwork->full_waiters);
791 }
15693458
SRRH
792}
793
794/**
795 * ring_buffer_wait - wait for input to the ring buffer
796 * @buffer: buffer to wait on
797 * @cpu: the cpu buffer to wait on
e1981f75 798 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
799 *
800 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
801 * as data is added to any of the @buffer's cpu buffers. Otherwise
802 * it will wait for data to be added to a specific cpu buffer.
803 */
13292494 804int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
15693458 805{
3f649ab7 806 struct ring_buffer_per_cpu *cpu_buffer;
15693458
SRRH
807 DEFINE_WAIT(wait);
808 struct rb_irq_work *work;
e30f53aa 809 int ret = 0;
15693458
SRRH
810
811 /*
812 * Depending on what the caller is waiting for, either any
813 * data in any cpu buffer, or a specific buffer, put the
814 * caller on the appropriate wait queue.
815 */
1e0d6714 816 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 817 work = &buffer->irq_work;
1e0d6714 818 /* Full only makes sense on per cpu reads */
2c2b0a78 819 full = 0;
1e0d6714 820 } else {
8b8b3683
SRRH
821 if (!cpumask_test_cpu(cpu, buffer->cpumask))
822 return -ENODEV;
15693458
SRRH
823 cpu_buffer = buffer->buffers[cpu];
824 work = &cpu_buffer->irq_work;
825 }
826
827
e30f53aa 828 while (true) {
1e0d6714
SRRH
829 if (full)
830 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
831 else
832 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
833
834 /*
835 * The events can happen in critical sections where
836 * checking a work queue can cause deadlocks.
837 * After adding a task to the queue, this flag is set
838 * only to notify events to try to wake up the queue
839 * using irq_work.
840 *
841 * We don't clear it even if the buffer is no longer
842 * empty. The flag only causes the next event to run
843 * irq_work to do the work queue wake up. The worse
844 * that can happen if we race with !trace_empty() is that
845 * an event will cause an irq_work to try to wake up
846 * an empty queue.
847 *
848 * There's no reason to protect this flag either, as
849 * the work queue and irq_work logic will do the necessary
850 * synchronization for the wake ups. The only thing
851 * that is necessary is that the wake up happens after
852 * a task has been queued. It's OK for spurious wake ups.
853 */
1e0d6714
SRRH
854 if (full)
855 work->full_waiters_pending = true;
856 else
857 work->waiters_pending = true;
e30f53aa
RV
858
859 if (signal_pending(current)) {
860 ret = -EINTR;
861 break;
862 }
863
864 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
865 break;
866
867 if (cpu != RING_BUFFER_ALL_CPUS &&
868 !ring_buffer_empty_cpu(buffer, cpu)) {
869 unsigned long flags;
870 bool pagebusy;
2c2b0a78
SRV
871 size_t nr_pages;
872 size_t dirty;
e30f53aa
RV
873
874 if (!full)
875 break;
876
877 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
878 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2c2b0a78
SRV
879 nr_pages = cpu_buffer->nr_pages;
880 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
881 if (!cpu_buffer->shortest_full ||
882 cpu_buffer->shortest_full < full)
883 cpu_buffer->shortest_full = full;
e30f53aa 884 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2c2b0a78
SRV
885 if (!pagebusy &&
886 (!nr_pages || (dirty * 100) > full * nr_pages))
e30f53aa
RV
887 break;
888 }
15693458 889
15693458 890 schedule();
e30f53aa 891 }
15693458 892
1e0d6714
SRRH
893 if (full)
894 finish_wait(&work->full_waiters, &wait);
895 else
896 finish_wait(&work->waiters, &wait);
e30f53aa
RV
897
898 return ret;
15693458
SRRH
899}
900
901/**
902 * ring_buffer_poll_wait - poll on buffer input
903 * @buffer: buffer to wait on
904 * @cpu: the cpu buffer to wait on
905 * @filp: the file descriptor
906 * @poll_table: The poll descriptor
907 *
908 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
909 * as data is added to any of the @buffer's cpu buffers. Otherwise
910 * it will wait for data to be added to a specific cpu buffer.
911 *
a9a08845 912 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
15693458
SRRH
913 * zero otherwise.
914 */
13292494 915__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
15693458
SRRH
916 struct file *filp, poll_table *poll_table)
917{
918 struct ring_buffer_per_cpu *cpu_buffer;
919 struct rb_irq_work *work;
920
15693458
SRRH
921 if (cpu == RING_BUFFER_ALL_CPUS)
922 work = &buffer->irq_work;
923 else {
6721cb60
SRRH
924 if (!cpumask_test_cpu(cpu, buffer->cpumask))
925 return -EINVAL;
926
15693458
SRRH
927 cpu_buffer = buffer->buffers[cpu];
928 work = &cpu_buffer->irq_work;
929 }
930
15693458 931 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
932 work->waiters_pending = true;
933 /*
934 * There's a tight race between setting the waiters_pending and
935 * checking if the ring buffer is empty. Once the waiters_pending bit
936 * is set, the next event will wake the task up, but we can get stuck
937 * if there's only a single event in.
938 *
939 * FIXME: Ideally, we need a memory barrier on the writer side as well,
940 * but adding a memory barrier to all events will cause too much of a
941 * performance hit in the fast path. We only need a memory barrier when
942 * the buffer goes from empty to having content. But as this race is
943 * extremely small, and it's not a problem if another event comes in, we
944 * will fix it later.
945 */
946 smp_mb();
15693458
SRRH
947
948 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
949 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
a9a08845 950 return EPOLLIN | EPOLLRDNORM;
15693458
SRRH
951 return 0;
952}
953
f536aafc 954/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
955#define RB_WARN_ON(b, cond) \
956 ({ \
957 int _____ret = unlikely(cond); \
958 if (_____ret) { \
959 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
960 struct ring_buffer_per_cpu *__b = \
961 (void *)b; \
962 atomic_inc(&__b->buffer->record_disabled); \
963 } else \
964 atomic_inc(&b->record_disabled); \
965 WARN_ON(1); \
966 } \
967 _____ret; \
3e89c7bb 968 })
f536aafc 969
37886f6a
SR
970/* Up this if you want to test the TIME_EXTENTS and normalization */
971#define DEBUG_SHIFT 0
972
13292494 973static inline u64 rb_time_stamp(struct trace_buffer *buffer)
88eb0125 974{
bbeba3e5
SRV
975 u64 ts;
976
977 /* Skip retpolines :-( */
978 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
979 ts = trace_clock_local();
980 else
981 ts = buffer->clock();
982
88eb0125 983 /* shift to debug/test normalization and TIME_EXTENTS */
bbeba3e5 984 return ts << DEBUG_SHIFT;
88eb0125
SR
985}
986
13292494 987u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
37886f6a
SR
988{
989 u64 time;
990
991 preempt_disable_notrace();
6d3f1e12 992 time = rb_time_stamp(buffer);
d6097c9e 993 preempt_enable_notrace();
37886f6a
SR
994
995 return time;
996}
997EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
998
13292494 999void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
37886f6a
SR
1000 int cpu, u64 *ts)
1001{
1002 /* Just stupid testing the normalize function and deltas */
1003 *ts >>= DEBUG_SHIFT;
1004}
1005EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1006
77ae365e
SR
1007/*
1008 * Making the ring buffer lockless makes things tricky.
1009 * Although writes only happen on the CPU that they are on,
1010 * and they only need to worry about interrupts. Reads can
1011 * happen on any CPU.
1012 *
1013 * The reader page is always off the ring buffer, but when the
1014 * reader finishes with a page, it needs to swap its page with
1015 * a new one from the buffer. The reader needs to take from
1016 * the head (writes go to the tail). But if a writer is in overwrite
1017 * mode and wraps, it must push the head page forward.
1018 *
1019 * Here lies the problem.
1020 *
1021 * The reader must be careful to replace only the head page, and
1022 * not another one. As described at the top of the file in the
1023 * ASCII art, the reader sets its old page to point to the next
1024 * page after head. It then sets the page after head to point to
1025 * the old reader page. But if the writer moves the head page
1026 * during this operation, the reader could end up with the tail.
1027 *
1028 * We use cmpxchg to help prevent this race. We also do something
1029 * special with the page before head. We set the LSB to 1.
1030 *
1031 * When the writer must push the page forward, it will clear the
1032 * bit that points to the head page, move the head, and then set
1033 * the bit that points to the new head page.
1034 *
1035 * We also don't want an interrupt coming in and moving the head
1036 * page on another writer. Thus we use the second LSB to catch
1037 * that too. Thus:
1038 *
1039 * head->list->prev->next bit 1 bit 0
1040 * ------- -------
1041 * Normal page 0 0
1042 * Points to head page 0 1
1043 * New head page 1 0
1044 *
1045 * Note we can not trust the prev pointer of the head page, because:
1046 *
1047 * +----+ +-----+ +-----+
1048 * | |------>| T |---X--->| N |
1049 * | |<------| | | |
1050 * +----+ +-----+ +-----+
1051 * ^ ^ |
1052 * | +-----+ | |
1053 * +----------| R |----------+ |
1054 * | |<-----------+
1055 * +-----+
1056 *
1057 * Key: ---X--> HEAD flag set in pointer
1058 * T Tail page
1059 * R Reader page
1060 * N Next page
1061 *
1062 * (see __rb_reserve_next() to see where this happens)
1063 *
1064 * What the above shows is that the reader just swapped out
1065 * the reader page with a page in the buffer, but before it
1066 * could make the new header point back to the new page added
1067 * it was preempted by a writer. The writer moved forward onto
1068 * the new page added by the reader and is about to move forward
1069 * again.
1070 *
1071 * You can see, it is legitimate for the previous pointer of
1072 * the head (or any page) not to point back to itself. But only
6167c205 1073 * temporarily.
77ae365e
SR
1074 */
1075
1076#define RB_PAGE_NORMAL 0UL
1077#define RB_PAGE_HEAD 1UL
1078#define RB_PAGE_UPDATE 2UL
1079
1080
1081#define RB_FLAG_MASK 3UL
1082
1083/* PAGE_MOVED is not part of the mask */
1084#define RB_PAGE_MOVED 4UL
1085
1086/*
1087 * rb_list_head - remove any bit
1088 */
1089static struct list_head *rb_list_head(struct list_head *list)
1090{
1091 unsigned long val = (unsigned long)list;
1092
1093 return (struct list_head *)(val & ~RB_FLAG_MASK);
1094}
1095
1096/*
6d3f1e12 1097 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
1098 *
1099 * Because the reader may move the head_page pointer, we can
1100 * not trust what the head page is (it may be pointing to
1101 * the reader page). But if the next page is a header page,
1102 * its flags will be non zero.
1103 */
42b16b3f 1104static inline int
77ae365e
SR
1105rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1106 struct buffer_page *page, struct list_head *list)
1107{
1108 unsigned long val;
1109
1110 val = (unsigned long)list->next;
1111
1112 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1113 return RB_PAGE_MOVED;
1114
1115 return val & RB_FLAG_MASK;
1116}
1117
1118/*
1119 * rb_is_reader_page
1120 *
1121 * The unique thing about the reader page, is that, if the
1122 * writer is ever on it, the previous pointer never points
1123 * back to the reader page.
1124 */
06ca3209 1125static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
1126{
1127 struct list_head *list = page->list.prev;
1128
1129 return rb_list_head(list->next) != &page->list;
1130}
1131
1132/*
1133 * rb_set_list_to_head - set a list_head to be pointing to head.
1134 */
1135static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1136 struct list_head *list)
1137{
1138 unsigned long *ptr;
1139
1140 ptr = (unsigned long *)&list->next;
1141 *ptr |= RB_PAGE_HEAD;
1142 *ptr &= ~RB_PAGE_UPDATE;
1143}
1144
1145/*
1146 * rb_head_page_activate - sets up head page
1147 */
1148static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1149{
1150 struct buffer_page *head;
1151
1152 head = cpu_buffer->head_page;
1153 if (!head)
1154 return;
1155
1156 /*
1157 * Set the previous list pointer to have the HEAD flag.
1158 */
1159 rb_set_list_to_head(cpu_buffer, head->list.prev);
1160}
1161
1162static void rb_list_head_clear(struct list_head *list)
1163{
1164 unsigned long *ptr = (unsigned long *)&list->next;
1165
1166 *ptr &= ~RB_FLAG_MASK;
1167}
1168
1169/*
6167c205 1170 * rb_head_page_deactivate - clears head page ptr (for free list)
77ae365e
SR
1171 */
1172static void
1173rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1174{
1175 struct list_head *hd;
1176
1177 /* Go through the whole list and clear any pointers found. */
1178 rb_list_head_clear(cpu_buffer->pages);
1179
1180 list_for_each(hd, cpu_buffer->pages)
1181 rb_list_head_clear(hd);
1182}
1183
1184static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1185 struct buffer_page *head,
1186 struct buffer_page *prev,
1187 int old_flag, int new_flag)
1188{
1189 struct list_head *list;
1190 unsigned long val = (unsigned long)&head->list;
1191 unsigned long ret;
1192
1193 list = &prev->list;
1194
1195 val &= ~RB_FLAG_MASK;
1196
08a40816
SR
1197 ret = cmpxchg((unsigned long *)&list->next,
1198 val | old_flag, val | new_flag);
77ae365e
SR
1199
1200 /* check if the reader took the page */
1201 if ((ret & ~RB_FLAG_MASK) != val)
1202 return RB_PAGE_MOVED;
1203
1204 return ret & RB_FLAG_MASK;
1205}
1206
1207static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1208 struct buffer_page *head,
1209 struct buffer_page *prev,
1210 int old_flag)
1211{
1212 return rb_head_page_set(cpu_buffer, head, prev,
1213 old_flag, RB_PAGE_UPDATE);
1214}
1215
1216static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1217 struct buffer_page *head,
1218 struct buffer_page *prev,
1219 int old_flag)
1220{
1221 return rb_head_page_set(cpu_buffer, head, prev,
1222 old_flag, RB_PAGE_HEAD);
1223}
1224
1225static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1226 struct buffer_page *head,
1227 struct buffer_page *prev,
1228 int old_flag)
1229{
1230 return rb_head_page_set(cpu_buffer, head, prev,
1231 old_flag, RB_PAGE_NORMAL);
1232}
1233
1234static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1235 struct buffer_page **bpage)
1236{
1237 struct list_head *p = rb_list_head((*bpage)->list.next);
1238
1239 *bpage = list_entry(p, struct buffer_page, list);
1240}
1241
1242static struct buffer_page *
1243rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1244{
1245 struct buffer_page *head;
1246 struct buffer_page *page;
1247 struct list_head *list;
1248 int i;
1249
1250 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1251 return NULL;
1252
1253 /* sanity check */
1254 list = cpu_buffer->pages;
1255 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1256 return NULL;
1257
1258 page = head = cpu_buffer->head_page;
1259 /*
1260 * It is possible that the writer moves the header behind
1261 * where we started, and we miss in one loop.
1262 * A second loop should grab the header, but we'll do
1263 * three loops just because I'm paranoid.
1264 */
1265 for (i = 0; i < 3; i++) {
1266 do {
1267 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1268 cpu_buffer->head_page = page;
1269 return page;
1270 }
1271 rb_inc_page(cpu_buffer, &page);
1272 } while (page != head);
1273 }
1274
1275 RB_WARN_ON(cpu_buffer, 1);
1276
1277 return NULL;
1278}
1279
1280static int rb_head_page_replace(struct buffer_page *old,
1281 struct buffer_page *new)
1282{
1283 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1284 unsigned long val;
1285 unsigned long ret;
1286
1287 val = *ptr & ~RB_FLAG_MASK;
1288 val |= RB_PAGE_HEAD;
1289
08a40816 1290 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1291
1292 return ret == val;
1293}
1294
1295/*
1296 * rb_tail_page_update - move the tail page forward
77ae365e 1297 */
70004986 1298static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1299 struct buffer_page *tail_page,
1300 struct buffer_page *next_page)
1301{
77ae365e
SR
1302 unsigned long old_entries;
1303 unsigned long old_write;
77ae365e
SR
1304
1305 /*
1306 * The tail page now needs to be moved forward.
1307 *
1308 * We need to reset the tail page, but without messing
1309 * with possible erasing of data brought in by interrupts
1310 * that have moved the tail page and are currently on it.
1311 *
1312 * We add a counter to the write field to denote this.
1313 */
1314 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1315 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1316
2c2b0a78 1317 local_inc(&cpu_buffer->pages_touched);
77ae365e
SR
1318 /*
1319 * Just make sure we have seen our old_write and synchronize
1320 * with any interrupts that come in.
1321 */
1322 barrier();
1323
1324 /*
1325 * If the tail page is still the same as what we think
1326 * it is, then it is up to us to update the tail
1327 * pointer.
1328 */
8573636e 1329 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1330 /* Zero the write counter */
1331 unsigned long val = old_write & ~RB_WRITE_MASK;
1332 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1333
1334 /*
1335 * This will only succeed if an interrupt did
1336 * not come in and change it. In which case, we
1337 * do not want to modify it.
da706d8b
LJ
1338 *
1339 * We add (void) to let the compiler know that we do not care
1340 * about the return value of these functions. We use the
1341 * cmpxchg to only update if an interrupt did not already
1342 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1343 */
da706d8b
LJ
1344 (void)local_cmpxchg(&next_page->write, old_write, val);
1345 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1346
1347 /*
1348 * No need to worry about races with clearing out the commit.
1349 * it only can increment when a commit takes place. But that
1350 * only happens in the outer most nested commit.
1351 */
1352 local_set(&next_page->page->commit, 0);
1353
70004986
SRRH
1354 /* Again, either we update tail_page or an interrupt does */
1355 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1356 }
77ae365e
SR
1357}
1358
1359static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1360 struct buffer_page *bpage)
1361{
1362 unsigned long val = (unsigned long)bpage;
1363
1364 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1365 return 1;
1366
1367 return 0;
1368}
1369
1370/**
1371 * rb_check_list - make sure a pointer to a list has the last bits zero
1372 */
1373static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1374 struct list_head *list)
1375{
1376 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1377 return 1;
1378 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1379 return 1;
1380 return 0;
1381}
1382
7a8e76a3 1383/**
d611851b 1384 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1385 * @cpu_buffer: CPU buffer with pages to test
1386 *
c3706f00 1387 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1388 * been corrupted.
1389 */
1390static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1391{
3adc54fa 1392 struct list_head *head = cpu_buffer->pages;
044fa782 1393 struct buffer_page *bpage, *tmp;
7a8e76a3 1394
308f7eeb
SR
1395 /* Reset the head page if it exists */
1396 if (cpu_buffer->head_page)
1397 rb_set_head_page(cpu_buffer);
1398
77ae365e
SR
1399 rb_head_page_deactivate(cpu_buffer);
1400
3e89c7bb
SR
1401 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1402 return -1;
1403 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1404 return -1;
7a8e76a3 1405
77ae365e
SR
1406 if (rb_check_list(cpu_buffer, head))
1407 return -1;
1408
044fa782 1409 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1410 if (RB_WARN_ON(cpu_buffer,
044fa782 1411 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1412 return -1;
1413 if (RB_WARN_ON(cpu_buffer,
044fa782 1414 bpage->list.prev->next != &bpage->list))
3e89c7bb 1415 return -1;
77ae365e
SR
1416 if (rb_check_list(cpu_buffer, &bpage->list))
1417 return -1;
7a8e76a3
SR
1418 }
1419
77ae365e
SR
1420 rb_head_page_activate(cpu_buffer);
1421
7a8e76a3
SR
1422 return 0;
1423}
1424
9b94a8fb 1425static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1426{
044fa782 1427 struct buffer_page *bpage, *tmp;
927e56db
SRV
1428 bool user_thread = current->mm != NULL;
1429 gfp_t mflags;
9b94a8fb 1430 long i;
3adc54fa 1431
927e56db
SRV
1432 /*
1433 * Check if the available memory is there first.
1434 * Note, si_mem_available() only gives us a rough estimate of available
1435 * memory. It may not be accurate. But we don't care, we just want
1436 * to prevent doing any allocation when it is obvious that it is
1437 * not going to succeed.
1438 */
2a872fa4
SRV
1439 i = si_mem_available();
1440 if (i < nr_pages)
1441 return -ENOMEM;
1442
927e56db
SRV
1443 /*
1444 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1445 * gracefully without invoking oom-killer and the system is not
1446 * destabilized.
1447 */
1448 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1449
1450 /*
1451 * If a user thread allocates too much, and si_mem_available()
1452 * reports there's enough memory, even though there is not.
1453 * Make sure the OOM killer kills this thread. This can happen
1454 * even with RETRY_MAYFAIL because another task may be doing
1455 * an allocation after this task has taken all memory.
1456 * This is the task the OOM killer needs to take out during this
1457 * loop, even if it was triggered by an allocation somewhere else.
1458 */
1459 if (user_thread)
1460 set_current_oom_origin();
7a8e76a3 1461 for (i = 0; i < nr_pages; i++) {
7ea59064 1462 struct page *page;
927e56db 1463
044fa782 1464 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
927e56db 1465 mflags, cpu_to_node(cpu));
044fa782 1466 if (!bpage)
e4c2ce82 1467 goto free_pages;
77ae365e 1468
438ced17 1469 list_add(&bpage->list, pages);
77ae365e 1470
927e56db 1471 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
7ea59064 1472 if (!page)
7a8e76a3 1473 goto free_pages;
7ea59064 1474 bpage->page = page_address(page);
044fa782 1475 rb_init_page(bpage->page);
927e56db
SRV
1476
1477 if (user_thread && fatal_signal_pending(current))
1478 goto free_pages;
7a8e76a3 1479 }
927e56db
SRV
1480 if (user_thread)
1481 clear_current_oom_origin();
7a8e76a3 1482
438ced17
VN
1483 return 0;
1484
1485free_pages:
1486 list_for_each_entry_safe(bpage, tmp, pages, list) {
1487 list_del_init(&bpage->list);
1488 free_buffer_page(bpage);
1489 }
927e56db
SRV
1490 if (user_thread)
1491 clear_current_oom_origin();
438ced17
VN
1492
1493 return -ENOMEM;
1494}
1495
1496static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1497 unsigned long nr_pages)
438ced17
VN
1498{
1499 LIST_HEAD(pages);
1500
1501 WARN_ON(!nr_pages);
1502
1503 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1504 return -ENOMEM;
1505
3adc54fa
SR
1506 /*
1507 * The ring buffer page list is a circular list that does not
1508 * start and end with a list head. All page list items point to
1509 * other pages.
1510 */
1511 cpu_buffer->pages = pages.next;
1512 list_del(&pages);
7a8e76a3 1513
438ced17
VN
1514 cpu_buffer->nr_pages = nr_pages;
1515
7a8e76a3
SR
1516 rb_check_pages(cpu_buffer);
1517
1518 return 0;
7a8e76a3
SR
1519}
1520
1521static struct ring_buffer_per_cpu *
13292494 1522rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1523{
1524 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1525 struct buffer_page *bpage;
7ea59064 1526 struct page *page;
7a8e76a3
SR
1527 int ret;
1528
1529 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1530 GFP_KERNEL, cpu_to_node(cpu));
1531 if (!cpu_buffer)
1532 return NULL;
1533
1534 cpu_buffer->cpu = cpu;
1535 cpu_buffer->buffer = buffer;
5389f6fa 1536 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1537 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1538 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1539 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1540 init_completion(&cpu_buffer->update_done);
15693458 1541 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1542 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1543 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1544
044fa782 1545 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1546 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1547 if (!bpage)
e4c2ce82
SR
1548 goto fail_free_buffer;
1549
77ae365e
SR
1550 rb_check_bpage(cpu_buffer, bpage);
1551
044fa782 1552 cpu_buffer->reader_page = bpage;
7ea59064
VN
1553 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1554 if (!page)
e4c2ce82 1555 goto fail_free_reader;
7ea59064 1556 bpage->page = page_address(page);
044fa782 1557 rb_init_page(bpage->page);
e4c2ce82 1558
d769041f 1559 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1560 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1561
438ced17 1562 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1563 if (ret < 0)
d769041f 1564 goto fail_free_reader;
7a8e76a3
SR
1565
1566 cpu_buffer->head_page
3adc54fa 1567 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1568 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1569
77ae365e
SR
1570 rb_head_page_activate(cpu_buffer);
1571
7a8e76a3
SR
1572 return cpu_buffer;
1573
d769041f
SR
1574 fail_free_reader:
1575 free_buffer_page(cpu_buffer->reader_page);
1576
7a8e76a3
SR
1577 fail_free_buffer:
1578 kfree(cpu_buffer);
1579 return NULL;
1580}
1581
1582static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1583{
3adc54fa 1584 struct list_head *head = cpu_buffer->pages;
044fa782 1585 struct buffer_page *bpage, *tmp;
7a8e76a3 1586
d769041f
SR
1587 free_buffer_page(cpu_buffer->reader_page);
1588
77ae365e
SR
1589 rb_head_page_deactivate(cpu_buffer);
1590
3adc54fa
SR
1591 if (head) {
1592 list_for_each_entry_safe(bpage, tmp, head, list) {
1593 list_del_init(&bpage->list);
1594 free_buffer_page(bpage);
1595 }
1596 bpage = list_entry(head, struct buffer_page, list);
044fa782 1597 free_buffer_page(bpage);
7a8e76a3 1598 }
3adc54fa 1599
7a8e76a3
SR
1600 kfree(cpu_buffer);
1601}
1602
1603/**
d611851b 1604 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1605 * @size: the size in bytes per cpu that is needed.
7a8e76a3 1606 * @flags: attributes to set for the ring buffer.
59e7cffe 1607 * @key: ring buffer reader_lock_key.
7a8e76a3
SR
1608 *
1609 * Currently the only flag that is available is the RB_FL_OVERWRITE
1610 * flag. This flag means that the buffer will overwrite old data
1611 * when the buffer wraps. If this flag is not set, the buffer will
1612 * drop data when the tail hits the head.
1613 */
13292494 1614struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1f8a6a10 1615 struct lock_class_key *key)
7a8e76a3 1616{
13292494 1617 struct trace_buffer *buffer;
9b94a8fb 1618 long nr_pages;
7a8e76a3 1619 int bsize;
9b94a8fb 1620 int cpu;
b32614c0 1621 int ret;
7a8e76a3
SR
1622
1623 /* keep it in its own cache line */
1624 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1625 GFP_KERNEL);
1626 if (!buffer)
1627 return NULL;
1628
b18cc3de 1629 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1630 goto fail_free_buffer;
1631
438ced17 1632 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1633 buffer->flags = flags;
37886f6a 1634 buffer->clock = trace_clock_local;
1f8a6a10 1635 buffer->reader_lock_key = key;
7a8e76a3 1636
15693458 1637 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1638 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1639
7a8e76a3 1640 /* need at least two pages */
438ced17
VN
1641 if (nr_pages < 2)
1642 nr_pages = 2;
7a8e76a3 1643
7a8e76a3
SR
1644 buffer->cpus = nr_cpu_ids;
1645
1646 bsize = sizeof(void *) * nr_cpu_ids;
1647 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1648 GFP_KERNEL);
1649 if (!buffer->buffers)
9e01c1b7 1650 goto fail_free_cpumask;
7a8e76a3 1651
b32614c0
SAS
1652 cpu = raw_smp_processor_id();
1653 cpumask_set_cpu(cpu, buffer->cpumask);
1654 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1655 if (!buffer->buffers[cpu])
1656 goto fail_free_buffers;
7a8e76a3 1657
b32614c0
SAS
1658 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1659 if (ret < 0)
1660 goto fail_free_buffers;
554f786e 1661
7a8e76a3
SR
1662 mutex_init(&buffer->mutex);
1663
1664 return buffer;
1665
1666 fail_free_buffers:
1667 for_each_buffer_cpu(buffer, cpu) {
1668 if (buffer->buffers[cpu])
1669 rb_free_cpu_buffer(buffer->buffers[cpu]);
1670 }
1671 kfree(buffer->buffers);
1672
9e01c1b7
RR
1673 fail_free_cpumask:
1674 free_cpumask_var(buffer->cpumask);
1675
7a8e76a3
SR
1676 fail_free_buffer:
1677 kfree(buffer);
1678 return NULL;
1679}
1f8a6a10 1680EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1681
1682/**
1683 * ring_buffer_free - free a ring buffer.
1684 * @buffer: the buffer to free.
1685 */
1686void
13292494 1687ring_buffer_free(struct trace_buffer *buffer)
7a8e76a3
SR
1688{
1689 int cpu;
1690
b32614c0 1691 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1692
7a8e76a3
SR
1693 for_each_buffer_cpu(buffer, cpu)
1694 rb_free_cpu_buffer(buffer->buffers[cpu]);
1695
bd3f0221 1696 kfree(buffer->buffers);
9e01c1b7
RR
1697 free_cpumask_var(buffer->cpumask);
1698
7a8e76a3
SR
1699 kfree(buffer);
1700}
c4f50183 1701EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1702
13292494 1703void ring_buffer_set_clock(struct trace_buffer *buffer,
37886f6a
SR
1704 u64 (*clock)(void))
1705{
1706 buffer->clock = clock;
1707}
1708
13292494 1709void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
00b41452
TZ
1710{
1711 buffer->time_stamp_abs = abs;
1712}
1713
13292494 1714bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
00b41452
TZ
1715{
1716 return buffer->time_stamp_abs;
1717}
1718
7a8e76a3
SR
1719static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1720
83f40318
VN
1721static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1722{
1723 return local_read(&bpage->entries) & RB_WRITE_MASK;
1724}
1725
1726static inline unsigned long rb_page_write(struct buffer_page *bpage)
1727{
1728 return local_read(&bpage->write) & RB_WRITE_MASK;
1729}
1730
5040b4b7 1731static int
9b94a8fb 1732rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1733{
83f40318
VN
1734 struct list_head *tail_page, *to_remove, *next_page;
1735 struct buffer_page *to_remove_page, *tmp_iter_page;
1736 struct buffer_page *last_page, *first_page;
9b94a8fb 1737 unsigned long nr_removed;
83f40318
VN
1738 unsigned long head_bit;
1739 int page_entries;
1740
1741 head_bit = 0;
7a8e76a3 1742
5389f6fa 1743 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1744 atomic_inc(&cpu_buffer->record_disabled);
1745 /*
1746 * We don't race with the readers since we have acquired the reader
1747 * lock. We also don't race with writers after disabling recording.
1748 * This makes it easy to figure out the first and the last page to be
1749 * removed from the list. We unlink all the pages in between including
1750 * the first and last pages. This is done in a busy loop so that we
1751 * lose the least number of traces.
1752 * The pages are freed after we restart recording and unlock readers.
1753 */
1754 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1755
83f40318
VN
1756 /*
1757 * tail page might be on reader page, we remove the next page
1758 * from the ring buffer
1759 */
1760 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1761 tail_page = rb_list_head(tail_page->next);
1762 to_remove = tail_page;
1763
1764 /* start of pages to remove */
1765 first_page = list_entry(rb_list_head(to_remove->next),
1766 struct buffer_page, list);
1767
1768 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1769 to_remove = rb_list_head(to_remove)->next;
1770 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1771 }
7a8e76a3 1772
83f40318 1773 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1774
83f40318
VN
1775 /*
1776 * Now we remove all pages between tail_page and next_page.
1777 * Make sure that we have head_bit value preserved for the
1778 * next page
1779 */
1780 tail_page->next = (struct list_head *)((unsigned long)next_page |
1781 head_bit);
1782 next_page = rb_list_head(next_page);
1783 next_page->prev = tail_page;
1784
1785 /* make sure pages points to a valid page in the ring buffer */
1786 cpu_buffer->pages = next_page;
1787
1788 /* update head page */
1789 if (head_bit)
1790 cpu_buffer->head_page = list_entry(next_page,
1791 struct buffer_page, list);
1792
1793 /*
1794 * change read pointer to make sure any read iterators reset
1795 * themselves
1796 */
1797 cpu_buffer->read = 0;
1798
1799 /* pages are removed, resume tracing and then free the pages */
1800 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1801 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1802
1803 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1804
1805 /* last buffer page to remove */
1806 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1807 list);
1808 tmp_iter_page = first_page;
1809
1810 do {
83f36555
VN
1811 cond_resched();
1812
83f40318
VN
1813 to_remove_page = tmp_iter_page;
1814 rb_inc_page(cpu_buffer, &tmp_iter_page);
1815
1816 /* update the counters */
1817 page_entries = rb_page_entries(to_remove_page);
1818 if (page_entries) {
1819 /*
1820 * If something was added to this page, it was full
1821 * since it is not the tail page. So we deduct the
1822 * bytes consumed in ring buffer from here.
48fdc72f 1823 * Increment overrun to account for the lost events.
83f40318 1824 */
48fdc72f 1825 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1826 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1827 }
1828
1829 /*
1830 * We have already removed references to this list item, just
1831 * free up the buffer_page and its page
1832 */
1833 free_buffer_page(to_remove_page);
1834 nr_removed--;
1835
1836 } while (to_remove_page != last_page);
1837
1838 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1839
1840 return nr_removed == 0;
7a8e76a3
SR
1841}
1842
5040b4b7
VN
1843static int
1844rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1845{
5040b4b7
VN
1846 struct list_head *pages = &cpu_buffer->new_pages;
1847 int retries, success;
7a8e76a3 1848
5389f6fa 1849 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1850 /*
1851 * We are holding the reader lock, so the reader page won't be swapped
1852 * in the ring buffer. Now we are racing with the writer trying to
1853 * move head page and the tail page.
1854 * We are going to adapt the reader page update process where:
1855 * 1. We first splice the start and end of list of new pages between
1856 * the head page and its previous page.
1857 * 2. We cmpxchg the prev_page->next to point from head page to the
1858 * start of new pages list.
1859 * 3. Finally, we update the head->prev to the end of new list.
1860 *
1861 * We will try this process 10 times, to make sure that we don't keep
1862 * spinning.
1863 */
1864 retries = 10;
1865 success = 0;
1866 while (retries--) {
1867 struct list_head *head_page, *prev_page, *r;
1868 struct list_head *last_page, *first_page;
1869 struct list_head *head_page_with_bit;
77ae365e 1870
5040b4b7 1871 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1872 if (!head_page)
1873 break;
5040b4b7
VN
1874 prev_page = head_page->prev;
1875
1876 first_page = pages->next;
1877 last_page = pages->prev;
1878
1879 head_page_with_bit = (struct list_head *)
1880 ((unsigned long)head_page | RB_PAGE_HEAD);
1881
1882 last_page->next = head_page_with_bit;
1883 first_page->prev = prev_page;
1884
1885 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1886
1887 if (r == head_page_with_bit) {
1888 /*
1889 * yay, we replaced the page pointer to our new list,
1890 * now, we just have to update to head page's prev
1891 * pointer to point to end of list
1892 */
1893 head_page->prev = last_page;
1894 success = 1;
1895 break;
1896 }
7a8e76a3 1897 }
7a8e76a3 1898
5040b4b7
VN
1899 if (success)
1900 INIT_LIST_HEAD(pages);
1901 /*
1902 * If we weren't successful in adding in new pages, warn and stop
1903 * tracing
1904 */
1905 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1906 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1907
1908 /* free pages if they weren't inserted */
1909 if (!success) {
1910 struct buffer_page *bpage, *tmp;
1911 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1912 list) {
1913 list_del_init(&bpage->list);
1914 free_buffer_page(bpage);
1915 }
1916 }
1917 return success;
7a8e76a3
SR
1918}
1919
83f40318 1920static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1921{
5040b4b7
VN
1922 int success;
1923
438ced17 1924 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1925 success = rb_insert_pages(cpu_buffer);
438ced17 1926 else
5040b4b7
VN
1927 success = rb_remove_pages(cpu_buffer,
1928 -cpu_buffer->nr_pages_to_update);
83f40318 1929
5040b4b7
VN
1930 if (success)
1931 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1932}
1933
1934static void update_pages_handler(struct work_struct *work)
1935{
1936 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1937 struct ring_buffer_per_cpu, update_pages_work);
1938 rb_update_pages(cpu_buffer);
05fdd70d 1939 complete(&cpu_buffer->update_done);
438ced17
VN
1940}
1941
7a8e76a3
SR
1942/**
1943 * ring_buffer_resize - resize the ring buffer
1944 * @buffer: the buffer to resize.
1945 * @size: the new size.
d611851b 1946 * @cpu_id: the cpu buffer to resize
7a8e76a3 1947 *
7a8e76a3
SR
1948 * Minimum size is 2 * BUF_PAGE_SIZE.
1949 *
83f40318 1950 * Returns 0 on success and < 0 on failure.
7a8e76a3 1951 */
13292494 1952int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
438ced17 1953 int cpu_id)
7a8e76a3
SR
1954{
1955 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1956 unsigned long nr_pages;
0a1754b2 1957 int cpu, err;
7a8e76a3 1958
ee51a1de
IM
1959 /*
1960 * Always succeed at resizing a non-existent buffer:
1961 */
1962 if (!buffer)
0a1754b2 1963 return 0;
ee51a1de 1964
6a31e1f1
SR
1965 /* Make sure the requested buffer exists */
1966 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1967 !cpumask_test_cpu(cpu_id, buffer->cpumask))
0a1754b2 1968 return 0;
6a31e1f1 1969
59643d15 1970 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1971
1972 /* we need a minimum of two pages */
59643d15
SRRH
1973 if (nr_pages < 2)
1974 nr_pages = 2;
7a8e76a3 1975
59643d15 1976 size = nr_pages * BUF_PAGE_SIZE;
18421015 1977
83f40318 1978 /* prevent another thread from changing buffer sizes */
7a8e76a3 1979 mutex_lock(&buffer->mutex);
7a8e76a3 1980
07b8b10e 1981
438ced17 1982 if (cpu_id == RING_BUFFER_ALL_CPUS) {
07b8b10e
SRV
1983 /*
1984 * Don't succeed if resizing is disabled, as a reader might be
1985 * manipulating the ring buffer and is expecting a sane state while
1986 * this is true.
1987 */
1988 for_each_buffer_cpu(buffer, cpu) {
1989 cpu_buffer = buffer->buffers[cpu];
1990 if (atomic_read(&cpu_buffer->resize_disabled)) {
1991 err = -EBUSY;
1992 goto out_err_unlock;
1993 }
1994 }
1995
438ced17 1996 /* calculate the pages to update */
7a8e76a3
SR
1997 for_each_buffer_cpu(buffer, cpu) {
1998 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1999
438ced17
VN
2000 cpu_buffer->nr_pages_to_update = nr_pages -
2001 cpu_buffer->nr_pages;
438ced17
VN
2002 /*
2003 * nothing more to do for removing pages or no update
2004 */
2005 if (cpu_buffer->nr_pages_to_update <= 0)
2006 continue;
d7ec4bfe 2007 /*
438ced17
VN
2008 * to add pages, make sure all new pages can be
2009 * allocated without receiving ENOMEM
d7ec4bfe 2010 */
438ced17
VN
2011 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2012 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 2013 &cpu_buffer->new_pages, cpu)) {
438ced17 2014 /* not enough memory for new pages */
83f40318
VN
2015 err = -ENOMEM;
2016 goto out_err;
2017 }
2018 }
2019
2020 get_online_cpus();
2021 /*
2022 * Fire off all the required work handlers
05fdd70d 2023 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
2024 * since we can change their buffer sizes without any race.
2025 */
2026 for_each_buffer_cpu(buffer, cpu) {
2027 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2028 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2029 continue;
2030
021c5b34
CM
2031 /* Can't run something on an offline CPU. */
2032 if (!cpu_online(cpu)) {
f5eb5588
SRRH
2033 rb_update_pages(cpu_buffer);
2034 cpu_buffer->nr_pages_to_update = 0;
2035 } else {
05fdd70d
VN
2036 schedule_work_on(cpu,
2037 &cpu_buffer->update_pages_work);
f5eb5588 2038 }
7a8e76a3 2039 }
7a8e76a3 2040
438ced17
VN
2041 /* wait for all the updates to complete */
2042 for_each_buffer_cpu(buffer, cpu) {
2043 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2044 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2045 continue;
2046
05fdd70d
VN
2047 if (cpu_online(cpu))
2048 wait_for_completion(&cpu_buffer->update_done);
83f40318 2049 cpu_buffer->nr_pages_to_update = 0;
438ced17 2050 }
83f40318
VN
2051
2052 put_online_cpus();
438ced17 2053 } else {
6167c205 2054 /* Make sure this CPU has been initialized */
8e49f418
VN
2055 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2056 goto out;
2057
438ced17 2058 cpu_buffer = buffer->buffers[cpu_id];
83f40318 2059
438ced17
VN
2060 if (nr_pages == cpu_buffer->nr_pages)
2061 goto out;
7a8e76a3 2062
07b8b10e
SRV
2063 /*
2064 * Don't succeed if resizing is disabled, as a reader might be
2065 * manipulating the ring buffer and is expecting a sane state while
2066 * this is true.
2067 */
2068 if (atomic_read(&cpu_buffer->resize_disabled)) {
2069 err = -EBUSY;
2070 goto out_err_unlock;
2071 }
2072
438ced17
VN
2073 cpu_buffer->nr_pages_to_update = nr_pages -
2074 cpu_buffer->nr_pages;
2075
2076 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2077 if (cpu_buffer->nr_pages_to_update > 0 &&
2078 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
2079 &cpu_buffer->new_pages, cpu_id)) {
2080 err = -ENOMEM;
2081 goto out_err;
2082 }
438ced17 2083
83f40318
VN
2084 get_online_cpus();
2085
021c5b34
CM
2086 /* Can't run something on an offline CPU. */
2087 if (!cpu_online(cpu_id))
f5eb5588
SRRH
2088 rb_update_pages(cpu_buffer);
2089 else {
83f40318
VN
2090 schedule_work_on(cpu_id,
2091 &cpu_buffer->update_pages_work);
05fdd70d 2092 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 2093 }
83f40318 2094
83f40318 2095 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 2096 put_online_cpus();
438ced17 2097 }
7a8e76a3
SR
2098
2099 out:
659f451f
SR
2100 /*
2101 * The ring buffer resize can happen with the ring buffer
2102 * enabled, so that the update disturbs the tracing as little
2103 * as possible. But if the buffer is disabled, we do not need
2104 * to worry about that, and we can take the time to verify
2105 * that the buffer is not corrupt.
2106 */
2107 if (atomic_read(&buffer->record_disabled)) {
2108 atomic_inc(&buffer->record_disabled);
2109 /*
2110 * Even though the buffer was disabled, we must make sure
2111 * that it is truly disabled before calling rb_check_pages.
2112 * There could have been a race between checking
2113 * record_disable and incrementing it.
2114 */
74401729 2115 synchronize_rcu();
659f451f
SR
2116 for_each_buffer_cpu(buffer, cpu) {
2117 cpu_buffer = buffer->buffers[cpu];
2118 rb_check_pages(cpu_buffer);
2119 }
2120 atomic_dec(&buffer->record_disabled);
2121 }
2122
7a8e76a3 2123 mutex_unlock(&buffer->mutex);
0a1754b2 2124 return 0;
7a8e76a3 2125
83f40318 2126 out_err:
438ced17
VN
2127 for_each_buffer_cpu(buffer, cpu) {
2128 struct buffer_page *bpage, *tmp;
83f40318 2129
438ced17 2130 cpu_buffer = buffer->buffers[cpu];
438ced17 2131 cpu_buffer->nr_pages_to_update = 0;
83f40318 2132
438ced17
VN
2133 if (list_empty(&cpu_buffer->new_pages))
2134 continue;
83f40318 2135
438ced17
VN
2136 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2137 list) {
2138 list_del_init(&bpage->list);
2139 free_buffer_page(bpage);
2140 }
7a8e76a3 2141 }
07b8b10e 2142 out_err_unlock:
641d2f63 2143 mutex_unlock(&buffer->mutex);
83f40318 2144 return err;
7a8e76a3 2145}
c4f50183 2146EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 2147
13292494 2148void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
750912fa
DS
2149{
2150 mutex_lock(&buffer->mutex);
2151 if (val)
2152 buffer->flags |= RB_FL_OVERWRITE;
2153 else
2154 buffer->flags &= ~RB_FL_OVERWRITE;
2155 mutex_unlock(&buffer->mutex);
2156}
2157EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2158
2289d567 2159static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 2160{
044fa782 2161 return bpage->page->data + index;
7a8e76a3
SR
2162}
2163
2289d567 2164static __always_inline struct ring_buffer_event *
d769041f 2165rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2166{
6f807acd
SR
2167 return __rb_page_index(cpu_buffer->reader_page,
2168 cpu_buffer->reader_page->read);
2169}
2170
785888c5 2171static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
7a8e76a3 2172{
785888c5 2173 return local_read(&bpage->page->commit);
7a8e76a3
SR
2174}
2175
785888c5
SRV
2176static struct ring_buffer_event *
2177rb_iter_head_event(struct ring_buffer_iter *iter)
bf41a158 2178{
785888c5
SRV
2179 struct ring_buffer_event *event;
2180 struct buffer_page *iter_head_page = iter->head_page;
2181 unsigned long commit;
2182 unsigned length;
2183
153368ce
SRV
2184 if (iter->head != iter->next_event)
2185 return iter->event;
2186
785888c5
SRV
2187 /*
2188 * When the writer goes across pages, it issues a cmpxchg which
2189 * is a mb(), which will synchronize with the rmb here.
2190 * (see rb_tail_page_update() and __rb_reserve_next())
2191 */
2192 commit = rb_page_commit(iter_head_page);
2193 smp_rmb();
2194 event = __rb_page_index(iter_head_page, iter->head);
2195 length = rb_event_length(event);
2196
2197 /*
2198 * READ_ONCE() doesn't work on functions and we don't want the
2199 * compiler doing any crazy optimizations with length.
2200 */
2201 barrier();
2202
2203 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2204 /* Writer corrupted the read? */
2205 goto reset;
2206
2207 memcpy(iter->event, event, length);
2208 /*
2209 * If the page stamp is still the same after this rmb() then the
2210 * event was safely copied without the writer entering the page.
2211 */
2212 smp_rmb();
2213
2214 /* Make sure the page didn't change since we read this */
2215 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2216 commit > rb_page_commit(iter_head_page))
2217 goto reset;
2218
2219 iter->next_event = iter->head + length;
2220 return iter->event;
2221 reset:
2222 /* Reset to the beginning */
2223 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2224 iter->head = 0;
2225 iter->next_event = 0;
c9b7a4a7 2226 iter->missed_events = 1;
785888c5 2227 return NULL;
bf41a158
SR
2228}
2229
25985edc 2230/* Size is determined by what has been committed */
2289d567 2231static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
2232{
2233 return rb_page_commit(bpage);
2234}
2235
2289d567 2236static __always_inline unsigned
bf41a158
SR
2237rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2238{
2239 return rb_page_commit(cpu_buffer->commit_page);
2240}
2241
2289d567 2242static __always_inline unsigned
bf41a158
SR
2243rb_event_index(struct ring_buffer_event *event)
2244{
2245 unsigned long addr = (unsigned long)event;
2246
22f470f8 2247 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
2248}
2249
34a148bf 2250static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
2251{
2252 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2253
2254 /*
2255 * The iterator could be on the reader page (it starts there).
2256 * But the head could have moved, since the reader was
2257 * found. Check for this case and assign the iterator
2258 * to the head page instead of next.
2259 */
2260 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 2261 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
2262 else
2263 rb_inc_page(cpu_buffer, &iter->head_page);
2264
28e3fc56 2265 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3 2266 iter->head = 0;
785888c5 2267 iter->next_event = 0;
7a8e76a3
SR
2268}
2269
77ae365e
SR
2270/*
2271 * rb_handle_head_page - writer hit the head page
2272 *
2273 * Returns: +1 to retry page
2274 * 0 to continue
2275 * -1 on error
2276 */
2277static int
2278rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2279 struct buffer_page *tail_page,
2280 struct buffer_page *next_page)
2281{
2282 struct buffer_page *new_head;
2283 int entries;
2284 int type;
2285 int ret;
2286
2287 entries = rb_page_entries(next_page);
2288
2289 /*
2290 * The hard part is here. We need to move the head
2291 * forward, and protect against both readers on
2292 * other CPUs and writers coming in via interrupts.
2293 */
2294 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2295 RB_PAGE_HEAD);
2296
2297 /*
2298 * type can be one of four:
2299 * NORMAL - an interrupt already moved it for us
2300 * HEAD - we are the first to get here.
2301 * UPDATE - we are the interrupt interrupting
2302 * a current move.
2303 * MOVED - a reader on another CPU moved the next
2304 * pointer to its reader page. Give up
2305 * and try again.
2306 */
2307
2308 switch (type) {
2309 case RB_PAGE_HEAD:
2310 /*
2311 * We changed the head to UPDATE, thus
2312 * it is our responsibility to update
2313 * the counters.
2314 */
2315 local_add(entries, &cpu_buffer->overrun);
c64e148a 2316 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2317
2318 /*
2319 * The entries will be zeroed out when we move the
2320 * tail page.
2321 */
2322
2323 /* still more to do */
2324 break;
2325
2326 case RB_PAGE_UPDATE:
2327 /*
2328 * This is an interrupt that interrupt the
2329 * previous update. Still more to do.
2330 */
2331 break;
2332 case RB_PAGE_NORMAL:
2333 /*
2334 * An interrupt came in before the update
2335 * and processed this for us.
2336 * Nothing left to do.
2337 */
2338 return 1;
2339 case RB_PAGE_MOVED:
2340 /*
2341 * The reader is on another CPU and just did
2342 * a swap with our next_page.
2343 * Try again.
2344 */
2345 return 1;
2346 default:
2347 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2348 return -1;
2349 }
2350
2351 /*
2352 * Now that we are here, the old head pointer is
2353 * set to UPDATE. This will keep the reader from
2354 * swapping the head page with the reader page.
2355 * The reader (on another CPU) will spin till
2356 * we are finished.
2357 *
2358 * We just need to protect against interrupts
2359 * doing the job. We will set the next pointer
2360 * to HEAD. After that, we set the old pointer
2361 * to NORMAL, but only if it was HEAD before.
2362 * otherwise we are an interrupt, and only
2363 * want the outer most commit to reset it.
2364 */
2365 new_head = next_page;
2366 rb_inc_page(cpu_buffer, &new_head);
2367
2368 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2369 RB_PAGE_NORMAL);
2370
2371 /*
2372 * Valid returns are:
2373 * HEAD - an interrupt came in and already set it.
2374 * NORMAL - One of two things:
2375 * 1) We really set it.
2376 * 2) A bunch of interrupts came in and moved
2377 * the page forward again.
2378 */
2379 switch (ret) {
2380 case RB_PAGE_HEAD:
2381 case RB_PAGE_NORMAL:
2382 /* OK */
2383 break;
2384 default:
2385 RB_WARN_ON(cpu_buffer, 1);
2386 return -1;
2387 }
2388
2389 /*
2390 * It is possible that an interrupt came in,
2391 * set the head up, then more interrupts came in
2392 * and moved it again. When we get back here,
2393 * the page would have been set to NORMAL but we
2394 * just set it back to HEAD.
2395 *
2396 * How do you detect this? Well, if that happened
2397 * the tail page would have moved.
2398 */
2399 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2400 struct buffer_page *buffer_tail_page;
2401
2402 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2403 /*
2404 * If the tail had moved passed next, then we need
2405 * to reset the pointer.
2406 */
8573636e
SRRH
2407 if (buffer_tail_page != tail_page &&
2408 buffer_tail_page != next_page)
77ae365e
SR
2409 rb_head_page_set_normal(cpu_buffer, new_head,
2410 next_page,
2411 RB_PAGE_HEAD);
2412 }
2413
2414 /*
2415 * If this was the outer most commit (the one that
2416 * changed the original pointer from HEAD to UPDATE),
2417 * then it is up to us to reset it to NORMAL.
2418 */
2419 if (type == RB_PAGE_HEAD) {
2420 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2421 tail_page,
2422 RB_PAGE_UPDATE);
2423 if (RB_WARN_ON(cpu_buffer,
2424 ret != RB_PAGE_UPDATE))
2425 return -1;
2426 }
2427
2428 return 0;
2429}
2430
c7b09308
SR
2431static inline void
2432rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2433 unsigned long tail, struct rb_event_info *info)
c7b09308 2434{
fcc742ea 2435 struct buffer_page *tail_page = info->tail_page;
c7b09308 2436 struct ring_buffer_event *event;
fcc742ea 2437 unsigned long length = info->length;
c7b09308
SR
2438
2439 /*
2440 * Only the event that crossed the page boundary
2441 * must fill the old tail_page with padding.
2442 */
2443 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2444 /*
2445 * If the page was filled, then we still need
2446 * to update the real_end. Reset it to zero
2447 * and the reader will ignore it.
2448 */
2449 if (tail == BUF_PAGE_SIZE)
2450 tail_page->real_end = 0;
2451
c7b09308
SR
2452 local_sub(length, &tail_page->write);
2453 return;
2454 }
2455
2456 event = __rb_page_index(tail_page, tail);
2457
c64e148a
VN
2458 /* account for padding bytes */
2459 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2460
ff0ff84a
SR
2461 /*
2462 * Save the original length to the meta data.
2463 * This will be used by the reader to add lost event
2464 * counter.
2465 */
2466 tail_page->real_end = tail;
2467
c7b09308
SR
2468 /*
2469 * If this event is bigger than the minimum size, then
2470 * we need to be careful that we don't subtract the
2471 * write counter enough to allow another writer to slip
2472 * in on this page.
2473 * We put in a discarded commit instead, to make sure
2474 * that this space is not used again.
2475 *
2476 * If we are less than the minimum size, we don't need to
2477 * worry about it.
2478 */
2479 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2480 /* No room for any events */
2481
2482 /* Mark the rest of the page with padding */
2483 rb_event_set_padding(event);
2484
2485 /* Set the write back to the previous setting */
2486 local_sub(length, &tail_page->write);
2487 return;
2488 }
2489
2490 /* Put in a discarded event */
2491 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2492 event->type_len = RINGBUF_TYPE_PADDING;
2493 /* time delta must be non zero */
2494 event->time_delta = 1;
c7b09308
SR
2495
2496 /* Set write to end of buffer */
2497 length = (tail + length) - BUF_PAGE_SIZE;
2498 local_sub(length, &tail_page->write);
2499}
6634ff26 2500
4239c38f
SRRH
2501static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2502
747e94ae
SR
2503/*
2504 * This is the slow path, force gcc not to inline it.
2505 */
2506static noinline struct ring_buffer_event *
6634ff26 2507rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2508 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2509{
fcc742ea 2510 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2511 struct buffer_page *commit_page = cpu_buffer->commit_page;
13292494 2512 struct trace_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2513 struct buffer_page *next_page;
2514 int ret;
aa20ae84
SR
2515
2516 next_page = tail_page;
2517
aa20ae84
SR
2518 rb_inc_page(cpu_buffer, &next_page);
2519
aa20ae84
SR
2520 /*
2521 * If for some reason, we had an interrupt storm that made
2522 * it all the way around the buffer, bail, and warn
2523 * about it.
2524 */
2525 if (unlikely(next_page == commit_page)) {
77ae365e 2526 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2527 goto out_reset;
2528 }
2529
77ae365e
SR
2530 /*
2531 * This is where the fun begins!
2532 *
2533 * We are fighting against races between a reader that
2534 * could be on another CPU trying to swap its reader
2535 * page with the buffer head.
2536 *
2537 * We are also fighting against interrupts coming in and
2538 * moving the head or tail on us as well.
2539 *
2540 * If the next page is the head page then we have filled
2541 * the buffer, unless the commit page is still on the
2542 * reader page.
2543 */
2544 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2545
77ae365e
SR
2546 /*
2547 * If the commit is not on the reader page, then
2548 * move the header page.
2549 */
2550 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2551 /*
2552 * If we are not in overwrite mode,
2553 * this is easy, just stop here.
2554 */
884bfe89
SP
2555 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2556 local_inc(&cpu_buffer->dropped_events);
77ae365e 2557 goto out_reset;
884bfe89 2558 }
77ae365e
SR
2559
2560 ret = rb_handle_head_page(cpu_buffer,
2561 tail_page,
2562 next_page);
2563 if (ret < 0)
2564 goto out_reset;
2565 if (ret)
2566 goto out_again;
2567 } else {
2568 /*
2569 * We need to be careful here too. The
2570 * commit page could still be on the reader
2571 * page. We could have a small buffer, and
2572 * have filled up the buffer with events
2573 * from interrupts and such, and wrapped.
2574 *
2575 * Note, if the tail page is also the on the
2576 * reader_page, we let it move out.
2577 */
2578 if (unlikely((cpu_buffer->commit_page !=
2579 cpu_buffer->tail_page) &&
2580 (cpu_buffer->commit_page ==
2581 cpu_buffer->reader_page))) {
2582 local_inc(&cpu_buffer->commit_overrun);
2583 goto out_reset;
2584 }
aa20ae84
SR
2585 }
2586 }
2587
70004986 2588 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2589
77ae365e 2590 out_again:
aa20ae84 2591
fcc742ea 2592 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2593
4239c38f
SRRH
2594 /* Commit what we have for now. */
2595 rb_end_commit(cpu_buffer);
2596 /* rb_end_commit() decs committing */
2597 local_inc(&cpu_buffer->committing);
2598
aa20ae84
SR
2599 /* fail and let the caller try again */
2600 return ERR_PTR(-EAGAIN);
2601
45141d46 2602 out_reset:
6f3b3440 2603 /* reset write */
fcc742ea 2604 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2605
bf41a158 2606 return NULL;
7a8e76a3
SR
2607}
2608
74e87937
SRV
2609/* Slow path */
2610static struct ring_buffer_event *
dc4e2801 2611rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
9826b273 2612{
dc4e2801
TZ
2613 if (abs)
2614 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2615 else
2616 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2617
dc4e2801
TZ
2618 /* Not the first event on the page, or not delta? */
2619 if (abs || rb_event_index(event)) {
d90fd774
SRRH
2620 event->time_delta = delta & TS_MASK;
2621 event->array[0] = delta >> TS_SHIFT;
2622 } else {
2623 /* nope, just zero it */
2624 event->time_delta = 0;
2625 event->array[0] = 0;
2626 }
a4543a2f 2627
d90fd774
SRRH
2628 return skip_time_extend(event);
2629}
a4543a2f 2630
cdb2a0a9 2631static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2632 struct ring_buffer_event *event);
2633
58fbc3c6
SRV
2634#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2635static inline bool sched_clock_stable(void)
2636{
2637 return true;
2638}
2639#endif
2640
74e87937 2641static void
58fbc3c6
SRV
2642rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2643 struct rb_event_info *info)
2644{
2645 u64 write_stamp;
2646
29ce2451 2647 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
58fbc3c6
SRV
2648 (unsigned long long)info->delta,
2649 (unsigned long long)info->ts,
2650 (unsigned long long)info->before,
2651 (unsigned long long)info->after,
2652 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2653 sched_clock_stable() ? "" :
2654 "If you just came from a suspend/resume,\n"
2655 "please switch to the trace global clock:\n"
2656 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2657 "or add trace_clock=global to the kernel command line\n");
2658}
2659
74e87937
SRV
2660static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2661 struct ring_buffer_event **event,
2662 struct rb_event_info *info,
2663 u64 *delta,
2664 unsigned int *length)
2665{
2666 bool abs = info->add_timestamp &
2667 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2668
29ce2451
SRV
2669 if (unlikely(info->delta > (1ULL << 59))) {
2670 /* did the clock go backwards */
2671 if (info->before == info->after && info->before > info->ts) {
2672 /* not interrupted */
2673 static int once;
2674
2675 /*
2676 * This is possible with a recalibrating of the TSC.
2677 * Do not produce a call stack, but just report it.
2678 */
2679 if (!once) {
2680 once++;
2681 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2682 info->before, info->ts);
2683 }
2684 } else
2685 rb_check_timestamp(cpu_buffer, info);
2686 if (!abs)
2687 info->delta = 0;
2688 }
74e87937
SRV
2689 *event = rb_add_time_stamp(*event, info->delta, abs);
2690 *length -= RB_LEN_TIME_EXTEND;
2691 *delta = 0;
2692}
2693
d90fd774
SRRH
2694/**
2695 * rb_update_event - update event type and data
cfc585a4 2696 * @cpu_buffer: The per cpu buffer of the @event
d90fd774 2697 * @event: the event to update
cfc585a4 2698 * @info: The info to update the @event with (contains length and delta)
d90fd774 2699 *
cfc585a4 2700 * Update the type and data fields of the @event. The length
d90fd774
SRRH
2701 * is the actual size that is written to the ring buffer,
2702 * and with this, we can determine what to place into the
2703 * data field.
2704 */
b7dc42fd 2705static void
d90fd774
SRRH
2706rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2707 struct ring_buffer_event *event,
2708 struct rb_event_info *info)
2709{
2710 unsigned length = info->length;
2711 u64 delta = info->delta;
a4543a2f
SRRH
2712
2713 /*
d90fd774 2714 * If we need to add a timestamp, then we
6167c205 2715 * add it to the start of the reserved space.
a4543a2f 2716 */
74e87937
SRV
2717 if (unlikely(info->add_timestamp))
2718 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
a4543a2f 2719
d90fd774
SRRH
2720 event->time_delta = delta;
2721 length -= RB_EVNT_HDR_SIZE;
86b3de60 2722 if (length > RB_MAX_SMALL_DATA) {
d90fd774
SRRH
2723 event->type_len = 0;
2724 event->array[0] = length;
2725 } else
2726 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2727}
2728
2729static unsigned rb_calculate_event_length(unsigned length)
2730{
2731 struct ring_buffer_event event; /* Used only for sizeof array */
2732
2733 /* zero length can cause confusions */
2734 if (!length)
2735 length++;
2736
86b3de60 2737 if (length > RB_MAX_SMALL_DATA)
d90fd774
SRRH
2738 length += sizeof(event.array[0]);
2739
2740 length += RB_EVNT_HDR_SIZE;
86b3de60 2741 length = ALIGN(length, RB_ALIGNMENT);
d90fd774
SRRH
2742
2743 /*
2744 * In case the time delta is larger than the 27 bits for it
2745 * in the header, we need to add a timestamp. If another
2746 * event comes in when trying to discard this one to increase
2747 * the length, then the timestamp will be added in the allocated
2748 * space of this event. If length is bigger than the size needed
2749 * for the TIME_EXTEND, then padding has to be used. The events
2750 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2751 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2752 * As length is a multiple of 4, we only need to worry if it
2753 * is 12 (RB_LEN_TIME_EXTEND + 4).
2754 */
2755 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2756 length += RB_ALIGNMENT;
2757
2758 return length;
2759}
2760
a389d86f
SRV
2761static __always_inline bool
2762rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763 struct ring_buffer_event *event)
d90fd774 2764{
a389d86f
SRV
2765 unsigned long addr = (unsigned long)event;
2766 unsigned long index;
2767
2768 index = rb_event_index(event);
2769 addr &= PAGE_MASK;
2770
2771 return cpu_buffer->commit_page->page == (void *)addr &&
2772 rb_commit_index(cpu_buffer) == index;
2773}
2774
2775static u64 rb_time_delta(struct ring_buffer_event *event)
2776{
2777 switch (event->type_len) {
2778 case RINGBUF_TYPE_PADDING:
2779 return 0;
2780
2781 case RINGBUF_TYPE_TIME_EXTEND:
2782 return ring_buffer_event_time_stamp(event);
2783
2784 case RINGBUF_TYPE_TIME_STAMP:
2785 return 0;
2786
2787 case RINGBUF_TYPE_DATA:
2788 return event->time_delta;
2789 default:
2790 return 0;
2791 }
d90fd774 2792}
d90fd774
SRRH
2793
2794static inline int
2795rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2796 struct ring_buffer_event *event)
2797{
2798 unsigned long new_index, old_index;
2799 struct buffer_page *bpage;
2800 unsigned long index;
2801 unsigned long addr;
a389d86f
SRV
2802 u64 write_stamp;
2803 u64 delta;
d90fd774
SRRH
2804
2805 new_index = rb_event_index(event);
2806 old_index = new_index + rb_event_ts_length(event);
2807 addr = (unsigned long)event;
2808 addr &= PAGE_MASK;
2809
8573636e 2810 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774 2811
a389d86f
SRV
2812 delta = rb_time_delta(event);
2813
10464b4a
SRV
2814 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2815 return 0;
a389d86f
SRV
2816
2817 /* Make sure the write stamp is read before testing the location */
2818 barrier();
2819
d90fd774
SRRH
2820 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2821 unsigned long write_mask =
2822 local_read(&bpage->write) & ~RB_WRITE_MASK;
2823 unsigned long event_length = rb_event_length(event);
a389d86f 2824
a389d86f 2825 /* Something came in, can't discard */
10464b4a
SRV
2826 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2827 write_stamp, write_stamp - delta))
a389d86f
SRV
2828 return 0;
2829
2830 /*
2831 * If an event were to come in now, it would see that the
2832 * write_stamp and the before_stamp are different, and assume
2833 * that this event just added itself before updating
2834 * the write stamp. The interrupting event will fix the
2835 * write stamp for us, and use the before stamp as its delta.
2836 */
2837
d90fd774
SRRH
2838 /*
2839 * This is on the tail page. It is possible that
2840 * a write could come in and move the tail page
2841 * and write to the next page. That is fine
2842 * because we just shorten what is on this page.
2843 */
2844 old_index += write_mask;
2845 new_index += write_mask;
2846 index = local_cmpxchg(&bpage->write, old_index, new_index);
2847 if (index == old_index) {
2848 /* update counters */
2849 local_sub(event_length, &cpu_buffer->entries_bytes);
2850 return 1;
2851 }
2852 }
2853
2854 /* could not discard */
2855 return 0;
2856}
2857
2858static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2859{
2860 local_inc(&cpu_buffer->committing);
2861 local_inc(&cpu_buffer->commits);
2862}
2863
38e11df1 2864static __always_inline void
d90fd774
SRRH
2865rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2866{
2867 unsigned long max_count;
2868
2869 /*
2870 * We only race with interrupts and NMIs on this CPU.
2871 * If we own the commit event, then we can commit
2872 * all others that interrupted us, since the interruptions
2873 * are in stack format (they finish before they come
2874 * back to us). This allows us to do a simple loop to
2875 * assign the commit to the tail.
2876 */
2877 again:
2878 max_count = cpu_buffer->nr_pages * 100;
2879
8573636e 2880 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2881 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2882 return;
2883 if (RB_WARN_ON(cpu_buffer,
2884 rb_is_reader_page(cpu_buffer->tail_page)))
2885 return;
2886 local_set(&cpu_buffer->commit_page->page->commit,
2887 rb_page_write(cpu_buffer->commit_page));
2888 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
d90fd774
SRRH
2889 /* add barrier to keep gcc from optimizing too much */
2890 barrier();
2891 }
2892 while (rb_commit_index(cpu_buffer) !=
2893 rb_page_write(cpu_buffer->commit_page)) {
2894
2895 local_set(&cpu_buffer->commit_page->page->commit,
2896 rb_page_write(cpu_buffer->commit_page));
2897 RB_WARN_ON(cpu_buffer,
2898 local_read(&cpu_buffer->commit_page->page->commit) &
2899 ~RB_WRITE_MASK);
2900 barrier();
2901 }
2902
2903 /* again, keep gcc from optimizing */
2904 barrier();
2905
2906 /*
2907 * If an interrupt came in just after the first while loop
2908 * and pushed the tail page forward, we will be left with
2909 * a dangling commit that will never go forward.
2910 */
8573636e 2911 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2912 goto again;
2913}
2914
38e11df1 2915static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2916{
2917 unsigned long commits;
2918
2919 if (RB_WARN_ON(cpu_buffer,
2920 !local_read(&cpu_buffer->committing)))
2921 return;
2922
2923 again:
2924 commits = local_read(&cpu_buffer->commits);
2925 /* synchronize with interrupts */
2926 barrier();
2927 if (local_read(&cpu_buffer->committing) == 1)
2928 rb_set_commit_to_write(cpu_buffer);
2929
2930 local_dec(&cpu_buffer->committing);
2931
2932 /* synchronize with interrupts */
2933 barrier();
2934
2935 /*
2936 * Need to account for interrupts coming in between the
2937 * updating of the commit page and the clearing of the
2938 * committing counter.
2939 */
2940 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2941 !local_read(&cpu_buffer->committing)) {
2942 local_inc(&cpu_buffer->committing);
2943 goto again;
2944 }
2945}
2946
2947static inline void rb_event_discard(struct ring_buffer_event *event)
2948{
dc4e2801 2949 if (extended_time(event))
d90fd774
SRRH
2950 event = skip_time_extend(event);
2951
2952 /* array[0] holds the actual length for the discarded event */
2953 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2954 event->type_len = RINGBUF_TYPE_PADDING;
2955 /* time delta must be non zero */
2956 if (!event->time_delta)
2957 event->time_delta = 1;
2958}
2959
d90fd774
SRRH
2960static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2961 struct ring_buffer_event *event)
2962{
2963 local_inc(&cpu_buffer->entries);
d90fd774
SRRH
2964 rb_end_commit(cpu_buffer);
2965}
2966
2967static __always_inline void
13292494 2968rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
d90fd774 2969{
03329f99
SRV
2970 size_t nr_pages;
2971 size_t dirty;
2972 size_t full;
d90fd774
SRRH
2973
2974 if (buffer->irq_work.waiters_pending) {
2975 buffer->irq_work.waiters_pending = false;
2976 /* irq_work_queue() supplies it's own memory barriers */
2977 irq_work_queue(&buffer->irq_work.work);
2978 }
2979
2980 if (cpu_buffer->irq_work.waiters_pending) {
2981 cpu_buffer->irq_work.waiters_pending = false;
2982 /* irq_work_queue() supplies it's own memory barriers */
2983 irq_work_queue(&cpu_buffer->irq_work.work);
2984 }
2985
03329f99
SRV
2986 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2987 return;
d90fd774 2988
03329f99
SRV
2989 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2990 return;
2c2b0a78 2991
03329f99
SRV
2992 if (!cpu_buffer->irq_work.full_waiters_pending)
2993 return;
2c2b0a78 2994
03329f99
SRV
2995 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2996
2997 full = cpu_buffer->shortest_full;
2998 nr_pages = cpu_buffer->nr_pages;
2999 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3000 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3001 return;
3002
3003 cpu_buffer->irq_work.wakeup_full = true;
3004 cpu_buffer->irq_work.full_waiters_pending = false;
3005 /* irq_work_queue() supplies it's own memory barriers */
3006 irq_work_queue(&cpu_buffer->irq_work.work);
d90fd774
SRRH
3007}
3008
3009/*
3010 * The lock and unlock are done within a preempt disable section.
3011 * The current_context per_cpu variable can only be modified
3012 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
3013 * be modified more than once via an interrupt. To pass this
3014 * information from the lock to the unlock without having to
3015 * access the 'in_interrupt()' functions again (which do show
3016 * a bit of overhead in something as critical as function tracing,
3017 * we use a bitmask trick.
d90fd774 3018 *
b02414c8
SRV
3019 * bit 1 = NMI context
3020 * bit 2 = IRQ context
3021 * bit 3 = SoftIRQ context
3022 * bit 4 = normal context.
d90fd774 3023 *
a0e3a18f
SRV
3024 * This works because this is the order of contexts that can
3025 * preempt other contexts. A SoftIRQ never preempts an IRQ
3026 * context.
3027 *
3028 * When the context is determined, the corresponding bit is
3029 * checked and set (if it was set, then a recursion of that context
3030 * happened).
3031 *
3032 * On unlock, we need to clear this bit. To do so, just subtract
3033 * 1 from the current_context and AND it to itself.
3034 *
3035 * (binary)
3036 * 101 - 1 = 100
3037 * 101 & 100 = 100 (clearing bit zero)
3038 *
3039 * 1010 - 1 = 1001
3040 * 1010 & 1001 = 1000 (clearing bit 1)
3041 *
3042 * The least significant bit can be cleared this way, and it
3043 * just so happens that it is the same bit corresponding to
3044 * the current context.
b02414c8
SRV
3045 *
3046 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3047 * is set when a recursion is detected at the current context, and if
3048 * the TRANSITION bit is already set, it will fail the recursion.
3049 * This is needed because there's a lag between the changing of
3050 * interrupt context and updating the preempt count. In this case,
3051 * a false positive will be found. To handle this, one extra recursion
3052 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3053 * bit is already set, then it is considered a recursion and the function
3054 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3055 *
3056 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3057 * to be cleared. Even if it wasn't the context that set it. That is,
3058 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3059 * is called before preempt_count() is updated, since the check will
3060 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3061 * NMI then comes in, it will set the NMI bit, but when the NMI code
3062 * does the trace_recursive_unlock() it will clear the TRANSTION bit
3063 * and leave the NMI bit set. But this is fine, because the interrupt
3064 * code that set the TRANSITION bit will then clear the NMI bit when it
3065 * calls trace_recursive_unlock(). If another NMI comes in, it will
3066 * set the TRANSITION bit and continue.
3067 *
3068 * Note: The TRANSITION bit only handles a single transition between context.
d90fd774
SRRH
3069 */
3070
3071static __always_inline int
3072trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3073{
a0e3a18f
SRV
3074 unsigned int val = cpu_buffer->current_context;
3075 unsigned long pc = preempt_count();
3076 int bit;
3077
3078 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3079 bit = RB_CTX_NORMAL;
3080 else
3081 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 3082 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f 3083
b02414c8
SRV
3084 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3085 /*
3086 * It is possible that this was called by transitioning
3087 * between interrupt context, and preempt_count() has not
3088 * been updated yet. In this case, use the TRANSITION bit.
3089 */
3090 bit = RB_CTX_TRANSITION;
3091 if (val & (1 << (bit + cpu_buffer->nest)))
3092 return 1;
3093 }
d90fd774 3094
8e012066 3095 val |= (1 << (bit + cpu_buffer->nest));
a0e3a18f 3096 cpu_buffer->current_context = val;
d90fd774
SRRH
3097
3098 return 0;
3099}
3100
3101static __always_inline void
3102trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3103{
8e012066
SRV
3104 cpu_buffer->current_context &=
3105 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3106}
3107
b02414c8
SRV
3108/* The recursive locking above uses 5 bits */
3109#define NESTED_BITS 5
8e012066
SRV
3110
3111/**
3112 * ring_buffer_nest_start - Allow to trace while nested
3113 * @buffer: The ring buffer to modify
3114 *
6167c205 3115 * The ring buffer has a safety mechanism to prevent recursion.
8e012066
SRV
3116 * But there may be a case where a trace needs to be done while
3117 * tracing something else. In this case, calling this function
3118 * will allow this function to nest within a currently active
3119 * ring_buffer_lock_reserve().
3120 *
3121 * Call this function before calling another ring_buffer_lock_reserve() and
3122 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3123 */
13292494 3124void ring_buffer_nest_start(struct trace_buffer *buffer)
8e012066
SRV
3125{
3126 struct ring_buffer_per_cpu *cpu_buffer;
3127 int cpu;
3128
3129 /* Enabled by ring_buffer_nest_end() */
3130 preempt_disable_notrace();
3131 cpu = raw_smp_processor_id();
3132 cpu_buffer = buffer->buffers[cpu];
6167c205 3133 /* This is the shift value for the above recursive locking */
8e012066
SRV
3134 cpu_buffer->nest += NESTED_BITS;
3135}
3136
3137/**
3138 * ring_buffer_nest_end - Allow to trace while nested
3139 * @buffer: The ring buffer to modify
3140 *
3141 * Must be called after ring_buffer_nest_start() and after the
3142 * ring_buffer_unlock_commit().
3143 */
13292494 3144void ring_buffer_nest_end(struct trace_buffer *buffer)
8e012066
SRV
3145{
3146 struct ring_buffer_per_cpu *cpu_buffer;
3147 int cpu;
3148
3149 /* disabled by ring_buffer_nest_start() */
3150 cpu = raw_smp_processor_id();
3151 cpu_buffer = buffer->buffers[cpu];
6167c205 3152 /* This is the shift value for the above recursive locking */
8e012066
SRV
3153 cpu_buffer->nest -= NESTED_BITS;
3154 preempt_enable_notrace();
d90fd774
SRRH
3155}
3156
3157/**
3158 * ring_buffer_unlock_commit - commit a reserved
3159 * @buffer: The buffer to commit to
3160 * @event: The event pointer to commit.
3161 *
3162 * This commits the data to the ring buffer, and releases any locks held.
3163 *
3164 * Must be paired with ring_buffer_lock_reserve.
3165 */
13292494 3166int ring_buffer_unlock_commit(struct trace_buffer *buffer,
d90fd774
SRRH
3167 struct ring_buffer_event *event)
3168{
3169 struct ring_buffer_per_cpu *cpu_buffer;
3170 int cpu = raw_smp_processor_id();
3171
3172 cpu_buffer = buffer->buffers[cpu];
3173
3174 rb_commit(cpu_buffer, event);
3175
3176 rb_wakeups(buffer, cpu_buffer);
3177
3178 trace_recursive_unlock(cpu_buffer);
3179
3180 preempt_enable_notrace();
3181
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3185
6634ff26
SR
3186static struct ring_buffer_event *
3187__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 3188 struct rb_event_info *info)
6634ff26 3189{
6634ff26 3190 struct ring_buffer_event *event;
fcc742ea 3191 struct buffer_page *tail_page;
a389d86f 3192 unsigned long tail, write, w;
10464b4a
SRV
3193 bool a_ok;
3194 bool b_ok;
69d1b839 3195
8573636e
SRRH
3196 /* Don't let the compiler play games with cpu_buffer->tail_page */
3197 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
a389d86f
SRV
3198
3199 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3200 barrier();
58fbc3c6
SRV
3201 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3202 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
a389d86f
SRV
3203 barrier();
3204 info->ts = rb_time_stamp(cpu_buffer->buffer);
3205
58fbc3c6 3206 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
a389d86f 3207 info->delta = info->ts;
a389d86f 3208 } else {
58fbc3c6
SRV
3209 /*
3210 * If interrupting an event time update, we may need an
3211 * absolute timestamp.
3212 * Don't bother if this is the start of a new page (w == 0).
3213 */
3214 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3215 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3216 info->length += RB_LEN_TIME_EXTEND;
3217 } else {
3218 info->delta = info->ts - info->after;
3219 if (unlikely(test_time_stamp(info->delta))) {
3220 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3221 info->length += RB_LEN_TIME_EXTEND;
3222 }
10464b4a 3223 }
7c4b4a51 3224 }
b7dc42fd 3225
10464b4a 3226 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
a389d86f
SRV
3227
3228 /*C*/ write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
3229
3230 /* set write to only the index of the write */
3231 write &= RB_WRITE_MASK;
a389d86f 3232
fcc742ea 3233 tail = write - info->length;
6634ff26 3234
a389d86f
SRV
3235 /* See if we shot pass the end of this buffer page */
3236 if (unlikely(write > BUF_PAGE_SIZE)) {
3237 if (tail != w) {
3238 /* before and after may now different, fix it up*/
58fbc3c6
SRV
3239 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3240 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3241 if (a_ok && b_ok && info->before != info->after)
3242 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3243 info->before, info->after);
a389d86f
SRV
3244 }
3245 return rb_move_tail(cpu_buffer, tail, info);
3246 }
3247
3248 if (likely(tail == w)) {
3249 u64 save_before;
10464b4a 3250 bool s_ok;
a389d86f
SRV
3251
3252 /* Nothing interrupted us between A and C */
10464b4a 3253 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
a389d86f 3254 barrier();
10464b4a
SRV
3255 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3256 RB_WARN_ON(cpu_buffer, !s_ok);
7c4b4a51
SRV
3257 if (likely(!(info->add_timestamp &
3258 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a389d86f 3259 /* This did not interrupt any time update */
58fbc3c6 3260 info->delta = info->ts - info->after;
a389d86f
SRV
3261 else
3262 /* Just use full timestamp for inerrupting event */
3263 info->delta = info->ts;
3264 barrier();
3265 if (unlikely(info->ts != save_before)) {
3266 /* SLOW PATH - Interrupted between C and E */
3267
58fbc3c6 3268 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3269 RB_WARN_ON(cpu_buffer, !a_ok);
3270
a389d86f 3271 /* Write stamp must only go forward */
58fbc3c6 3272 if (save_before > info->after) {
a389d86f
SRV
3273 /*
3274 * We do not care about the result, only that
3275 * it gets updated atomically.
3276 */
58fbc3c6
SRV
3277 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3278 info->after, save_before);
a389d86f
SRV
3279 }
3280 }
3281 } else {
3282 u64 ts;
3283 /* SLOW PATH - Interrupted between A and C */
58fbc3c6 3284 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3285 /* Was interrupted before here, write_stamp must be valid */
3286 RB_WARN_ON(cpu_buffer, !a_ok);
a389d86f
SRV
3287 ts = rb_time_stamp(cpu_buffer->buffer);
3288 barrier();
3289 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
8785f51a
AR
3290 info->after < ts &&
3291 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3292 info->after, ts)) {
a389d86f 3293 /* Nothing came after this event between C and E */
58fbc3c6 3294 info->delta = ts - info->after;
a389d86f
SRV
3295 info->ts = ts;
3296 } else {
3297 /*
3298 * Interrupted beween C and E:
3299 * Lost the previous events time stamp. Just set the
3300 * delta to zero, and this will be the same time as
3301 * the event this event interrupted. And the events that
3302 * came after this will still be correct (as they would
3303 * have built their delta on the previous event.
3304 */
3305 info->delta = 0;
3306 }
7c4b4a51 3307 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
a389d86f
SRV
3308 }
3309
6634ff26 3310 /*
a4543a2f 3311 * If this is the first commit on the page, then it has the same
b7dc42fd 3312 * timestamp as the page itself.
6634ff26 3313 */
7c4b4a51
SRV
3314 if (unlikely(!tail && !(info->add_timestamp &
3315 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a4543a2f
SRRH
3316 info->delta = 0;
3317
b7dc42fd
SRRH
3318 /* We reserved something on the buffer */
3319
3320 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
3321 rb_update_event(cpu_buffer, event, info);
3322
3323 local_inc(&tail_page->entries);
6634ff26 3324
b7dc42fd
SRRH
3325 /*
3326 * If this is the first commit on the page, then update
3327 * its timestamp.
3328 */
75b21c6d 3329 if (unlikely(!tail))
b7dc42fd
SRRH
3330 tail_page->page->time_stamp = info->ts;
3331
c64e148a 3332 /* account for these added bytes */
fcc742ea 3333 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 3334
6634ff26
SR
3335 return event;
3336}
3337
fa7ffb39 3338static __always_inline struct ring_buffer_event *
13292494 3339rb_reserve_next_event(struct trace_buffer *buffer,
62f0b3eb 3340 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 3341 unsigned long length)
7a8e76a3
SR
3342{
3343 struct ring_buffer_event *event;
fcc742ea 3344 struct rb_event_info info;
818e3dd3 3345 int nr_loops = 0;
58fbc3c6 3346 int add_ts_default;
7a8e76a3 3347
fa743953 3348 rb_start_commit(cpu_buffer);
a389d86f 3349 /* The commit page can not change after this */
fa743953 3350
85bac32c 3351#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
3352 /*
3353 * Due to the ability to swap a cpu buffer from a buffer
3354 * it is possible it was swapped before we committed.
3355 * (committing stops a swap). We check for it here and
3356 * if it happened, we have to fail the write.
3357 */
3358 barrier();
6aa7de05 3359 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
3360 local_dec(&cpu_buffer->committing);
3361 local_dec(&cpu_buffer->commits);
3362 return NULL;
3363 }
85bac32c 3364#endif
b7dc42fd 3365
fcc742ea 3366 info.length = rb_calculate_event_length(length);
58fbc3c6
SRV
3367
3368 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3369 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3370 info.length += RB_LEN_TIME_EXTEND;
3371 } else {
3372 add_ts_default = RB_ADD_STAMP_NONE;
3373 }
3374
a4543a2f 3375 again:
58fbc3c6 3376 info.add_timestamp = add_ts_default;
b7dc42fd
SRRH
3377 info.delta = 0;
3378
818e3dd3
SR
3379 /*
3380 * We allow for interrupts to reenter here and do a trace.
3381 * If one does, it will cause this original code to loop
3382 * back here. Even with heavy interrupts happening, this
3383 * should only happen a few times in a row. If this happens
3384 * 1000 times in a row, there must be either an interrupt
3385 * storm or we have something buggy.
3386 * Bail!
3387 */
3e89c7bb 3388 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 3389 goto out_fail;
818e3dd3 3390
fcc742ea
SRRH
3391 event = __rb_reserve_next(cpu_buffer, &info);
3392
bd1b7cd3 3393 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
58fbc3c6 3394 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
bd1b7cd3 3395 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 3396 goto again;
bd1b7cd3 3397 }
bf41a158 3398
a389d86f
SRV
3399 if (likely(event))
3400 return event;
fa743953
SR
3401 out_fail:
3402 rb_end_commit(cpu_buffer);
3403 return NULL;
7a8e76a3
SR
3404}
3405
3406/**
3407 * ring_buffer_lock_reserve - reserve a part of the buffer
3408 * @buffer: the ring buffer to reserve from
3409 * @length: the length of the data to reserve (excluding event header)
7a8e76a3 3410 *
6167c205 3411 * Returns a reserved event on the ring buffer to copy directly to.
7a8e76a3
SR
3412 * The user of this interface will need to get the body to write into
3413 * and can use the ring_buffer_event_data() interface.
3414 *
3415 * The length is the length of the data needed, not the event length
3416 * which also includes the event header.
3417 *
3418 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3419 * If NULL is returned, then nothing has been allocated or locked.
3420 */
3421struct ring_buffer_event *
13292494 3422ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
7a8e76a3
SR
3423{
3424 struct ring_buffer_per_cpu *cpu_buffer;
3425 struct ring_buffer_event *event;
5168ae50 3426 int cpu;
7a8e76a3 3427
bf41a158 3428 /* If we are tracing schedule, we don't want to recurse */
5168ae50 3429 preempt_disable_notrace();
bf41a158 3430
3205f806 3431 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 3432 goto out;
261842b7 3433
7a8e76a3
SR
3434 cpu = raw_smp_processor_id();
3435
3205f806 3436 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 3437 goto out;
7a8e76a3
SR
3438
3439 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 3440
3205f806 3441 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 3442 goto out;
7a8e76a3 3443
3205f806 3444 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 3445 goto out;
7a8e76a3 3446
58a09ec6
SRRH
3447 if (unlikely(trace_recursive_lock(cpu_buffer)))
3448 goto out;
3449
62f0b3eb 3450 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3451 if (!event)
58a09ec6 3452 goto out_unlock;
7a8e76a3
SR
3453
3454 return event;
3455
58a09ec6
SRRH
3456 out_unlock:
3457 trace_recursive_unlock(cpu_buffer);
d769041f 3458 out:
5168ae50 3459 preempt_enable_notrace();
7a8e76a3
SR
3460 return NULL;
3461}
c4f50183 3462EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 3463
a1863c21
SR
3464/*
3465 * Decrement the entries to the page that an event is on.
3466 * The event does not even need to exist, only the pointer
3467 * to the page it is on. This may only be called before the commit
3468 * takes place.
3469 */
3470static inline void
3471rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3472 struct ring_buffer_event *event)
3473{
3474 unsigned long addr = (unsigned long)event;
3475 struct buffer_page *bpage = cpu_buffer->commit_page;
3476 struct buffer_page *start;
3477
3478 addr &= PAGE_MASK;
3479
3480 /* Do the likely case first */
3481 if (likely(bpage->page == (void *)addr)) {
3482 local_dec(&bpage->entries);
3483 return;
3484 }
3485
3486 /*
3487 * Because the commit page may be on the reader page we
3488 * start with the next page and check the end loop there.
3489 */
3490 rb_inc_page(cpu_buffer, &bpage);
3491 start = bpage;
3492 do {
3493 if (bpage->page == (void *)addr) {
3494 local_dec(&bpage->entries);
3495 return;
3496 }
3497 rb_inc_page(cpu_buffer, &bpage);
3498 } while (bpage != start);
3499
3500 /* commit not part of this buffer?? */
3501 RB_WARN_ON(cpu_buffer, 1);
3502}
3503
fa1b47dd
SR
3504/**
3505 * ring_buffer_commit_discard - discard an event that has not been committed
3506 * @buffer: the ring buffer
3507 * @event: non committed event to discard
3508 *
dc892f73
SR
3509 * Sometimes an event that is in the ring buffer needs to be ignored.
3510 * This function lets the user discard an event in the ring buffer
3511 * and then that event will not be read later.
3512 *
6167c205 3513 * This function only works if it is called before the item has been
dc892f73 3514 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
3515 * if another event has not been added behind it.
3516 *
3517 * If another event has been added behind it, it will set the event
3518 * up as discarded, and perform the commit.
3519 *
3520 * If this function is called, do not call ring_buffer_unlock_commit on
3521 * the event.
3522 */
13292494 3523void ring_buffer_discard_commit(struct trace_buffer *buffer,
fa1b47dd
SR
3524 struct ring_buffer_event *event)
3525{
3526 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
3527 int cpu;
3528
3529 /* The event is discarded regardless */
f3b9aae1 3530 rb_event_discard(event);
fa1b47dd 3531
fa743953
SR
3532 cpu = smp_processor_id();
3533 cpu_buffer = buffer->buffers[cpu];
3534
fa1b47dd
SR
3535 /*
3536 * This must only be called if the event has not been
3537 * committed yet. Thus we can assume that preemption
3538 * is still disabled.
3539 */
fa743953 3540 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3541
a1863c21 3542 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3543 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3544 goto out;
fa1b47dd 3545
fa1b47dd 3546 out:
fa743953 3547 rb_end_commit(cpu_buffer);
fa1b47dd 3548
58a09ec6 3549 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3550
5168ae50 3551 preempt_enable_notrace();
fa1b47dd
SR
3552
3553}
3554EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3555
7a8e76a3
SR
3556/**
3557 * ring_buffer_write - write data to the buffer without reserving
3558 * @buffer: The ring buffer to write to.
3559 * @length: The length of the data being written (excluding the event header)
3560 * @data: The data to write to the buffer.
3561 *
3562 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3563 * one function. If you already have the data to write to the buffer, it
3564 * may be easier to simply call this function.
3565 *
3566 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3567 * and not the length of the event which would hold the header.
3568 */
13292494 3569int ring_buffer_write(struct trace_buffer *buffer,
01e3e710
DS
3570 unsigned long length,
3571 void *data)
7a8e76a3
SR
3572{
3573 struct ring_buffer_per_cpu *cpu_buffer;
3574 struct ring_buffer_event *event;
7a8e76a3
SR
3575 void *body;
3576 int ret = -EBUSY;
5168ae50 3577 int cpu;
7a8e76a3 3578
5168ae50 3579 preempt_disable_notrace();
bf41a158 3580
52fbe9cd
LJ
3581 if (atomic_read(&buffer->record_disabled))
3582 goto out;
3583
7a8e76a3
SR
3584 cpu = raw_smp_processor_id();
3585
9e01c1b7 3586 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3587 goto out;
7a8e76a3
SR
3588
3589 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3590
3591 if (atomic_read(&cpu_buffer->record_disabled))
3592 goto out;
3593
be957c44
SR
3594 if (length > BUF_MAX_DATA_SIZE)
3595 goto out;
3596
985e871b
SRRH
3597 if (unlikely(trace_recursive_lock(cpu_buffer)))
3598 goto out;
3599
62f0b3eb 3600 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3601 if (!event)
985e871b 3602 goto out_unlock;
7a8e76a3
SR
3603
3604 body = rb_event_data(event);
3605
3606 memcpy(body, data, length);
3607
3608 rb_commit(cpu_buffer, event);
3609
15693458
SRRH
3610 rb_wakeups(buffer, cpu_buffer);
3611
7a8e76a3 3612 ret = 0;
985e871b
SRRH
3613
3614 out_unlock:
3615 trace_recursive_unlock(cpu_buffer);
3616
7a8e76a3 3617 out:
5168ae50 3618 preempt_enable_notrace();
7a8e76a3
SR
3619
3620 return ret;
3621}
c4f50183 3622EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3623
da58834c 3624static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3625{
3626 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3627 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3628 struct buffer_page *commit = cpu_buffer->commit_page;
3629
77ae365e
SR
3630 /* In case of error, head will be NULL */
3631 if (unlikely(!head))
da58834c 3632 return true;
77ae365e 3633
bf41a158
SR
3634 return reader->read == rb_page_commit(reader) &&
3635 (commit == reader ||
3636 (commit == head &&
3637 head->read == rb_page_commit(commit)));
3638}
3639
7a8e76a3
SR
3640/**
3641 * ring_buffer_record_disable - stop all writes into the buffer
3642 * @buffer: The ring buffer to stop writes to.
3643 *
3644 * This prevents all writes to the buffer. Any attempt to write
3645 * to the buffer after this will fail and return NULL.
3646 *
74401729 3647 * The caller should call synchronize_rcu() after this.
7a8e76a3 3648 */
13292494 3649void ring_buffer_record_disable(struct trace_buffer *buffer)
7a8e76a3
SR
3650{
3651 atomic_inc(&buffer->record_disabled);
3652}
c4f50183 3653EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3654
3655/**
3656 * ring_buffer_record_enable - enable writes to the buffer
3657 * @buffer: The ring buffer to enable writes
3658 *
3659 * Note, multiple disables will need the same number of enables
c41b20e7 3660 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3661 */
13292494 3662void ring_buffer_record_enable(struct trace_buffer *buffer)
7a8e76a3
SR
3663{
3664 atomic_dec(&buffer->record_disabled);
3665}
c4f50183 3666EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3667
499e5470
SR
3668/**
3669 * ring_buffer_record_off - stop all writes into the buffer
3670 * @buffer: The ring buffer to stop writes to.
3671 *
3672 * This prevents all writes to the buffer. Any attempt to write
3673 * to the buffer after this will fail and return NULL.
3674 *
3675 * This is different than ring_buffer_record_disable() as
87abb3b1 3676 * it works like an on/off switch, where as the disable() version
499e5470
SR
3677 * must be paired with a enable().
3678 */
13292494 3679void ring_buffer_record_off(struct trace_buffer *buffer)
499e5470
SR
3680{
3681 unsigned int rd;
3682 unsigned int new_rd;
3683
3684 do {
3685 rd = atomic_read(&buffer->record_disabled);
3686 new_rd = rd | RB_BUFFER_OFF;
3687 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3688}
3689EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3690
3691/**
3692 * ring_buffer_record_on - restart writes into the buffer
3693 * @buffer: The ring buffer to start writes to.
3694 *
3695 * This enables all writes to the buffer that was disabled by
3696 * ring_buffer_record_off().
3697 *
3698 * This is different than ring_buffer_record_enable() as
87abb3b1 3699 * it works like an on/off switch, where as the enable() version
499e5470
SR
3700 * must be paired with a disable().
3701 */
13292494 3702void ring_buffer_record_on(struct trace_buffer *buffer)
499e5470
SR
3703{
3704 unsigned int rd;
3705 unsigned int new_rd;
3706
3707 do {
3708 rd = atomic_read(&buffer->record_disabled);
3709 new_rd = rd & ~RB_BUFFER_OFF;
3710 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3711}
3712EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3713
3714/**
3715 * ring_buffer_record_is_on - return true if the ring buffer can write
3716 * @buffer: The ring buffer to see if write is enabled
3717 *
3718 * Returns true if the ring buffer is in a state that it accepts writes.
3719 */
13292494 3720bool ring_buffer_record_is_on(struct trace_buffer *buffer)
499e5470
SR
3721{
3722 return !atomic_read(&buffer->record_disabled);
3723}
3724
73c8d894
MH
3725/**
3726 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3727 * @buffer: The ring buffer to see if write is set enabled
3728 *
3729 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3730 * Note that this does NOT mean it is in a writable state.
3731 *
3732 * It may return true when the ring buffer has been disabled by
3733 * ring_buffer_record_disable(), as that is a temporary disabling of
3734 * the ring buffer.
3735 */
13292494 3736bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
73c8d894
MH
3737{
3738 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3739}
3740
7a8e76a3
SR
3741/**
3742 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3743 * @buffer: The ring buffer to stop writes to.
3744 * @cpu: The CPU buffer to stop
3745 *
3746 * This prevents all writes to the buffer. Any attempt to write
3747 * to the buffer after this will fail and return NULL.
3748 *
74401729 3749 * The caller should call synchronize_rcu() after this.
7a8e76a3 3750 */
13292494 3751void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3752{
3753 struct ring_buffer_per_cpu *cpu_buffer;
3754
9e01c1b7 3755 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3756 return;
7a8e76a3
SR
3757
3758 cpu_buffer = buffer->buffers[cpu];
3759 atomic_inc(&cpu_buffer->record_disabled);
3760}
c4f50183 3761EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3762
3763/**
3764 * ring_buffer_record_enable_cpu - enable writes to the buffer
3765 * @buffer: The ring buffer to enable writes
3766 * @cpu: The CPU to enable.
3767 *
3768 * Note, multiple disables will need the same number of enables
c41b20e7 3769 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3770 */
13292494 3771void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3772{
3773 struct ring_buffer_per_cpu *cpu_buffer;
3774
9e01c1b7 3775 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3776 return;
7a8e76a3
SR
3777
3778 cpu_buffer = buffer->buffers[cpu];
3779 atomic_dec(&cpu_buffer->record_disabled);
3780}
c4f50183 3781EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3782
f6195aa0
SR
3783/*
3784 * The total entries in the ring buffer is the running counter
3785 * of entries entered into the ring buffer, minus the sum of
3786 * the entries read from the ring buffer and the number of
3787 * entries that were overwritten.
3788 */
3789static inline unsigned long
3790rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3791{
3792 return local_read(&cpu_buffer->entries) -
3793 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3794}
3795
c64e148a
VN
3796/**
3797 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3798 * @buffer: The ring buffer
3799 * @cpu: The per CPU buffer to read from.
3800 */
13292494 3801u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
c64e148a
VN
3802{
3803 unsigned long flags;
3804 struct ring_buffer_per_cpu *cpu_buffer;
3805 struct buffer_page *bpage;
da830e58 3806 u64 ret = 0;
c64e148a
VN
3807
3808 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3809 return 0;
3810
3811 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3812 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3813 /*
3814 * if the tail is on reader_page, oldest time stamp is on the reader
3815 * page
3816 */
3817 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3818 bpage = cpu_buffer->reader_page;
3819 else
3820 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3821 if (bpage)
3822 ret = bpage->page->time_stamp;
7115e3fc 3823 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3824
3825 return ret;
3826}
3827EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3828
3829/**
3830 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3831 * @buffer: The ring buffer
3832 * @cpu: The per CPU buffer to read from.
3833 */
13292494 3834unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
c64e148a
VN
3835{
3836 struct ring_buffer_per_cpu *cpu_buffer;
3837 unsigned long ret;
3838
3839 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3840 return 0;
3841
3842 cpu_buffer = buffer->buffers[cpu];
3843 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3844
3845 return ret;
3846}
3847EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3848
7a8e76a3
SR
3849/**
3850 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3851 * @buffer: The ring buffer
3852 * @cpu: The per CPU buffer to get the entries from.
3853 */
13292494 3854unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3855{
3856 struct ring_buffer_per_cpu *cpu_buffer;
3857
9e01c1b7 3858 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3859 return 0;
7a8e76a3
SR
3860
3861 cpu_buffer = buffer->buffers[cpu];
554f786e 3862
f6195aa0 3863 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3864}
c4f50183 3865EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3866
3867/**
884bfe89
SP
3868 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3869 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3870 * @buffer: The ring buffer
3871 * @cpu: The per CPU buffer to get the number of overruns from
3872 */
13292494 3873unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3874{
3875 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3876 unsigned long ret;
7a8e76a3 3877
9e01c1b7 3878 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3879 return 0;
7a8e76a3
SR
3880
3881 cpu_buffer = buffer->buffers[cpu];
77ae365e 3882 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3883
3884 return ret;
7a8e76a3 3885}
c4f50183 3886EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3887
f0d2c681 3888/**
884bfe89
SP
3889 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3890 * commits failing due to the buffer wrapping around while there are uncommitted
3891 * events, such as during an interrupt storm.
f0d2c681
SR
3892 * @buffer: The ring buffer
3893 * @cpu: The per CPU buffer to get the number of overruns from
3894 */
3895unsigned long
13292494 3896ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
f0d2c681
SR
3897{
3898 struct ring_buffer_per_cpu *cpu_buffer;
3899 unsigned long ret;
3900
3901 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3902 return 0;
3903
3904 cpu_buffer = buffer->buffers[cpu];
77ae365e 3905 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3906
3907 return ret;
3908}
3909EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3910
884bfe89
SP
3911/**
3912 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3913 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3914 * @buffer: The ring buffer
3915 * @cpu: The per CPU buffer to get the number of overruns from
3916 */
3917unsigned long
13292494 3918ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
884bfe89
SP
3919{
3920 struct ring_buffer_per_cpu *cpu_buffer;
3921 unsigned long ret;
3922
3923 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3924 return 0;
3925
3926 cpu_buffer = buffer->buffers[cpu];
3927 ret = local_read(&cpu_buffer->dropped_events);
3928
3929 return ret;
3930}
3931EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3932
ad964704
SRRH
3933/**
3934 * ring_buffer_read_events_cpu - get the number of events successfully read
3935 * @buffer: The ring buffer
3936 * @cpu: The per CPU buffer to get the number of events read
3937 */
3938unsigned long
13292494 3939ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
ad964704
SRRH
3940{
3941 struct ring_buffer_per_cpu *cpu_buffer;
3942
3943 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3944 return 0;
3945
3946 cpu_buffer = buffer->buffers[cpu];
3947 return cpu_buffer->read;
3948}
3949EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3950
7a8e76a3
SR
3951/**
3952 * ring_buffer_entries - get the number of entries in a buffer
3953 * @buffer: The ring buffer
3954 *
3955 * Returns the total number of entries in the ring buffer
3956 * (all CPU entries)
3957 */
13292494 3958unsigned long ring_buffer_entries(struct trace_buffer *buffer)
7a8e76a3
SR
3959{
3960 struct ring_buffer_per_cpu *cpu_buffer;
3961 unsigned long entries = 0;
3962 int cpu;
3963
3964 /* if you care about this being correct, lock the buffer */
3965 for_each_buffer_cpu(buffer, cpu) {
3966 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3967 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3968 }
3969
3970 return entries;
3971}
c4f50183 3972EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3973
3974/**
67b394f7 3975 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3976 * @buffer: The ring buffer
3977 *
3978 * Returns the total number of overruns in the ring buffer
3979 * (all CPU entries)
3980 */
13292494 3981unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
7a8e76a3
SR
3982{
3983 struct ring_buffer_per_cpu *cpu_buffer;
3984 unsigned long overruns = 0;
3985 int cpu;
3986
3987 /* if you care about this being correct, lock the buffer */
3988 for_each_buffer_cpu(buffer, cpu) {
3989 cpu_buffer = buffer->buffers[cpu];
77ae365e 3990 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3991 }
3992
3993 return overruns;
3994}
c4f50183 3995EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3996
642edba5 3997static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3998{
3999 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4000
d769041f 4001 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
4002 iter->head_page = cpu_buffer->reader_page;
4003 iter->head = cpu_buffer->reader_page->read;
785888c5 4004 iter->next_event = iter->head;
651e22f2
SRRH
4005
4006 iter->cache_reader_page = iter->head_page;
24607f11 4007 iter->cache_read = cpu_buffer->read;
651e22f2 4008
28e3fc56 4009 if (iter->head) {
d769041f 4010 iter->read_stamp = cpu_buffer->read_stamp;
28e3fc56
SRV
4011 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4012 } else {
abc9b56d 4013 iter->read_stamp = iter->head_page->page->time_stamp;
28e3fc56
SRV
4014 iter->page_stamp = iter->read_stamp;
4015 }
642edba5 4016}
f83c9d0f 4017
642edba5
SR
4018/**
4019 * ring_buffer_iter_reset - reset an iterator
4020 * @iter: The iterator to reset
4021 *
4022 * Resets the iterator, so that it will start from the beginning
4023 * again.
4024 */
4025void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4026{
554f786e 4027 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
4028 unsigned long flags;
4029
554f786e
SR
4030 if (!iter)
4031 return;
4032
4033 cpu_buffer = iter->cpu_buffer;
4034
5389f6fa 4035 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 4036 rb_iter_reset(iter);
5389f6fa 4037 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4038}
c4f50183 4039EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
4040
4041/**
4042 * ring_buffer_iter_empty - check if an iterator has no more to read
4043 * @iter: The iterator to check
4044 */
4045int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4046{
4047 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
4048 struct buffer_page *reader;
4049 struct buffer_page *head_page;
4050 struct buffer_page *commit_page;
ead6ecfd 4051 struct buffer_page *curr_commit_page;
78f7a45d 4052 unsigned commit;
ead6ecfd
SRV
4053 u64 curr_commit_ts;
4054 u64 commit_ts;
7a8e76a3
SR
4055
4056 cpu_buffer = iter->cpu_buffer;
78f7a45d
SRV
4057 reader = cpu_buffer->reader_page;
4058 head_page = cpu_buffer->head_page;
4059 commit_page = cpu_buffer->commit_page;
ead6ecfd
SRV
4060 commit_ts = commit_page->page->time_stamp;
4061
4062 /*
4063 * When the writer goes across pages, it issues a cmpxchg which
4064 * is a mb(), which will synchronize with the rmb here.
4065 * (see rb_tail_page_update())
4066 */
4067 smp_rmb();
78f7a45d 4068 commit = rb_page_commit(commit_page);
ead6ecfd
SRV
4069 /* We want to make sure that the commit page doesn't change */
4070 smp_rmb();
4071
4072 /* Make sure commit page didn't change */
4073 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4074 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4075
4076 /* If the commit page changed, then there's more data */
4077 if (curr_commit_page != commit_page ||
4078 curr_commit_ts != commit_ts)
4079 return 0;
78f7a45d 4080
ead6ecfd 4081 /* Still racy, as it may return a false positive, but that's OK */
785888c5 4082 return ((iter->head_page == commit_page && iter->head >= commit) ||
78f7a45d
SRV
4083 (iter->head_page == reader && commit_page == head_page &&
4084 head_page->read == commit &&
4085 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 4086}
c4f50183 4087EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
4088
4089static void
4090rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4091 struct ring_buffer_event *event)
4092{
4093 u64 delta;
4094
334d4169 4095 switch (event->type_len) {
7a8e76a3
SR
4096 case RINGBUF_TYPE_PADDING:
4097 return;
4098
4099 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 4100 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
4101 cpu_buffer->read_stamp += delta;
4102 return;
4103
4104 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4105 delta = ring_buffer_event_time_stamp(event);
4106 cpu_buffer->read_stamp = delta;
7a8e76a3
SR
4107 return;
4108
4109 case RINGBUF_TYPE_DATA:
4110 cpu_buffer->read_stamp += event->time_delta;
4111 return;
4112
4113 default:
da4d401a 4114 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4115 }
4116 return;
4117}
4118
4119static void
4120rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4121 struct ring_buffer_event *event)
4122{
4123 u64 delta;
4124
334d4169 4125 switch (event->type_len) {
7a8e76a3
SR
4126 case RINGBUF_TYPE_PADDING:
4127 return;
4128
4129 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 4130 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
4131 iter->read_stamp += delta;
4132 return;
4133
4134 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4135 delta = ring_buffer_event_time_stamp(event);
4136 iter->read_stamp = delta;
7a8e76a3
SR
4137 return;
4138
4139 case RINGBUF_TYPE_DATA:
4140 iter->read_stamp += event->time_delta;
4141 return;
4142
4143 default:
da4d401a 4144 RB_WARN_ON(iter->cpu_buffer, 1);
7a8e76a3
SR
4145 }
4146 return;
4147}
4148
d769041f
SR
4149static struct buffer_page *
4150rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 4151{
d769041f 4152 struct buffer_page *reader = NULL;
66a8cb95 4153 unsigned long overwrite;
d769041f 4154 unsigned long flags;
818e3dd3 4155 int nr_loops = 0;
77ae365e 4156 int ret;
d769041f 4157
3e03fb7f 4158 local_irq_save(flags);
0199c4e6 4159 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
4160
4161 again:
818e3dd3
SR
4162 /*
4163 * This should normally only loop twice. But because the
4164 * start of the reader inserts an empty page, it causes
4165 * a case where we will loop three times. There should be no
4166 * reason to loop four times (that I know of).
4167 */
3e89c7bb 4168 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
4169 reader = NULL;
4170 goto out;
4171 }
4172
d769041f
SR
4173 reader = cpu_buffer->reader_page;
4174
4175 /* If there's more to read, return this page */
bf41a158 4176 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
4177 goto out;
4178
4179 /* Never should we have an index greater than the size */
3e89c7bb
SR
4180 if (RB_WARN_ON(cpu_buffer,
4181 cpu_buffer->reader_page->read > rb_page_size(reader)))
4182 goto out;
d769041f
SR
4183
4184 /* check if we caught up to the tail */
4185 reader = NULL;
bf41a158 4186 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 4187 goto out;
7a8e76a3 4188
a5fb8331
SR
4189 /* Don't bother swapping if the ring buffer is empty */
4190 if (rb_num_of_entries(cpu_buffer) == 0)
4191 goto out;
4192
7a8e76a3 4193 /*
d769041f 4194 * Reset the reader page to size zero.
7a8e76a3 4195 */
77ae365e
SR
4196 local_set(&cpu_buffer->reader_page->write, 0);
4197 local_set(&cpu_buffer->reader_page->entries, 0);
4198 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 4199 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 4200
77ae365e
SR
4201 spin:
4202 /*
4203 * Splice the empty reader page into the list around the head.
4204 */
4205 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
4206 if (!reader)
4207 goto out;
0e1ff5d7 4208 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 4209 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 4210
3adc54fa
SR
4211 /*
4212 * cpu_buffer->pages just needs to point to the buffer, it
4213 * has no specific buffer page to point to. Lets move it out
25985edc 4214 * of our way so we don't accidentally swap it.
3adc54fa
SR
4215 */
4216 cpu_buffer->pages = reader->list.prev;
4217
77ae365e
SR
4218 /* The reader page will be pointing to the new head */
4219 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 4220
66a8cb95
SR
4221 /*
4222 * We want to make sure we read the overruns after we set up our
4223 * pointers to the next object. The writer side does a
4224 * cmpxchg to cross pages which acts as the mb on the writer
4225 * side. Note, the reader will constantly fail the swap
4226 * while the writer is updating the pointers, so this
4227 * guarantees that the overwrite recorded here is the one we
4228 * want to compare with the last_overrun.
4229 */
4230 smp_mb();
4231 overwrite = local_read(&(cpu_buffer->overrun));
4232
77ae365e
SR
4233 /*
4234 * Here's the tricky part.
4235 *
4236 * We need to move the pointer past the header page.
4237 * But we can only do that if a writer is not currently
4238 * moving it. The page before the header page has the
4239 * flag bit '1' set if it is pointing to the page we want.
4240 * but if the writer is in the process of moving it
4241 * than it will be '2' or already moved '0'.
4242 */
4243
4244 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
4245
4246 /*
77ae365e 4247 * If we did not convert it, then we must try again.
7a8e76a3 4248 */
77ae365e
SR
4249 if (!ret)
4250 goto spin;
7a8e76a3 4251
77ae365e 4252 /*
2c2b0a78 4253 * Yay! We succeeded in replacing the page.
77ae365e
SR
4254 *
4255 * Now make the new head point back to the reader page.
4256 */
5ded3dc6 4257 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 4258 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f 4259
2c2b0a78
SRV
4260 local_inc(&cpu_buffer->pages_read);
4261
d769041f
SR
4262 /* Finally update the reader page to the new head */
4263 cpu_buffer->reader_page = reader;
b81f472a 4264 cpu_buffer->reader_page->read = 0;
d769041f 4265
66a8cb95
SR
4266 if (overwrite != cpu_buffer->last_overrun) {
4267 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4268 cpu_buffer->last_overrun = overwrite;
4269 }
4270
d769041f
SR
4271 goto again;
4272
4273 out:
b81f472a
SRRH
4274 /* Update the read_stamp on the first event */
4275 if (reader && reader->read == 0)
4276 cpu_buffer->read_stamp = reader->page->time_stamp;
4277
0199c4e6 4278 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 4279 local_irq_restore(flags);
d769041f
SR
4280
4281 return reader;
4282}
4283
4284static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4285{
4286 struct ring_buffer_event *event;
4287 struct buffer_page *reader;
4288 unsigned length;
4289
4290 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 4291
d769041f 4292 /* This function should not be called when buffer is empty */
3e89c7bb
SR
4293 if (RB_WARN_ON(cpu_buffer, !reader))
4294 return;
7a8e76a3 4295
d769041f
SR
4296 event = rb_reader_event(cpu_buffer);
4297
a1863c21 4298 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 4299 cpu_buffer->read++;
d769041f
SR
4300
4301 rb_update_read_stamp(cpu_buffer, event);
4302
4303 length = rb_event_length(event);
6f807acd 4304 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
4305}
4306
4307static void rb_advance_iter(struct ring_buffer_iter *iter)
4308{
7a8e76a3 4309 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
4310
4311 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4312
785888c5
SRV
4313 /* If head == next_event then we need to jump to the next event */
4314 if (iter->head == iter->next_event) {
4315 /* If the event gets overwritten again, there's nothing to do */
4316 if (rb_iter_head_event(iter) == NULL)
4317 return;
4318 }
4319
4320 iter->head = iter->next_event;
4321
7a8e76a3
SR
4322 /*
4323 * Check if we are at the end of the buffer.
4324 */
785888c5 4325 if (iter->next_event >= rb_page_size(iter->head_page)) {
ea05b57c
SR
4326 /* discarded commits can make the page empty */
4327 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 4328 return;
d769041f 4329 rb_inc_iter(iter);
7a8e76a3
SR
4330 return;
4331 }
4332
785888c5 4333 rb_update_iter_read_stamp(iter, iter->event);
7a8e76a3
SR
4334}
4335
66a8cb95
SR
4336static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4337{
4338 return cpu_buffer->lost_events;
4339}
4340
f83c9d0f 4341static struct ring_buffer_event *
66a8cb95
SR
4342rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4343 unsigned long *lost_events)
7a8e76a3 4344{
7a8e76a3 4345 struct ring_buffer_event *event;
d769041f 4346 struct buffer_page *reader;
818e3dd3 4347 int nr_loops = 0;
7a8e76a3 4348
dc4e2801
TZ
4349 if (ts)
4350 *ts = 0;
7a8e76a3 4351 again:
818e3dd3 4352 /*
69d1b839
SR
4353 * We repeat when a time extend is encountered.
4354 * Since the time extend is always attached to a data event,
4355 * we should never loop more than once.
4356 * (We never hit the following condition more than twice).
818e3dd3 4357 */
69d1b839 4358 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 4359 return NULL;
818e3dd3 4360
d769041f
SR
4361 reader = rb_get_reader_page(cpu_buffer);
4362 if (!reader)
7a8e76a3
SR
4363 return NULL;
4364
d769041f 4365 event = rb_reader_event(cpu_buffer);
7a8e76a3 4366
334d4169 4367 switch (event->type_len) {
7a8e76a3 4368 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4369 if (rb_null_event(event))
4370 RB_WARN_ON(cpu_buffer, 1);
4371 /*
4372 * Because the writer could be discarding every
4373 * event it creates (which would probably be bad)
4374 * if we were to go back to "again" then we may never
4375 * catch up, and will trigger the warn on, or lock
4376 * the box. Return the padding, and we will release
4377 * the current locks, and try again.
4378 */
2d622719 4379 return event;
7a8e76a3
SR
4380
4381 case RINGBUF_TYPE_TIME_EXTEND:
4382 /* Internal data, OK to advance */
d769041f 4383 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4384 goto again;
4385
4386 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4387 if (ts) {
4388 *ts = ring_buffer_event_time_stamp(event);
4389 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4390 cpu_buffer->cpu, ts);
4391 }
4392 /* Internal data, OK to advance */
d769041f 4393 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4394 goto again;
4395
4396 case RINGBUF_TYPE_DATA:
dc4e2801 4397 if (ts && !(*ts)) {
7a8e76a3 4398 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 4399 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 4400 cpu_buffer->cpu, ts);
7a8e76a3 4401 }
66a8cb95
SR
4402 if (lost_events)
4403 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
4404 return event;
4405
4406 default:
da4d401a 4407 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4408 }
4409
4410 return NULL;
4411}
c4f50183 4412EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 4413
f83c9d0f
SR
4414static struct ring_buffer_event *
4415rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3 4416{
13292494 4417 struct trace_buffer *buffer;
7a8e76a3
SR
4418 struct ring_buffer_per_cpu *cpu_buffer;
4419 struct ring_buffer_event *event;
818e3dd3 4420 int nr_loops = 0;
7a8e76a3 4421
dc4e2801
TZ
4422 if (ts)
4423 *ts = 0;
4424
7a8e76a3
SR
4425 cpu_buffer = iter->cpu_buffer;
4426 buffer = cpu_buffer->buffer;
4427
492a74f4
SR
4428 /*
4429 * Check if someone performed a consuming read to
4430 * the buffer. A consuming read invalidates the iterator
4431 * and we need to reset the iterator in this case.
4432 */
4433 if (unlikely(iter->cache_read != cpu_buffer->read ||
4434 iter->cache_reader_page != cpu_buffer->reader_page))
4435 rb_iter_reset(iter);
4436
7a8e76a3 4437 again:
3c05d748
SR
4438 if (ring_buffer_iter_empty(iter))
4439 return NULL;
4440
818e3dd3 4441 /*
3d2353de
SRV
4442 * As the writer can mess with what the iterator is trying
4443 * to read, just give up if we fail to get an event after
4444 * three tries. The iterator is not as reliable when reading
4445 * the ring buffer with an active write as the consumer is.
4446 * Do not warn if the three failures is reached.
818e3dd3 4447 */
3d2353de 4448 if (++nr_loops > 3)
818e3dd3 4449 return NULL;
818e3dd3 4450
7a8e76a3
SR
4451 if (rb_per_cpu_empty(cpu_buffer))
4452 return NULL;
4453
10e83fd0 4454 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
4455 rb_inc_iter(iter);
4456 goto again;
4457 }
4458
7a8e76a3 4459 event = rb_iter_head_event(iter);
3d2353de 4460 if (!event)
785888c5 4461 goto again;
7a8e76a3 4462
334d4169 4463 switch (event->type_len) {
7a8e76a3 4464 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4465 if (rb_null_event(event)) {
4466 rb_inc_iter(iter);
4467 goto again;
4468 }
4469 rb_advance_iter(iter);
4470 return event;
7a8e76a3
SR
4471
4472 case RINGBUF_TYPE_TIME_EXTEND:
4473 /* Internal data, OK to advance */
4474 rb_advance_iter(iter);
4475 goto again;
4476
4477 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4478 if (ts) {
4479 *ts = ring_buffer_event_time_stamp(event);
4480 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4481 cpu_buffer->cpu, ts);
4482 }
4483 /* Internal data, OK to advance */
7a8e76a3
SR
4484 rb_advance_iter(iter);
4485 goto again;
4486
4487 case RINGBUF_TYPE_DATA:
dc4e2801 4488 if (ts && !(*ts)) {
7a8e76a3 4489 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
4490 ring_buffer_normalize_time_stamp(buffer,
4491 cpu_buffer->cpu, ts);
7a8e76a3
SR
4492 }
4493 return event;
4494
4495 default:
da4d401a 4496 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4497 }
4498
4499 return NULL;
4500}
c4f50183 4501EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 4502
289a5a25 4503static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 4504{
289a5a25
SRRH
4505 if (likely(!in_nmi())) {
4506 raw_spin_lock(&cpu_buffer->reader_lock);
4507 return true;
4508 }
4509
8d707e8e
SR
4510 /*
4511 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
4512 * trylock must be used to prevent a deadlock if the NMI
4513 * preempted a task that holds the ring buffer locks. If
4514 * we get the lock then all is fine, if not, then continue
4515 * to do the read, but this can corrupt the ring buffer,
4516 * so it must be permanently disabled from future writes.
4517 * Reading from NMI is a oneshot deal.
8d707e8e 4518 */
289a5a25
SRRH
4519 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4520 return true;
8d707e8e 4521
289a5a25
SRRH
4522 /* Continue without locking, but disable the ring buffer */
4523 atomic_inc(&cpu_buffer->record_disabled);
4524 return false;
4525}
4526
4527static inline void
4528rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4529{
4530 if (likely(locked))
4531 raw_spin_unlock(&cpu_buffer->reader_lock);
4532 return;
8d707e8e
SR
4533}
4534
f83c9d0f
SR
4535/**
4536 * ring_buffer_peek - peek at the next event to be read
4537 * @buffer: The ring buffer to read
4538 * @cpu: The cpu to peak at
4539 * @ts: The timestamp counter of this event.
66a8cb95 4540 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
4541 *
4542 * This will return the event that will be read next, but does
4543 * not consume the data.
4544 */
4545struct ring_buffer_event *
13292494 4546ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4547 unsigned long *lost_events)
f83c9d0f
SR
4548{
4549 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 4550 struct ring_buffer_event *event;
f83c9d0f 4551 unsigned long flags;
289a5a25 4552 bool dolock;
f83c9d0f 4553
554f786e 4554 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4555 return NULL;
554f786e 4556
2d622719 4557 again:
8d707e8e 4558 local_irq_save(flags);
289a5a25 4559 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 4560 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
4561 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4562 rb_advance_reader(cpu_buffer);
289a5a25 4563 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4564 local_irq_restore(flags);
f83c9d0f 4565
1b959e18 4566 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4567 goto again;
2d622719 4568
f83c9d0f
SR
4569 return event;
4570}
4571
c9b7a4a7
SRV
4572/** ring_buffer_iter_dropped - report if there are dropped events
4573 * @iter: The ring buffer iterator
4574 *
4575 * Returns true if there was dropped events since the last peek.
4576 */
4577bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4578{
4579 bool ret = iter->missed_events != 0;
4580
4581 iter->missed_events = 0;
4582 return ret;
4583}
4584EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4585
f83c9d0f
SR
4586/**
4587 * ring_buffer_iter_peek - peek at the next event to be read
4588 * @iter: The ring buffer iterator
4589 * @ts: The timestamp counter of this event.
4590 *
4591 * This will return the event that will be read next, but does
4592 * not increment the iterator.
4593 */
4594struct ring_buffer_event *
4595ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4596{
4597 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4598 struct ring_buffer_event *event;
4599 unsigned long flags;
4600
2d622719 4601 again:
5389f6fa 4602 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4603 event = rb_iter_peek(iter, ts);
5389f6fa 4604 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4605
1b959e18 4606 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4607 goto again;
2d622719 4608
f83c9d0f
SR
4609 return event;
4610}
4611
7a8e76a3
SR
4612/**
4613 * ring_buffer_consume - return an event and consume it
4614 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4615 * @cpu: the cpu to read the buffer from
4616 * @ts: a variable to store the timestamp (may be NULL)
4617 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4618 *
4619 * Returns the next event in the ring buffer, and that event is consumed.
4620 * Meaning, that sequential reads will keep returning a different event,
4621 * and eventually empty the ring buffer if the producer is slower.
4622 */
4623struct ring_buffer_event *
13292494 4624ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4625 unsigned long *lost_events)
7a8e76a3 4626{
554f786e
SR
4627 struct ring_buffer_per_cpu *cpu_buffer;
4628 struct ring_buffer_event *event = NULL;
f83c9d0f 4629 unsigned long flags;
289a5a25 4630 bool dolock;
7a8e76a3 4631
2d622719 4632 again:
554f786e
SR
4633 /* might be called in atomic */
4634 preempt_disable();
4635
9e01c1b7 4636 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4637 goto out;
7a8e76a3 4638
554f786e 4639 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4640 local_irq_save(flags);
289a5a25 4641 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4642
66a8cb95
SR
4643 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4644 if (event) {
4645 cpu_buffer->lost_events = 0;
469535a5 4646 rb_advance_reader(cpu_buffer);
66a8cb95 4647 }
7a8e76a3 4648
289a5a25 4649 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4650 local_irq_restore(flags);
f83c9d0f 4651
554f786e
SR
4652 out:
4653 preempt_enable();
4654
1b959e18 4655 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4656 goto again;
2d622719 4657
7a8e76a3
SR
4658 return event;
4659}
c4f50183 4660EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4661
4662/**
72c9ddfd 4663 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4664 * @buffer: The ring buffer to read from
4665 * @cpu: The cpu buffer to iterate over
31b265b3 4666 * @flags: gfp flags to use for memory allocation
7a8e76a3 4667 *
72c9ddfd
DM
4668 * This performs the initial preparations necessary to iterate
4669 * through the buffer. Memory is allocated, buffer recording
4670 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4671 *
6167c205 4672 * Disabling buffer recording prevents the reading from being
72c9ddfd
DM
4673 * corrupted. This is not a consuming read, so a producer is not
4674 * expected.
4675 *
4676 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4677 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4678 * Afterwards, ring_buffer_read_start is invoked to get things going
4679 * for real.
4680 *
d611851b 4681 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4682 */
4683struct ring_buffer_iter *
13292494 4684ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
7a8e76a3
SR
4685{
4686 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4687 struct ring_buffer_iter *iter;
7a8e76a3 4688
9e01c1b7 4689 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4690 return NULL;
7a8e76a3 4691
785888c5 4692 iter = kzalloc(sizeof(*iter), flags);
7a8e76a3 4693 if (!iter)
8aabee57 4694 return NULL;
7a8e76a3 4695
785888c5
SRV
4696 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4697 if (!iter->event) {
4698 kfree(iter);
4699 return NULL;
4700 }
4701
7a8e76a3
SR
4702 cpu_buffer = buffer->buffers[cpu];
4703
4704 iter->cpu_buffer = cpu_buffer;
4705
07b8b10e 4706 atomic_inc(&cpu_buffer->resize_disabled);
72c9ddfd
DM
4707
4708 return iter;
4709}
4710EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4711
4712/**
4713 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4714 *
4715 * All previously invoked ring_buffer_read_prepare calls to prepare
4716 * iterators will be synchronized. Afterwards, read_buffer_read_start
4717 * calls on those iterators are allowed.
4718 */
4719void
4720ring_buffer_read_prepare_sync(void)
4721{
74401729 4722 synchronize_rcu();
72c9ddfd
DM
4723}
4724EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4725
4726/**
4727 * ring_buffer_read_start - start a non consuming read of the buffer
4728 * @iter: The iterator returned by ring_buffer_read_prepare
4729 *
4730 * This finalizes the startup of an iteration through the buffer.
4731 * The iterator comes from a call to ring_buffer_read_prepare and
4732 * an intervening ring_buffer_read_prepare_sync must have been
4733 * performed.
4734 *
d611851b 4735 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4736 */
4737void
4738ring_buffer_read_start(struct ring_buffer_iter *iter)
4739{
4740 struct ring_buffer_per_cpu *cpu_buffer;
4741 unsigned long flags;
4742
4743 if (!iter)
4744 return;
4745
4746 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4747
5389f6fa 4748 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4749 arch_spin_lock(&cpu_buffer->lock);
642edba5 4750 rb_iter_reset(iter);
0199c4e6 4751 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4752 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4753}
c4f50183 4754EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4755
4756/**
d611851b 4757 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4758 * @iter: The iterator retrieved by ring_buffer_start
4759 *
4760 * This re-enables the recording to the buffer, and frees the
4761 * iterator.
4762 */
4763void
4764ring_buffer_read_finish(struct ring_buffer_iter *iter)
4765{
4766 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4767 unsigned long flags;
7a8e76a3 4768
659f451f
SR
4769 /*
4770 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4771 * to check the integrity of the ring buffer.
4772 * Must prevent readers from trying to read, as the check
4773 * clears the HEAD page and readers require it.
659f451f 4774 */
9366c1ba 4775 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4776 rb_check_pages(cpu_buffer);
9366c1ba 4777 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4778
07b8b10e 4779 atomic_dec(&cpu_buffer->resize_disabled);
785888c5 4780 kfree(iter->event);
7a8e76a3
SR
4781 kfree(iter);
4782}
c4f50183 4783EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4784
4785/**
bc1a72af 4786 * ring_buffer_iter_advance - advance the iterator to the next location
7a8e76a3 4787 * @iter: The ring buffer iterator
7a8e76a3 4788 *
bc1a72af
SRV
4789 * Move the location of the iterator such that the next read will
4790 * be the next location of the iterator.
7a8e76a3 4791 */
bc1a72af 4792void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
7a8e76a3 4793{
f83c9d0f
SR
4794 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4795 unsigned long flags;
7a8e76a3 4796
5389f6fa 4797 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4798
7a8e76a3
SR
4799 rb_advance_iter(iter);
4800
bc1a72af 4801 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4802}
bc1a72af 4803EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
7a8e76a3
SR
4804
4805/**
4806 * ring_buffer_size - return the size of the ring buffer (in bytes)
4807 * @buffer: The ring buffer.
59e7cffe 4808 * @cpu: The CPU to get ring buffer size from.
7a8e76a3 4809 */
13292494 4810unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
7a8e76a3 4811{
438ced17
VN
4812 /*
4813 * Earlier, this method returned
4814 * BUF_PAGE_SIZE * buffer->nr_pages
4815 * Since the nr_pages field is now removed, we have converted this to
4816 * return the per cpu buffer value.
4817 */
4818 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4819 return 0;
4820
4821 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4822}
c4f50183 4823EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4824
4825static void
4826rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4827{
77ae365e
SR
4828 rb_head_page_deactivate(cpu_buffer);
4829
7a8e76a3 4830 cpu_buffer->head_page
3adc54fa 4831 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4832 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4833 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4834 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4835
6f807acd 4836 cpu_buffer->head_page->read = 0;
bf41a158
SR
4837
4838 cpu_buffer->tail_page = cpu_buffer->head_page;
4839 cpu_buffer->commit_page = cpu_buffer->head_page;
4840
4841 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4842 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4843 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4844 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4845 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4846 cpu_buffer->reader_page->read = 0;
7a8e76a3 4847
c64e148a 4848 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4849 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4850 local_set(&cpu_buffer->commit_overrun, 0);
4851 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4852 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4853 local_set(&cpu_buffer->committing, 0);
4854 local_set(&cpu_buffer->commits, 0);
2c2b0a78
SRV
4855 local_set(&cpu_buffer->pages_touched, 0);
4856 local_set(&cpu_buffer->pages_read, 0);
03329f99 4857 cpu_buffer->last_pages_touch = 0;
2c2b0a78 4858 cpu_buffer->shortest_full = 0;
77ae365e 4859 cpu_buffer->read = 0;
c64e148a 4860 cpu_buffer->read_bytes = 0;
69507c06 4861
10464b4a
SRV
4862 rb_time_set(&cpu_buffer->write_stamp, 0);
4863 rb_time_set(&cpu_buffer->before_stamp, 0);
77ae365e 4864
66a8cb95
SR
4865 cpu_buffer->lost_events = 0;
4866 cpu_buffer->last_overrun = 0;
4867
77ae365e 4868 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4869}
4870
b23d7a5f
NP
4871/* Must have disabled the cpu buffer then done a synchronize_rcu */
4872static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4873{
4874 unsigned long flags;
4875
4876 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4877
4878 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4879 goto out;
4880
4881 arch_spin_lock(&cpu_buffer->lock);
4882
4883 rb_reset_cpu(cpu_buffer);
4884
4885 arch_spin_unlock(&cpu_buffer->lock);
4886
4887 out:
4888 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4889}
4890
7a8e76a3
SR
4891/**
4892 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4893 * @buffer: The ring buffer to reset a per cpu buffer of
4894 * @cpu: The CPU buffer to be reset
4895 */
13292494 4896void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
4897{
4898 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 4899
9e01c1b7 4900 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4901 return;
7a8e76a3 4902
bbeb9746
GK
4903 /* prevent another thread from changing buffer sizes */
4904 mutex_lock(&buffer->mutex);
4905
07b8b10e 4906 atomic_inc(&cpu_buffer->resize_disabled);
41ede23e
SR
4907 atomic_inc(&cpu_buffer->record_disabled);
4908
83f40318 4909 /* Make sure all commits have finished */
74401729 4910 synchronize_rcu();
83f40318 4911
b23d7a5f 4912 reset_disabled_cpu_buffer(cpu_buffer);
f83c9d0f 4913
b23d7a5f
NP
4914 atomic_dec(&cpu_buffer->record_disabled);
4915 atomic_dec(&cpu_buffer->resize_disabled);
bbeb9746
GK
4916
4917 mutex_unlock(&buffer->mutex);
b23d7a5f
NP
4918}
4919EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
41b6a95d 4920
b23d7a5f
NP
4921/**
4922 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4923 * @buffer: The ring buffer to reset a per cpu buffer of
4924 * @cpu: The CPU buffer to be reset
4925 */
4926void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4927{
4928 struct ring_buffer_per_cpu *cpu_buffer;
4929 int cpu;
7a8e76a3 4930
bbeb9746
GK
4931 /* prevent another thread from changing buffer sizes */
4932 mutex_lock(&buffer->mutex);
4933
b23d7a5f
NP
4934 for_each_online_buffer_cpu(buffer, cpu) {
4935 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 4936
b23d7a5f
NP
4937 atomic_inc(&cpu_buffer->resize_disabled);
4938 atomic_inc(&cpu_buffer->record_disabled);
4939 }
f83c9d0f 4940
b23d7a5f
NP
4941 /* Make sure all commits have finished */
4942 synchronize_rcu();
41ede23e 4943
b23d7a5f
NP
4944 for_each_online_buffer_cpu(buffer, cpu) {
4945 cpu_buffer = buffer->buffers[cpu];
4946
4947 reset_disabled_cpu_buffer(cpu_buffer);
4948
4949 atomic_dec(&cpu_buffer->record_disabled);
4950 atomic_dec(&cpu_buffer->resize_disabled);
4951 }
bbeb9746
GK
4952
4953 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
4954}
4955
4956/**
4957 * ring_buffer_reset - reset a ring buffer
4958 * @buffer: The ring buffer to reset all cpu buffers
4959 */
13292494 4960void ring_buffer_reset(struct trace_buffer *buffer)
7a8e76a3 4961{
b23d7a5f 4962 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
4963 int cpu;
4964
b23d7a5f
NP
4965 for_each_buffer_cpu(buffer, cpu) {
4966 cpu_buffer = buffer->buffers[cpu];
4967
4968 atomic_inc(&cpu_buffer->resize_disabled);
4969 atomic_inc(&cpu_buffer->record_disabled);
4970 }
4971
4972 /* Make sure all commits have finished */
4973 synchronize_rcu();
4974
4975 for_each_buffer_cpu(buffer, cpu) {
4976 cpu_buffer = buffer->buffers[cpu];
4977
4978 reset_disabled_cpu_buffer(cpu_buffer);
4979
4980 atomic_dec(&cpu_buffer->record_disabled);
4981 atomic_dec(&cpu_buffer->resize_disabled);
4982 }
7a8e76a3 4983}
c4f50183 4984EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4985
4986/**
4987 * rind_buffer_empty - is the ring buffer empty?
4988 * @buffer: The ring buffer to test
4989 */
13292494 4990bool ring_buffer_empty(struct trace_buffer *buffer)
7a8e76a3
SR
4991{
4992 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4993 unsigned long flags;
289a5a25 4994 bool dolock;
7a8e76a3 4995 int cpu;
d4788207 4996 int ret;
7a8e76a3
SR
4997
4998 /* yes this is racy, but if you don't like the race, lock the buffer */
4999 for_each_buffer_cpu(buffer, cpu) {
5000 cpu_buffer = buffer->buffers[cpu];
8d707e8e 5001 local_irq_save(flags);
289a5a25 5002 dolock = rb_reader_lock(cpu_buffer);
d4788207 5003 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 5004 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
5005 local_irq_restore(flags);
5006
d4788207 5007 if (!ret)
3d4e204d 5008 return false;
7a8e76a3 5009 }
554f786e 5010
3d4e204d 5011 return true;
7a8e76a3 5012}
c4f50183 5013EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
5014
5015/**
5016 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5017 * @buffer: The ring buffer
5018 * @cpu: The CPU buffer to test
5019 */
13292494 5020bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
5021{
5022 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 5023 unsigned long flags;
289a5a25 5024 bool dolock;
8aabee57 5025 int ret;
7a8e76a3 5026
9e01c1b7 5027 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 5028 return true;
7a8e76a3
SR
5029
5030 cpu_buffer = buffer->buffers[cpu];
8d707e8e 5031 local_irq_save(flags);
289a5a25 5032 dolock = rb_reader_lock(cpu_buffer);
554f786e 5033 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 5034 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 5035 local_irq_restore(flags);
554f786e
SR
5036
5037 return ret;
7a8e76a3 5038}
c4f50183 5039EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 5040
85bac32c 5041#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
5042/**
5043 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5044 * @buffer_a: One buffer to swap with
5045 * @buffer_b: The other buffer to swap with
59e7cffe 5046 * @cpu: the CPU of the buffers to swap
7a8e76a3
SR
5047 *
5048 * This function is useful for tracers that want to take a "snapshot"
5049 * of a CPU buffer and has another back up buffer lying around.
5050 * it is expected that the tracer handles the cpu buffer not being
5051 * used at the moment.
5052 */
13292494
SRV
5053int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5054 struct trace_buffer *buffer_b, int cpu)
7a8e76a3
SR
5055{
5056 struct ring_buffer_per_cpu *cpu_buffer_a;
5057 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
5058 int ret = -EINVAL;
5059
9e01c1b7
RR
5060 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5061 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 5062 goto out;
7a8e76a3 5063
438ced17
VN
5064 cpu_buffer_a = buffer_a->buffers[cpu];
5065 cpu_buffer_b = buffer_b->buffers[cpu];
5066
7a8e76a3 5067 /* At least make sure the two buffers are somewhat the same */
438ced17 5068 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
5069 goto out;
5070
5071 ret = -EAGAIN;
7a8e76a3 5072
97b17efe 5073 if (atomic_read(&buffer_a->record_disabled))
554f786e 5074 goto out;
97b17efe
SR
5075
5076 if (atomic_read(&buffer_b->record_disabled))
554f786e 5077 goto out;
97b17efe 5078
97b17efe 5079 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 5080 goto out;
97b17efe
SR
5081
5082 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 5083 goto out;
97b17efe 5084
7a8e76a3 5085 /*
74401729 5086 * We can't do a synchronize_rcu here because this
7a8e76a3
SR
5087 * function can be called in atomic context.
5088 * Normally this will be called from the same CPU as cpu.
5089 * If not it's up to the caller to protect this.
5090 */
5091 atomic_inc(&cpu_buffer_a->record_disabled);
5092 atomic_inc(&cpu_buffer_b->record_disabled);
5093
98277991
SR
5094 ret = -EBUSY;
5095 if (local_read(&cpu_buffer_a->committing))
5096 goto out_dec;
5097 if (local_read(&cpu_buffer_b->committing))
5098 goto out_dec;
5099
7a8e76a3
SR
5100 buffer_a->buffers[cpu] = cpu_buffer_b;
5101 buffer_b->buffers[cpu] = cpu_buffer_a;
5102
5103 cpu_buffer_b->buffer = buffer_a;
5104 cpu_buffer_a->buffer = buffer_b;
5105
98277991
SR
5106 ret = 0;
5107
5108out_dec:
7a8e76a3
SR
5109 atomic_dec(&cpu_buffer_a->record_disabled);
5110 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 5111out:
554f786e 5112 return ret;
7a8e76a3 5113}
c4f50183 5114EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 5115#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 5116
8789a9e7
SR
5117/**
5118 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5119 * @buffer: the buffer to allocate for.
d611851b 5120 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
5121 *
5122 * This function is used in conjunction with ring_buffer_read_page.
5123 * When reading a full page from the ring buffer, these functions
5124 * can be used to speed up the process. The calling function should
5125 * allocate a few pages first with this function. Then when it
5126 * needs to get pages from the ring buffer, it passes the result
5127 * of this function into ring_buffer_read_page, which will swap
5128 * the page that was allocated, with the read page of the buffer.
5129 *
5130 * Returns:
a7e52ad7 5131 * The page allocated, or ERR_PTR
8789a9e7 5132 */
13292494 5133void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
8789a9e7 5134{
a7e52ad7 5135 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
5136 struct buffer_data_page *bpage = NULL;
5137 unsigned long flags;
7ea59064 5138 struct page *page;
8789a9e7 5139
a7e52ad7
SRV
5140 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5141 return ERR_PTR(-ENODEV);
5142
5143 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
5144 local_irq_save(flags);
5145 arch_spin_lock(&cpu_buffer->lock);
5146
5147 if (cpu_buffer->free_page) {
5148 bpage = cpu_buffer->free_page;
5149 cpu_buffer->free_page = NULL;
5150 }
5151
5152 arch_spin_unlock(&cpu_buffer->lock);
5153 local_irq_restore(flags);
5154
5155 if (bpage)
5156 goto out;
5157
d7ec4bfe
VN
5158 page = alloc_pages_node(cpu_to_node(cpu),
5159 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 5160 if (!page)
a7e52ad7 5161 return ERR_PTR(-ENOMEM);
8789a9e7 5162
7ea59064 5163 bpage = page_address(page);
8789a9e7 5164
73a757e6 5165 out:
ef7a4a16
SR
5166 rb_init_page(bpage);
5167
044fa782 5168 return bpage;
8789a9e7 5169}
d6ce96da 5170EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
5171
5172/**
5173 * ring_buffer_free_read_page - free an allocated read page
5174 * @buffer: the buffer the page was allocate for
73a757e6 5175 * @cpu: the cpu buffer the page came from
8789a9e7
SR
5176 * @data: the page to free
5177 *
5178 * Free a page allocated from ring_buffer_alloc_read_page.
5179 */
13292494 5180void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
8789a9e7 5181{
73a757e6
SRV
5182 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5183 struct buffer_data_page *bpage = data;
ae415fa4 5184 struct page *page = virt_to_page(bpage);
73a757e6
SRV
5185 unsigned long flags;
5186
ae415fa4
SRV
5187 /* If the page is still in use someplace else, we can't reuse it */
5188 if (page_ref_count(page) > 1)
5189 goto out;
5190
73a757e6
SRV
5191 local_irq_save(flags);
5192 arch_spin_lock(&cpu_buffer->lock);
5193
5194 if (!cpu_buffer->free_page) {
5195 cpu_buffer->free_page = bpage;
5196 bpage = NULL;
5197 }
5198
5199 arch_spin_unlock(&cpu_buffer->lock);
5200 local_irq_restore(flags);
5201
ae415fa4 5202 out:
73a757e6 5203 free_page((unsigned long)bpage);
8789a9e7 5204}
d6ce96da 5205EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
5206
5207/**
5208 * ring_buffer_read_page - extract a page from the ring buffer
5209 * @buffer: buffer to extract from
5210 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 5211 * @len: amount to extract
8789a9e7
SR
5212 * @cpu: the cpu of the buffer to extract
5213 * @full: should the extraction only happen when the page is full.
5214 *
5215 * This function will pull out a page from the ring buffer and consume it.
5216 * @data_page must be the address of the variable that was returned
5217 * from ring_buffer_alloc_read_page. This is because the page might be used
5218 * to swap with a page in the ring buffer.
5219 *
5220 * for example:
d611851b 5221 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
5222 * if (IS_ERR(rpage))
5223 * return PTR_ERR(rpage);
ef7a4a16 5224 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
5225 * if (ret >= 0)
5226 * process_page(rpage, ret);
8789a9e7
SR
5227 *
5228 * When @full is set, the function will not return true unless
5229 * the writer is off the reader page.
5230 *
5231 * Note: it is up to the calling functions to handle sleeps and wakeups.
5232 * The ring buffer can be used anywhere in the kernel and can not
5233 * blindly call wake_up. The layer that uses the ring buffer must be
5234 * responsible for that.
5235 *
5236 * Returns:
667d2412
LJ
5237 * >=0 if data has been transferred, returns the offset of consumed data.
5238 * <0 if no data has been transferred.
8789a9e7 5239 */
13292494 5240int ring_buffer_read_page(struct trace_buffer *buffer,
ef7a4a16 5241 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
5242{
5243 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5244 struct ring_buffer_event *event;
044fa782 5245 struct buffer_data_page *bpage;
ef7a4a16 5246 struct buffer_page *reader;
ff0ff84a 5247 unsigned long missed_events;
8789a9e7 5248 unsigned long flags;
ef7a4a16 5249 unsigned int commit;
667d2412 5250 unsigned int read;
4f3640f8 5251 u64 save_timestamp;
667d2412 5252 int ret = -1;
8789a9e7 5253
554f786e
SR
5254 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5255 goto out;
5256
474d32b6
SR
5257 /*
5258 * If len is not big enough to hold the page header, then
5259 * we can not copy anything.
5260 */
5261 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 5262 goto out;
474d32b6
SR
5263
5264 len -= BUF_PAGE_HDR_SIZE;
5265
8789a9e7 5266 if (!data_page)
554f786e 5267 goto out;
8789a9e7 5268
044fa782
SR
5269 bpage = *data_page;
5270 if (!bpage)
554f786e 5271 goto out;
8789a9e7 5272
5389f6fa 5273 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 5274
ef7a4a16
SR
5275 reader = rb_get_reader_page(cpu_buffer);
5276 if (!reader)
554f786e 5277 goto out_unlock;
8789a9e7 5278
ef7a4a16
SR
5279 event = rb_reader_event(cpu_buffer);
5280
5281 read = reader->read;
5282 commit = rb_page_commit(reader);
667d2412 5283
66a8cb95 5284 /* Check if any events were dropped */
ff0ff84a 5285 missed_events = cpu_buffer->lost_events;
66a8cb95 5286
8789a9e7 5287 /*
474d32b6
SR
5288 * If this page has been partially read or
5289 * if len is not big enough to read the rest of the page or
5290 * a writer is still on the page, then
5291 * we must copy the data from the page to the buffer.
5292 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 5293 */
474d32b6 5294 if (read || (len < (commit - read)) ||
ef7a4a16 5295 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 5296 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
5297 unsigned int rpos = read;
5298 unsigned int pos = 0;
ef7a4a16 5299 unsigned int size;
8789a9e7
SR
5300
5301 if (full)
554f786e 5302 goto out_unlock;
8789a9e7 5303
ef7a4a16
SR
5304 if (len > (commit - read))
5305 len = (commit - read);
5306
69d1b839
SR
5307 /* Always keep the time extend and data together */
5308 size = rb_event_ts_length(event);
ef7a4a16
SR
5309
5310 if (len < size)
554f786e 5311 goto out_unlock;
ef7a4a16 5312
4f3640f8
SR
5313 /* save the current timestamp, since the user will need it */
5314 save_timestamp = cpu_buffer->read_stamp;
5315
ef7a4a16
SR
5316 /* Need to copy one event at a time */
5317 do {
e1e35927
DS
5318 /* We need the size of one event, because
5319 * rb_advance_reader only advances by one event,
5320 * whereas rb_event_ts_length may include the size of
5321 * one or two events.
5322 * We have already ensured there's enough space if this
5323 * is a time extend. */
5324 size = rb_event_length(event);
474d32b6 5325 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
5326
5327 len -= size;
5328
5329 rb_advance_reader(cpu_buffer);
474d32b6
SR
5330 rpos = reader->read;
5331 pos += size;
ef7a4a16 5332
18fab912
HY
5333 if (rpos >= commit)
5334 break;
5335
ef7a4a16 5336 event = rb_reader_event(cpu_buffer);
69d1b839
SR
5337 /* Always keep the time extend and data together */
5338 size = rb_event_ts_length(event);
e1e35927 5339 } while (len >= size);
667d2412
LJ
5340
5341 /* update bpage */
ef7a4a16 5342 local_set(&bpage->commit, pos);
4f3640f8 5343 bpage->time_stamp = save_timestamp;
ef7a4a16 5344
474d32b6
SR
5345 /* we copied everything to the beginning */
5346 read = 0;
8789a9e7 5347 } else {
afbab76a 5348 /* update the entry counter */
77ae365e 5349 cpu_buffer->read += rb_page_entries(reader);
c64e148a 5350 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 5351
8789a9e7 5352 /* swap the pages */
044fa782 5353 rb_init_page(bpage);
ef7a4a16
SR
5354 bpage = reader->page;
5355 reader->page = *data_page;
5356 local_set(&reader->write, 0);
778c55d4 5357 local_set(&reader->entries, 0);
ef7a4a16 5358 reader->read = 0;
044fa782 5359 *data_page = bpage;
ff0ff84a
SR
5360
5361 /*
5362 * Use the real_end for the data size,
5363 * This gives us a chance to store the lost events
5364 * on the page.
5365 */
5366 if (reader->real_end)
5367 local_set(&bpage->commit, reader->real_end);
8789a9e7 5368 }
667d2412 5369 ret = read;
8789a9e7 5370
66a8cb95 5371 cpu_buffer->lost_events = 0;
2711ca23
SR
5372
5373 commit = local_read(&bpage->commit);
66a8cb95
SR
5374 /*
5375 * Set a flag in the commit field if we lost events
5376 */
ff0ff84a 5377 if (missed_events) {
ff0ff84a
SR
5378 /* If there is room at the end of the page to save the
5379 * missed events, then record it there.
5380 */
5381 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5382 memcpy(&bpage->data[commit], &missed_events,
5383 sizeof(missed_events));
5384 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 5385 commit += sizeof(missed_events);
ff0ff84a 5386 }
66a8cb95 5387 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 5388 }
66a8cb95 5389
2711ca23
SR
5390 /*
5391 * This page may be off to user land. Zero it out here.
5392 */
5393 if (commit < BUF_PAGE_SIZE)
5394 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5395
554f786e 5396 out_unlock:
5389f6fa 5397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 5398
554f786e 5399 out:
8789a9e7
SR
5400 return ret;
5401}
d6ce96da 5402EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 5403
b32614c0
SAS
5404/*
5405 * We only allocate new buffers, never free them if the CPU goes down.
5406 * If we were to free the buffer, then the user would lose any trace that was in
5407 * the buffer.
5408 */
5409int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 5410{
13292494 5411 struct trace_buffer *buffer;
9b94a8fb
SRRH
5412 long nr_pages_same;
5413 int cpu_i;
5414 unsigned long nr_pages;
554f786e 5415
13292494 5416 buffer = container_of(node, struct trace_buffer, node);
b32614c0
SAS
5417 if (cpumask_test_cpu(cpu, buffer->cpumask))
5418 return 0;
5419
5420 nr_pages = 0;
5421 nr_pages_same = 1;
5422 /* check if all cpu sizes are same */
5423 for_each_buffer_cpu(buffer, cpu_i) {
5424 /* fill in the size from first enabled cpu */
5425 if (nr_pages == 0)
5426 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5427 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5428 nr_pages_same = 0;
5429 break;
554f786e 5430 }
554f786e 5431 }
b32614c0
SAS
5432 /* allocate minimum pages, user can later expand it */
5433 if (!nr_pages_same)
5434 nr_pages = 2;
5435 buffer->buffers[cpu] =
5436 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5437 if (!buffer->buffers[cpu]) {
5438 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5439 cpu);
5440 return -ENOMEM;
5441 }
5442 smp_wmb();
5443 cpumask_set_cpu(cpu, buffer->cpumask);
5444 return 0;
554f786e 5445}
6c43e554
SRRH
5446
5447#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5448/*
5449 * This is a basic integrity check of the ring buffer.
5450 * Late in the boot cycle this test will run when configured in.
5451 * It will kick off a thread per CPU that will go into a loop
5452 * writing to the per cpu ring buffer various sizes of data.
5453 * Some of the data will be large items, some small.
5454 *
5455 * Another thread is created that goes into a spin, sending out
5456 * IPIs to the other CPUs to also write into the ring buffer.
5457 * this is to test the nesting ability of the buffer.
5458 *
5459 * Basic stats are recorded and reported. If something in the
5460 * ring buffer should happen that's not expected, a big warning
5461 * is displayed and all ring buffers are disabled.
5462 */
5463static struct task_struct *rb_threads[NR_CPUS] __initdata;
5464
5465struct rb_test_data {
13292494 5466 struct trace_buffer *buffer;
6c43e554
SRRH
5467 unsigned long events;
5468 unsigned long bytes_written;
5469 unsigned long bytes_alloc;
5470 unsigned long bytes_dropped;
5471 unsigned long events_nested;
5472 unsigned long bytes_written_nested;
5473 unsigned long bytes_alloc_nested;
5474 unsigned long bytes_dropped_nested;
5475 int min_size_nested;
5476 int max_size_nested;
5477 int max_size;
5478 int min_size;
5479 int cpu;
5480 int cnt;
5481};
5482
5483static struct rb_test_data rb_data[NR_CPUS] __initdata;
5484
5485/* 1 meg per cpu */
5486#define RB_TEST_BUFFER_SIZE 1048576
5487
5488static char rb_string[] __initdata =
5489 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5490 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5491 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5492
5493static bool rb_test_started __initdata;
5494
5495struct rb_item {
5496 int size;
5497 char str[];
5498};
5499
5500static __init int rb_write_something(struct rb_test_data *data, bool nested)
5501{
5502 struct ring_buffer_event *event;
5503 struct rb_item *item;
5504 bool started;
5505 int event_len;
5506 int size;
5507 int len;
5508 int cnt;
5509
5510 /* Have nested writes different that what is written */
5511 cnt = data->cnt + (nested ? 27 : 0);
5512
5513 /* Multiply cnt by ~e, to make some unique increment */
40ed29b3 5514 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6c43e554
SRRH
5515
5516 len = size + sizeof(struct rb_item);
5517
5518 started = rb_test_started;
5519 /* read rb_test_started before checking buffer enabled */
5520 smp_rmb();
5521
5522 event = ring_buffer_lock_reserve(data->buffer, len);
5523 if (!event) {
5524 /* Ignore dropped events before test starts. */
5525 if (started) {
5526 if (nested)
5527 data->bytes_dropped += len;
5528 else
5529 data->bytes_dropped_nested += len;
5530 }
5531 return len;
5532 }
5533
5534 event_len = ring_buffer_event_length(event);
5535
5536 if (RB_WARN_ON(data->buffer, event_len < len))
5537 goto out;
5538
5539 item = ring_buffer_event_data(event);
5540 item->size = size;
5541 memcpy(item->str, rb_string, size);
5542
5543 if (nested) {
5544 data->bytes_alloc_nested += event_len;
5545 data->bytes_written_nested += len;
5546 data->events_nested++;
5547 if (!data->min_size_nested || len < data->min_size_nested)
5548 data->min_size_nested = len;
5549 if (len > data->max_size_nested)
5550 data->max_size_nested = len;
5551 } else {
5552 data->bytes_alloc += event_len;
5553 data->bytes_written += len;
5554 data->events++;
5555 if (!data->min_size || len < data->min_size)
5556 data->max_size = len;
5557 if (len > data->max_size)
5558 data->max_size = len;
5559 }
5560
5561 out:
5562 ring_buffer_unlock_commit(data->buffer, event);
5563
5564 return 0;
5565}
5566
5567static __init int rb_test(void *arg)
5568{
5569 struct rb_test_data *data = arg;
5570
5571 while (!kthread_should_stop()) {
5572 rb_write_something(data, false);
5573 data->cnt++;
5574
5575 set_current_state(TASK_INTERRUPTIBLE);
5576 /* Now sleep between a min of 100-300us and a max of 1ms */
5577 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5578 }
5579
5580 return 0;
5581}
5582
5583static __init void rb_ipi(void *ignore)
5584{
5585 struct rb_test_data *data;
5586 int cpu = smp_processor_id();
5587
5588 data = &rb_data[cpu];
5589 rb_write_something(data, true);
5590}
5591
5592static __init int rb_hammer_test(void *arg)
5593{
5594 while (!kthread_should_stop()) {
5595
5596 /* Send an IPI to all cpus to write data! */
5597 smp_call_function(rb_ipi, NULL, 1);
5598 /* No sleep, but for non preempt, let others run */
5599 schedule();
5600 }
5601
5602 return 0;
5603}
5604
5605static __init int test_ringbuffer(void)
5606{
5607 struct task_struct *rb_hammer;
13292494 5608 struct trace_buffer *buffer;
6c43e554
SRRH
5609 int cpu;
5610 int ret = 0;
5611
a356646a 5612 if (security_locked_down(LOCKDOWN_TRACEFS)) {
ee195452 5613 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
a356646a
SRV
5614 return 0;
5615 }
5616
6c43e554
SRRH
5617 pr_info("Running ring buffer tests...\n");
5618
5619 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5620 if (WARN_ON(!buffer))
5621 return 0;
5622
5623 /* Disable buffer so that threads can't write to it yet */
5624 ring_buffer_record_off(buffer);
5625
5626 for_each_online_cpu(cpu) {
5627 rb_data[cpu].buffer = buffer;
5628 rb_data[cpu].cpu = cpu;
5629 rb_data[cpu].cnt = cpu;
5630 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5631 "rbtester/%d", cpu);
62277de7 5632 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 5633 pr_cont("FAILED\n");
62277de7 5634 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
5635 goto out_free;
5636 }
5637
5638 kthread_bind(rb_threads[cpu], cpu);
5639 wake_up_process(rb_threads[cpu]);
5640 }
5641
5642 /* Now create the rb hammer! */
5643 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 5644 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 5645 pr_cont("FAILED\n");
62277de7 5646 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
5647 goto out_free;
5648 }
5649
5650 ring_buffer_record_on(buffer);
5651 /*
5652 * Show buffer is enabled before setting rb_test_started.
5653 * Yes there's a small race window where events could be
5654 * dropped and the thread wont catch it. But when a ring
5655 * buffer gets enabled, there will always be some kind of
5656 * delay before other CPUs see it. Thus, we don't care about
5657 * those dropped events. We care about events dropped after
5658 * the threads see that the buffer is active.
5659 */
5660 smp_wmb();
5661 rb_test_started = true;
5662
5663 set_current_state(TASK_INTERRUPTIBLE);
5664 /* Just run for 10 seconds */;
5665 schedule_timeout(10 * HZ);
5666
5667 kthread_stop(rb_hammer);
5668
5669 out_free:
5670 for_each_online_cpu(cpu) {
5671 if (!rb_threads[cpu])
5672 break;
5673 kthread_stop(rb_threads[cpu]);
5674 }
5675 if (ret) {
5676 ring_buffer_free(buffer);
5677 return ret;
5678 }
5679
5680 /* Report! */
5681 pr_info("finished\n");
5682 for_each_online_cpu(cpu) {
5683 struct ring_buffer_event *event;
5684 struct rb_test_data *data = &rb_data[cpu];
5685 struct rb_item *item;
5686 unsigned long total_events;
5687 unsigned long total_dropped;
5688 unsigned long total_written;
5689 unsigned long total_alloc;
5690 unsigned long total_read = 0;
5691 unsigned long total_size = 0;
5692 unsigned long total_len = 0;
5693 unsigned long total_lost = 0;
5694 unsigned long lost;
5695 int big_event_size;
5696 int small_event_size;
5697
5698 ret = -1;
5699
5700 total_events = data->events + data->events_nested;
5701 total_written = data->bytes_written + data->bytes_written_nested;
5702 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5703 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5704
5705 big_event_size = data->max_size + data->max_size_nested;
5706 small_event_size = data->min_size + data->min_size_nested;
5707
5708 pr_info("CPU %d:\n", cpu);
5709 pr_info(" events: %ld\n", total_events);
5710 pr_info(" dropped bytes: %ld\n", total_dropped);
5711 pr_info(" alloced bytes: %ld\n", total_alloc);
5712 pr_info(" written bytes: %ld\n", total_written);
5713 pr_info(" biggest event: %d\n", big_event_size);
5714 pr_info(" smallest event: %d\n", small_event_size);
5715
5716 if (RB_WARN_ON(buffer, total_dropped))
5717 break;
5718
5719 ret = 0;
5720
5721 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5722 total_lost += lost;
5723 item = ring_buffer_event_data(event);
5724 total_len += ring_buffer_event_length(event);
5725 total_size += item->size + sizeof(struct rb_item);
5726 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5727 pr_info("FAILED!\n");
5728 pr_info("buffer had: %.*s\n", item->size, item->str);
5729 pr_info("expected: %.*s\n", item->size, rb_string);
5730 RB_WARN_ON(buffer, 1);
5731 ret = -1;
5732 break;
5733 }
5734 total_read++;
5735 }
5736 if (ret)
5737 break;
5738
5739 ret = -1;
5740
5741 pr_info(" read events: %ld\n", total_read);
5742 pr_info(" lost events: %ld\n", total_lost);
5743 pr_info(" total events: %ld\n", total_lost + total_read);
5744 pr_info(" recorded len bytes: %ld\n", total_len);
5745 pr_info(" recorded size bytes: %ld\n", total_size);
5746 if (total_lost)
5747 pr_info(" With dropped events, record len and size may not match\n"
5748 " alloced and written from above\n");
5749 if (!total_lost) {
5750 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5751 total_size != total_written))
5752 break;
5753 }
5754 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5755 break;
5756
5757 ret = 0;
5758 }
5759 if (!ret)
5760 pr_info("Ring buffer PASSED!\n");
5761
5762 ring_buffer_free(buffer);
5763 return 0;
5764}
5765
5766late_initcall(test_ringbuffer);
5767#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */